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The performance of multithreaded programs is often difficult to understand and predict. Multiple

threads use various locking operations, resulting in the parallel execution of some computations and

the sequential execution of others. Threads use hardware resources such as a CPU or a hard drive

simultaneously, which may lead to their saturation. The result is a complex non-linear dependency

between the configuration of a multithreaded program and its performance.

To better understand this dependency a performance prediction model is used. Such a model pre-

dicts the performance of a system for different configurations. Configurations reflect variations in

the workload, program options such as the number of threads, and characteristics of the hardware.

Performance models are complex and require a solid understanding of the pogram’s behavior. As a

result, building models of large applications manually is extremely time-consuming and error-prone.

In this work we present an approach for building performance models of multithreaded programs

automatically. We employ hierarchical discrete-event models. The higher-level model simulates the

data flow through the program using the queueing network. The mid-level model simulates pro-

gram’s threads using probabilistic call graphs. The low-level model simulates program-wide locks

and underlying hardware.

We extract information necessary for constructing the model using a combination of static and

dynamic analyses of the program under study. This includes information about the structure of

the program, the semantics of interaction between the program’s threads, and resource demands of

individual program’s components. The discovered information is translated into the discrete-event

model of the program.

In our experiments we successfully generated performance models of a suite of large multithreaded

programs. The resulting models predicted performance of these programs across a range of config-

urations with a reasonable degree of accuracy.
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Chapter 1

Introduction

This thesis presents our approach towards building performance models of large multithreaded pro-

grams. Our models accurately predict performance of the multithreaded system across a range of

configurations, which include variations in the intensity of the workload, configuration options of the

program, and some characteristics of the hardware. Our models are built automatically by analyzing

the code of the multithreaded program and its behavior in a single configuration. Such abilities of

performance models are important for many applications, including autonomous deployment of soft-

ware systems, answering “what-if” questions about their performance, and detecting performance

anomalies.

The following thesis statement describes the ultimate objective of the presented dissertation:

An accurate and useful performance prediction model of a complex multithreaded program

can be built automatically using data collected from executing that program in a single repre-

sentative configuration.

1.1 Motivation

Multithreaded programs utilize resources of modern hardware more efficiently. However, behavior of

multithreaded programs is significantly more complex than behavior of single-threaded applications.

Multiple threads use shared hardware resources, such as the CPU, disks, and the network simul-

taneously. The behavior and performance characteristics of such system can differ significantly from

the behavior of a single-threaded application. Moreover, threads rely on synchronization to ensure

semantic correctness of computations (e.g. the thread may start executing only after a barrier is

lifted) and to protect shared data. This results in the parallel execution of some some parts of the

program’s code and the sequential execution of others.

As a result, multithreaded programs exhibit complex non-linear dependency between their con-

figuration and performance. Configurations can reflect the following characteristics of the program

1
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and its environment:

� Parameters of the workload, such as the number of HTTP requests the web server receives in

a second;

� The options of the program itself, such as the number of working threads or the size of the

internal cache for input-output (I/O) operations;

� Parameters of the Operating System (OS), such as the maximum number of file descriptors

available to the program;

� Characteristics of the hardware, such as the number of available CPUs, the amount of random

access memory, or the seek time of the hard drive.

Even an expert may be unable to understand the dependency between the configuration and

performance of a multithreaded program on a quantitative level. For an example, consider a scientific

computing application, where some computations are parallelized across multiple threads, while

remaining computations are performed sequentially. A system administrator is trying to achieve a

twofold improvement in performance of this application by purchasing a CPU with a larger number

of cores. To achieve this goal he must know the exact number of CPU cores necessary to achieve a

desired performance.

In this example the system administrator is trying to answer a “what-if” question: what will

be the performance of the program for a given number of CPU cores? Answering this question can

be difficult. As the program performs a mix of sequential and parallel computations, increasing the

number of CPU cores will not result in the proportional increase in performance.

A simple approach to understand dependencies between the configuration and the performance

of the program is to run that program in different configurations and measure the performance in

each of these configurations. However, such experimentation may require specialized hardware and

may not be feasible in practice. Moreover, as the number of different parameters increases, the

number of possible configurations grows exponentially. Considering the additional time required for

setting up the system for every such experiment, running the system in so many configurations may

take too much time and effort to become practical.

A better way to understand dependencies between the configuration and the performance is

building a performance prediction model. Such model will predict dependency between configuration

of the system and its performance without reverting to the costly and time-consuming runs of the

actual program.

Performance models are essential for a variety of applications. First, performance prediction

model are used for answering “what-if” questions [70] similar to one described above. One variation

of “what-if” question is “what will be the performance of the system for a given combination of

configuration parameters?” A reverse approach is also true. In particular, answering questions like

“what combination of configuration parameters will produce the desired performance?” is essential

for efficient deployment of an application.
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Second, performance models are employed as a central component for autonomic data centers

[27]. Here prediction results are used to dynamically configure the system to achieve high perfor-

mance. An example of such usage is finding a good configuration for deploying the Tomcat web

server. The model will predict response time, throughput and resource utilization by the Tomcat

for each combination of configuration parameters, including the number of available CPU cores, the

number of Tomcat working threads, and the rate of incoming connections. The configuration that

utilizes hardware resources efficiently and also satisfies the service agreement should be chosen for

deployment.

A third application of performance models is scheduling the execution of multiple tasks on a

cluster [74]. Performance prediction models are used to predict the running time of each task de-

pending on the amount of computations performed, on the configuration options of the program,

and on the parameters of the hardware. By leveraging on these predictions the optimization algo-

rithm schedules execution of tasks on different nodes of a cluster. Usually the optimization criteria

involves minimizing the overall running time of the tasks while sustaining a desired utilization of

hardware resources [58].

Finally, the performance prediction models are used to detect performance anomalies in the

running software system [94]. The model is deployed alongside the actual system. The performance

predicted by the model is compared to the performance measures obtained from the system as it

runs. Significant and systematic deviations of measured performance from the predicted performance

are considered as manifestations of the system’s abnormal behavior. The model can also facilitate

localizing the source of abnormal behavior, as long as it is capable of predicting performance of

individual components of the system.

Building accurate and useful performance models of modern industrial programs is a challenging

problem. These programs are large and complex, and are updated regularly. Building performance

models of multithreaded programs is even more difficult. Such performance models must correctly

represent the complex locking behavior of the application and concurrent usage of various compu-

tational resources such as the CPU and the I/O subsystem.

The section 2 of this thesis provides a detailed overview of existing approaches to the perfor-

mance modeling. Two techniques traditionally used for building performance models of complex

computer programs are statistical modeling and simulation. However, existing applications of these

techniques to building performance models of complex multithreaded programs have demonstrated

severe limitations.

Statistical models approximate the dependency between the configuration and the performance

using a machine learning method, such as a CART tree, a neural network, or a non-linear regression.

Statistical models do not need a good knowledge of the system’s structure and semantics. However,

training these models requires measuring the performance of the system in many different configu-

rations. Moreover, any change to the system may require recollecting this information. As a result,

unless the training data is already available or can be easily obtained, statistical models may not be

a practical approach to performance prediction.
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A viable alternative to statistical method are simulation models. The structure and/or behavior

of the such model follows the structure and behavior of the system.

Methodologies traditionally used to build simulation models are queuing networks and Petri nets.

Their extensions developed specifically for performance modeling include Layered Queuing Networks

(LQN), colored Petri nets, Palladio Component Models (PCM), and others. Although in certain

scenarios these models can be solved analytically, in a general case the prediction is obtained using

simulation.

Building a simulation model normally does not require running the system in many configura-

tions, but requires deep knowledge of the system’s structure and functionality. One approach to

obtain the necessary information is manual analysis of the program. However, building performance

models manually by using information obtained from developers or by analyzing the code of the

program is costly and error-prone. Moreover, the model needs to be updated every time when the

program changes. Thus in order to be practical simulation models must be built automatically.

A significant effort has been devoted to automatic building of simulation performance models.

Most of work in this area was dedicated to building models of distributed and message-passing

systems. Constructing models of such systems is relatively straightforward. Individual computers

are naturally considered as components of the model, and network links become the connections

between these components. Message passing systems either use a specific API to communicate

between hosts (e.g. MPI) or rely on a specific network protocol for this purpose. As a result,

interaction between different computers in a message-passing system can be tracked relatively easily.

Unfortunately, methodologies used to automatically build performance models of message pass-

ing systems do not capture semantics of complex thread interaction and may not accurately simulate

resource contention in multithreaded systems. As a result, these methodologies demonstrate inferior

accuracy when used to build models of complex multithreaded programs. For example, the frame-

work described in [104] predicts performance of single-threaded MPI applications with relative error

ε ∈ (0.02 . . . 0.3). However, its performance decreases to ε = 0.5 if the program performs complex

synchronization operations.

Our work attempts to overcome these limitations. We develop an innovative technique that

allows to automatically build the performance model of the multithreaded program

by running it in a single representative configuration. The resulting model can predict

performance of the program running in various configurations under the established workload. Our

models also predicts utilization of computational resources, which facilitates performance analysis

of the system and bottleneck detection.

1.2 Goals

The goal of our work is to develop an approach and a framework for automatic building performance

prediction models of real-world multithreaded programs. This includes programs such as servers,

multimedia programs such as encoders and 3D renderers, and scientific computing applications. We
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concentrate on the following aspects of performance modeling.

Automatic generation of performance models.

We minimize the need for human participation in building the model. All our program analysis

and model generation are done automatically. At the same time, we allow the analyst to inspect

the generated model, specify the range of configurations in which performance should be predicted,

and performance metrics that should be collected.

Accurate performance prediction for a range of configurations.

Our goal is to accurately predict program-wide performance metrics such as the response time,

throughput, or the running time of the program; as well as utilization of hardware resources, such

as CPU and hard drive. Prediction accuracy is the main quality we seek in our models. For each

given configuration the difference between the performance predicted by the model and the actual

performance of the system should be minimal.

Generating models by running a program in a single configuration.

Building the model should not require running the program many times in many configura-

tions. Such experimentation is time-consuming and costly, and may not be feasible in a production

environment. Instead, we want to generate the model by running a program in a small number of

configurations; ideally – in a single representative configuration. In this configuration the behavior of

the program and its resource requirements should be very similar to a wider range of configurations.

Predicting performance of programs on the commodity hardware

We build models of programs running on commodity hardware. Potentially our approach can be

extended to predicting performance of programs running on cluster and grid systems. However, this

would require developing an additional set of hardware models and potentially different approach

for program analysis, which is beyond the scope of this work.

Predicting aggregate values of the performance metrics

We do not predict individual measurements of the program’s performance metrics. Instead, we

predict values of these performance metrics aggregated through many measurements. For example,

we do not predict the amount of time required for the web server to process a particular HTTP

request. Instead, we predict the mean values of response time and throughput for that web server

measured by serving a number of HTTP requests.

1.3 Proposed Approach

Our approach consists of two parts: models specially designed for performance modeling of multi-

threaded programs and the methodology for automated building of these models. A combination of

these two aspects make our approach unique.

We have developed a simulation-based approach to predict performance of multithreaded pro-

grams. The choice of simulation over the statistical modeling was dictated by our desire to build the

model from a single representative configuration of the program. Components of our model directly

correspond to the components of the multithreaded system, which include software, hardware, and
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elements of the workload.

We identify and model different sources of delay in a multithreaded program. Similar to existing

performance models we simulate delays caused by computations, I/O operations, and queuing. But

in contrast to previous methods we also model delays caused by resource contention.

Resource contention is a conflict between the program’s threads over access to a shared resource,

such as CPU, memory, disk, or a synchronization construct [1]. Resource contention is a strong

factor affecting performance of the multithreaded program. For example, if the number of threads

that perform CPU-intense computations exceeds the number of physical CPUs, the time required for

each thread to finish computations will be higher than if that thread was running alone. Similarly,

the average time the thread must wait to acquire a lock depends on the total number of threads

competing for that lock. As the number of working threads increases, the amount of time to

finish certain computations will remain the same, while timing of another operations will increase

because of resource contention. As a result, resource contention becomes one of the primary factors

contributing to the non-linear dependency between the configuration and performance of the program.

Accurate prediction of software performance requires modeling different factors that cause delays

in the program, including queuing and resource contention. To accurately simulate these factors we

developed a hierarchical model consisting of three tiers (see Section 3). At the high level we model

the system using a queuing model. Requests in the queuing system correspond to tasks - discrete

units of work performed by the program’s threads. Queues correspond to the buffers and queues

in the program and to some OS queues, such as the network connection queue. Service nodes

correspond to the program’s threads; they simulate delays introduced by threads as they process

tasks. The exact amount of time required by the thread to process the task is simulated by the

mid-tier model.

The mid-tier model represents threads as probabilistic call graphs. Nodes of such graph corre-

spond to the pieces of the thread’s code - code fragments. Edges represent possible transitions of

control flow between code fragments. Code fragments (CFs) simulate different operations performed

by the program: CPU-bound computations, disk I/O operations, and synchronization. Execution

of each CF results in some delay τ . The amount of delay τ depend on the demand for a particular

resource accessed by the CF, and on contention of that resource. The exact delay τ is computed by

the low-level model.

The low-level model simulates contention of shared resources. It includes models of locks present

in the program, models of the CPU and the thread scheduler, and the model of the disk I/O

subsystem.

The hierarchy of models allows to accurately simulate different factors affecting the program’s

performance. The high-level model simulates delays associated with storing the tasks in the queues of

the program. The mid-level model simulates delays that occur when threads process individual tasks.

The low-level model simulates delays caused by contention of locks and computational resources.

To implement models of the multithreaded programs we have developed a PERSIK (PERfor-

mance SImulation Kit) framework (see Section 4). PERSIK can accurately simulate performance
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of applications written using different languages and frameworks for multithreaded programming.

However, building PERSIK models requires extensive information about the program: threads and

thread groups present in the program; locks and queues; semantics of synchronization operations;

code fragments, their types and semantics. Obtaining this information manually proved to be overly

time-consuming and error prone even for small applications. Manually building models of large

applications is not feasible at all.

To make our models practical we developed an methodology for automatic building of perfor-

mance models (see Section 5). Our methodology involves a combination of static and dynamic

analyses to obtain all the necessary information about the program under study. We implemented

our methodology into a framework for automatic modeling of multithreaded Java programs.

Our analysis consists of four stages. First, our framework executes the program in a single

representative configuration and collects samples of its call stack. These samples are used to identify

logical groupings of threads (thread pools) in the program, to discover libraries in the program, and

to obtain a set of frequently executed functions and methods that become starting points of the

upcoming static analysis.

Second, the static analysis of the program is performed. The framework scans the code of the

program. It discovers I/O and synchronization operations in the program, which become code

fragments of our thread model. It also discovers initializers of the locks and queues. These are not

explicitly represented in the model, but are used during the dynamic analysis of the program.

Third, the dynamic analysis of the program is performed. The framework inserts probes at

the boundaries of the statements that initialize program’s locks, perform I/O and synchronization

operations. Then the framework executes the program in the same configuration as during the initial

stack sampling run. The trace generated by the instrumented program is used to discover the rest

of information necessary for building the model. This includes CPU computations performed by the

program, the structure of call graph for threads, as well as demands for computational resources by

the code fragments. In addition, the framework discovers characteristics of the program’s locks and

queues and semantics of their interaction with the program’s threads.

Finally, our framework translates information obtained during the previous steps into the PER-

SIK model of the multithreaded program. Particular attention is devoted to generating a simple

and compact model. This is necessary to ensure that the resulting model is easy to understand and

has high performance.

1.4 Challenges in Program Analysis and Performance Mod-

eling

Considering the high complexity of multithreaded programs and variety of different frameworks used

to implement threading and synchronization, constructing performance models remains a challenging

problem. The primary challenges are:

Discovering the semantics of thread interaction. Building the performance model requires
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knowledge of the queues and buffers in the program and their interaction with the program’s threads,

such as which thread reads or writes to a particular queue. It also requires knowledge of locks present

in the program and their types, namely, if this particular lock is a semaphore, a mutex, or a barrier.

This also includes knowledge of interaction between locks and the program’s threads, namely, which

thread accesses a particular lock.

However, there are numerous ways to implement locks and queues in the program. Complex

locks like semaphores or barriers may be implemented using a combination of a low-level syn-

chronization constructs, such as Java monitors and synchronized regions. Alternatively, the pro-

gram may use a standard library that provides implementations of such high-level locks, such as

java.util.concurrent in Java or System.Threading in C#.

Similarly, queues and buffers used to exchange data between the program’s threads can be

implemented in a variety of ways. These may be regular queues or arrays (potentially, guarded by

locks), or blocking queues implemented using the low-level constructs, or specialized implementations

of queues for thread interaction. Finally, queues can be encapsulated in a class that implements even

a higher-level threading patterns, such as an executor or a thread pool.

Considering a variety of approaches for implementing locks and queues in the program, auto-

matically discovering semantics of thread interaction requires complex program analysis.

Accurate modeling of locks and hardware resources. Performance of a multithreaded

program is determined by contention of shared resources such as the CPU, disks, and locks.

To accurately simulate resource contention the model must simulate locks, hardware and corre-

sponding OS components, such as the thread and I/O schedulers. However, the behavior of modern

operating systems and hardware can be increasingly complex. For example, after completing a disk

I/O operation the modern I/O scheduler may wait for another I/O operation issued by the same

thread. Such implementation improves both throughput and response time of the disk I/O subsys-

tem in case of multiple sequential disk accesses, but results in more complex behavior of the thread

scheduler. Similarly, the modern thread scheduler may bind a thread to a particular CPU in a hope

of improving a cache hit rate, and thus improve overall performance of the system.

Considering such complex behavior of the OS and hardware, building accurate and compact

models of OS, hardware and locks remains a challenging problem.

Understanding the structure of the program. Accurate modeling of resource contention

requires knowledge of the internal structure of the program’s threads. This includes information on

operations carried out by the threads, be they CPU computations, I/O activities, or locking; and

the sequence in which these operations are performed.

Different hardware allows different degree of parallelism. Modern CPUs have multiple cores and

can run simultaneously multiple threads without causing resource contention. At the same time,

the hard drive usually carries out a single I/O operation at a time. Thus the degree of contention

experienced by the program’s threads strongly depends on type of hardware resources they consume

and thus on the types of operations they perform. As a result, knowledge of which operations are

performed by the program’s threads (CPU computations, I/O activities, or locking) is essential to
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model resource contention accurately.

The sequence of operations is also important, especially for programs that are engaged in syn-

chronization. For example, consider a group of threads that acquire a mutex and also perform the

CPU-bound computations. If the mutex is released before the computations begin, the performance

of the program will be determined by the amount of CPU contention introduced by the computa-

tions. However, if the mutex is released only after the computations are complete, the performance

will be determined by the contention of the mutex. As a result, knowledge of the sequence in which

thread performs these operations is essential for the accurate performance modeling. This knowl-

edge becomes even more important for threads that use different types of hardware resources and

are engaged in complex synchronization operations.

Detecting different operations performed by the program, determining their types, and under-

standing their sequence of execution requires sophisticated static and dynamic analysis of the pro-

gram.

Discovering parameters of the program’s components. Performance of the program

depends on parameters of its components, such as locks and queues, and on the resource demands

of its threads.

For example, the amount of time the thread has to wait to for a semaphore depends on a number

of permits available for that semaphore. Similarly, the amount of time the program spends on

the disk I/O depends on the amount of data it has to transfer. And the amount of time required

to perform computations by the method depends on the number of operations performed by that

thread.

Discovering program’s parameters require further analysis of the program. Retrieving parameters

of locks and queues may require additional semantical analysis of these constructs. Obtaining

demands for computational and I/O resources may require sophisticated program instrumentation.

Furthermore, certain information, such as the amount of data transferred from the hard drive might

be reliably obtained only from the OS kernel.

1.4.1 Addressing Challenges

We address the challenges described above by developing a sophisticated methodology for program

analysis.

Understanding semantics of thread interaction is a very hard problem. A general-purpose solution

to this problem would require a very sophisticated and potentially inaccurate program analysis.

However, we discovered that such analysis can be greatly simplified if the program relies on standard

implementation of locks and queues. By leveraging on this knowledge it is possible to accurately

detect locks and queues in the program, determine their types, and detect operations on these locks

and queues performed by the program’s threads.

To accurately simulate resource contention we developed elaborate models of the system’s shared

resources. This includes models of locks present in the program, models of elements of the operating

system, such as the thread scheduler, the I/O scheduler and the page cache, and models of hardware,
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such as the CPU and the hard drive. Our models are relatively simple and do not require information

specific to the particular execution of the program, such as the numbers of hard drive sectors being

accessed. Nevertheless, they achieve prediction accuracy comparable to other studies.

We identify computations performed by the program’s threads using a combination of static and

dynamic analyses. Static analysis identifies synchronization, I/O operations, and accesses to the

shared queues by the program. The rest of the code is considered as CPU-bound computations

and is detected during the dynamic analysis. Dynamic analysis also determines sequence of these

operations and represents them as a probabilistic call graph.

We developed different approaches for retrieving parameters of different computations in the

program. Parameters of the synchronization and queuing operations are discovered by instrumenting

calls to corresponding locks and queues. Resource demands for CPU computations are discovered

from timestamps in the program trace. Resource demands for I/O operations are obtained by

collecting kernel-mode trace of low-level I/O requests and associating them with user-mode I/O

operations in the program using signal processing technique.

1.5 Contributions

In this work we have developed a methodology for building accurate performance models of mul-

tithreaded programs. Our models can be built automatically by running the program in a single

representative configuration and can predict performance across a range of configurations. We sum-

marize our contributions below:

� A three-tier discrete-event model for performance prediction. We have introduced a

model specially designed for predicting performance of multithreaded programs. Our model

simulates performance the system at multiple levels. At the high level it simulates flow of

data through the threads and queues of the program. At the middle level the model simulates

delays that occur in the program’s threads. At the low level it simulates contention of locks

and hardware resources. Such architecture allows accurate simulation of all the factors that

can influence performance of a multithreaded program. The detailed description of our models

is presented in the Section 3 of this thesis.

� A framework for simulating performance of multithreaded programs. We developed

a framework for constructing performance models of multithreaded programs. Our frame-

work is implemented as a collection of components that can be assembled into the model

of multithreaded system. This includes components that represent queuing, synchronization

operations, computations, and I/O activities in the program; and components that simulate

behavior of operating system and underlying hardware. The framework also defines protocols

for implementing interaction between these components. The framework is described in the

Section 4.

� A methodology for automatic construction of performance models. We propose
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a combination of a static and dynamic analyses to understand semantics of multithreaded

programs that use standard patterns for threading and synchronization. Our analyses identify

thread and thread groups in the program; locks, queues, and their parameters; semantics of

interaction between the program’s threads; computation performed by the program’s threads,

their sequence of execution, and demand for hardware resources. Results of the analysis are

automatically translated into performance prediction models of multithreaded programs. our

methodology for automated model construction is presented in the Section 5.

� Verification of our approach by building models of various multithreaded pro-

grams. We implemented our methodology as a tool for automatic building performance mod-

els of Java programs. We validated our approach by building models of various open source

programs, including web servers, multimedia programs and scientific applications. Our models

successfully predicted performance of these programs and utilization of hardware resources.

The relative error of our models is (0.062 ... 0.134) for predicting performance of CPU-bound

programs and (0.027 ... 0.269) for I/O-bound programs, which is comparable to the accu-

racy reported by other models [44],[64],[103],[73]. A detailed description of our experiments is

presented in the Section 6.
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Related work

In this section we review the existing body of work on performance modeling and on automatic

program analysis. First we present three basic paradigms for predicting performance of computer

systems: analytical, statistical, and simulation models. Next, we review the existing approaches

toward automatic building of performance models. Since automatic building of performance models

requires an elaborate analysis of the program, we also describe the state of the art in the areas of

analysis and understanding of computer programs.

2.1 Performance models of computer programs

At the high level the performance of the system can be represented as a function y = f(x), where

x are metrics describing the configuration and workload of the system, and y is a measure of the

system’s performance. Existing approaches to performance modeling can be divided into three

classes based on their representation of the dependency y = f(x): analytical models, statistical

models, and simulation.

2.1.1 Analytical models

Analytical models are, probrably, the historically first class of models used for performance pre-

diction. These models explicitly represent the dependency y = f(x) as an equation or a set of

equations.

Analytical models were used by Narayanan, Thereska and Ailamaki to predict performance of

the DBMS [70]. Authors instrument the program and collect data on resource requirements from

the resulting trace. Analytical model use this data to predict dependency between the size of the

DBMS cache and performance of the system. The model predicts throughput with the relative error

ε ≤ 0.1 and response time with ε ∈ (0.33, 0.68).

Herodotou and Babu developed a set of analytical performance models to predict the running

time of MapReduce tasks [52]. Authors reconstruct the profile of the task using dynamic analysis

12
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and pass the profile to the “what-if” prediction engine. The prediction engine relies on simulation

and analytical models to evaluate performance of the task for the given configuration. It is used

by the cost-based optimizer to find those configurations of the task that yield high performance.

Using such model-based optimizer increases performance of MapReduce jobs by 50% compared to

the default rule-based optimizer implemented in Hadoop.

Similarly, Bennani and Menasce [27] developed the analytical model of a transaction process-

ing system to detect configurations resulting in its high performance. The model was used as a

central element of the autonomic data center comprising of n servers processing different types of

transactions.

Chen, John and Kaseridis used an analytical model to predict the demand on computation

resources in the multiprocessor system [33]. In particular, they predicted utilization of the L2 cache,

memory bandwidth, and hardware branch predictor for a given program. Their model report average

error in a range of 0.09 to 0.13.

Analytical models are compact and expressive; however they require knowledge of system’s func-

tionality and a substantial mathematical skill to formalize this functionality using a set of equations.

Furthermore, complex behavior is difficult to express with the analytical model. For example, ana-

lytically predicting performance of a single thread pool, which does not perform any synchronization

or simultaneous usage of hardware resources, requires development of a complex mathematical model

that must be solved iteratively [67].

Nevertheless, analytical models can be used as a part of the larger model to predict performance

for some of the system’s components. For example, Thereska and Narayanan [94] uses analytical

models as a part of the larger model to simulate individual components of the distributed system,

such as network and disk.

2.1.2 Statistical models

Statistical models tend to overcome some drawbacks of analytical models. They do not explicitly

formulate the function y = f(x). Instead, they approximate it using some statistical method.

Generally this requires executing the program in a number of configurations in order to collect a

representative set of points (X,Y ). The dataset (X,Y ) is used to train the model.

Statistical models are widely used to predict the performance of SQL databases. Ganapathi et

al used a statistical model to predict the running time of SQL queries [45]. Authors construct the

x vector from the query plan generated by the DBMS and select its relevant features using Kernel

Canonical Correlation Analysis. During the prediction they use a k-NN technique to detect queries

with performance features similar to a given one. The correlation between the actual and predicted

execution times R2 ∈ (0.55 . . .0.95) .

Authors further extend this technique to predict the running time of Hadoop tasks [44]. The

x vector included metrics such as the number of bytes written during different phases of the task.

This study reports correlation R2 ∈ (0.87 . . .0.93)

Akdere et al used a similar approach to predict performance of the SQL queries running in
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isolation [19]. The x vector can be built from the query plan for the complete SQL query or its

individual operators. This modularity allows on-line training of the model. Authors developed an

iterative procedure to select relevant queries for training. The resulting model have relative error in

a range of (0.05 . . .0.1).

Finally, Duggan et al predict individual running time of a mix of concurrently running queries [40].

They use the I/O latency as an indicator of query performance, and predict it using a multivariate

linear regression. The resulting model has accuracy ε ∈ (0.14 . . .0.27).

Apart for predicting performance of queries, statistical models are used to predict performance

for a wide range of systems. Happe et al developed a statistical model for predicting performance

and resource utilization in the message-passing middleware software [49]. They used non-linear

regression to predict the relation between the size of the message and performance metrics, which

include the response time, utilization of the CPU and the disk subsystem.

Lee et al used linear regression and neural networks to predict the running time of scientific

computing applications on a large grid system [64]. Their feature vector x included both parameters

of the task and the configuration of the program. The resulting error varied in ε ∈ (0.02 . . .0.12).

Although statistical models do not require knowledge of system’s internals, they have severe lim-

itations. Building statistical models require running the system in a large number of configurations,

which is time-consuming and costly. Also such experimentation might decrease the availability of the

system. Thus it may not be performed in the production environment, when the software is already

deployed and is being used by the customers. Moreover, any change to the software or hardware of

the system requires re-training the whole model [92].

The accuracy of a statistical model strongly depends on the representativeness of the training

dataset. Cheung et al demonstrated that although his statistical model based on a non-linear

regression has good accuracy in extrapolating the performance of the system (predicting performance

within the ranges of configuration parameters used for model training), the interpolation accuracy

(predicting performance for a point outside the training dataset) can be very low [36].

There are attempts to overcome these shortcomings, or, at least, make them less restrictive. In

particular, statistical models can be built when large amounts of data are already available. Thereska

et al propose retrieving performance data from a large user base [93]. The released version of the

application is instrumented, so it will report its configuration and performance to the centralized

database. The analyst can use a k-NN method to search through the database and locate the

configuration closest to the given one. This approach can handle complex applications, but its

success depends on the popularity of the application and wiliness of users to share their performance

data.

Sophisticated program analysis and machine learning techniques can help reducing the amount

of training data. In particular, Chun et al. [37] use internal program features such as values of

variables, loop and branch counts as metrics x. Authors select relevant features and use them to buid

performance models of CPU-bound programs using the non-linear regression. During the prediction

phase features can be calculated from the program inputs using program splices. Authors claim
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that even when being trained using 10% of the dataset, their model is significantly more accurate

(ε = 0.06) than the traditional black-box model trained using 20% of the dataset (ε = 0.35).

Similarly, Westermann et al developed a methodology for iterative selection of points into the

training set [99]. Their approach allows to reduce the size of the set, although both error terms and

the number of points strongly depend on the selection algorithm and the type of machine learning

method employed.

Statistical models can be successfully employed for those scenarios when the training dataset can

be collected relatively quickly, e.g. by benchmarking. Thus statistical models can become a feasible

approach for modeling individual components of the large system. In particular, statistical models

were widely used to predict performance of disk I/O subsystem. Wang et al [97] developed a model

of the hard drive using the CART tree. The model predicts the duration of the I/O request based

on the workload intensity, request type and size, and sequentiality of requests. The accuracy of the

model ε ∈ (0.19 . . .1.90) greatly depends on the representativeness of the training set. E. Anderson

developed the disk I/O performance model based on the k-NN algorithm. Author uses the size of

the request, its sequentiality, and length of the I/O sheduler queue to predict the running time of

the request [21]. The accuracy of the model ranged in ε ∈ (0.02 . . .0.2). Huang et al. relied on

a similar approach to build the performance model for the SSD disk using a regression tree [56] .

Auhors report error ε ∈ (0.17 . . .0.25).

2.1.3 Simulation models

Simulation is a technique where the behavior and the structure of the model follows the behavior and

the structure of the system. Although some of these models can be solved analytically, simulation

remains the main tool for predicting performance using simulation models.

Simulation is the most flexible approach to performance modeling. Simulation can represent

complex behavior of the system. Building a simulation model does not require running the system in

many configurations. However, constructing simulation models require knowledge of the components

of the system and their properties.

Applications of performance simulation range from the full-system models that simulate the

program at the granularity of a processor instruction [85] [30] to models that simulate large computer

networks at the granularity of individual hosts [98] [60]. However, in the context of our work we

concentrate on simulations of parallel and multithreaded programs.

A variety of formal methods for building simulation models have been developed. The first such

methodology was queuing networks [63]. In particular, van der Mei et. al. used queuing networks to

model impact of networking parameters at the performance of the web server [95]. However, queuing

networks in their classical form can be too restrictive for simulating complex systems. As a result,

a number of extensions have been developed.

Layered queuing networks (LQN) extend traditional queuing networks by adding the hierarchy

of model components [101] [80]. In a LQN the queue and the server are united in a single node.

The nodes can represent different computers (e.g. the client and the server), software components
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of the system, as well as the hardware components, such as disk and CPU. The role of the node

determines its position within the network. For example, nodes representing hardware components

are placed at the lowest level of the network. Nodes themselves can create new requests and send

them to other nodes in the network. This feature allows LQN simulating both synchronous and

asynchronous calls in the system as well as message routing.

LQN is a popular technique for simulating message-passing and distributed systems. In partic-

ular, van Hoecke et al relied on the LQN to build models of simple CORBA applications and web

services [54]. Their models have relative error within ε ∈ (0.02 . . . 0.05). Rolia et al use LQN to

predict performance of the CPU-bound ERP application with accuracy ε = 0.15, although their

system did not carry out any I/O or synchronization activities [82].

Wu and Woodside [102] extend LQN by introducing Component-Based Modeling Language

(CBML) – an XML-based language that describes components of the system in the terms of LQN

models. CBML allows for a better modularity and reusability of LQN models. Similarly, Xu et al.

[103] introduced the concept of LQN templates – a reusable fragments of the LQN model. Authors

create LQN templates for different types of Java beans, and then manually compose them into a

model of the distributed EJB application. The resulting model predicts throughput of the system

with ε ∈ (0.02 . . . 0.25).

The Mean Value Analysis (MVA) technique allows to obtain mean values of predicted perfor-

mance metrics for the queuing model and their extensions analytically. However, MVA makes various

assumptions regarding the distributions of model parameters, such as service time or arrival rate.

Using MVA to model even simple threading constructs such as “fork-join” patterns [43] or mutexes

[66] imposes many restrictions on the workload and on the behavior of the system that can be mod-

eled. Moreover, a separate mathematical apparatus must be developed for modeling every single

construct. As a result, author of this thesis is not aware of any applications of MVA to solve models

that combine multiple simple behaviors, or models that represent a more complex behavior, such as

barriers, semaphores, or concurrent I/O operations.

Another well-known simulation methodology is Petri nets and their extensions. One of the most

widely used extensions is the colored Petri nets [62] that allow assigning values (denoted as colors)

to the tokens.

Roy et al used colored Petri nets to model performance of a simple multithreaded scientific

computing application [86]. Authors rely on Petri nets to simulate mutexes and resource contention

in the program. Although they do not simulate more complex aspects of the parallel program, such

as disk I/O or complex locks.

Nguen and Apon [72] used colored Petri nets to build the model of a Linux Ext3 file system.

Their implementation simulates read and write operations, and allows modeling the system’s page

cache and the filesystem journal. The model takes into account multiple parameters such as the

block size and locality of the operation and predicts the average throughput of the system with

ε ∈ (0.12 . . .0.34). This study was extended [73] to allow simulation of the parallel file system with

ε ∈ (0.2 . . . 0.4).



17

Queuing Petri Nets (QPN) extend the Colored Petri nets by adding queuing and timing aspects

into the model [24]. Similar to the LQN, a single node in the QPN can combine both the queue

and service nodes. QPNs offer a variety of servicing, queuing and routing disciplines, which allows

using them to model behavior of complex systems. In particular, Kounev, Spinner, and Meier used

Queuing Petri Nets to simulate distributed component-based and event-based systems [61].

However, as the number of queues and tokens in the QPN grows, the state-space of the model

grows exponentially. To make QPNs practical for modeling large systems, Hierarchical Queuing

Petri Nets (HQPN) have been developed [25]. In HQPN, the single node can contain another QPN

network instead of a single queue.

PEPA networks is a methodology that combines features of the Petri nets and PEPA stochastic

process algebra. Gilmore et al. [46] used PEPA networks to simulate a secure Web service.

Palladio Component Model (PCM) [26] is another technique for building performance models of

the computer programs. In PCM the system is divided into a number of interconnected components.

Components can use computation resources such as CPU or hard drive; resource demand can be

expressed by random variables. The connections between the components denote information flow

in the system.

Although much more flexible than queuing networks, PCM has the number of limitations, in-

cluding the absence of internal state and no support for concurrency [26]. As a result, using PCM

to simulate multithreaded behavior can be problematic.

In addition to the models that use some formal method or its extension to simulate a system,

certain approaches rely on a combination of different formal methods or propose their own modeling

paradigms.

One notable example is the IRONModel developed by Thereska and Ganger [94]. IRONModel

relies on a queuing network to simulate the flow of the request, and uses analytical models to

simulate performance of certain components, such as the network and hard drive. IRONModel is

used to detect bugs and performance deviations in the the Ursa Minor cluster-based storage system.

PACE framework employs hierarchical approach towards building models of MPI appilcations.

In PACE the high-level model represents the program as a whole, the middle-level models represent

code templates within the program, and lower-level models represent underlying hardware, such as

CPU, cache and network I/O subsystem. PACE uses a specialized language to describe performance

aspects of the program.

The main application of PACE is the Titan predictive scheduler for the high-performance grid

systems. Titan relies on PACE models to predict performance of incoming tasks; predictions are

used by the optimization engine to schedule tasks in a way that improves their overall performance

while meeting individual deadlines for each task. Using Titan allowed to increase overall utilization

of the grid by 30-40% and improve performance of individual tasks by up to 83% [59]. Furthermore,

PACE is also used to predict the execution time of the nreg medical image processing application

with the ε <= 0.1 [58].
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Simulation models are more flexible then analytical or statistical models. However, their con-

struction is significantly more difficult, mostly because they require extensive information on the

system’s internals and functionality. This information can be retrieved manually, as in [101], [95],

[54], [103]. However, the manual analysis of the software system is time-consuming and error-prone.

Furthermore, any change to the system will require recollecting necessary information and rebuild-

ing the model or some of its parts. These shortcomings of the manual model building are apparent.

Thus the problem of automated analysis of multithreaded programs and building their performance

models gained a significant attention in the research community.

2.2 Automatic analysis and performance modeling of com-

puter programs

Automatic construction of simulation models requires understanding the structure of the program,

its semantics, and resource demands. This can be done using the thorough and sophisticated analysis

of the program. Below we will review the main directions towards automatic program analysis and

their application to the automatic construction of performance models

2.2.1 Automatic analysis of computer programs

A significant amount of work has been dedicated to automated analysis and comprehension of parallel

and distributed programs. Techniques for program analysis, used in these works, can be also used

for the purpose of generating performance models automatically.

Program analysis have been extensively used to understand structure of software systems, and

semantics of interaction between its components. In particular, Reiss proposed CHET - a tool for

extracting specifications from the parallel program itself [77]. CHET uses symbolic execution to

discover interactions between the program’s components and then extracts behavioral specifications

of the program in a form of automata.

Similarly, Burnim and Sen discovers deterministic specification in the multithreaded programs

[32]. In particular, authors define pre- and post-conditions for the block of a program’s code that

must hold for all the inputs in the multithreaded program.

Barham et al develop Magpie - a tool for understanding the characteristics of the system’s

workload [22]. Magpie tracks key events in the system’s functioning by tracking a selected set of

API functions. Then Magpie relies on the user-supplied schema to infer the flow of request the from

the sequence of API calls. Magpie employs a sophisticated algorithm to accurately retrieve resource

demands for the request.

Similar approaches have been extensively used to study behavior and performance of distributed

systems. Chen et al developed a framework to track the flow of request between the components

of such system [34]. Authors use this information to identify request flow paths that are associated

with the increased risk of failure. Hellerstein et al propose an ETE framework, which measures and



19

visualizes performance of transactions in distributed systems [51]. Similarly to Magpie, ETE relies

on the user-provided schema to reconstruct the sequence of events in a transaction. Aguilera with

co-authors propose a low-invasive approach to identify performance bottlenecks in the distributed

legacy system [18]. Authors rely on signal processing techniques to identify causality of calls between

the nodes in the system.

Program analysis techniques have been used extensively to collect detailed information about

the performance of the program. Teng et al developed THOR - a tool for performance analysis of

parallel Java applications [91]. THOR relies on a sophisticated combination of kernel and user-mode

instrumentations in order to to understand and visualize relations between the Java threads and

locks.

Coppa, Demetrescu, and Finocchi present the idea of input-sensitive profiling [38]. Their profiler

automatically measures how the input size of the program’s function affects the running time of that

function. Authors measure input size as the number of distinct memory cells read by the prologue

of the function.

Similarly, Zaparanuks and Hauswirth develop a tool that automatically deduce the cost of the

algorithm based on the size of the supplied data structures [105]. Authors rely on the combination of

static and dynamic analyses to produce a trace of the program, and then approximate a dependency

between the input size and the number of iterations by the program. A similar approach was

taken by Goldsmith et al to measure the computational complexity of the application [47]. Authors

instrument the program and run it on different workloads. Then authors approximate the execution

time of different basic blocks of the program using linear or power law. The result is the approximate

formula that describes the computational complexity of the program.

Some approaches towards analysis of parallel programs rely on stack sampling in order to reduce

the analysis overhead. Tallent and Mellor-Crummey develop a technique for identifying parallel

idleness and parallel overhead in the multithreaded program [90]. Their work allows to discover

areas of the code that contribute to non-linear performance characteristics of the program. Mitchell

and Sweeney applied a similar approach towards predicting performance of multithreaded programs

[68].

Software visualization is another direction where program analysis is used extensively. DeRose

and Reed proposed a SvPablo - a system for analyzing performance of parallel and distributed

programs written using a variety of languages [84]. SvPablo instruments the program first. As the

program executes, the tool collects and summarizes data from multiple processors. Once execution

is over, SvPablo integrates different data sources and presents them to the user.

Reiss developed an approach to understand the structure of the program for the purpose of visu-

alization [78]. He discovers threads, transactions, and tasks in the multithreaded system and their

semantics of integration using dynamic program analysis. The resulting information is visualized to

facilitate program understanding.
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By working along these lines, Reiss produced a system to identify locks (synchronization mech-

anisms) in a multithreaded program and to determine their types [76]. Author uses program in-

strumentation to collect information about interactions of threads in a program and then relies on

heuristics to assign each lock into a corresponding category, be it a semaphore, a read-write lock, a

mutex etc.

2.2.2 Automated generation of simulation models

Program analysis techniques similar to ones described above were used to automatically construct

performance models. Hrischuk et al conducted an initial study on automatic generation of LQN

models from the system’s trace [55]. The study assumes the request-processing system, where each

request has a unique identifier. As the request flows through the system, individual components

record the request ID, its arrival and departure times. Although this information allows generating

the skeleton of the LQN model automatically, it is not clear if the instrumentation or parameteriza-

tion of the model is automated as well.

Similarly, Israr et al [57] automatically build LQN models of message-passing programs from

their traces. In their work, authors concentrate on semantical correctness of the resulting model.

Woodside et al [100] propose building LQN models using information about the system available

during its design phase. Authors implement a prototype tool capable of generating the LQN model

and extracting its parameters, such as resource demand. Authors verify their approach by building

the model of the document distribution service application. The resulting model have accuracy

ε = 0.3.

Zheng et al propose a methodology to predict the parameters of the LQN model using the

autoregressive statistical model [106]. First, authors use Kalman filter to estimate values of the

model parameters. Then authors use an autoregressive model to predict future values of these

parameters based on their past values. This work is important in a sense that it allows using

existing performance models even if workload parameters have changed.

Brosig, Huber, and Kounev [28] automatically generate the Palladio Component Model (PCM)

of the distributed EJB application from its traces. Authors simulated dependency between the

intensity of the workload and the performance of the SPECj Enterprise2010 Java benchmark. In

most cases their predictions of CPU utilization and the response time of the system are accurate

within ε ∈ (0.1 . . . 0.3). However, in configurations with intense workload the relative error ε ≥ 0.5.

In [65] authors show that the PCM can be automatically transformed into the queuing Petri

network (QPN). The resulting QPN can be solved analytically, which allows increasing the perfor-

mance of the model significantly. However, the accuracy of prediction for certain metrics (e.g. the

response time) can decrease as a result of a conversion.

Hauk, Happe and Reussner use a set of heuristics to automatically deduce the type of the load

balancing algorithm used by the OS thread scheduler [50]. They distinguish between lazy, active

and immediate load-balancing strategies. The resulting type of the scheduler is integrated into the

PCM model, which increases the accuracy of the prediction.
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Xu and Subhlok [104] automatically extract the topology and resource demands of distributed

MPI applications from their traces. Their models successfully predicted the performance of the

application running on a different cluster (ε ≤ 0.15). However, the accuracy drops to ε ∈ (0.3 . . . 0.5)

in configurations where the system experiences resource contention due to sharing of CPUs between

multiple processes.

PACE framework [74] described earlier can automate building performance models of MPI/PVM

message-passing programs. The skeletons of the PACE models are built by the means of static code

analysis, while model parameters can be specified either manually or by benchmarking.

Resource demands for the program can be discovered by instrumenting the program and measur-

ing the resource demands of its individual components [22]. If direct measurement is not possible,

the resource demands can be inferred. In particular, Rolia et al rely on a least square approach to

infer resource demand from higher-level measurements such as execution count [81][83]. Similarly,

Brosig et al rely on a Service Demand Law [29] to infer resource demand for PCM-based models.

Another interesting approach for building models automatically can be the “design-for-

simulation” paradigm, where the software system is capable of generating a performance model

for itself. A notable example of such system is the Ursa Minor cluster-based storage [94]. Ursa

Minor uses this model to detect performance anomalies in the program.

Despite a great variety in techniques for automated modeling of computer programs, they share

one common feature: virtually all of them are aimed at modeling distributed message-based systems.

These techniques do not capture complex thread interaction patterns and resource contention in

the multithreaded systems. Consequently, they cannot generate accurate performance models of

multithreaded programs. To overcome this limitation we propose a modeling technique that can

correctly simulate behavior of a multithreaded application and a framework that can automatically

generate these models.



Chapter 3

Model definition

In this section we define the model for predicting performance of multithreaded programs. We

first describe our representation of computations in the parallel program for the purposes of perfor-

mance prediction. Next we present the architecture of our performance model. Finally, we discuss

approaches for simulating resource contention by the model.

3.1 Representing computations in a multithreaded program

For the purpose of simulation we represent computations performed by the program as request

processing. We denote a request as something the program has to react to. The program processes

the request by performing certain operations.

This approach naturally allows simulating reactive systems which constitute a majority of modern

computer programs. For example, in a web server a request corresponds to an incoming HTTP

connection. The web server reacts to the request by reading a web page from the disk, generating

a response, and sending it to the user. In a 3D renderer a request can denote a pixel, or a subset

(a row, a column, or a tile) of pixels. Processing of the request involves rendering the scene and

generating the final image. In a scientific application the request can correspond to an object in the

physical system, whose behavior is simulated by the program. The program responds to the request

by performing computations to determine the next state of the object based on its current state and

the states of objects in the system.

The request itself is an abstract entity. In the multithreaded program the request is represented

by a task. The task is a data structure that is created as a response to the request. It represents a

discrete unit of work that can be performed by the thread in the program [75]. Normally tasks are

implemented using a certain data structure, which may be a class in an object-oriented program, or

a data structure.

The performance of the request processing system can be described by various metrics, such as

the response time R (an overall delay between request arrival and its completion), throughput T (the

number of requests served in the unit of time), or the number of requests dropped. In our work we

22
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do not predict performance of individual requests, but rather the aggregated values of performance

metrics over a period of time.

We build discrete-event models of multithreaded systems. The discrete-event simulation is a

model, where the simulation time t is advanced by discrete steps. It is assumed that the state of the

system does not change between time advances.

Our models are built according to the hierarchical principle [42] and consist of three tiers. The

high-level model explicitly simulates the flow of requests as they are being processed by the program,

from their arrival to completion. The middle-level models simulate delays that occur inside the

program’s threads as they process requests. The lower-level model simulates delays that occur when

multiple threads compete for a particular resource, such as a CPU, a hard drive, or a synchronization

construct.

3.2 High-level model

The high-level model is based on a queuing network model [63] where queues {q1, ..., qn} correspond

to the program’s queues and buffers, and service nodes {tr1, ..., trm} correspond to the program’s

threads (the full notation used to describe the model is provided in the Table 3.1). The set of queues

in the high-level model represent queues and buffers used to exchange the tasks between the different

components of the software system. This includes queues and buffers present both in the program

itself as well as in the operating system (OS).

Each thread tri can be related to one (and only one) thread pool Tpj. The thread pool or thread

group Tpj ∈ {Tp1, ..., T pk}, k ≤ m is a set of one or more threads that have same functionality

and can process tasks in parallel. The number of threads in the pool is one of the most important

configuration parameters that can significantly affect performance of the program. Each thread in

a thread pool is represented as a separate service node in the model.

Figure 3.1 (top) depicts a high-level model of the web server. The incoming connections are

placed into the OS connection queue q1, from which they are fetched by the accept thread tr1.

tr1 forms a task object, which represents the HTTP request. The thread places the task into the

program’s task queue q2. One of the working threads tr2,...,trn fetches the task from the queue q2,

retrieves the necessary request information, and processes the request.

Our model differs in important ways from the classical queuing networks. First, it does not

restrict the structure of the model, the number of service nodes, or distribution families of the

network’s parameters. Second, the service nodes are models on their own that simulate program’s

threads. When the service node receives a request, it calls the model of the corresponding thread to

simulate the amount of time necessary to process that request. Finally, the high-level model does not

explicitly define service demand S for requests; these are implicitly defined by parameters of lower-

level thread models. Nevertheless, the high-level model is capable of collecting same performance

measures as queuing models, such as R, T , or the number of requests in the system.
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Figure 3.1: A model for a web server

3.3 Middle-level model

Our middle-level models simulate the delays that occur in the program’s threads as they process

tasks. The thread model represents a probabilistic call graph (PCGs) for the corresponding thread.

Each vertex si ∈ S of such PCG corresponds to a piece of the thread’s code – a code fragment (CF).

The special vertex s0 corresponds to the code fragment executed upon a thread start.

Edges of the graph represent a possible transition of control flow between the CFs, which is

modeled probabilistically. Namely, for each vertex si ∈ S there is a subset of vertices Snext =

{sk, . . . , sm} that can be executed after si. The probability that the the CF sj , j ∈ (k . . .m) will be

executed after si ∈ S is denoted as p(si, sj), where

m∑

j=k

p(si, sj) = 1 (3.1)

Probabilities of transitions between all the CFs constitute a mapping δ : S → P (S).

For certain CFs the set Snext can be empty, such that Snext = 0. These are terminal CFs. After

executing these CFs the thread stops.

Computations performed by every CF si ∈ S take a certain amount of time to complete. In the

terms of the model computations performed by si are simulated as introducing a delay with duration

τi. The duration of the delay τi may vary between different invocations of the same CF.

We distinguish three major sources of delays in computations performed by the program: delays
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caused by computation, delays caused by input-output (I/O), and delays caused by synchronization

activities. These correspond to basic classes {cCPU , cIO, csync} ⊆ C of code fragments: computation

code fragments (denoted as cCPU ), I/O code fragments (cIO), and synchronization code fragments

(csync). There are two additional CF classes {cin, cout} ⊆ C used to communicate with the high-level

queuing model. With regards to the performance modeling, the class ci of the code fragment si is

one of the most important characteristics of that CF.

I/O code fragments si : ci = cIO represent executions of the program constructs that perform

I/O, either directly or indirectly by reading filesystem metadata. Examples of such CFs in a Java

program are the calls to File.exists(), File.isDirectory(),FileInputStream.readBytes(),

and FileOutputStream.write() methods.

Synchronization code fragments si : ci = csync represent synchronization operations. In a

Java program synchronization CFs correspond to following constructs:

� calls to synchronization primitives such as Object.wait(), Semaphore.acquire(),

CyclicBarrier.await();

� entering or exiting from the Java synchronized regions and synchronized methods;

� executions of program constructs that explicitly alter the threading behavior of the program,

such as calls to Thread.sleep() or Thread.join().

The type of the synchronization operation determines the type of the synchronization code fragment.

Computation code fragments si : ci = cCPU represent computations performed by the

thread.

The thread model communicates with the higher-level queuing model using input and output

vertices. Input vertices si : ci = cin can fetch requests from one or more of the queues {qi, ..., qj}

of the high-level queuing model. As a part of this the thread model can suspend its execution until

the request become available. Output vertices si : ci = cout generate requests and send them to one

of the queues {qi, ..., qj} in the high-level model.

In the context of the multithreaded program, cin and cout CFs correspond to operations on the

program’s shared queues. Namely, the cin/cout CFmay represent the producer-consumer pattern in a

multithreaded program. In particular, the cout CF that represents the “producer” may correspond to

calling BlockingQueue.add() or BlockingQueue.offer()methods in a Java program. An appro-

priate cin CF that represents the “consumer” will correspond to calling the BlockingQueue.take()

or BlockingQueue.poll() method. cin/cout CFs can also represent operations with OS queues.

One example of such cin CF is the call to the ServerSocket.accept() that fetches connection

requests from the queue for incoming network connections.

For an example, consider a (simplified) model of a web server depicted at the Figure 3.1. The

accept thread listens for incoming connections (represented by the CF s1 in its thread model). Once

the connection has been accepted, the accept thread creates a task object (s2 - s4) and puts (s5)

it into the task queue. Once one of the working threads becomes available, it fetches (s6) the task

from the queue and processes it (s7 - s8). The working thread verifies that the requested page exists,
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reads the corresponding file from the disk, prepares the response, and sends it to the client. Finally,

the thread closes the connection and fetches the next task from the queue.

Formally, our thread model can be described as a probabilistic time automaton (PTA) [89].

According to the notation presented in [89], the PTA can be defined as a tuple 〈S, s0, δ, T,Θ〉,

where:

� S = (s1, ..., sn) are the PTA states, which correspond to the vertices of the probabilistic call

graph;

� s0 ∈ S is a start state;

� δ : S → P (S) is a distribution that represents probabilities of transition from one state to

another;

� T = (τ1, ..., τn); τi ∈ R ≥ 0 are delays occurring when the automaton transitions to states

s1, ..., sn respectively.

� Θ = (θ1, ..., θn) are action flags that describe actions performed when the PTA transitions to

the corresponding states s1, ..., sn. The action θi ∈ {cCPU , cIO, csync, cin, cout} corresponds to

the class of the CF and defines how the thread model interacts with other models in hierarchy.

External actions {cin, cout} allow the PTA to directly interact with the high-level queuing

model, and internal actions {cCPU , cIO, csync} interact with the low-level model.

For the purpose of modeling we consider actions θ to be mutually exclusive. Namely, each

state si is described with only one single action θi ∈ {cCPU , cIO, csync, cin, cout}.

The PTA works as following. At the start the PTA transitions to the state s0. When the PTA

enters some state si, it performs the action θi and introduces the discrete delay τi. After delay is

expired, the PTA transitions to another state sj according to the transition distribution δ.

In [89] transitions are also influenced by external events ai ∈ Σ, so the transition distribution

takes the form δ : S × Σ → P (S). Currently we do not specifically define any external events in

the model. We assume Σ ≡ ∅, so transitions between the PTA states are completely probabilistic.

However, we may incorporate the notion of events in future. In particular, these events may represent

certain cases of determinism in the behavior of the multithreaded program we’ll describe in the next

sections of this thesis.

3.4 Low-level model. Simulating time delays in threads

Execution of each code fragment (CF) results in the delay τ . While the call graph structure 〈S, s0, δ〉

does not change between different configurations, execution times for code fragments can be affected

by resource contention. Resource contention occurs when multiple threads simultaneously attempt

to access a shared resource such as the CPU, the disk, or a lock. For example, if the number of

working threads that perform CPU-intense computations exceeds the number of physical CPUs,
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the time required for each thread to finish computations will be higher than if that thread was

running alone. Similarly, as more threads compete for a mutex, the waiting time for each of those

threads increases. As a result of resource contention, the time delay τi for the state si can vary

significantly across different configurations of the program and cannot be specified explicitly in the

mid-tier thread model.

To accurately simulate the time delays τ that occur due to contention we use lower-tier models.

In particular, the lower-tier models simulate following elements of the parallel system:

� the OS thread scheduler and the CPU;

� the OS I/O scheduler and the hard drive;

� the synchronization constructs (locks) {l1, ..., lm} ∈ L present in a multithreaded program.

These models are part of Q(t) – the state of the whole simulation at each moment of time t.

To accurately compute τi we describe each code fragment si with a set of parameters Πi, which

represent the resource requirements for si. When the thread model needs to simulate the τi, it calls

the corresponding low-level model, passes it the parameters Πi, and waits for the response. When

the lower-level model receives the call, it updates the state Q(t) and simulates the delay τi. Once

the delay has passed, the lower-level model returns control back to the thread model.

The nature of the parameters Πi and the actual semantics of interaction between the thread

model and the low-level model depends on the class ci of the code fragment si. Below we describe

modeling different types of computations in detail.

In this work we explicitly simulate delays caused by CPU-intense computations, disk I/O oper-

ations, and synchronization operations. We do not explicitly model memory and cache operations.

Instead, operations such as memory allocation or memory access are simulated as computations. We

anticipate that for certain subset of programs and workloads saturation of the memory bandwidth

may inflict a noticeable impact on performance. Thus a lightweight and accurate model of a memory

subsystem remains a future work.

We do not simulate disk I/O operations caused by page faults (swapping). However, page faults

are improbable in a well-configured program, so currently we ignore them. We also do not simulate

the asynchronous disk I/O operations, which includes the model for disk writes.

We also do not have a dedicated model of network I/O operations. Delays caused by network

I/O are currently simulated implicitly as CPU computations. We have built models of a number of

networking applications, and the absence of the network model did not cause noticeable problems

with models’ accuracy. However, we anticipate that for some workloads network operations may

have a noticeable impact on performance of the system. Thus the model of the network I/O is left

as a subject for a future work.

3.4.1 Modeling CPU Computations

CPU-intense computations are simulated by the computation CFs whose type is cCPU (denoted as

si : ci = cCPU ). Parameters of these CFs are ΠCPU = {τCPU}, where τCPU is the CPU time for
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the CF si. The CPU time is the amount of time required for the computation CF to complete if it

would run on a CPU uninterrupted. As τCPU fluctuates across different executions of si, ΠCPU is

represented as a distribution of CPU times PΠ
CPU .

When the thread model has to compute τ for the computation CF, it samples τCPU from the

P
Π
CPU and calls the CPU/Scheduler low-level model. The CPU/Scheduler model simulates a round-

robin OS thread scheduler with equal priority of all the threads. It is a simple queuing model, whose

queue corresponds to the queue of “ready” threads in the OS thread scheduler, and service nodes

correspond to cores of a simulated CPU.

Upon receiving the request the CPU/Scheduler model creates a new job with service time SCPU =

τCPU and inserts it into back of the “ready” queue. Once the service node becomes available, it

fetches the job from the queue and introduces a delay equal to min(τCPU , OS timequantum). After

the delay is expired, the CPU/Scheduler checks if computations are complete for the job. In this

case the CPU/Scheduler deletes the job and notifies the thread model. Otherwise it places the job

back into the “ready” queue, where it awaits another time quantum.

3.4.2 Modeling disk I/O operations

I/O operations are simulated using I/O code fragments si : ci = cIO, whose parameters form a

distribution P
Π
IO. Members of this distribution are tuples Πdisk = 〈dio1, ..., diok〉, k ≥ 0 of low-level

disk I/O operations initiated by si. Properties of each I/O operation dioj include the amount of

data transferred and the type of the operation. Currently our model supports following types of disk

I/O operations: regular file read, readahead, and the metadata read. These cover different types of

disk read operations which can be encountered in practice.

The size k of the tuple Πdisk denotes the number of I/O operations issued by si and allows implicit

modeling of the system’s page cache. It has been shown [41] that after performing a sufficient number

of I/O operations the cache reaches a steady state where the probability of cache hit converges to the

constant value. In the terms of our model, the distribution P
Π
IO for the state si becomes stationary

after serving a sufficiently large number of requests (104 to 105 in our experiments). This allows

simulating effects of a page cache on disk I/O operations.

When the mid-level thread model must simulate the I/O CF, it fetches a sample of disk I/O

operations Πdisk = 〈dio1, ..., diok〉 from the distribution P
Π
IO and issues a sequence of calls to the

DiskIO low-level model. Here each call represents a corresponding I/O operation dioj ∈ Πdisk. If

the I/O operation is synchronous (read or metadata read), the thread model waits for the response

from the low-level model. If the operation is asynchronous (readahead) the thread model does not

introduce such wait.

DiskIO is a queuing model whose queue represents the request queue in the actual I/O scheduler,

and the service node represents the hard drive. Upon receiving a call from the mid-level model, the

DiskIO inserts a new job into the queue. The actual I/O scheduler arranges requests according to

the index of the disk block they are accessing. But since this information is not known to the model,

jobs are inserted at the beginning of the queue and the service node fetches them from the random
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positions.

The service node delays the job for the τdisk, which is the amount of time necessary for the hard

drive to complete the I/O operation. τdisk depends on on many factors: the locality of the operation

(how close are the disk sectors accessed by different requests), the number of requests in the queue,

and others. Since many of these factors are beyond the control of the model, we simulate the τdisk

as a conditional distribution P (τdisk|dio type, dio rate, dio parallel), where

� dio type: the type of the request;

� dio rate: the intensity of the I/O workload; measured as the mean interarrival time for the

previous N I/O requests (in our experiments typically N = 20);

� dio parallel: the degree of parallelism in I/O workload; measured as the number of distinct

threads that initiated the previous N requests.

Our models do not explicitly simulate write I/O operations at the moment. Typically, modern

OSes handle disk writes asynchronously using a strategy called write-back. Namely, the data to be

written is transferred into the OS write buffers first. After buffers accumulate a certain amount of

data, one of the OS working threads writes the contents of these buffers to the hard drive.

Modeling write I/O operations would require either explicitly simulating the behavior of the OS

write cache and corresponding caching policies, or modeling write operations using a Markov chain.

However, in our experiments we observed that unless the application performs a massive amount of

writes, the write I/O requests do not have a noticeable impact on the performance of the system.

Thus we leave implementation of disk I/O write model as a subject of a future work.

3.4.3 Modeling synchronization operations

Synchronization operations are simulated using synchronization code fragments si : ci = csync.

Parameters of synchronization CFs are defined by the tuple Πlock = 〈lj , optype, τsync〉, where

� lj ∈ L is the synchronization construct (lock) that is called;

� optype is the synchronization operation performed on a lock. Possible values of this parameter

depend on the type of the lock itself. For example, the possible values of optype for a semaphore

are {wait, signal}, for a mutex optype may be {acquire, release}, and for a barrier optype is

{await};

� τsync ∈ (0, ...,∞) is the timeout for synchronization operation. The default value of the

timeout is τsync = ∞, which denotes the infinite timeout. Correspondingly, τsync = 0 denotes

the absence of the timeout.

When the mid-level thread model has to simulate τ for the synchronization CF si, it calls the

lower-level model and passes the parameters Πi of that CF along with the call.
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The lower-level model simulates each lock {l1, ..., lm} ∈ L in the program. Locks are simulated

at the semantic level. Namely, if a program implements a complex lock such as a barrier using a

set of low-level constructs such as Java synchronized sections and monitors, we model it as a single

high-level lock (in our case - a barrier). We developed separate models for barriers, semaphores,

mutexes, etc.

Each lock lj ∈ L is described using a tuple of parameters 〈ltype, lparam〉, where

� ltype is the type of the lock, such as a semaphore, a barrier, or a mutex;

� lparam are the type-specific parameters of the lock. For example, the parameter of the barrier

indicates the barrier capacity, the parameter of the semaphore is the number of permits, and

the mutex has no parameters.

Once the low-level model receives a call from the synchronization CF si, it locates the lock lj

specified by the Πi. The lower-level model explicitly simulates behavior of each lock. For example,

when a model of a particular thread calls the model of the barrier, that barrier model adds a reference

to the caller thread to the list of waiting threads. If the size of the list is equal to the capacity of

the barrier, the barrier notifies all the waiting thread models that the delay is complete. Otherwise

it waits for the call from another thread.

If the wait time becomes higher than the timeout τsync specified by the calling synchronization

CF, the lock model notifies the calling CF that the operation has timed out.
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Table 3.1: Notation used for description of the model and its parameters

Notation used in a high-level thread model

tr1, ..., trn A set of all threads present in the program

Tp1, ..., T pm,m ≤ n A set of all threads pools present in the program, where
Tpk = {tri, ..., trj}

Notation used in a mid-level thread model

S = {s1...sn} The set of all nodes (code fragments) in the PCG

τi Delay caused by executing CF si ∈ S

ci ∈ C Class of the CF si

C = {cCPU , cIO, csync, cin, cout} Allowed CF classes: CPU-bound computations, I/O operations,
synchronization operations, fetching data from queues, and
sending data to queues correspondingly

δ : S → P (S) Transition probabilities between nodes of the probabilistic
call graph

Πdisk = 〈dio1, ..., diok〉 Parameters of an I/O CF: a sequence of low-level I/O operations
initiated by the CF

ΠCPU = 〈τCPU 〉 Parameters of a computation CF: the amount of CPU time

Πsync = 〈li, optype, τsync〉 Parameters of a synchronization CF: the lock which is called, the
type of synchronization operation, the timeout of
synchronization operation

Πsin = 〈{qi, ..., qj}, τout〉 Parameters of cin CF: a set of queues from which
the task can be fetched, the timeout of operation

Πsout = 〈qi, ..., qj〉 Parameters of cout CF: queues to which the task can be sent to

Notation used in a low-level model

L = {l1...lm} The set of all locks in a program

Πlock = 〈ltype, lparam〉 Parameters of a lock: the lock type and the type-specific parameters



Chapter 4

Model Implementation

In this section we describe PERSIK (PERformance SImulation Kit) – a framework we de-

veloped for building performance prediction models. PERSIK is used to implement performance

models according to the methodology described in the Section 3.

We first provide a necessary background by describing the OMNET++ modeling framework,

which serves as a base for implementing PERSIK. Next we describe the architecture of PERSIK

model and its individual components. Then we evaluate PERSIK by building models of two multi-

threaded programs.

4.1 OMNET++ modeling framework as a basis for PERSIK

PERSIK itself is implemented on the base of the OMNET++ discrete event simulation framework

[2]. To facilitate understanding of PERSIK below we provide a brief description of OMNET++

models and their architecture.

OMNET++ was initially designed to simulate computer networks and distributed systems. Un-

like other tools for discrete event simulation, such as SimEvents [3], OMNET++ does not offer a

ready set of components for implementing models of networks. Instead, OMNET++ provides a

generic platform for implementing discrete event models. It is a responsibility of the developer to

implement the set of components necessary for building a particular type of a model [96]. These

components can form a library which can be reused for building similar models.

Building OMNET++ models may require investing a significant amount of time into implement-

ing individual components of the model. Nevertheless, such approach allows building more flexible

and diverse models. This flexibility allowed using OMNET++ for building a wide range of simula-

tions. In particular, OMNET++ applications include the Mobility Framework [39] for simulating

wireless and mobile networks and the INET Framework [4] for simulating IP-based wired commu-

nication networks. Similarly, PERSIK is implemented as a set of components that allow simulation

of multithreaded programs in OMNET++.

An OMNET++ model consists of interconnected blocks communicating using messages [96]. In

32
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the terms of OMNET++ blocks are also called modules, thus we will use both terms interchangeably

throughout this thesis. Modules represent components of the system being simulated. For example,

in the model of a distributed system blocks (modules) may represent hosts, routers, and other

elements of the system.

OMNET++ models are hierarchical. At the bottom level, the basic units of OMNeT++ models

are the simple modules. Simple modules define the behavior of the model. OMNET++ does not

provide a pre-defined set of simple modules. Instead, this is a developer’s responsibility to implement

simple modules using C++ language.

A set of interconnected simple modules can be grouped into the compound module. In turn,

compound modules can be grouped into higher-levels OMNET++ modules. The number of layers

in a hierarchy is not limited. Such hierarchy allows an efficient componentization of the model and

reuse of individual blocks. At the highest level OMNET++ blocks are grouped into the network

model of the system being simulated.

Both simple and compound modules are instances of corresponding module types [96]. Modules

of the same type have same behavior, but may have different parameters. Correspondingly, the

model may contain multiple instances of the module of the same type. For example, a certain

module type may represent the host in a distributed system, which may receive and generate the

requests. Another module type may represent a router, whose functionality is re-routing requests

between the hosts. A model of a distributed system may contain a number of hosts and routers.

This relation between module types and the actual modules resembles the relation between classes

and class instances (objects) in an object-oriented programming.

Modules communicate using messages. Modules receive and send messages using input and

output gates respectively. An output gate of one module can be linked to the input gate of another

module using a connection. In this case the connection can serve as a route for modules to exchange

messages. Altogether, modules and connections constitute the graph. The structure of this graph

represents the topology of the model.

It is possible to have multiple incoming connections for a gate, so the single module may receive

messages from multiple transmitting modules. Correspondingly, the single output gate of a module

may be connected with input gates of multiple receiving modules. However, in this case the problem

of routing arises. Namely, the transmitting module must decide to which receiving module it will

send the message.

The message can be also sent to the receiving module directly, without passing it through the

output gate. We use this approach to send message to the models of locks and hardware in PERSIK.

The OMNET++ allows defining parameters for blocks. Parameters are identified by their names

and may take string, numeric, or boolean values. Parameters can be defined for simple modules

as well as for compound modules (in the latter case the compound module passes the values of

its parameters to the inner modules). Normally parameters are used to pass configuration values

to the model blocks and to control behavior of these blocks. In fact, parameters can be seen as

an interface between the model internals and the outside world. Applications of block parameters
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include distributions for generating or servicing requests, defining routing in the network, or altering

behavior of individual modules.

Similarly to blocks, messages may have parameters too. Unlike the block parameters that are

used to configure the model, the message parameters are used solely for the internal purposes within

the model. For example, PERSIK relies on parameters to assign timestamps to the messages and to

pass information between the model blocks, such as the resource demand or the type of operation

to be carried out by the block. Values of message parameters can be set only by the model blocks

and cannot be defined from the outside.

A combination of parameters for all the modules define the configuration of the model (it is

important to emphasize that message parameters are not a part of the model configuration). Usually

the goal of an analyst is to study the behavior of the model across a range of different configurations.

This necessitates running the model with different values of modules’ parameters. To increase the

flexibility, OMNET++ physically separates the values of model parameters from the definition of

the model’s behavior and its structure. As a result, the PERSIK model consists of the following

parts:

� the behavior of the model is implemented in modules.

As a part of our work on PERSIK we developed a library of modules, which can be later

combined into the model of the parallel program. Most of these modules are simple modules

written using using C++. Remaining modules are the compound modules, which consist of a

number of interconnected simple PERSIK modules.

� the topology of the model defined using the set of .ned files.

.ned file is a textual file that contains the list of blocks in the model, their types, names of the

blocks (the name of the block is used as a unique identifier of the block within the model),

and connections between these blocks.

The PERSIK model includes one .ned file to describe the high-level model and a separate .ned

file to describe each working thread. These files are created separately for every model of the

program.

� the parameters of individual modules (blocks) in the model defined in the .ini file.

.ini file is the text file that contains the list of parameters in the ‘‘name = value’’ format,

where name is the full name of the model block concatenated with the name of the parameter.

Every PERSIK model has one .ini file that defines parameters of the model.

Such separation of the model’s functionality simplifies reuse of the blocks across different models.

More importantly, it also simplifies multiple runs of the same model in different configurations. In

this case the only part of the model that must be updated is the .ini file.
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4.2 The architecture of PERSIK models

We implemented PERSIK framework as a library of OMNET++ modules (blocks) and messages.

The majority of these blocks correspond to entities in formal model. For example, the queue is

represented as a queue block, while the cin CF is represented as a computation block in PERSIK.

Similarly, parameters of the formal model, such as the distribution of execution times Pτ
CPU for the

CF, correspond to parameters of corresponding PERSIK blocks.

PERSIK models generally follow the hierarchical modeling architecture outlined in the section 3.

The largest architectural difference between the formal models and PERSIK models is that PERSIK

models are not three-tiered but two-tiered. The upper-level PERSIK model is a queuing model of

the system. It also contains models of locks, I/O subsystem, and the CPU/Scheduler model, which

occupy the lower-level tier of our formal model. The lower-level PERSIK model implements the

models of working threads, which correspond to the middle tier of the formal model. Upper-level

and lower-level PERSIK models are composed of different classes of blocks.

The architectural differences between the formal and PERSIK models intend to facilitate the

actual implementation of the models. These differences are of a cosmetic nature and do not violate

the semantics of our formal model. Namely, there is no direct interaction between the PERSIK

blocks in the queuing model and blocks that represent locks, OS and hardware. Instead, the upper-

level PERSIK model calls the models of working threads, and these thread models call blocks which

simulate locks, I/O subsystem and CPU/Scheduler.

Such strict correspondence between elements of the formal model and blocks and parameters of

the PERSIK model greatly simplifies translation of the formal model into the PERSIK model.

4.2.1 Upper-level PERSIK models

The upper-level PERSIK model creates requests, queues them, and sends them to low-level thread

models for processing. The upper-level model contains blocks that represent request sources, sinks,

queues, threads, and program-wide locks (barriers, critical sections etc). The upper-level model

also contains blocks simulating the I/O subsystem and the thread scheduler. The complete list of

upper-level PERSIK blocks and their properties is provided in the Table 4.2, while Table 4.1 lists

properties common for all PERSIK blocks.

As in the formal model, each thread in the upper-level PERSIK model is represented as a separate

block. For example, if the program has 8 working threads, these correspond to 8 thread blocks in

a PERSIK model. In the upper-level model threads appear as ”black boxes” without any notion

of their internal structure. Instead, thread blocks are implemented as the compound OMNET++

modules.

The request flow is simulated by a request message flowing from one block to another. The

request messages normally correspond to tasks in the real-life program.

The Figure 4.1 depicts the high-level model of the Tornado web server [5] with 1 working thread.

The internal structure and the behavior of the Tornado follows the behavior of the example web



36

server described in the Section 3 (see Figure 3.1). Requests in this model correspond to the HTTP

requests, and arrows depict flow of the requests between the model’s blocks. Three blocks on the

upper left of the figure denote OS and hardware models: diskIOModule block is the model of the

disk I/O subsystem, cpuScheduler is the model of the thread scheduler, and osLimits simulates

OS limitations (see the section 4.2.3 below).

This high-level model contains models of three threads. The main 4 block is the model of the main

thread that launches the remaining threads, the ListenThread 5 block is the model of the accept

thread, and the ServerThread0 0 is the model of the working thread. connectionSrc generates

incoming network connections and connectionQueue routes them to the accept thread. These two

blocks represent to the networking components of the operating system. The taskQueue simulates

the request queue in the web server.

Figure 4.1: The high-level PERSIK model of the Tornado

4.2.2 Thread models

Thread internals are simulated with the low-level thread model. The thread model implements

a probabilistic call graph (PCG) for a given thread. Each code fragment si ∈ S of the PCG is

represented by a corresponding block in the thread model. Computation, I/O, and synchronization

CFs are represented by the blocks of corresponding types. The complete list of blocks allowed in

PERSIK thread models is provided in the Table 4.3.

Execution flow in the thread model is simulated by a computation flow message (CFM). Upon

start of the simulation the thread model creates the CFM using the sourceOnce block and sends it

to the initial block that represents the s0 CF. Then the computation flow message starts traveling

through the call graph of the thread, which simulates the execution of the actual thread. The flow

of the CFM is normally controlled by the dispatch blocks that implement probabilities δ. In rare

occasions (see Section 5.4.2) the control flow is controlled by loop blocks that explicitly simulate

loops in the program’s code.

In addition to blocks that represent code fragments, thread models also contain service blocks.

One class of service blocks is the stopper block, which stops the simulation after receiving the

predefined number of CFMs. Another class of service blocks are setTimer and readTimer blocks,
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which are responsible for collecting results. The collecting of prediction results is described in the

Section 4.2.4 in more detail.

To pass the request message in and out of the thread we rely on a reader and writer blocks

that implement cin, cout actions of our formal model.

Once the CFM reaches the reader block, that block attempts to fetch the request message from

the queue in the upper-level model. If no request is available, the reader block delays the CFM

until the request becomes available, or until a timeout is passed. This behavior of the reader block

correspond to a locking behavior in the producer-consumer pattern.

The timeout is specified using a configuration parameter of the model. If the queue is still empty

after the timeout, the reader block reroutes the the CFM. This behavior allows modeling the cases

of the determinism in the multithreaded program.

Similarly, when the CFM reaches the writer block, the writer outputs a request message to

the queue of a high-level model. If the queue cannot accept the request (e.g. it is already full), the

writer will wait until the queue becomes available again. If the queue is still not available after a

specified timeout, the block will reroute the CFM.

The reader can attach the retrieved request message to the CFM. Correspondingly, when such

CFM reaches the writer block, writer outputs the request message to the upper-level model. This

allows collecting statistics on requests flowing between the thread boundaries.

reader and writer blocks can access multiple queues. If more that one queue can be accessed

at the moment, the actual queue will be chosen according to one of the predefined policies. Namely,

the queue may be choosen randomly, by the round-robin principle, or according to the pre-defined

priority for the queues. The list of the queues that can be accessed by the block and a specification

of a policy for accessing these queues are defined by configuration parameters.

Depending on the values of configuration parameters, reader and writer blocks may exhibit a

variety of different behaviors. Such flexibility allows PERSIK to simulate a variety of different queue

types.

The Figure 4.2 shows thread models for the Tornado. Here arrows depict the flow of the CFM

between the threads’ code blocks.

The right part of the figure depicts the model of the accept thread (ListenThread 5 in the

upper-level model). Upon the start of the model the start block generates the CFM and sends

it to the accept initial block. accept is the socket accept block that corresponds to the

call to the ServerSocket.accept() method. accept retrieves the incoming request from the

connectionQueue queue. prepareRequest represents the code that performs initial processing

of the request; the putRequest is the cout block that emits the request to the taskQueue queue in

the upper-level model. The startTimer requestStart block is the setTimer block used to collect

performance measurements.

The left part depicts the model of the working thread (ServerThread0 0 in the upper-level

model). The fetchRequest is the initial block; it is an sin block that fetches requests from the

taskQueue queue. Once the request is fetched, the CFM is routed to the prepareStat block, which
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simulates computations related to initial processing of request. Then the the CFM reaches the the

doStat block. doStat is a disk I/O block; it simulates the call to the the filesystem metadata that

verifies if the requested page exists. If the page does not exist, the dispatchStat dispatch block

reroutes CFM back to the fetchRequest block. Otherwise, the loop consisting of doFileRead,

processFileBlock, and dispatchRead blocks simulates reading the file in chunks and sending its

contents back to the client. Blocks stopTimer Success and stopTimer NoFile are the readTimer

blocks that record the response time for the request.

Figure 4.2: PERSIK models of the Tornado threads: working (left) and accept thread (right).

4.2.3 Simulating Delays in Thread Execution

As the CFM travels through the thread model, various blocks can delay its passage, thus simulating

delays τ that occur during the thread execution. These delays occur because of CPU-intense com-

putations, I/O activities, or when execution of the thread is blocked by synchronization mechanisms

such as critical sections or semaphores. As it was mentioned in the Section 3, the duration of these

delays depend on resource contention and must be carefully modeled.

To simulate delays caused by resource contention two groups of blocks are employed: caller blocks

and central blocks. Different types of caller and central blocks are used to simulate different causes

of delays. However, all of them interact according to the same principle.

Caller blocks are parts of the thread model. Examples of these blocks are computation blocks,

I/O blocks, and synchronization blocks which simulate execution of cCPU , cIO, and csync CFs

correspondingly. Each caller block contains the reference to the corresponding central block. When

the caller block receives a CFM, it delays that CFM message. Next, it forms a separate inter-layer

message. The exact class of that inter-layer message depends on the type of the caller/central block

pair. The parameters of the inter-layer message are sampled from the PΠ – distribution of parameters

for the caller block. That inter-layer message is directly sent to the corresponding central block.
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Central blocks are parts of a upper-level PERSIK model. However, they correspond to the

entities of the lower-level formal model. Central blocks implement the model of CPU and thread

scheduler (represented by the CPUScheduler block), the model of Disk I/O subsystem (the DiskIO

block), and the models of locks l1, ..., lm, which are implemented by different block classes.

Once the central block receives the inter-layer message from the caller block, it updates the

internal state of the model Q(t). Then, it uses message parameters and the Q(t) to simulate the

delay τ . Once the delay has passed, the central block sends the inter-layer message back the caller

block. The caller block in turn sends the original CFM to the next block in the thread model.

Simulating synchronization delays

To simulate high-level synchronization primitives in the program the modeling framework em-

ploys a range of different block classes. Every lock in the program is represented by a corresponding

central block. Parameters of the central block correspond to properties of the lock. For example,

the barrier block has one parameter – the capacity of the barrier. Correspondingly, caller blocks

represent calls to these locks.

Every type of synchronization primitive is represented by different central/caller block pair.

For example, the barrier is represented by a SyncBarrier central block; calls to the barrier are

represented by SyncBarrier await caller blocks.

Central blocks explicitly simulate the functioning of the lock. When the caller block sends the

synchronization message to the central block, the central block updates its internal state accordingly

and makes a decision if the calling thread should block or not. If the thread should not block,

the central block sends the synchronization message back to the caller immediately. However, if

the central block decides that the calling thread must wait, it delays sending the synchronization

message back until the caller can be unblocked.

Simulating computations

To simulate delays that occur due to CPU-intense computations the model uses a combination

of computation blocks (caller blocks) and a CPU/Scheduler block (a central block). In addition to

simulating delays, the CPU/Scheduler also measures CPU utilization by the program.

When the computation block sends the computation message to the CPU/Scheduler block, it

passes a τCPU as a parameter of that message. τCPU is sampled from the PΠ
CPU for the corresponding

code fragment. The distribution P
Π
CPU is normally represented as a sample of execution times for a

code fragment, obtained from running the instrumented version of the actual program. The sample

is stored as an array, and the particular value of the τCPU is sampled from the random position of

that array. Alternatively, the values of the τCPU can be retrieved from the array sequentially, which

allows to “replay” the execution trace of the actual program.

The CPU/Scheduler block simulates the CPU with the given number of cores and the round-

robin OS thread scheduler with equal priority of all the threads. The detailed description of the

algorithm used by the CPU/Scheduler block is described in the section 3.4.1.

At the high-level model shown at the figure 6.20 the CPU/Scheduler central block is represented

by the cpuScheduler block. Thread models depicted at the Figure 6.20 contain few computation
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blocks that call cpuScheduler, e.g. prepareRequest, prepareStat, and processFileBlock.

Simulating Disk I/O

To simulate delays caused by disk I/O operations the model uses a combination of the DiskIO-

Operation caller block and the DiskIOModule central block. DiskIOModule simulates the disk I/O

subsystem of a computer and also measures disk utilization.

DiskIOOperation represents a disk I/O fragment. When the DiskIOOperation block receives the

CFM, it retrieves the number k and parameters of the low-level I/O messages {dio1, ..., diok} from

the distribution P
Π
disk. In the case of the cache hit the k = 0, and the DiskIOOperation immediately

sends the CFM to the next block. Otherwise the DiskIOOperation sends k disk I/O messages

to the DiskIOModule block. Each message represents a low-level I/O request dioi, i ∈ (1, ..., k).

These messages are sent to the DiskIOModule sequentially. If the message represents a synchronous

operation, the DiskIOOperation waits for its completion before sending the next disk I/O message.

Otherwise it sends the next disk I/O message to the DiskIOModule immediately.

The DiskIOModule combines models of the I/O scheduler and the hard drive. The detailed

description of the algorithm used by the CPU/Scheduler block was described in the section 3.4.2.

The high-level model shown at the figure 6.20 contains the diskIOModule DiskIOModule central

block. The model of the working thread depicted at the Figure 6.20 contains two DiskIOOperation

blocks: the doStat that simulates the metadata read operation, and the doFileRead that simulates

the regular read operation.

Simulating limits imposed by the OS

OS can impose a variety of limits on resources available to the program. This includes the

maximum number of open file descriptors available for a thread, the maximum amount of memory

available, or the CPU time. In certain scenarios these limits can severely affect the program’s

behavior and can be viewed as additional parameters of the system.

For example, an overloaded web server may exhaust the limit of the available file descriptors. In

this case the server will cancel the processing the request immediately and return the error message

to the user. In comparison to the requests that have been processed successfully, canceled requests

will have significantly lower response time. However, failed requests may become a severe violation

of the service agreement. This example demonstrates that detection of configurations that lead to

violating of the OS limits can be an important problem.

We model the resource limits imposed by the OS using a combination of a central block and caller

blocks. A code fragment that attempts to acquire a resource is represented by the OSCallMayFail

caller block. When the CFM arrives to the caller block, the block calls an OSLimits central block

and requests to allocate an instance of corresponding resource.

Upon receiving the request from OSCallMayFail the OSLimits updates usage information for a

particular resource and notifies the caller if the resource was granted or not. In case if the resource

cannot be allocated the caller may perform following actions:

� stop the simulation after a certain number of resource request fails;

� reroute the CFM message to a different destination block;
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� log the fact of the resource exhaustion for the future analysis.

It is important to notify the OSLimits when the program no longer uses the particular resource.

We use the OSCallRegular block for this purpose. This block calls the OSLimits central block when

the program frees the resource.

4.2.4 Collection of performance metrics

In order to be useful the simulation framework must collect and output predicted values of perfor-

mance metrics. Although OMNET++ offers some capabilities for recording results of simulation,

exporting these results for further analysis (e.g. with MATLAB) proved to be troublesome. This

motivated us to develop our own tools for collecting and recording performance metrics from the

model of the program. In particular, PERSIK records following performance metrics:

� performance metrics for individual model blocks;

� performance metrics for groups of model blocks;

� performance metrics for requests;

� utilization of computational resources;

� the number of requests in the model’s queues.

Values of performance metrics are recorded in text files in the .csv format. Each metric is recorded

in the separate .csv file, which facilitates further analysis of simulation results.

During its execution the model can generate the vast amounts of information, which can consume

a significant amount of storage space and can noticeably slow down the execution of the model. Thus

it is essential to collect only those performance metrics that are necessary for performance analysis.

Selecting the performance metrics that must be collected can be done through the configuration file

of the model.

Collecting performance for individual model blocks

The only performance metric we collect for individual model blocks is its execution time (the

amount of time required for the computer system being simulated to execute that block). This value

of the metric is calculated as a difference between the receival of the CFM and its transmission to

the next block. Execution time is collected for every execution of the block, and the block writes this

data into the .csv file. The name of the .csv file and path to that file are specified with parameters

of the block. Predicting the block execution time is an important tool for detecting bottlenecks in

the system.

Collecting performance for groups of model blocks

PERSIK allows collecting execution time for groups of the blocks that are executed sequentially

by a certain thread. The time is calculated as a difference between the start of the execution of the

first block in the sequence and the end of execution of the last block. This, for example, allows to

measure the amount of time require for the thread to process the request.
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Measuring the execution time is done by setting and reading the timestamp to the CFM. Multiple

timestamps can be set for the same CFM, where each timestamp is identified by a separate numeric

identifier (ID). This allows measuring execution times for different groups of blocks in the same

thread.

Setting and reading timestamps requires inserting additional blocks into the model. In particular,

timestamps are set by the setTimer model block and read by the readTimer block. Parameters of

the setTimer are the ID of the timestamp that must be set. Parameters of the readTimer are the

ID of the timestamp that should be read and the name of the .csv file where measurements should

be written.

The groups of blocks for which the execution time should be collected may not necessary form

the straight sequence of nodes in the program’s probabilistic call graph (PCG). This sequence of

blocks may contain loops and/or branches. For example, the sequence may have the same starting

block but multiple ending blocks, thus representing a tree-like structure in the program’s PCG. An

example of such sequence, which simulates processing of the request by the Tornado web server, is

depicted at the Figure 6.20 (left). After reading the task from the queue (simulated by the block

fetchRequest) the control flow can follow two distinct routes: the first one one leads to the block

sockClose NoFile (simulates the request to the non-existing document); and the second one leading

to the block sockClose Success (the correct HTTP request).

To record performance for the group of blocks with different exit nodes, separate readTimer

blocks may be inserted before each exit node. Similarly, if the group has multiple starting nodes,

separate setTimer blocks may be inserted before each starting node. It is essential that all these

blocks use the same timestamp ID.

Collecting performance for requests

Performance metrics for requests include the response time R, which is the amount of time

required for the system to process the request, and the throughput T , which is the number of

requests processed in a time unit.

As the request is being processed, it travels through the boundaries of the working threads.

Namely, one thread may receive the request, create a task object that represents the request in

the terms of a program, and place it in a queue. Another thread reads the task from the queue

and processes it. As a result, collecting performance metrics for requests is more challenging then

collecting performance for an individual block or for a group of blocks.

To collect performance information for individual requests PERSIK relies on a combination of

reader/writer blocks and timestamps. As the reader block reads the request from one queue, it

attaches the request message to the CFM. Subsequently, the writer blocks detaches the previously

attached request message from the CFM and sends it to another queue. The setTimer block can

timestamp the request message, attached to the CFM. Correspondingly, the readTimer can read

the timestamp from the attached request message, and write it into the .csv file.

For an example, consider the Tornado model at the Figure 6.20. The block accept in the

accept thread simulates listening for the network connection. It fetches the request message from
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the connectionQueue in the upper-level model (see Figure 6.19) and attaches it to the CFM that

belongs to the model of the accept thread. The startTimer requestStart block timestamps the

attached request message. The putRequest outputs the timestamped request message to the task

queue of the web server (represented by the taskQueue in the upper model). The fetchRequest

block of the Tornado working thread fetches that message from the queue, and attaches it to the

CFM that belongs to the model of the working thread. As the working thread finishes processing

the request, one of the blocks stopTimer Success or stopTimer NoFile reads the timestamp of the

request message and outputs it to the file.

The timestamp of the request message explicitly represents the response time R. By dividing

the number of processed requests by the time difference between the processing of the first and last

requests one may calculate the throughput T of the program.

Utilization of computational resources

Resource utilization is one of the most important performance metrics of a system. For certain

applications, like scientific computing programs, high resource utilization is desirable in order to use

the hardware efficiently. At the same time, a full utilization of a certain resource by the server may

be the sign of reaching the state of saturation, where further increase in the workload intensity will

result in dramatic increases in the response time.

PERSIK collects utilization of the CPU and the hard drive. This data is collected by CPUSched-

uler and DiskIOModule central blocks, which simulate the CPU and hard drive correspondingly.

Hard drive utilization is reported after each disk I/O operation. CPU operations are normally much

shorter and frequent, thus CPU utilization is reported every second.

We do not currently collect the level of contention for the program’s locks (the ratio between

the time when the lock is contended and the total running time). This functionality may be easily

implemented in future versions of the PERSIK framework.

The number of requests in the program’s queues

Length of queues is another important metrics of the queuing system’s performance. In PERSIK

each queue block reports the length of the associated queue. The length of the queue is reported

after each read or write operation.

Table 4.1: Properties common for all PERSIK blocks

Property name Description

string statisticsDir the path to the directory, where statistics for this block will be collected

string statisticsEnabled a comma-separated list of statistics that will be collected for this block.

Each block defines its own set of statistics that can be collected
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Table 4.2: PERSIK high-level model blocks and their properties

CPUScheduler: the model of the OS thread scheduler and the CPU

Property name Description

int CPUCount the number of the CPU cores

double quantumLength the distribution of time quantas provided by the scheduler for each thread.

Not used if quantumLength FromSample parameter is specified

string quantumLength FromSample the name of the file, which contains the sample of the time quantas

string quantumLength SampleType the type of the time quantas sample. ”random”: the time quantas will be

sampled from the sample randomly. ”trace”: the quantas will be retrieved

sequentially

DiskIOModule: the model of the I/O subsystem. Includes models of the OS I/O scheduler

and the hard drive

string pathToSample specifies the path to the file that contains the distribution

P (τdisk|dio type, dio rate, dio parallel)

OSLimits: simulates limitations imposed by the OS, such as the maximum number of open

files or the maximum number of network connections

int ulimitDescriptors the maximum number of open file descriptors

int ulimitSockets the maximum number of open network connections

int stopAfterFailureCt the maximum number of failed OS calls after which the simulation will be

stopped

double stopAfterFailurePerc the percentage of the failed OS calls after which the simulation will be

stopped

SyncBarrier: the model of a barrier

int capacity the capacity of the barrier. The barrier will be lifted once the number of

waiting threads reaches the capacity

CriticalSection: the model of a mutex
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No parameters

PassiveQueue: represents a queue or a buffer in the program

int capacity the maximum capacity of the queue. -1 denotes an infinite capacity

bool fifo if true, the queue will be a FIFO (first-in-first-out) queue. Otherwise the

queue will be a LIFO queue

bool directAccess if true, the reader can access the queue by the means of a direct call.

Otherwise the requests will be fetched through the in and out gates

Source: generates requests

int numJobs the total number of requests to be generated during the course of simula-

tion

volatile double interArrivalTime the distribution of interarrival times for requests. Not used if interArrival-

Time FromSample is defined

string interArrivalTime FromSample the name of the file, which contains the sample of interarrival times

string interArrivalTime SampleType the type of the interarrival times sample. Allowed values: ”random” or

”trace”

string interArrivalTime ColumnNo the column number in the interArrivalTime SampleType file that specifies

the interarrival time

double stopTime the time when the module will send out its last request. -1 denotes no

limit on time

Sink: used to absorb the requests that depart the model

No parameters

Table 4.3: PERSIK thread model blocks and their properties

SourceOnce: generates a single CFM for a thread upon the start of the model

Property name Description
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int TID the ID of the thread for which the CFM is generated

DispatchBlock: probabilistically reroutes the CFM in the thread model from a single

input gate to one of the output gates

string probFileName the full path to the file that denotes probabilities of transition. Each line

in the file contains a probablity of routing the CFM to the corresponding

gate

Loop: executes the given blocks (a loop body) in a loop

volatile int iterationCount specifies the distribution of iterations counts for the loop

string iterationCount FromSample the full path to the file that provides a sample of the iterations count

int iterationCount ColumnNo the column number in the iterationCount FromSample file that specifies

the iterations count

string iterationCount SampleType the type of the sample specified in the iterationCount FromSample. Al-

lowed values: ”random” or ”trace”

Delay: simulates a time delay in the thread

volatile double delayTime explicitly specifies the distribution of delay times. Not used if delayTime -

FromSample parameter is specified

string delayTime FromSample the full path to the file that provides the sample of delay times for this

block

int delayTime ColumnNo the column number in the delayTime FromSample file that specifies the

delay times sample

string delayTime SampleType the type of the sample specified in the delayTime FromSample. Allowed

values: ”random” or ”trace”

ComputBlock: simulates CPU-bound computations. Corresponds to a computation

CF in a formal thread model

string CPUBlockName the full OMNET++ name of the CPUScheduler block that will be called

by this block

volatile double computationTime explicitly specifies the distribution of CPU times for this block. Not used

if computationTime FromSample parameter is specified
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string computationTime FromSample the full path to the file that provides the sample of CPU times for this

block

int computationTime ColumnNo the column number in the computationTime FromSample file that speci-

fies the CPU time sample

string computationTime SampleType the type of the CPU time sample specified in the computationTime From-

Sample. Allowed values: ”random” or ”trace”

DiskIOBlock: simulates a single elementary I/O operation. I/O operation can be

either read, metadata read, or readahead

string diskIOModulePath the full OMNET++ name of the DiskIOModule block, which implements

the model of disk I/O subsystem and will be called by this block

DiskIOOperation: simulates an I/O CF in the thread. A single execution of DiskIO-

Operation can initiate an arbitrary number of read, metadata read, or readahead operations.

This is a complex block that contains three DiskIOBlock basic blocks and three Loop blocks.

Each DiskIOBlock simulates read, metadata read, or readahead operation; while the corre-

sponding Loop block allows repeating this operation a given number of times

string diskIOModuleBlockPath the full OMNET++ name of the DiskIOModule block, which implements

the model of disk I/O subsystem and will be called by this block

volatile int iterationCountRead the distribution of the number of read I/O operations to be performed

by this block. Not used if iterationCountRead FromSample parameter is

defined

string iterationCountRead FromSample the full path to the file that provides the sample for the number of read

I/O operations

int iterationCountRead ColumnNo the column number in the iterationCountRead FromSample file that spec-

ifies the number of read I/O operations

volatile int dataAmountReadOp the distribution of data amounts to be transferred by the read I/O oper-

ation. Not used if dataAmountReadOp FromSample parameter is defined

string dataAmountReadOp FromSample the full path to the file that provides the sample for the amount of data

transferred by the read I/O operations

int dataAmountReadOp ColumnNo the column number in the dataAmountReadOp FromSample file that spec-

ifies the sample of data amounts

volatile int iterationCountRA parameters that denote the number and properties of readahead opera-

tions. The semantics of these parameters is same as for parameters of

read operations

string dataAmountRAOp FromSample

int iterationCountRA ColumnNo

volatile int dataAmountRAOp

string dataAmountReadOp FromSample

int dataAmountReadOp ColumnNo
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volatile int iterationCountMetadata parameters that denote the number and properties of readahead opera-

tions. The semantics of these parameters is same as for parameters of

read operations

string iterationCountMetadata -

FromSample

int iterationCountMetadata ColumnNo

volatile int dataAmountMetadataOp

string dataAmountMetadataOp FromSample

int dataAmountMetadataOp ColumnNo

OSCallMayFail: simulates an OS call that may fail, such as opening the file

bool rerouteOnFailure if true, than the CFM will be rerouted to the ”outFailure” output gate

in the case of a call failure. Otherwise the CFM will be rerouted to the

”out” gate

string OSBlockName the full OMNET++ name of the OSLimits block, which simulates limita-

tions imposed by the OS

string OSCallName the full OMNET++ name of the system call simulated by this block

OSCallRegular: simulates an OS call that do not fail, such as closing the file

string OSBlockName the full OMNET++ name of the OSLimits block, which simulates limita-

tions imposed by the OS

string OSCallName the full OMNET++ name of the system call simulated by this block

CritSection enter: simulates a ”mutex.enter” operation

string syncServerName the full OMNET++ name of the server block, which implements the model

of the mutex itself and will be called by this block

CritSection leave: simulates a ”mutex.exit” operation

string syncServerName the full OMNET++ name of the server block, which implements the model

of the mutex itself and will be called by this block

SyncBarrier await: simulates a ”barrier.await” operation
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string syncServerName the full OMNET++ name of the server block, which implements the model

of the mutex itself and will be called by this block

QueueReaderSimple: simulates fetching the request from the queue (a simple model).

The block simulates only fetching the request from the queue; computations pertaining to

this operation are not simulated. QueueReaderSimple incurs less simulation overhead, thus

we recommend using it instead of QueueReaderDetailed unless a significant drop in accuracy

is observed

string queueNames full OMNET++ names of the input queues from which the request can be

fetched

string fetchingAlgorithmIn denotes the algorithm used to select a queue from which the request will

be fetched. This parameter is used only if there are multiple queues that

contain requests. Allowed values are ”priority”, ”random”, ”roundRobin”,

and ”longestQueue”

bool doBlockIfQueueEmpty if this property is set to true, then the reader will delay the propagation of

the CFM if all the input queues contains no requests. The reader will wait

until some requests will appear in the queue or until the timeout will pass

(whatever happens first). If the block will be able to fetch the request be-

fore the timeout expires, then the CFM will be rerouted to the outFetched

gate. Otherwise the CFM will be rerouted to the outNotFetched gate

string waitTime FromSample the full path to the file that provides the sample of timeout

string waitTime SampleType the type of the sample specified by the waitTime FromSample. Allowed

values: ”random” or ”trace”

bool doKeepJob if true, then the fetched request will be attached to the CFM. Otherwise

the request will be discarded

QueueReaderDetailed: simulates fetching the request from the queue (a detailed

model). Fetching the request involves locking the queue mutex, performing CPU computa-

tions associated with the retrieval operation, releasing the mutex, and fetching a request from

the queue. QueueReaderDetailed block allows for more accurate modeling of queue opera-

tions, but incurs a significant overhead during the simulation. Thus it is recommended to use

QueueReaderSimple block to simulate queuing operations whenever possible. QueueRead-

erDetailed should be used only if QueueReaderSimple results in an unacceptable decrease

in the prediction accuracy. Parameters of this block are a the superset of parameters of the

QueueReaderDetailed block

string queueNames see QueueReaderSimple

string fetchingAlgorithmIn see QueueReaderSimple

bool doBlockIfQueueEmpty see QueueReaderSimple
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string waitTime FromSample see QueueReaderSimple

string waitTime SampleType see QueueReaderSimple

bool doKeepJob see QueueReaderSimple

string lockName the full OMNET++ name of the CritSection block associated with the

queue

string CPUBlockName the full OMNET++ name of the CPUScheduler block that will be used

to simulate computations

volatile double computationTime specifies the distribution of CPU times required to fetch the request from

the queue. Not used if computationTime FromSample parameter is spec-

ified

string computationTime FromSample the full path to the file that provides a sample of CPU time

int computationTime ColumnNo the column number in the computationTime FromSample file that spec-

ifies the CPU time

string computationTime SampleType the type of the sample specified by the computationTime FromSample.

Allowed values: ”random” or ”trace”

QueueWriterSimple: simulates sending a request to the queue (a simple model). The

block simulates only sending the request to the queue; computations pertaining to this

operation are not simulated. QueueWriterSimple incurs less simulation overhead, thus we

recommend using it instead of QueueWriterDetailed unless a significant drop in accuracy is

observed

string queueNames full OMNET++ names of the queues to which the request can be sent

string sendingAlgorithm denotes the algorithm used to decide to which queue the request should be

sent to. Allowed values are ”priority”, ”random”, ”roundRobin”, ”short-

estQueue”, and ”longestQueue”

bool doGenerateJob if this property is set to true, then the writer will generate a new job and

send it to the queue. Otherwise it will send the job that was attached to

the CFM

QueueWriterDetailed: simulates sending a request to the queue (a detailed model).

Sending the request involves locking the queue mutex, performing CPU comutations that

represent a sending operation, releasing the mutex, and sending the request to the queue.

Similarly to QueueReaderDetailed, this block should be used only if QueueWriterSimple

block results in a significant decrease in the model accuracy. Parameters of this block are a

the superset of parameters of the QueueWriterSimple block

string queueNames see QueueWriterSimple

string sendingAlgorithm see QueueWriterSimple
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bool doGenerateJob see QueueWriterSimple

string lockName the full OMNET++ name of the CritSection block associated with the

queue

string jobName the name of the newly created request. This parameter is used only if

doGenerateJob is set to true

string CPUBlockName the full OMNET++ name of the CPUScheduler block that will be used

to simulate computations

volatile double computationTime specifies the distribution of CPU times required to fetch the request from

the queue. Not used if computationTime FromSample parameter is spec-

ified

string computationTime FromSample the full path to the file that provides a sample of CPU time

int computationTime ColumnNo the column number in the computationTime FromSample file that spec-

ifies the CPU time

string computationTime SampleType the type of the sample specified by the computationTime FromSample.

Allowed values: ”random” or ”trace”

Socket accept: simulates accepting a network connection. The block fetches a request

that represents an incoming connection from the network connection queue, and then at-

tempts to open the file descriptor for it. If the open operation was successfull, the CFM will

be rerouted to the outSuccess gate. Otherwise the request may be sent back to a network

connetion queue, and the CFM will be rerouted to the outFailure gate. Socket accept is

a complex block that includes the QueueReaderSimple, OSCallMayFail, and QueueWriter-

Simple blocks

string connectionQueueName the full OMNET++ name of the network connection queue

string OSBlockName the full OMNET++ name of the OSLimits block

bool rerouteOnFailure if this parameter is set to true, then upon a failed OS call the connection

request will be sent back to the network connection queue, and the CFM

will be rerouted to the outFailure gate

SetTimer: the block used to timestamp a CFM or a request message

int timerIdx the index of the timer used to timestamp the message

bool stampInternalJob if set to true, then the request message attached to the CFM will be

timestamped. Otherwise the CFM itself will be timestamped

ReadTimer: reads the timestamp from the CFM or from the request message and

writes the value of the timestamp to the log
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int timerIdx index of the timer used to timestamp the message

bool readInternalJob if set to true, then the timestamp will be read from the request message

attached to the CFM. Otherwise the timestamp of the CFM itself will be

read

Stopper: stops the simulation after receiving a given number of CFMs

int stepsBeforeStop the number of CFMs after which the simulation will be stopped

4.3 Verification of performance models

To test our approach for performance prediction we manually built models of two multithreaded

programs. These programs are different in their purpose, architecture, behavior, and programming

languages and thus can be representative for a larger class of applications. The first program is

Galaxy, a CPU-bound scientific computing application implemented in a Java programming lan-

guage. The second program is tinyhttpd, a disk I/O-bound web server implemented in C language.

These programs used java.util.concurrent and pthreads frameworks for implementing parallel

programming correspondingly. If necessary, PERSIK can be extended to support different frame-

works for parallel programming, such as MPI.

Manually building models of even small and relatively simple multithreaded programs proved

to be time-consuming and error-prone activity. However, at this point we were more interesting

at verifying the overall validity of our approach to performance prediction and the accuracy of the

resulting models.

We utilized a mixed approach towards building models of these programs. We manually analyzed

the program at the high level to establish its structure and semantics. The manual analysis of the

program involved following steps:

� studying the code of the program in order to understand its structure and behavior;

� identification of threads tr1, ..., trm, thread pools Tp1, ..., T pk, and queues q1, ..., qn in the

program and semantics of their interaction. This allows to determine the general sequence of

operations that happen during the request processing and provides information necessary for

constructing the high-level queuing model of the program;

� identifying locks L in the program and determining their parameters Πlock;

� discovering code fragments s1...sn in the program’s source and determining their classes;



53

� instrumenting the program by inserting probes at the borders of individual code fragments.

Instrumentation is done at the source level. The instrumentation library is statically linked

to the program and then probes, which are implemented as calls to the library functions, are

inserted into the program’s source code.

� creating the program’s schema. The schema includes the list of all the CFs of the program and

corresponding probe IDs. The creation of schema is necessary for the upcoming automated

analysis of the program.

The instrumented program is executed in a single configuration, where its behavior and demand

for computational resources are representative for a larger number of configurations. The instrumen-

tation generates an execution trace for the program, which is analyzed automatically. The automatic

analysis of the program’s trace yields following information:

� the probabilistic call graphs for the program’s threads;

� the CPU times PΠ
CPU for each computation CF;

� the total amount of time required to execute each code fragment (wallclock time) and the

request processing time R. These metrics are used for model debugging and analysis of simu-

lation results.

Data obtained from the instrumented program do not include information on I/O operations

initiated by the program. Unfortunately, this information cannot be completed in the user mode.

To collect data on I/O operations we instrumented the Linux I/O scheduler using the SystemTap

framework [6]. The resulting log of low-level kernel I/O operations allowed us to obtain parameters

P
Π
IO of I/O code fragments.

Once all the necessary information was collected, we manually created PERSIK models of the

test programs.

In order to be useful, the model must predict performance accurately, and our primary concern

was the accuracy of prediction. To estimate accuracy of the model we ran the program in different

configurations and recorded actual performance of the program for each configuration. Afterwards

we simulated the program in the same configurations and recorded predicted performance. To obtain

reliable performance measurements we performed multiple runs of both the actual program and its

model in each configuration and used the mean values of measured and predicted performance

metrics.

Finally, we calculated relative error ε between mean values of measured and predicted perfor-

mance metrics as

ε =
|measured− predicted|

measured
The higher is the relative error the worse is the accuracy of prediction. For the ideal model that

predicts the program’s performance without any errors ε → 0.

All our experiments were conducted on a PC equipped with an Intel Q6600 quad-core 2.4 GHz

CPU, 4 GB RAM and 160 GB hard drive running under Ubuntu Linux 10.04 OS.
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4.3.1 Galaxy: the n-body simulator

Galaxy is a simple Java scientific computing application that simulates the gravitational interaction

of multiple celestial bodies. Although mostly used as an educational example, this program employs

a variety of synchronization techniques and is a good representative of a multithreaded scientific

application.

Galaxy uses a conventional approach to the problem of n-bodies simulation. It discretizes time

into small steps and calculates movement of objects during the each such step. To achieve good per-

formance, the Galaxy implements the Barnes-Hut [23] algorithm, which involves building an octree.

A single iteration of the Galaxy algorithm involves three major actions in a strict order: calculating

forces acting on bodies and updating bodies’ positions; rebuilding the octree; and checking bodies

for collisions. The length of each iteration can be viewed as a response time R and thus represents

the most important performance metric of the Galaxy.

Galaxy uses multiple thread pools to speed up computations. The first thread pool (”force

threads”) calculates forces and updates positions of the bodies, while the second thread pool (”colli-

sion threads”) detects body collisions. Thread pools communicate through two synchronized queues.

The ordering of operations is enforced by the main thread of the program, which uses barriers to

synchronize threads in thread pools. The main thread is also responsible for rebuilding the octree.

Both high-level and thread models of the Galaxy were built manually. Below we describe the

structure and semantics of these models in detail.

The high-level model of Galaxy in a configuration with one force thread and one collision thread

is shown at the Figure 4.3. Upon model initialization the task are created by the fillBodies

block, which sends them to the positionsQueue. positionsQueue and forcesQueue are queue

blocks that represent synchronized queues in the program. galaxy forcesthread1 and galaxy -

collisionthread1 blocks represent the force thread and the collision thread, while the galaxy -

mainthread block represents the main thread of the program.

Figure 4.3: A manually constructed model of the Galaxy (high-level)

Low-level thread models for the Galaxy threads are shown at the Figure 4.4. The model of

the main thread contains four blocks that call corresponding barrier blocks of the high-level model.

wakeForces await and wakeForcesDone await blocks are used to wake up/suspend force threads,
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while wakeCollisions await and wakeCollisionsDone await do same for the collision threads.

The octreeBuild computation block simulates rebuilding the octree.

The model of the force thread uses the queueForcesReader reader block to fetch tasks from

the forcesQueue. If the queue is empty, the control is immediately transferred to the readTimer

block, and force thread finishes its work for the current iteration of Galaxy. Otherwise, the control

is transferred to the the dispatchIfDeleted dispatch block, which simulates a check if the body

has been marked as collided with another body. If the collision has occured, the corresponding task

is deleted and the CFM is sent back to the queueForcesReader. Otherwise the CFM is sent to the

calcForcesPositions computation block that simulates calcuation of the net force acting on the

body. Next, the model outputs the task to the positionsQueue using the queueCollisionsWriter

writer block and attempts to fetch a new task from the forcesQueue. Once all the requests in the

forcesQueue have been processed, the thread uses the wakeForcesDone await caller block to notify

the main thread. Finally, wakeForces await block suspends the thread until it is waken up by the

the central thread during the next iteration.

The model of the collision thread appears to be the most complex of all the thread models since

it performs a lot of “housekeeping” operations in Galaxy. The overall execution flow of the collision

thread is similar to one of the forces thread. The queueCollisionsReader reader block fetches tasks

from the positionsQueue. If the queue is non-empty, the task representing the body is fetched. The

Galaxy verifies if the body has escaped out of the area of space that is being modeled (simulated

by the OctreeIntersects block), and the dispatchIfIntersects block simulates checking on the

result of previous computation. In if the body has escaped the corresponding task is deleted, and

the CFM is transferred back to the queueCollisionsReader block. The collide block simulates

the collision check itself. The sequence of critSectionCollision enter, processCollision, and

critSectionCollision exit blocks simulates the processing of the collision by the thread, which

involves merging the first of the collided objects with the second one, and marking the second object

for deletion. Finally, the queueForcesWriter block outputs the task representing the object into

the forcesQueue.

To define parameters for the low-level thread models we instrumented the Galaxy code with

29 probes and ran it in the configuration with 2 force threads and 2 collision threads. In these

experiments the probability of collision was 1.01 ∗ 10−5, the mean value of τCPU (octreeBuild) =

5.40 ∗ 10−3 sec, and τCPU (calcForcesPositions) = 4.33 ∗ 10−5 sec.

We used the model to predict the iteration length of the Galaxy in each configuration. The

comparison of actual and predicted iteration lengths is shown at the Figure 4.5.

The relative error for the iteration length varies in ε ∈ (0.002, 0.179) depending on the program

configuration. The average error measured across all the configurations is ε = 0.073, which is

comparable to statistical prediction models [64], [37]. Relative errors for all the configurations are

listed in the Table 4.4.

These results convince us that the model predicts iteration length of Galaxy with reasonable

accuracy. Furthermore, the model locates those configurations that result in the high performance
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Figure 4.4: Manually constructed models of Galaxy threads. Left: the model of the main thread.
Center: the model of the force thread. Right: the model of the collision thread.

Table 4.4: Relative errors for predicting the Galaxy iteration length
Num.

collision The number of force threads
threads

1 2 4 6 8 12 16
1 0.054 0.161 0.084 0.067 0.110 0.074 0.111
2 0.155 0.102 0.018 0.007 0.038 0.028 0.005
4 0.179 0.132 0.086 0.072 0.056 0.048 0.076
6 0.151 0.115 0.090 0.067 0.042 0.059 0.054
8 0.143 0.126 0.075 0.051 0.050 0.036 0.062

12 0.174 0.122 0.069 0.057 0.036 0.058 0.054
16 0.033 0.105 0.052 0.014 0.053 0.069 0.070

of the program. In particular, it correctly points that the number of force processing threads must

be >= 4 (which equals to the number of available CPU cores), while the number of collision threads

has no significant impact on Galaxy performance.

Table 4.5 provides the predicted CPU utilization values for the Galaxy on the test system averaged

over the whole run (value of 100% denotes a full utilization of a single CPU core). Note that on

average Galaxy never fully utilizes all four CPU cores. Although force calculations and collision

detections are prefectly parallelizable and can utilize all the CPU cores, rebuilding the octree is not

a parallelizable operation. It is executed only by a main thread, which can use only a single CPU

core at a time. Information on CPU utilization can be used to improve the Galaxy algorithm and

further tune configuration options of the program.

4.3.2 tinyhttpd: the web server

Predicting performance of the web server is a more complex task since it involves simulating not

only computations, but also I/O operations. To verify the applicability of our approach to modeling

the performance of disk-heavy server applications we built the model of a tinyhttpd multithreaded
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Figure 4.5: Experimental results for the Galaxy

Table 4.5: Predicted average CPU utilization for the Galaxy, %
Num.

collision The number of force threads
threads

1 2 4 6 8 12 16
1 100.0 102.1 103.1 103.1 103.1 103.1 103.1
2 189.5 197.0 201.0 201.0 201.0 201.0 201.0
4 342.9 368.3 382.4 382.4 382.6 382.4 382.5
6 343.0 368.2 382.5 382.4 382.5 382.4 382.5
8 342.9 368.3 382.4 382.4 382.4 382.4 382.4

12 342.7 368.2 382.3 382.2 382.3 382.1 382.2
16 342.6 367.9 382.1 382.1 382.0 382.1 382.1

web server [7]. tinyhttpd is written on C programming language. It is simple and compact, which

facilitates its analysis, but at the same time it is representative for a larger class of server applications.

tinyhttpd relies on a pool of working threads to process HTTP requests. When the tinyhttpd

receives an incoming request, it creates the corresponding task and puts that task into the queue

until one of its working threads becomes available. The working thread then picks the task from

the queue, retrieves the local path to the requested file, and verifies its existence using a stat()

function. If the file exists, the thread opens it for reading. If the file was opened successfully, the

thread reads the file in 1024-bytes chunks and sends them to the client. Otherwise the server deletes

the task and sends the “Internal Server Error” response to the client (in this case it is said that the

request is “dropped”). Once data transfer is complete, the working thread closes the connection and

picks up the next incoming task from the queue.

In our experiments we used the tinyhttpd to host 200000 static web pages from the Wikipedia
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archive. According to the common practice, the atime filesystem functionality that logs time of

every access of the particular file was disabled to improve the performance of the server.

We relied on the modified version of the http load software [8] to simulate client connections

to our web server. Our http load reads a list of URLs from the file and then retrieves these pages

from the web server with a given rate. httpd load is running on a client computer (Intel 2.4 GHz

dual-core CPU, 4 GB RAM, 250 GB HDD) connected to the server with a 100 MBit Ethernet LAN.

The main metric used to measure the performance of a web server was the response time R.

The R is defined as a time difference between accepting the incoming connection and sending the

response (more accurately – closing the communication socket). Additional performance metrics are

the total throughput T and the number of error responses.

The configuration space of the web server includes two parameters: the incoming request rate

(IRR) and the number of working threads of the web server. The IRR quantifies the workload of the

server. In the industrial setting the IRR is adjusted using a load balancer – a separate computer that

distributes requests between the web servers in the datacenter. Varying the IRR allows simulating

the behavior of the web server under the different load. In our experiments we vary IRR from 10

requests per second (rps) to 130 rps with the step of 10 rps. The number of working threads is the

only configuration parameter of the web server itself that affects its performance. We run the web

server with 2, 4, 6 and 8 working threads.

As a result, the total number of different experimental configurations is 13*4=52, which includes

all the possible combinations of the number of threads and incoming request rates. For each con-

figuration we ran both the actual program and its model and record average values of performance

metrics. During each run 10,000 requests were issued.

We manually instrumented the code of the tinyhttpd server with 21 probes and built the model

of the server using the configuration with 4 threads and IRR=70 rps.

The comparison of predicted and actual results for tinyhttpd are presented at the Figure 4.6 and

in the Table 4.6.

Depending on the values of IRR the web server has two distinct states of operation (see Figure

4.6). For IRR ≤ 50 rps the I/O subsystem is not fully utilized and the R is minimal (R ∈ (10-20

ms)). IRR ≥ 60-70 rps result in the overload of the I/O subsystem. Processing the request takes

longer time, and incoming connections start accumulating in the web server queue. As a result,

the web server is brought to the point of the saturation, where it exceeds the OS-imposed limit of

1024 open file descriptors (remember, each connection requires an open file descriptor). The server

is unable to open files on the disk for reading, and the number of error responses increases. At this

point the R reaches 14-17 sec. and remains steady. The total throughput T , however, continues to

grow as it does not distinguish between requests that fail or return successfully.

One interesting observation is that the number of working threads has a relatively small influence

on R. This is explained by the fact that the performance of the web server is largely determined by

the performance of the I/O system, and the I/O system (hard drive) can effectively carry out only

a single I/O operation at a time. As a result, the increase in the number of parallel operations is
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Figure 4.6: Experimental results for the tinyhttpd. top row: the response time R (logarithmic scale);
middle row: the throughput T ; bottom row: the number of error responses

negated by a proportional increase in the average execution time for each individual I/O operation.

Our model predicts the R for stationary states reasonably well, with ε ≤ 0.30. However at

transition point between the saturated and non-saturated behaviors the accuracy of the model

decreases to ε ∈ (0.093...1.555), see Table 4.6. But since the size of the transitional region is small,

the average error across all the configurations ε = 0.203. The total throughput T is predicted

highly accurately (ε ≤ 0.021), but in order to correctly interpret T , one has to take into account the

number of error responses. The model predicts this metric with somewhat lower accuracy, which

is comparable to the prediction error for R. The average error for predicting the number of error

response ε = 0.214, and at the transition point ε = 1. However, the number of failures in the

transition region is small (≤ 10% of all the requests), so even the slight variation in the actual

number of failed requests significantly affects prediction accuracy.

The mean prediction errors reported by the the model of the tinyhttpd web server are higher

than errors reported by the model of the Galaxy scientific computing application (0.21 vs. 0.073

correspondingly). Nevertheless, our model is applicable for solving many practical problems. In
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Table 4.6: Relative errors for predicting the tinyhttpd performance metrics

Response time R

Num. threads Incoming request rate
10 20 30 40 50 60 70 80 90 100 110 120 130

2 0.098 0.073 0.083 0.184 0.448 0.981 0.570 0.115 0.059 0.070 0.050 0.018 0.037
4 0.081 0.050 0.092 0.182 0.366 0.981 0.543 0.118 0.046 0.068 0.042 0.013 0.038
6 0.080 0.033 0.093 0.233 0.145 0.927 0.448 0.083 0.025 0.041 0.011 0.007 0.063
8 0.068 0.010 0.126 0.275 0.415 0.550 1.555 0.005 0.000 0.011 0.011 0.005 0.078

Total throughput (including error responses) T

Num. threads Incoming request rate
10 20 30 40 50 60 70 80 90 100 110 120 130

2 0.003 0.003 0.015 0.004 0.022 0.013 0.051 0.016 0.009 0.061 0.043 0.018 0.039
4 0.004 0.003 0.016 0.004 0.022 0.003 0.051 0.020 0.002 0.056 0.034 0.005 0.045
6 0.004 0.003 0.016 0.034 0.020 0.034 0.042 0.023 0.002 0.032 0.002 0.002 0.057
8 0.004 0.003 0.015 0.003 0.023 0.040 0.045 0.023 0.008 0.031 0.004 0.000 0.071

Number of error responses
Num. threads Incoming request rate

10 20 30 40 50 60 70 80 90 100 110 120 130
2 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.684 0.482 0.281 0.263 0.199 0.214
4 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.690 0.411 0.249 0.202 0.180 0.203
6 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.566 0.265 0.104 0.199 0.102 0.136
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.366 0.068 0.159 0.011 0.037 0.066

particular, it accurately predicts values of configuration parameters where the transitional behav-

ior occurs. This result is important, since usually the goal of performance models is not just to

predict performance of the program across all the possible configurations, but to find those configu-

rations that result in high performance. Possible causes of prediction errors for models of I/O-bound

applications will be discussed in more detail in the Section 6.



Chapter 5

Automatic Model Generation

In this section we describe the procedure for automatic generation of performance models of mul-

tithreaded programs. Initially we list the data required to build the model of the multithreaded

program. Next we provide a description of static and dynamic program analysis which collects all

the necessary data. We describe each stage of the analysis in detail. Finally, we discuss how this

data is used to build the resulting model.

5.1 Data required for building a performance model

Constructing the performance model requires the following information about the program:

� The set of queues and buffers used to exchange tasks between different components of the

program. These correspond to the queues in the high-level model (see Section 3.2);

� The set of threads in the program. Threads correspond to the service nodes of the high-level

queuing model;

� The set of thread pools (see Section 3.2). Sizes of thread pools are configuration parameters

that have major impact on the program’s performance;

� Information on interactions between the threads and queues in the program. This corresponds

to cin/cout CFs in the middle-tier model;

� The computations, I/O, and locking operations in a program (correspond to the set S of

CFs) and the sequence of their execution (correspond to transition probabilities δ). These are

required to build PCGs of the program’s threads;

� The classes and parameters Π of CFs, which are required to model delays τ ;

� The set L of locks, their types, and parameters Πlock. These are required to build the lower-

level models of locks.

61
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Figure 5.1: Model creation stages and intermediate results

We collect required data using a combination of static and dynamic analysis. With regard to the

data collection, we have following assumptions about the program whose model we are building:

� The program is free of bugs. Namely, the program does not deadlock or crash during the data

collection;

� There is no intensive paging that occur because of the shortage of the RAM;

� No other significant computation activity is going on the hardware where the program is being

executed. Namely, no other program is performing CPU-intense or I/O intense computations

in parallel with the program being studied.

During the data collection the program is executed in a single representative configuration. By

representative we mean that < S, δ > and Π would be similar to the < S, δ > and Π of a larger set

of configurations for which the program’s performance should be predicted. Normally this requires

the usage scenario for the program (e.g. the probabilities of accessing particular web pages for a

web server or an input dataset for a scientific computing application) to remain similar across the

configuration space.

We build the model in four stages (see Figure 5.1). Each stage saves intermediate results into

the text and .xml files, which are inputs for the subsequent stages.

First, the program is executed in the representative configuration and its call stack is sampled.

The stack samples are used to detect thread groups, program libraries, and to identify significant

portions of the system.

Second, a static analysis of the program is performed. During this stage we detect synchroniza-

tion, cin, cout, and I/O CFs.

Third, the program is instrumented and executed again with the same configuration. The in-

strumentation log is used to detect program-wide locks and queues, properties Π of code fragments,

and to build the probabilistic call graphs 〈S, δ〉 of the program’s threads.

Finally, the collected information is used to build a performance event model. Unless explicitly

noted, all these operations are performed automatically.

Below we describe these stages in more details. Throughout this section we will rely on an object-

oriented notation to illustrate our program analysis. Namely, we assume that the program’s code

is grouped into methods, while methods as well as the data items belong to the classes. However,

unless otherwise noted, the same approach can be applied to non-object oriented programs. In this
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Figure 5.2: An example of a call trie

case the methods will correspond to the program’s functions, and the program data is assumed to

be stored in the global variables and/or structures.

5.2 Collecting stack samples

During the stack sampling stage our framework finds thread pools, frequently called functions and

methods in the program, and frequently called libraries. Frequently called functions and methods

serve as starting points for the static analysis of the program. The frequently called libraries need

to be identified in order to generate the probabilistic call graphs correctly (see Section 5.4.2).

As the program is being executed, our framework periodically takes “snapshots” of the call stack

of the running program. Different programming languages provide different means of collecting stack

samples. In case of the Java application snapshots are collected by the Java agent class, which is

inserted into the target program using the Java Management Extensions (JMX) mechanism. In

C/C++ programs stack samples can be collected using debugging mechanisms that are specific to

a particular operating system (OS).

Stack samples are merged to build a call trie of the program. A trie (also called a prefix tree) is

a tree-like structure where the data entries are stored in leaf nodes, and non-leaf nodes form a prefix

for these entries [87].

In a call trie each leaf node contains the code location being executed, and non-leaf nodes provide

a call stack for that code location. Leafs are identified using the combination of a class name, a

method name, and a line number being executed. For each leaf the framework maintains the list of

pairs 〈tr1, ct1〉, . . . 〈trn, ctn〉, where the cti is the number of executions of that code location by the

thread tri (the notation used to describe stack sampling is provided in the Table 5.1).

An example of the call trie for a multithreaded program is depicted at the Figure 5.3. Here the

method waitForce() was called by the method run(), while run() itself was called by the method

main(). The waitForce() method was always executed by the thread tr1; the total number of

executions of that method detected during the stack sampling is ct1 = 126. Similarly, the method
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getLen() was executed by threads tr2 and tr3 98 and 117 times respectively.

The call trie is used to detect thread pools in the program. We detect thread groups in two steps.

During the first step a map T is created. Its keys are thread tuples discovered by sampling, and

values are execution counts for these tuples. For each leaf in the trie the framework retrieves a tuple

Tpi = 〈tr1, . . . trn〉 of threads that executed the node along with the total number of executions

Cti =
∑

(ct1, . . . , ctn). If T does not contains the tuple Tpi, the pair 〈Tpi, Cti〉 is inserted into T.

Otherwise the number of executions for the existing tuple is increased by Cti.

In our example the following tuples are created:

� Tp1 = 〈tr1〉, Ct1 = 5 + 126 + 137 = 268

� Tp2 = 〈tr2, tr3〉, Ct2 = 409 + 98 + 722 + 512 + 117 + 698 = 2556

� Tp3 = 〈tr4, tr5〉, Ct3 = 384 + 276 = 660

� Tp4 = 〈tr4〉, Ct4 = 12

� Tp5 = 〈tr5〉, Ct5 = 25

The resulting tuples represent the thread pools that can be possibly found in the program.

However, the data collected by the stack sampling is not guaranteed to be accurate. It is possible that

some of the executions of a method by the thread were not detected during the stack sampling, which

results in a number of “spurious” thread pools detected at the first stage. In our example it is likely

that calcRadius and calcMass methods were also executed by threads t5 and t4 correspondingly.

But these executions were either too infrequent or too short in order to be detected by the stack

sampling. Consequentially, tuples Tp4 and Tp5, which correspond to those “spurious” thread pools

were formed. As a result, an additional data cleanup is necessary in order to obtain an accurate set

of thread pools.

During the second step the data in T is cleaned up. In particular, we detect spurious thread

tuples in T and merge them with the correct ones. The tuple < Tp1, Ct1 > is considered a spurious

one and can be merged with < Tp2, Ct2 > if and only if all threads in Tp2 also present in Tp1 and

Ct1 ≫ Ct2. The resulting tuple is formed as < Tp1, Ct1+Ct2 >. Once all the merges are complete,

the tuples Tp1 . . . Tm ∈ T represent the thread pools detected in the program.

In the example depicted at the Figure 5.3, the tuple Tp4 and Tp5 is merged into Tp3 because

Ct3 ≫ Ct4 and Ct3 ≫ Ct5. The resulting set of thread pools is Tp1 = 〈tr1〉, Tp2 = 〈tr2, tr3〉,

Tp3 = 〈tr4, tr5〉.

Stack samples are also used to identify program’s libraries. The knowledge of libraries is necessary

to generate a semantically correct performance model. In order to locate libraries the framework

transforms the call trie into the call graph. For every function f the framework generates a set of

callee functions 〈f1, ..., fn〉 that ever called f . If the number of callee functions n > 1, the function

f is added to the set of library functions.

The results of the stack sampling are the .xml files that contain the following information:
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Table 5.1: Notation used for thread pool detection

tr1, ..., trn The set of threads that ever executed a leaf node of the call trie

ct1, ..., ctn The number of times each thread tr1, ..., trn executed a leaf node of the
call trie

Tpi = 〈tr1, ..., trn〉 A tuple of threads executed by a leaf node of a call trie.

Cti =
∑

ct1, ..., ctk The total number of times the thread tuple 〈tr1, ..., trn〉 executed leaf
nodes in the call trie. The sum is calculated across all the leaf nodes in
a trie.

T The map of thread tuples. Keys are thread tuples Tp1, ..., T pm de-
tected during the stack sampling. Values are tuples of execution
counts Ct1, ..., Ctm for these tuples. After the cleanup step the keys
Tp1, ..., T pm correspond to thread pools in the program.

� the set of thread pools in the program. For each thread pool the file contains names and IDs

of thread which constitute that thread pool;

� the set of functions that belong to the program’s libraries. Although the stack sampling may

not detect some rarely executed library functions, this does not affect correctness of the PCGs

in our experiments.

5.3 Static analysis

During the static analysis our framework scans the code of the program and detects synchronization

CFs, I/O CFs, cin and cout CFs. It also detects creation of locks and queues in the program, which

provides information for constructing the high-level model.

Generally, the set of classes obtained during the stack sampling does not include all the functions

and methods that were executed during the program’s run. To identify the missing code the frame-

work builds the dependency graph of the program. It takes into account both code dependencies

(e.g. a method from the class A calls the class B) and data dependencies (e.g. class A uses data

from the class B or creates an instance of the class B). This allows to identify code that can be

executed either by directly calling a function or a method by another method, as well as code that

can be loaded and executed using reflection or dynamic loading. The desired superset of classes is

the transitive closure of all the nodes in the dependency graph.

The static analyzer traverses the dependency graph, starting from the methods discovered during

the stack sampling. It scans code of the methods (or functions for non-object oriented programs),

searching for references to other classes and modules. Referenced classes and modules are loaded
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Figure 5.3: Selecting classes in Galaxy

and their methods are analyzed as well. The result of the search is the complete list of the methods

that can be executed by the program.

However, it is often the case that some of the code discovered by the static analysis is widely

referenced by the program, but, at the same time it does not perform perform synchronization,

cin, cout, or I/O operations. In Java examples of such code are the fundamental data classes from

java.lang.* package or classes from the or java.math.* package. Analyzing these classes will not

add any useful information for the model. Thus in order to simplify both further analysis and the

generated model, and to reduce the time required to analyze the program, the static analyzer allows

the programmer to select the relevant program classes from a hierarchical dialog and then restrict

the analysis to these classes. Figure 5.3 depicts the dialog box which allows filtering relevant classes

in the Galaxy program.

Discovery of Code Fragments

Our static analyzer scans the code of the program in a search of certain constructs. These code

constructs are treated as code fragments (CFs). For each CF the analyzer records the type of the

CF (synchronization, cin, cout, or I/O CF), and its location within the program’s code.

The detection of synchronization CFs

There are numerous ways to implement synchronization and thread interaction in the program.

Practically all the modern programming languages provide low-level primitives to implement thread-

ing and synchronization. Normally, these primitives are built around the concept of the mutexes

and condition variables [53]. In older versions of programming languages these low-level primitives
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are implemented as external libraries. For example, in C mutexes and condition variables are im-

plemented by the POSIX threading library. New languages provide these constructs as a part of the

language specification. In particular, C11 and C++11 standards of C and C++ programming lan-

guages provide mutexes and condition variables as a part of the specification. In Java programming

language those are implemented as synchronized regions and wait sets as a part of the language

runtime.

However, programmers rarely design and think of their programs in the terms of mutexes and

condition variables. Instead, programmers design their programs in terms of higher-level locks such

as semaphores, barriers, read-write locks, or producer-consumer queues. Similarly, we simulate the

semantics of thread interaction in the program in terms of these high-level locks.

Developing threading semantics using high-level locks necessitates developers to implement these

locks using low-level synchronization primitives, such as mutexes and condition variables. Unfor-

tunately, there can be numerous ways to design and implement high-level locks using low-level

primitives. As a result, detecting cin, cout and synchronization CFs in an arbitrary program, and

determining their operation types optypemay require complex analysis that is very hard to automate.

Manually implementing high-level synchronization constructs is a work-intense and error-prone

task for most programmers. Resulting implementations often had inferior performance and were

prone to bugs. To facilitate work of developers, most of modern programming languages provide

standard libraries of concurrent constructs: semaphores, barriers, read-write locks, synchronization

queues, concurrent collections, thread pools and other means for thread interaction. These constructs

are designed to be used as building blocks for building multithreaded applications [9]. Examples of

such libraries are the java.util.concurrent package for Java, the System.Threading namespace

in C#, and boost threading library in C++.

Using standard implementations of locks and queues instead of constructing them from low-level

synchronization primitives is a recommended way to developing concurrent applications. This allows

to reduce programming effort, increase performance and reliability of the application, and improve

its maintainability [9].

From the standpoint of building performance models, using known implementation of high-level

locks and queues greatly simplifies the analysis of the program. Implementing thread interaction

using a set of standard constructs allows for development of program analysis techniques that could

accurately identify queues Q = {l1...ln} and locks L = {l1...lm} and in the program, determine their

types and parameters Πlock, and discover synchronization operations that involve these locks.

Thus in the current study we concentrate on building models of programs that employ standard

implementation of locks and queues to implement thread interactions. Below we describe detection of

locks, queues, and synchronization, cin, and cout CFs in such multithreaded program. We illustrate

our approach using standard implementation of locks and queues from the java.util.concurrent

package. In this package high-level locks and queues are implemented as classes, while synchro-

nization operations are invocations of methods of these classes. This lets us accurately identify

program-wide queues and locks and determine their semantics.
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To detect synchronization CFs the analyzer searches for the specific functions and methods which

constitute the API of the corresponding locking library. Every call to such method is considered

as an instance of the synchronization CF. The type optype of the corresponding synchronization

operation is deduced from the signature of the call.

For example, in a Java program the call to the Semaphore.acquire(int permits) is consid-

ered as a synchronization CF whose type is optype=“Semaphore acquire”. Similarly, the call to the

Semaphore.release()method is a synchronization CF whose type is optype=“Semaphore release”.

The call to the CyclicBarrier.await(long timeout, TimeUnit unit) method is a synchroniza-

tion CF with optype=“CyclicBarrier await”.

The framework also tracks low-level synchronization constructs, such as calls to mutexes and

condition variables. These constructs are often used to implement simple synchronizations. For

example, a mutex may be used to guard data in the program against concurrent modification by

multiple threads. Low-level synchronization constructs are considered as synchronization CFs as

well and are explicitly simulated in our models. For example, the entry to the synchronized region

in a Java program is considered as a synchronization CF with optype=“Mutex entry”. Exit from

that region is a synchronization CF with optype=“Mutex exit”.

However, if a combination of old-style synchronization constructs is used to implement a high-

level lock such as a producer-consumer queue or a semaphore, the behavior of the resulting model

might be incorrect. The reason is that the PCG may not capture deterministic behavior of such lock

correctly. For example, the custom implementation of the cyclic barrier maintains the counter of

threads waiting on the barrier. If the value of the counter is less than the barrier capacity, the calling

thread is suspended. Otherwise, the program wakes up all the waiting threads. In the PCG this

behavior will be reflected as a fork with the probability of waking up the thread equal to 1/(barrier

capacity). As a result, in certain cases the model will lift the barrier prematurely, and in other cases

it will not lift the barrier when it is necessary.

The detection of cin/cout CFs

cin/cout CFs are detected in the same way as synchronization CFs. The only difference is that

the analyzer tracks a different set of API functions or methods, which represent operations on the

program’s queues. The type of the CF, be it cin or cout, is deduced from the signature of the call.

For example, in a Java application a call to the take() or poll() method

of ArrayBlockingQueue class is considered as a cin CF. Similarly, a call to the

ArrayBlockingQueue.put() or to the LinkedBlockingDeque.offer(E e, long timeout,

TimeUnit unit) is considered as a cout. It is important to track not only invocations of methods of

particular classes, but also methods of particular interfaces. Thus in Java we also track invocations

of the methods of BlockingQueue interface, whose underlying implementation may be one of the

many Java blocking queue classes.

The detection of queues and locks

Instances of locks and queues are not directly detected during the static analysis. Instead, the

analyzer detects calls to the constructors and initializers of such locks and queues. These calls are
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not considered as CFs of any kind. However, they are used to detect queues and locks in the program

and retrieve their parameters during the dynamic analysis. The types ltype of locks are obtained by

analyzing signatures of these constructors and initializers.

The detection of I/O CFs

To discover I/O code fragments the static analyzer tracks API functions or methods that can

perform disk I/O. The analyzer has two different strategies for detecting different types of disk I/O

operations in a user program.

The first strategy is to track I/O operations that access filesystem metadata. Here the analyzer

searches the code of the program for calls to the methods that can only initiate metadata I/O

operations and do not perform other type of I/O activities. Calls to these methods are considered as

I/O CFs. An example of such I/O CF in a C++ program is a call to the stat() libc function. In a

Java program examples of such CF are calls to methods of the File class, such as File.exists(),

File.isFile(), or File.canRead().

The second strategy is for detecting file I/O operations. File I/O operations cannot be reliably

detected in the same manner as metadata accesses. High-level programming languages such as Java

or C# provide a variety of classes used to perform file I/O. However, same classes can be also used

for other types of I/O, including network I/O or reading/writing to strings. Examples of such classes

are BufferedReader and TextReader Java classes. Thus instead of tracking calls to these high-level

classes the static analyzer treats bodies of low-level functions or methods that perform file I/O as I/O

CFs. Some examples of such low-level methods in Java are native methods of the FileInputStream,

FileOutputStream, and RandomAccessFile classes. These methods are executed for every file I/O

operation in a computer program, and tracking those allows reliably detection of all the file I/O

operations.

The results of the static analysis are the set of text and .xml files that contain following infor-

mation:

� the set of synchronization, cin, cout, and I/O CFs; their locations in the program; the types of

operations optype for synchronization, cin, cout CFs.

� the location of constructors of all locks and queues in the program; the types of these locks

and queues.

Fragments of the program code that do not involve I/O or synchronization are considered as com-

putation CFs and are detected during the dynamic analysis.

5.4 Dynamic analysis

The purpose of dynamic analysis is to identify computation CFs, the parameters of locks and CFs,

and probabilistic call graphs 〈S, δ〉 of the program’s threads.

Static analysis does not provide all the information necessary for building the model. It cannot

explicitly detect locks and queues, it cannot determine which lock is called by the synchronization
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Table 5.2: Information reported by instrumentation for different types of code fragments

The class of the instru-
mented CF

Information reported by the
start probe

Information reported by the
end probe

all CFs - the timestamp
- the probe ID
- the thread ID

lock/queue constructor - parameters of the lock/queue - the ObjectID of the lock/queue
synchronization - the lock ID

- the operation timeout
cin - the queue ID - the ObjectID of the retrieved

task
- the operation timeout

cout - the queue ID
- the ObjectID of the task to be
sent

I/O - the ID of the file accessed

CF, it does not provide the parameters of the various CFs, and it does not detect computation CFs

directly. To collect all this missing information we perform a second round of dynamic analysis of

the program.

The dynamic analyzer instruments the program and runs it again in the same configuration as

the initial stack-sampling run. The implementation details of the instrumentation are specific to

the programming language used to write the program being analyzed and to the framework used to

implement threading in that program. Below we describe the process of dynamic analysis in general

terms, agnostic to the instrumentation details. A detailed description of how Java programs are

instrumented is presented in the Section 5.4.1 of this thesis.

Each CF detected during the static analysis is instrumented with two probes. The start probe is

inserted immediately before the start of the CF, and the end probe is inserted right after the end of

the CF. Each probe is identified by the unique numeric identifier (probeID). The pair 〈start probe

ID, end probe ID〉 identifies the CF.

During its execution the instrumented program generates a log file. The log file provides the

sequence of probe hits on a per-thread basis, which constitute a trace of each thread’s activity (see

Figure 5.4 for an example of such trace).

The trace itself is divided into sections, where each section contains probe hits from a particular

thread. Within the section each probe report the timestamp, the probe ID, and the thread ID.

In addition, probes report extra information whose format depends on the CF being instrumented.

Please refer to the Table 5.2 for a complete list of information returned by probes for the different

CFs classes.

Two coincident probe hits in the trace represent execution of a single code fragment. Namely,

the ending probe ID of the CF becomes the starting probe ID of the next CF, so code fragments
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ProbeID Timestamp ObjectID Arguments/ Comments

return value

THREAD 1 main #Start of the section.

#Contains thread name and ID

10 11345231 7683745 0 5 #reading from a queue (start probe)

11 11387461 7683745 4387459 #reading from a queue (end probe)

27 11391365 87235467 #entering the sync. region (start)

28 11392132 #entering the sync. region (end)

29 19873872 87235467 #exiting the sync. region (start)

30 19873991 #exiting the sync. region (end)

27 19874384 87235467 #entering the sync. region (start)

28 19875297 #entering the sync. region (end)

29 22155291 87235467 #exiting the sync. region (start)

30 22156112 #exiting the sync. region (end)

33 22157534 7683745 4387459 #writing to the queue (start probe)

34 22172675 7683745 #writing to the queue (end probe)

DONE #end of the section

THREAD 10 CalcForceThread_1 #Start of the next section

...

Figure 5.4: A sample fragment of the log file.

appear “overlapping” in the trace. In particular, the trace depicted at the Figure 5.4 represents

execution of the following sequence of code fragments: 〈10, 11〉, 〈11, 27〉, 〈27, 28〉, 〈28, 29〉, 〈29, 30〉,

〈30, 27〉, 〈27, 28〉, 〈28, 29〉, 〈29, 30〉, 〈30, 33〉, 〈33, 34〉.

Pairs of probe IDs that represent executions of I/O, synchronization, or cin/cout CFs in the

trace are interleaved with pairs of probe IDs that represent computations. These pairs of probe IDs

represent computation CFs, which were not detected explicitly during the static analysis.

The figure 5.4 depicts an example of such trace. Here the CF 〈10, 11〉 is a cin CF. It corresponds

to the call to the BlockingQueue.poll(int, TineUnit) method, which reads the request from the

queue. The object ID=7683745 recorded by the probe 10 identifies the queue. Argument values 0, 5

correspond to the timeout of 0 milliseconds, where “5” denotes the measurement unit (milliseconds),

and “5” corresponds to the actual measurement. The probe 11 reports the return value 4387459,

which is an ID of the retrieved object.

CFs 〈27, 28〉 and 〈29, 30〉 are synchronization CFs that correspond to the entry and exit from the

synchronized region. The object ID=87235467 reported by the start probe identifies the monitor

associated with that region. The end probe does not report the object ID in order to reduce the

instrumentation overhead (the object ID is identical to one reported by the start probe).

CF 〈33, 34〉 is an cout CF. It corresponds to the call to the BlockingQueue.put(E e) method,

which writes the request back to the queue. The object ID=7683745 identifies the queue. The sole

argument of the call is the request object, denoted by the object ID=4387459.

Remaining tuples 〈11, 27〉, 〈28, 29〉, 〈30, 27〉, and 〈30, 33〉 are the computation CFs.
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5.4.1 Instrumentation of Java programs

Our instrumentation must return a large amount of data about the program, including the probe

ID, the timestamp, and information about method being instrumented (see Table 5.2). The method-

specific information includes the ID of the object which contains the method (an ObjectID), the

values of the method arguments, and the return value of the call. Instrumentation for collecting

information on method calls can be implemented in two ways:

� By inserting probes into entries and exits of methods of interest;

� By inserting probes around instructions that call these methods.

Whenever possible we rely on the second approach. Although it is more complex, it preserves

information about the origin of the call, which is necessary for generating a semantically correct

model.

The details of the instrumentation depend on the nature of the CF being instrumented. If the

CF is a call to the method that has no arguments (e.g. CyclicBarrier.await()), the first probe is

inserted immediately before the JVM INVOKExxx instruction that performs the call (which can be

one of INVOKEVIRTUAL, INVOKESPECIAL, or INVOKEINTERFACE instruction). In this case

the objectID of the callee object can be retrieved from the Java execution stack without ruining it

in the process. The second probe is inserted right after the INVOKExxx instruction. It reports the

value returned by the call.

If the CF is a call to the method with at least one argument (e.g. CyclicBarrier.await(int,

TimeUnit)), then callee ID and values of the method’s arguments are stored in the Java execution

stack. The execution stack does not allow accessing its values in the random order, so the instru-

mentation cannot retrieve callee ID and argument values directly from it. To obtain this information

we instruments such methods separately using a wrapper.

Instrumenting the program using a wrapper is done in three steps. First, for every distinct call

to the given method we create a static method inside the caller class – a wrapper. The first argument

in the wrapper’s signature is the reference to the callee object; the remaining arguments are same

as the signature of the callee. The only functionality of the wrapper is to reroute the call to a

callee method. Once called, the wrapper loads the reference to the callee object and values of its

parameters from the operand stack, calls the callee method, and returns. Second, we instrument

the wrapper itself. When the wrapper is being executed, values of its arguments are stored in the

operand stack, which allows retrieving them in the random order. Our instrumentation retrieves

values of all the arguments and reports them Finally, we modify the program so it will call not the

original method, but the wrapper.

To detect file I/O operations we instrument entries and exits from the native JRE meth-

ods, which are called for every file read, write, open, and close operation in the program. This

includes FileInputStream.read(), FileInputStream.readBytes(), FileInputStream.open(),

FileInputStream.close0() methods.
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The body of the native methods cannot be directly modified, thus we also employ wrappers in

this case. First, we rename the actual native method by adding a prefix to it. Then within the same

JRE class we create a wrapper method whose name and signature are identical to the name and

the signature of the native method. As a result, all the calls to the native method will be rerouted

through the wrapper. Finally, we instrument the wrapper so it will report the timestamp and values

of the method arguments.

Instrumenting native methods allows detecting every file read, write, open, and close operation

in the program. Corresponding probes have fixed probeIDs do distinguish them from the rest of

instrumentation.

To instrument synchronized regions we just add probes before and after the corresponding MON-

ITORENTER and MONITOREXIT instructions. In this case the probe reports object ID of the

associated monitor object. To instrument the synchronized methods we convert these methods to

non-synchronized. We insert MONITORENTER and MONITOREXIT instructions at the begin-

ning and at the end of the method and clear the “synchronized” modifier for the method. After that

we instrument them as usual synchronized regions.

Instrumentation of the Java program is performed dynamically upon the program startup. Our

instrumentation involves adding and renaming methods in the program’s classes. These operations

are possible only before the class is loaded by the JVM, thus the whole process of instrumentation is

performed in two steps. First, a JVMTI agent is invoked for each class before that class is loaded by

the JVM. If necessary, the JVMTI agent adds wrappers to that class and transforms its synchronized

methods.

Once all the classes are loaded, a second step begins. During the second step a JMX agent adds

probes to the loaded program’s classes using the ASM library for bytecode analysis and transforma-

tion. The agent implements the ClassFileTransformer interface and is injected into the program

using the “-javaagent” option.

5.4.2 Construction of probabilistic call graphs

A näıve approach to generating the probabilistic call graph (PCG) for a thread is to treat the set

s1 . . . sn of CFs discovered in the trace as the set S of nodes in the PCG. For each node si ∈ S the

subset Snext = {sk, . . . , sm} of succeeding nodes is retrieved, along with the numbers of occurrences

of the pairs (si, sk), . . . , (si, sm) in the trace. The probability of transition from the node si to

sj , j ∈ (k . . .m) is calculated as

p(si, sj) =
count(si, sj)∑m

l=k count(si, sl)
(5.1)

Probabilities of transition for every pair of nodes constitute the mapping δ : S → P (S) in our

formal model.

The Figure 5.5 depicts the resulting graph for the trace example we discussed before (shown at

the Figure 5.4).
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Figure 5.5: A resulting call graph for the trace sample

However, the näıve approach often results in problems while generating call graphs for real-

world applications. First, it may not represent calls to the program’s libraries correctly. Second,

it generates an overly complex probabilistic call graph. Finally, it does not account for possible

determinism in the behavior of the thread.

Below we discuss the issues arising with the the näıve approach to graph construction. We also

present our solutions to these problems.

Correct representation of library calls.

Distinct non-intersecting execution paths in the program must be represented as non-intersecting

paths in the PCG. This ensures that the control flow in the model will not be transferred from one

such path to another. This condition, which is a prerequisite for a semantically correct functioning

of the model, may not be preserved if some code fragments are located in one of the program’s

libraries.

Suppose that the program performs two unrelated calls to a library that contains a code fragment

(CF). Executing that CF would emit the pair of same probe IDs for both library calls. But since

probe IDs are used to uniquely identify CFs, both of these unrelated executions will be represented

by the same node in the call graph. Correspondingly, two distinct execution paths in the PCG

will be connected by the common node. As a consequence, during the simulation the thread model

may “switch” from one execution path to another unrelated execution path, which is semantically

incorrect.

For an example, consider the fragment of the Java program in the Figure 5.6. This program

performs a simple sequence of actions: it enters the synchronized region (line 5), reads data from

the file (6), and exits the region (7). Then it retrieves an object from the synchronized queue (8),

reads data from another file (9), performs some lengthly computation (10), and writes the object to

another queue (11). The “ground truth” call graph generated by hand for this program is depicted

at the figure 5.7. It is a straight sequence of CFs without any loops, where two distinct file reads at

lines 6 and 9 are represented with two distinct I/O CFs (CF2, CF5).

In this program two unrelated file read operations (lines 4 and 123) will call the same function

FileInputStream.readBytes(), which contains an I/O CF 〈1013, 1014〉. Every such call will emit
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Line no.

1 byte[] signal1 = new byte[1024];

2 byte[] signal_target = new byte[1024];

3 FileInputStream file_in = new FileInputStream(inputFileName);

4 FileInputStream file_target = new FileInputStream("file_target.wav");

5 synchronized(lock) {

6 file_in.read(signal1);

7 }

8 ComparisonResult comparison = queueIn.poll();

9 file_target.read(signal_target);

10 comparison.isMatched = doSignalMatch(signal1, signal_target);

11 queueOut.push(comparison);

Figure 5.6: A code fragment that performs file I/O

Figure 5.7: A call graph that should be generated for the code fragment

the same pair of probe IDs (1013 and 1014) into the log trace (see Figure 5.8), which correspond to

the execution of the same CF 〈1013, 1014〉 twice. Thus instead of two distinct nodes corresponding

to two different file reads, all the I/O operations will be represented by the single node in the call

graph (see Figure 5.9). As a result, the request flow within the graph will contain a loop, which

can be executed a number of times, or not executed at all. Any of these scenarios will lead to

semantically incorrect behavior of the model.

If the loop will not be executed, the model will not release the mutex (the CF 〈29, 30〉 will not

be executed). The model will also attempt to send a request to the destination queue (by executing

the CF 〈33, 34〉) without reading it from the source queue. Alternatively, if the loop will be executed

multiple times, the model will attempt to release the mutex during every iteration. Moreover, the

model will attempt to read multiple requests from the queue (by executing CF 〈10, 11〉 in a loop),

while writing out only a single request.

To simulate library calls correctly the dynamic analyzer uses the node splitting technique de-

scribed in [79]. For every CF located within one of the program’s libraries, the analyzer adds a

context information describing the origin of the call to that library. As a result, calls to the library

CFs that originate from different locations in the program are represented as separate nodes in the

PCG. In terms of our model, the origin of the library call is represented as a sequence of one or more

previous probe IDs, which form the prefix of a code fragment. In particular, to correctly represent

the I/O CFs in the program a last non-library probe is added as a prefix to every I/O CF that

performs file I/O operations (see Figure 5.10).

Large and complex programs use libraries extensively. As a result, similar problems will occur

for different types of CFs, not just I/O CFs. Suppose the 〈1013, 1014〉 CF is located inside a library
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ProbeID Timestamp ObjectID Arguments/ Comments

return value

...

27 12415876 87235467 #entering the sync. region (start)

28 12416127 #entering the sync. region (end)

1013 12435875 1872565 8238435 #file read (start)

1014 18357221 1872565 1024 #file read (end)

29 18375678 87235467 #exiting the sync. region (start)

30 18411752 #exiting the sync. region (end)

10 18413873 7683745 #reading from a queue (start)

11 18418937 7683745 4387459 #reading from a queue (end)

1013 18423144 5763292 5731786 #file read (start)

1014 29278981 5763292 1024 #file read (end)

33 34827982 7683745 4387459 #writing to the queue (start)

34 34828216 7683745 #writing to the queue (end)

...

Figure 5.8: A corresponding fragment of the trace

Figure 5.9: An incorrectly generated PCG for the code fragment that performs I/O

Figure 5.10: A correctly generated PCG with context information for I/O CFs
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function and it performs a complex synchronization operation, such as acquiring a semaphore or

awaiting on the barrier. Normally these operations control the order of the executions for the pro-

gram as a whole. Violating any semantics of complex locks may result to a completely dysfunctional

model. Thus developing a more general solution to a library CFs is necessary in order to allow

modeling large and complex programs.

To obtain the context information for CFs the dynamic analyzer instruments calls to all the

library methods discovered during the stack sampling (see Section 5.2). An entry library probe is

inserted before every call to a library method; an exit library probe is inserted after such call. To

minimize overhead library probes output only the probe ID.

As the analyzer scans the trace, it maintains a call stack of library probes. When the start

library probe is encountered in the trace, its ID is added into the stack. This ID is removed from

the stack when the corresponding exit probe is detected. When the analyzer detects the CF, it adds

the sequence of library probe IDs present in the stack as the prefix of that CF ID.

For an example, consider that entry/exit library probes 500/501 and 502/503 were inserted into

the program, so the resulting sequence of probe IDs in the trace is 500, 27, 28, 1013, 1014, 29, 30,

502, 10, 11, 1013, 1014, 503, 33, 34, 501. The corresponding sequence of CF is 〈500, 27, 28〉, 〈500,

28, 1013〉, 〈500, 28, 1013, 1014〉, 〈500, 28, 1014, 29〉, 〈500, 29, 30〉, 〈500, 30, 10〉, 〈500, 502, 10, 11〉,

〈500, 30, 10〉, 〈500, 502, 11, 1013〉, 〈500, 502, 11, 1013, 1014〉, 〈500, 502, 11, 1014, 33〉, 〈500, 33, 34〉.

This sequence is which is consistent with the ground truth PCG.

Addressing probabilistic call graph bloat.

According to the näıve approach, all the computations between I/O, synchronization, and cin/cout

CFs are represented as computation CFs. However, the majority of these computation CFs have a

little (if any) impact on the performance of the program. For example, the call graph (see Figure 5.10)

generated for the program depicted at the Figure 5.6 has 5 computational CFs. Out of these only the

〈11, 1014, 33〉CF represents a significant computation in the program (a call to the doSignalMatch()

routine); its duration is 5549.0 microseconds. Remaining computation CFs 〈28, 1013〉, 〈28, 1014, 29〉,

〈30, 10〉, and 〈11, 1013〉 do not perform any computations and are artifacts of the instrumentation.

Their summary duration is 44.53 microseconds, which constitute less than 1% of performed by the

all computation CFs in this trace. Similarly, every synchronization region is represented as a pair

of CFs, even if it is very short and never becomes contended in practice.

Presence of CFs that do not have any noticeable impact on performance leads to a highly bloated

PCG. In particular, the PCG of a large and complex application may consist of thousands of CFs.

Such unnecessary complex models have low performance and are hard to analyze. To simplify the

model we remove all the insignificant CFs that have negligible impact on the program’s performance.

Model simplification is performed in two steps (see Figure 5.11). The first step is finding stages

in the program’s execution that do not affect performance measurements and excluding these stages

from modeling. The second step is analysis of the remaining CFs and eliminating those which do

not have a noticeable impact on performance.
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Figure 5.11: Model optimizations during different execution stages of the program

During the first step the whole timeline of the program’s execution is split into three phases

depending on their task processing behavior:

� The startup phase, when the program doesn’t process tasks yet;

� The work phase, when the program processes tasks;

� The shutdown phase, when the program doesn’t process tasks any more.

Finding stages is easy for programs that handle external requests, such as servers. A timestamp

marking the beginning of the work phase is recorded before issuing the first request, and the end

timestamp is recorded after the last request is complete. If startup or shutdown stages cannot be

easily defined for a program, which can be the case for certain types of multithreaded programs (e.g.

scientific computing applications or 3D renderers), we assume these stages are absent in the trace.

When the dynamic analyzer scans the trace of the startup stage of the program, it skips all the

computation CFs, I/O CFs and data-guarding regions. Here data-guarding regions are the mutexes

(or synchronized regions in a Java program) that contains only computations CFs, disk I/O CFs,

and, possibly, another data-guarding regions. Usually, the sole purpose of data-guarding regions

is to protect program’s data from a modification by other threads. Skipped CFs are considered

as insignificant and are not included into the model. Only CFs that affect semantics of the pro-

gram’s thread interactions are retained in the model. This includes cin, cout CFs as well as complex

synchronization constructs, such as acquiring/releasing semaphores or awaiting on barriers.

The dynamic analyzer consider all the CFs executed during the shutdown stage as insignificant.

In fact, when the program enters the shutdown stage, all the performance information has been

already collected and there is no need to further simulate the program. Thus all the CFs executed

during the shutdown stage are skipped from the model.

During the second step we detect insignificant CFs that were executed during the work stage

and removing those from the model. Following categories of CFs encountered during the work stage

are considered as insignificant:

� Non-contended data-guarding regions. A data-guarding region is non-contended if the mean

time required to enter that region is comparable with the instrumentation overhead;
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� Computation CFs whose summary CPU times amounts to less than t% of the overall CPU

time for the thread;

� I/O CFs whose total number of I/O operations and summary data transfer amounts to less

than t% of data transferred by the thread.

Setting t = 3 − 5% allows shrinking the PCG by 50-70% without noticeable impact on the

accuracy.

Accounting for determinism in the program behavior.

The program may express the deterministic behavior, which may have a strong impact on perfor-

mance. This deterministic behavior must be addressed in the model in order to obtain accurate

prediction.

Currently we track and model two aspects of the program’s determinism. First, the execution

flow in the thread may take different paths depending on the availability of the task in the queue.

Namely, the programwill attempt to fetch the blocking queue and impose a timeout for the operation.

Depending on if the request was fetched successfully, or if the fetch operation has timed out, the

program may execute a different set of code fragments.

To account for this we insert two “virtual” nodes after each sin node in the PCG: sfetchedin and

snotfetchedin . The sfetchedin node is executed when the sin CF was able to fetch the request from the

queue. snotfetchedin is executed if sin did not fetch the request and exited by timeout.

Second, representing program’s loops as cycles in a PCG may affect the model’s accuracy. If

a loop that performs exactly n iterations is represented as a cycle in a PCG, then the number of

iterations X for that cycle will not be a constant. It will rather be a random variable that follows a

geometric distribution with mean n and a probability mass function:

Pr(X = k) =
1

n
· (1−

1

n
)k−1 (5.2)

In most cases this representation does not have a major effect on the prediction accuracy. However,

if the program’s performance y strictly follows the function y = f(n), the predicted performance y′

will be a function of a random variable y′ = f(X), whose parameters (mean, standard deviation)

may differ noticeably from y. In our experiments such mispredictions occurred in programs with

batch processing workloads, where the loop performs an initial population of the program’s queues

with tasks.

For an example, consider a scientific application that computes gravitational interaction between

bodies using an O(N2) algorithm, where N denotes the total number of bodies. Suppose that the

workload involves calculating interactions for 5 bodies (N = 5). Then assuming each iteration taking

1 millisecond, the average running time of the algorithm will be 25 milliseconds. However, if the loop

that initializes the bodies is modeled as a cycle in the PCG then the total number of bodies in the

model will follow a geometric distribution with Pr(N = k) = 0.2 · (0.8)k−1 and mean N = 5. The
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predicted average running time will be 45 milliseconds, which corresponds to the mean prediction

error ε(T ) = 0.80.

To address this issue the dynamic analyzer detects loops in the trace using the algorithm [69]. If

the loop contains the cout node, the model explicitly simulates it as a loop with a given number of

iterations. Otherwise the loop is represented as a cycle in the PCG.

We anticipate there may be other manifestations of the program determinism that affect the

execution flow in the program. Thus we plan developing a more generic approach to modeling such

determinism.

Retrieving parameters of code fragments

We retrieve parameters of the model’s blocks from the instrumentation log of the program. Below

we discuss parameter retrieval for different types of model blocks in detail.

Locks and request queues. Parameters of a lock include the type ltype of that lock and the

type-specific lock parameters lparam. Also, each lock within the program must be identified, so it

is implied that each lock li ∈ L has a lock ID associated with it. Similarly, each queue qj ∈ Q must

be identified using a unique queue ID.

Parameters of locks and queues are obtained from the arguments passed to constructors and

initializers of these locks and queues, and from their return values. These constructors were detected

during the static analysis and instrumented. Values of their arguments as well as the return values

were reported in the instrumentation log.

In particular, the type ltype of the lock is inferred from the signature of the constructor/initializer

of that lock. The type-specific parameters lparam are retrieved from the arguments passed to that

constructor. The lock ID is obtained from the reference to the lock returned by the constructor.

Parameters of the program’s queues as well as identifiers of these queues are obtained in the same

manner from the arguments of queue initializers and their return values.

For an example, consider the retrieval of parameters of locks and queues in a Java programwritten

using the java.util.concurrent library. In java.util.concurrent the parameters of locks and

queues are specified in the arguments to the constructors of the corresponding lock and classes.

For example, the capacity of the cyclic barrier is specified by the value parties argument of the

CyclicBarrier(int parties) constructor. The capacity of the queue is specified as the capacity

argument of the ArrayBlockingQueue(int capacity) or LinkedBlockingQueue(int capacity)

constructors. The ID of the object returned by the constructor uniquely identifies the corresponding

lock or queue.

Synchronization and cin/cout CFs. Parameters of synchronization CFs include the reference

to the lock li, the type of the synchronization operation optype, and the timeout τsync. Similarly,

parameters of cin and cout CFs include the reference to the queue qj ∈ Q and the timeout τin, τout.

The type of the operation is implied by the type of the CF itself: cin CFs fetch requests from the

queue, while cout send requests to the queue.

Parameters of synchronization, cin, and cout CFs are obtained from the arguments passed to
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functions and methods operating on locks and queues, and from their return values. The ID of

the called lock li is obtained from the reference to the lock; it is matched to the identifier of the

li returned by the lock constructor/initializer. The type of synchronization operation optype is

inferred from the signature of the called function or a method. The operation timeout τsync and

τout is retrieved from the arguments passed to the function.

The concrete type of cin/cout CF is inferred from the signature of the function or method that

carries out operation on the queue. The remainder of parameters for the cin/cout CFs are obtained

in the same manner as parameters of the synchronization CFs.

For an example, consider again the discovery of parameters of synchronization, cin, and cout

CFs in the Java program that relies on the java.util.concurrent library for locking. These

CFs correspond to the calls to the methods of appropriate classes. In particular, the call to the

CyclicBarrier.await(long timeout, TimeUnit unit) method will be considered as a synchro-

nization CF. The actual type optype = barrier.await of synchronization operation is inferred from

the method signature. The lock ID is the reference to the instance of the CyclicBarrier Java

class being called. The timeout τsync is retrieved by analyzing the values of unit and timeout

parameters. unit denotes units in which the timeout is measured (may range from days to nanosec-

onds), while the timeout parameter denotes the amount of timeout. Similarly, the call to the

ArrayBlockingQueue<E>.add(E e) method is considered as an cout CF, while the call to the

LinkedBlockingQueue.poll(long timeout, TimeUnit unit) method is considered as a cin CF.

Some low-level synchronization operations, such as an entry/exit from a synchronized block,

might not call any functions or methods. optype for such operation is obtained by analyzing the

corresponding instruction in the program. The identifier of the lock is obtained from the reference

to the associated monitor.

Computation CFs. The parameter of the computation CF is the distribution P
τ
CPU of CPU

times for that CF.

In a general case the τCPU for a code fragment can be obtained as a difference τendCPU − τstartCPU

between the thread CPU time τstartCPU measured before executing the CF and the thread CPU time

τendCPU measured after executing the CF. Here thread CPU time denotes the amount of time the CPU

was executing instructions of a particular thread.

However, different programming languages and operating systems provide different mechanisms

for measuring thread CPU time. As a result, developing a general-purpose method for obtaining

precise and low-overhead measurements of actual CPU time across a wide range of existing pro-

gramming languages, platforms, and operating systems remains a challenging problem.

In particular, modern operating systems usually offer API functions to get accurate low-overhead

measurements of thread CPU times, such as clock_gettime in Linux, and GetThreadTimes in

Windows. These APIs can be directly called by the programs compiled into the native code, such

as programs developed using C or C++ programming languages.

However, these functions cannot be directly called from programs written using managed lan-

guages, such as Java. Although Java provides a ThreadMXBean class for measuring thread CPU
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times, this class has a precision of one jiffie (10 ms in Linux), which is not sufficient for our purpose.

Thus in general we measure the τcpu as the difference between the timestamps of start and end

probes of that CF, substituting clock time for CPU time. This approach allows precision up to 1 ns,

but puts limitations on the program configurations we can use for building the model. Namely, we

need to avoid configurations where CPU congestion is likely and clock time cannot be substituted

for CPU time.

I/O CFs. Each I/O CF can initiate a number of low-level requests {dio1, ..., diok} to the disk

subsystem. The parameters of the corresponding I/O CFs are the number k (in the case of the

cache hit k = 0) and properties of these requests. Properties of the request include the type of the

operation (read, write, metadata read, readahead, etc.) and the amount of data transferred.

This request-specific data can be retrieved only from the OS kernel. We use the BTrace [10] tool

for this purpose. BTrace is launched simultaneously with the instrumented program and stores the

log of all the low-level I/O requests.

Generally, the timestamps and thread IDs in the kernel-mode I/O log might not match the

timestamps and thread IDs in the instrumentation log. This makes associating low-level I/O requests

with execution of I/O code fragments in the program difficult.

To match Btrace log to the instrumentation log the dynamic analyzer uses cross-correlation – a

technique used in signal processing [88]. The cross-correlation (f ⋆ g)[t] is a measure of similarity

between signals f and g, where one of the signals is shifted by the time lag ∆t. The result of a cross-

correlation is also a signal whose maximum value is achieved at the point t = ∆t. The magnitude

of that value depends on similarity between f and g. The more similar are those signals, the higher

is the magnitude of (f ⋆ g)[∆t].

Our analyzer represents sequences of I/O operations obtained from the kernel-mode trace and

user-mode trace as signals that can take values 0 (no I/O operation at the moment) and 1 (an ongoing

I/O). It generates user I/O signals U = {u(t)1 . . . u(t)N} for each user-mode thread obtained from

the program trace, and kernel I/O signals B = {b(t)1 . . . b(t)M} for each kernel-mode thread from

the BTrace log. The analyzer discretizes those signals with the sampling interval of one millisecond.

The Figure 5.12 depicts the cross-correlation between fragments of Java and Btrace logs, repre-

sented as signals j(t) and b(t) correspondingly. The cross-correlation signal (j(t)f ⋆ b(t))(t) reaches

its maximum value at the point ∆t = 324, which means that the Java signal j(t) is shifted forwards

by ∆t = 324 milliseconds with relation to the Btrace signal b(t).

The dynamic analyzer matches user to the kernel I/O signals using a greedy iterative procedure.

For each pair of signals 〈u(t)i ∈ U , b(t)j ∈ B〉 the analyzer computes a cross-correlation signal

xcorrij = b(t)i ⋆u(t)j and the value ∆tij = argmaxt(xcorrij ). It considers that the user signal u(t)i

matches the kernel signal b(t)j if the maximum value of the cross-correlation signal xcorrij [∆tij ] is

the highest across all the signal pairs.

Next the analyzer aligns user and kernel-mode traces by subtracting the ∆t from the timestamps

of the user-mode trace. In the presented example logs are aligned by subtracting ∆t = 324ms from

timestamps for all the events in the user-mode trace (see the Figure 5.13).
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Figure 5.12: Cross-correlation between Java and Btrace I/O logs. Distinctive features of the signals
are highlighted by circles.

Figure 5.13: Java and Btrace I/O logs aligned



84

Finally, the kernel-mode I/O operations are associated with the user-mode states. Each kernel

mode I/O operation dioj is described as a time interval [tbstart, t
b
end] between its start/end timestamps.

Similarly, invocations of the user mode I/O CFs are described as time intervals [tustart, t
u
end]. The

kernel-mode I/O operation dioj is considered to be caused by the user-mode I/O CF if the amount

of intersection between their corresponding time intervals is maximal across all the I/O CFs in the

trace. Correspondingly, a sequence dioj ...dioj+k of low-level I/O operations associated with the

execution of the user-mode CF are considered to be parameters 〈dio1 · · · diok〉 ∈ P
Π
disk of that CF. A

user-mode I/O CFs that does not intersect any kernel-mode I/O operation is considered as a cache

hit (k = 0).

5.5 Constructing the performance model

The result of the program analysis is a set of text and xml files, which contain all the information

required to generate the model: the list of threads, thread pools, and queues in the high-level

model; the set S of CFs, their properties Π, and transition probabilities δ; the set of locks and

their properties. This information is used to generate the three-tier PERSIK performance models

described in the Section 3. The models are implemented using the OMNeT simulation toolset [2]

and can reviewed in the OMNeT IDE.

Generating the resulting model is a relatively straightforward process because entities discovered

during the program analysis have a direct representation in the PERSIK model.

Locks, queues, and threads discovered in the program explicitly match the corresponding blocks in

the high-tier PERSIK model, while parameters of these locks and queues correspond to parameters of

the appropriate PERSIK blocks. Thus constructing the high-tier PERSIK model requires generating

the .ned file containing the set of PERSIK blocks of the corresponding types, and adding entries,

which correspond to parameters of these blocks, into the model’s .ini file.

Similarly, CFs explicitly correspond to the blocks of the appropriate mid-tier PERSIK models,

and CF parameters correspond to parameters of these blocks. Constructing the mid-tier PERSIK

model of a particular thread group involves generating the .ned file with the list of corresponding

blocks, and putting parameters of these blocks into the .ini file. In addition, building mid-tier

model requires linking the blocks according to the probabilities of the control flow δ. If CF si has

only one successor CF sk in the PCG, then the corresponding blocks in the PERSIK model are

linked directly. If the CF si has multiple successors sk, . . . sm, then the dispatch block is added to

the mid-tier model. The block corresponding to the CF si is linked with the dispatch block, and

the dispatch block is linked with blocks that represent succeeding CFs sk, . . . sm. Probabilities of

transition p(si, sk), . . . p(si, sm) are specified as parameters of the mid-tier PERSIK model.

To start using the model the analyst must specify ranges for the model’s configuration parameters

(the numbers of threads in the thread pools, intensity of the workload, sizes of the queues, the

numbers of CPU cores etc). Ranges of these values are specified in a special .xml file. The model

generator generates a separate PERSIK model for each combination of these parameters.
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The analyst must also specify parts of the model, for which performance data should be collected.

The model generator adds SetTimer and ReadTimer blocks in the corresponding places in the model.

These blocks can provide performance data for CFs (execution time τ), for a group of CFs (e.g. a

processing time of the task by the thread), or for the whole program (e.g. throughput or a response

time).

Specifying values of model parameters and specifying for which parts of the model performance

must be collected are the only manual actions performed during the model construction.



Chapter 6

Experimental Evaluation

In this section we present experimental evaluation of our methodology for automatic generation

of performance models. The main evaluation criteria is the semantic correctness of the generated

models and their prediction accuracy.

First we evaluate our methodology by building models of various small-to-medium size multi-

threaded programs. The purpose of this step is to ensure overall validity of our approach and to

test our model building framework extensively. Finally we describe building performance models of

large industrial applications. In this way we demonstrate that out approach can be used to build

accurate models of large, industrial-grade multithreaded programs.

6.1 Automated performance modeling of small-to-medium

size applications

We used our framework to build models of five small to moderate-size open source multithreaded

Java programs: a 3D rendering program (Raytracer), a financial application (Montecarlo), two

scientific computing applications (Moldyn, Galaxy), and a web server (Tornado). Source code of the

framework, testing applications, and their models are available for download at [11]. Information on

these programs and their models, including the size of of the program, the number of instrumentation

probes, and sizes of their corresponding models (calculated as a number of distinct PTA states) is

presented in the Table 6.1.

Montecarlo, Raytracer, and Moldyn are parts of the Java Grande (JG) benchmark [31] suite.

JG was created before java.util.concurrent package was released, so it implements certain locks

such as barriers and producer-consumer queues using old-style Java synchronization mechanisms. We

modified these programs so they would use implementations of the same synchronization mechanisms

from the java.util.concurrent library. We updated the source code of the Tornado [5] in a similar

manner.

Our methodology for validating the accuracy of the models is similar to the one described in

86
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Table 6.1: Information on small-to-medium programs and their models
Raytracer Montecarlo Moldyn Galaxy Tornado

Program size (LOC) 1468 3207 1006 2480 1705
Number of probes 16 18 30 72 40
Number of CFs 43 17 72 124 88
Total number of
nodes in the model 25 24 46 59 36

Section 4.3. We ran each program in a number of configurations and measured its performance in

each of these configurations. Then we built the model of each program using one of the configurations,

ran the model on the same set of configurations, and recorded the predicted performance. To get

reliable performance measurements we performed three runs of both the actual program and its

model in each configuration and used the mean values of measured and predicted performance

metrics to estimate prediction accuracy. We assess model accuracy by calculating the relative error

between measured and predicted performance metrics as

ε =
|measured− predicted|

measured

For the ideal model that predicts the program’s performance without any errors ε → 0.

We used two hardware configurations for our experimentation. The Setup I is a PC equipped

with the Intel Q6600 quad-core CPU, 4GB RAM, and 160 GB HDD. The computer was running

Ubuntu Linux OS.

The Setup II is a PC equipped with 2 eight-core AMD Opteron CPUs (total 16 CPU cores) and

64 GB RAM. The computer was running Debian Linux OS.

To uncover potential artifacts in the performance of the test programs our experimental con-

figurations cover a variety of program’s behaviors, ranging from under-utilization of computation

resources (e.g. when the number of active working threads is less than the number of CPU cores) to

their over-utilization (the number of active threads is significantly higher than the number of cores).

Below we discuss each of our simulations in detail. First we discuss each program at the high

level and describe its performance model. Then we present results of our experiments, in which we

compare measured values of program’s performance to predictions provided by our models.

6.1.1 Montecarlo: a financial application

Montecarlo simulates price of marked derivatives based on the prices of the underlying assets. Using

historical data on asset prices, the program generates a number of time series using Monte Carlo

simulation [12]. Each time series is represented as an instance of the corresponding object, and can

be considered a “task” in the term of our formal model (see Section 3). Generation of time series

is parallelized across a pool of working threads, with each thread generating its own subset of time

series. Threads are synchronized using a barrier.
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The number of threads is the main factor determining the performance of Montecarlo. The total

time required to finish a simulation is the most important performance metric in this case.

Figure 6.1: The high-level PERSIK model of the Montecarlo

Figure 6.2: PERSIK models of the Montecarlo threads: the main thread (left) and the working
thread (right).

The high-level model of the Montecarlo is depicted on the Figure 6.1. As we previously noticed,

the high-level PERSIK model contains blocks that are both elements of the high-level formal thread

model, such as queues, threads, request sources, and locks; as well as the blocks that represent entities

in the low-level formal model, such as the disk I/O model and the CPU model (see Section 4.2 for
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implementation details of PERSIK high-level models). Correspondingly, the high-level model of

Montecarlo contains the blkDiskIOModule that implements a model of the disk I/O subsystem, the

blkCPUScheduler that implements a model of a CPU and a thread scheduler, and the blkOSLimits

that simulates limitations imposed by the OS. The latter two blocks are not used by the Montecarlo,

they are automatically generated for every model.

Blocks that simulate underlying OS and hardware formally belong to the low-level formal model

of the system, but to facilitate implementation these blocks are located in the high-level PERSIK

model. As we noticed earlier (see Section 4.2 for implementation details of PERSIK high-level

models), this is a purely cosmetic cosmetic feature that does not violate the semantics of the formal

model.

The remainder of the blocks correspond to the components of the high-level formal model.

blkBARRIER1 barrier is used to synchronize working threads (the names of the model components

are generated by the model building framework automatically). blkBLCKQUEUE1 queue holds tasks,

which correspond to time series that should be generated. The main 0 block is the model of the

main thread; Thread1 1 and Thread1 2 are models of the working threads.

The models of Montecarlo threads are depicted at the figure 6.2. In Montecarlo, the source code

of the main thread and working threads is same, but their behavior is somewhat different. The main

thread performs same computations as the working thread, but in addition to that, it also initializes

program’s locks and queues. This difference has been detected by our modeling framework, which

generates distinct models for main and working threads despite the fact they share the same code.

In the model of the main thread, blocks blk9 10 and blk13 14 represent calls to the constructors

of the blkBLCKQUEUE1 and blkBARRIER1 respectively. Tracking these calls is necessary for discovering

parameters of the queue and the barrier, but they do not have any influence on the performance of

the Montecarlo. Thus in the model they are represented using “virtual” blocks. These are delay

blocks that introduce delay of 0 seconds. The loop consisting of blkLOOP11 12 and blk11 12 blocks

performs initial population of the blkBLCKQUEUE1 queue with tasks.

The remaining part of the model of the main thread is identical to the model of the working

thread. blk15 16 block is the call to the blkBARRIER1, which ensures that all the threads start

computations simultaneously. Rest of the blocks simulate generation of the time series. The blk17 -

18 block attempts to fetch the task from the blkBLCKQUEUE1 queue. If the queue is not empty, it

routes the CFM to the blk17 18 FETCH virtual block. From there the CFM is normally routed to

the blk18 17 block, which simulates computations performed while generating the time series, and

then back to the blk17 18. Once the queue becomes empty, the blk17 18 sends the CFM to the

blk17 18 NOFETCH block, and the thread model stops.

Blocks blkStartTimer 1 and blkEndTimer 1 are respectively start and end timer blocks and

are used to record the predicted running time of the program.

We predicted performance of Montecarlo on both hardware Setup I and Setup II.

Running Montecarlo in hardware Setup I with 4 CPU cores. We built the model of Monte-

carlo using a configuration with 2 working threads and used this model to predict the running time
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of Montecarlo with 1,2,3,4,8,10,12,16 working threads. The comparison of measured and predicted

performance is depicted at the Figure 6.3.

The workload of Montecarlo is perfectly parallelizable. Once the program has finished initial-

ization, all its threads are running completely independent from each other, and are not engaged in

any synchronization operations. As a result, the performance of the Montecarlo scales linearly with

the number of available CPU cores. Once all the cores are utilized, the performance of the program

no longer increases.

Numeric results for all the configurations are presented in the Table 6.2. The relative prediction

error varies in ε ∈ (0.014, 0.105) with the average error measured across all the configurations

ε = 0.062.

Figure 6.3: Predicted and measured running time for Montecarlo program on a 4-core machine

Table 6.2: Predicted and measured running time for Montecarlo program on a 4-core machine

The number of working threads

1 2 3 4 8 10 12 16
Measured running time 72.719 39.754 26.782 21.366 20.536 21.323 22.312 21.556
Predicted running time 78.275 39.202 26.111 19.677 19.811 19.530 19.962 19.838
Mean relative error ε 0.076 0.014 0.025 0.079 0.035 0.084 0.105 0.080

Running Montecarlo in hardware Setup II with 16 CPU cores.

We built the model of Montecarlo using a configuration with 4 working threads. We used this

model to predict the running time of Montecarlo with 1,2,4,6,8,10,12,15 working threads. The

comparison of measured and predicted performance is depicted at the Figure 6.4. Numeric results

for all the configurations are presented in the Table 6.3.
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Figure 6.4: Predicted and measured running time for Montecarlo program on a 16-core machine

Table 6.3: Predicted and measured running time for Montecarlo program on a 16-core machine

The number of working threads

1 2 4 6 8 10 12 15
Measured running time 320.768 172.720 96.225 70.958 57.172 48.728 43.639 35.790
Predicted running time 400.629 205.197 99.048 64.005 49.648 40.394 31.156 24.367
Mean relative error ε 0.249 0.188 0.029 0.098 0.132 0.171 0.286 0.319

The relative prediction error for Montecarlo on a 16-core machine varies in ε ∈ (0.029, 0.319)

with the average error measured across all the configurations ε = 0.184.

Although the prediction error remains within the acceptable limits, the performance of the Mon-

tecarlo becomes less linear in relation to the number of CPU cores. To understand the cause of these

errors we studied behavior of MonteCarlo using Linux perf utility. It appeared that the Montecarlo

performs a large number of memory operations. When executed on a 16-core machine these oper-

ations saturate the memory bus, which leads to a performance degradation of the application. We

plan to address these errors by collecting the information on memory accesses by the program and

by developing robust models of memory subsystem

6.1.2 Raytracer: a 3D renderer

Raytracer uses a ray tracing algorithm to render the scene containing 64 spheres at a resolution of

N x N pixels. The rendering is parallelized across a pool of working threads; each thread renders

a specific row of pixels in the image. Arrays containing pixel rows are considered as “tasks” in the

terms of the formal model (see Section 3). These tasks are stored in a synchronized queue that is
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initialized upon the start of the program.

The overall time required to render the frame is the most important performance metric of

Raytracer. Given the constant size of the image, the number of working threads is a determining

factor for the performance of the Raytracer.

The high-level model of Raytracer is depicted at the Figure 6.5. Apart from models of the thread

scheduler, the disk I/O subsystem and the OS limits it contains models of a synchronized section

blkSYNCSECTION1 and the barrier blkBARRIER1. The synchronized section is used to calculate the

control sum of the image (used by the JG framework to validate the rendering), and the barrier

is used to sycnhronize working threads. The queue blkBLCKQUEUE1 contains pixel rows (tasks).

Initial population of the queue with task is performed by the main thread (main 2 block)). Blocks

Thread2 0 and Thread2 1 represent the models of working threads.

The models of Raytracer threads are shown at the Figure 6.6. Similarly to Montecarlo, the

main thread (shown on the left) and working threads share same code, also their functionality is

different. In the model of the main thread virtual code fragments blk11 12 and blk7 8 construct

the queue and barrier correspondingly. The loop consisting of blkLOOP 9 10 and blk9 10 populate

the queue with tasks (pixel rows). Next, blk1 2 waits until all the threads complete initialization,

so computations would start simultaneously. The cycle consisting of blocks blk5 6 cin and blk6 5

ccpu CFs perform actual image rendering. Once the image rendering is complete, the main thread

calculates the checksum of all the pixels in the image. To do this, it uses the synchronized region

consisting of blk13 14 and blk15 16 csync CFs. Calculating the checksum is relatively robust

operation, when compared to rendering. Thus corresponding computation CF was considered as

insignificant and omitted from the model. Again, blkStartTimer 1 and blkStopTimer 1 are used

to measure the perfromance of the renderer.

The model of the working thread (shown on the right) has a simple semantics. Its nodes are a

subset of the nodes of the main thread model, which include waiting on the barrier (blk1 2 CF)

and performing rendering itself (blk5 6 and blk6 5 CFs).

Running Raytracer in hardware Setup I with 4 CPU cores.

We built the model of Raytracer using a configuration with 3 working threads and used this model

to predict performance of the Raytracer with 1,2,3,4,8,10,12,16 working threads. The comparison

of measured and predicted performance is depicted at the Figure 6.7. Similarly to Montecarlo, the

workload can be parallelized fairly well across all the CPU cores.

Numeric results are presented in the Table 6.4. The relative error varies in ε ∈ (0.029, 0.156)

with the average error measured across all the configurations ε = 0.117.

Running Raytracer in hardware Setup II with 16 CPU cores.

We built the model using a configuration with 3 working threads. We used this model to predict

performance of the Raytracer with 1,2,4,6,8,10,12,15 working threads. and used it to predict the

running time of the program in the remaining configurations. The comparison of measured and

predicted performance is depicted at the Figure 6.8. Numeric results are presented in the Table

6.5. The relative error varies in ε ∈ (0.041, 0.173) with the average error measured across all the
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Figure 6.5: The high-level PERSIK model of the Raytracer

Figure 6.6: PERSIK models of the Raytracer threads: the main thread (left) and the working thread
(right).

configurations ε = 0.086. These results are comparable to those obtained in the Setup I.
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Figure 6.7: Predicted and measured running time for Raytracer program on a 4-core machine

Table 6.4: Predicted and measured running time for Raytracer program on a 4-core machine

The number of working threads

1 2 3 4 8 10 12 16
Measured running time 198.707 123.871 72.073 53.545 52.973 52.547 53.938 55.056
Predicted running time 229.753 120.311 81.357 60.110 60.047 60.213 60.433 60.685
Mean relative error ε 0.156 0.029 0.129 0.123 0.134 0.146 0.120 0.102

Figure 6.8: Predicted and measured running time for Raytracer program on a 16-core machine
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Table 6.5: Predicted and measured running time for Raytracer program on a 16-core machine

The number of working threads

1 2 4 6 8 10 12 15
Measured running time 412.199 212.287 106.853 77.623 57.174 48.827 43.944 35.369
Predicted running time 450.152 219.163 109.629 72.892 54.848 44.021 36.719 29.248
Mean relative error ε 0.092 0.032 0.026 0.061 0.041 0.098 0.164 0.173

6.1.3 Moldyn: a molecular dynamics simulator

Moldyn is the scientific computing program that simulates motion of the argon atoms interacting

under the Lennard-Jones potential in a cubic volume. Moldyn discretizes time into small steps

(iterations). During each iteration Moldyn computes the force acting on every atom in the pairwise

manner, and then updates the positions of the atoms.

Moldyn parallelizes computations across a pool of working threads. One of these threads (the

main thread) coordinates actions of other threads using barriers. Objects that represent atoms are

stored in the global synchronized queue. At the beginning of each iteration the main thread copies

atom’s coordinates into separate data structures allocated for each thread. Working threads compute

forces acting on atoms, and then the main thread merges forces computed by different threads and

calculates updated positions of the atoms.

The length of the iteration is the most important performance metric of the Moldyn. Given the

constant number of atoms, the number of working threads in the thread pool is the only parameter

that determines performance of the Moldyn.

The high-level model of Moldyn is depicted at the Figure 6.9. Moldyn uses two queues. The

blkBLKCQUEUE1 is a queue that is initialized with coordinates of atoms upon the start of the program

by the main thread. During each iteration, the threads are fetching tasks (object representing atoms)

from that queue, perform computations, and store the atoms in the second queue blkBLKCQUEUE2.

Once computations are complete, the main thread copies tasks back into the blkBLKCQUEUE1, prepar-

ing for the next iteration.

The Figure 6.10 depicts details of the Moldyn threads. Again, the main thread (left) and working

threads (right) share the same code, but their functionality is different. In the model of the main

thread blocks blk3 4 and blk5 6 initialize queues. The loop consisting of blkLOOP 7 8 and blk7 8

populate the queue blkBLKCQUEUE1 with tasks (atoms and their coordinates).

The next couple of blocks are common for models of the main thread and working threads and

are executed during each iteration. The block blk9 10 is a barrier.await operation used to ensure

that all the threads will start the iteration simultaneously. At the beginning of the iteration, Moldyn

performs some short computations, but the corresponding computation CF was considered insignif-

icant and is not represented in the model. Then Moldyn waits on the barrier again (block blk9 10).

The cycle consisting of blocks blk23 24, blk24 27, and blk27 28 represents computing forces acting

on atoms. The blk23 24 fetches the task (representing an atom) from the blkBLKCQUEUE1 queue.
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If the task can be fetched, the blk24 27 computes the net force acting on an atom, and the block

blk27 28 writes the information about the atom and the computed force into the second queue

blkBLKCQUEUE2. Blocks blk13 14, blk15 16, and blk17 18 are also barrier.await blocks used to

synchronize computations in the program. These computations, however, are too short and are

omitted from the model. Tthe block blk17 18 is the last block that is common to the model of the

main thread and models of the working threads.

Once computations are complete, the main thread moves all the tasks from the queue

blkBLKCQUEUE1 to the blkBLKCQUEUE2. In the model this is represented by the cycle consisting

of blk25 26, blk26 29, and blk29 30.

Finally, all the program’s threads await on the barrier (block blk19 20). before starting another

iteration. Blocks blkStartTimer 1 and blkStopTimer 1 are used to collect the main performance

metric of Moldyn – length of the iteration.

Running Moldyn in hardware Setup I with 4 CPU cores.

We built the model of Moldyn using the configuration with 2 working threads. We used this model

to predict performance of Moldyn in configurations with 1,2,3,4,8,10,12,16 working threads. The

comparison of the measured versus predicted performance is depicted at the Figure 6.11. Numeric

results are presented in the Table 6.6. The relative error varies in ε ∈ (0.013, 0.155) with the average

error measured across all the configurations ε = 0.083.

Table 6.6: Experimental results for Moldyn

The number of working threads

1 2 3 4 8 10 12 16
Measured iteration length 0.503 0.264 0.214 0.170 0.147 0.147 0.162 0.163
Predicted iteration length 0.581 0.288 0.195 0.149 0.147 0.147 0.147 0.147

Mean relative error ε 0.155 0.093 0.092 0.124 0.006 0.001 0.093 0.096

Running Moldyn in hardware Setup II with 4 CPU cores.

We built the model of Moldyn using the configuration with 2 working threads. We used this model

to predict performance of Moldyn in configurations with 1,2,4,6,8,10,12,15 working threads. The

comparison of the measured versus predicted performance is depicted at the Figure 6.12. Numeric

results are presented in the Table 6.7. The relative error varies in ε ∈ (0.006, 0.485) with the average

error measured across all the configurations ε = 0.255.

The model predicts performance of Moldyn on a 16-core machine with a significantly lower

accuracy than on a 4-core machine. Again, we used perf utility to understand the root cause of

these errors. We discovered that specifics of data structure used by the Moldyn causes the cache

miss rate to increase along with the number of threads. In particular, the miss rate for 1 thread is

0.0063%, while the miss rate for 15 threads is 0.0131% (5x increase). As a resut, as the number of

threads increases, the CPU time for the CFs increases as well, which leads to the reduction in the

accuracy.
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Table 6.7: Experimental results for Moldyn

The number of working threads

1 2 4 6 8 10 12 15
Measured iteration length 0.627 0.404 0.220 0.177 0.144 0.131 0.115 0.119
Predicted iteration length 0.878 0.436 0.219 0.147 0.110 0.091 0.075 0.061

Mean relative error ε 0.400 0.081 0.006 0.173 0.238 0.305 0.349 0.485

One approach to improve the accuracy of simulation is to develop a model of a CPU cache.

However, developing an accurate and compact model of a cache is a challenging task itself. Moreover,

collecting data required to simulate the CPU cache may lead to increase in instrumentation overhead.

An alternative way to improve the prediction accuracy could be developing a hybrid of a simulation

and statistical model.

6.1.4 Galaxy: an n-body simulator

Previously (see Section 4.3) we built the model of the Galaxy manually in order to test our approach

for performance prediction. In this section we build the model of the Galaxy automatically in order

to test our approach for building performance models.

Galaxy simulates the gravitational interaction of celestial bodies. To improve the performance it

uses the Barnes-Hut [23] algorithm which involves building an octree. A single iteration of Galaxy

involves three consecutive actions: building the octree, computing the forces acting on bodies and

updating their positions, and detecting collisions between bodies. The time taken by an iteration is

the most important performance metric of the Galaxy.

The Galaxy parallelizes computations across two thread pools. The first thread pool (“force

threads”) computes forces and updates positions of bodies. The second thread pool (“collision

threads”) detects body collisions. Pools communicate through the synchronized queues. The order

of operations is enforced by the main thread. The main thread is also responsible for rebuilding the

octree. The number of force threads and the number of collision threads are the two parameters

affecting the performance of the Galaxy.

The high-level model of the Galaxy is depicted on the Figure 6.13. In this model the request

corresponds to the Java object that represent a celestial body. The leftmost blocks are models of

program-wide locks. The main 0 block is the model of the main thread; the CalcForcesThread 1 3

and CalcForcesThread 1 4 are models of the force threads; the TrackCollisionsThread 1 1 and

TrackCollisionsThread 1 2 are models of the collision threads; the XMLDumpThread 5 is the model

of the thread that periodically dumps simulation results into the .xml file.

The models of Galaxy threads are depicted at the Figure 6.14. The model of the force thread is

shown on the left. Upon the thread start, the CFM is sent to the blk35 36 barrier await block.

There it waits until all the requests are placed in the blkBLCKQUEUE1 queue by the main thread. Once

the initialization is complete, the barrier is lifted by the main thread, and the force threads iterate
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through the requests in the blkBLCKQUEUE1. The thread attempts to fetch the request by using the

blk41 42 sin block. If the queue is not empty, the request is fetched and the CFM is routed to the

blk42 39 block that simulates force computations. Next, the blk39 40 block emits the request to

the blkBLCKQUEUE2 queue, and the CFM reaches back the blk41 42 block that attempts to fetch

the next request. However, if the queue is already empty, the CFM is routed to the blk37 38 block.

There it waits until all the force threads finish their computations. Once this happens, the CFM is

sent to the blk35 36 block where it awaits for the next round of force computations.

The model of the collision thread shown on the right. Its structure and operations are similar

to the model of the force thread. The blk21 22 block waits until all the force threads finish their

computations and requests are placed into the blkBLCKQUEUE2 queue. Then the thread iterates

through requests in the blkBLCKQUEUE2 queue. It fetches the request using the blk29 30 block,

checks for collisions with other bodies (blk30 27), and writes the request it to the blkBLCKQUEUE1

queue (blk27 28). Once the queue is empty, the thread waits on the blk23 24 block until all its

peers finish computations. Finally, the CFM is sent back to the blk21 22 block where it awaits for

the next round of collision checks.

Running Galaxy in hardware Setup I with 4 CPU cores.

We built the model of the Galaxy using a configuration with 2 force and 2 collision threads.

We have run the Galaxy with the 1,2,3,4,8,12,16 force threads and collision threads (total 7*7=49

configurations). In every configuration the Galaxy was used to simulate motion of 5000 bodies.

The comparison of the measured versus predicted performance is depicted at the Figure 6.15. Nu-

meric results are presented in the Table 6.8. The relative prediction error varies in ε ∈ (0.002, 0.291)

with average error ε = 0.075. The predicted CPU utilization is reported in the Table 6.9.

The model correctly predicts that the number of working threads have a relatively low influence

over the performance of the Galaxy. Furthermore, it points to the non-linear dependency between

the number of force threads and iteration length, which occurs because rebuilding the octree is not

parallelized. For the same reason, Galaxy never fully utilizes all the four CPU cores (see Figure 6.16

and Table 6.9 for predicted CPU utilization).

Running Galaxy in hardware Setup II with 16 CPU cores.

We built the model of the Galaxy using a configuration with 2 force and 2 collision threads

and used this model to predict performance of the Galaxy with the 1,2,3,4,8,12,16 force threads

and collision threads (total 7*7=49 configurations). In every configuration the Galaxy was used to

simulate motion of 5000 bodies.

The comparison of the measured versus predicted performance is depicted at the Figure 6.17. Nu-

meric results are presented in the Table 6.10. The relative prediction error varies in ε ∈ (0.004, 0.358)

with average error ε = 0.092, which is almost as accurate as the prediction for 4 CPU cores

The predicted CPU utilization is depicted at the Figure 6.18. The numeric results for predicting

CPU utilization are reported in the Table 6.11. For this hardware setup we could also estimate

the accuracy of prediction for CPU utilization. According to this data, the relative prediction error

varies in ε ∈ (0.004, 0.191) with average error ε = 0.080.



99

Table 6.8: Predicted and measured iteration length for Galaxy on a 4-core machine

Measured iteration length, sec

Num.
force The number of collision threads

threads
1 2 3 4 8 12 16

1 0.230 0.226 0.245 0.250 0.243 0.245 0.274
2 0.139 0.136 0.126 0.127 0.146 0.149 0.154
3 0.096 0.083 0.088 0.089 0.106 0.105 0.109
4 0.068 0.066 0.074 0.068 0.070 0.070 0.076
8 0.072 0.067 0.071 0.071 0.070 0.071 0.069

12 0.070 0.067 0.071 0.068 0.069 0.071 0.069
16 0.074 0.066 0.070 0.069 0.069 0.068 0.068

Predicted iteration length, sec

Num.
force The number of collision threads

threads
1 2 3 4 8 12 16

1 0.261 0.248 0.244 0.242 0.242 0.242 0.242
2 0.146 0.133 0.129 0.127 0.127 0.127 0.127
3 0.108 0.095 0.090 0.088 0.088 0.088 0.088
4 0.088 0.076 0.071 0.069 0.069 0.069 0.069
8 0.088 0.076 0.071 0.069 0.069 0.069 0.069

12 0.088 0.076 0.071 0.069 0.069 0.069 0.069
16 0.089 0.076 0.072 0.069 0.069 0.069 0.069

Relative error

Num.
force The number of collision threads

threads
1 2 3 4 8 12 16

1 0.131 0.099 0.006 0.032 0.004 0.015 0.117
2 0.050 0.025 0.026 0.002 0.135 0.150 0.178
3 0.123 0.148 0.024 0.010 0.169 0.161 0.192
4 0.291 0.147 0.037 0.018 0.007 0.016 0.088
8 0.230 0.135 0.007 0.020 0.008 0.025 0.003

12 0.255 0.128 0.011 0.016 0.005 0.021 0.003
16 0.194 0.142 0.026 0.010 0.010 0.013 0.019

Table 6.9: Predicted CPU utilization for Galaxy on a 4-core machine, percent
Num.
force The number of collision threads

threads
1 2 3 4 8 12 16

1 100.0 106.5 108.8 110.1 109.8 110.0 109.2
2 180.7 197.0 203.6 207.1 207.0 207.2 207.1
3 246.0 278.4 290.4 298.0 297.1 271.1 297.1
4 301.1 349.4 369.8 381.7 381.0 381.0 381.3
8 300.8 349.2 369.5 343.5 381.4 381.2 379.5

12 301.7 349.8 369.5 380.8 380.8 381.1 381.8
16 302.2 349.7 369.3 380.4 380.7 380.2 380.7
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The non-linear dependency between the number of threads and performance becomes even more

evident on a 16-core system. In fact, increasing the number of threads from 1 to 8 results in 5-

fold improvement in performance. However, further increasing the number of threads from 8 to 15

improves performance only by 35%. This phenomenon is explained by the Amdahl’s law [20]: as

the number of active threads increase, the performance of the system becomes dominated by those

computations that are not parallelized.

It might seem that the performance of the system can be easily predicted solely by the means of

the Amdahl’s law. However, in reality doing such prediction can be difficult. It requires discovering

which computations are parallelized across working threads and which are not, and measuring CPU

demand for both sequential and parallel computations.

One computation that is not parallelized is rebuilding the octree by the main thread. However,

it is not the only sequential computation present in the program. Accessing the blocking queues

by the multiple threads is also a sequential computation because it requires acquiring the mutex

for the queue. As a result, fetching and putting data to the queues are performed sequentially.

When the number of working threads is low, the overall impact of these queuing operations on the

performance is negligible and they do not affect performance. However, as the number of threads

increases, queuing operations introduce a noticeable effect on the program’s performance and must

be simulated for the accurate prediction.

6.1.5 Tornado: a simple web server

Predicting performance of the web server is a more complex problem because it requires simulating

not only computations but also the disk and network I/O operations. The behavior of the Tornado

is discussed in general terms in the section 3; it is schematically depicted at the Figure 3.1.

The Figure 6.19 depicts the high-tier model of Tornado. The server does not have any synchro-

nization primitives. However, the model contains two queues. The blkACCEPT QUEUE 25 26 queue

represents the queue used by the operating system to store incoming TCP connections (connections

themselves are generated by the blkACCEPT SOURCE 25 26 block). The ListenThread 3 is a model

of the accept thread, which listens on a socket and accepts incoming connections. This thread gen-

erates tasks that correspond to HTTP requests and stores them in the blkBLCKQUEUE1. Working

threads represented by the ServerThread0 1 and ServerThread0 2 blocks fetch the task from the

blkBLCKQUEUE1 and process them.

The Figure 6.20 depicts the mid-tier models of Tornado threads. The model of the accept thread

is shown on the right. The blk25 26 block corresponds to the ServerSocket.accept operation.

blk26 35 simulates forming the task object, and the block blk35 36 simulates storing the task object

in the blkBLCKQUEUE1 queue. Block blkStartTimer 1 is used to timestamp the PERSIK request

message, which is necessary to collect performance measurements.

The model of the working thread is depicted on the right. Here the blk35 36 reads the request

from the blkBLCKQUEUE1. blk13 14 disk I/O block represents the call to the File.exists()method.

If case if the requested page was not found on the disk, the execution flow is rerouted to the block
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Table 6.10: Predicted and measured iteration length for Galaxy on a 16-core machine

Measured iteration length, sec

Num.
force The number of collision threads

threads
1 2 4 6 8 10 12 15

1 0.265 0.263 0.263 0.267 0.266 0.268 0.271 0.267
2 0.147 0.144 0.143 0.145 0.145 0.145 0.147 0.146
4 0.083 0.081 0.082 0.082 0.082 0.082 0.082 0.083
6 0.061 0.059 0.059 0.060 0.060 0.060 0.060 0.061
8 0.049 0.048 0.048 0.048 0.049 0.049 0.049 0.049

10 0.040 0.037 0.039 0.042 0.042 0.042 0.038 0.039
12 0.035 0.033 0.035 0.036 0.038 0.038 0.035 0.037
15 0.032 0.030 0.032 0.033 0.034 0.032 0.033 0.035

Predicted iteration length, sec

Num.
force The number of collision threads

threads
1 2 4 6 8 10 12 15

1 0.291 0.283 0.280 0.278 0.277 0.277 0.277 0.277
2 0.158 0.150 0.146 0.144 0.144 0.144 0.143 0.143
4 0.090 0.083 0.079 0.078 0.077 0.076 0.076 0.076
6 0.069 0.061 0.057 0.056 0.055 0.055 0.054 0.054
8 0.058 0.050 0.046 0.045 0.044 0.043 0.044 0.043

10 0.051 0.043 0.039 0.038 0.038 0.037 0.037 0.037
12 0.047 0.039 0.035 0.033 0.033 0.032 0.033 0.032
15 0.043 0.034 0.030 0.029 0.028 0.028 0.028 0.028

Relative error

Num.
force The number of collision threads

threads
1 2 4 6 8 10 12 15

1 0.099 0.077 0.063 0.041 0.042 0.034 0.025 0.038
2 0.076 0.040 0.018 0.005 0.006 0.004 0.031 0.021
4 0.095 0.032 0.037 0.057 0.059 0.069 0.071 0.078
6 0.127 0.036 0.034 0.082 0.082 0.094 0.102 0.106
8 0.178 0.038 0.042 0.079 0.107 0.121 0.119 0.126

10 0.286 0.164 0.003 0.105 0.109 0.134 0.048 0.060
12 0.358 0.173 0.010 0.085 0.133 0.154 0.070 0.126
15 0.315 0.150 0.053 0.113 0.171 0.101 0.162 0.194
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Table 6.11: Predicted and measured CPU utilization for Galaxy on a 16-core machine

Measured CPU utilization, percent

Num.
force The number of collision threads

threads
1 2 4 6 8 10 12 15

1 104.3 190.7 328.0 444.3 533.5 614.6 681.2 776.3
2 108.5 200.8 347.4 465.0 581.1 651.4 737.7 832.1
4 112.6 209.8 362.6 490.9 597.8 688.6 761.4 860.9
6 114.9 210.4 368.1 488.7 595.2 689.4 759.8 843.6
8 119.1 213.3 375.6 494.9 597.4 687.8 770.9 845.7

10 121.6 218.3 369.2 503.3 605.1 695.7 766.4 869.1
12 117.3 218.3 371.2 504.1 612.9 699.1 786.9 845.6
15 117.7 222.6 373.7 501.4 611.7 689.3 754.6 876.6

Predicted CPU utilization, percent

Num.
force The number of collision threads

threads
1 2 4 6 8 10 12 15

1 100.0 184.6 320.9 423.0 502.5 567.7 618.3 684.5
2 102.8 194.6 349.6 476.3 583.7 674.8 745.8 849.5
4 104.2 199.7 368.8 511.7 633.3 743.8 831.9 961.8
6 104.7 201.7 374.1 523.3 652.2 770.1 881.9 1001.8
8 104.9 202.2 376.9 528.5 661.2 770.1 892.2 1025.8

10 105.1 202.5 379.8 532.5 671.0 789.1 898.2 1024.1
12 105.1 203.4 380.8 537.5 666.6 793.5 888.3 1045.3
15 105.2 203.2 380.6 536.5 672.3 789.3 901.6 1024.5

Relative error

Num.
force The number of collision threads

threads
1 2 4 6 8 10 12 15

1 0.044 0.033 0.022 0.050 0.062 0.084 0.102 0.134
2 0.058 0.032 0.006 0.022 0.006 0.035 0.012 0.023
4 0.081 0.050 0.017 0.040 0.056 0.074 0.083 0.106
6 0.097 0.043 0.016 0.065 0.087 0.107 0.139 0.158
8 0.135 0.056 0.004 0.065 0.097 0.108 0.137 0.175

10 0.159 0.078 0.028 0.057 0.098 0.119 0.148 0.152
12 0.114 0.073 0.025 0.062 0.082 0.119 0.114 0.192
15 0.120 0.095 0.019 0.065 0.091 0.128 0.163 0.145
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blk12 23 24, which represents sending the ”404” HTTP error code to the user and closing the

socket. Otherwirse the model executes blocks blk8 10202 29 or blk12 10204 9 and blk30 10205

(here 8, 12, and 30 denote the prefix of the library CF). The loop consisting of I/O block blk30 -

10205 10206 and computation block blk30 10206 10205 simulates reading the file from the disk

in chunks. Finally, blk30 10206 10203 and blk30 23 24 blocks simulate preparing the HTTP

response and sending it to the user.

The blocks blkStopTimer 1 and blkStopTimer 2 measure the response time for each request.

Each block covers one possible path that the request processing can take. blkStopTimer 1 block

measures the response time when the requested page was found on the disk and the request was pro-

cessed successfully. The blkStopTimer 2 block measures the response time when the corresponding

page was not found.

The performance of the web server is influenced by two parameters: the incoming request rate

(IRR), which represents the intensity of the workload, and the number of working threads. IRR is

measured as the number of requests the web server receives in a time unit. The performance of the

web server is characterized by two main metrics: its response time R and throughput T .

In our experiments we used Tornado to host about 200000 Wikipedia web pages. We used a

separate client computer (an Intel 2.4 GHz dual-core CPU, 4 GB RAM, 250 GB HDD) to simulate

the incoming connections. The client was connected to the web server over the 100 MBit LAN.

The client was running the http load software which accesses web pages from a supplied list with

a specified IRR.

In our experiments we ran Tornado with with 1,2,4 and 8 working threads and IRR ranging from

19.75 to 97.2 requests per second (rps). To ensure accurate measurements the IRR was measured

on the server side; the client was configured to issue 20 to 140 rps which could not be sustained

due to computational overhead. Our configuration space includes all possible combinations of these

parameters. During each run 20000 requests were issued.

The model of the web server was built using a configuration with IRR=57.30 requests per second

(RPS) and 1 working thread. The models of Tornado threads are depicted at the figure 6.20. The

behavior of these models is described in sections 4.2.1 and respectively.

The prediction of the response time is shown at the Figure 6.21. Predictions of the throughput

are shown at the Figure 6.22. Numeric results are presented in tables 6.12 and 6.13 correspondingly.

The relative prediction error for R varies in ε(R) ∈ (0.017, 1.583) with average error ε(R) = 0.249.

One cause for the relatively high error terms for predicted response time is the variance in the

disk I/O resource demand across different configurations. Another cause is the simplistic model

of networking operations, which are currently simulated as CPU computations. A more accurate

networking model remains the subject of future work.

Predictions of the throughput and hard drive utilization are significantly more accurate The error

for the througput T ε(T ) ∈ (0.000, 0.051) and ε(T ) = 0.012. The error for the predicted hard drive

utilization ε(U) ∈ (0.000, 0.077), while ε(U) = 0.025.

Since the server is equipped with a single hard drive, the increase in the number of parallel I/O
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Table 6.12: Experimental results for Tornado (response time)

Measured response time, sec

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 0.013 0.013 0.014 0.015 0.016 0.020 0.030 0.814 6.573 12.545 15.002 21.677 23.477
2 0.013 0.013 0.013 0.015 0.016 0.025 0.052 1.573 10.642 14.824 20.263 24.257 25.392
4 0.013 0.013 0.014 0.015 0.017 0.022 0.040 0.474 8.599 13.846 17.898 22.872 24.293
8 0.013 0.013 0.013 0.015 0.016 0.021 0.032 0.079 2.740 9.871 12.571 17.815 20.697

Predicted response time, sec

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 0.012 0.013 0.014 0.018 0.024 0.035 0.078 1.165 10.811 14.378 18.336 24.810 24.725
2 0.012 0.013 0.014 0.017 0.022 0.035 0.059 0.324 3.160 8.847 14.860 19.121 21.207
4 0.012 0.013 0.014 0.017 0.021 0.030 0.055 0.271 5.171 11.100 14.419 18.493 20.520
8 0.012 0.012 0.013 0.015 0.017 0.022 0.033 0.090 1.849 6.492 9.482 16.341 17.375

relative error

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 0.035 0.031 0.051 0.221 0.516 0.760 1.583 0.432 0.645 0.146 0.222 0.145 0.053
2 0.048 0.022 0.050 0.128 0.338 0.414 0.134 0.794 0.703 0.403 0.267 0.212 0.165
4 0.043 0.040 0.022 0.116 0.217 0.386 0.365 0.429 0.399 0.198 0.194 0.191 0.155
8 0.075 0.078 0.023 0.017 0.047 0.074 0.050 0.135 0.325 0.342 0.246 0.083 0.161

Table 6.13: Experimental results for Tornado (throughput)

Measured throughput, req/sec

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 19.77 29.45 39.02 48.36 57.44 66.01 74.51 82.87 85.56 84.99 85.50 84.47 84.82
2 19.76 29.48 39.03 48.32 57.43 66.05 74.28 81.68 80.98 81.40 81.58 81.34 81.95
4 19.76 29.47 39.00 48.34 57.47 66.02 74.38 82.88 82.82 83.03 83.23 82.92 83.10
8 19.77 29.45 39.03 48.38 57.37 66.03 74.49 83.11 88.82 88.17 88.36 88.40 87.61

Predicted throughput, req/sec

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 19.76 29.41 38.96 48.29 57.45 65.86 74.40 81.95 81.94 82.66 82.80 81.99 83.18
2 19.76 29.44 38.97 48.22 57.29 65.89 74.01 82.40 85.13 84.39 84.66 84.40 84.70
4 19.75 29.44 38.97 48.30 57.41 65.86 74.20 82.30 84.78 84.81 85.03 85.57 85.14
8 19.75 29.42 39.00 48.32 57.31 65.87 74.19 82.98 89.21 90.26 90.36 89.04 90.03

Relative error

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 0.001 0.001 0.002 0.001 0.000 0.002 0.001 0.011 0.042 0.027 0.032 0.029 0.019
2 0.000 0.001 0.002 0.002 0.003 0.003 0.004 0.009 0.051 0.037 0.038 0.038 0.034
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.007 0.024 0.021 0.022 0.032 0.025
8 0.001 0.001 0.001 0.001 0.001 0.003 0.004 0.002 0.004 0.024 0.023 0.007 0.028

operations is negated by the proportional increase in the average execution time for each I/O request.

As a result, the number of working threads has a relatively small influence on the performance of the
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server (see Figure 6.23 and Table 6.14 for predicted hard drive utilization). We believe this example

demonstrates the necessity of proper simulation of I/O operations in multithreaded programs because

they often become a determining factor in the program’s performance.

Table 6.14: Experimental results for Tornado (hard drive utilization)

Measured hard drive utilization, percent

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 20.02 30.20 40.04 50.02 59.02 68.48 78.05 90.02 92.17 91.53 91.51 91.31 90.88
2 20.29 29.68 39.93 50.37 59.77 73.17 86.76 99.33 99.37 99.37 99.29 99.23 99.25
4 20.35 30.22 40.12 50.78 60.94 71.08 84.55 98.74 99.69 99.71 99.74 99.74 99.75
8 20.33 30.24 40.18 50.36 60.09 71.28 84.14 95.10 99.74 99.71 99.73 99.73 99.72

Predicted hard drive utilization, percent

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 20.95 30.26 40.02 50.28 59.96 68.72 78.07 85.93 86.46 86.40 86.39 86.45 86.25
2 20.95 31.12 41.64 52.75 64.38 76.30 85.49 96.52 98.99 99.04 99.04 99.05 99.07
4 21.18 30.90 41.72 52.93 64.08 75.20 86.42 96.83 99.94 99.98 99.98 99.96 99.98
8 20.41 29.59 39.63 49.50 58.93 69.00 78.98 90.66 99.63 99.94 99.99 99.99 99.98

Relative error

Num. IRR, req/sec
threads

19,75 29,43 38,97 48,27 57,31 65,88 74,22 82,69 88,35 91,17 94,67 97,02 97,19
1 0.046 0.002 0.001 0.005 0.016 0.004 0.000 0.045 0.062 0.056 0.056 0.053 0.051
2 0.033 0.048 0.043 0.047 0.077 0.043 0.015 0.028 0.004 0.003 0.003 0.002 0.002
4 0.041 0.023 0.040 0.042 0.051 0.058 0.022 0.019 0.003 0.003 0.002 0.002 0.002
8 0.004 0.021 0.014 0.017 0.019 0.032 0.061 0.047 0.001 0.002 0.003 0.003 0.003

6.2 Automated performance modeling of large applications

In the previous section we described building performance models of small- to medium-size appli-

cations, which demonstrate overall feasibility of our approach. However, modern multithreaded

applications are significantly larger and more complex than programs we have studied in a previous

section. In order to prove the practical value of our methodology we must demonstrate that our

framework is capable of building accurate models of large industrial applications.

To prove the practicality of our approach we built performance models of industrial open source

Java programs: Sunflow 0.07 3D renderer and Apache Tomcat 7.0 web server. These are large

applications that consists of tens of thousands and hundreds of thousands of lines of code (LOC).

The summary information on programs and their models is provided in the Table 6.15.

We predicted performance of Tomcat in two setups: as a standalone web server that hosts static

web pages and as a servlet container that hosts an iText library for text conversion. Because of the

difference in Tomcat functionality between these setups, there is a significant dissimilarity between

the corresponding models.

Instrumenting these programs required inserting hundreds and thousands of probes into the
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Table 6.15: Summary information on large applications and their models
Tomcat Tomcat+iText Sunflow
(web server) (servlet

container)
Program size (LOC) 182810 283143 21987
Number of probes 3178 3926 380
Mean instrumenta-
tion overhead 7.3% 2.4% 5.7%
Number of CFs 11206 9993 209
Total number of
nodes in the model 82 49 42
Simulation
speedup 8-26 37-110 1050

bytecode of these applications. Instrumentation did not alter semantics of our test programs, but

it introduced some overhead. We measured overhead as a relative difference between the time

required to process a task by an instrumented and non-instrumented program. According to this

methodology, the overhead constituted 2.5%-7.6%.

Program analysis identified a large number of code fragments in the code of test programs: from

380 CFs in Sunflow 3D renderer to 3926 CFs in the Tomcat servlet container. The complexity

reduction algorithm eliminated 99.3% (11124 out of 11206) to 99.5% (9944 out of 9993) CFs as

insignificant in Tomcat and Tomcat+iText models correspondingly. Most of these insignificant CFs

were detected during startup or shutdown stages. No startup or shutdown stages were detected in

the Sunflow; and only 80% (167 out of 209) of Sunflow CFs were eliminated as insignificant.

Our models run 8-1000 times faster than the actual program (see Table 6.15). The actual

speedup depends on a ratio between the times required to simulate CFs by the model and times

required to execute these CFs by the program. Simulating a CF requires a (roughly) constant

amount of computations, regardless of its execution time. Thus models that invoke many CFs with

short execution times run slower than models that execute few “long” CFs. Simulating intense

synchronization operations slow down models as well. However, compared to benchmarking the

actual system performance models offer two additional sources of speedup. First, multiple instances

of a model can run simultaneously on a multicore computer. Second, the model does not require

a time-consuming process of setting up the live system for experimentation. We plan to increase

performance of our models by optimizing our modeling framework.

The approach we used for measuring the prediction accuracy of large applications is the same

as we used for measuring the accuracy of models of small- to medium-size programs. Namely, we

computed the relative error ε between predicted and measured performance across a number of

different configurations. To get reliable performance measurements we performed three runs of both

the actual program and its model in each configuration. All our experiments were executed on the

hardware Setup I, which includes Intel Q6600 quad-core CPU, 4GB RAM, and 160 GB HDD. The

computer was running Ubuntu Linux OS.
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Below we describe our experiments in detail. We discuss the behavior of each program at the

high level, describe the structure of its model, and present results of our experiments. Experimental

results include predicted values of the program’s performance metrics and their comparison to the

values of performance metrics measured by running the actual program.

6.2.1 Sunflow: a 3D renderer

Sunflow is an open-source 3D renderering program for photo-realistic image synthesis. The program

features an extensible object-oriented design that allows for extending and customizing the ray

tracing core [13].

The Sunflow offers a wide range of features including an API for embedding Sunflow functionality

into the user programs, the API for creating scenes, the run-time compilation of shaders, the adaptive

sampling of area light sources, the variable depth of field, and different types of renderers. It supports

various file formats for importing scenes and textures, and for exporting data. Sunflow offers rich

set of primitives for scene description, various types of cameras, surface shaders and modifiers, light

sources and image filters. A full list of Sunflow features can be found on its website [13].

Although the Sunflow has a wide variety of options that can significantly alter the appearance

of the resulting scene, at the high level it follows the same algorithm. Upon the start of the Sunflow

the main thread parses the configuration options of the program, reads a scene specification from

the disk, splits the frame into multiple tiles, and stores tile coordinates in the queue. These tiles

correspond to tasks in the context of the multithreaded program. Then the main thread starts

working threads. These working threads read tile coordinates from the queue, render the image

tiles, and synthesizes the resulting image. The time required to render the image is the most

important performance metric of Sunflow.

The high-level model of Sunflow is shown at the Figure 6.24. The main 2 block is the model

of the main thread. The blkBLCKQUEUE1 represents the queue used to save tile coordinates. The

working threads are represented by the Thread 2 0 and Thread 2 1 are the blocks in the high-level

model. These blocks belong to the high-level formal model of Sunflow.

The high-level PERSIK model of Sunflow also contain blocks that simulate hardware:

blkDiskIOModule that simulates the disk I/O subsystem, blkCPUScheduler that simulates the CPU

and the thread scheduler, and blkOSLimits that simulates certain limitations imposed by the OS.

These blocks formally belong to the low-level formal model of the system. But as we noticed earlier

(see Section 4.2), placing these blocks into the high-level PERSIK model simplifies implementation

and does not violate the semantics of the formal model.

Sunflow is a larger and more complex than the programs we studied before, thus we could not

identify the exact function of each block in its thread models. Although the ability of the model to

describe performance of the system in the programmer’s terms would be a nice feature, it was not

the main goal of our work. Indeed, the whole point of the automatic program analysis was to build

models of large programs without knowing details of their structure. Nevertheless below we provide

a brief description of key elements of these models.
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The model of the main thread is depicted at the Figure 6.25 (top). The set of computational

blocks on the left simulates initializations performed at the startup of the program, in particular –

reading the program’s configuration, loading the scene, and splitting the image into tiles. The loop

blkLOOP 45 46 fills the queue blkBLCKQUEUE1 with tasks (image tiles). Then the thread relies on

the barrier.await block blk 49 50 to signal working threads that the image rendering can be started.

The model of the working thread is depicted at the Figure 6.25 (bottom). Upon its start the

working thread waits on the barrier represented by the blk 49 50 block until the main thread

finishes initialization. Then the working thread enters the main loop, where it fetches tasks from the

queue (this operation is modeled using the blk37 38 block) and renders them. The block blk70 37

represents the rendering operations itself. Although rendering is a complex operation accounting

for a significant portion of the program’s code, it involves only CPU computations and thus is

represented with the single computation block.

The thread also contains the model of a synchronized region represented by the blk73 74 and

blk75 76 blocks. These blocks corresponds to the 〈73, 74〉 and 〈75, 76〉 CFs, which represent entering

and exiting the synchronized region respectively. In terms of our model, 〈73, 74〉 and 〈75, 76〉 CFs

denote the data-guarding region (see Section 5.4.2). Computations within that region consume very

little resources. As a result, these computations were considered as insignificant and not represented

in the model.

The presence of data-guarding regions in the model does not alter the behavior of the model or

affect prediction accuracy. However, their presence introduces additional complexity into the model

and decreases the simulation performance. Thus in future we plan to introduce a more sophisticated

logic for dealing with those regions. One approach is to detect data-guarding regions and eliminate

them from the model altogether. An alternative is to decrease the value of the threshold used to

decide if CFs residing within data guarding regions are insignificant. The consequence of this will

higher chances for considering these CFs as significant and retaining them in the model. The latter

option might theoretically improve the prediction accuracy in configurations with the high number

of working threads, where the data-guarding regions can have a noticeable impact on performance.

However, in our experiments we did not encounter scenarios when dropping CFs within the data-

guarding regions caused a significant drop in the model accuracy.

Given the constant size of the image, the number of working threads is one factor that determines

the performance of the Sunflow. The hardware used to deploy the program also has strong influence

over its performance. In particular, the number of CPU cores poses a practical limit on the Sunflow

performance.

We built the model of Sunflow v. 0.07 using a configuration with 2 working threads and 4 CPU

cores. We used it to predict Sunflow performance in hardware Setup I with 1,2,3,4,5,6,8,11,12, and

16 working threads and with 1,2,3 and 4 active CPU cores.

Figure 6.26 compares predicted and measured rendering times in each of these configurations.

The relative error varies in ε ∈ (0.003, 0.097) with the average error across all the configurations

ε = 0.032. Numeric results are presented in the table 6.16.
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Figure 6.9: The high-level PERSIK model of the Moldyn

Figure 6.10: PERSIK models of the Moldyn threads: the main thread (left) and the working thread
(right).
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Figure 6.11: Experimental results for Moldyn

Figure 6.12: Experimental results for Moldyn
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Figure 6.13: The high-level PERSIK model of the Galaxy

Figure 6.14: PERSIK models of the Galaxy threads: force thread (left) and collision thread (right).
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Figure 6.15: Predicted and measured iteration length for Galaxy program on a 4-core machine
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Figure 6.16: Predicted CPU for Galaxy utilization on a 4-core machine
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Figure 6.17: Predicted and measured iteration length for Galaxy program on a 16-core machine
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Figure 6.18: Predicted CPU for Galaxy utilization on a 16-core machine

Figure 6.19: The high-level PERSIK model of the Tornado.
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Figure 6.20: PERSIK model of Tornado threads.

Figure 6.21: Predicted and measured response time for Tornado
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Figure 6.22: Predicted and measured throughput for Tornado

Figure 6.23: Experimental results for Tornado (hard drive utilization)
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Figure 6.24: The high-level PERSIK model of the Sunflow.

Figure 6.25: PERSIK models of Sunflow threads: the model of the main thread (top) and the model
of the working thread (bottom).
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Figure 6.26: Predicted and measured response time for Sunflow program
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Table 6.16: Predicted and measured running time for the Sunflow

Measured running time, sec

Num. Number of working threads
CPUs 1 2 3 4 5 6 8 11 12 16

1 1154.3 1099.8 1097.4 1099.3 1097.9 1099.6 1104.6 1102.9 1103.0 1108.1
2 1096.4 554.86 553.51 554.23 553.51 553.96 553.98 556.77 555.74 559.28
3 1094.7 552.44 371.07 370.48 371.02 368.96 369.35 371.73 373.33 372.39
4 1110.0 554.77 367.52 278.13 278.01 280.37 278.58 281.12 278.96 280.42

Predicted running time, sec

Num. Number of working threads
CPUs 1 2 3 4 5 6 8 11 12 16

1 1098.7 1096.9 1104.8 1084.1 1106.6 1140.4 1123.9 1094.5 1051.5 1143.0
2 1114.4 565.59 568.71 543.45 573.76 582.30 545.18 571.96 524.46 545.77
3 1114.4 565.59 398.67 367.87 389.86 392.42 346.79 356.04 337.13 357.14
4 1098.7 565.59 398.67 265.55 268.19 266.79 286.82 277.77 277.47 292.02

relative error

Num. Number of working threads
CPUs 1 2 3 4 5 6 8 11 12 16

1 0.048 0.003 0.007 0.014 0.008 0.037 0.017 0.008 0.047 0.032
2 0.016 0.019 0.027 0.019 0.037 0.051 0.016 0.027 0.056 0.024
3 0.018 0.024 0.074 0.007 0.051 0.064 0.061 0.042 0.097 0.041
4 0.010 0.019 0.085 0.045 0.035 0.048 0.030 0.012 0.005 0.041

Our experiments with Sunflow prove the capability of our framework to analyze complex indus-

trial applications and to predict their performance across different hardware configurations. This

does not yet translate into an accurate prediction of the program running on a totally different hard-

ware as differences in characteristics of CPU, memory, and cache will result in different execution

times for individual CFs. Nevertheless, it opens a path for such a prediction because CF timing can

be estimated using either an analytic model (e.g. by applying scaling coefficients) or by running

microbenchmarks on the target architecture.

6.2.2 Tomcat: a web server and a servlet container

Apache Tomcat is a web server and Java servlet container [14]. Tomcat was initially developed by the

Sun Microsystems as a reference implementation of Java Servlet and Java Server Page technologies,

and later released under the Apache open-source license. In addition to being an application server,

Tomcat provides a full support of all the HTTP protocol features, making it a very robust and

feature-rich web server. Thanks to its reliability, flexibility, and high performance Tomcat is widely

used in industry. It has been reported that more than the half of Fortune 500 companies use Tomcat

in their business, including the Wallmart chain of retail stores, The Weather Channell, and E-Trade

financial services company [15].

A core component of Tomcat is the set of Connectors objects. Connectors implement the

external interfaces that allows clients access Tomcat using HTTP, AJP, and HTTPS protocols [35].

A connector accepts the incoming connection, perform some initial processing on it, and creates the

Request object to represent the incoming request. The request object, which corresponds to the task

in our formal model, is then passed to the Processor component for processing. The Processor
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component in the Tomcat implements a thread pool, which can be configured both as a dynamic

thread pool and as a producer-consumer pool with the fixed number of working threads.

The request processing itself is performed by the hierarchy of Containers objects called by the

Processor. The top-level entry of this hierarchy is the Engine component. The engine contains one

or more Host components that correspond to individual web applications. Hosts, in turn, contain

the web application Contexts. Finally, Contexts contain Wrappers for individual servlets. The

result of processing the request is represented by the Response object, which is returned through

the same Connector used to accept the incoming network connection. Containers rely on a number

of additional components, such as Valves, Listeners, Loaders, Resources, and Security Realms,

for logging, class loading, authentication and authorization, and for other purposes.

In terms of threading, Tomcat uses up to 10 different thread pools to start up and shut down the

program, to accept incoming connections, to process timeouts, to serve incoming HTTP requests,

and for other purposes. Web applications hosted by the Tomcat can perform synchronization and

start additional threads, further increasing complexity of the system.

Tomcat proved itself as a highly flexible web server. It provides a number of configuration

options, which allow modifying the behavior of the Tomcat to the concrete customer scenario. In the

unlikely case when the desired behavior cannot be achieved by adjusting values of the configuration

parameters, the behavior of the Tomcat can be modified by developing a server extension and

integrating it with the server’s code using a plugin mechanism. Tomcat achieves high performance

by means of object pooling, extensive caching of the results, and parallelizing the workload across

different machines (e.g. using the Apache HTTP server to serve requests to static web pages, so

Tomcat will be used only for hosting servlets).

However, flexibility, extensibility, and performance of Tomcat comes at the cost of the high

internal complexity. Tomcat is a large and complex program, consisting of about 200000 lines

of Java code and hundreds of Java classes. Considering the size and complexity of the Tomcat,

manually building and configuring performance model of Tomcat is not feasible. The only way

to build a performance model of Tomcat and servlets hosted by it is to use an automatic model

generator.

We relied on our framework to build the performance model of Tomcat in two different setups.

In the first setup the Tomcat was deployed as a pure web server, serving requests to the static web

pages. In the second setup we used Tomcat as a servlet container. In this setup Tomcat was hosting

a web application that used iText library to generate the PDF document and send it to the user.

The functionality of Tomcat was very different in both of these setups. The code of the system in

the servlet container was different as well, since it included the code of the web application. As a

result, simulating performance of Tomcat in these different setups required building two different

models.

We will describe out experimentation with Tomcat performance models in a following way. First

we will describe parts of the Tomcat model that are common for both of experimental setups. Then

we will discuss each of these setups in more detail. This will include the description of the difference
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between the corresponding models as well as the description of the experiments themselves.

Figure 6.27: The high-level PERSIK model of the Tomcat.

Figure 6.28: The PERSIK model of Tomcat threads. Left: the Acceptor thread for accepting
incoming HTTP connections. Upper right: the main thread. Lower right: the connection timeout
thread.

The Figure 6.27 depicts the high-level model of Tomcat with one working thread. This model

remains unchanged across the different setups. From the point of performance modeling, the most

important threads in it are the HTTP acceptor thread (represented by the the http bio 8080 -

Acceptor block in the high-level model) and the working thread (represented by the catalina -

exec 1 2 block).

The acceptor thread listens for incoming HTTP connections, which are the main type of requests

processed by Tomcat in our experiments. The incoming HTTP connections are generated by the

blkACCEPT SOURCE Grp4 201 202 source block. The source block passes the connection to the

blkACCEPT QUEUE Grp4 201 202 block, which represents the queue used by the operating system

to store incoming TCP connections.

Incoming connections are processed by the http bio 8080 Acceptor HTTP acceptor thread,

whose mid-level model is depicted at the Figure 6.28 (left). The blk201 202 represents the

Socket.accept operation, which fetches the incoming connections from the blkACCEPT QUEUE -

Grp4 201 202 queue. Once the connection has been accepted, the blk2529 2955 202 407 block

performs computations pertaining to generating the HTTPRequest object. The block blk2529 -

2955 407 408 sends the HTTPRequest object to the blkBLKQUEUE55, which is the part of the
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Processor component in the Tomcat.

The working thread fetches tasks from blkBLKQUEUE55 queue and processes them. The behavior

of the working thread is highly specific to the setup in which the Tomcat is running. Models of the

Tomcat working threads will be discussed below when we describe different Tomcat setups.

The ajp bio 8009 Acceptor 0 1 is an AJP acceptor thread that processes the incoming AJP

connections. AJP (Apache JServ Protocol) is the binary protocol that can pass the HTTP requests

from a web server to an application server. The purpose of the AJP is to distribute processing of

the static and dynamic web content across different computers. The static content can be processed

by the specialized web server such as Apache HTTP server, while dynamic content is processed by

Tomcat. Using such distributed processing can reduce load on Tomcat and thus improve overall

performance of the system.

The blkACCEPT SOURCE Grp5 201 202 block of the high-level model represents the source of

AJP connections. Incoming AJP connections should be placed in the blkACCEPT QUEUE Grp4 -

201 202 queue, from which the ajp bio 8009 Acceptor 0 1 thread will fetch them and process.

However, in our setup we used Tomcat as a standalone web server that did not receive any AJP

connections. As a consequence, the blkACCEPT SOURCE Grp5 201 202 block did not generate any

requests and the AJP acceptor thread did not perform any operations.

The main 0 block is the model of the Tomcat’s main thread, whose function is to manage the

server lifecycle. Upon the startup the main thread initializes the web server. Server initialization is

a complicated process, considering the size and complexity of the Tomcat. Once the server is fully

initialized, the main thread opens a network socket, and listens on that socket for the shutdown

command. When the shutdown command is received, the main thread shuts down the Tomcat

gracefully. In our model the source of shutdown command is represented by the blkACCEPT -

SOURCE Grp6 363 364 source block.

The mid-level model of the main thread is shown at the Figure 6.28 (upper right). The main

thread perform very complex operations during the startup phase of the program, and representing

these operations in the model would require using thousands of code fragments. However, all these

operations have no influence on the performance of the server during its request processing phase,

when the Tomcat actually serves HTTP requests. Consequentially, the corresponding code fragments

were omitted from the model during the model simplification (see Section 5.4.2 for details). As a

result, the model of the main thread contains only the blk363 364 block, which represents waiting

for the incoming connection on the shutdown socket.

The http bio 8080 AsyncTimeout 4 thread is used to track connection timeouts for the HTTP

connections. The thread wakes up every second, checks if any connection has timed out, and goes

to sleep again. Correspondingly the model of this thread is fairly simple (see Figure 6.28, lower

right). The blk267 268 block is a Thread.Sleep operation, while the blk268 267 block represent

computations performed when the thread checks for connection timeouts.

Similarly, the ajp bio 8080 AsyncTimeout 3 thread tracks timeouts for AJP connections. The
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structure and the behavior of its model are identical to the model of the http bio 8080 -

AsyncTimeout 4 thread.

Tomcat as a web server

In this setup we used Tomcat to host about 600000 Wikipedia web pages. A client computer (an

Intel 2.4 GHz dual-core CPU, 4 GB RAM) connected to the web server over the 100 MBit LAN

was used to simulate the incoming requests. The client was running the http load software which

accesses web pages from a supplied list with a specified IRR.

The performance of Tomcat server is influenced by two parameters: the incoming request rate

(IRR), which represents the intensity of the workload, and the number of working threads. The

performance of the web server is characterized by two main metrics: its response time R and

throughput T .

Figure 6.29: The PERSIK model of the Tomcat thread for processing HTTP requests.

The model of the web server was built using a configuration with workload intensity 92 requests

per second (req/s) and 1 working thread. The model of the working thread in the web server setup

is depicted at the Figure 6.29. Because of high complexity of the Tomcat we could not precisely

determine the functionality of each of the model’s block. Although such analysis would improve the

understanding of the system and facilitate the debugging of the model, it was never the ultimate

goal of our model. Instead, our primary focus was automatically building models that could predict
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the performance of the Tomcat.

Nevertheless, we could determine the functionality of certain blocks that constitute the mid-level

model of the Tomcat working thread. In particular, the blk403 404 fetches the HTTPRequest object

from the blkBLKQUEUE55 queue. Blocks blk3099 2637 2805 960 123, blk3099 2749 122 123,

and blk3099 122 339 are executed after fetching the request object. They manage the Tomcat

cache, where it stores the contents of the web pages accessed previously. The block blk3099 340 -

10205 10206 reads the web page from the disk. Finally, block blk512 239 240 sends the data

back to the client and closes the socket.

We ran Tomcat with with 1,2,3,4,5,6,8 and 10 working threads and workload intensity ranging

from 48.30 to 156.25 requests per second (measured on the server side). During each run 10000

requests were issued. The workload is characterized with the large number of disk I/O operation.

The prediction results for the response time R are depicted at the Figure 6.30. The relative

prediction error ε(R) varies within (0.003, 2.452) with average error ε(R) = 0.269. The numeric

results for the response time across all the configurations are presented in the table 6.17.

The relatively high error terms in predicting the R are attributed to the fluctuations of the

page cache hit rate k. When measured across all the experimental configurations, the mean number

of low-level I/O operations issued by the block blk3099 340 10205 10206 is k = 0.755 with

standard deviation σ(k) = 0.046. From a statistical point of view this mean that in 95% of cases the

true value of k will vary between (0.663, 0.847). These variations in the page cache hit rate cause

proportional variations in the request processing time by the working threads. However, in saturated

configurations, when the HTTP requests start to accumulate in the queue, even small variations in

the request processing time result in large variations in the response time R.

To verify our hypothesis we introduced a 15% artificial bias in the number of I/O operations

k performed by Tomcat. This resulted in increasing the relative error to ε(R) ∈ (0.015, 3.109)

with ε(R) = 0.882 (a single outlier configuration resulting in ε(R) = 49.446 was removed from

the analysis). We believe this experiment proves our assumption about the causes of the errors in

predicting R. Moreover, it illustrates difficulties associated with predicting the variability inherent

to the hard drive I/O operations.

The prediction for throughput T is shown at the Figure 6.31. The relative prediction error ε(T )

varies in (0.001, 0.087) with average error ε(T ) = 0.0121. However, in non-saturated configurations

throughput is roughly equal to the incoming request rate. Thus a more informative metric for

the accuracy of throughput prediction is the relative error for saturated configurations, which is

ε(Tsat) = 0.027. The numeric results for the throughput across all the configurations are presented

in the table 6.18.
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Figure 6.30: Predicted and measured response time for the Tomcat in a web server configuration.
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Table 6.17: Predicted and measured response time for the Tomcat in a web server configuration.

Measured response time, sec

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 0.011 0.013 0.026 1.995 6.575 10.14 14.93
2 0.012 0.012 0.022 0.166 3.471 4.313 8.065
3 0.010 0.012 0.017 0.025 1.346 6.810 9.292
4 0.011 0.012 0.022 0.035 0.102 3.377 6.772
5 0.010 0.012 0.017 0.025 1.346 6.810 9.292
6 0.011 0.013 0.017 0.039 3.048 6.247 8.135
8 0.011 0.012 0.022 0.035 0.102 3.377 6.772

10 0.011 0.013 0.019 0.030 0.073 1.865 6.951

Predicted response time, sec

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 0.010 0.012 0.025 2.055 6.558 10.93 14.12
2 0.010 0.011 0.014 0.028 0.235 4.302 7.699
3 0.010 0.010 0.013 0.023 0.754 3.505 7.358
4 0.010 0.011 0.017 0.032 0.352 3.898 7.284
5 0.010 0.010 0.013 0.023 0.754 3.505 7.358
6 0.010 0.011 0.014 0.032 0.183 3.305 7.199
8 0.010 0.011 0.017 0.032 0.352 3.898 7.284

10 0.010 0.012 0.016 0.030 0.136 3.539 6.537

relative error

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 0.130 0.058 0.055 0.030 0.003 0.079 0.054
2 0.184 0.034 0.363 0.832 0.932 0.002 0.045
3 0.082 0.111 0.186 0.045 0.440 0.485 0.208
4 0.121 0.050 0.246 0.063 2.452 0.154 0.075
5 0.082 0.111 0.186 0.045 0.440 0.485 0.208
6 0.132 0.124 0.163 0.190 0.940 0.471 0.115
8 0.121 0.050 0.246 0.063 2.452 0.154 0.075

10 0.087 0.078 0.125 0.020 0.859 0.898 0.059
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Figure 6.31: Predicted and measured throughput for the Tomcat in a web server configuration.
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Table 6.18: Predicted and measured throughput for the Tomcat in a web server configuration.

Measured troughput, req/sec

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 48.24 70.77 91.99 107.6 108.6 109.2 106.1
2 48.25 70.52 91.96 112.2 117.6 130.4 127.7
3 48.33 70.79 92.12 111.7 125.9 120.0 122.7
4 48.26 70.71 92.05 111.7 132.6 136.4 136.5
5 48.33 70.79 92.12 111.74 125.94 119.99 122.72
6 48.33 70.82 92.13 111.69 120.59 122.56 128.68
8 48.26 70.71 92.05 111.73 132.63 136.38 136.51

10 47.95 69.24 90.10 108.66 126.99 145.08 137.88

Predicted troughput, req/sec

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 48.25 70.78 92.02 106.4 107.1 107.1 107.3
2 48.26 70.69 92.00 112.2 125.5 129.3 128.1
3 48.34 70.81 92.13 111.8 127.5 130.4 128.9
4 48.32 70.87 92.25 112.1 132.5 133.6 133.7
5 48.34 70.81 92.13 111.78 127.48 130.38 128.92
6 48.30 70.86 92.17 111.57 127.88 131.69 131.48
8 48.32 70.87 92.25 112.09 132.51 133.58 133.68

10 48.31 67.30 92.19 111.54 130.38 138.03 136.70

relative error

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 0.000 0.000 0.000 0.011 0.014 0.019 0.011
2 0.000 0.002 0.000 0.000 0.067 0.009 0.004
3 0.000 0.000 0.000 0.000 0.012 0.087 0.051
4 0.001 0.002 0.002 0.003 0.001 0.021 0.021
5 0.000 0.000 0.000 0.000 0.012 0.087 0.051
6 0.001 0.000 0.000 0.001 0.060 0.074 0.022
8 0.001 0.002 0.002 0.003 0.001 0.021 0.021

10 0.007 0.028 0.023 0.026 0.027 0.049 0.009

Our model correctly predicts that the number of working threads has a minor impact on per-

formance of Tomcat in this setup. When executed with 1 working thread, Tomcat saturates at 110

req/s, but with 8 threads it saturates at 130 req/s (see Figure 6.31). The reason for this behavior

lays in the nature of the workload and the hardware configuration of the experimental PC, which is

equipped with a single hard drive and a quad-core CPU.

The workload of the Tomcat in the web server setup is mostly disk I/O-bound. In particular,

out of all the computational resources consumed during the processing of the HTTP request, 81%

constitute the disk I/O bandwidth (see Figure 6.32 and Table 6.19) and remaining 19% are the CPU

time (see Figure 6.20 and Table 6.20). Since the server is equipped with only one hard drive, this

hard drive becomes the point of contention in the system. Any increase in the number of working

threads is compensated by the increase in the average execution time for each I/O request. At

the same time, CPU computations are parallelized across four CPU cores, resulting in small but

noticeable increase in the server performance.
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Figure 6.32: Predicted utilization of the hard drive for the Tomcat in a web server configuration.

Figure 6.33: Predicted utilization of the CPU for the Tomcat in a web server configuration.

Tomcat as a servlet container

Although Tomcat can serve requests to static web pages, more frequently it is used as a servlet

container. In order to ensure that performance models are capable of predicting performance of the
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Table 6.19: Predicted utilization of the hard drive for the Tomcat in a web server configuration.

Measured hard drive utilization for the Tomcat
in a web server configuration, percent

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 37.83 52.63 70.44 82.14 81.89 80.74 80.53
2 38.45 58.50 73.04 89.79 98.77 98.68 98.51
3 41.43 51.20 77.66 91.24 99.88 99.47 99.85
4 36.97 52.52 71.88 87.34 99.01 99.85 99.86
5 35.23 54.29 72.70 86.38 99.06 99.15 99.11
6 37.74 54.02 71.16 88.63 98.64 98.96 98.85
8 38.05 51.98 76.72 89.35 97.33 99.06 98.57

10 36.76 53.17 71.61 85.22 97.02 100.03 99.98

Predicted hard drive utilization for the Tomcat
in a web server configuration, percent

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 36.23 53.08 70.02 80.66 81.17 81.12 81.01
2 35.97 53.21 70.62 86.35 98.17 99.54 99.50
3 36.30 53.69 70.33 86.65 97.65 100.01 100.02
4 35.99 53.03 70.18 86.86 99.77 100.01 100.01
5 36.24 52.73 70.11 85.13 99.55 100.00 100.00
6 35.92 53.34 69.24 85.12 96.59 100.00 100.02
8 36.00 52.94 70.14 84.83 98.53 99.97 100.01

10 35.82 49.65 68.84 83.50 95.30 99.07 99.48

relative error

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 0.042 0.009 0.006 0.018 0.009 0.005 0.006
2 0.064 0.091 0.033 0.038 0.006 0.009 0.010
3 0.124 0.049 0.094 0.050 0.022 0.005 0.002
4 0.027 0.010 0.024 0.006 0.008 0.002 0.002
5 0.029 0.029 0.036 0.015 0.005 0.009 0.009
6 0.048 0.013 0.027 0.040 0.021 0.010 0.012
8 0.054 0.018 0.086 0.051 0.012 0.009 0.015

10 0.026 0.066 0.039 0.020 0.018 0.010 0.005

Table 6.20: Predicted utilization of the CPU for the Tomcat in a web server configuration.

Predicted CPU utilization for Tomcat
in a web server configuration, percent

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 8.40 12.79 16.46 18.49 17.98 18.03 18.09
2 8.61 12.92 16.85 18.26 18.18 18.06 18.17
3 8.78 10.20 16.57 18.43 18.45 18.04 18.09
4 8.70 13.00 17.11 18.36 18.78 18.14 18.43
5 8.49 12.74 16.86 18.34 18.11 18.26 18.61
6 8.74 12.82 16.92 18.37 18.01 18.21 17.98
8 8.86 12.78 16.60 17.25 18.12 18.51 18.15

10 8.83 8.99 16.70 18.20 18.21 18.26 18.16

server in this realistic configuration, we used Tomcat to host a web application. The web application

reads a random passage from the King James bible, formats the passage, and converts it to PDF

using the iText [16] library.
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The model of the web server was built using a configuration with workload intensity 57.30 re-

quests per second (req/s) and 1 working thread. The model of the working thread in the servlet

container setup is depicted at the Figure 6.34. As a consequence of hosting a web application the

code of the system under the study has become more voluminous and complex. Nevertheless, the

mid-tier model of the working thread has become noticeably simpler. In fact, all the functionality

related to creating PDF document is captured by four computation blocks in the model: blk2927 -

1460 781, blk2687 1460 2243, blk3411 2851 3357 1460 1935, and blk3917 3807 3291 -

1460 659. We believe such simplification occurs because the Tomcat no longer manages the cache

for static web pages and does not perform disk I/O operations. And all the operations associ-

ated with generating a PDF document, although complex, involve only CPU-bound computations.

These computations are represented as a small number of CPU code fragments, which, in turn, are

translated into the computational blocks in the thread model.

Figure 6.34: The PERSIK model of the Tomcat request processing thread in a servlet container
configuration.

We ran Tomcat with with 1,2,3,4,5,6,8 and 10 working threads and workload intensity ranging

from 19.67 to 132.68 requests per second. The workload intensity was measured on the server side

and also averaged for each number of working threads. During each run 10000 requests were issued.

The prediction results for the response time R are depicted at the Figure 6.35. The relative
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Table 6.21: Predicted and measured response time for the Tomcat in a servlet container configura-
tion.

Measured response time, sec

Average workload intensity, req/sec
Num.

threads 19.67 29.10 38.16 46.87 83.09 102.99 125.44 132.68
1 0.045 51.591 104.267 136.564 204.969 238.726 246.826 255.443
2 0.045 0.046 0.058 10.868 71.546 92.162 109.935 113.411
3 0.046 0.047 0.048 0.052 25.625 44.379 57.593 64.686
4 0.047 0.048 0.049 0.052 9.601 26.190 36.521 43.847
5 0.048 0.047 0.049 0.051 5.415 19.499 28.585 33.817
6 0.048 0.049 0.051 0.052 3.684 17.698 26.663 32.624
8 0.048 0.048 0.050 0.053 3.715 17.175 24.432 29.652

10 0.047 0.048 0.050 0.054 3.050 15.490 21.712 28.889

Predicted response time, sec

Average workload intensity, req/sec
Num.

threads 19.67 29.10 38.16 46.87 83.09 102.99 125.44 132.68
1 0.053 61.571 99.727 122.127 167.665 186.862 194.538 198.092
2 0.047 0.047 0.050 11.923 54.125 70.153 78.952 83.793
3 0.047 0.047 0.047 0.048 19.814 32.025 41.218 45.096
4 0.047 0.047 0.047 0.048 2.728 13.907 23.010 28.295
5 0.047 0.047 0.047 0.048 3.478 16.380 23.524 28.304
6 0.047 0.047 0.047 0.048 3.720 16.013 23.053 28.403
8 0.047 0.047 0.047 0.048 3.580 16.470 23.142 28.156

10 0.047 0.047 0.048 0.048 4.194 17.239 23.278 28.635

relative error

Average workload intensity, req/sec
Num.

threads 19.67 29.10 38.16 46.87 83.09 102.99 125.44 132.68
1 0.172 0.193 0.044 0.106 0.182 0.217 0.212 0.225
2 0.037 0.019 0.136 0.097 0.243 0.239 0.282 0.261
3 0.018 0.010 0.020 0.069 0.227 0.278 0.284 0.303
4 0.009 0.008 0.033 0.082 0.716 0.469 0.370 0.355
5 0.006 0.001 0.036 0.069 0.358 0.160 0.177 0.163
6 0.016 0.028 0.064 0.078 0.010 0.095 0.135 0.129
8 0.016 0.024 0.059 0.088 0.036 0.041 0.053 0.050

10 0.004 0.009 0.053 0.108 0.375 0.113 0.072 0.009

prediction error ε(R) ∈ (0.000, 0.716) with the average error measured across all the configurations

ε(R) = 0.134. The numeric results for the response time across all the configurations are presented

in the table 6.21.

The model predicts the response time of Tomcat in the servlet container setup with significantly

higher accuracy than in the web server configuration. We believe this is explained by the lower

variability in a demand for CPU time compared to the higher variability in the demand for the hard

drive in a web server setup.

The prediction results for response time T are shown at the Figure 6.36. The relative prediction

error ε(T ) ∈ (0.000, 0.236), while the mean error for all configurations ε(T ) = 0.053. For saturated

configurations, ε(Tsat) = 0.099. The numeric results for the throughput across all the configurations

are presented in the table 6.22.

Surprisingly, the prediction accuracy for throughput in a servlet container configuration is lower

than in the web server configuration. Although the model correctly predicts the point of saturation

for the server, it predicts the absolute value of T less accurately in some configurations. This occurs
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Figure 6.35: Predicted and measured response time for the Tomcat in a servlet container configura-
tion.
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because the amount of CPU time for the 〈2687, 1460, 2243〉 CF (represented by the blk2687 -

1460 2243 block) somewhat varies across the configuration space. We believe this variation may

be caused by the specifics of usage of the CPU cache by the application.

The model correctly predicts a strong dependency between the number of working threads and

the performance of the Tomcat. In particular, the saturation point for a server depends on the

number of threads: in a configuration with one working thread server becomes saturated at the

IRR=21 req/sec, and in configurations with 4 or more working threads saturation occurs at the

IRR=75–85 req/sec.

Again, the reason for this lies in the nature of interaction between the hardware and the workload.

PDF conversion is a CPU-heavy application, so performance of the server in this setup is bounded

by the number of the active CPU cores. In particular, performance characteristics of the Tomcat

(response time, throughput) improve significantly when the number of working threads is increased

from 1 to 4. But as the number of working threads further increases, all the four CPU cores become

utilized (the predicted CPU utilization reaches 400%, see Figure 6.37 and Table 6.23 for predicted

CPU utilization). As a result, further increase in the number of working threads does not result in

the proportional performance increase.

Our experiments with models of Tomcat demonstrate the ability of our framework to predict

performance of large and complex applications, expressing complex workload characteristics. We

believe these results clearly demonstrate feasibility of our approach for performance modeling and

prove that accurate performance models of large industrial applications can be built automatically.



136

Table 6.22: Predicted and measured throughput for the Tomcat in a servlet container configuration.

Measured troughput, req/sec

Average workload intensity, req/sec
Num.

threads 19.67 29.10 38.16 46.87 83.09 102.99 125.44 132.68
1 19.656 22.036 20.792 20.153 19.029 18.267 18.426 18.164
2 19.641 29.184 38.450 43.098 37.479 36.799 34.908 35.360
3 19.640 29.141 38.483 47.843 59.223 55.678 53.901 52.624
4 19.631 29.211 38.485 47.509 76.368 70.534 69.776 68.488
5 19.616 29.141 38.474 47.718 83.314 81.141 78.957 78.901
6 19.617 29.228 38.532 47.561 85.688 83.533 81.168 80.533
8 19.635 29.164 38.481 47.559 85.797 84.760 84.632 84.404

10 19.625 29.144 38.577 47.732 87.852 88.762 89.073 86.371

Predicted troughput, req/sec

Average workload intensity, req/sec
Num.

threads 19.67 29.10 38.16 46.87 83.09 102.99 125.44 132.68
1 19.665 21.241 21.225 21.228 21.245 21.254 21.257 21.267
2 19.676 29.213 38.459 42.491 42.516 42.523 42.535 42.427
3 19.678 29.164 38.579 47.917 63.590 63.638 63.726 63.815
4 19.684 29.235 38.540 47.609 84.498 84.388 84.508 84.642
5 19.655 29.158 38.547 47.783 84.874 84.707 84.462 84.605
6 19.671 29.248 38.584 47.612 84.477 84.810 84.773 84.642
8 19.671 29.196 38.511 47.667 84.660 84.531 84.822 84.802

10 19.659 29.160 38.649 47.801 84.604 84.562 84.765 84.469

relative error

Average workload intensity, req/sec
Num.

threads 19.67 29.10 38.16 46.87 83.09 102.99 125.44 132.68
1 0.000 0.036 0.021 0.053 0.116 0.164 0.154 0.171
2 0.002 0.001 0.000 0.014 0.134 0.156 0.218 0.200
3 0.002 0.001 0.002 0.002 0.074 0.143 0.182 0.213
4 0.003 0.001 0.001 0.002 0.106 0.196 0.211 0.236
5 0.002 0.001 0.002 0.001 0.019 0.044 0.070 0.072
6 0.003 0.001 0.001 0.001 0.014 0.015 0.044 0.051
8 0.002 0.001 0.001 0.002 0.013 0.003 0.002 0.005

10 0.002 0.001 0.002 0.001 0.037 0.047 0.048 0.022
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Figure 6.36: Predicted and measured throughput for the Tomcat in a servlet container configuration.
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Figure 6.37: Predicted utilization of the CPU for the Tomcat in a servlet container configuration.

Table 6.23: Predicted utilization of the CPU for the Tomcat in a servlet container configuration.

Predicted CPU utilization for Tomcat in a servlet container configuration, req/sec

Average workload intensity, req/sec
Num.

threads 48.29 70.74 92.10 111.8 127.5 140.4 151.8
1 92.86 100.27 100.34 100.42 100.65 100.90 100.91 100.90
2 92.88 137.72 181.36 200.38 200.68 200.89 200.89 200.92
3 92.86 137.20 182.98 226.17 300.30 300.84 300.92 300.89
4 92.65 138.06 182.16 224.25 398.20 398.32 398.70 398.61
5 92.76 137.35 181.78 225.97 399.40 399.96 398.63 398.74
6 92.77 137.92 182.13 224.56 398.68 399.69 399.65 399.31
8 93.10 137.46 180.96 224.84 399.14 399.05 399.67 399.79

10 93.07 137.70 182.10 224.51 398.09 397.88 398.65 398.69



Chapter 7

Conclusion

In this section we present the summary of our work, describe lessons we have learned from it, and

discuss limitations of our approach. Finally, we identify directions for the future research in the area

of performance prediction and analysis of multithreaded programs.

7.1 Summary

This thesis presents our methodology for automatic performance modeling of multithreaded pro-

grams. Performance models have many important applications, including building autonomous data

centers, provisioning computational resources on a cluster, and detecting performance anomalies in

programs.

However, applying existing approaches for building models of multithreaded programs may not

produce the desired results. Constructing some performance models require running the program

in many different configurations, which may not be possible in a production environment. Other

models do not simulate complex synchronization operations, and using these models for predicting

performance of multithreaded programs result in inferior prediction accuracy.

This thesis makes two main contributions to the areas of performance modeling and program

analysis. First, we propose a discrete-event model specially designed for predicting performance of

multithreaded programs. Second, we develop an approach for building performance models auto-

matically by running the program in a single representative configuration.

Performance modeling of multithreaded programs. We developed a hierarchical model

to predict the performance of a multithreaded system. Different model tiers simulate different

factors that influence performance of the multithreaded program. Interaction between the model

tiers simulates joint influence of these different factors on the program’s performance. This unique

architecture allows our models to accurately predict performance of a wide range of multithreaded

programs.

The upper tier of the model is a queuing network, whose queues represent buffers and queues in

the program, and service nodes represent program’s threads. The upper-tier model simulates delays

139
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that occur because of queuing, and delays associated with processing individual tasks by threads.

The exact amount of delay introduced by each thread is simulated by the mid-tier model.

The mid-tier model represents program’s threads as probabilistic call graphs. Nodes of the graph

correspond to the fragments of the program’s code. These code fragments represent CPU-bound

computations, disk I/O, and synchronization operations performed by the thread. Edges represent

sequence in which these operations may be executed. The amount of time required for each operation

to complete is simulated by the low-tier model.

The low-tier model simulates shared resources of the program. This includes models of shared

synchronization constructs (locks), hardware resources, and corresponding components of the oper-

ating system. Low-tier models simulate contention of computation resources by multiple threads,

which is essential for an accurate performance prediction in a multithreaded program.

To implement our models we have developed a PERSIK framework – a discrete-event sim-

ulator written using a C++ language. PERSIK can be used for building performance models

of programs written using a general-purpose framework for multithreaded programming such as

java.util.concurrent, System.Threading, or pthread.

Our experiments showed that PERSIK models can accurately predict performance of multi-

threaded applications. However, manually building the model of even a small-size program proved

to be time-consuming and error-prone activity. To make our models practical we developed a frame-

work for building PERSIK models automatically.

Building performance models automatically. Building simulation models of multithreaded

programs is a hard problem. It requires exhaustive information about the program, including se-

mantics of thread interactions. However, there are numerous ways to implement locks and queues,

and to expose their functionality to threads. In general, retrieving this information automatically

requires very complex and potentially inaccurate program analysis.

We discovered that analysis of a program could be greatly simplified if that program relies on well-

defined implementation of high-level locks and queues. By tracking calls to functions and methods

that implements these locks we uncover semantics of thread interaction in the program.

Based on this general idea we developed a four-stage methodology to generate performance mod-

els automatically. First, our framework runs the program in a simple representative configuration

and samples its stack. Results of this run are used to detect thread pools in the program and to

discover frequently called library functions.

Second, the static analyzer scans the code of the program searching for specific constructs that

perform synchronization and I/O operations. These constructs are represented as code fragments in

the mid-tier models of the program’s threads.

Third, the dynamic analysis of the program is performed. Code fragments (CFs) detected during

the static analysis are instrumented, and the program is executed in the same configuration as during

the initial stack sampling run. By analyzing the resulting trace the framework discovers structure of

probabilistic call graphs that represent program’s threads, locks and queues and their parameters,

and parameters of CFs. The probabilistic call graphs are further trimmed to ensure the compactness
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and high performance of the thread models.

Finally, the discovered information is translated into the PERSIK model of the multithreaded

program.

Results. We implemented our methodology as a tool for building performance models of Java

programs. We used this tool to automatically build performance models of large industrial pro-

grams, which demonstrates the practicality of our approach. We also built models of various small-

to medium-size programs, demonstrating our ability to model different types of multithreaded ap-

plications.

We verified our approach by building models of different Java programs. These include web

servers, scientific computing applications, multimedia programs, and financial applications. The

average prediction error of our models ranges in (0.062 . . .0.117) for computation-intense and

(0.249 . . .0.269) for I/O-intense workloads, which is comparable to the results reported by other

studies and other approaches [44],[64],[103],[73]. Furthermore, our framework can predict usage of

computational resources such as the hard drive and the CPU.

7.2 Lessons From Building Performance Models

While working on our approach for automated building we made a few important findings:

� Modeling locks and synchronization operations is essential for an accurate and semantically

correct model of the multithreaded system. Locks not just influence performance of the sys-

tem. They often form a “skeleton” of the program, which coordinates work of all the program’s

threads. For example, barriers enforce order of computations in the Galaxy and Moldyn scien-

tific computing applications. Failure to simulate these locks would result in a non-functional

model of the program.

� It is difficult to build simulation models that can handle a broad range of multithreaded

programs, even if these programs are written using the same programming language. Different

programs use various approaches to implement threading, so discovering semantics of thread

interaction can be a hard problem in a general case. However the analysis of the program is

greatly simplified if that program uses a specific implementation of high-level locks and queues.

Models of such programs can be built automatically.

� In order to be fast and easy to understand the resulting model must be simple and compact.

Building compact models requires identifying program constructs that do not have significant

impact on performance, and excluding these constructs from the model.

� Debugging performance models is a difficult task. Often the only manifestation of the bug is

the deviation between the predicted and actual performance. Such deviation may be caused

by various reasons. The most common causes of bugs in the model are the lack of care in

experiment design, incorrect structure of the probabilistic call graph, inaccurate measurements
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of code fragments parameters, and spurious computations that occur during the experiments.

Although we use a simple step-by-step procedure for locating bugs in models, developing tools

and approaches for debugging performance models may be a prerequisite for their practical

use.

� Accurate prediction of performance requires precise measures of resource demands for the

elements of the program. In certain cases small errors in measuring resource demands may

lead to large prediction errors. However, obtaining precise measurements of resource demands

without introducing a significant overhead is a difficult task. Measuring the resource demand

for the hard drive is especially problematic, as it requires collecting data both in the user and

kernel mode.

7.3 Assumptions and Limitations

Our framework is capable of building performance models automatically, but it imposes certain

assumptions on the programs it can handle. These assumptions can limit the range of programs

and workloads that can be simulated. Below we discuss limitations of our framework. Our plans for

addressing these limitations are discussed in the Section 7.4.

The following limitations are inherent to the architecture of our models (see Section 3):

� Our models represent computations as request processing. Although this approach allows

simulating a range of programs, including most programs of interest for performance purposes,

it does not cover all possible programs. Moreover, our models do not simulate performance

characteristics of individual requests but rather predict average performance of the system for

a given workload.

� Our models assume that the structure of the probabilistic call graphs δ and parameters Π

of code fragments remain same across the configuration space of the program. Changes in

workload characteristics, such as the resolution of an image in the Sunflow 3D renderer or

probabilities of accessing individual web pages by the Tomcat web server, would require rec-

ollecting these parameters of the model. However, in prospective such parameter recollection

can be done on-line.

� Our models simulate performance of multithreaded, but not distributed systems. In particular,

they do not explicitly simulate calls made by the program to applications located at different

hosts, such as Web services or SQL databases.

� Our framework in its present state can build models of only those programs that implement

multithreading using the well-defined synchronization operations. Dynamic analysis described

in [76] can be used to discover semantics of locks implemented using low-level constructs, such

as monitors. However, programs that implement “custom” locks that cannot be assigned to
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one of existing lock types (semaphore, barrier, mutex, read-write lock etc) cannot be modeled

at this moment.

� Our framework can handle some changes in hardware, such as the different number of CPU

cores. However, this does not yet translate into an accurate prediction of the program running

on a totally different hardware. Differences in characteristics of CPU, memory, and cache will

result in different execution times for individual CFs.

Other limitations more reflect the current state of our modeling framework and can be addressed

by refining its implementation:

� PERSIK does not include models of network, RAM, and CPU cache. This prevents our

framework from accurately modeling some aspects of the system’s performance, such as of

memory bus contention, network contention, and performance artifacts related to maintaining

cache coherence, such as false sharing. As a result, the modeling accuracy can decrease for

certain workloads and hardware platforms.

� Automatic program analysis is currently implemented for Java applications that use locks and

queues from the java.util.concurrent library. Because this package provides a rich set of

primitives and is the recommended approach to synchronization [9], we don’t consider the

latter the major restriction.

� Currently Java does not provide means for accurate, precise, and low-overhead measurements

of CPU times for a thread. Thus during the analysis of Java programs wallclock time is used

as a substitute for the actual CPU time. This limits the set of configurations that can be used

for building models;

� PERSIK can not model multiple programs that are deployed on the same hardware. Our

program analysis can reliably measure resource demands, such as CPU time and I/O opera-

tions, only if there is no other process that extensively uses hardware resources of the system.

Similarly, PERSIK model can predict performance of the program accurately only if no other

program is co-located on the same physical hardware as the given one.

7.4 Future Work

We see two main directions for extending our research in the areas of performance modeling and

analysis of multithreaded programs. The first direction is improving the flexibility of performance

models, so they could predict performance for a wider range of workloads and hardware configura-

tions. This may require both refinement of our existing performance models, as well as search for

new, more agile approaches to performance modeling and program analysis. The second direction is

applying our performance modeling and program analysis techniques to a wide range of problems.
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7.4.1 Improving Flexibility of the Models

Our models can predict performance for different configuration options of the program (e.g the

number of threads), workload intensities (the number of requests received per second), and the

number of CPU cores. However, programs also face changes in the characteristics of workload, in

the hardware used to deploy the program, and in the code of the program itself. These changes

can significantly alter performance of the program. Below we discuss approaches towards develop-

ing more flexible performance models, which can predict performance for different workloads and

hardware configurations.

Changes in the workload characteristics, such as the probabilities of accessing individual web

pages by the web server or the image resolution in the 3D rendering programs, may cause changes

in the behavior and resource demands of the program. This, in turn, will require updating the

transition probabilities δ and resource demands of individual code fragments Π in the mid-tier

model. We envision two possible solutions to this problem.

The first solution is to update the model on-line without stopping the program. This approach

would require developing techniques for low-overhead program analysis that can be enabled and

disabled dynamically during the progam’s execution. Such analysis can be used to monitor the

behavior and resource demands of the program and update resource demands Π and to probabilities

δ if necessary.

The second solution is to use the hybrid of simulation and statistical modeling. The program’s

workload will be described using a subset of metrics X ′. Then the dependency (δ,Π) = f(X ′) will

be approximated using a statistical model. This approach may require running the model in few

configurations in order to collect data required to approximate dependency (δ,Π) = f(X ′). However,

the size of the training set is expected to be significantly smaller than if the pure statistical model

was used [37].

We will predict performance of the program on different hardware by developing a set of mi-

crobenchmarks. Microbenchmarks will be quickly executed on a target platform, and their per-

formance will be measured. Results will be used to estimate the running time of the program

components on the target platform. The challenge here is to design a library of microbenchmarks

representative of a range of different workloads and program’s behaviors.

Changes in the program’s code may impact the performance of the program by the different

degree. Some changes may have no effect on performance at all, while other changes may cause a

significant performance impact and thus require rebuilding the model. Rebuilding the model after

every change to the programmay be burdensome, thus we propose developing a criteria for rebuilding

performance models. We will rely on techniques from the area of mining software repositories. We

will mine the history of changes in the program, and evaluate the impact of these changes on the

performance. Based on the properties of the change, such as the amount of changed code or the

types of the changed program constructs, we will establish criteria for reconstructing the model.

A valuable extension to the PERSIK framework would be the models of network I/O, memory,

and cache operations. Developing such models would enhance the prediction accuracy of PERSIK
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models and allow simulating a wider range of workloads. Although models for predicting memory

and cache performance are known [71] [48], these models either require data specific to a partic-

ular execution of the program or work significantly slower than the program itself. Thus we plan

developing accurate and robust models for predicting performance of memory and cache.

7.4.2 Extending the Scope

In this thesis we presented an approach for building performance of multithreaded programs running

on a single computer having a symmetric multiprocessor architecture. However, modern computer

systems are becoming increasingly heterogeneous. This includes distributed systems, whose com-

ponents are deployed at different computers. This also include systems that use heterogeneous

hardware, such as general-purpose GPUs (GPGPU), to speed up computations. We plan to extend

our models so they could simulate distributed and heterogeneous systems, as well as cloud-based

applications.

An important practical application of our models is predicting performance of server-side ap-

plications, such as web servers or application servers. However, these programs often issue calls

to remote applications running on different machines. As a result, the performance of the server is

often determined by the timing of these calls. PERSIK models in their current form cannot simulate

such distributed systems. We would like to extend our models so they could simulate distributed

systems, whose hosts run multithreaded applications.

We can build models of distributed systems by introducing another layer in the hierarchy of mod-

els. This layer represents the topology of the distributed system, where nodes represents individual

hosts and links between these nodes are the network connections. The topological layer of the model

can be built using INET [4] or NS3 [17] simulators. This layer will predict the performance of the

distributed system at the global scale and also delays caused by network communication between

individual hosts. Performance of each host will be simulated using a corresponding PERSIK model.

Another direction for improving PERSIK would be developing techniques for predicting perfor-

mance of co-located programs. Co-located programs are either directly deployed on a same computer

or are executing within different virtual machines that share the same physical hardware. Co-locating

programs has become a common practice in the cloud environment, as it improves maintainability

and utilization of the hardware resources.

Modeling co-located programs would require minor modifications to PERSIK framework. How-

ever analyzing such programs and measuring their resource demands can be challenging, especially

in a virtualized environment. We plan to develop techniques for measuring resource demands of

co-located applications directly or for inferring their resource demands using methods similar to

described in [83][29].

Building models of distributed systems and co-located programs would enable predicting perfor-

mance of applications in the cloud environment. Cloud-based systems becoming increasingly preva-

lent, and developing practical methodologies for predicting performance of these systems would be

an important practical application of our framework.
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Building models of applications that use GPGPUs is another area for the future research. Mod-

eling of such programs would require extending our framework to simulate the GPU computations

itself and delays caused by transferring data to the GPU. Automatic building of these models will

require detecting corresponding constructs in the code of the program, such as OpenCL or AMP

statements, and discovering their performance parameters.

One more application of performance models is simulating the mobile offloading systems. In

these systems the smartphone offloads some computations to the cloud-based server and waits for

results. Mobile offloading may decrease the power consumption of the device, but it may incur

performance overhead. Building a performance model of such system will help finding an efficient

way to implement offloading in a given mobile program. In prospective, developing such models

would allow automatic detection of the components of the mobile program that can be offloaded.

Just as any successful research project, this thesis opens a range of opportunities for the future

work in the area of performance modeling. Predicting performance for a variety of programs, work-

loads, and hardware setups; building models of cloud applications and heterogeneous systems are

the main directions for my future research. Developing practical solutions for these problems would

not only result in significant academic results, but will be beneficial for the computer industry in

general.

Building performance models is a challenging research area. Developing scientifically sound and

practical solutions for performance prediction require not only a thorough research work, but also

significant implementation effort. Nevertheless, the knowledge and skills I gained while working on

this thesis make me confident in my ability to overcome future challenges and to contribute to the

exciting area of performance engineering.
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