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We present research developing and evaluating computational tools for brain mapping with diffusion

magnetic resonance imaging (MRI). Diffusion MRI enables the in-vivo reconstruction of the geomet-

ric structure of brain white matter, and it has potential to improve our understanding the brain in

health and disease through numerous scientific and clinical applications. The complexity of both

the imaging data and the underlying anatomy make computational tools an essential part of these

applications, and improvements to this toolset can allow more intricate anatomical structures to be

found and population-wide variation to be mapped. Beyond these applications, such computational

tools also represent a research area with many open problems of their own, as every advance made in

tool development also creates a need to expand our understanding of the strengths and limitations

of the tools themselves.

This thesis work represents advances made on both fronts to develop and evaluate computa-

tional tools for modeling, visualizing, and analyzing brain white matter with diffusion MRI. The

contributions include voxel-based analysis, fiber bundle modeling, and model-based image process-

ing. First, we develop an algorithm for supervoxel segmentation of brain white matter and show

how this is useful for automated region-based analysis in population imaging studies. Second, we

comparatively evaluate eight methods for spatial mapping in diffusion tensor studies and quantify

their relationship to scan-rescan reliability and predictive models of age-related decline in an adult

population of 80 subjects. Third, we develop and evaluate methods for tractography-based modeling

of fiber bundles using a sparse closest point transform and its use in combination with statistical and

machine learning algorithms in bundle clustering, simplification, and population selection. Fourth,

we develop and evaluate a kernel regression framework for tractography and atlas construction with

multi-compartment model imaging data. We show how this improves the accuracy of tractography

reconstructions in crossing fiber regions and enables complex anatomy to be reliably reconstructed

in both individual subjects and population averages. Finally, we apply this multi-fiber tractography

method to the reconstruction of the corticospinal tract in tumor imaging applications.
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Chapter 1

Introduction

1.1 Research Motivation and Significance

Our ability to interact with, understand, and appreciate the world around us is in great part due

to the remarkable abilities of the human brain. Even a simple hike through the woods would be

impossible without the complex coordination of our motor system to plan and execute our next

steps, our visual system to avoid the rocks on the path, our auditory system to alert us to the

stream up ahead, and our executive function to plan the trip. What’s perhaps most remarkable

though is our ability to understand the world around us. All of the neural abilities of perception,

memory, and reasoning come together allowing us to appreciate complex ideas, such as the biology

of the trees, geology of the mountains around us, and the fluid dynamics of the flowing stream.

While we can thank our brains for this rich experience, our understanding of brain function and

structure itself is severely limited. This is in part due to the distributed nature of its function and

its intricate anatomical structure, which exists across spatial scales ranging from single neurons to

cortical folds. Of course, all of these aspects of the brain can vary across both individuals and

time, so our understanding of the brain ultimately should include populations at various stages of

development and aging. Many advances have been made to expand our knowledge of how the brain

works and is organized, but clearly, these factors suggest there is a tremendous amount we do not

yet know.

Fundamentally, this is a scientific process, and our scientific tools are a crucial part of making

advancements. Ultimately they form the basis of how we make measurements, represent the results,
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organize them, and share our findings. Many kinds of measurements of the brain can be made, for

example, with single unit recordings, blunt dissection, imaging, etc. Imaging is particularly useful

for characterizing the structure of the brain in-vivo with mathematical models that are useful for

visualization and quantitative analysis. Modeling also enables the generalization of our results, for

example when characterizing the variation of a particular anatomical structure among a population.

Finally, such models serve as a simple way to communicate our results to others when there is

a great volume of data, with much of it being irrelevant or too detailed. Mathematical models

instead provide a summary of these results that hopefully captures the important and interesting

parts. Because of all of this, there is much to gain by improving our tools and understanding their

strengths and limitations.

Computational tools offer a particularly powerful approach for accomplishing this task, especially

when combined with sophisticated imaging techniques. The interdisciplinary nature of this approach

can lead to improved understanding of not only neuroscience but also of computer science, math-

ematics, and physics. Neuroscience has served as a catalyst for progress in the areas of graphics,

visualization, computer vision, and artificial intelligence. Likewise, computational tools are essential

for understanding the complex data that can be collected about the brain, and more generally, tools

are a driving force in scientific progress–as Freeman Dyson observed in his book, “The Scientist as

Rebel”:

The great advances in science usually result from new tools rather than from new

doctrines. ... Every time we introduce a new tool, it always leads to new and unexpected

discoveries, because Nature’s imagination is richer than ours.

In this thesis, we explore such interdisciplinary computational tools with the goal of making

contributions to not only our scientific understanding of the brain, but also to our understanding

of image-based computational modeling, visualization, and analysis. In particular, we focus on the

study of brain white matter with diffusion magnetic resonance imaging, a powerful technique with

both scientific and clinical applications, and specifically explore a computational techniques for image

processing, quantitative analysis, and visualization. We discuss the development each method by

examining its theoretical basis and practical concerns for implementation. Our contributions also

include the evaluation of computational methods, which consists of both controlled experiments

with synthetic datasets and applied experiments with human brain imaging data. The goal of this
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evaluation strategy is not only to better understand our proposed tools but also to gain insight into

real driving scientific and clinical problems. To facilitate this, each project includes collaborations

with domain experts, with the goal of providing driving problems to guide our development and

evaluation.

1.2 Contributions and Dissertation Organization

The dissertation in organized into eight chapters in total. The next chapter provides the basic

background material necessary for the rest of the dissertation, including a review of brain anatomy

and computational diffusion magnetic resonance imaging. The following chapters each constitute

the major research contributions of the thesis work and include the following:

• Supervoxel Segmentation of Diffusion Tensor Images:

This chapter develops and evaluates a method for automated region-based analysis of brain

white matter anatomy in diffusion tensor imaging studies. While many standard region at-

lases exist, these typically require manual delineation and are not typically based on specific

population being studied. This work aims to expand the toolset available for deriving study-

specific whole brain region segmentations with a supervoxel segmentation algorithm. This can

be used in conjunction with standard atlas-driven voxel-based and skeleton-based analyses to

efficiently and automatically segment regions-of-interest based on locally coherent patterns of

white matter fiber orientations. Our contributions include both the development of the theo-

retical aspects of the method and two experiments to evaluate the method with synthetic and

in vivo brain imaging data. The first experiment tests the algorithm’s ability to segment fiber

orientations in a synthetic dataset, and the results demonstrate the ability of the method to

automatically identify the number of clusters present in the data under some conditions. The

second experiment applies the method to a population-averaged dataset to test the effect of pa-

rameter settings, and the results show the effect of the parameters on region count and volume

and demonstrate the alignment of region boundaries to anatomical boundaries between major

bundles. The third experiment applies the method to segment scans of individual subjects

using deformable registration, and the results demonstrate the consistency of region segmen-

tation across individuals and scanning session. These results suggest that this is a potentially

useful technique for quantifying whole-brain patterns of diffusion-based anatomical variation
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and has possible applications to a variety of clinical neuroimaging studies.

– RP Cabeen, DH Laidlaw. “White Matter Supervoxel Segmentation by Axial DP-means

Clustering.” In MICCAI Workshop on Medical Computer Vision 2013

– RP Cabeen, ME Bastin, DH Laidlaw. “Reproducibility of an Automated Regional Anal-

ysis of White Matter with Diffusion Imaging.” OHBM 2013

• A Comparative Evaluation of Spatial Mapping in Diffusion Tensor Imaging:

This chapter presents a comparative evaluation of methods for automated voxel-based spatial

mapping in diffusion tensor imaging studies. Such methods are an essential step in compu-

tational pipelines and provide anatomically comparable measurements across a population in

atlas-based studies. To better understand their strengths and weaknesses, we tested a total of

eight methods for voxel-based spatial mapping with four diffusion tensor indices and investi-

gated performance in a scan-rescan reliability analysis and an application to predictive model-

ing of normal aging. The methods included voxel-based and skeleton-based analysis with and

without smoothing, and two types of region-based analysis with and without skeletonization.

The tensor metrics included fractional anisotropy, and mean, radial, and axial diffusivities.

To control for other factors in the pipeline, the experiments used a common dataset, acquired

at 1.5T with a single shell high angular resolution diffusion protocol, and a state of the art

method for tensor-based spatial normalization and study-specific template construction. Scan-

rescan reliability was assessed using the coefficient of variation (CV) and intraclass correlation

(ICC) with eight subjects with three scans each. The application experiment quantitatively

compared predictive models of age based on principal component regression with a population

of 80 normal subjects aged 25 to 65 years. The results show that reliability depends greatly on

the method for spatial mapping with less reliability in single-voxel methods (CV = 5.91 ± 0.81

%, ICC = 0.58 ± 0.04) than region-based methods (CV = 2.45 ± 0.25 % and ICC = 0.74 ±

0.02). The results also highlight how reliability depends on anatomical location and somewhat

on the diffusion metric, but not significantly with skeletonization. Despite these differences, all

methods performed well in age modeling (R2 = 0.53 ± 0.02); however, skeleton-based analysis

(R2 = 0.56 ± 0.0) showed generally better performance than voxel-based analysis (R2 = 0.50

± 0.0). These results not only can help to interpret results from past white matter imaging

studies, but also help in planning future studies to maximize reliability and modeling power
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in relation to the scientific goals.

– RP Cabeen, ME Bastin, DH Laidlaw. “A Comparative Evaluation of Spatial Mapping

in Diffusion Tensor Imaging.” NeuroImage (under review)

• Fiber Bundle Modeling with the Sparse Closest Point Transform:

This chapter develops and evaluates methods to model brain white matter fiber bundles in

diffusion MR tractography datasets using a sparse closest point transform. Such techniques

are important in characterizing white matter anatomy in scientific imaging studies; however,

most existing techniques include a tight coupling between the representation of tractography

data and the statistical methods for bundle modeling. The proposed sparse closest point

transform aims to provide a representation that is more generally useful in combination with

existing statistical and machine learning algorithms, and this paper evaluates this by quan-

titatively measuring how well several such combinations solve common tasks in fiber bundle

modeling. The proposed representation is obtained by first extracting sparse and representa-

tive landmarks from a tractography dataset, and then transforming curves relative to these

landmarks using a closest point transform. The evaluation includes three tasks: fiber bundle

clustering, simplification, and selection across a population. The bundle clustering algorithm

groups fibers from single whole-brain datasets using the DP-means algorithm. It was evaluated

with the adjusted Rand index in reference to manually delineated bundles across four trac-

tography datasets, and the results show performance as good as or better than hierarchical

and spectral clustering. The simplification algorithm removes redundant curves to improve

interactive visualization and similarly using the DP-means to find a representative subsets of

curves. It was evaluated with the Dice coefficient relative to the full data, and the results

show performance generally superior to random subsampling. The bundle selection algorithm

extracts similar bundles across a population given a prototypical example in a group template

using a one-class Gaussian classifier. It was evaluated in terms of scan-rescan reliability and

an application to normal aging in 80 adult subjects, and the results show comparable relia-

bility to manual region-based bundle selection, as well as comparable or better sensitivity to

age-related anatomical changes in the forceps minor. In general, the results show that the

sparse closest point transform is efficient and generally useful in fiber bundle modeling tasks

common to diffusion MR tractography studies. While the methods tested here are based on
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simple machine learning techniques, it could also open the door for a variety of statistical and

machine learning techniques to be tested to determine what best suits the needs of a particular

scientific study.

– RP Cabeen, DH Laidlaw. “Diffusion MR Tractography Clustering with the Sparse Closest

Point Transform.” OHBM 2016

– RP Cabeen, DH Laidlaw. “Diffusion MR Fiber Bundle Modeling with the Sparse Closest

Point Transform.” IEEE Transactions on Medical Imaging 2016 (in preparation)

• Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI:

This chapter presents and evaluates a method for kernel regression estimation of fiber orien-

tations and associated volume fractions for diffusion MR tractography and population-based

atlas construction in clinical imaging studies of brain white matter. This is a model-based

image processing technique in which representative fiber models are estimated from collec-

tions of component fiber models in model-valued image data. This extends prior work in non-

parametric image processing and multi-compartment processing to provide computational tools

for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to

related work on multi-compartment processing, this approach is based on directional measures

of divergence and includes data-adaptive extensions for model selection and bilateral filtering.

This is useful for reconstructing complex anatomical features in clinical datasets analyzed with

the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful

for general multi-compartment image processing. We experimentally evaluate our approach

with both synthetic data from computational phantoms and in vivo clinical data from human

subjects. With synthetic data experiments, we evaluate performance based on errors in fiber

orientation, volume fraction, compartment count, and tractography-based connectivity. With

in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of

quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean

volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from

a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber

atlas shows more complete features of known fiber bundles and includes reconstructions of

the lateral projections of the corpus callosum and complex fronto-parietal connections of the

superior longitudinal fasciculus I, II, and III.
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– RP Cabeen, ME Bastin, DH Laidlaw. “Kernel Regression Estimation of Fiber Orientation

Mixtures in Diffusion MRI.” NeuroImage 2016

– RP Cabeen, DH Laidlaw. Bilateral Filtering of Multiple Fiber Orientations in Diffusion

MRI. MICCAI Workshop on Computational Diffusion MRI 2014

– RP Cabeen, ME Bastin, DH Laidlaw. “Estimating Constrained Multi-fiber Diffusion MR

Volumes by Orientation Clustering.” MICCAI 2013

• An Evaluation of Diffusion MR Tractography-based Reconstruction of the Corti-

cospinal Tract:

This chapter evaluates several methods for tractography-based reconstruction of the corti-

cospinal tract in clinical neuroimaging. In particular, we examine the reconstruction of fiber

bundles in the presence of brain tumors. This is an important task for surgical planning, as it

can help a surgeon understand not only how the tumor is interacting with eloquent anatomical

structures but also how best to resect tumor tissue without a loss of function. This work is

based on submissions to the 2014 and 2015 workshops of the MICCAI DTI Challenge, which

is an annual competition with the goal of evaluating tractography algorithms in collaboration

with neurosurgeons and other domain experts. For this, we applied the multi-fiber tractog-

raphy methods presented in this thesis and created reconstructions of the corticospinal tract

in several cases and the arcuate fasciculus in a single case. The paper describes this process,

presents the results, and discusses the strengths and weaknesses of the proposed method in

contrast to standard approaches. Overall, the results show the ability of the multi-fiber mod-

eling framework to recover complex features of white matter in clinical datasets, suggesting

this is a potentially useful technique for future applications in surgical planning.

– RP Cabeen, DH Laidlaw. “Corticospinal Tract Reconstruction with Deterministic Multi-

fiber Tractography and Model-based Processing.” MICCAI DTI Challenge 2015

– RP Cabeen, DH Laidlaw. “Diffusion Tractography of the Corticospinal Tract with Multi-

fiber Orientation Filtering.” MICCAI DTI Challenge 2014

Finally, the dissertation is concluded with a discussion of the results, thoughts about open prob-

lems, and reflections on the research process.



Chapter 2

Background

In this chapter, we provide a high level introduction to human brain anatomy and computational

diffusion magnetic resonance imaging (MRI). The goal is not to provide a comprehensive description

of these topics, but instead to provide the reader with the background information necessary for

the rest of the dissertation. The first section will cover human brain anatomy, including anatom-

ical nomenclature, gross brain anatomy, and the major white matter structures discussed later

manuscript. The second section covers computational diffusion MRI, including the basics of MR

physics, diffusion MR image formation, computational and mathematical methods in diffusion MRI.

2.1 Human Brain Anatomy

In this section, we provide a high level introduction to human brain anatomy. We’ll first cover

the basic terms for describing the spatial layout of anatomy, and then we’ll describe the large-scale

structure of the brain. Following this, we’ll go into more detail and discuss a number of well-known

fiber bundles and show visualizations derived from a brain atlas.

2.1.1 Anatomical Nomenclature

When talking about anatomical structures, it is important to describe their spatial layout in an

accurate and specific way. Our colloquial language for describing positions and orientations of

objects is unfortunately not up to this task, so biologists instead use anatomical coordinate systems

that aim to be standardized and unambiguous [247]. The history of these systems can be traced as

8
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Figure 2.1: The anatomical axes of the brain shown in two views of the cortical surfaces.

far back as the ancient Greeks, so much of the language is derived from Latin and Greek [193] [65].

The system used today for human anatomy is an international standard known as the Terminologia

Anatomica [240], although similar terminology is used for most other vertebrates. In the rest of

this section, we’ll describe the elements of these systems that are useful for discussing human brain

anatomy and how it relates to imaging data.

When describing the position of anatomical structures, they are usually placed in a coordinate

system consisting of axes, which are defined relative to the animal in some standard anatomical

position [133]. This ensures that the description does not change when an observer changes their

viewing position or when the animal moves its limbs. This system is essentially a three-dimensional

coordinates system where each of the axes is assigned a pair of names for the its extreme ends, as

shown in Fig. 2.1. While a similar set of axes can be used for most vertebrates, one potentially

confusing issue is that humans have a neuraxis that curves at the head. The anterior-posterior axis

(or rostral-caudal axis) can be imagined as running from the front to the back of the brain. The

inferior-superior axis (or ventral-dorsal axis) can be imagined as running from the bottom to the top

of the brain. The left-right axis is similar to the common usage; however, when describing positions

along that axis, the term medial is used to refer to objects closer to the midpoint and lateral for

objects away from the midpoint.

In addition to describing anatomy in terms of axes, it is also useful to think of anatomical

planes [133]. These planes are defined relative to the same standard anatomical position and can be

imagined as separating the extreme ends of each axis, as shown in Fig. 2.2. The transverse plane (or

axial plane) separates the inferior from the superior, the coronal plane (or frontal plane) separates
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transverse/axial! coronal/frontal! sagittal/lateral!

Figure 2.2: The anatomical reference planes of the brain shown in three views of the cortical surfaces.

transverse/axial! coronal/frontal! sagittal/lateral!

Figure 2.3: Common image volume data and naming conventions for each of the three slices. The
top panel shows a 3D view of slices taken through the volumetric imaging data. The bottom panels
show 2D views of each slice and their common names.
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the anterior from the posterior, and the sagittal plane (or lateral plane) separates the left from the

right. These planes are especially important when talking about imaging data. The axes of the

image volume are often aligned with the anatomical axes, so the displayed images are commonly

named by the closest anatomical reference plane, as shown in Fig. 2.3.

2.1.2 Gross Brain Anatomy

Next, we’ll look at the gross anatomy of the human brain with the goal of understanding the context

of white matter anatomy. The brain is included in a larger hierarchical system that starts with the

the nervous system at the highest level. The nervous system is then subdivided into the peripheral

nervous system (PNS) and the central nervous system (CNS). The PNS is distributed collection of

spinal and cranial nerves allow communication between the CNS and the rest of the body. The CNS

includes the spinal cord and the brain. The brain is then subdivided into the cerebrum, cerebellum,

and the brainstem [153], as shown in Fig. 2.4. While there are many interesting aspects of other

parts of the nervous system, we’ll focus on the cerebrum here.

The cerebrum is a complex structure that is responsible for much of our sensory processing,

decision making, and initiation of voluntary action [133]. It can be subdivided into the diencephalon

and the left and right hemispheres, which have a very similar structure. Each hemisphere can be

subdivided according to several criteria, such as function, histology, and morphology. Cerebral lobes

can be defined by large-scale functional properties [240], resulting in frontal, parietal, occipital, and

temporal areas, which are shown in Fig. 2.4. The surface of the brain can also be subdivided

according to cytoarchitectonic properties, such as Brodmann areas [29]. Finally, the hemispheres

can be divided according to the morphology of the outer cortical surface, which folds to produce

gyri (the peaks) and sulci (the valleys), as shown in Fig. 2.6.

The other important way to describe the brain is in terms of tissue types, which include the

cerebro-spinal fluid, gray matter, white matter, as shown in Fig. 2.6. The cerebro-spinal fluid is

a clear fluid produced in the ventricles and bathes the rest of the brain and spinal cord. It not

only protects the CNS with a physical buffer, and also serves immunological and regulatory roles.

The gray matter consists of neuronal cell bodies that lie on the outer cortical surface of the brain.

The cortex is roughly 2 to 4 millimeters in thickness and contains a complex vertical organization

into a number of distinct layers based on neuronal cell type [153]. The white matter consists of the

axonal projections of neurons and supporting structures, such as oligodendrocytes and astrocytes.
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Figure 2.4: Brain anatomy is organized in a hierarchical fashion, starting with coarse subdivisions
into the cerebrum, cerebellum, and brainstem, as shown in the left panel. The cerebrum can be
further subdivided into functionally distinct frontal, parietal, temporal, and occipital lobes, as shown
in the right panel. (from [75])

Figure 2.5: In addition to lobular subdivisions, the cerebrum may be alternatively described by
smaller areas based on surface morphology of gyral folding patterns. The left panel shows a lateral
view of these areas, and the right panel shows a medial view. (from [75])

This tissue is described as “white” due to the appearance of the fatty myelin sheath that insulates

the axons. These axons act as communication channels between cortical areas, including both short

and long-range connections [189], as shown in Fig. 2.7. Next, we’ll look at white matter anatomy

in more detail.

2.1.3 White Matter Fiber Bundles

While white matter may appear homogeneous when dissected or viewed in a standard MRI, it is

fact an intricate structure in which axon projections follow specific pathways to form complex neural

networks. These axon projections form large scale patterns that are similar across many individuals.

[158]. Specifically, groups of axons tend to follow coherent trajectories, forming structures known as
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Figure 2.6: The brain may also be described in terms of tissue types. The three main types are
gray matter, white matter, and cerebro-spinal fluid. The gray matter consists neuronal cell bodies
and resides in both deep subcortical nuclei and the outer cortical shell. The white matter consists
of the neuronal axon projects and their supporting structures and resides in the interior of the
cerebrum. The cerebrospinal fluid occupies the ventricles and space between the gray matter and
pial membrane. The above illustrations show annotated views with dark shading representing gray
matter. The left panel shows an axial slice, and the right panel shows a coronal slice. (from [75])

Figure 2.7: The white matter consists of a intricate woven structure of fibers bundles, as illustrated
in the left panel. This can be imagined as a wiring diagram of the brain, through which different
cortical areas can communicate, as illustrated in the right panel. (from [75])
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White Matter Surface White Matter Fibers

Figure 2.8: The white matter anatomy in a large-population brain atlas. The left column shows
the white matter surface at the boundary with gray matter. The right column shows white matter
tractography fibers. From top to bottom, the rows show lateral, superior, and anterior views.
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fiber bundles or fascicles. These bundles also form complex configurations, which include crossing,

kissing, and sharp turns. Much of the literature on white matter anatomy has aimed to define and

characterize specific fiber bundles, which we’ll briefly go over next.

Fiber bundles can be roughly categorized based on which parts of the brain they connect, what

function they perform, and how they appear [42]. Early work investigated these features on a large

scale using Klinger dissection, in which a careful preparation and freezing allows white matter to

be pulled away, exposing the surface of a given bundle. More fine detailed examinations have also

been performed in non-humans by neuronal tracing, in which the injection of a tracer dye allows the

connectivity of individual neurons to be mapped. From these studies, three groups are commonly

used for classification: commissural fibers, projection fibers, and association fibers. Fibers can also

be described as either afferent or efferent to indicate whether they carry impulses towards or away

from the CNS, respectively.

The commissural fibers include bundles that connect the cerebral hemispheres [42]. Examples of

commissural fibers include the anterior commisure, posterior commisure, and the corpus callosum.

The corpus callosum (shown in Fig. 2.9) is the largest of the commissural fibers and is often subdi-

vided into several segments based on morphology and micro-architecture. The portion connecting

the anterior prefrontal areas is often known as the genu or forceps minor. The portion connecting

the posterior occipital areas is often known as the splenium or forceps major. The portion connecting

the temporal areas and covering the lateral ventricles is often known as the tapetum. The remaining

fibers are often referred to as the body of the corpus callosum.

The projection fibers include bundles that connect the cerebral cortex to more inferior areas, such

as subcortical structures and spinal cord [42]. Fig. 2.10 shows examples of several projection bundles,

including the corona radiata, cortico-spinal tract, fornix, and the anterior thalamic radiation. The

corona radiata is a sheetlike structure that fans out from inferior to superior. The cortico-spinal tract

connects the spinal tract to the precentral gyrus and is responsible for motor function. The fornix is

part of the limbic system and connects the thalamus, the hippocampus, and the mammilary bodies.

The anterior thalamic radiation connects the thalamic nuclei to prefrontal cortex and is important

for cognition [130].

The association fibers include bundles that connect different cortical areas within the same hemi-

sphere. They can be further described as short association when they connect adjacent gyri, or long

association when they connect more distance gray matter areas. Fig. 2.11 shows examples of several
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Figure 2.9: Commissural fibers of the corpus callosum. The visualization shows inter-hemispheric
connections between the frontal, parietal, occipital, and temporal lobes.

association bundles, including the uncinate fasciculus, arcuate fasciculus, cingulum bundle, superior

longitudinal fasciculus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus.

2.2 Computational Diffusion MRI

In this section, we discuss diffusion magnetic resonance imaging (MRI) and computational tech-

niques for using it in mapping brain anatomy. This is a large research area, so we’ll briefly cover

foundational ideas and discuss computational diffusion MRI with enough background to support the

rest of the manuscript. In the following two subsections, we’ll cover the underlying physics of image

formation and how diffusion properties of tissue can be measured and modeled. We’ll then examine

computational techniques for constructing mathematical models of white matter anatomy and how

these can be used for image analysis and visualization in scientific and clinical applications.

2.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging is a unique imaging technique that is useful for non-invasively map-

ping the three-dimensional structure of soft tissues in animals. The basis of MRI is fundamentally

the physics of molecular spins and how they react to magnetic fields and their surroundings. This
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Corona Radiata Cortico-spinal Tract

Fornix Anterior Thalamic Radiation

Figure 2.10: Projection fiber bundles. The top left and right panels show the corona radiata and
cortico-spinal tract, respectively. The bottom left and right panels show the fornix and anterior
thalamic radiation, respectively.
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Uncinate Fasciculus Arcuate Fasciculus

Cingulum Bundle Superior Longitudinal Fasciculus

Inferior Longitudinal Fasciculus Inferior Fronto-Occipital Fasciculus

Figure 2.11: Association fiber bundles. The top left and right panels show the fronto-temporal
connections of the uncinate and arcuate fasciculus, respectively. The middle left and right panels
show the fronto-parietal connections of the cingulum bundle and the superior longitudinal fasci-
culus, respectively. The bottom left panel shows the occipito-temporal connections of the inferior
longitudinal fasciculus, and the bottom right shows the the inferior fronto-occipital fasciculus.
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distinguishes MR images from other common modalities such as optical imaging, ultrasound, and

computed tomography (CT). While optical imaging is sensitive to patterns of electromagnetic radi-

ation that characterize surface properties of objects, it is not typically useful for making volumetric

reconstructions of tissues. Through the production and sensing of high frequency sound waves, ul-

trasound is able to volumetrically image tissues; however, it is mostly sensitive to tissue boundaries

and suffers from low signal-to-noise and spatial resolution. While CT can offer high quality images,

it performs poorly in some soft tissues and introduces significant risks through its use of ionizing

X-rays [138]. In comparison to these other techniques, MRI offers high spatial resolution, the ability

to distinguish soft tissues, and few known health risks. Its major limitations are its high cost and

need for expert knowledge.

The history of MRI dates back many decades, and over the course of its development, it has not

only become a standard scientific and clinical tool, but it also includes the discovery of fundamen-

tal principles in physics [70]. Essentially, MRI is a technique for measuring properties of protons

and their surroundings, specifically water molecule protons that are abundant in biological tissues.

These protons are quantum mechanical objects and possess a magnetic moment that precesses when

surrounded by a magnetic field. The rate of this precession is known as the Larmor frequency, and

it depends on both the proton’s intrinsic gyromagnetic ratio and the surrounding magnetic field

strength [216]. This phenomenon of nuclear magnetic resonance (NMR) can be used to detect and

measure magnetic moments of a physical sample by a the producing and observing electromagnetic

radiation (EM), which is typically in the radio-frequency range [177] [174].

From this technique, a number of other important phenomena were uncovered. First, a careful

application of EM pulses can be used to produce spin echos, which greatly improve the NMR

signal [80] [79]. Second, different samples can exhibit different relaxation rates [40], which are the

speeds at which the spins return to equilibrium after perturbation. These relaxation rates reflect

microscopic physical properties of the material, so the careful design of a pulse sequence can allow

subtle differences or contrasts between materials to be characterized [25] [139]. This turns out to be

the case with biological tissue [154], which opened the door for NMR to be used for clinical as well

as scientific applications.

While NMR can be used to finely characterize a sample, it lacks the spatial information provided

by imaging data, so much of the following work focused on the theory and methods for extending

NMR to MRI. The basic way to create an image with NMR is to encode the location of each sample
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according to its frequency and/or phase. Early work to solve this problem was done concurrently

by several groups, and the resulting idea was to introduce magnetic field gradients in the otherwise

uniform magnet [53] [114] [113] [131]. This gives each location a slightly different Larmor frequency,

a technique known as slice selection. Then, the voxels of each slice can be decomposed using further

frequency and phase encoding gradients, and the resulting data can be reconstructed with a Fourier

transform [109] [179]. Further work in this area extended this idea to collect three dimensional data,

which produces an image volume instead of only an image slice [111].

Most MR images represent a measurement weighted by some combination of the basic tissue

relaxation rates (T1, T2, and T⋆
2); however, MRI can also be used to measure the physical diffusion

properties of tissue. Some of the early work on NMR acknowledged its sensitivity to diffusion [40],

but it was not until a decade later that diffusion was treated as an object of study, as opposed

to an artifact to be removed [202] [201]. These works developed the theory of diffusion MRI pulse

sequences; however, much of the practical innovation came several decades later, with development of

imaging techniques and applications to neurology [116] [115] [203]. These early clinical applications

demonstrated the measurement of the apparent diffusion coefficient (ADC), which is still a commonly

used tool for image-based diagnosis and grading of strokes [232] [233] . However, this turns out to

be a quite limited view of what is possible with diffusion MRI, as diffusion can exhibit a complex

anisotropic pattern in tissue, which not characterized by these ADC measurements [45]. This is true

for brain white matter, where diffusion patterns be used to characterize the geometry of the tissue

microstructure, which we’ll discuss next.

2.2.2 Diffusion Magnetic Resonance Imaging

While free diffusion of water can be accurately described by a single diffusion coefficient, diffusion

in biological tissue can require considerably more complex models [45]. This is due to the presence

of a number of obstacles at the molecular level, including cell walls, organelles, and various organic

macromolecules [17]. As a consequence, accurate reports of local diffusion properties of the tissue

could tell us much about these cellular structures [13]. However, one of the major challenges of

diffusion MRI is how to properly model the diffusion-weighted measurements obtained from the

scanner. Of course, there is no way to completely reconstruct the diffusion process, so there is

always a trade off in the amount of data collected (with increased acquisition time) and model

complexity (with more parameters) [117]. Because of this, there are numerous ways to represent the
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diffusion process.

The basic MR technique for measuring diffusion is known as the pulsed gradient spin-echo exper-

iment, which was developed by Stejskal and Tanner [202]. In the basic design, a pulsed field gradient

is added to the typical spin-echo sequence, resulting in a dephasing and later resphasing. Molecular

diffusion that occurs between these phasing steps introduces an attenuation in the observed signal.

This is the basis for quantifying diffusion, and given the narrow pulse approximation [38], the atten-

uated signal S can be generally characterized by a Fourier relationship with the probability density

of the underlying diffusion process p(r|τ) [236]:

S = S0

∫

R3

p(r|τ)e−2πiqT rdr (2.1)

where q = γδG/2π and S0 is the reference signal from the standard spin echo protocol. The quantity

γ is an intrinsic parameter of hydrogen protons, and G is the diffusion-sensitizing gradient, which

is usually decomposed into its magnitude G and orientation g = G/G. While there are several

experimental parameters to consider, they are usually summarized by the gradient orientation (or

b-vector) g and the b-value b = γ2G2δ2 (∆− δ/3), given the pulse duration δ and separation ∆. To

avoid contamination by bulk flow, the magnitude of the full complex MR signal is usually taken,

which notably gives rise to the Rician distribution of noise in diffusion MRIs [77].

2.2.3 Diffusion Models

While this basic mechanism of diffusion sensitization was worked out early in the history of MRI,

it wasn’t until several decades later that this became practically useful for imaging, largely due

the complexities of mixing gradients for both spatial and diffusion encoding in a single session

[117]. Following these developments, the field saw a surge in methods for modeling and interpreting

diffusion MRIs.

The simplest model, which was already mentioned, represents diffusion with a single coefficient

(ADC) where the diffusion-weighted signal is represented by:

S = S0e
−bD (2.2)

This makes an assumption that the underlying diffusion probability density follows an isotropic

Gaussian distribution. This is a fair assumption when looking at fluid with little imposed geometric
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Table 2.1: A summary diffusion tensor indices. These are derived from the eigen-decomposition of the
diffusion tensor. Indices derived from the sorted eigenvalues are particularly useful for characterizing
the geometric shape of the tensor.

Name Description
PDD Principal Diffusion Direction Direction of greatest diffusion
AD Axial Diffusivity Magnitude of diffusion in the PDD
RD Radial Diffusivity Magnitude of diffusion perpendicular to the PDD
MD Mean Diffusivity Magnitude of total diffusion
FA Fractional Anisotropy Degree of anisotropy ranging from zero to one

structure, so the resulting ADC maps are useful for applications such as stroke imaging [147], in

which the underlying pathology involves changes in tissue fluid content. However, there are many

cases where tissue includes some relevant geometric structure that this model fails to capture.

The first model to go beyond the simple ADC representation is the diffusion tensor model [14]

[170]. This model represents the diffusion pattern with Gaussian distribution, which allows the

diffusion process to be described by any ellipsoidal shape:

S = S0e
−bgTDg (2.3)

given a positive definite diffusion tensor D with six parameters. From an eigen-decomposition of D,

we can derive a number of simple properties based on the resulting decreasing eigenvalues λ1, λ2, λ3

and their associated eigenvectors v1, v2, v3 [15] [239]. Some of these measures are summarized in

Table 2.1. Fractional anisotropy (FA) is the most commonly used measure and describes how far

the tensor deviates from being isotropic and is given by:

FA =

√

1

2

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2
√

λ2
1 + λ2

2 + λ2
3

(2.4)

FA is sensitive to changes in microstructural properties of brain white matter, such as fiber density,

myelination, and fiber mixing; however, it should be noted that it is not specific, because changes

in any of these properties will be observed as changes in anisotropy [146]. Mean diffusivity is

another quantity that represents the overall size of the tensor (similar to the ADC) and is given

by MD = (λ1 + λ2 + λ3)/3. There are also axial and radial diffusivity given by AD = λ1 and

RD = (λ2−λ3)/2, respectively, as well as many more [4] [239]. The principal tensor direction v1 has

also been found to be aligned with the orientation of large fiber bundles [171]. This feature is the
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basis for constructing tractography-based models of white matter fiber bundles, which we’ll discuss

later.

While the tensor can be used for many complex white matter imaging tasks, a fundamental limi-

tation is that cannot represent complex configurations of fibers [117]. These complex configurations

are quite common due partial volume effects in large voxels and due to the presence of crossing fiber

bundles in many parts of the brain [242] [218]. To handle these, a number of techniques have been

developed, and they can be roughly grouped into non-parametric and parametric techniques.

Non-parametric techniques aim to characterize the diffusion process without making many as-

sumptions about its underlying shape. These techniques take advantage of the Fourier relation-

ship between the diffusion-weighted signal and the underlying diffusion probability density function

(PDF). The first approaches in this area considered a simpler problem of solving for the diffusion

on a spherical subsection of q-space, resulting in a simpler orientation distribution function (ODF)

[219], which is the radial integral of the full PDF. The Q-ball technique for computing the ODF

can do this efficiently by inverting a Funk-Radon transform that describes the relationship between

the ODF and the diffusion signal, analogously to the Fourier relationship between the PDF and the

diffusion signal [217]. Further improvements have been made by accounting for volumetric changes

with a constant solid angle factor [3] and by performing deconvolution to obtain a fiber orientation

distribution function [215]. With improvements to scanner technology, it also became possible to

reconstruct the full PDF with a technique known as diffusion spectrum imaging (DSI) [236], which

samples a dense grid of q-space instead of the sphere used to reconstruct an ODF. In general these

approaches require many unique gradient orientations and high b-values to obtain good results.

This is practical for scientific applications; however, it is less common to find this quality of data in

clinical scans, which are often time constrained and limited to low field strengths and b-values.

Parametric techniques take a different approach and make substantial assumptions of the con-

stituent parts of the diffusion process. The diffusion tensor model is an example of such a parametric

model; however, many more parametric models have been developed to handle the complex proper-

ties of white matter. The simplest extension is to consider a multi-tensor model:

S = S0

N
∑

j=1

fje
−bgTDjg (2.5)

which represents the signal attenuation by a linear combination of tensors [5] [207], each of which
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may represent some population of fibers within a voxel. While very flexible, this model requires

a multi-shell acquisition [186], which imposes some limitations for clinical use. However, there are

many ways to constrain this model to improve its performance with single shell and more clinically

oriented acquisitions. One such model is the ball-and-sticks model:

S = S0



f0e
−db +

N
∑

j=1

fje
−bd(~gT ~uj)

2



 (2.6)

which reduces the tensors to a single isotropic ball, multiple completely anisotropic sticks, and a

shared diffusivity d [19]. This has the benefit of handling partial volume effects, isotropic diffusion,

and differing proportions of fiber populations in each voxel. Later in this document we explore more

computational approaches to work with the ball-and-sticks model. Other approaches for parametric

modeling have been explored to obtain measures of features such as orientation dispersion [254] and

other more exotic features [64]. This is all to show that there is a rich array of options when choosing

a diffusion model, and that choice is often led by the limitations of the data and the problem being

investigated. In the next section, we examine computational approaches for processing, analyzing,

and visualizing diffusion MRI data.

2.2.4 Computational Methods

Computational tools are an essential part of dealing with modern medical imaging data. There

are many scientific and clinical problems that can be addressed with these tools [136], but the

fundamental tasks include image processing, registration, segmentation, visualization, and analysis.

Image processing includes a variety of tasks that operation only on image data, such as interpola-

tion, filtering, denoising, and fusion [120]. Image registration involves the alignment of two images

into a common coordinate system [129] [262]. For example, when combining images from differ-

ing modalities, such as PET and CT, that alignment can be a simple rigid motion or some more

complex deformation. Image segmentation is performed to decompose an image into a number of

segments, which may correspond to some anatomy or region of interest [159] [137]. Visualization

provides a way for people to interpret imaging data, and this can take the form of traditional slices

or more complex 3D views that include a combination of geometric and volumetric data [188]. The

area of image analysis considers a more general task of extracting meaningful information from the

image (and usually includes the use of those other tasks as well). The result could be a quantitative
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measurement of some feature in an image or a more qualitative understanding of the content.

While these methods are generally useful, there are a few unique features of the diffusion mea-

surement to consider when applying them to diffusion MRIs [121]. The primary difference is that the

diffusion measurement is made relative to the image’s underlying spatial coordinate system. This

contrasts with standard T1- or T2-weighted MRI or CT scans that measure scalar quantities at each

voxel. This has an important effect on some of these basic computational tools, such as image pro-

cessing, registration, etc. For example, when registering diffusion tensor images, any local rotation

in the spatial coordinates must also be applied to the tensor model at each voxel [6]. Furthermore,

when aligning images any intensity-based similarity metric must defined geometrically, e.g. between

tensors [255]. Image processing can still be performed on the diffusion-weighted volumes; however,

approaches can also be developed to instead process the diffusion models fit at each voxel. These

model-based approaches are potentially more efficient and can preserve desirable properties, such

as tensor anisotropy [165]. Diffusion models also pose a challenge for visualization, as traditional

raster images can’t convey the complex geometry of some models. Instead, glyphs can be used to

visualize the shape of the diffusion pattern at each voxel, for example with tensor ellipsoids [112] or

superquadratics [104].

In addition to these unique image processing, registration, and visualization algorithms, trac-

tography algorithms also provide a unique way to perform segmentation of diffusion MRIs. The

basic idea is to derive curve models that represent the fiber orientation field of the diffusion vol-

ume, which can be done with either local or global approaches. Local approaches generate curves

in step-wise fashion, as in the FACT algorithm [142], or through streamline integration [16] [259].

Global approaches instead consider large optimization problems across the whole brain [92], poten-

tially resolving some of the problems of local approaches but also introducing major computational

challenges. Tractography algorithms can also be consider either deterministic, such as those already

discussed, or probabilistic [57]. These tractography algorithms are important for reconstructing fiber

bundle anatomy and constructing structural anatomical networks [78] [155].

2.2.5 Clinical and Scientific Applications

These computational methods play a crucial role in a number of clinical and scientific applica-

tions [87]. Clinical applications include diagnostic imaging, surgical planning and guidance, and
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neuropsychiatric imaging. In diagnostic imaging, diffusion MRI can provide a contrast for charac-

terizing stroke [233] and tumors. In surgical planning and guidance, diffusion MRIs can be used to

localize and visualize eloquent structures that should be avoided during surgery [106]. In psychiatric

applications, diffusion MRI can be used to study anatomical changes related to mood disorders,

mild cognitive impairment, Alzheimer’s disease, among many others [212]. Scientific applications

also employ diffusion MRI to better understand the anatomy of fiber bundles and their functional

features [97]. This can include the study of normal human brain anatomy [96] [237], comparative

anatomy with non-human animals [184] [91], and common features found in population-average atlas

data [135] [213]. Studies have also validated tractography models by comparison with blunt dissec-

tion [190] [140]. In the rest of this thesis, we explore some of these applications, using each as not

only a metric to judge our tools but also an open research area to better understand.



Chapter 3

Supervoxel Segmentation of

Diffusion Tensor Images

Diffusion MR imaging enables the quantitative measurement of water molecule diffusion, which

exhibits anisotropy in brain white matter due to axonal morphometry and coherence [170]. Con-

sequently, diffusion-based measures of fibers passing through each voxel can be estimated from the

MR signal [13]. The diffusion tensor is the most well-studied and commonly used model for this

purpose, and it can be decomposed into a number of features that reflect aggregate properties of

tissue microstructure [17]. These features are useful for scientific and clinical studies of brain white

matter anatomy in both individuals and populations [50]. In particular, variation in diffusion tensor

indices reflects normal variation in a population, such as those arising from differences in age, sex,

and cognition. This is also the case for studying anatomical changes in neurological conditions, such

as stroke and traumatic brain injury, as well as neuropsychiatric conditions, such as schizophrenia,

depression, and bipolar disorder.

To statistically characterize these features, diffusion tensor imaging studies require anatomically-

comparable measurements to be made across all participants in the study [143]. Atlas-driven ap-

proaches are a standard solution, in which the set of images from the study is spatially normalized to

some reference atlas through image registration [145]. The atlas and the associated spatial mappings

can then be used to probe features of white matter across the population using one of a number

of segmentation methods. In diffusion studies, this can be done with either voxel-based analysis

27
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or tractography-based analysis [85] [121]. Voxel-based analyses can either look at individual voxels

or regions-of-interest, and tractography-based analyses instead look at features of geometric models

representing large-scale fiber bundle anatomy [50] [251]. In this chapter, we contribute to the area

of voxel-based analysis with a novel segmentation algorithm and evaluate its potential use in popu-

lation studies. While tractography-based methods are of great value for imaging studies, we restrict

the scope of this chapter to the evaluation of voxel-based methods.

The main contribution of this chapter is the development and evaluation of a supervoxel-based

analysis for diffusion tensor imaging studies. The goal of this method is to automatically subdivide

the whole brain into supervoxels, which are larger than single voxels but restricted size to provide

spatial localization. This procedure was designed to algorithmically capture how regions-of-interest

are manually drawn, typically based on diffusion tensor colormaps. To accomplish this, we develop

an efficient clustering algorithm for grouping voxels based on their principal diffusion direction

and integrate it into a pipeline for atlas-driven analysis of diffusion tensor images using either the

standard voxel-based or skeleton-based techniques. The result is potentially useful for population

imaging studies, where it may be particularly useful for use with study-specific templates. We

evaluate the proposed approach with tests using synthetic and in vivo brain imaging datasets. This

includes applications of the segmentation algorithm to a population atlas as well as individual

subjects.

The rest of the chapter is as follows. In Secs. 3.1 and 3.2, we review related work and background

material. In Sec. 3.3, we describe the proposed method for supervoxel segmentation and how this

can be used in population imaging studies. In Sec. 3.4, we present evaluation results from three

experiments. In Secs. 3.5 and 3.6, we discuss the results and conclude.

3.1 Related Work

In this section, we briefly review prior work on voxel-based atlas-driven diffusion tensor imaging

studies and discuss how they relate to the proposed method.

The earliest and simplest approach for diffusion tensor imaging studies is to manually select

portions of a volume to analyze. This can include the selection of single matching voxels across all

subjects, as well as larger volumetric masks that are drawn based on orientation-coded colormaps.

While effective, these manual approaches are tedious and potentially suffer from biases due to intra-
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and inter-rated variability. The proposed supervoxel approach produces masks that are similar

to manually drawn region-of-interest in principle, as voxels are grouped based on uniformity of

fiber orientations. However, because it is automated, the proposed method can provide higher

reproducibility and also allow more areas of the brain to be studied.

There has been much past work on automated whole-brain image analysis, however, and the

earliest solution is known as voxel-based analysis (VBA) [197]. In this approach, the imaging data

from the population is spatially normalized to an atlas, and individual voxels in this space are

statistically characterized across the population. This is inspired by earlier work on voxel-based

morphometry [7], which aimed to characterize local shape variation by analyzing the deformation

field between the atlas and subject. The major challenge in using this approach is the effect of

misregistration [8], and the standard solution is to smooth the image with a large Gaussian kernel

to reduce the high-frequency misalignment between subjects; however, this has been also shown

to introduce some statistical challenges in diffusion MR image analysis [99]. Another challenge is

large dimensionality, which is usually addressed by analyzing voxels independently and performing

statistical corrections to account for false positives [125]. The proposed supervoxel approach can

be used in conjunction with voxel-based analysis to provide regions of interest to study, while still

allowing patterns to be characterized across the whole brain. This supervoxel representation also

has a dimension that is orders of magnitude smaller than the full volume, which can allow for more

complex statistical models to be used, e.g. those that include long-range spatial correlations.

Another standard tool for whole-brain analysis is the skeleton-based approach. This technique

is known as tract-based spatial statistics (TBSS) and includes several additional steps in the VBA

pipeline [194]. First, a white matter skeleton is created from the atlas volume. This is meant to

restrict the measurements to a white matter core, where there are few partial volume effects. Then,

each deformed subject is skeletonized and projected onto the atlas skeleton. This projection step is

meant to fix some residual registration errors and to avoid the VBA smoothing step. In contrast,

the proposed supervoxels are chosen to include groups of voxels with similar fiber orientation, which

is important because these areas are exactly where misregistration is likely to occur. By aggregating

within these homogeneous regions, the approach may also avoid subtle errors due to misregistration.

There are also automated region-of-interest approaches in which manually drawn labels from

an atlas are transferred to each subject in the population [72]. The resulting masks can then be

combined with spatially normalized tensor images to produce region-averaged diffusion measures.
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These regions are usually in major bundles or deep white matter structures with the most reliable

registration [144], and they can provide some complementary information to voxel-based analysis

[197]. The proposed approach is similar to this; however, it may be particularly useful for study-

specific templates, where it may be desirable to learn the regions from the atlas itself, rather than

import them from another existing one. The skeleton approach can also be used in conjunction with

these regions-of-interest, and we explore how a similar process can be performed with the supervoxels

method described in this chapter.

Computationally, the proposed supervoxel segmentation algorithm is also related to a number of

previous works in diffusion imaging and computer vision. Wiegell et al. proposed a voxel clustering

method for segmenting the thalamic nuclei [243], and this method uses a similar k-means style

approach to clustering in the spatial-tensor domain. In contrast, the proposed approach is designed

to learn the number of clusters from the data and uses fiber orientation for grouping voxels, which

is a reasonable choice for segmenting white matter, which is more anisotropic than gray matter. A

related work of Bloy et al. also examined the segmentation of supervoxel-like regions for diffusion

imaging studies [26]. However, their work was formulated for orientation distribution functions and

performs clustering with a normalized cut algorithm. The idea of superpixels is also a well explored

topic in the computer vision literature [222], and a number of medical image segmentation algorithms

have benefited from using a supervoxel image representation [226] [124]. Finally, preliminary work

from this project has been presented at conferences [37], but this previous work did not include the

full experimental results and comparative evaluation included here.

3.2 Background

In this section, we’ll briefly review the standard steps used for image analysis in diffusion tensor

imaging studies.

First, we examine diffusion MR imaging with the tensor model. This approach considers a simple

but powerful representation of the diffusion signal [13], in which the diffusion pattern is characterized

by a Gaussian distribution that can reflect any ellipsoidal shape of diffusion. The predicted signal

under this model is as follows:

S = S0e
−bgTDg (3.1)
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given a baseline signal S0, gradient encoding direction g, b-vector b, and a six-parameter positive

definite diffusion tensor D. From an eigen-decomposition of D, a variety of diffusion indices can

be derived [170] [239]. These tensor indices reflect size and shape features of the tensor and are

sensitive (but not specific) to microstructural properties of white matter tissue, such as myelination,

fiber density, etc [17]. However, the tensor model is also severely limited in representing more

complex features, such as partial volume mixing of different tissues and crossings of fiber bundles.

The goal of many clinical imaging studies is to accurately measure these tensor indices and

statistically relate them to demographic and pathological characteristics of a population [84]. An

important step in this process is spatial normalization, in which image registration is performed to

align a collection of images obtained from the population [98]. This step has some unique features

for tensor imaging studies, as the criteria for alignment can be derived from the geometric form of

the tensor model and the measurement coordinate system must also be transformed [6]. Prior work

has also found that the statistical power of these studies can be improved by using a deformable

registration [251] and study-specific atlas [103], which is derived from the population average of

the study dataset. However, one limitation of this study-specific approach is that annotations

from standard atlases may no longer be available. For this reason, automated atlas segmentation

algorithms, such as the one we propose, are potentially useful. In later experiments, we apply

the proposed method using the state-of-the-art in deformable tensor-based registration and use the

study-specific atlas approach [231].

3.3 Methods

In this section, we describe the proposed supervoxel segmentation algorithm and how it can be used

in atlas-driven diffusion tensor imaging studies.

3.3.1 Voxel Clustering

We first motivate the proposed method by describing how clustering algorithms can be used for

regional segmentation. The basic idea is to consider each voxel of a volume to be a data point,

then a clustering algorithm can be used to group voxels based on their spatial proximity and signal

similarity. The simplest solution to this problem is to apply k-means clustering with a joint repre-

sentation of the position and value of each voxel, e.g. x = [px, py, pz, s] given position vector p and
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signal intensity s. The k-means clustering problem is then:

π = argmin
π

N
∑

i

‖xi − x̂π(i)‖2 (3.2)

where N is the number of voxels, K is the number of clusters, π(i) is the cluster label of the i-th

voxel, and x̂ is a cluster prototype. This can be solved with an iterative procedure and can be

efficiently scaled to large volumetric image datasets. It also tends to group voxels in accordance

with large gradients in the image, provided a sufficiently large value of K is used. Because this only

minimizes the within cluster sum-of-squares, the resulting regions also tend to have consistent sizes.

This is perhaps desirable for localizing changes in tissue properties, since it puts a bound on the

size of the region being compared across a population. However, the use of this approach still faces

a few challenges. First, it requires the number of clusters to be known a priori. Second, this cannot

take advantage of the geometric structure of diffusion models, where the Euclidean distance is not

the best choice for measuring within-cluster variance.

3.3.2 Supervoxel Segmentation

Next, we present a supervoxel clustering algorithm, which is the main contribution of the chapter.

This is designed to address the challenges described in the previous section with two elements. First,

we propose to use an extension of the k-means algorithm known as the DP-means algorithm, whose

name suggests its theoretical connection to Dirichlet Process mixture models. Unlike the k-means

algorithm, the DP-means algorithm learns the number of clusters from the dataset, subject to a

regularization parameter λ. While k-means requires a fixed number of clusters, this parameter

instead controls the size of the clusters, a feature we’ll demonstrate later in an evaluation. Second,

we propose to modify the minimization problem to use a model-based measure of discrepancy in

place of the Euclidean distance. This is necessary because simply applying the Euclidean distance

to a diffusion model’s parameters cannot account for complex geometric features, such as fiber

orientations. Taken together, these extensions result in the following optimization problem:

π = argmin
π

N
∑

i

α‖pi − p̂π(i)‖2 + βd2(Mi, M̂π(i)) + λK (3.3)

given diffusion model M , prototype M̂ , model-based discrepancy d2, and regularization parameter
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λ. This decomposes Eq. 3.3 into a linear combination of three terms. The first term is the familiar

k-means term for the voxel positions; the second term is the term that groups voxels based on

diffusion model similarity; the third term adaptively selects the number of clusters. This formulation

is sufficiently general to work with any diffusion model; however, we’ll consider how this can be solved

with the diffusion tensor model. We choose to define d2 to reflect differences in orientation of the

tensor principal diffusion direction v, specifically d2(v, v̂) = 1− (vT v̂)2 = sin2(θ). A procedure for

solving the resulting minimization problem (Eq. 3.3) is listed in Algo. 1. The result is perhaps

similar to the typical process of manually drawing a region-of-interest in reference to an orientation-

coded colormap. Theoretically, this algorithm is closely related to axial clustering, which guarantees

its convergence to a local minima. The term axis refers to unsigned orientations, i.e. v ∼ −v and

‖v‖ = 1, and applies equally well to the tensor principal diffusion direction. This is topic is further

discussed in the Appendix.

Algorithm 1: joint spatial-axial DP-means clustering

Input:
(p1,v1), ..., (pN ,vN ): input position/axial direction pairs,
α, β, λ: objective weighting parameters

Output:
K: number of clusters,
π1, ..., πN : labels,
(p̂1, v̂1), ..., (p̂K , v̂K): cluster centers

/* Initialize */

K ← 1, p̂1 ←
∑

i
pi/N, v̂1 ← prineig

(
∑

i
viv

T
i /N

)

while not converged do

/* Assign cluster labels */

for i=1 to N do

for j=1 to K do

Dij ← α||pi − p̂j ||
2 + β

(

1−
(

vT
i v̂j

)2
)

/* Optionally increment clusters */

if minj Dij > λ then
K ← K + 1, p̂K ← pi, v̂K ← vi, πi ← K

else
πi ← argminj Dij

/* Update cluster prototypes */

for j=1 to K do

p̂j ←
(
∑

i
δ(j, πi)pi

)

/
∑

i
δ(j, Li)

v̂j ← prineig
((
∑

i
δ(j, πi)viv

T
i

)

/
∑

i
δ(j, πi)

)

return
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3.3.3 Application to Imaging Pipeline

We now outline practical aspects of how the proposed segmentation algorithm can be used in diffusion

tensor imaging studies.

In the first step, each subject of a population is registered to a template image, for example,

using the tensor-based registration in DTI-TK [253] [255]. This provides an average tensor image

and a collection of deformations from the atlas to each subject. Then, a white matter mask can

be created by applying a threshold, e.g. 0.2, to the atlas FA image with optional manual cleaning.

In practice, this may exclude some non-white matter with complex fiber configurations, as they

are not well-characterized by a single tensor. Then, the proposed segmentation algorithm can be

applied as described in Algo. 1 to produce a mapping of supervoxel regions. The atlas regions are

cleaned to produce the final segmentation. This includes connected components labeling [246] to

separate similarly labeled but disconnected supervoxels; for example, we found this to happen with

the bilateral cingulum bundles. We also exclude small components below a threshold volume of

50mm3, which are unlikely found in all subjects.

In the next step, the supervoxel region labels can be propagated to each participant in the study.

For this, each participants diffusion tensor volume is first registered to the atlas, and white matter

is masked with an FA threshold, e.g. 0.2. Then the intersection of the white matter mask and the

supervoxel masks is computed to create subject-specific supervoxel masks. Then, regional averages

of scalar tensor indices can be computed in each supervoxel, including fractional anisotropy (FA)

and mean diffusivity (MD) which can be used for follow up statistical analysis.

3.4 Experiments and Results

This section describes the evaluation of the method with three experiments, including a discussion

of the datasets, experimental design, evaluation metrics, and results. The first experiment tests

the clustering algorithm with synthetic data; the second tests the segmentation algorithm with a

publicly-available diffusion tensor atlas; the third tests the segmentation algorithm with individual

subject data across multiple scans. All statistical analysis and plotting was implemented using R

3.1.1 and ggplot2.
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3.4.1 Synthetic Data Experiments

Design: The goal of this experiment is to investigate the choice of the λ clustering parameter.

For this, we synthesized axial data and tested the performance of the axial DP-means algorithm

across varying numbers and sizes of clusters. Here, we omit the spatial component and only test

the relationship between λ and the axial clustering. The number of clusters N ranged from 3 to 10

and were generated by sampling a Gaussian and normalizing with “size” σ ranging from 0.1 to 0.3.

We evaluated ground truth agreement with the adjusted mutual information score (AMI) [223], a

statistical measure of similarity between clusterings that accounts for chance groupings and takes a

maximum value of one when clusterings are equivalent.

Results: Results are shown in Fig. 3.1. For a constant number of clusters, we found the optimal

choice of λ increased with cluster size σ. For a constant cluster size σ, we found the optimal λ

to be relatively stable across variable numbers of clusters N . Fig. 3.1 also shows examples of the

clustering for the two conditions and plots of the relationship between the AMI and λ. We found

our implementation to converge in fewer than 20 iterations on average. All cases except one found

the correct number of clusters for the optimal λ.

3.4.2 Population Atlas Segmentation

Design: The goal of this experiment is to apply the proposed method to a population atlas and

test a range of parameter values. For this, we applied the proposed method to a publicly-available

diffusion tensor atlas and varied the β and λ parameters. We used the IXI aging brain atlas,

which was constructed by deformable tensor-based registration with DTI-TK [257]. We applied the

method described in Sec. 3.3.3 with λ ranging from 10 to 40 and β ranging from 0 to 30. For each set

of parameters, we measured the number of clusters and the average cluster volume for each condition.

Results: The results show that as λ increased the number of regions decreased and the region vol-

ume decreased, and as β increased the number of clusters slightly increased and the region volume

decreased (Fig. 3.2). Visualizations were created from a representative set of segmentation results

with λ = 25 and β = 15 (Fig. 3.3). From slice views, we found the segmentation to reflect known
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Figure 3.1: Results from the first experiment described in Sec. 3.4.1, showing visualizations of the synthetic
axial data and the optimal clusterings computed from the proposed method. The top shows results for vari-
able cluster size σ = {0.05, 0.0875, 0.125, 0.1625, 0.2}, and constant number of clusters N = 4. The bottom
shows results for constant cluster size σ = 0.10, and variable number of clusters N = {3, 4, 5, 6, 7}. The
bottom right shows a single mislabeled cluster, possibly caused by finding a local minima in the optimiza-
tion. First experiment: clustering performance as a function of cluster penalty parameter λ ∈ [0, 1] given
ground truth generated with cluster size σ, and number of clusters N . We measured the adjusted mutual
information (AMI), a statistical measure takes a maximal value when clusterings are equivalent. Shown are
plots of the AMI vs. λ for two conditions. The first tested with variable σ = {0.05, 0.0875, 0.125, 0.1625, 0.2}
and constant N = 4. The second tested with constant σ = 0.10 and variable N = {3, 4, 5, 6, 7}. These
results indicate that the optimal λ depends more on σ than N , suggesting that performance may depend on
the noise level and may diminish when differing clusters sizes are present. Also note that the maximum AMI
decreases with increasing σ, which may be due to cluster overlap or over-sensitivity in the AMI measure.
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Figure 3.2: Results from the second experiment described in Sec. 3.4.2, showing quantitative segmentation
results from population atlas data. The left and right panels show number of clusters and mean cluster
volume (mm3), respectively, as a function of the parameters λ ∈ [10, 40] and β ∈ [0, 30]. The results show
that increasing λ lead to increased volume and a decreased number of regions. Similarly, the results show
that increasing β increased the number of clusters while decreasing the cluster volume.

anatomical boundaries, such as the cingulum/corpus callosum and corona radiata/superior longitu-

dinal fasciculus. By overlaying fiber models, we see the region boundaries tended to coincide with

large changes in fiber orientation. From an boundary surface rendering, we found lateral symmetry

and a separation of gyral white matter from deeper white matter. Our serial implementation on a

2.3 GHz Intel i5 ran in three minutes end converged in 125 iterations.

3.4.3 Subject-specific Segmentation

Design: Under an IRB-approved protocol, diffusion-weighted MRIs were acquired from two healthy

volunteers in two imaging sessions. Imaging was conducted on a GE 1.5T scanner with 2x2x2mm

voxels, 64-directions, b=1000 s/mm2, and resolution 128x128x72. Volumes were preprocessed to

correct for motion and eddy current artifacts with FSL 5.0 [195], including a reorientation of the

b-vectors to account for the rotation induced by the alignment. Skull stripping was performed

with FSL BET, and diffusion tensors were fit using FSL DTIFIT. Each subject was deformed to

the IXI atlas described in Sec. 3.4.2 using deformable registration in DTI-TK using finite strain

tensor reorientation and the deviatoric tensor similarity metric. Each subject’s tensor image was

registered to atlas space using the resulting deformation, and results were segmented using the

methods described in Sec. 3.3.3.
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Figure 3.3: Results from the second experiment in Sec 3.4.2 showing segmentation results from atlas data
using λ = 25 and β = 15. The top left panel shows the input atlas fiber orientations, and the top right
panel shows a slice view of the region labels, which illustrates separation of major bundles such as the corpus
callosum, cingulum bundle, and superior longitudinal fasciculus. The top panels show boundary surfaces of
the regions, illustrating the symmetry and separation of gyral and deep white matter.
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Figure 3.4: Results from the third experiment in Sec 3.4.3 showing segmentation results from two individual
subjects across two scans each. The results show consistency in the segmentation across both scanning
sessions and differences in individual anatomy.

Results: The results show qualitatively similar segmentation results across individuals and scan-

ning sessions (Fig. 3.4). From an inspection of individual regions, there was visible morphometric

differences between subjects; however, this did not cause substantial differences in segmentation

results, which were somewhat larger in scale than the inter-subject variations. The results were

very similar across scans as well, even showing similar artifact in the protruding anterior portion of

white matter in the first volunteer. In general, the results are also qualitatively similar to the atlas

segmentation results in Sec. 3.4.2.

3.5 Discussion

This chapter sought to develop and evaluate a method for supervoxel-based analysis in atlas-driven

diffusion tensor imaging studies. In particular, we examined its theoretical aspects and explored

its application to population imaging studies. The general findings were first that the underlying

algorithm is efficient and can automatically delineate regions that reflect coherent patterns of fiber

orientations, and second, that its application to population studies is both reliable and sensitive to

anatomical variation due to aging.

The first two experiments investigated the characteristics of the segmentation algorithm, which

helped to provide a better understanding of the effect of various parameters. Experiment 1 specifi-

cally showed how the λ parameter allows the number of clusters to be learned from the dataset. By
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comparing the performance across different numbers and sizes of clusters, we found this parameter

controls the size of the segmented region, unlike the key parameter K in the similar k-mean algo-

rithm, which explicitly selects the number of clusters. We also found that the other parameter β

allows for the size to be controlled as well, and that higher values encouraged regions to be more

uniform in fiber orientation.

This also has potential to improve the statistical power when statistical models are fit indepen-

dently for each voxel or region, as the supervoxel analysis would have orders of magnitude fewer

comparisons than the full skeleton-based approach. In particular, this is relevant to imaging genetics

studies, which have a substantial multiple comparisons problem due to the modeling across both the

brain and the genome.

There are also some important limitations and open problems to consider. First, the clustering

algorithm tends to break major bundles into multiple supervoxels. While this may be useful for

localization, the exact position of the breaks between supervoxels may be somewhat arbitrary, and

the statistical power could be reduced if it happens to coincide with some hypothetical pathology.

The approach also only derives the segmentation solely from the population average tensor image,

which takes along all of the challenges of the registration algorithm. This could pose a challenge

for segmenting structures in superficial white matter, which have more spatial variability due to

misalignment. The application of this kind of approach to multi-compartment diffusion modeling is

both an interesting and challenging open problem. This could perhaps be approached by clustering

compartments instead of voxels; however, there is then an additional task of matching compartments

from each subject to the atlas. Finally there are a variety of neurological and neuropsychiatric clinical

applications in which this could be explore [122].

3.6 Conclusion

In this chapter, we have explored a method for supervoxel-based analysis of diffusion tensor images,

which is designed for use in population imaging studies. This is meant to provide an additional

analytical layer on top of existing voxel-based and skeleton-based analyses, in particular, those based

on study-specific brain templates. The proposed segmentation algorithm attempts to simulate the

process of drawing regions of interest based on fiber orientations, and our theoretical analysis and

experiments provided some insight into the computational techniques involved. Looking forward, this
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approach may provides a computational tool for quantifying whole-brain patterns of diffusion-based

anatomical variation and has potential applications to a variety of clinical neuroimaging studies.

3.7 Appendix

This section discusses some theoretical aspects of the clustering algorithm formulated in Eq. 3.3,

in particular, its derivation from related probabilistic models. The main point to consider is the

representation of the diffusion data by fiber orientations. These can be statistically modeled using the

Watson distribution [200]. Because the Watson forms an exponential family [9], there is an associated

Bregman divergence that can be used for hard clustering of fiber orientations, or equivalently, axial

variables [11]. These hard clustering algorithms tend to be more efficient, scalable, and easy to

implement, at the cost of some flexibility in data modeling. The Bregman divergence can also be

used to derive a DP-means clustering algorithm from the asymptotic limit of a Dirichlet process

mixture [108] [95], providing a data-driven way to select the number of clusters.

Next, we build on these ideas to derive hard clustering for data that has both spatial and

directional components, which are modeled using the Gaussian andWatson distribution, respectively.

The isotropic Gaussian distribution is defined on R
n can be used to represent spatial data. Its

probability density N and associated Bregman divergence DN are given by:

N (p|q, σ2) =
1

(2πσ2)n/2
exp

(

− 1

2σ2
||p− q||2

)

(3.4)

DN (p̂,p) =
1

2σ2
||p̂− p||2 (3.5)

given input positions p, p̂ ∈ R
n, mean position q ∈ R

n, and constant variance parameter σ2 > 0.

The associated Bregman divergence DN is the scaled Euclidean distance between two positions,

an observation which gives a probabilistic interpretation to the k-means and DP-means algorithms,

which are asymptotic limits of Gaussian mixture and Dirichlet process mixture models, respectively

[108]. The Watson distribution is analogous to a Gaussian but defined on the hypersphere Sn−1 ⊂

R
n with anti-podal symmetry, i.e. d ∼ −d. Its probability density W and associated Bregman

divergence DW are given by:
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W (d|v, κ) = Γ(n/2)

(2π)n/2M( 12 ,
n
2 , κ)

exp
(

κ
(

vTd
)2
)

(3.6)

DW (d̂,d) = κ
M( 12 ,

n
2 , κ)

M ′( 12 ,
n
2 , κ)

(

1−
(

d̂Td
)2
)

(3.7)

for input axial directions d, d̂ ∈ Sn−1, mean axial direction v ∈ Sn−1, and Kummer’s confluent

hypergeometric functionM(a, b, z). We also assume a constant and positive concentration parameter

κ > 0. The associated Bregman divergence DW is then a scaled sine-squared angular distance, which

is equivalent to the measure used for diametrical clustering [58]. Taken together, these divergences

can be used to define the spatial-axial DP-means clustering problem in Eq. 3.3. The optimization

routine in Algo. 1 is then derived based on the analysis of Jiang et al. [95]. This will only converge

to local minima, so to ensure the solution is not a poor local minima, we include five random restarts

with shuffling of the inputs and take the best result.



Chapter 4

A Comparative Evaluation of

Voxel-based Spatial Mapping in

Diffusion Tensor Imaging

Diffusion MR imaging enables the quantitative measurement of water molecule diffusion, which

exhibits anisotropy in brain white matter due to axonal morphometry and coherence [170]. Con-

sequently, diffusion-based measures of fibers passing through each voxel can be estimated from the

MR signal [13]. The diffusion tensor is the most well-studied and commonly used model for this

purpose, and it can be decomposed into a number of features that reflect aggregate properties of

tissue microstructure [17]. These features are useful for scientific and clinical studies of brain white

matter anatomy in both individuals and populations [50]. In particular, variation in diffusion tensor

metrics reflects normal variation in a population, such as those arising from differences in age, sex,

and cognition. This is also the case for studying anatomical changes in neurological conditions, such

as stroke and traumatic brain injury, as well as neuropsychiatric conditions, such as schizophrenia,

depression, and bipolar disorder.

To statistically characterize these features, diffusion tensor imaging studies require anatomically-

comparable measurements to be made across all participants in the study [143]. Atlas-driven ap-

proaches are a standard solution, in which the set of images from the study is spatially normalized

to a reference atlas through image registration [145]. The atlas and the associated registered images

43
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can then be used to probe features of white matter across the population using one of a number

of methods for spatial mapping. Commonly, this can be done with either voxel-based analysis or

tractography-based analysis. Voxel-based analyses can either look at individual voxels or regions-

of-interest (ROIs), while tractography-based analyses instead look at features of geometric models

representing large-scale fiber bundle anatomy [50] [229] [227]. While tractography-based methods

are of great value, we restrict the scope of this chapter to voxel-based methods.

The primary motivation of this chapter is the need to better understand the computational tools

used in voxel-based diffusion tensor imaging studies. There are numerous steps in the standard pop-

ulation imaging pipeline, including image acquisition, preprocessing, spatial normalization, spatial

mapping, and statistical analysis (Fig. 4.1). Choices made in each step have strengths and weak-

nesses, and there is value in understanding their net effect with respect to even basic characteristics

such as measurement error. While much is known about how data acquisition, preprocessing, and

image registration affect results, there have been relatively fewer studies to comparatively evaluate

the spatial mapping step. In this study, we specifically aim to test how the choice of method for

spatial mapping affects reliability, both overall and across specific areas of the brain. At the same

time we also aim to investigate how much information is retained by each method to gauge the

relative modeling power in real applications.

Towards this goal, the main contribution of this chapter is a comparative evaluation of methods

for spatial mapping in voxel-based diffusion tensor imaging studies. To avoid confounding effects,

these tests were conducted with a common dataset and a state-of-the-art tensor-based registration

algorithm for spatial normalization and study-specific template construction. The evaluation strat-

egy includes two experiments testing a total of eight methods for spatial mapping with four diffusion

tensor metrics. The tested spatial mapping methods include voxel-based and skeleton-based analysis

with and without smoothing, and two types of region-based analysis with and without skeletoniza-

tion. The tested tensor metrics include fractional anisotropy, mean diffusivity, radial diffusivity,

and axial diffusivity. The first experiment was conducted to characterize scan-rescan reproducibility

and reliability and compare performance across methods, diffusion tensor metrics, and anatomy.

For this, the coefficient of variation and intraclass correlation were measured in eight subjects with

three repeated scans each. The second experiment conducted a complementary analysis to gauge

the extent that each method can represent age-related change in white matter. For this, predictive

models of age were estimated using principal component regression with a population of 80 normal
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Figure 4.1: An illustration of the typical computational pipeline used for population-based diffusion
tensor imaging studies. In this chapter, we evaluate methods for the spatial mapping step, which
provides anatomically comparable measurements for statistical analysis.

subjects aged from 25 to 65 years. These models were compared based on goodness-of-fit and model

selection criteria.

The rest of the chapter is as follows. In Secs. 4.1 and 4.2, we review related work and background

material. In Sec. 4.3, we describe data acquisition, image analysis pipeline, the tested methods for

spatial mapping, and the experimental design. In Sec. 4.4, we describe the results from the evaluation

of scan-rescan reliability and reproducibility, and sensitivity to normal aging. In Sec. 4.5, we discuss

the results and conclude.

4.1 Related Work

In this section, we briefly review related work that has evaluated methods for voxel-based analysis in

diffusion tensor imaging studies. We first discuss those examining the relationship between specific

methodological choices and the resulting reproducibility and reliability. We then discuss the use of

applications in evaluation.

Numerous studies have thoroughly examined the relationship between reliability and imaging

data acquisition parameters. For example, several works have looked at variation across scanner

manufacturers and imaging units [44] [89] [261] [128] [67] and found acceptable reliability across

sites with a common magnet strength. Furthermore, other studies have also shown reliability across

magnet strengths ranging from 1.5T to 4T [28] [224] [211] [76] [162]. Studies that tested gradient

strength have found reliable estimates of tensor metrics in each of a variety of gradients encoding
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schemes [123]; however, there is evidence of possible bias in tensor metrics when combining estimates

from different voxel sizes and gradient encoding schemes [162] [21], although bias correction [224]

and covariate analysis [161] are possible solutions. Together, these results are especially important

for conducting longitudinal and multi-center studies as well as accommodating scanner upgrades

within an imaging unit.

In addition, previous work has examined the effect of preprocessing and image registration algo-

rithms on reliability. Robust preprocessing that includes denoising, motion correction, and outlier

rejection has been shown to improve reliability across scanners [127] [128] [157]. The choice of reg-

istration algorithm has also been shown to greatly affect reliability, specifically when comparing

linear, deformable, and tensor-based registration [224] [211] [123]. Deformable tensor-based regis-

tration has been shown to perform better than registration with scalar maps, especially when used

in combination with study-specific template construction [10]. Linear intra-subject registration has

also been shown to improve reliability in longitudinal studies [127]. Overall, this indicates there is

potential for significantly different outcomes based on the choice of preprocessing and registration,

so it is important to have consistency in both applications and evaluations.

Each of these studies necessarily includes spatial mapping, either as a single method used in the

pipeline or as part of a larger comparison of methods. The most common approaches are global

histogram analysis [44], manually drawn ROIs [21] [123] [67], and standard atlas ROIs registered to

each subject [89] [76] [221]. In addition to these studies, others have explicitly evaluated methods

for spatial mapping, with a similar goal to this chapter. For example, evaluations of manually drawn

ROI approaches have tested the reliability of different ROI shapes [27] and drawing methods [81]

[168], and compared to a variety of global histogram measures [161] . Voxel-based analysis has

also been evaluated to quantify the effects of filter size [99], software package [100], and to compare

results with ROI-based methods [132] [197]. There has also been extensive testing of skeleton-based

analysis to understand its strengths and limitations [10] [127] as well as comparing to voxel-based

analysis and region-based analysis [224] [211]. This chapter builds on this prior work by expanding

the range of methods simultaneously compared in evaluation. This includes not only a comparison

of voxel-based and skeleton-based analysis, but also their combination with smoothing and ROI

analysis. Furthermore, we compare two methods for region-based analysis including both standard

atlas labels and automatically generated ones from a study-specific template.

Finally, the design of some of these studies not only included scan-rescan analysis, but also
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tested reliability in conjunction with applications to clinical and scientific studies. These studies

have included populations consisting of aging adults and children [27] [21] [197], as well as patients

with schizophrenia [99] [100], Alzheimer’s disease [10], and multiple sclerosis [161]. This kind of

evaluation provides an additional benchmark for comparing the practical value of such methods,

which is important, as a perfectly reliable measurement might still disregard anatomical features

that are of scientific or clinical value. In this chapter, we take a similar approach and test the

sensitivity of each method to the anatomical effects of normal aging in an adult population.

4.2 Background

In this section, we’ll briefly review the features of diffusion tensor imaging studies that relate to

our evaluation. The primary goal of these studies is to quantify and localize anatomical variation

that is related to aspects of the population under study. The standard pipeline includes steps

for image acquisition, image preprocessing, spatial normalization, spatial mapping, and statistical

analysis (Fig. 4.1). The image acquisition step involves the recruitment and scanning of many

study participants, whose details lie outside the scope of this chapter. It suffices to say that each

subject’s diffusion-weighted MRIs (dMRI) is acquired along with a variety of demographic and

clinical variables specific to the study at hand. Each dMRI consists of numerous volumes and

associated diffusion encoding gradient directions and strengths.

The dMRIs and gradients are typically preprocessed to reduce the effects of noise, motion, and

other artifacts, as well as to estimate models representing the pattern of diffusion in each voxel. We

focus here on diffusion tensor modeling, which is the most common approach. This is a simple but

powerful representation characterized by a Gaussian distribution, which can reflect any ellipsoidal

shape of diffusion [13]. The predicted signal under this model is as follows:

S = S0e
−bgTDg (4.1)

given a baseline signal S0, gradient encoding direction g, b-vector b, and a six-parameter positive

definite diffusion tensor D. From an eigen-decomposition of D, a variety of rotationally invariant

diffusion tensor metrics can be derived [170] [239], including fractional anisotropy (FA), mean dif-

fusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). These tensor metrics reflect size

and shape features of the tensor, which are sensitive to microstructural properties of white matter
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tissue, such as myelination, fiber density, etc. However, it is important to note that the tensor model

is not specific to these microstructural features and it fails to characterize changes in more complex

anatomy, such as fiber crossings [17]. While this limits the precision of inferences made with the

diffusion tensor model, it is widely used and offers much in terms of exploratory analysis.

The next step is to spatially normalize the imaging data using image registration to either a

standard template or a study-specific template. This step is necessary for providing a common image

coordinate system without differences in pose and shape between subjects [98]. It also has unique

features in tensor imaging studies, as the criteria for alignment can be derived from the geometric

form of the tensor model and the measurement coordinate system must also be transformed [6].

In our experiments, we use the state-of-the-art in deformable tensor-based registration and use the

study-specific template approach [231], which have been shown to provide improved statistical power

compared to other methods [251] [103].

Following this, spatial mapping is performed to derive anatomically comparable measurements

of diffusion tensor metrics. These measurements are meant to provide a vectorized representation of

the imaging data that can be statistically analyzed to relate structural features to demographic and

pathological characteristics of a population [84]. This can be done with a simple global histogram

analysis, manually drawn regions, or automated methods. In this chapter, we focus on the latter

and evaluate a variety of automated methods.

A commonly used automated approach is known as voxel-based analysis (VBA), which is inspired

by earlier work on voxel-based morphometry [7], and examines each voxel across the population af-

ter spatial normalization. The major limitation is the effect of misregistration [8], and the standard

solution is to smooth the image to reduce the high-frequency misalignment between subjects. An-

other standard approach is skeleton-based analysis, a technique also known as Tract-based Spatial

Statistics (TBSS) that adds several steps to the VBA pipeline [194]. First, a white matter skeleton

is created from the atlas volume, which is meant to restrict the measurements to a white matter core

to reduce partial volume effects and to provide better matching between subjects. Each subject’s

tensor image is then registered to template-space, and the FA data is skeletonized and projected

onto the atlas skeleton. This projection step is meant to fix residual registration errors and to avoid

the need for the VBA smoothing step.

Automated region-based analysis is another alternative that instead derives measurements from

an average of voxels within regions-of-interest. This can be done with regions defined in a standard
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atlas, such as the Johns Hopkins University (JHU) white matter atlas [144]. Alternatively, regions

can be derived in a data-driven way from a study-specific template. In principle, these data-driven

methods aim to be similar to manual delineation, in that voxels are grouped based on spatial prox-

imity and geometric similarity of the diffusion pattern, for example, with diffusion tensor principal

orientations [37] or orientation distribution functions [26]. We refer to these data-driven region-

based approaches as supervoxel-based analysis, due to their algorithmic similarity to methods in

the computer vision and medical imaging literature [222] [226] [124]. It is also common for studies

to combine skeleton-based analysis with region-of-interest analysis by averaging only skeletonized

voxels within each region [88]. In the next section, we provide a detailed description of the specific

pipeline implemented in our experiments.

4.3 Materials and Methods

In this section, we describe the data used in the experiments, the implementation of the methods

under evaluation, and the design of the experiments.

4.3.1 Data Acquisition

Under an IRB-approved protocol, diffusion-weighted MRIs were acquired from a population of

healthy volunteers, including a group of 80 normal aging healthy controls and eight from a scan-

rescan cohort. The 80 subjects comprised a cross-sectional normal aging population, which consisted

of nearly equal number of each sex and roughly uniform distributed ages ranging from 25 to 65 years

old. The other eight subjects were acquired for scan-rescan analysis and included three repeats each,

except for one subject that only had two repeats (i.e. 23 sessions). Imaging was conducted on a GE

1.5T scanner with 2x2x2mm voxels and image resolution 128x128x72. For each diffusion scan, seven

baseline volumes were acquired, and the diffusion-weighted images used a single-shell high angular

resolution diffusion encoding scheme with 64 distinct gradient encoding directions at a b-value of

1000 s/mm2.

4.3.2 Image Preprocessing

The diffusion-weighted MRIs were preprocessed using FSL 5.0 [195]. The first step included motion

and eddy current correction by affine registration of each diffusion-weighted image to the baseline
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image using FSL FLIRT with the mutual information criteria. Along with this step, the b-vectors

were reoriented to account for rotation induced by each transformation [119]. Skull stripping was

performed using FSL BET with a fractional intensity threshold of 0.3. For each dataset, diffusion

tensors were fit using FSL DTIFIT.

4.3.3 Spatial Normalization and Template Construction

Following this, a study-specific template was created from the 80 normal subjects. This was per-

formed using the tensor-based deformable registration algorithm in DTI-TK [255] with finite strain

tensor reorientation and the deviatoric tensor similarity metric. Each subject’s tensor image was

transformed to atlas space using the associated deformation and resampled to 1 mm3 isotropic voxels.

This process was applied to both the scan-rescan cohort and the normal aging cohort.

4.3.4 Spatial Mapping

In the next step, eight methods of spatial mapping were applied (listed in Table 4.1 and illustrated in

Figure 4.2). Each of these methods essentially derives a vectorized form of each subject’s image data

for statistical analysis. This was performed with the following tensor metrics: fractional anisotropy

(FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD). These are described as

follows.

Voxel-based analysis (VBA) was performed by selecting individual voxels across white matter.

For this, a white matter mask was created by applying an FA threshold of 0.2 and manually removing

artifactual labels. Smoothed voxel-based analysis (SMOOTH+VBA) was similarly performed after

first applying Gaussian smoothing to each volume with σ = 2, FWHM = 4.7, which is comparable to

a previous VBA evaluation [197]. TBSS [195] [196] was performed using FSL with an FA threshold

of 0.2, and skeleton voxels were selected from each subject. The skeleton and distance field derived

from the FA skeleton were used to project MD, RD, and AD as well. TBSS was also performed

with a similar smoothing step prior to subject skeletonization (SMOOTH+TBSS). Standard atlas

region-based analysis was performed using the JHU white matter atlas [144] [145]. These labels were

registered to the study-specific template using FSL FNIRT, and each subject was summarized by

averaging voxels contained in each of the regions. These regions were used in conjunction with both

voxel-based analysis (JHU+VBA) by averaging all voxels within each region and skeleton-based
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analysis (JHU+TBSS) by averaging only skeleton voxels within each region. In addition to the

standard atlas region, a more data-driven supervoxel-based analysis was performed to automatically

label regions-of-interest across the entire template white matter mask. This was accomplished by

clustering-based segmentation based on principal tensor orientation [37]. Clustering parameters

included α = 1, β = 15, and λ = 20, resulting in a total of 321 regions. This supervoxel-based

analysis was performed in conjunction with both voxel-based analysis (SUPER+VBA) by averaging

all voxels within each region and skeleton-based analysis (SUPER+TBSS) by averaging only skeleton

voxels within each region. In summary, the combination of these eight methods and the four diffusion

tensor metrics (FA, MD, RD, and AD) gives a total of 32 conditions that are included in the

evaluation, which is described in detail next.

4.3.5 Reproducibility and Reliability

Next, reproducibility and reliability were tested for each condition with the scan-rescan dataset,

which consisted of eight subjects with three repeated scans each. This included two statistical

evaluation metrics: the coefficient-of-variation (CV) [24] and intra-class correlation (ICC) [23]. The

CV is a normalized measure of percentage change in each measurement across scans and is considered

acceptable below 10%. Given the within-subject average µw and within-subject standard deviation

σw, the CV is given by σw/µw. The ICC is a measure of reliability that gauges the fraction of

variance between subjects. It is normalized between zero and one and is considered acceptable above

0.7. Given the between subjects variance σ2
b and within-subjects variance σ2

w, the ICC is given by

σ2
b/(σ

2
b+σ2

w). For each condition, CV and ICC were computed for individual voxels/regions and then

aggregated across the whole brain to estimate mean performance and its uncertainty. All statistical

analysis and implemented using R 3.1.1 [176], with the ggplot2 package for plotting [241], and the

ICC package from Wolack et al. [245].

4.3.6 Normal Age Modeling

Next, the methods were evaluated by comparing performance in population-based modeling of nor-

mal aging, a process which has been shown to include anatomical changes in white matter that are

reflected in diffusion tensor metrics [71] [39]. Our evaluation strategy was to construct predictive

linear models of subject age for each condition using principal component regression (PCR) and
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then compare results with standard model selection criteria [151]. For the purpose of comparison, a

baseline multiple linear regression model without diffusion measurements was first created to model

age based on only the intracranial volume and sex of the subject. Then for each condition, principal

component analysis was performed on the origin-centered dataset, and the top fifteen components

were retained for modeling. Then for each condition, best-subset model selection was performed

using the Bayesian information criteria (BIC) to compare models. In addition, each best model was

further evaluated by measuring the adjusted R2 to measure goodness of fit. Then, the best models

were compared across methods based on these three model selection criteria. All statistical analysis

was implemented in R 3.1.1 [176], with the ggplot2 package for plotting [241], and the leaps package

for model selection [1].

Table 4.1: A summary of methods for spatial mapping that are compared in the experiments.
The abbreviation and description for each method is listed. In addition, the dimensionality of the
resulting measurements is listed, as well as the average volume of the voxels/regions representing
each measurement.

Abbreviation Description Dimension Mean Volume
VBA Voxel-based analysis of single voxels 353903 1 mm3

SMOOTH+VBA Voxel-based analysis of smoothed voxels 353903 1 mm3

JHU+VBA Voxel-based analysis of JHU atlas regions 48 2814 mm3

SUPER+VBA Voxel-based analysis of supervoxel regions 321 1098 mm3

TBSS TBSS analysis of skeleton voxels 76586 1 mm3

SMOOTH+TBSS TBSS analysis of smoothed skeleton voxels 76586 1 mm3

JHU+TBSS TBSS analysis of JHU atlas regions 48 648 mm3

SUPER+TBSS TBSS analysis of supervoxel regions 318 240 mm3

4.4 Results

The results in CV show reproducibility varying greatly across methods (Fig. 4.3), with single voxel

analysis (CV = 5.91 ± 0.81%) performing with roughly twice the CV of region-based analysis (CV

= 2.45 ± 0.25%). Reproducibility was also variable across diffusion metrics with the highest errors

in FA (CV = 5.30 ± 1.56%) and RD (CV = 4.77 ± 0.83%), compared to lower errors in MD (CV

= 3.48 ± 0.83%) and AD (CV = 3.22 ± 0.87%). Smoothing improved reproducibility in single

voxel methods, as unsmoothed (CV = 7.62 ± 0.95%) had almost twice the error rate of smoothed

(CV = 4.2 ± 0.51%). A visual inspection of CV scores on an axial slice (Fig. 4.4) also shows the

spatial variation in CV. Voxel-based analyses showed the greatest spatial variability, with better
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TBSS! JHU+TBSS ! SUPER+TBSS!

JHU+VBA ! SUPER+VBA!VBA!

Figure 4.2: An illustration of methods for spatial mapping compared in the experiments. Each panel
shows an axial slice showing either included voxels or region labels and an associated 3D surface
rendering. Smoothing was included in voxel-based and skeleton-based analysis but is not depicted
here.



54

C
V

 (
%

)!

Scan-rescan Reliability with Coefficient of Variation (CV) for Each Factor !

Scan-rescan Reliability with Intra-class Correlation (ICC) for Each Factor !

0

2

4

6

8

sm
oo
th
.0
.a
llv
ox

sm
oo
th
.2
.a
llv
ox

sm
oo
th
.0
.la
be
ls

sm
oo
th
.0
.s
up
er

el
et
on
.0
.a
llv
ox

el
et
on
.2
.a
llv
ox

el
et
on
.0
.la
be
ls

el
et
on
.0
.s
up
er

0.0

0.2

0.4

0.6

0.8

sm
oo
th
.0
.a
llv
ox

sm
oo
th
.2
.a
llv
ox

sm
oo
th
.0
.la
be
ls

sm
oo
th
.0
.s
up
er

el
et
on
.0
.a
llv
ox

el
et
on
.2
.a
llv
ox

el
et
on
.0
.la
be
ls

el
et
on
.0
.s
up
er

0

2

4

6

8

A
L
S
E

U
E

0

2

4

6

8

A
L
S
E

T
R
U
E

0.0

2.5

5.0

7.5

F
A
M
D
R
D
A
D

0.0

0.2

0.4

0.6

0.8

A
L
S
E

U
E

0.0

0.2

0.4

0.6

0.8

A
L
S
E

U
E

0.0

0.2

0.4

0.6

0.8

FA M
D

R
D

A
D

IC
C
!

B!

A!

Figure 4.3: Results from the scan-rescan experiment in Sec. 4.3.5 showing reliability across methods
and diffusion tensor metrics. Panel A shows the coefficient of variation (CV), which indicates the
percentage of variation across scans of the same subject (smaller is better). Panel B shows the
intraclass correlation, which indicates what proportion of variance is between subjects (larger is
better). The results show high variation across methods and some variation across diffusion metrics,
especially in voxel-based methods. Voxel-based methods were mostly less reliable than region-based
methods, while smoothing in voxel-based methods improved reliability.
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CV (%) !

FA ! MD ! RD! AD!

VBA!

SMOOTH !

+VBA !
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JHU!
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Figure 4.4: Results from the scan-rescan experiment in Sec. 4.3.5 showing the spatial distribution
of the coefficient of variation (CV) in an axial slice. The panels are organized to show a different
method in each row and a different diffusion tensor metric in each column. The results generally
show large spatial variation across methods and metrics, with higher variation in voxel-based than
region-based methods. Voxel-based analysis tended to have higher reliability in deep white matter
and lower in superficial white matter. Supervoxel-based analysis showed better performance in
superficial white matter.
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Figure 4.5: Results from the scan-rescan experiment in Sec. 4.3.5 showing the spatial distribution
of the intraclass correlation (ICC) in an axial slice. The panels are organized to show a different
method in each row and a different diffusion tensor metric in each column. The results generally
show large spatial variation across methods and metrics, with higher variation in voxel-based than
region-based methods. The anatomical distribution differs greatly from the coefficient of variation
(CV), demonstrating the different aspects of reliability revealed by CV and ICC.
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Figure 4.6: Results from fourth experiment in Sec. 4.3.6 showing the performance in age modeling
with principal component regression. For each method and metric, the best performing model
was selected using Bayesian information criteria (BIC) among all subsets of the top 15 principal
components. Panel A shows the decrease in BIC of each model relative to a baseline without tensor
metrics; Panel B shows the adjusted R2. Higher values indicate better performance in all plots.
The results show that all methods improve significantly over the baseline model, and skeletonization
tended to improve performance in diffusivity tensor metrics. Performance was comparable among
methods in FA-based models.
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CV scores in deep white matter and worse CV in superficial white matter. However, RD showed

a opposite pattern to other tensor metrics with the worse CV scores concentrated around the genu

and splenium. Smoothing in voxel-based analysis tended to also smooth this spatial distribution

of CV scores. Region-based analysis showed more spatially uniform CV results than voxel-based

analysis, particularly in superficial white matter with supervoxel-based analysis.

The results in ICC show reproducibility with a slightly different pattern from CV (Fig. 4.3). In

general, single voxel methods (ICC = 0.58 ± 0.04) were less reliable than region-based methods (ICC

= 0.74 ± 0.02); however, smoothing improved the ICC of VBA and TBSS to be comparable to region-

based methods in several cases. Reproducibility was more uniform across diffusion metrics using the

ICC metric with slightly better performance in FA (ICC = 0.70 ± 0.05) and RD (ICC = 0.66 ±

0.06), compared to MD (ICC = 0.62 ± 0.06) and AD (0.65 ± 0.05). Methods without skeletonization

(ICC = 0.70 ± 0.03) had a slightly higher ICC scores than those using skeletonization (ICC = 0.62

± 0.04). Smoothing improved reproducibility in single voxel methods, as unsmoothed (ICC = 0.50

± 0.04) had almost twice the error rate of smoothed (ICC = 0.66 ± 0.02). A visual inspection

of ICC scores on an axial slice also shows spatial variation (Fig. 4.4); however, the distribution

exhibits a more heterogeneous pattern in all methods than the CV results. In particular, voxel-

based methods showed a more diffuse pattern of reliability, with high ICC values in superficial white

matter. Smoothing in voxel-based methods also tended to smooth this pattern of ICC. Region-based

methods did not show any clear distinction between deep versus superficial white matter.

The results in age modeling show generally good performance from all methods and diffusion

metrics (R2 = 0.53 ± 0.02); however, some methods performed better than others (Fig. 4.6).

Skeleton-based analysis (R2 = 0.56 ± 0.0) showed generally better results than voxel-based analysis

(R2 = 0.50 ± 0.0), although they were comparable in models based on FA. There was a small

difference between voxel-based and skeleton-based analysis without smoothing (R2 = 0.54 ± 0.0)

performed better than without smoothing (R2 = 0.55 ± 0.0). Region-based analysis (R2 = 0.52 ±

0.0) only a small difference between it and single-voxel analysis (R2 = 0.55 ± 0.0). In comparing the

two model selection criteria, they tended to show comparable results within each diffusion metric

and preserved the ranking of methods despite changes in scale. In general, all methods showed

decreases in BIC ranging from 45 to 90 and adjusted R2 ranging from 0.42 to 0.62.
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4.5 Discussion

In this study, we evaluated several methods for spatial mapping in diffusion tensor studies. The goal

was to better understand the overall reliability of these methods and simultaneously understand

how useful they are in an aging application. To accomplish this, we evaluated eight methods for

spatial mapping with four diffusion tensor metrics in two experiments: a scan-rescan analysis of

reliability and reproducibility and an application to age modeling in a normal adult population.

These experiments generally show that the choice of spatial mapping greatly affects the overall

magnitude and spatial distribution of reliability. While all methods were shown to be useful in age

modeling, the results provide some relative performance characteristics for maximizing the sensitivity

of imaging metrics. Next, we will discuss the significance of these findings and related open problems.

The first main finding was variability in the overall reliability of each method despite using

identical data, preprocessing steps, and registration. The most readily observed pattern was that

methods looking at single voxels, e.g. VBA and TBSS, were less reliable than region-based methods,

e.g. JHU and SUPER, as measured with both CV and ICC. Previous work has demonstrated a trade-

off in spatial specificity between these methods [197], and the results of this study further support

a trade-off in reliability between voxel-based and region-based analysis. This difference is perhaps

due to the voxelwise averaging used in region-based analysis, which could also tend to average out

the effects of noise. Smoothed voxel-based analysis is perhaps a similar way to accomplish this, but

it includes a greater risk of mixing different tissues and adjacent but distinct fiber bundles. Past

work has also found that the results of voxel-based analysis depend greatly on the filter size and

implementing package [100] [99], and the results of this study show related changes in reliability.

Specifically, reliability in voxel-based and skeleton-based analysis tended to improve with smoothing

and performance depended on the particular diffusion tensor metric being tested, which supports

previous findings [197]. Regarding region-based analysis, the results were also comparable to past

works using manually drawn ROIs [27] [44] [211], which is perhaps evidence that deformable tensor-

based registration is comparable in quality to anatomical matching of manually drawing region

masks.

The second main result was that all methods exhibited spatial variability in CV and ICC esti-

mates of reliability. This reinforces similar results demonstrated in prior work that examined the
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spatial distribution of reliability estimates [89] [76] [132], although these studies were typically lim-

ited to tests of only one or two methods for spatial mapping each. The results of this study show

voxel-based methods tended to have the most spatial variability and had concentrated high reliabil-

ity in deep white matter, similar to previous work [224]. This could be related to higher registration

accuracy in deep white matter, as seen in fiber coherence maps derived form population data [255].

However, it could also be that reliability is highest where the tensor model is most representative of

the underlying diffusion process, i.e. predominantly single fiber regions in deep white matter [19].

This could be more thoroughly studied by examining reliability of multi-fiber extensions of TBSS

[90], possibly with multi-compartment model smoothing [35]. Region-based analysis was found to

have lower spatial variability, and supervoxel-based analysis had better performance in superficial

white matter. This is perhaps because misregistration tends to happen more often within regions

than between regions, due to the homogeneity of voxels within each region. In general, ICC had

more spatial variability than CV, and the spatial distributions also were quite different. This demon-

strates how CV and ICC reflect different aspects of reliability, as CV directly represents error, while

ICC additionally depends on the variation across subjects. For this reason, the results in ICC may

be more tied to specific populations and datasets used for evaluation.

The third main result was related to the application of these methods to the modeling of normal

aging, and the results indicated that all methods performed well in capturing age-related changes

in anatomy compared to previous studies examining predictive models of age [150], though some

performed better than others. In comparing the BIC in relation to the baseline model without tensor

metrics, all methods included an increase of at least 10, which is strong evidence of an improved model

[102]. Looking more finely, there are several patterns to note. First, JHU+VBA performed slightly

worse than other methods. This could be attributed to the limited amount of brain covered by the

regions; however, the significant improvement with JHU+TBSS suggests that non-skeleton voxels

represent confounds in the analysis, perhaps due to partial volume effects. Supervoxel-based analysis

was consistently better, and it also showed improvement with skeletonization. For models based on

MD, AD, and RD, there was a general trend that skeletonization significantly improved performance;

however, models based on FA had comparable performance with and without skeletonization. This

is perhaps related to negative consequences of partial volume effects in these measures, as diffusivity

measurements could be more susceptible to contamination with cerebrospinal fluid. Another aspect

to note is the use of principal component regression, which provides several advantages. First, it
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provides a level playing field to compare the methods, where each method is allowed the same

number of variables for modeling, while maintaining a maximal amount of variance. Second, it

avoids a major issue of multi-collinearity, which especially common in voxel-based and skeleton-

based analysis. Without the principal component dimensionality reduction step, the predictive

models would likely suffer from overfitting in VBA and TBSS analysis.

It is also worth discussing the design of the study. In particular, the experiments were designed

to control for a number of potential biases that could severely effect the results, such as dataset,

preprocessing steps, and registration algorithm. This allows us to more certainly attribute the

observed differences in reliability and predictive modeling to the choice of spatial mapping algorithm

and not to other factors. This is a somewhat stronger result than could be gained by summarizing

the results of multiple studies, which inevitably have major differences in data and implementation.

However, the major limitation of this design is that only one factor of the pipeline was studied, and

the results possibly depend on variation in these other factors, e.g. registration algorithm. A full

factorial design is quite challenging due to the increasing number of conditions to test; however, it

is likely a fruitful avenue of research to pursue. Looking beyond voxel-based analysis, it would also

be tremendously valuable to expand this kind of evaluation to include tractography-based spatial

mapping. However, a similar challenge is posed by the vast number of methods currently in use, as

each tractography reconstruction is a complex product of diffusion modeling, image interpolation,

seed and selection masks, and termination criteria.

The results of this study are also somewhat limited with respect to the VBA smoothing step.

Only a single bandwidth and smoothing technique were tested, but a variety of approaches can

be found in the literature [191] [66] [228]. While the effect of smoothing bandwidth has been well

studied [99] [100], a relatively less understood aspect is the effect of filter type and the filtering

domain. For example, smoothing can be done with a variety of types of filters, including Gaussian,

median, and anisotropic filtering, and unlike some other modalities, there are several possible filtering

domains, such as the diffusion-weighted signals, the diffusion models fitted to the signal, or scalar

features derived from the models. Smoothing in the signal domain is attractive for the theoretical

guarantees of linear systems and sampling theory, but it not commonly used in VBA, perhaps due to

challenges inherent to reorienting q-space data after registration. Model-based smoothing of tensors

can possibly preserve anisotropy and fiber orientation [62]; however, the most common approach is to

smooth in the feature domain, which has been suggested to most appropriately accommodate errors
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due to misregistration [164]. This study used feature domain Gaussian smoothing with a bandwidth

that is comparable to previous studies with comparable voxel size [110] [166] and recommended in a

previous evaluation [197]; however, there remain many questions to answer related to these aspects

of smoothing in VBA.

In conclusion, this chapter presents a comparative evaluation of methods for voxel-based spatial

mapping in diffusion tensor imaging studies, which are an important part of population studies. The

results show reliability depends greatly on the type of spatial mapping, the anatomical location, and

somewhat on the diffusion metric. Despite these differences, both single voxel-based and region-based

methods performed well in age modeling, with consistently good performance with skeleton-based

analysis compared to voxel-based analysis. These reliability results may help in the design and

interpretation of future studies, as they indicate care must be taken to establish baseline reliability

and statistical power of a study based on the specific anatomical hypotheses, method of spatial

mapping, and diffusion metric employed in analysis. The results of the aging application also may

help to understand how the choice of spatial mapping method can provide improved modeling power

when conducting scientific and clinical white matter imaging studies.



Chapter 5

Diffusion MR Fiber Bundle

Modeling with the Sparse Closest

Point Transform

Diffusion MR imaging provides a unique in-vivo probe of tissue microstructure through the imaging

of water molecule diffusion patterns [171]. This technique is particularly valuable for characterizing

the local features of white matter and for reconstructing the large scale structure of fiber bundles

through tractography [13]. Both approaches have clinical and scientific value in assessing anatomical

variation in health and disease; however, the size and complexity of tractography datasets can pose

a challenge to such studies. In particular, both expert anatomical knowledge and time consuming

manual interaction are typically required to delineate fiber bundles from whole brain tractography.

These challenges are greater still in population studies, where this must be repeated for many

subjects with minimal inter- and intra-rater variability [155, 121]. A promising alternative is the

automated analysis of tractography datasets, which offers to both to reduce the time invested by the

human analyst and provide highly reliable measurements in large population studies. In particular,

there are great opportunities ahead for better integrating diffusion MRI data with the rich variety

of statistical and machine learning methods available [160].

In this chapter, we develop and evaluate several such automated approaches for analyzing whole-

brain tractography datasets using sparse closest point transform. The primary motivating idea is

63
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that fiber curve data can be transformed to a vector space representation that retains anatomically

relevant features and enables the use of standard tools from statistical and machine learning for

fiber bundle analysis. This extends prior work in this area by developing a sparse closest point

transform for curve data, in which each curve is represented by its closest points to a collection of

data-adaptive landmarks. The primary goal of this chapter is to investigate how generally useful

this representation is when combined with standard tools from machine learning. This is explored

through experiments testing such combinations to perform fiber bundle clustering, bundle simpli-

fication, and population-based bundle selection. The proposed fiber bundle clustering algorithm

is sufficiently time efficient for interactive use and includes a mechanism to select the number of

fiber bundles from the data. The proposed simplification algorithm can greatly reduce the memory

usage and improve performance of 3D rendering, while preserving the geometric structure of the full

resolution dataset. The proposed population-based analysis builds a statistical model of each bun-

dle, which can be used to select bundles from whole brain tractography without parameter tuning

or manual intervention. Our contributions also include an evaluation of performance with in vivo

human brain data and comparisons with related methods.

The rest of the chapter is organized as follows. In Sec. 5.1, we discuss related work in this

area and distinguishing features of the proposed method. In Sec. 5.2, we describe the proposed

method in detail, including landmark extraction, the sparse closest point transform, fiber bundle

clustering, bundle simplification, and statistical bundle modeling for population-based analysis. In

Sec. 5.3, we describe the design and results of experiments to evaluate the proposed methods with in

vivo human brain data, including tests of agreement with known bundles, comparison of inter-fiber

distance measures, and evaluation of reproducibility and sensitivity to aging in a population-based

analysis. In Secs. 5.4 and 5.5, we discuss our findings and conclude.

5.1 Related Work

The primary aim of this chapter is to investigate the use of the sparse closest point transform in fiber

bundle analysis, specifically in combination with existing statistical and machine learning techniques.

So, the goal is not to replace any specific method, but rather, to investigate the general utility of

this representation. Next, we briefly discuss prior work in fiber bundle modeling and its relation to

this study.
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The prior work in this area can be roughly described as distance-based or feature-based. Distance-

based approaches group fiber curves based on inter-fiber proximity. A number of inter-fiber distances

have been proposed, including Hausdorff measures [155], distance-based integrals [258], endpoint

distances, and others. Pairwise curve distances can then be used in any of number a clustering

algorithms, such as spectral clustering [31] [156], hierarchical clustering [258], or Dominant Sets

[61]. These approaches can tease apart subtle distinctions between fibers [141]; however, the com-

putational cost of total pairwise comparison of curves is prohibitively expensive for full datasets.

This is usually mitigated by sub-sampling the full dataset to a tractable size, e.g. less than 20,000.

The representation presented here is compatible with methods that are scalable well beyond this,

permitting whole brain tractography datasets to be analyzed without subsampling.

In contrast to distance-based approaches, feature-based approaches map each curve to a simpler

but discriminative representation and can avoid subsampling. Prior work has commonly used con-

nectivity between regions of interest (gray-matter areas or manually drawn volumetric masks) to

select curves [260] [250]. This is somewhat similar to the proposed approach, but here we consider

landmarks learned from the data which require no gray matter segmentation or manual drawing.

Furthermore, the extracted landmarks are typically distributed across the whole brain, which can

help to constrain the path taken between endpoints. Other related work has used implicit volumet-

ric representations of curves, for example with distance fields [126] and spatial-angular histograms

[230]. These representations are somewhat limited by their high-dimensionality, which is avoided in

the proposed method by restricting the representation to a sparse but representative set of land-

marks. These implicit representations are also potentially limited by their statistics, for example,

distance fields have been modeled with Gamma distributions, and spatial-angular histograms have

been modeled by multinomial distributions. In contrast, the proposed method can potentially be

used with methods typical of Gaussian distributed variables, as the closest points represent explicit

positions along curves. Other approaches have aimed to derive arclength parameterizations of fiber

curves and then model bundles with respect to these parameterizations [46] [49] [69], which usually

requires flipping of the start-to-end orientation of each fiber during analysis. A general trend in

these prior feature-based methods is that they are usually tied to segmentation algorithms that are

carefully engineered based on the choice of representation. A goal of this work is to try to avoid

this tight coupling to encourage more “interchangeable parts” way to use statistical and machine

learning algorithms for fiber bundle modeling.
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Figure 5.1: Illustration of the major components presented in the chapter. The left panel (A) shows
the sparse closest point transform, which includes initial step of landmark extraction followed by
a closest point transform of each curve relative to the landmarks. The top panel (B) shows an
application of this to fiber bundle clustering, where whole brain tractography is decomposed into
bundles using a variant of the k-means algorithms. The bottom panel (C) shows population-based
analysis, where a bundle in an atlas is statistically modeled and then segmented in each subject in
a population with a one-class classifier.

5.2 Methods

The goal of the proposed method is to derive a useful representation of fiber curve data for extracting

meaningful bundles from whole-brain tractography datasets in both single subjects and populations.

This includes three main parts that will be described in this section. First, we will cover how the

proposed mapping of fiber curves to a vector space representation with the sparse closest point

transform. Next, we will describe how bundle clustering and simplification can then be performed in

single subjects with the DP-means algorithm. Finally, we will describe a population-based analysis

for segmenting specific fiber bundles across multiple subjects with statistical bundle modeling and

deformable volumetric registration.

In the following analysis, we make a simplifying assumption that tractography fiber curves have

already been extracted, for example by streamline integration [259]. We’ll then assume the fiber
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curves are represented by polylines, i.e. sequences of points and the line segments connecting subse-

quent points. We’ll take the dataset to have N curves, where the i-th fiber has Ni points and each

fiber curve is denoted by Ci ⊂ R3 for i ∈ [1, N ]. There’s no assumption made about the spatial

resolution or uniformity of the points sampled along each curve.

5.2.1 Fiber Curve Representation

This section describes the proposed mapping of fiber curve data using the sparse closest point

transform. This is a two step procedure, which first derives a sparse and representative set of

landmarks from the curve data, and then transforms each curve relative to these landmarks using

the closest point transform. These steps are performed as follows.

Landmark Extraction

In the first step, a set of representative landmark positions are extracted from the dataset. These

are used as points of reference when encoding fibers, so more landmarks will give a more complete

representation of each fiber. However, reducing the number of landmarks can improve performance,

hence we aim to select a small but representative set of landmarks. To do this efficiently, we first

sub-sample the fibers through random selection to obtain some small number of fibers, e.g. less than

5,000 (however, the full dataset is still retained for later analysis). These sub-sampled curves are

then geometrically simplified using the Ramer-Douglas-Peucker (RDP) algorithm [183] to reduce

the fibers to include only important vertices, such as endpoints and points of high curvature. The

RDP procedure works by greedily removing points from the polyline while keeping the maximum

error below a given threshold, e.g. 2mm. The vertices of the remaining simplified fibers are then all

taken together and further reduced by clustering. This clustering can include a specific number of

points M by using the k-means algorithm, or alternatively determine the number of points M based

on a spatial threshold by using the DP-means algorithm, which is described in detail later in the

chapter. In practice, we use the DP-means approach with a threshold of λ = 5.0. This results in a

collection of landmarks that are roughly placed at salient features, such as high curvature and fiber

terminations. We’ll denote the j-th landmark by wj ∈ R3 for j ∈ [1,M ].
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Sparse Closest Point Transform

In the next step, the fiber curve dataset is transformed relative to the extracted landmarks using

a sparse closest point transform. We refer to this approach as sparse to distinguish it from related

approaches that densely sample closest points on a pixel or volumetric grid [134]. The goal of using

these sparse landmarks is not only to reduce the dimensionality of the resulting representation but

also to allow landmarks to be placed at salient points of the dataset that may not otherwise be well

aligned with a dense volumetric grid.

The closest point transform represents each fiber curve by the positions along its length that are

nearest to each of the M landmarks selected by the steps in the previous section. Given a curve C,

the transformed curve is given by Q = (q1, ..., qM ) ∈ R3M , with the j-th closest point qj given by:

qj = argmin
p∈C

‖p− wj‖2 (5.1)

Note that with the polyline representation, this minimization can be performed not just over vertices

but also along the connecting segments. This allows the algorithm to be applied to irregularly

sampled curve data, such as those produced by the RDP algorithm. This can potentially reduce time

and memory requirements compared to the uniform sampling typically required by other approaches.

The main advantage of this approach is that it gives a vector-space representation of curves that

can be used with many statistical and machine learning algorithms. In the following sections, we

describe how this can be employed for fiber bundle clustering, simplification, and population-based

analysis.

5.2.2 Fiber Bundle Clustering and Simplification

Based on this fiber representation, fiber bundle clustering and simplification can be performed with

the DP-means algorithm introduced by Kulis et al. [108], which is a variant of the k-means algorithm.

As with k-means clustering, the goal here is to group elements of the dataset according to spatial

proximity; however, the DP-means variant has the benefit of learning the number of clusters from the

dataset. In comparison to other some clustering algorithms, the k-means and DP-means algorithms

are both notable for their efficient performance, which allows them to be applied to large datasets.

This is a significant issue for clustering whole brain tractography, as the typical dataset size is far

larger than is practical with O(n2) clustering algorithms. Past approaches have used subsampling to
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work around this problem, but the method proposed here is practically useful without subsampling.

This DP-means clustering algorithm can be defined by a minimization problem similar to the

standard k-means algorithm with an additional regularization term. Prior work has shown this

extension is theoretically related to Dirichlet Process mixture modeling with Gibbs sampling, through

small-variance asymptotic analysis. This gives the algorithm a mechanism to choose the number of

clusters in the dataset with the regularization term added to the typical k-means objective. When

applied to a tractography dataset with the above fiber curve mapping, this process decomposes the

set of curves into K bundles, where the k-th bundle is represented by a prototype Bk ∈ R3M , and

the optimal partitioning π is found by solving the following minimization problem:

π = argmin
π

N
∑

i

‖Qi −Bπ(i)‖2 + λ2MK (5.2)

where π(i) ∈ {1, ...,K} encodes the label for the i-th curve. This objective can be optimized with

an efficient algorithm that is described in detail in the referenced related work [108]. Since this

method estimates the number of clusters, no user-defined value of K is explicitly specified. Instead,

a regularization parameter λ is chosen, which can be interpreted as the largest average distance

allowed between each curve Qi and its associated bundle Bπ(i). When used for extracting bundles

from whole brain tractography, a relatively large threshold can be used, e.g. 20mm. When used for

simplification, a smaller threshold can be used, e.g. 2mm, and the closest curves each of the cluster

centroids can be selected to represent the simplified bundle.

5.2.3 Fiber Bundle Selection

The next task aims to select a fiber bundle from an novel dataset based on an exemplar bundle in a

atlas dataset. This is an important task for population-based analysis, where similar structures need

to be matched across multiple subjects and manual selection is prohibitively costly. For this purpose,

we make a simplifying assumption that some number of bundles-of-interest have been obtained an

atlas dataset, for example, by first using the above method for clustering and then interactively

selecting a bundle relevant to a particular study. In our tests, we created a tractography bundle

atlas using tensor-based deformable registration and selected several well known bundles from among

the clusters. The goal is then to match fibers from each subject to the bundles in the atlas. We

accomplish this by first building a statistical model of each bundle in the transformed space and
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then applying a one-class classifier to segment the bundle in each member of a population, with the

details described as follows.

For a particular bundle, we propose to statistically model the transformed space representation

of a collection of fiber curves Q̂ = {Q̂1, ..., Q̂C} by a multivariate Gaussian G with mean µ and

covariance Σ. We fit the mean and the covariance using maximum likelihood (ML):

µML =
1

C

C
∑

i

Q̂i (5.3)

ΣML =
1

C

C
∑

i

(Q̂i − µ)(Q̂i − µ)T (5.4)

Maximum likelihood estimation of covariance matrices can suffer from a number of problems, such

as ill-posedness and overfitting for small sample sizes, so we regularize the model with a shrinkage

estimator:

ΣShrink = ωDiag(σ2
0) + (1− ω)ΣML (5.5)

given a shrinkage constant ω and prior spatial variance σ2
0 . The shrinkage estimator not only ensures

Σ is well-defined but also incorporates prior knowledge about expected misregistration errors. In

practice, we used ω = 0.3 and σ2
0 = 80 mm.

The fitted modelG can then be used to segment a bundle in a particular subject by first deforming

the subject’s fiber curves to the atlas, taking the sparse closest point transform (relative to atlas space

landmarks), and then finding the subset of curves that is sufficiently close to the modeled bundle.

This last step is accomplished with a one-class classifier [148], and the method we describe here is a

simple special case with a Gaussian distribution [208]. This approach is useful for classification tasks

where only positive examples are available or out-of-class examples are particularly complex [209]

[54]. This is the case for tractography data, and we have found that even the simple Gaussian case

works well for segmenting bundles. To evaluate the classifier, we define a bundle-to-fiber distance

d(G,Q) with the squared Mahalanobis distance [12]:

d2(G,Q) = (Q− µ)TΣ−1(Q− µ) (5.6)

This has the benefit of measuring the statistical distance to known fibers in the bundle, as opposed
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to a spatial distance that may be subject to some user-defined threshold. By calculating the distance

relative to the bundle covariance Σ, the distance can reflect anisotropic spread along the bundle’s

length, for example due to fanning. This also gives us a test statistic that can be used to decide

if a given fiber is included in the bundle, i.e. if d2(G,Q) < τ for some threshold critical value τ .

Given that the Mahalanobis distance is Chi-squared distributed as d2 ∼ χ2
3M−1, we can look up

such a value τ where p(d2(G,Q) < τ) = 0.99, which will include 99% of the fibers sampled from

the distribution G. As long as the same number of landmarks are used, this threshold requires no

tuning, and the same value can be used for all subjects, as well as other bundles.

5.3 Experiments and Results

We evaluated the proposed approach by conducting five experiments with in vivo human brain

datasets. The first experiment evaluates the fiber curve representation by comparing its associated

inter-fiber distance with several other commonly used measures. The second experiment measured

performance of the clustering algorithm in reference to manually selected fiber bundles and in com-

parison to other clustering algorithms. The third experiment measured performance of the bundle

simplification algorithm compared to random resampling. The fourth experiment tested the scan-

rescan reliability of the proposed population-based analysis, and the fifth experiment sensitivity of

the population-based analysis to anatomical changes associated with normal aging.

All statistical analysis and implemented using R 3.1.1 [176] with the ggplot2 package for plotting

[241].

5.3.1 Data Acquisition

Clinical data included diffusion-weighed volumes acquired from healthy volunteers with a GE 1.5T

scanner with a voxel size of 2mm3 and image size 128x128 and 72 slices. For each volunteer, a total

of 71 volumes were acquired, with seven T2-weighted volumes (b-value = 0 s/mm2) and 64 diffusion-

weighted volumes with distinct gradient encoding directions (b-value = 1000 s/mm2). 80 volunteers

were scanned with ages ranging between 25 and 65 and equal numbers in each sex. An additional

five volunteers were scanned with three repetitions each to assess scan-rescan reproducibility and

reliability.
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5.3.2 Image Preprocessing

Diffusion-weighted MR image data was preprocessed using FSL [93] as follows. First, the diffusion-

weighted MR images were corrected for motion and eddy current artifacts by affine registration to

the first T2-weighted volume using FSL FLIRT with the mutual information cost function. The

gradient encoding directions were rotated to account for the alignment [119], and non-brain tissue

was removed using FSL BET.

A diffusion tensor atlas was constructed from the 80 subjects. This was done by first fitting

single tensor models using FSL DTIFIT and then constructing a population-specific template by de-

formable tensor registration using DTI-TK [256] [253]. The 3x5 scan-rescan volumes were registered

to the atlas, and the deformation fields were retained for each case.

We generated tractography curves through the standard deterministic streamline approach, in

which fiber trajectories are considered a 3D space curves whose tangent vector is equated with

the fiber orientation of the voxelwise diffusion models [259]. This process proceeds by evolving

a solution to a differential equation with some initial condition at a given seed position. During

tracking, we computed fiber orientations from the principal tensor direction, estimated from the

tri-cubicly interpolated diffusion-weighted image. We used the following tracking parameters: an

angle threshold of 45◦, step size of 1.0 mm, minimum fractional anisotropy 0.15, and 2 seeds per

voxel. Whole brain tractography was performed in both the population atlas and each individual

subject.

5.3.3 Evaluating inter-fiber distances

In this experiment, we evaluated how well several inter-fiber distances reflect the structure of manu-

ally selected fiber bundles, measured in relation to the proposed fiber curve representation described

in Sec. 5.2.1. We manually selected eight bundles from the atlas tractography using the multiple

region of interest approach with two inclusion and one exclusion mask. This included the anterior

thalamic radiation, arcuate, cingulum, cortico-spinal tract, inferior longitudinal fasciculus, forceps

minor, forceps major, and uncinate. The Dunn Index (DI) was used to measure the ability of a given

inter-fiber distance to distinguish between bundles. Given a distance measure d(x, y) and manual

labels π, this index measures the ratio of the minimum distance between clusters to the largest

distance within clusters:
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DI =
minπ(a)!=π(b) d(Ca, Cb)

maxπ(c)=π(d) d(Cc, Cd)
(5.7)

A higher score implies that clusters are well separated relative to the spread within the clusters,

suggesting the given distance measure is useful for distinguishing the given bundles. We applied this

test to the Euclidean distance in the feature space described in Sec. 5.2.1. For comparison, we also

computed the Dunn Index for numerous other inter-fiber distances including the minimum endpoint

distance, the Chamfer distance, and the Hausdorff distance. We also symmeterized the Chamfer

and Hausdorff measures with the min, max, and mean of the left and right oriented distances. We

also included two variants on the closest point transform approach in which the landmarks are either

chosen at random or placed on a volumetric grid. Each experiment was repeated with 30 resampling

to obtain an estimate of the mean Dunn Index and its uncertainty.

The results show the Euclidean distance associated with the proposed approach to have the

highest Dunn Index of 0.95 (Fig. 5.2). However, performance also depended on the number of

landmarks included, with a critical number of landmarks being 15, after which performance increased

little. We also found runtime costs to increase linearly with the number of landmarks. Among the

other distance measures, we found the mean-symmeterized Hausdorff distance to perform best with

a Dunn Index of 0.8. In comparison to other approaches to landmark selection, random landmarks

performed worst, and gridded landmarks performed second best.

5.3.4 Evaluating fiber bundle clustering

In this experiment, we examined the clustering algorithm described in Sec. 5.2.2 and tested its ability

to recover labels from manually delineated bundles. We manually delineated bundles similarly to the

previous experiment, and made an additional “harder” set of bundles that included three segments

of the body of the corpus callosum, fornix, superior thalamic radiation, and posterior thalamic

radiation. We selected these bundles for both the tractography atlas and a single subject, resulting

in four test cases, which we refer to as “easy atlas”, “hard atlas”, “easy subject”, and “hard subject”.

We applied our clustering algorithm to each case and measured agreement with the manual labels

with the Adjusted Rand Index (ARI) [86]. The Rand Index measures the number of pairs of labels

that are either the same group or different groups given two different clusterings. The ARI gives

a high score to labels that agree and includes an “adjustment” to give an expected score of zero
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Figure 5.2: Results from the first experiment described in Sec. 5.3.3. The left panel shows the Dunn
Index for several inter-fiber distance measures, where a higher score indicates a closer relationship
between the distance measure and manual bundle labeling. This shows that the Euclidean distance of
the transformed curves performs well relative to other options, although performance was dependent
on the number of landmarks, as shown in the middle plot. In this dataset, the performance levels
out at around 15 landmarks; however, we found that more complex datasets require more landmarks
to see similar convergence. We also found runtime costs were also linearly related to the number of
landmarks.

to uniformly random labels. This was repeated with 30 resampling to obtain a the mean ARI and

its uncertainty. We also ran this experiment over a range of λ threshold values, and performed

similar experiments with spectral and hierarchical clustering for comparison. We used the mean-

symmeterized Hausdorff distance in the comparisons, as it was the best performing in the previous

experiment.

The results show that the best performing method depended on the dataset (Fig. 5.3). For the

easy atlas dataset, all methods performed nearly perfectly. For the easy subject dataset, spectral

clustering performed worst, hierarchical performed best, and our proposed method was close to best.

For the hard atlas dataset, hierarchical performed worst and the proposed approach was comparable

to spectral. For the hard subject dataset, hierarchical performed worst, and the proposed approach

was slightly better than spectral.

5.3.5 Evaluating bundle simplification

In this experiment, the goal was to evaluate the performance of the simplification algorithm on

several fiber bundles in comparison to random resampling. The experiment was conducted with four

bundle datasets selected from a single subject: forceps minor, forceps major, arcuate fasciculus, and
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Figure 5.3: Results from the second experiment described in Sec. 5.3.4. The proposed clustering
algorithm was applied to four datasets, which include atlas and subject data with a small number
(eight) of bundles and a larger number (fifteen), as shown in the top left. We compared this approach
to spectral and hierarchical clustering with the mean symmeterized Hausdorff distance. The bottom
four plots show performance as a function of clustering threshold, and the best case performance is
shown in the bar chart at the top right. It should be noted that the behavior of the threshold depends
on the algorithm, so the peaks should not be expected to align. The results show the performance
varied across datasets. All methods performed well in the easy atlas and subject datasets. The hard
atlas dataset showed the proposed method to be comparable to spectral and better than hierarchical.
The hard subject dataset showed the proposed method to outperform both others.
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Figure 5.4: Results from the third experiment described in Sec. 5.3.5. This shows performance of the
simplification algorithm in several bundles. Each plot shows the simplification error measured with
the Dice coefficient. The proposed method was compared to random sampling, and both methods
are plotted by the percentage of curves retained from simplification. The results show the proposed
method performs consistently better in nearly all cases.

uncinate fasciculus. The proposed simplification algorithm was applied with λ ranging from zero to

five, and each condition was repeated 10 times to estimate stability. For comparison, a subsampling

procedure was also tested, wherein a random subset of curves was selected with a percentage of

retained curves varied from 0 to 100%. To evaluate performance, 2mm3 volumetric masks were

created from the simplified bundles in each condition, and the Dice coefficient [59] was measured

between each of these masks and that of the full resolution bundle. Performance was plotted in

relation to the percentage of curves retained from simplification.

The results show that the proposed simplification algorithm performed generally better than

random subsampling (Fig. 5.4) with a similar pattern in the all tested bundles. The performance

difference of the methods was greatest when 10 to 25% of the fibers were retained, in which case,

the difference in Dice coefficient was greater than 0.05, representing about 15% improvement in

performance relative to the low end dice score. Looking at aggregated runtime across datasets and

parameter settings, subsampling was found to take 16.92 ± 0.63ms, and the proposed method took

1179.87 ± 25.32ms.

5.3.6 Evaluating reproducibility and reliability

In this experiment, we applied the population-based analysis described in Sec. 5.2.3 to scan-rescan

data and tested its ability to produce similar fiber bundle metrics across multiple in vivo scans of

the same individual. We then used the 50 landmarks from the full tractography dataset to construct

statistical models for each bundle. For each of the 3x5 scan-rescan subjects, we followed the process
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described in Sec. 5.2.3 to segment fiber bundles with a threshold probability of 0.99. For each

bundle, we computed five fiber bundle metrics: mean bundle length, and bundle-averaged fractional

anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity [50]. For comparison, we also

performed bundle selection with a manual region-of-interest based approach described in the previous

experiment.

We measured scan-rescan reproducibility and reliability of the fiber bundle metrics with the

coefficient of variation (CV) [83] and the intraclass correlation coefficient (ICC) [23]. The CV was

measured for each subject from mean µs standard deviation σs, CV = σs/µs. A lower MCV score

indicates higher reproducibility with units that are normalized to lie roughly between zero and one.

The ICC was measured using the between-subjects variance σ2
b and within-subjects variance σ2

w,

with ICC = σ2
b/(σ

2
b + σ2

w) A larger ICC indicates there is more variance between than within

subjects. This takes a maximum value of one and values above 0.75 indicate high reliability. Our

implementation used the R ’ICC’ package [245].

Results from this experiment are shown in Figs. 5.5 and 5.6. We generally found the bundles

segmented with the proposed method to agree well with those found with the manual region-of-

interest approach. The bundle metrics were not significantly different between the proposed and

manual region-of-interest conditions. The bundle-averaged diffusion indicies were highly reliable

with a CV of 2% and an ICC of above 0.7. The bundle-average length was had a slightly higher CV

of 5% and comparable ICC.

5.3.7 Evaluating sensitivity to aging

In this experiment, the proposed population-based analysis was applied to the study of normal aging.

The goal was to evaluate the sensitivity of fiber bundle metrics to the white matter effects related

to aging in comparison to the manual region of interest approach. The methods were applied to

the 80 subject normal population to obtain five fiber bundle metrics of the forceps minor, which

traverses the anterior portion of the corpus callosum and has well documented changes with age.

This experiment compares linear regression models of normal aging, in which age is the predicted

outcome of a linear combination of intracranial volume, and each tractography-based metric. The

performance in each condition was assessed using R2 to indicate the total variance accounted for by

the model, and normalized coefficient β to indicate the effect size.

In general, the results support previous findings of age-related changes in anterior white matter
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Figure 5.5: Results from the fourth experiment described in Sec. 5.3.6 testing the scan-rescan
reproducibility and reliability of the proposed population-based analysis in comparison to a man-
ual region-based approach in six fiber bundle metrics: fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (RD), axial diffusivity, bundle length, and bundle volume. The experiment
included five subjects and three repeated scans, and the results showed comparable reproducibility
and reliability between the manual and proposed automated approaches. The left and right plots
report the coefficient of variation (lower is better) and intraclass correlation (higher is better) with
95% confidence intervals, respectively.

(Fig. 5.5). Both manual region selection and the proposed method showed sensitivity of diffusion

tensor measures to age, but several measures showed different performance characteristics. Three

bundle metrics showed comparable performance: bundle volume (R2 = 0.21, β = -4.35), RD (R2 =

0.13, β = 2.46), and MD (R2 = 0.13, β = 2.315). FA was slightly better using manual selection (R2

= 0.12, β = -1.98) than the proposed method (R2 = 0.10, β = -1.43). AD was slightly better with

the proposed method (R2 = 0.12, β = 2.07) than manual selection (R2 = 0.11, β = 1.63). Bundle

length was significantly better using the proposed method (R2 = 0.16, β = -3.28) than manual

selection (R2 = 0.11, β = -2.39).

5.4 Discussion

The results indicate that the sparse closest point transform is generally useful for fiber bundle mod-

eling tasks including clustering large datasets, simplifying bundle geometry, and segmenting similar

bundles across a population. The primary strength here is the resulting representation, which enables

standard tools for statistical and machine learning methods to be used with tractography datasets.

Furthermore, it does this without introducing a prohibitively high dimension in the transformed
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Figure 5.6: Results from the fifth experiment described in Sec. 5.3.7 testing the sensitivity to normal
aging in a population of 80 subjects. The analysis focused on the forceps minor, which traverses the
anterior portion of the corpus callosum and has well documented changes with age. The proposed
population-based analysis was comparison to a manual region-based approach in six fiber bundle
metrics: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity,
bundle length, and bundle volume. For each bundle measure and method, multiple linear regression
models were fit to model age with respect to intracranial volume, sex and each tractography-based
metric. The plot shows the resulting R2 of each model (bigger is better), showing comparable
performance in bundle volume, MD, and RD, improved performance in bundle length, and AD, and
slightly worse performance in FA.

space, due to the sparseness of the landmarks used in the transform. This contrasts with the stan-

dard dense volumetric grid representation of distance and closest point transforms, which require

a regular sampling as dense as the smallest discriminative feature. A greater dimensionality can

reduce the performance of learning algorithms, i.e. the peaking phenomenon [192], which is another

benefit of using this sparse representation. The results from the first experiment also indicate that

the careful selection of landmarks through geometry processing can improve the results compared

to random or coarse regular sampling. This is likely because it can place landmarks near groups of

endpoints and areas of high curvature, which are also likely to be the most discriminative features

when comparing curves.

The results of the second experiment also indicated strengths of the proposed clustering method

in comparison to standard hierarchical and spectral clustering algorithms. These other options can

take advantage of a rich amount of data by comparing all pairs of fiber curves; however, the proposed

clustering algorithm was found to be as well or better at recovering manually labeled bundles than

these other methods. Because the proposed method avoids computing the full pairwise similarity

matrix, it can be applied to large whole brain datasets without the typical subsampling used in the
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pairwise approaches. The strengths of the clustering algorithm should mostly be attributed to the

application of the DP-means algorithm, which provides the efficient runtime and ability to select the

number of clusters from the data. However, this is only possible due to proposed representation of the

curve data with the closest point transform. Future work could explore more advanced probabilistic

models, such as a Dirichlet process mixture model [152], which can potentially model more complex

patterns, at the cost of higher computational requirements.

The results of the third experiment show how the same clustering algorithm is useful for sim-

plifying fiber bundles. This process is able to retain the important geometric features of the data.

This contrasts with random sampling, which tends to produce significantly worse simplifications, as

measured by the Dice coefficient. One limitation of the proposed method is the greater computation

time. For individual bundles, the runtime was only several seconds; however for full brain tractog-

raphy, it can take significantly longer. Nevertheless, this kind of processing can be done offline and

greatly improve the rendering speed of tractography visualizations, particularly rendering with 3D

tubes, which is exceeding slow for large datasets.

The fourth and fifth experiments showed that the proposed population-based analysis is not only

reliable across scans but also useful for mapping age-related change in white matter. This transform-

based approach succeeds because it retains a pose and shape information about the original curves,

while being compatible with a simple segmentation algorithm using a Gaussian model. Furthermore,

the proposed method compared favorably to manual bundle selection, which can be costly in time and

require expert knowledge. It also outperformed the manual selection approach in the normal aging

modeling based on fiber bundle length. This suggests that manual region-based selection perhaps

excludes short fibers in the bundle that do not reach the regions, but are nevertheless related to

age-related decline. Another interesting result was the good performance of the admittedly simple

one-class classifier. An interesting open question for future work is whether there is a benefit to

using more complex one-class classifiers, e.g. using support vectors [210] or neural networks [22].

In general, this approach has potential to be useful in a broader context than modeling fiber

bundles as well. For example, curve clustering can be a useful tool for analyzing trajectory datasets,

e.g. to better understand traffic flow or the behavior of particles in numerical simulations of phys-

ical processes. The bundle segmentation approach could also be useful in these other areas for

categorizing incoming data or detecting anomalies. However, there are several limitations of the

proposed method to note. First, the representation obtained from the sparse closest point transform
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is necessarily lossy, and in particular, it will disregard very complex properties such as cycles or

sharp doubling-back of curves. It is also does not account for any time-domain information. The

efficiency of the method also depends on a fixed set of landmarks, so if it were applied in online data

analysis, care should be taken that the landmarks are chosen to accommodate future data. These

issues are not typically encountered in diffusion MR tractography datasets; however, they remain

open problems for these other application areas.

5.5 Conclusion

In this chapter, we investigated the use of a sparse closest point transform in performing a number

of fiber bundle modeling tasks. The experiments showed that the combination of this technique with

simple statistical and machine learning techniques can perform very well in comparison to several

commonly used and domain-specific algorithms. In particular, the results showed that clustering

with the DP-means algorithm can perform as well or better than hierarchical and spectral clustering,

with substantially better runtime characteristics. Furthermore, this clustering algorithm can be used

for bundle simplification by selecting subsets of curves that best represent the large scale geometry of

the bundle, with performance generally superior to random subsampling. Finally, the combination

of deformable registration and a simple Gaussian one-class classifier was shown to provide a method

for selecting fiber bundles with as good or better performance than manual region-based selection. In

particular, this had generally good scan-rescan reliability and improved performance in measuring

age-related changes in fiber bundle length. In summary, these results suggest that the proposed

closest point transform is a generally useful method for analyzing tractography data with statistical

and machine learning tools. Looking forward, this approach is potentially useful for other clinical

applications, such as anatomical localization in surgical planning and population studies that aim

to quantify anatomical variation in white fiber bundles in relation to health and disease.



Chapter 6

Kernel Regression Estimation of

Fiber Orientation Mixtures in

Diffusion MRI

Diffusion MR imaging provides an in-vivo probe of tissue microstructure that enjoys numerous appli-

cations to neuroscience and clinical studies. This is due to its unique ability to image local patterns

of water molecule diffusion, which reflect physical properties of biological tissue [13]. These patterns

enable the quantification of brain white matter microstructure, as diffusion exhibits anisotropy due

to the geometry of neuronal axon projections [170]. This is useful for making local measurements

of fiber orientations through diffusion modeling [225] and more global fiber bundle reconstructions

through tractography [43] [227]. In addition, atlas-based reconstructions can reveal population-wide

features of anatomy and serve as a reference for comparing individuals [143]. Both tractography and

population-based atlasing are applications that depend on a number of basic image processing tasks,

including interpolation, smoothing, and fusion [121]. For tractography, interpolation is needed when

determining fiber orientations off the voxel grid, and smoothing is needed to control errors due to

noise and other image artifacts. For atlas construction, interpolation is needed to resample images

into a common space, and fusion is needed to derive a composite image from a population. This

chapter develops and evaluates methods for performing these tasks with support for multiple distinct

fibers, which are important for resolving complex sub-voxel fiber configurations due to crossings and

82
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partial volume effects [218].

In particular, the goal of this work is to develop and evaluate methods for model-based image

processing that are useful for interpolation, smoothing, and fusion tasks with the multi-compartment

ball-and-sticks diffusion model. For this, we derive a kernel regression framework for estimating fiber

orientation mixtures, which represent multiple fiber orientations per voxel and associated volume

fractions. In contrast to signal-based image processing, this approach estimates fiber models from

a collection of fiber models contained in volumetric parametric maps. This is accomplished by

extending a kernel regression image processing framework for vector-valued images [204] and building

on prior work on model-based diffusion MRI processing [205] [34]. We show how this formulation

generalizes a variety of tasks and allows for simple data-adaptive extensions for bilateral filtering and

model-selection, which may be generally useful for parametric model-based image processing. Our

experimental evaluation first characterizes performance with computational phantoms, and then

explores applications to quantitative tractography-based analysis of fiber bundles and multi-fiber

atlas construction.

The rest of the chapter is organized as follows. In Secs. 6.1 and 6.2, we discuss related work

and background material. In Sec. 6.3, we describe our proposed model-based estimator, outline

optimization techniques, and describe its application to streamline tractography. In Sec. 6.4, we

describe experimental evaluation of our approach with computational phantoms and in vivo clinical

data. The synthetic data experiments evaluate the performance of our method in relation to fiber

orientations, volume fractions, compartment count, and tractography-based connectivity. The in

vivo data experiments first measure the scan-rescan reproducibility and reliability of fiber bundles

metrics in individual subjects. We then build a multi-fiber tractography atlas from 80 healthy

subjects to study population-wide properties of white matter. In Secs. 6.5 and 6.6, we discuss our

results and conclude.

6.1 Related work

In this section, we briefly review related work and outline the distinguishing features of the present

approach.

This chapter examines a model-based approach for diffusion MRI processing. This contrasts

with signal-based approaches that apply filters to the vector-valued diffusion-weighted MRIs, while
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accounting for factors such as the gradients strengths, directions, and Rician noise [18]. Model-based

approaches instead operate on lower-dimensional mathematical representations of the diffusion signal

[121]. Previous work has developed such approaches for single diffusion tensors [165] and orientation

distribution functions (ODFs) [74, 249]. We differ by considering multi-compartment models, which

are a parametric alternative to ODFs with the advantage of compartment-specific measures and

isotropic diffusion modeling. However, two notable challenges for processing multi-compartment

models are model selection (to determine the number of compartments) and compartment matching

(to solve the combinatorial problem of finding corresponding compartments among some set of

voxels) [175].

The approach is related to some prior work on multi-fiber model-based image processing. Yap

et al. proposed an approach for multi-fiber atlas construction with fiber orientations extracted

from ODF peaks [248], which dealt with similar computational problems but was not designed

for parametric models. The present work differs by considering atlas construction with the ball-

and-sticks diffusion model and by relaxing some assumptions on fiber correspondence and fiber

count. The prior work of Taquet et al. [205] first explored the idea of parametric model-based

interpolation of multi-tensors and its application to tractography and atlas construction, developing

a rich framework for multi-tensor processing based on Gaussian mixture simplification [207]. Our

work differs by considering directional measures of divergence that are compatible with the ball-

and-sticks model. This is necessary because the Burg matrix divergence employed by the full multi-

tensor framework is not well-defined for the anisotropic stick compartments, so we instead develop

a divergence measure based on the directional Watson distribution to serve the same purpose. We

also differ by incorporating data-adaptive extensions to support both bilateral filtering and model

selection, in contrast to previous work that employed only spatial kernel weights and local-maximum

model selection. Some of the methods presented here have been explored in previous conference work

[34] [36], but those included neither the full data-adaptive kernel regression estimator nor the full

experimental results presented here.

6.2 Background

Our work focuses on image analysis with multi-fiber ball-and-sticks diffusion models, which falls into

the multi-compartment class of diffusion models [19]. This is a multi-tensor constrained to include an
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Figure 6.1: A flowchart illustrating the steps in the proposed method, detailed in Algo. 3. The input
is a position for estimation and model-valued volumetric data. Then, kernel weights are computed
from the product of spatial and data-adaptive factors and normalized to sum to one. Then, weights
are distributed among the fiber compartments and multiplied by volume fraction. Finally, the
estimated model is found by a clustering-based optimization procedure, detailed in Algo. 2.

isotropic “ball” compartment and a number of completely anisotropic “stick” compartments. These

constraints allow the model to achieve good performance for single shell gradients with low b-value

acquisitions at intermediate field strengths [244], which are common in clinical applications. The

ball compartment can account for isotropic diffusion, and the volume fractions associated with each

compartment can account for partial volume effects and mixtures of bundles at crossings. There is

also evidence that the volume fraction maps provide a quantitative measure for clinical studies [90].

With this model, the predicted diffusion-weighted signal S is given by:

S = S0



f0 exp (−db) +

N
∑

j=1

fj exp
(

−bd(~gTvj)
2
)



 (6.1)

for a particular gradient encoding direction ~g, b-value b, and baseline signal S0. This includes N

fiber compartments with fiber orientations ‖vj‖ = 1, fiber volume fraction 0 ≤ fj ≤ 1,
∑N

j=0 fk = 1,

and shared diffusivity d > 0. It’s important to note that there is no sign associated with fiber

orientations, so there is an equivalence vj ∼ −vj . We use the following parameterization to denote

a fiber orientation mixture M with N compartments: M = {(fj ,vj)}Nj=1. In our experiments, we fit

the model to the diffusion signal with the Bayesian approach of Behrens et al. implemented in the

FSL software library [93].



86

F
u
si
o
n
!

Input ! Output!

S
m
o
o
th
in
g
!

In
te
rp
o
la
ti
o
n
!

Figure 6.2: Example uses of the proposed estimator for interpolation, smoothing, and fusion tasks.
Slices were taken from average human brain data at the junction of the corpus callosum (pink),
corona radiata (blue), and cingulum (green). Fibers are colored according to their orientation,
and thickness encodes volume fraction. The top panel shows interpolation at twice the original
resolution, demonstrating continuity of both fiber orientations and volume fractions. The middle
panel shows smoothing to reduce noise-induced angular error. The bottom panel shows fusion of 80
aligned subjects to produce an atlas representing the population.

Table 6.1: A summary parameters used for estimation, including a range of values found in our
evaluation and experiments.

Symbol Name Description Range

hp Spatial bandwidth Specifies the size of the region 1.0-3.0 mm
hm Data-adaptive bandwidth Specifies the data sensitivity 0.3-0.6
λ Regularization Specifies model selection 0.99-0.9999
Kmax Maximum complexity Specifies maximum fiber compartments 2-3
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6.3 Methods

In this section, we present our model-based kernel regression estimator for fiber orientation mixtures,

followed by a description of extensions for data-adaptive processing. We then outline the necessary

optimization routines and practical implementation details. Finally, we describe how this can be

applied to deterministic streamline tractography.

6.3.1 Kernel Regression Estimation

We now formulate our approach for kernel regression estimation of fiber orientation mixtures, which

is the main contribution of the chapter. This builds on the prior work of Takeda et al. on kernel

regression image processing for scalar and vector data [204] and prior multi-compartment processing

[34] [207]. The general idea of kernel regression, however, has also been proposed in several other

contexts as the moving average, kernel smoothers, etc. [120]. The simplest of such is the Nadaraya-

Watson estimator (NWE) [235], which we focus on here. Given a collection of data {(xi, yi)}Ci=1 and

a desired regression function ŷ(x0) evaluated at point x0, the NWE assumes a product kernel density

distribution for observed data and takes the regression function to be the conditional expectation

ŷ = E(y|x0). This can be simply expressed by the following least-squares problem:

ŷ(x0) = argmin
β

C
∑

i=1

K (xi, x0) ‖yi − β‖2 (6.2)

K(xi, x0) = exp
(

−‖xi − x0‖2/h2
)

(6.3)

with a kernel function K and bandwidth parameter h. In practice, larger values of h produce a

smoother estimate. The kernel K can be chosen from a variety of options, but we use the standard

Gaussian. The advantage of this approach is that it makes few assumptions about the structure

of the data and consequently generalizes well to a number of tasks. In particular, Takeda et al.

[204] presented a general framework for image processing based on this approach, showing it can be

used for interpolation, smoothing, and fusion. The goal here is to further extend this approach to

model-based estimation of fiber orientation mixtures.

The primary limitation of the standard kernel regression approach is the assumption of vector-

valued images, for which the Euclidean distance ‖x − y‖ is a reasonable measure of discrepancy.
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This assumption breaks down for diffusion model-valued image data due to various constraints

and the non-Euclidean geometry of the models, e.g. fiber volume fractions and orientations. This

issue can be addressed by instead considering a model-based measure of discrepancy d2m and by

performing optimization over the constrained space of models. Given an input position p0 and local

neighborhood of data {(pi,Mi)}Ci=1 with Mi = {(fij ,vij)}Ni

j=1, we formulate this extended estimator

M̂(p0) as follows:

M̂(p0) = argmin
M

C
∑

i=1

Kp(pi, p0)d
2
m(Mi,M) (6.4)

Kp(pi, p0) = exp
(

−‖pi − p0‖2/h2
p

)

(6.5)

given a positional bandwidth parameter hp. We denote the neighborhood size here as C, and in

practice, we choose a neighborhood sufficiently large to include three standard deviations of the

Gaussian kernel, e.g. a 7x7x7 window of 1 mm3 voxels for hp = 1 mm. We define the model-based

discrepancy d2m for fiber mixtures as follows:

d2m(M, M̂) = min
π

∑

j

fjd
2
f (vj , v̂π(j)) (6.6)

given a single fiber distance d2f :

d2f (v, v̂) = 1− (v · v̂)2 = sin2(θ) (6.7)

The above definition of d2m is a matching-based distance that accounts for the combinatorial

structure of the model by minimizing the sum-squared distances across all possible matching func-

tions π between compartments in M and those in M̂ . This formulation happens to allow efficient

optimization and makes no assumptions on compartment ordering or total count. Both d2m and d2f

also have interesting relationships to statistical measures of divergence, which are discussed in the

appendix.
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6.3.2 Data-adaptive Extension: Model Selection

The estimator puts no constraints on the complexity of the estimated model, so some mechanism

is needed to perform model selection. One solution is to choose a fixed number of compartments;

however, this can overestimate in some areas and underestimate in others. Data-driven approaches

can instead use the fiber counts from the local neighborhood to estimate the model complexity,

e.g. the local-maximum estimator used in prior work [207]. Another more conservative data-driven

approach is to use the average fiber count (rounded to the nearest integer). We propose another

data-driven approach that works by extending the estimator in Eq. 6.4 to include a regularization

term for the number of compartments N :

M̂(p0) = argmin
M

C
∑

i=1

Kp(pi, p0)d
2
m(Mi,M) + λN (6.8)

given a regularization parameter λ. The goal of this approach is to choose the fiber count that best

supports the fiber orientation data in the local neighborhood, rather than just the counts. In later

experiments, we compare these different model selection approaches to assess their strengths and

weaknesses.

6.3.3 Data-adaptive Extension: Bilateral Filtering

In addition to performing model selection, the estimator can be simply modified to allow for bilat-

eral filtering. The goal here is to avoid blurring interesting features at boundaries of anatomical

structures. This issue has been studied for standard kernel regression estimators, and one solution

is to include additional weights that reflect similarity between data values [204] [82]. We include

this idea by adding a data-adaptive factor as follows:

M̂(p0,M0) = argmin
M

C
∑

i=1

Kid
2
m(Mi,M) + λN (6.9)

Ki = Kp(pi, p0)Km(Mi,M0) (6.10)

Km(Mi,M0) = exp
(

−d2m(Mi,M0)/h
2
m

)

(6.11)
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given a bandwidth parameter hm and a reference model M0.

This can be optimized with the same routines as Eq. 6.8; however, it is more computationally

costly because the adaptive kernel weights Km cannot be precomputed like the spatial kernel weights

Kp. For voxelwise smoothing, the reference can be the original input model; for tractography, it can

be the model from the previous step in tracking; for interpolation, it can be the estimate without

the bilateral factor Km.

6.3.4 Optimization

Next, we describe optimization routines for the proposed estimator and outline some practical issues

for implementation.

The estimator in Eq. 6.8 involves an optimization problem in which the weighted sum of model-

based distances must be minimized, subject to a regularization term for model selection. Substitution

of dm and df gives a simpler form:

M̂(p) = argmax
M,π

C
∑

i

Ni
∑

j

kifij(vij · v̂π(ij))
2 + λN (6.12)

given the kernel weights ki in Eq. 6.10. This is equivalent to solving the weighted axial DP-means

clustering problem [37], which is similar to the k-means algorithm with two extensions. First,

clustering is performed with axial variables [199], which are equivalent to fiber orientations. Second,

the number of clusters is estimated from the data as in the DP-means algorithm, a name derived

from its relation to Dirichlet Process mixture models [108]. An iterative algorithm for solving this

is presented in Algo. 2, and further discussion is in the appendix.

The full procedure for using the estimator is summarized in Fig. 6.1 and detailed in Algo. 3. This

process proceeds by first collecting fiber models in a local neighborhood of the point of estimation,

then kernel weights are computed by the product of spatial and data-adaptive factors. These weights

are normalized to sum to one and then distributed among the fiber compartments of each model.

The above clustering problem is then solved to estimate the output number of compartments, fiber

orientations, and volume fractions. A summary of the algorithms parameters is shown in Table 6.1.

There are also some practical issues to note when implementing this. First, the procedure is

only guaranteed to find a local minima, which depends on the starting conditions. This can be

helped by performing several random restarts and taking the solution with the overall minimum ,
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e.g. 10 restarts with shuffling in our implementation. There may be some rare configurations where

the minimum is not well-defined, e.g. strictly orthogonal fibers. If this occurs, the known model

with highest weight can be chosen; however, we check for this condition and never encountered it in

practice. Finally, the kernel weights must be normalized by their total sum, as this ensures the total

volume fraction of the fiber compartments is conserved and the estimated model volume fractions

also sum to one.

6.3.5 Tractography

We applied the above estimator to deterministic tractography using a generalization of the standard

streamline approach to account for multiple fibers. In the standard approach, a fiber trajectory

is considered a 3D space curve whose tangent vector is equated with the fiber orientation of the

voxelwise diffusion models. This process proceeds by evolving a solution to a differential equation

with some initial condition at a given seed position. Typically, some geometric criteria are also used

to stop and exclude fibers, including angle threshold and minimum and maximum length [259].

This approach must be adapted when multiple orientations are present [175], and we use the

following modifications. During tracking, one of the N possible fiber compartments must be chosen

for the next step, so we choose the fiber with the smallest angular difference to the previous step,

among those below a given angle threshold. We also incorporate additional volume fraction termi-

nation criteria, where tracking is stopped if the volume fraction of the chosen fiber compartment is

below a given threshold. Finally, we use the proposed model-based estimator for interpolation and

smoothing during tracking. We also retain the volume fraction parameter during tracking in order

to estimate statistics across fiber bundles.

6.4 Experiments and Results

This section describes the evaluation of our method with four experiments, including a discussion of

the datasets, experimental design, evaluation metrics, and results in each experiment. Two synthetic

data experiments were conducted with computational phantoms to assess the ability of clustering-

based optimization to match compartments and also to measure performance of our proposed model

selection and bilateral filtering extensions. Two in vivo data experiments were conducted with

clinical scans to assess the practical benefits of our approach in modeling human brain white matter
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fiber bundles. The first investigated scan-rescan reliability of quantitative fiber bundle metrics,

and the second investigated population-level features of white matter by constructing a multi-fiber

tractography atlas from 80 subjects.

All statistical analysis was performed using R 3.1.1 and ggplot2 [241]. Unless stated otherwise,

the estimation parameters were hp = 1.5 mm, hm = 0.5, λ = 0.99, and the kernel support radius

was 5 voxels. All experiments fit two-fiber compartment ball-and-sticks diffusion models with the

Markov-Chain Monte-Carlo procedure implemented in FSL XFIBRES [19].

6.4.1 Datasets and Preprocessing

Synthetic datasets: We generated datasets from two types of computational phantoms, which

were defined and synthesized with the ball-and-sticks diffusion model as follows.

The first type of phantom represents a complex boundary between fiber bundles for voxel-based

analysis. The phantom included two fibers per voxel and represented two adjacent and perpendicular

bundles with a fixed volume fraction of 0.4 with a third bundle that crosses both with a volume

fraction varied between 0.2 and 0.4. This left an isotropic volume fraction of 0.2 to 0.4, depending

on the condition. Diffusion-weighted images were synthesized with with S0 = 10000, d = 0.0017

mm2/s, 1 mm3 voxels, and dimensions 30x30x5.

The second phantom represents a more complex set of bundles for both voxel-based and connectivity-

based analysis. This included three bundles with a crossing and branching structure. Diffusion-

weighted images were synthesized with S0 = 10000, d = 0.0017 mm2/s, 1 mm3 voxels, and dimen-

sions 71x71x15, as described in Leemans et al. [118].

All images were synthesized with seven baseline volumes, 64 diffusion-weighted volumes with

b-value 1000 s/mm2 to match the clinical imaging data. Rician noise was introduced by adding

Gaussian noise with standard deviation σsynth to the complex signal and taking the modulus,

using Camino [48]. Noise level is reported by the signal-to-noise ratio in decibels, SNR(dB) =

20 log10(S0/σsynth).

Human brain datasets: Clinical data included diffusion-weighed volumes acquired from healthy

volunteers with a GE 1.5T scanner with a voxel size of 2mm3 and image size 128x128 and 72

slices. For each volunteer, a total of 71 volumes were acquired, with seven T2-weighted volumes

(b-value = 0 s/mm2) and 64 diffusion-weighted volumes with distinct gradient encoding directions
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(b-value = 1000 s/mm2). 80 volunteers were scanned with ages ranging between 25 and 65 years

and roughly equal numbers between sexes. An additional five volunteers were scanned with three

repetitions each to assess scan-rescan reproducibility and reliability. The noise level was estimated

to be 22.05 dB using two manually drawn regions-of-interest and the Rician corrected method in

[60], SNRstdv(dB) = 20 log10(
√

2− π/2 ∗ µ̂tissue/σ̂air).

Diffusion-weighted MRI data was preprocessed using FSL [93] as follows. First, the diffusion-

weighted MRIs were corrected for motion and eddy current artifacts by affine registration to the

first T2-weighted volume using FSL FLIRT with the mutual information cost function. The gradi-

ent encoding directions were rotated to account for the alignment [119], and non-brain tissue was

removed using FSL BET.

The 3x5 scan-rescan volumes were used for assessing reproducibility and reliability in the third

experiment. For the fourth experiment, a diffusion tensor atlas was constructed from the other 80

subjects. This was done by first fitting single tensor models using FSL DTIFIT and then constructing

a population-specific template by deformable tensor registration using DTI-TK [256] [253]. The

resulting deformation fields were retained for creation of the multi-fiber atlas, and the single tensor

atlas was retained for comparison.

6.4.2 Synthetic Data Experiment with Boundary Phantom

Design:

The first experiment was conducted with the boundary phantom (shown in Fig. 6.3) and was

designed to test the fiber matching and bilateral filtering features. For this, we defined two regions

of interest: an “on-boundary” two-voxel window, and the remaining “off-boundary” voxels. The

proposed estimator was compared to a so called “rank-based” estimator, which is meant to serve as

a point of comparison to evaluate compartment matching. This rank-based method sorts fibers in

each model based on their volume fraction, and then each compartment is processed independently as

if it were a multi-channel volume. We hypothesized that this rank-based approach would introduce

greater angular errors than our approach. To test performance relative to previous work, we also

compared the bilateral estimator (Eq. 6.9) to one with only spatial weights (Eq. 6.4), which we

will refer to as “linear”. We hypothesized that the bilateral factor would have lower error at the

boundary between bundles. In each condition, we introduced noise and measured deviation from

the ground truth with evaluation metrics similar to Ramirez-Manzanares et al. [180]. For this,
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Figure 6.3: The phantom used in the first experiment in Sec. 6.4.2. This represents a complex
boundary between fiber bundles and include “off-boundary” and “on-boundary” regions-of-interest.

fibers were matched to the ground truth, and the total angular error and volume fraction error was

computed in each voxel and averaged within each region of interest. SNR was varied from 15 to 25,

the data-adaptive bandwidth parameter hm was varied from 0.1 to 1.0, and crossing bundle volume

fraction was varied from 0.2 to 0.4. Each condition was repeated 20 times to obtain the sample mean

and uncertainty. To exclude effects related to model selection, the number of fiber compartments

was assumed to be known and fixed at two; however, the next experiment investigates performance

of the model selection component.

Results:

Results are shown in Figs. 6.4 and 6.5. We found isotropic and fiber volume fraction error

was similarly lowered in all methods; however the rank-based method had slightly lower error on-

boundary. We found rank-based orientation error to be significantly higher than the other methods

in all cases. We found both linear and rank-based to introduce significant orientation error at the

boundary, exceeding that of noise for SNR > 20. Bilateral filtering significantly reduced the error

on-boundary with a negligible increase elsewhere. Upon varying the adaptive bandwidth, we found

error had a local minima with good overall performance from 0.3 to 0.5, depending on the SNR.

Upon varying the crossing bundle fraction, we found rank-based estimation to introduce very high

orientation error when the bundle volume fractions were within 0.05.

6.4.3 Synthetic Data Experiment with Bundle Phantom

Design:
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Figure 6.4: Qualitative results from the first experiment described in Sec. 6.4.2. The first panel
shows the ground truth phantom at the boundary voxels. The second panel shows fibers fit after
adding Rician noise at SNR = 21.5. The third and fourth panels show smoothing results using linear
(Eq. 6.4) and bilateral (Eq. 6.9) kernel weights. The results show that both estimation techniques
reduce noise-induced angular error; however, adaptive estimation can avoid the orientation blurring
at the boundary voxels, due to the inclusion of the Km kernel weights.

The second experiment was conducted with the bundle phantom (shown in Fig. 6.6) and was

designed to test the model selection methods and to assess performance in connectivity mapping.

The adaptive model selection (Eq. 6.8) technique was compared with the following alternatives:

“fixed” (always two fibers), “mean” (rounded local average number of fibers), “max” (local maximum

of fiber count, like [207]). We tested both voxel-wise errors and tractography-based connectivity

errors. Voxel-wise conditions measured orientation error, volume fraction error, and also “missing”

and “extra” fibers error [180]. We also tested connectivity measures derived from deterministic

streamline tractography. For this, we manually delineated volumetric masks representing “white

matter” along bundle trajectories and “gray matter” regions at bundle endpoints. These gray

matter masks were used to seed deterministic tractography, and the resulting tracks were then

compared to the manually delineated ground truth. For each bundle, we assessed performance by

measuring the valid fiber rate (fraction of seeds that reach their intented target) and the Dice overlap

coefficient D(A,B) = 2 vol(A∩B)/(vol(A)+vol(B)), given bundle mask A and ground truth B [59].

Tractography was performed with 5 seeds per voxel, step size 0.5 mm, 45◦ angle threshold. SNR

was varied from 15 to 25, and the regularization parameter was varied across seven levels, which are

listed in Fig. 6.8. Tractography was performed with nearest-neighbor interpolation as a baseline,

and rank-based estimation was also performed in all conditions for comparison. We hypothesized
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Figure 6.5: Results from the first experiment in Sec. 6.4.2. The labels on the left indicate the region
where results were aggregated, and each plot shows either orientation or volume fraction error rates.
The plot titles also show the volume fraction of the compartments (f1 and f2). The top two rows show
results with SNR from 15 to 25, comparing the noisy, rank-based, linear, and adaptive estimation
conditions (with hp = 1.5 and hm = 0.5). We see that all methods perform well at reducing volume
fraction, with rank-based estimation performing slightly better with on-boundary fiber fractions.
We see that rank-based estimation rates poorly in orientation error, particularly in regions where
bundle volume fractions are within 0.05 apart. We also see that linear estimation introduces high
orientation error in on-boundary voxels, while adaptive estimation avoids this issue. By sweeping
across the data-adaptive parameter hm, we see a local minima in orientation error occurs between
0.3 and 0.5, depending on the SNR.
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that mean selection would be most conservative and adaptive selection would improve connectivity

mapping and help control extra fiber error while not significantly increasing missing fiber error. All

conditions were repeated twenty times to measure the sample mean and uncertainty.

Results:

Results are shown in Figs. 6.6, 6.7, and 6.8. We found similar results for isotropic volume

fraction as Exp. 1. Volume fraction error was significantly higher in fixed and max selection, with

linear and adaptive performing best. Orientation error was reduced in all conditions with adaptive

selection performing best by a small margin. Fixed and max selection showed very high extra fiber

error with linear and adaptive performing best. Fixed and max selection had the lowest missing

fiber error, with adaptive selection being slightly higher. For tractography-based measures, rank-

based estimation performed poorly, nearest and linear selection were better and comparable to each

other. We found adaptive, max, and fixed to perform very well, with adaptive performing slightly

better is most cases. Upon varying the regularization parameter, we found orientation error, fraction

error, and tractography performance to be rather stable, but the extra and missing fiber error varied

somewhat. This variation, however, was small compared to the errors introduced with max and fixed

selection. After inspecting the results, we found max and fixed selection to be sensitive to noise and

problems in model fitting, resulting in over-estimated model complexity such as “fiber splitting”,

shown in Fig. 6.7.

6.4.4 In vivo Data Experiment for Individual Subjects

Design: The third experiment tested the reproducibility and reliability of quantitative tractography

metrics obtained with the proposed method in in vivo human brain data. For this, we extracted fiber

bundles from the scan-rescan dataset, including the following structures: anterior thalamic radiation

(atr), cingulum bundle (cing), inferior longitudinal fasciculus (ilf), and uncincate fasciculus (unc)

in each hemisphere. Fiber bundles were selected from whole-brain streamline tractography using

a multiple region-of-interest approach guided by anatomical references [41] [260]. For each bundle,

three masks (two inclusion, one exclusion) were manually delineated in the population specific atlas

with ITK-SNAP [252] and then deformed to each subject. Tractography was performed with the

following methods: nearest-neighbor interpolation, rank-based estimation with fixed selection, linear

estimation with fixed selection, linear estimation with max selection, and our proposed adaptive
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Adaptive!Rank-based !

Region of Interest !

Figure 6.6: Results from the second experiment in Sec. 6.4.3 The first panel shows the phantom
and region-of-interest, and the following three panels show tractography using nearest-neighbor,
rank-based, and adaptive estimation (SNR = 14). We see that nearest neighbor includes early
terminations due to high orientation error and compartment count error. We also compare to
the rank-based approach, which creates many spurious connections due to poor matching of com-
partments in the crossing region. Adaptive estimation can improve both of these issues through
smoothing and clustering-based compartment matching.

kernel-based estimation. Tracking parameters included two seeds per voxel, and angle threshold

45◦, step size 1.0 mm, minimum volume fraction 0.1, and minimum length 10 mm.

We computed four metrics for each bundle: the mean length, mean volume fraction, total volume,

and streamline count. Reproducibility and reliability were measured with the coefficient of variation

(CV) and the intra-class correlation coefficient (ICC). The CV was measured by σs/µs and averaged

across subjects, given the within-subject mean µs and standard deviation σs. A lower CV score

indicates higher reproducibility and has units that are normalized to allow comparison across bundle

metrics. The ICC was measured by σ2
b/(σ

2
b + σ2

w), given the between-subjects variance σ2
b and

within-subjects variance σ2
w. A larger ICC indicates more variance between subjects than within

subjects. This takes a maximum value of one, and values above 0.75 indicate high reliability. The

implementation used the R ’ICC’ package [245].

Results: Results are shown in Fig. 6.9. We found that linear and adaptive kernel-based estimation

generally had lower or roughly equal scan-rescan error (CV) compared to other methods. With

adaptive estimation, bundle length had a CV of 3.56%, streamline count had a CV of 10.37%, total

volume had a CV of 8.01%, and mean volume fraction had a CV of 2.3%. We found that linear and
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Figure 6.7: Results from the second experiment in Sec. 6.4.3. The first panel shows the phantom and
region-of-interest, and the following three panels show tractography results using nearest neighbor
interpolation, local-max model selection, and adaptive model selection (Eq. 6.8). This shows how
local-max selection can sometimes introduce “fiber splitting” due to noise (SNR 16.5 shown). Adap-
tive selection can reduce this effect, resulting in smoother streamline curves and lower orientation
and volume fraction errors (see Fig. 6.8).

adaptive estimation had the highest reliability (ICC) in all cases. With adaptive estimation, total

volume had an ICC of 0.88, fiber count had an ICC of 0.88, bundle length had an ICC of 0.84,and

mean volume fraction had an ICC of 0.72. Mean volume fraction had good and similar performance

across all methods. We also found that given the same number of seed points, linear and adaptive

estimation both had a much greater number of surviving streamlines than either nearest-neighbor

or rank-based estimation.

6.4.5 In vivo Data Experiment for Atlas Construction

Design: The fourth experiment examined the construction of a multi-fiber tractography atlas with

the 80 subject population. For this, we used the deformation fields computed with DTI-TK to

resample the multi-fiber models to diffusion atlas space. Interpolation was performed using our ap-

proach, and fibers were reoriented by the local Jacobian and normalized to unit length, i.e. Jv/‖Jv‖

given Jacobian J and fiber orientation v. Multi-fiber fusion was then performed with our method

to produce an average volume to represent the population. For comparison, standard single tensor

tractography was performed in the diffusion tensor atlas with a minimum fractional anisotropy of

0.15. The single tensor atlas was created with the deformable registration algorithm in DTI-TK
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Figure 6.8: Results from the second experiment in Sec. 6.4.3 using the phantom shown in Fig. 6.6.
Evaluation was first performed by measuring voxel-wise orientation error, volume fraction error,
missing fiber error, extra fiber error (lower is better). Tractography-based evaluation was performed
to evaluate performance in connectivity mapping using the Dice coefficient and fraction of valid
connections (higher is better). Several methods for model selection were compared included: fixed
count, local-max selection, mean selection, and our proposed adaptive selection. We also included
rank-based estimation and nearest neighbor interpolation to serve as a baseline. The top two rows
show performance across noise levels from SNR 15 to 25. We see that adaptive estimation provided
significantly lower orientation error than other methods. Across all noise levels, fixed and local-
max selection introduced a high volume fraction error and extra fiber error, due to “fiber-splitting”.
Adaptive performance significantly reduced these errors with a slight increase in missing fiber error.
We also varied the regularization parameter and plotted with semilog axes, x = log10(1 − λ). We
found performance to be acceptable between λ = 0.99 and 0.9999, with a tradeoff between extra
and missing fiber error.
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Figure 6.9: Quantitative results from the third experiment described in Sec. 6.4.4. Scan-rescan
reproducibility and reliability were measured for fiber bundle metrics of eight fiber bundles. Repro-
ducibility was measured with the coefficient of variation (CV), which gives a normalized measure of
error across scans. Reliability was measured with the intra-class correlation (ICC), which indicates
the proportion of total variation that exists between subjects. A lower CV and a high ICC are
preferable, with an ICC above 0.75 being highly reliable. The top row shows reference visualizations
of the bundles. The middle row shows results by bundle type, with aggregation across bundle mea-
sures and hemisphere. The bottom row shows results by bundle measure, with aggregation across
bundle type. We found linear and adaptive estimation to show an improvement in nearly all cases
by the ICC metric and improvement in most cases by the CV metric.
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using finite strain tensor reorientation and the deviatoric tensor similarity metric. [256] [253]. In

both atlases, major fiber bundles were manually delineated from whole brain tractography. For

the multi-fiber atlas, the corpus callosum and superior longitudinal fasciculus I, I, and III were

interactively tracked and manually delineated with guidance from atlas-space averaged Freesurfer

gray matter labels. The lateral projections of the corpus callosum were selected based on left and

right lobular regions. The superior longitudinal fasciculus I, II, and III were delineated by selecting

connections between parietal cortex and superior, middle, and inferior subdivisions of frontal cortex,

respectively.

Results: Visualizations of the results are shown in Figs. 6.10 and 6.11. We found the multi-fiber

atlas to include nearly all features of the major bundles in the single tensor atlas. In addition,

the multi-fiber atlas included more complete anatomical features of several bundles. In particular,

the arcuate fasciculus included projections to inferior frontal gray matter, and the corpus callosum

included lateral projections connecting the left and right hemispheres of frontal gray matter. We

also found reconstructions of the three portions of the superior longitudinal fasciculus [55], which

included crossings with numerous other bundles. We found the superior longitudinal fasciculus I

crossed the corona radiata and superior projections of the corpus callosum. The superior longitudinal

fasciculus II was found to cross the frontal lateral projections of the corpus callosum. Slice-based

visualizations in Fig. 6.11 show examples of other crossings found in the multi-fiber atlas, including

an axial slice of the brainstem and a sagittal slice of the corona radiata.

6.5 Discussion

In two synthetic data experiments, we evaluated the major features of our approach, including com-

partment matching, model selection, and bilateral filtering. To assess performance in compartment

matching, we compared our method to the “rank-based” method, which matches solely based on

volume fractions. The first experiment showed how our approach can avoid large errors that occur

with the rank-based estimator when crossing bundles have similar volume fraction. The second

experiment showed how this problem arises during tractography, and how clustering-based match-

ing can avoid the invalid connections of the rank-based approach. We also showed how orientation

blurring can occur at bundle boundaries when using kernel weights derived only from spatial in-

formation. The first experiment showed how the bilateral filtering extension can reduce this effect
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Figure 6.10: Results from the fourth experiment described in Sec. 6.4.5, which included the con-
struction of a multi-fiber atlas of 80 normal human subjects. Our proposed method was used for
interpolation and fusion with deformation fields computed by DTI-TK. The top panel (A) shows a
comparison of major bundles in the standard single-tensor atlas and our proposed the multi-fiber
atlas. Bundles include the corona radiata (green), inferior longitudinal fasciculus (blue), inferior
fronto-occipital fasciculus (orange), uncinate fasciculus (pink), corpus callosum (red), and the ar-
cuate fasciculus (yellow). We found the multi-fiber atlas included nearly all features found in the
single tensor atlas and more complete reconstructions of the frontal projections of the arcuate and
lateral projections of the corpus callosum. The bottom panels show tractography results for complex
fiber bundles including the lateral projections of the corpus callosum (B) and fronto-parietal con-
nections of the superior longitudinal fasciculus I, II, III (C). The detail view in panel B also shows
a triple crossing inferred at the intersection of the corona radiata, superior longitudinal fasciculus,
and corpus callosum. The three portions of the superior longitudinal fasciculus are also shown in
panels A and C and include crossings with the corona radiata and corpus callosum. These recon-
structions compare favorably to related work that examined these bundles in single human diffusion
MRI reconstructions, dissection, and tracing studies in non-human primates.
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Figure 6.11: Results from the fourth experiment described in Sec. 6.4.5, which included the con-
struction of a multi-fiber atlas of 80 normal human subjects. The top row shows principal tensor
orientations overlaid on fractional anisotropy, and the bottom row shows fibers from the multi-fiber
atlas overlaid on total fiber volume fraction. Fiber tube thickness reflects fractional anisotropy and
per-fiber volume fraction in the top and bottom rows, respectively. The left column (A) shows
an axial slice of the brainstem, demonstrating crossing fibers of cerebellar and pyramidal tracts.
The right column (B) shows a sagittal slice demonstrating crossing fibers of the corona radiata and
superior longitudinal fasciculus I.

by incorporating the structure of the data into the kernel weights. We also evaluated the proposed

data-adaptive approach for model selection and compared it with previously proposed alternatives.

We found “max” selection to always out-perform “fixed” selection and good performance in some

cases; however, we found that both fixed and max selection can overestimate the number of fibers in

even low noise conditions. These extra fibers give rise to compartment splitting, which both reduces

the expected volume fraction and introduces orientation errors that are visible in tractography. We

found the data-adaptive approach to reduce this effect, with only a small increase in missing fiber

error. In general, these synthetic data experiments also showed our approach to significantly reduce

noise-induced errors in fiber orientation and volume fraction and to improve connectivity mapping.

In the first in vivo data experiment, we examined the practical benefit of our approach for fiber
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bundle modeling in individual subjects. We found our approach provided reliable and reproducible

results for quantitative fiber bundle metrics, including mean length, mean volume fraction, total

volume, and streamline count. Among the measures, mean length and mean volume fraction per-

formed best. Streamline count and total volume are perhaps less reliable due to their dependence

on the pose and sampling resolution of the voxel grid. While past work has evaluated length-based

measures [50], it is less clear how volume fraction can be used as an index of white matter [90] [94].

The results provide evidence that fiber bundle volume fraction may be a clinically useful measure

in terms of reproducibility; however, it remains unclear exactly how this measure relates to others,

such as fractional anisotropy, fiber orientation dispersion, and apparent fiber density [178] [182].

The scan-rescan results can also serve as a reference for gauging the significance of group differences

of fiber bundle metrics in clinical imaging studies.

In the second in vivo data experiment, we examined an application to multi-fiber atlas con-

struction, using our approach for interpolation during image resampling and fusion. We found the

resulting atlas to include complex fiber bundle features not found in single tensor atlases [256].

In particular, the results included atlas-based reconstructions of the superior longitudinal fascicu-

lus I, II, and III, all of which compare favorably to prior work on single subject reconstructions,

post-mortem dissection, and tracing studies in non-human primates [55] [56] [187]. This method is

potentially useful for constructing population-specific brain atlases, where it can be used to exam-

ine population-wide features of anatomy or serve as a reference for mapping bundles in individual

subjects.

The software implementation consisted of custom Java code with experiments run on a Sun

Grid Engine to allow for parallelized processing of simulation and human subject data. The fusion

algorithm ran on a single Intel 2.8 GHz Core i5 processor and took 30 minutes for the 80 subject

population. The primary computational bottleneck of this step was main memory usage, which

required 6GB total. If applied to a larger population or with a higher sampling resolution, this issue

could be addressed by decomposing the co-registered volumes into a number of overlapping blocks,

performing fusion of each block, and then reconstructing the full atlas from the results.

There are a number of limitations and interesting open issues to note. First, we make use

of tensor-based registration; however, some work has found multi-compartment registration to be

beneficial [207] [206] [63]. Note, however, that dm is more of a divergence than a strict distance

as it is not symmetric, so this may not be suitable for registration, where inverse-consistency is
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desirable. Second, it may be beneficial to investigate applications to other parametric diffusion

models. The bilateral filtering and adaptive model selection techniques could be similarly applied to

the full multi-tensor framework by substitution of df . The kernel regression framework could also

be applied to models that incorporate microstructural information, such as NODDI [254] and ball-

and-rackets [198]. This could be accomplished either by extending the proposed divergence measure

to include variable Watson κ parameters or perhaps by a more general formulation with a Bingham

divergence. Finally, there is a variety of applications to which this approach could be applied and

further evaluated. Here we looked at fiber bundle mapping, but this could also be useful for brain

network construction and visualization for surgical planning and guidance.

The approach is also related to more general image processing with orientation data, which

touch research areas outside of MRI. Early approaches in directional statistics examined methods

for dealing with axial data, a term more common in the statistics literature that applies equally

well to fiber orientations [234]. In computer vision and graphics, filtering [2] [149] [238] [220],

anisotropic diffusion [167] and bilateral filtering [163] have been developed for orientation fields,

e.g. in analyzing fingerprints, hair, or textures. In the diffusion MRI literature, methods for fiber

orientation regularization have also been proposed using Markov random fields [172], variational

methods [52], and cohelicity [185]. The present work may have applications to those other areas,

but this chapter is limited to applications to neuroimaging with diffusion MRI and the ball-and-sticks

model.

6.6 Conclusion

In this chapter, we presented and evaluated a model-based kernel regression framework for estimating

fiber orientation mixtures from model-valued image data. This framework generally supports image

interpolation, smoothing, and fusion with the ball-and-sticks diffusion model and is compatible

with scanner protocols with standard clinical field strengths, single shells, and low b-values. The

kernel regression formulation also allows for simple and efficient data-adaptive extensions for model

selection and bilateral filtering, and these general design of these components may potentially be

applied to image processing with other multi-compartment parametric models. We experimentally

evaluated our approach with synthetic data from computational phantoms and in vivo clinical data

from human subjects. First, we showed our approach can address issues related to compartment
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matching and model selection, and can avoid orientation blurring at bundle boundaries and fiber

splitting due to noise. The evaluation showed significant reductions in noise-induced orientation

and volume fraction errors and improved reliability in connectivity mapping. Through in vivo

data experiments, we tested the practical value of our approach in analyzing individual subjects,

showing improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics. We

then demonstrated the creation of a multi-fiber tractography atlas from a population of 80 human

subjects. In comparison to single tensor atlasing, our results show more complete features of known

fiber bundles and include reconstructions of lateral projections of the corpus callosum and complex

fronto-parietal connections of the superior longitudinal fasciculus. This atlas-based approach could

be used to either study population-wide features of anatomy or to aid fiber bundle mapping in

individual subjects.

6.7 Appendix

In the above analysis, we employ d2f (a, b) (Eq. 6.7) as a measure of discrepancy between fiber

orientations. This turns out to have some useful geometric and statistical properties. For example,

given an orientation v, consider the mapping φ(v) = vvT , also known as the Veronese-Whitney

embedding, the dyadic product, or Knutsson mapping [107] [20] [181]. This can be imagined to

take points on the sphere to a higher dimensional sphere and to fold its antipodes to give φ(v) =

φ(−v). The Euclidean distance under this mapping is then equivalent to d2f up to a scalar factor:

‖φ(a) − φ(b)‖2 = 2(1 − (a · b)2) = 2d2f (a, b) The extrinsic mean is then given by µ =
∑

i wiφ(vi),

which must be projected to the nearest orientation by argminv ‖φ(v) − µ‖2. This can be solved in

closed form by finding the principal eigenvector of µ [20]. This formulation also has a statistical

interpretation, as d2f is equivalent to the Bregman divergence between Watson distributions of equal

dispersion [68] [37], and the weighted average is equivalent to the maximum likelihood estimate of the

direction of a Watson distribution [200]. These results support prior work suggesting a relationship

between extrinsic means and maximum likelihood estimates for data in RP
n [32].

A connection can also be drawn between df and prior work using Gaussian mixture simplification

with the Burg matrix divergence, dburg(A,B) = tr(AB−1) − log(det(AB−1)) − 3. While dburg

cannot be directly applied to the sticks due to their low rank, it can be applied to sticks that

are approximated by an “inflated” positive definite tensor with δ added to the second and third
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eigenvalues. If this approach is applied to a pair of stick orientations a and b to produce inflated

tensors Ainf and Binf , then dburg can be reduced to dburg(Ainf , Binf ) = (δ+1/δ− 2) sin2(θ), given

angle θ between a and b. If δ = (3−
√
5)/2, then dburg(Ainf , Binf ) = d2f (a, b), so the use of Gaussian

mixture simplification with inflated sticks is then equivalent to the “linear” and “max” conditions

in the experiments. We ran a simulation experiment to numerically verify this and also found the

“inflated stick” Burg divergence implementation to take 40 times longer on average.

For multi-fiber analysis, we employ d2m (Eq. 6.6) to measure discrepancy between mixtures of

fiber orientations, and this too has useful geometric and statistical features. The form of dm allows

the kernel regression estimator in Eq. 6.8 to be algebraically reduced to the simpler form in Eq.

6.12, which is equivalent to a clustering problem. The first sum-of-squares term has a statistical

interpretation as hard clustering with a mixture of Watsons [199], and the additional regularization

term has a statistical interpretation as the small-variance asymptotic limit of a Dirichlet process

mixture, as in the DP-means algorithm [108]. Taken together, these make up the axial DP-means

clustering problem in Eq. 6.12. This is theoretically well-grounded because the Watson distribution

is an exponential family, and df is the associated Bregman divergence [37]. The work of Jiang et al.

also demonstrates that the general form of Algo. 2 converges, albeit to a local minima [95]. To avoid

instability due to local minima, we use random restarts with shuffling of the order of the input and

take the solution with the overall minimum of Eq. 6.12.
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Algorithm 2: axial DP-means clustering

Input:
{(wl,vl)}

L
l=1: the input weights and orientations

λ: the regularization parameter
Kmax: a maximum number of clusters

Output:
K̂: estimated number of clusters
{(ŵk, v̂k)}

K̂
k=1: estimated cluster weights and orientations

/* Initialize */

K̂ ← 1, v̂1 ← prineig
(
∑

l
vlv

T
l /L

)

while not converged do

/* Assign cluster labels */

for l=1 to L do

for k=1 to K̂ do

Dlk ←
(

1−
(

vT
l v̂k

)2
)

/* Optionally increment clusters */

if mink Dlk > λ & K̂ < Kmax then

K̂ ← K̂ + 1, v̂K ← vl, πl ← K̂
else

πl ← argmink Dlk

/* Update cluster centers */

for k=1 to K̂ do
ŵk ←

∑

l
wlδ(k, πl)

v̂k ← prineig
((
∑

l
wlδ(k, πl)vlv

T
l

)

/
∑

l
δ(k, πl)

)

return
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Algorithm 3: fiber orientation mixture estimation

Input:
p0: the input spatial position for estimation
M0: the input reference model
{(pi,Mi)}

C
i=1: the local neighborhood of C position/model pairs

Ni: the number of fibers in the i-th local model
fij : the volume fraction of the j-th fiber of the i-th local model
vij : the fiber orientation of the j-th fiber of the i-th local model
hpos: the spatial positional bandwidth
hdir: the bilateral data-adaptive bandwidth
λ: the model complexity regularization parameter
Kmax: the maximum number of fiber compartments

Output:
K̂: estimated number of fiber compartments

M̂ = {(f̂k, v̂k)}
K̂
k=1: estimated model

/* Compute sum-normalized model weights */

Ksum ← 0
for i=1 to C do

ki ← K(−‖p0 − pi‖
2/h2

pos)
ki ← ki ∗K(−d2m(M0,Mi)/h

2

dir)
Ksum ← Ksum + ki

for i=1 to C do
ki ← ki/Ksum

/* Compute fiber weights */

L← 0, Fsum ← 0
for i=1 to C do

for j=1 to Ni do
wL ← ki ∗ fij , vL ← vij

L← L+ 1, Fsum ← Fsum + fij

/* Optimize by clustering with Algo. 2 */

K̂, {(ŵk, v̂k)}
K̂
k=1 ← cluster({(wi,vi)}

L
i=1, λ,Kmax)

for k=1 to K̂ do

f̂k ← ŵk ∗ Fsum

return



Chapter 7

An Evaluation of Diffusion MR

Tractography-based

Reconstruction of the

Corticospinal Tract

In this chapter, we evaluate a method for reconstructing the corticospinal tract (CST) using deter-

ministic diffusion MR tractography and a model-based framework for processing parametric maps

obtained from multi-fiber diffusion models. The reconstruction of the CST is a clinically relevant

problem, as an accurate geometric reconstruction can be used in surgical planning to reduce the risk

of unnecessary damage to motor pathways [47]. Diffusion tractography provides a tool for extracting

patient-specific geometric models of fiber bundles; however, several challenges exist for making this

a clinically useful resource for CST reconstruction. First, the anatomy of the CST includes cross-

ings with the superior longitudinal fasciculus and corpus callosum [105]. This poses a challenge for

diffusion models that do not represent complex fiber configurations, such as the single tensor model.

Multi-fiber models provide an alternative that theoretically addresses this issue [175], although these

can be more difficult to fit numerically and more susceptible to noise due to the increased model

complexity. A second challenge is the validation for clinical application, which includes establishing

111
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the accuracy of the reconstruction with respect to anatomy and the practical value to a clinician.

The main contribution is the application of a framework for multi-fiber model-based processing to

the reconstruction of the CST with eXtended Streamline Tractography (XST) [175]. Model-based

approaches may offer computational and theoretical advantages over image processing performed

with the diffusion-weighted signal. A number of model-based approaches exist for diffusion imaging,

including the Riemannian frameworks for tensors [165], orientation distribution functions [73], and

multi-tensor models [205] [207]. In our approach, we apply recent work on model-based processing

of fiber orientation mixtures [34], particularly the ball-and-sticks diffusion model [19].

In the rest of the chapter, we first describe our method, which includes diffusion modeling with

the ball-and-sticks model and a model-based framework for performing smoothing and interpolation

during deterministic streamline tracking. We then conduct experiments testing the quality of CST

reconstruction with our approach, which uses regions of interest obtained from deformable atlas

registration to select fiber bundles. We apply our approach to three clinical brain datasets including

normal bundles and a bundles infiltrated by tumors, showing visualizations of fiber bundle anatomy

along with volumetric and surface representations of other brain anatomy. We conclude with a

discussion of our results and open problems.

7.1 Methods

In the following sections, we review the diffusion models used in our experiments, describe our

tractography algorithm, and present our approach for model-based processing.

7.1.1 Diffusion Models

In our analysis, we apply diffusion models supporting both single and multiple fiber per voxel. For

single fiber analysis, we use the standard diffusion tensor model, which has the following predicted

signal Si of the i-th diffusion-weighted image (DWI):

Si = S0 exp
(

−bi~g
T
i D~gi

)

(7.1)

given gradient encoding direction ~gi, b-value bi, unweighted signal S0, and diffusion tensor D. We
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also use the multi-fiber ball-and-sticks model, which theoretically can resolve more complex fiber

configurations than the single tensor. Under this model, the predicted signal Si of the i-th DWI is

as follows:

Si = S0

N
∑

j=0

fj exp
(

−bi~g
T
i Dj~gi

)

(7.2)

given N fiber compartments, fiber volume fraction 0 ≤ fj ≤ 1, and
∑M

j=0 fk = 1. The compartments

are constrained to include a completely isotropic first component D0 = diag(d, d, d) and completely

anisotropic subsequent components Dj = d~vj~v
T
j with diffusivity d and fiber orientation ~vj .

7.1.2 Tractography

We performed tractography using a generalization of the standard streamline approach [16] to ac-

count for multiple fibers. In the standard streamline approach, a fiber trajectory is considered a

3D space curve whose tangent vector is equated with the fiber orientation of the voxelwise diffusion

models. This can be found by evolving a solution to a differential equation with some initial condi-

tion at a given seed position. Typically, some geometric criteria are also used to stop and exclude

fibers, including angle threshold and minimum and maximum length. When multiple orientations

are present, this approach must be adapted in several ways. First, additional volume fraction ter-

mination criteria are included, from the fi parameters in Eq. 7.2. During tracking, one of the N

possible fiber orientations must also be chosen for the next step. Our approach is similar to eXtended

Streamline Tractography (XST) [175], although we instead use volume fraction for termination and

allow selection of any fiber compartment below a given angle threshold, as opposed to the one with

the smallest angle. We also use a model-based framework, which we describe next.

7.1.3 Model-based processing framework

For the purpose of tractography, it’s important to perform accurate interpolation to sample diffusion

models off the voxel grid and smoothing to reduce the effects of noise and sampling artifacts. For

this purpose, we use a model-based framework for processing multi-fiber models. The first work

in this area examined full multi-tensor models [205], and we perform a similar analysis derived for

the simpler ball-and-sticks model, as follows [34]. For the sake of generality, we then consider a
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model M to be a fiber orientation mixture consisting of N fiber volume-fraction and orientation

pairs M = {(fi, vi)}Ni=1 that lie in each voxel. Next, we aim to construct a least squares estimator

for fiber models [204] that will provide a way to perform both smoothing and interpolation.

Given an input position p and local neighborhood {(pi,Mi)}Ci=1 with Mi = {(fij , vij)}Ni

j=1, the

estimator for M̂ is given by:

M̂(p0) = argmin
M

C
∑

i=1

K

(

d2p(pi, p0)

h2
p

)

K

(

d2m(Mi,M0)

h2
m

)

d2m(Mi,M) + λN (7.3)

given model distance dm, spatial bandwidth hp, data-adaptive bandwidth hm, and kernel function

K(x) = exp(−x). We define the model distance between M and M̂ by

d2m(M, M̂) = min
π

∑

j

fjd
2
f (vj , v̂π(j)) (7.4)

d2f (a, b) = 2(1− (a · b)2) = 2sin2(θ) (7.5)

which is selected across all possible mapping π from fibers in M to M̂ , with respect to the fiber

distance df . This estimator can be used in practice by solving the minimization problem with a

fiber clustering procedure described in Chapter 6.

7.1.4 Bundle Delineation

We used an atlas-based approach [143] to delineate the CST tract with three regions of interest. The

diffusion tensor atlas was previously constructed using a population of 80 normal adult subjects [33].

The following three regions were then defined in each hemisphere of the atlas: the posterior limb

of the internal capsule, cerebral peduncle, and the precentral brain matter. The first two regions

were manually drawn in ITK-SNAP 1 and the precentral region was defined by the population

average combined mask of the white and gray matter labels computed with Freesurfer version 5.1

2. Visualizations of these regions are shown in Fig. 7.1. The patient’s diffusion tensor volume

was then registered to the atlas using deformable tensor-based registration with DTI-TK 3 [255],

and the labels were deformed to the patient image space. Tractography seeding was performed

in all seed regions and only fibers that traversed all other regions were kept. We also performed

1http://www.itksnap.org/
2https://surfer.nmr.mgh.harvard.edu
3http://dti-tk.sourceforge.net
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Posterior Limb of Cerebral Precentral Regions deformed to
Internal Capsule Penduncle Gyrus an example patient

Figure 7.1: Regions of interest used for delineating the CST. Atlas space regions are shown in axial
slices of the posterior section of the internal capsule (first panel) and cerebral peduncle (second
panel), and a surface rendering of the superior surface of the precentral brain matter (third panel).
The regions were deformed to patient space (fourth panel) and used to seed and select fibers in the
bundle.

Figure 7.2: Illustrations of the cortico-spinal tract (left) and arcuate fasciculus (right). (from [75])

manual corrections to exclude outlier streamlines from the bundles, such as those that crossover to

the contralateral side. In one patient, we also delineated the arcuate fasciculus, and this was done

manually. Illustrations of the bundles are shown in Fig. 7.2

7.2 Experiments

In this section, we present results from two datasets comprising four human subjects. These were

part of the MICCAI DTI Challenge 4 which has been running since 2011. The goal of this challenge

is to validate diffusion MR tractography for neurosurgical applications and define standards for its

use in clinical applications [173]. Each year, pre- and post-operative brain tumor imaging datasets

4http://dti-challenge.org
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are distributed to a working group consisting of teams of computer scientists and neuroscientists,

and each team analyzes the datasets to reconstruct the geometry of the cortico-spinal tract and other

bundles. These results are then evaluated by a panel of judges, which includes neurosurgeons and

other domain experts, according to three criteria: False-Negative tracts, False-Positive tracts and

Clinical Relevance. In addition, an annual workshop related to the challenge is held at the Medical

Image Computing and Computer Assisted Intervention (MICCAI) conference, where the working

group meets to present their results and discuss open problems in the area.

7.2.1 Experimental Design

The results presented in this section were included in the 2014 5 and 2015 6 sessions of the challenge.

In the 2014 challenge dataset, we compare several tractography methods: single tensor tractography,

nearest-neighbor interpolated multi-fiber tractography, linear kernel interpolated multi-fiber tractog-

raphy, and adaptive kernel interpolated multi-fiber tractography. In the 2015 challenge dataset, we

present adaptive kernel interpolated results for three patients. For all patients, we show reconstruc-

tions of the cortico-spinal tract, and for the second patient we show reconstructions of the arcuate

fasciculus.

7.2.2 Data acquisition for 2014 Challenge

Imaging data of a single patient was downloaded from XNAT 7 as part of the MICCAI 2014 DTI

Challenge. The diffusion MRI scans were acquired with a spin-echo EPI sequence with the following

parameters: voxel size 2.0 x 2.0 x 2.0 mm, 256 x 256 matrix, 73 slices, b-values 200, 500, 1000

and 3000 s/mm2, 69 diffusion-weighted volumes and 4 non-diffusion weighted volumes. The patient

presented with a metastatic adenocarcinoma infiltrating the corticospinal tract with large edema,

both isolated to the right hemisphere.

7.2.3 Data acquisition for 2015 Challenge

Imaging data of three patients was downloaded from XNAT 8 as part of the MICCAI 2015 DTI

Challenge. Patient 1 presented with meningioma, and imaging data was acquired with a spin-echo

5http://projects.iq.harvard.edu/dtichallenge14
6http://dti-challenge.org
7http://central.xnat.org
8http://central.xnat.org
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EPI sequence with the following parameters: voxel size 2.0 x 2.0 x 2.0 mm, FOV 220mm, 58 slices,

b-value 1000 s/mm2, 30 gradient encoding directions, and one baseline. Patient 2 presented with a

low-grade glioma, and imaging data was acquired with a spin-echo EPI sequence with the following

parameters: voxel size 2.5 x 2.5 x 2.5 mm, FOV 220mm, 55 slices, b-value 1000 s/mm2, 30 gradient

encoding directions, and one baseline. Patient 3 presented with a low-grade glioma, and imaging

data was acquired with a spin-echo EPI sequence with the following parameters: voxel size 2.5 x

2.5 x 2.5 mm, FOV 220mm, 60 slices, b-value 800 s/mm2, 31 gradient encoding directions, and one

baseline. In all cases, the tumor and anatomical references were manually segmented in the baseline

volume.

7.2.4 Image Analysis

For all three cases, preprocessing, voxel model fitting, tractography, and visualization were performed

as follows. A brain mask was extracted with BET in FSL version 5.0 9. Single diffusion tensors were

fit with DTIFIT in FSL. Multi-fiber models were fit using an MCMC procedure with XFIBRES in

FSL with default parameters. Smoothing and interpolation were performed with custom software

using hp = 3.0 and a kernel support window of 5 voxels. Tractography was performed with custom

software with the following parameters: angle threshold 65 degrees, step size 1.5 mm, 20 seeds per

voxel, minimum length 20 mm, maximum length 110 mm, and volume fraction threshold 0.1. Culling

was then performed to reduce the number of streamlines by iteratively removing any curve within an

average of 1 mm from an existing curve. Bundle delineation was performed with custom software,

and visualizations were rendered with custom software by generating streamtubes. Parameters were

chosen by varying them in step-wise fashion.

7.2.5 Results from 2014 Challenge

Visualizations in Fig. 7.3 show the reconstructed bundles from the 2014 dataset. In the left hemi-

sphere, we found the single tensor analysis to be similar to other works [105] and included only the

most superior projections. The ball-and-sticks reconstruction improved the tracking through cross-

ing and fanning fibers also similar to previous works [175]. Linear filtering significantly increased the

number of lateral projections. The filtering also produced smoother fibers that retained a similar

overall shape in the main body of the bundle. The addition of the adaptive term in the filtering

9http://www.fmrib.ox.ac.uk/fsl
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Standard Unfiltered
Single Tensor Ball and Sticks

Linear Filtered Adaptive Filtered
Ball and Sticks Ball and Sticks

Figure 7.3: A comparison of results from the 2014 dataset. Tractography (red) for standard single
diffusion tensor modeling and ball-and-sticks modeling with and without filtering. Shown are results
from standard diffusion tensor (top left), unfiltered ball-and-sticks (top right), linear filtered ball-and-
sticks (bottom left), and adaptive filtered ball-and-sticks (bottom right). The outline of motor cortex
is overlaid in purple. In the right hemisphere, we see the infiltrating tumor (blue) stops tracking
in all models, and the edema (yellow) stops tracking to varying extents. In the left hemisphere, we
see that single tensor modeling does not include the lateral projections. Linear filtering increased
the number of lateral projections. Adaptive filtering further increased the lateral projections and
reduced the number of outlier fibers.
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Figure 7.4: A frontal view of a coronal slice of the first patient in the 2015 dataset. This shows the
CST (left) and volumetric fiber models (right). The tumor shows some amount of deflection of the
most superior portion of the left bundle. Otherwise, much of the bundles could be reconstructed.

Figure 7.5: A frontal view of a coronal slice of the second patient in the 2015 dataset. This shows
the CST (left) and volumetric fiber models (right). The core of the tumor is mostly anterior to the
tract, with some surrounding portions overlapping the bundle. The tracking seemed to continue
through this region, which may be edema. The fiber models show a slice anterior to the CST in
which the core of the tumor causes a drop-out of fiber models.
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Figure 7.6: A lateral view (left) and medial views (right) of the arcuate fasciculus of the second
patient in the 2015 dataset. The top shows the bundle curving below the tumor, but continuing
onto frontal areas. The bottom shows the medial surface of the left and right arcuate bundles
with coloring according to mean diffusivity (both used the same colormap) and an overlaid tumor
wireframe on the left arcuate. This highlights the area inferior to the tumor, which has higher
diffusivity (red) than would be expected from the homologous portion of the right bundle (blue).

Figure 7.7: A frontal view of a coronal slice of the third patient in the 2015 dataset. This shows the
CST (left) and volumetric fiber models (right). In the fiber bundle view, we see the tumor is deeply
embedded in the left bundle. In the fiber view, we see a significant drop-out of fiber models in most
of the tumor. We also see that the CST reconstructions included the superior projections, but no
lateral projections. Since we would expect to see somewhat normal anatomy in the right bundle,
it’s unclear if this is due to the pathology or limitations in the modeling and tracking, as this case
had relatively low b-value of 800 mm/s2.
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added more lateral projections with little other change. The reconstructions in the right hemisphere

were significantly different due to the presence of edema and tumor. Only filtered models allowed

tracking through some of the edema, and no method tracked through the tumor.

7.2.6 Results from 2015 Challenge

Results from the first patient are shown and described in Fig. 7.4. Results from the second patient

are shown and described in Figs. 7.5 and 7.6. Results from the third patient are shown and described

in 7.7. The first two cases showed CST reconstructions similar to previous work [105] [175]. The

third case’s CST included only the most superior projections. The first case showed some deflection

of the left CST around the tumor; the second case showed some tracking through edema and possibly

physical displacement; the third case showed only superior projections with a great deal of tumor

infiltration. The second case included a reconstruction of the arcuate fasciculus with projections

to frontal cortex that passed through crossing fiber regions and curved around the tumor in the

left hemisphere. The mean diffusivity of the left arcuate also showed variation possibly due to

tumor infiltration. We also found that all cases showed reasonable reconstructions of multi-fiber

configurations, despite the low and b-value and small number of gradient encoding directions.

7.3 Conclusion

In this study, we examined reconstructions of the CST in three clinical tumor imaging cases. We

employed a multi-fiber model to resolve complex fiber configurations at the crossing of the CST

with the superior longitudinal fasciculus and corpus callosum. Our model-based approach provides

an efficient mechanism for both smoothing and interpolation during tractography, and our results

suggest that this step aids in tracking the lateral projections to the precentral gyrus. There are a

number of open problems related to this. First, the described framework could also be applied to

other diffusion models that represent multiple fiber orientations, such as those based on orientation

distribution functions. A comparison could also be made to other methods that filter during model

fitting, such as the Kalman filtering approach. In summary, we found the combination of multi-fiber

modeling and model-based processing to be a valuable approach that could be considered for clinical

research applications that aim to understand the structure of the CST in both health and disease.



Chapter 8

Conclusion

This chapter concludes the thesis with a discussion of what we have accomplished thus far, what

research opportunities lie ahead, and reflections on the research process. Unlike previous chapters,

this will take a high level view and attempt to gather together some general insights from the past

few years of work. The first section summarizes the specific contributions of the thesis work, how

they build on prior work in computational diffusion MR imaging, and how they relate to open

problems in the field. The last section reflects on the research process and discusses the role of

interdisciplinary collaboration in computational research.

8.1 Research Contributions

This section discusses the research contributions of the thesis work. This is will provide a high-level

summary of the main contributions of each chapter, as well as a discussion of software artifacts

produced during the thesis work that are not presented elsewhere.

In Chapters 3 and 4, we presented results from work on voxel-based methods for analyzing diffu-

sion tensor imaging datasets consisting of many subjects. First, Chapter 3 developed an automated

supervoxel segmentation algorithm and evaluated how it can be integrated into commonly-used

pipelines for atlas-driven population analysis. Then, Chapter 4 presented a comparative evaluation

of spatial mapping in diffusion tensor imaging, which included the supervoxel segmentation algo-

rithm as one of the tested conditions. This part tested scan-rescan reproducibility and sensitivity to
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age-related changes in white matter. The general finding was that region-based measures give sig-

nificantly higher reproducibility than ones that look at single voxels. Furthermore, when measuring

the effects of aging, methods that span the whole brain perform better. We found skeleton-based

analysis to perform consistently well in representing aging effects; however, we found the addition of

supervoxels improved both standard voxel-based and skeleton-based analyses, while simultaneously

improving reproducibility.

In Chapter 5, we presented results from work on computational methods for analyzing diffu-

sion MR tractography datasets, which offers a complementary approach to voxel-based analysis for

studying brain white matter. The work investigated a framework for analyzing large datasets using

a novel representation of curve data produced through tractography. This was used to improve both

clustering to enable better selection of bundles in individual subjects, as well as automated segmen-

tation of bundles from a population of subjects. The first general finding was that the clustering

algorithm provided results that were as good or better than commonly-used spectral and hierar-

chical clustering approaches, as measured relative to manually selected curves. The second general

finding was that the population-based analysis was reliable across scans and sensitive to aging, with

comparable performance to an approach of manually selecting curves with regions of interest. The

primary result though, is that the representation obtained with the sparse closest point transform

is generally useful in a number of fiber bundle modeling tasks when used in combination with even

simple machine learning algorithms.

In Chapter 6, we presented results from work on multi-fiber modeling, which can potentially

improve the reconstruction of complex white matter features. The work investigated a model-

based framework for image processing with fiber orientation mixtures, which is an abstraction for

representing multiple fiber populations per voxel and their respective fraction volume. We showed

how this can be used for interpolation, smoothing, and fusion of model-valued volumetric imaging

data, which are important tasks for tractography and atlas construction. Our experiments showed

how this can reduce the effects of noise with improvements over previously proposed techniques for

model selection during estimation. We also demonstrated the creations of a 80 subject population

atlas that includes complex fiber bundles not typically found in single tensor atlases. In Chapter

7, we conducted follow up experiments testing this approach for surgical planning. This turned

out to be a useful tool in reconstructing the corticospinal tract in the presence of brain tumors.

In particular, we found improved reconstruction of the lateral projections of the bundle, which are
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commonly missed with reconstruction using single tensor modeling.

All of the work described so far has also included a significant amount of software development,

and while an interesting topic of discussion, they are typically out of the scope of the theoretical

and experimental contributions. We will now briefly describe some of these results, which includes

three main components for data visualization, data analysis, and scientific workflows.

This first component was a 3D rendering application based on Java OpenGL, which was used for

nearly all of the visualizations included in this dissertation. While other similar tools are available,

we found a need for a custom tool for rendering diffusion model glyphs alongside image volumes and

tractography curves, with tight coupling between model parameters and rendering properties of all

of these. For example, when rendering multi-fiber models, it is important to carefully map the fiber

volume fraction and fiber orientation to the geometry and appearance of tube models representing

each compartment, as these visualizations can suffer from severe cluttering of irrelevant fibers with

negligible volume fraction.

The second component was a flexible framework for data analysis based on modules, which

unlike other similar frameworks, was developed in Java. This provided a robust and rich platform

for development, which is to say, there was little work when moving between different operating

systems because of the Java Virtual Machine, and software development was greatly simplified by

using Integrated Development Environments such as Eclipse and IntelliJ IDEA. The modular design

allowed each algorithm to be used in command line scripting, as an interactive component of the

visualization tool, and as a library component for development of other algorithms. The use of Java

Annotations and Introspection allowed this all to be done automatically for each algorithm, which

greatly simplifies the code needed for each implementation.

The third component was a tool for executing scientific workflows, which was used for both

applications to clinical studies and simulation experiments for evaluation purposes. Each workflow

was defined in the syntax of GNU Make and then executed with a custom tool built on top of Make

that retains additional records for data provenance, such as software versions, environment variables,

and workflow execution details. This tool also included automated dispatching to a grid-computing

system, which allows workflows to be run in parallel across multiple subjects or experimental con-

ditions. In some cases, this can reduce the clock time of an experiment from weeks to less than a

day.

Unless otherwise stated, these three components were the major tools used for implementing
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the methods and running the experiments described in the work. The other commonly-used tools

were FSL [93], DTI-TK, 3D Slicer [169], R, and ggplot [241], which were all essential to the work

presented here.

8.2 Open Problems

Through this work, we have made some promising advances in a variety of aspects of computational

diffusion MRI; however, there remain many challenges ahead, which we will now briefly discuss.

A first kind of open problem relates to the evaluation of computational imaging methods. There

have been many methods developed in this area, but there has been relatively less evaluation of

those methods. We have tried to include comparative and quantitative evaluation in each part of

the thesis work, but given the many ways diffusion MRI can be used, there is much more to be

done. Much of the recent evaluation work in the field has included challenges, which have looked

at phantoms, ex vivo, and in vivo datasets. Phantom datasets can be very useful for conducting

reproducible evaluations of methods; however, they are very limited in gauging practical usefulness

[51]. Ex vivo datasets are powerful as they are more realistic and well understood; however, they

can also suffer from changes due from tissue degeneration or fixation. In vivo datasets are valuable

for gauging practical benefit of methods, but they lack a verifiable ground truth. Perhaps the most

powerful way to remedy this is to first acquire in vivo data and then compare it to ex vivo imaging

data of the same sample.

Looking ahead, we can hope that these kind of evaluations are greatly expanded in variety, e.g.

by using a large suite of test cases is available. This can help to avoid a type of “overfitting” that

can occur by repeatedly testing algorithms with the same dataset. Without such a large suite of

test cases, there is potential to design algorithms that are too particularly tuned a single dataset

and fail unexpectedly when used elsewhere. It is also very important to understand the complex

nature of computational pipelines. Many evaluation studies look at specific pieces, e.g. imaging

protocol, registration algorithm, or particular application. However, in practice, the outcome of a

study is a complex combination of specific choices at each point in the computational pipeline, and

the net effect of the pipeline will typically depend on the specific combination. While it is valuable

to evaluate specific steps in the pipeline, the results are also likely to be conditional on the choices

made elsewhere in the pipeline. For this reason, there is much work ahead to expand the design
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methodological evaluation to look more broadly at the net effect of computational pipelines.

A second kind of open problem relates to the scale of anatomy characterized by our imaging

tools. Diffusion MRI gives a very coarse representation of white matter, with a spatial resolution of

a few millimeters in each dimension. Despite the appearance of some visualizations, this is a long

way from characterizing single axons. Instead, the diffusion MR signal reflects aggregate properties

of many axons with a complex pattern of myelination, caliber, density, and orientation coherence.

There is much interesting work remaining ahead to characterize how the great variety in axons is

reflected in the diffusion MR signal, and some of the most exciting involves looking at the fine details

with microscopy and relating these to MR imaging data of the same specimen. In particular, one

could imagine looking at anatomy by zooming in with different imaging techniques. This process

could start with whole brain dMRI scans with a typical spatial resolution of 1mm cubic voxels, then

focus on a dMRI slice at microscopic resolution with 10µm in-plane resolution, finally selecting a

portion of single voxel from that plane to analyze microscopically. This could be done with electron

microscopy or more complex microscopy systems, such as CLARITY [214].

Another open problem related to scale is variation across time and individuals. The high level goal

here is characterize anatomical variation across large population or across timepoints to understand

longitudinal changes with development, aging, and disease progression. One can imagine tools that

allow us to zoom out to better understand the large scale patterns across this domain, and the major

limitation in this process is solving this computationally, e.g. through data acquisition, management,

and interpretation. There are already efforts to acquire large amounts of imaging data; however,

data management and interpretation are still open problems. This will likely require advancements

in databases, machine learning, statistics, and visualization to make sense of these increasingly

complex datasets.

8.3 Research Process

In the previous chapters, we have aimed to present a polished and coherent record of work done to

advance computational diffusion MR imaging, but at times, the actual route taken in research is

more rough and circuitous than the presented in the chapters and papers summarizing the work.

This section aims to convey some experiences and lessons that would not have a home elsewhere.

The basic lesson learned is that interdisciplinary research fundamentally requires its development
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and evaluation stages to be driven by both the needs of practical applications and by desirable

theoretical aspects. This is not a new idea, however, and a pioneer in Computer Scientist, Fred

Brooks, wrote about this in The Computer Scientist as Toolsmith: Studies in Interactive Computer

Graphics [30]: “Hitching our research to someone else’s driving problem, and solving those problems

on the owner’s terms, leads us to a richer computer science research”.

While this is likely to be true in all interdisciplinary research, MR imaging research is a prime

example. Many disciplines that must come together, and the modern tools of MRI would not exist

without the people drawn from physics, engineering, medicine, biology, and computer science. While

it can be difficult to bridge the gap in jargon, goals, and culture, these differences should not be

discounted as a hurdle to be overcome, but instead embraced as an opportunity for amplifying

the results in any of these respective areas. Indeed, this researcher found that the most progress

was made by exchanging ideas, which can help to appropriately broaden some parts of a research

plan and narrow others. The alternative is to develop computational tools that are theoretically

interesting and may have potential for impact, but risk becoming hammers in search of a nail.

This process can be imagined as a collaborative exchange between toolsmiths and brain scien-

tists and clinicians, which is illustrated in Fig. 8.1, and consists of two major parts. First, there is

methodological development, which includes much of the computer science in imaging research, such

as the design and analysis of computational and mathematical machinery, as well as implementation

in software systems. Second, there is methodological evaluation, which includes experimental tech-

niques for judging how well these tools solve problems in real applications and how they meet their

own design criteria. These form the basis of how research collaboration happens, where the compu-

tational side of the collaboration develops tools targeted at specific applications, and the evaluation

is conducted with experimental data from the applications, both synthetic and real. These steps

can be iterated throughout the collaboration, with the hope that the work periodically converges to

something that satisfies both theoretical goals of the toolsmiths and the practical goals of the users.

An interesting possibility is that each of these components interacts with one other to provide

a greater result than any part conducted in isolation. It may be tempting to say, “computational

research is sufficiently abstract that it can be conducted independently of any specific application”.

This may be true in many situations; however, much of the current research in computer science now

reaches applications with sufficient complexity that no single set of abstractions is best. Even worse,

we may be biased towards one method or another and ignore a better solution, a tendency which
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Brain Science and !
Clinical Applications !

Computational Tools: !
Modeling, Processing, Visualization !

Interdisciplinary Collaboration !

Development!

Evaluation !

Figure 8.1: An illustration of interdisciplinary research in computational brain mapping. This is
depicted as an process of collaboration between toolsmiths and domain experts in the brain sciences
and clinic. This collaboration is broken down into development and evaluation, which are repeated
iteratively to hopefully converge on computational tools that satisfy both theoretical goals of the
toolsmiths and the practical goals of the users.
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is known as the confirmation bias in psychology. Abraham Kaplan also described this challenge as

the “law of the instrument” in his book The Conduct of Inquiry [101]:

In addition to the social pressures from the scientific community there is also at work

a very human trait of individual scientist. I call it the law of the instrument, and it may

be formulated as follows: Give a small boy a hammer, and he will find that everything he

encounters needs pounding. It comes as no particular surprise to discover that a scientist

formulates problems in a way which requires for their solution just those techniques in

which he himself is especially skilled.

Furthermore, it may be possible that the toolsmith is not even the best judge of a tool’s value.

This idea can be traced back to the earliest days of science in Aristotle’s Politics. In this work, he

described the wisdom of the crowd in governing compared to even a highly trained specialist, as no

one person can imagine the possible needs of a complex society. Computational tool development is

perhaps similar, where the users of the tool can identify strengths and weaknesses of a tool beyond

the imagination of a single toolsmith. Aristotle explored this possibility with an apt comparison to

construction and cooking, which applies equally well to the computational toolsmith:

...there are some arts whose products are not judged of solely, or best, by the artists

themselves, namely those arts whose products are recognized even by those who do not

possess the art; for example, the knowledge of the house is not limited to the builder

only; the user, or, in other words, the master, of the house will be even a better judge

than the builder, just as the pilot will judge better of a rudder than the carpenter, and

the guest will judge better of a feast than the cook.

Given this, it seems wise to consider a variety of approaches to solving a problem, and we can

benefit from research practices that explicitly encourage practical evaluation. The collaborative

research process is a way accomplish this goal and break free of the biases and limitations of any

particular tool by exploring a variety of possibilities and judging which are useful from perspec-

tives besides our own. Using this thesis work as a concrete example, we found a variety of useful

representations for image-based modeling of brain anatomy, as white matter can be understood in

terms of voxels, bundles, networks, depending on the clinical task or scientific question at hand.

This is likely the case for any work with applications to biology, where there is a large amount of
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“essential” complexity. An obvious or intuitive abstraction of a problem may not exist or it may

ignore too much of the reality of the problem, so we must empirically gauge the usefulness of our

models through collaborations and experimental evaluation. Returning to thoughts of Fred Brooks

on computational toolsmithing, the idea of judging tools this way was related as follows [30]:

If we perceive our role [as toolsmiths], we then see more clearly the proper criterion

for success: a toolmaker succeeds as, and only as, the users of this tool succeed. However

shiny the blade; however jeweled the hilt, however perfect the heft, a sword is tested only

by cutting. That swordsmith is successful whose clients die of old age.

To take this thought to an extreme, a naive toolsmith could imagine that a hammer would suffice

if they had no experience with anyone who does the cutting. Similarly, a computational toolsmith

could fall victim to a bias towards the tools they know. With that, let us hope that we ultimately

find the tools and knowledge they provide, but with such a complex task as understanding the brain,

this dissertation represents only a few steps on a much longer path towards that goal!
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istic and probabilistic tractography based on complex fibre orientation distributions. IEEE

Transactions on Medical Imaging, 28(2):269–286, 2009.

[58] Inderjit S. Dhillon, Edward M. Marcotte, and Usman Roshan. Diametrical clustering for

identifying anti-correlated gene clusters. Bioinformatics, 19(13):1612–1619, September 2003.

[59] Lee R Dice. Measures of the amount of ecologic association between species. Ecology,

26(3):297–302, 1945.
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[159] Śılvia Delgado Olabarriaga and Arnold WM Smeulders. Interaction in the segmentation of

medical images: A survey. Medical image analysis, 5(2):127–142, 2001.

[160] Lauren J ODonnell and Thomas Schultz. Statistical and machine learning methods for neu-

roimaging: examples, challenges, and extensions to diffusion imaging data. In Visualization

and Processing of Higher Order Descriptors for Multi-Valued Data, pages 299–319. Springer,

2015.

[161] Elisabetta Pagani, Jochen G Hirsch, Petra JW Pouwels, Mark A Horsfield, Elisabetta Perego,

Achim Gass, Stefan D Roosendaal, Frederik Barkhof, Federica Agosta, Marco Rovaris, et al.

Intercenter differences in diffusion tensor MRI acquisition. Journal of Magnetic Resonance

Imaging, 31(6):1458–1468, 2010.

[162] Nico Dario Papinutto, Francesca Maule, and Jorge Jovicich. Reproducibility and biases in

high field brain diffusion MRI: An evaluation of acquisition and analysis variables. Magnetic

Resonance Imaging, 31(6):827–839, 2013.



147

[163] Sylvain Paris, Hector M Briceño, and François X Sillion. Capture of hair geometry from

multiple images. ACM Transactions on Graphics (TOG), 23(3):712–719, 2004.

[164] Hae-Jeong Park, Carl-Fredrik Westin, Marek Kubicki, Stephan E Maier, Margaret

Niznikiewicz, Aaron Baer, Melissa Frumin, Ron Kikinis, Ferenc A Jolesz, Robert W Mc-

Carley, et al. White matter hemisphere asymmetries in healthy subjects and in schizophrenia:

a diffusion tensor MRI study. NeuroImage, 23(1):213–223, 2004.

[165] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework for tensor

computing. International Journal of Computer Vision, 66(1):41–66, 2006.
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