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Chapter 1

Introduction

Computer vision systems aim to infer properties of the world from rich visual infor-

mation provided by images and videos. Several systems for automatically detecting

and recognizing objects, tracking their motion through image sequences and re-

covering the 3D world occupied by them have been developed. These systems find

use in diverse applications such as augmented reality, multimedia retrieval, robot

perception and navigation, remote sensing and biological cell sorting and count-

ing. With acquisition of images, videos and related modalities such as depth,

getting progressively cheaper, the impact of systems and techniques developed for

computer vision problems will likely grow in the coming years.

Snapshots of the world captured in images and videos arise from inherently lossy

projections of 3D scenes onto 2D spaces. As a result, reasoning about the scene

depicted in an image is an under constrained problem, and can only be solved

under assumptions that constrain the problem. Large variations in shapes, sizes

and appearances of objects and regions constituting the real world lead to further

complications.

Statistical methods provide an elegant and powerful framework for reasoning under

such uncertainty and are widely used for developing solutions robust to difficulties

exhibited by visual data. Typically, instead of reasoning about pixels in isola-

tion, statistical methods reason about pixels in context, combining local evidence

from pixels with globally consistent interpretations. In this thesis, we extensively

1
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utilize the statistical framework and develop new methods and models for two

complimentary problems – understanding scenes depicted in images and videos

by decomposing them into constituent regions and understanding objects through

the discovery and analysis of their parts.

1.1 Motivation

Regions and parts extracted from images, videos and their constituent objects pro-

vide an important intermediate representation of visual data. Apart from physio-

logical evidence [1, 2] for part-based representations of objects in the brain, they

are useful for several applications in high-level computer vision and beyond. Here,

we briefly review a few motivating examples.

1.1.1 Object detection and scene parsing

Recent years have seen significant progress in object recognition and image la-

beling [3, 4]. State-of-the-art systems place bounding boxes around objects in

images and optionally produce dense labelings of images into a predefined set of

semantic classes. Such bounding boxes are typically localized by sliding windows

at multiple scales and multiple offsets over the entire image. While popular, typical

sliding window approaches need to evaluate object detectors at all locations in the

image. This is computationally expensive and gets harder to scale with increasing

numbers of images and object categories. An alternative direction explored in

recent work [5, 6], instead explicitly proposes regions to evaluate object detectors

at, leading to more efficient detection. This efficiency allows for the use of compu-

tationally expensive features leading to significant performance boosts [5]. In [6],

region proposals allow the authors to perform precise object localization, in spite

of using a large receptive field convolution neural network. These recent advances

demonstrate the promise of improving object detection and localization through

improved region discovery from images.
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Figure 1.1: The sketch2photo system as described in [7]. c⃝ACM 2009.

1.1.2 Image and video retrieval

Image retrieval was an early motivation for developing effective segmentation

algorithms [8]. A more interesting recent case study in this domain is provided

by the sketch2photo system [7]. Given a human sketch annotated with a few high

level labels the system generates semantically similar images ( Figure (1.1)). A

vital component of this pipeline is a segmentation routine that extracts salient

regions from images retrieved by a retrieval system. The extracted regions are

then recombined to generate images semantically close to the human provided

sketch. However, the authors find that general purpose segmentation algorithms

perform too unreliably to be incorporated into their pipeline. Instead they resort

to manually filtering out images with complicated backgrounds and using saliency

based foreground segmentation schemes. Better algorithms for discovering regions

from images and videos, would clearly benefit such systems.

1.1.3 Metamorphosis

Object animation systems often depend on decomposing a 3D representation of

an object into constituent parts. For example, consider the task of metamorpho-

sis [9], where a 3D mesh is transformed into another through a sequence of meshes

(Figure (1.2)). Complex objects with several parts need to allow part specific de-

formations for realistic effects. This necessitates a decomposition of the mesh into

underlying parts. In this thesis, we will develop techniques for reliably discovering
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parts from articulated meshes that can improve metamorphosis pipelines among

other applications.

Figure 1.2: Metamorphosis of a duck into a dove [9]. c⃝Eurographics 2002.

1.2 Challenges - It is a complicated world

The world is full of complexity. Objects and their collections that make up the

physical environment around us, exhibit a wide range of textures, shapes and

sizes. The interaction of light with the material properties of the physical en-

vironment, engenders a diverse gamut of colors. Visual snapshots of the world

reflect this diversity and in turn vary widely in complexity. Distortions, view-

point and occlusion effects introduced by the imaging process further confounds

the situation. Consequently, image and video collections display wide variability

in the number, appearances and sizes of objects and regions they depict. Fur-

ther, humans interpret and reconstruct the underlying 3D world from images and

videos by reasoning at different levels of granularity, abstracting away or focusing

on the details as necessary. For example, Figure (1.3) displays images of varying

complexity, along with corresponding human interpretations. Different annotators

reason about the same image at different levels of detail.
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Figure 1.3: A subset of images from the Berkeley image segmentation
dataset [10]. Images as well as their human interpretations vary widely in com-
plexity. In this thesis, we develop statistical models that explicitly capture this
variability and provide multiple plausible segmentation hypotheses.

Statistical models attempting to extract semantic structure from visual data must

robustly cope with uncertainty in the number, shape, size, scale, spatial extent and

appearance of scenes and their constituents. In this thesis, we develop Bayesian

nonparametric (BNP) statistical approaches for reasoning under such uncertainty.

Our models advance recent BNP literature to better reflect the statistics of im-

ages, videos and structured data, more broadly. We also develop reliable and

effective inference algorithms for exploring the multi-modal posteriors induced by

the sophisticated BNP models.

1.3 Thesis Organization

This thesis is organized into the following chapters.
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1.3.1 Background

In Chapter 2 we survey the current state-of-the-art and introduce basic building

blocks used in subsequent chapters.

1.3.2 Layered Image Segmentation

We focus on segmenting monocular natural images into a set of depth ordered lay-

ers in Chapter 3.1. We infer the cardinality of the set automatically, conditioned

on the image. Building on the work of [11] we model image partitions through

a collection of thresholded functions sampled from Gaussian processes. We then

develop novel learning and variational inference algorithms which allow efficient,

robust and reliable recovery of layers from natural images. We find that the re-

covered image partitions are competitive with state-of-the-art image segmentation

techniques on standard benchmarks.

1.3.3 Articulated Object Segmentation

In Chapter 4, we consider the problem of articulated 3D object segmentation.

We develop a statistical model that combines a prior over object partitions with

expressive likelihood distributions over affine transformations. Our model is able

to learn both the number and extent of independently deforming object parts from

unlabeled data. We demonstrate state-of-the-art performance on a collection of

human 3D scans of widely varying shapes and in widely varying poses.

1.3.4 Distributions over Hierarchical Partitions

We develop hierarchical models necessary for modeling partitions over multiple

related groups of data in Chapter 5. Approximate inference in these hierarchi-

cal models is difficult, requiring the development of novel MCMC algorithms for

exploring the intractable posteriors. We apply our models and algorithms to the

tasks of activity discovery from MoCap sequences and discourse discovery from

textual data to demonstrate the flexibility of the developed models.
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1.3.5 Learning Distributions over Partitions

In Chapter 6, we develop algorithms for learning the distance dependent models

discussed in Chapter 4 and Chapter 5, from human labelled clusterings. Lean-

ing on recent advances in approximate Bayesian computation (ABC), we develop

task loss aware model calibration algorithms that lead to significant performance

improvements over hand-crafted models.

1.3.6 Contributions and Recommendations

In Chapter 7, we conclude the thesis by summarizing our contributions and rec-

ommending promising avenues of future research.



Chapter 2

Background

This chapter provides an overview of the problems and methods discussed in this

thesis. We begin by introducing the problems considered in this thesis and proceed

to discuss the current state-of-the-art and their limitations. Next, we introduce

basic building blocks utilized by models and algorithms developed in subsequent

chapters.

2.1 Image Segmentation

Image segmentation is the problem of partitioning an image into self-similar groups

of spatially adjacent pixels. Segmentations provide an important mid-level repre-

sentation which can be leveraged by various vision tasks including object detection

and recognition [12, 13], tracking [14], motion [15] and shape estimation, as well

as content based image retrieval [8]. Unsurprisingly, image segmentation has been

an active area of research and has produced a large body of research. Here, we

briefly review popular image segmentation algorithms and direct the interested

reader to [16] for a more comprehensive survey.

8
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Figure 2.1: Typical results produced by popular image segmentation algo-
rithms. From left to right: Normalized cuts [17], Graph based segmentation
of [18], Mean shift [19] and gPb [20].

2.1.1 Methods and Models

Graph partitioning approaches have been widely used for image segmentation.

Images are set up as graphs whose vertices correspond to pixels and edges repre-

sent dissimilarities between pixels. An “optimal” cut partitioning this graph then

produces a segmentation of the underlying image.

Early graph partitioning approaches [21] focused on the well studied problem of

finding a minimum cut of a graph. However, the minimum cut criterion isn’t

well suited for segmentation and leads to partitions with small isolated segments.

The approach of [17], an influential piece of work in this area, instead introduces

a normalized cut criterion that favors partitions which discourage singleton (and

small) components. Drawing on results from spectral graph theory, the authors

develop an efficient algorithm for finding normalized cuts of a graph by solving

a generalized eigenvalue problem. When applied to natural images the algorithm

prefers segmentations containing several approximately uniform sized segments

(Figure (2.1)), a byproduct of the normalized cut criterion. In contrast, sizes [22]

and boundary lengths [23] of human produced segments exhibit power-law behav-

ior. As a result, the algorithm is rarely used for extracting “human like” segments

from natural images. Instead, it is frequently employed for dividing images into
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large collections of small, roughly equal sized segments (superpixels), a useful pre-

processing step that reduces computational burden in many applications. Greedy

algorithms have also been explored for graph based image segmentation. For ex-

ample, in [18] the authors present an agglomerative algorithm that attempts to

balance intra-segment dissimilarity with inter segment uniformity. The greedy

nature of the algorithm makes it computationally inexpensive compared to the

global spectral clustering algorithms.

An orthogonal research direction has focussed on reliably extracting contours from

images. Seminal work in this area can be traced back to Roberts [24] and Pre-

witt [25], who convolved simple gradient filters with an image to generate edge

responses. Such gradient responses are often too noisy to be directly useful. More

recent work [26] has focused on learning the mapping between edge responses and

image cues from collections of natural images. Here, the authors use a logistic

regression model for modeling the probability of the presence of a contour condi-

tioned on cues capturing intensity, color and texture gradients. They show that

such learned detectors outperform hand crafted gradient filters.

Contour detectors typically do not guarantee closed contours, thus contour de-

tections do not directly translate to segmentations. As a result, contour comple-

tion is an active area of research. Approaches for contour completion range from

procedures [27–29] for chaining together strong edge fragments to statistical mod-

els [30, 31] that reason about contours globally. A popular and particularly simple

approach [20, 32] for extracting segmentations from contours involves applying a

watershed transformation (or a minor variant) on the contour detector response to

produce an over-segmentation. This is generally followed by a greedy agglomera-

tive merging algorithm to produce a nested tree of segmentations. In [20, 33] the

authors show that such a procedure combined with a powerful contour detector

produces state-of-the-art results.

Methods and models for density estimation of pixel feature spaces have also been

proposed for image segmentation. Popular models include those based on finite

mixtures [8, 34, 35] and Markov random fields [36]. In “blob world” [8] the authors

represent pixels using feature vectors consisting of color, texture responses and

pixel locations. These features are then modeled using a Gaussian mixture model.
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The model assumes that the appearance and spatial extent of image segments

can both be described using Gaussian distributions. While this leads to efficient

computational algorithms, in practice, such Gaussianity assumptions prove to be

too restrictive. In addition to the overly simplistic unimodal appearance assump-

tion, endowing pixel locations with Gaussian distributions biases segment shapes

towards ellipses and produces unwanted segmentation artifacts. Recent work at-

tempts to alleviate these concerns through less restrictive assumptions on segment

shapes and appearances. In [22, 37] statistical models that condition on pixel

locations instead of generating them have been developed. These models encour-

age spatially smooth allocation of pixels to segments without placing restrictions

on segment shapes. The unimodal appearance assumptions are relaxed in [34]

via mixtures of kernel density estimators and in [38] through mixtures of Gaus-

sians (instead of Gaussians). Others [19] have focused on extracting modes of the

pixel feature density. In [19] the authors combine a mode seeking algorithm based

on the Mean Shift procedure [39] with a nonparametric kernel density estimator.

The kernel density estimator estimates the empirical density of the feature space

whose modes are estimated by the mean shift algorithm. The local modes are then

clustered to eliminate near-overlapping modes. The clustered modes provide the

desired image segmentation.

There also exists a large body of work on interactive image segmentation [37, 38,

40–42] where image partitions are modeled using random fields. These approaches

require varying degrees of user supervision and typically use combinatorial opti-

mization approaches [43] to infer most likely segmentations.

2.1.2 Benchmarks and Metrics

Perhaps the most popular image segmentation benchmark is the Berkeley seg-

mentation dataset (BSDS) [10]. The benchmark provides several different human

annotations for each image, thus providing an empirical measure of annotator vari-

ability. It also provides a standard train/test split. However, the diversity of the

images in the benchmark is somewhat limited. It predominantly consists of high

quality images of outdoor scenes and people captured by skilled photographers.

Labelme [44] is a benchmark with complimentary strengths. It is a significantly
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larger dataset consisting of images from widely varying scenes. However, images

here contain only a single ground-truth segmentation which may have been crowd-

sourced by several human annotators.

2.1.2.1 Metrics

Quantifying results of unsupervised segmentation is non trivial. Instead of relying

on a single metric, researchers often report a number of metrics with complimen-

tary strengths. We briefly review some popular metrics below.

Rand Index Originally proposed in [45], Rand index provides a measure of

similarity between two partitions of a set. It computes the ratio of the number

of pairwise agreements among elements of the sets with all possible pairwise rela-

tionships. Consider two partitions S and S ′ of a set containing N elements. The

Rand index is then given by:

RI(S, S ′) =
1(
N
2

)∑
i<j

(1i=j + 1i ̸=j), (2.1)

Here, 1i=j is an indicator function that is 1 only when elements i and j are both

members of the same partition component in S as well as S ′, 1i ̸=j is 1 when i, j

are members of distinct components both in S and S ′. If S and S ′ are identical

the pair achieves a Rand index of 1. Rand index tends to zero with increasing

disagreements between S and S ′.

When comparing a partition against multiple other partitions of a set we average

individual Rand indices. The resulting quantity is called the probabilistic Rand

index. Although Rand index based measures are widely used, they suffer from

a small dynamic range [46] and may obfuscate the distinction between different

algorithms.

Variation of Information Variation of information (VI) [47] is a metric mo-

tivated by information theory. Here a partition S with K components is rep-

resented as a categorical random variable taking one of K values with proba-

bility pk = Nk/N . The entropy associated with a partition is then defined as
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H(S) = −
∑K

k=1 pklog(pk), the uncertainty associated with an element of S be-

longing to any component k.

V I(S, S ′) = H(S) +H(S ′)− 2I(S, S ′)

= H(S | S ′) +H(S ′ | S).
(2.2)

Intuitively, it measures the uncertainty in a partition having observed the other.

Clearly, variation of information goes to zero when S and S ′ are identical. In [47]

VI is shown to be upper bounded by log(N).

Segmentation Covering In [20] the authors measure similarity between two

segmentations using a segmentation covering metric,

C(S ′, S) =
1

N

∑
r∈S

|r|max
r′∈S′

O(r, r′), (2.3)

where O(r, r′) = |r∩r′|
|r∪r′| . The segmentation cover measure usually has a larger

dynamic range than Rand index and sometimes allows for better discrimination

amongst competing segmentation algorithms.

2.1.3 Limitations of existing approaches

Despite the large amount of research devoted to segmentation, existing state-of-

the-art approaches exhibit various limitations.

One challenge is to move beyond seeking a single “optimal” image partition, and

to recognize that while there are commonalities among multiple human segmen-

tations of the same image, there is also substantial variability [10]. Most existing

segmentation algorithms are endowed with a collection of tunable parameters; a

particular configuration may work well on some images, and poorly on others.

Often these parameters are tuned via manual experimentation, or expensive val-

idation experiments. Noting this issue, Russell et al. [48] produced a “soup of

segments” by varying the parameters of the normalized cuts algorithm, and col-

lecting the range of observed outputs. Others have used agglomerative clustering

methods to produce a nested tree of segmentations [20]. A limitation of these

procedures is that they fail to provide image-specific estimates of which particular
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segmentations are most accurate. More generally, segmentation procedures that

lack clear probabilistic interpretations have difficulty quantifying uncertainty in

the produced segmentations.

Existing probabilistic models do account for uncertainty. However, models based

on finite mixtures [8, 34, 35] make overly restrictive assumptions about segment

shapes and appearances [8], and require the number of segments to be pre spec-

ified [34, 35]. Markov random field based unsupervised image segmentation ap-

proaches [36] induce prior distributions that place low probability on human pro-

duced image segmentations [49].

Recent advances in Bayesian nonparametric statistical approaches provide a promis-

ing direction for alleviating model selection issues. These models [22, 50–52] reason

about prior and posterior distributions on the space of image partitions thus con-

sidering segmentations of all possible resolutions. In contrast with parametric

segmentation models based on finite mixtures or Markov random fields they do

not require the number of segments. Inference algorithms developed for these

models automatically provide calibrated estimates of the relative probabilities of

segmentations with varying numbers of regions. Further, the work presented in [22]

develops priors over image partitions that closely match statistics of segmentations

produced by humans.

In spite of their promise the adoption of these sophisticated models has lagged

owing to difficulties in learning and performing inference with these models. In

subsequent chapters of this thesis, we address these issues by developing efficient,

effective and reliable inference algorithms.

2.2 Video Segmentation

Video segmentation like image segmentation seeks self similar groups of pixels from

image sequences. The segments are expected to exhibit appearance homogeneity,

spatial consistency and temporally coherent motion.

Although dwarfed by image segmentation, a substantial body of work on video

segmentation exists. Several video segmentation procedures can be viewed as



15

temporal extensions of existing image segmentation algorithms. In [53], the au-

thors extend the graph based image segmentation algorithm in [18] by defining

spatio-temporal graphs where pixels connect to spatial as well as temporal neigh-

bors. The resulting segmentation is further refined using an agglomerative region

merging procedure. The mean shift [19] algorithm for images is extended to videos

in [54] and in [55] “blob world” [8] is extended to videos. With such extensions,

many of the original image segmentation limitations carry over to videos. Oth-

ers [56, 57] have focused on tracking of foreground regions. Although, these meth-

ods only generate a binary segmentation, they are able to track regions across long

video sequences.

Motion Segmentation An interesting direction of research has focused on iden-

tifying distinctly moving regions in videos. Trajectory based motion segmenta-

tion [58–60] methods attempt to reliably extract and cluster trajectories of sparse

interest points. The resulting clusters of trajectories do not provide dense segmen-

tations which can be optionally derived via further post-processing [58]. Given the

two step nature of these algorithms, their success depends critically on the quality

of the extracted trajectories. They are unable to recover from errors in trajectory

computation. An alternate direction [61–64] has focused on building statistical

models for layered decomposition of videos. Layer parts (sprites) are associated

with distinct appearance and motion models. Probabilistic inference then leads

to simultaneous recovery of both motion and layers (segments). Recent work [65]

has shown that such joint estimation of motion and segmentation improves perfor-

mance on both tasks. While exciting, these approaches tend to be computationally

expensive. Scaling such models to large videos is an active area of research. An-

other drawback stems from having to pre-specify the number of segments; this can

be difficult for long video sequences.

2.2.1 Benchmarks and Metrics

Several benchmarks have recently been proposed [56, 57, 66, 67] to facilitate more

quantitative comparisons among increasingly large number of video segmentation

algorithms. One of the more comprehensive benchmarks (VSB100) was introduced

in [67]. It contains 100 videos each annotated by multiple annotators and according
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to multiple criteria (motion, appearance). It also provides a predefined train (40)

and test (60) split.

2.2.1.1 Metrics

The metrics introduced in Section 2.1.2.1 can all be used to quantify video segmen-

tation performance. However, applying them to video frames independently and

averaging the results is of limited value. Such a procedure doesn’t penalize tempo-

ral inconsistencies. Instead, the correct way of benchmarking video segmentation

results is to treat the entire sequence as a single partition. Numbers computed

on such spatio-temporal blocks do penalizing spatially coherent but temporally

inconsistent segmentations. Finally, in [67], the authors introduce a volumetric

precision and recall (VPR) metric explicitly for quantifying video segmentation

performance. They demonstrate several properties that make it well suited for

video segmentation.

2.3 Mesh Segmentation

Mesh segmentation has been widely studied as a static clustering problem, where a

single mesh is segmented into “semantic” parts using low-level geometric cues such

as distance and curvature [68, 69]. While supervised training data can sometimes

lead to improved results [70], there are many applications where such data is

unavailable, and the proper way to partition a single mesh is inherently ambiguous.

A more comprehensive survey of static mesh segmentation methods can be found

in [71].

An alternate direction has focused on searching for parts which deform consis-

tently across many meshes. This is a better-posed problem whose solution is

directly useful for modeling objects in motion. Limited previous work has sought

to segment a mesh into parts based on observed articulations [72–75]. Here, we

briefly summarize this literature. A two-stage procedure is presented in [74]. The

authors first minimize a variational functional regularized to favor piecewise con-

stant transformations which are then clustered into parts. Others have proposed
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segmentation procedures [73, 75] that lack coherent probabilistic models, and thus

have difficulty quantifying uncertainty and determining appropriate segmentation

resolutions.

Anguelov et al. [72] define a global probabilistic model, and use the EM algorithm

to jointly estimate parts and their transformations. They also explicitly model

spatial dependencies among mesh faces through a Markov random field. While a

seminal piece of work, their approach suffers from a few drawbacks. First, their

model does not specify a distribution over the space of all mesh partitions, in-

stead focusing on partitions with an a priori fixed number of parts. Estimating

the appropriate number of parts is difficult and they propose various heuristics

to estimate the number. Next, physically plausible mesh parts are expected to

be spatially connected. The model in [72] is unable to ensure such parts, instead

having to rely on post hoc connected components operation to enforce spatial

connectivity. Recent work has also considered joint mesh alignment and segmen-

tation [76]. However, this approach suffers from many of the issues noted above:

the number of parts must be specified a priori, parts may not be contiguous, and

their EM inference appears prone to local optima.

In Chapter 4, we will develop models and algorithms for addressing these issues.

2.4 Bayesian Nonparametrics

Bayesian nonparametric (BNP) methods define distributions over infinite dimen-

sional spaces of functions [77], probability measures [78], and combinatorial struc-

tures such as partitions [79], trees [80] and matrices [81, 82]. They lead to flexible

models whose complexity grows and adapts with new observations, with small

datasets inducing simple posteriors and large datasets leading to richer predic-

tions. Detailed review of Bayesian nonparametric methods can be found in [83–

86]. Here, we briefly discuss a subset of BNP methods that are used extensively

in subsequent chapters.
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2.4.1 Gaussian Processes

Gaussian processes (GP) [77] are a class of stochastic processes that specify distri-

butions over functions. A function f(x) is said to be distributed according to a GP

with a meanm(x) and covariance function k(x,x′) , denoted f(x) ∼ GP(m(x), k(x,x′)),

if any finite realization of the function f(x1...N) = [f(x1), ..., f(xN)]
T follows a

Gaussian distribution:
f(x1)

...

f(xN)

 ∼ N


m(x1)

...

m(xN)

 ,

k(x1, x1) · · · k(x1, xN)

...
. . .

...

k(xN , x1) · · · k(xN , xN)


 (2.4)

The meanm(x) = E[f(x]) and covariance functions k(x,x′) = E[(f(x)−m(x))(f(x′)−
m(x′))] completely characterize the properties of functions drawn from a GP.While

any real valued function may be used to specify the mean function, the covariance

is restricted to the class of positive semi-definite (PSD) functions. A function is

PSD if for any choice of N ∈ N and x = {x1, . . . , xN} the gram matrix K with

elements Kij = k(xi, xj) is PSD. There are several covariance functions popular

in the literature and new ones can be created by composing valid covariance func-

tions together. We refer the reader to [77] for an in-depth exposition. Figure 2.2

illustrates functions sampled from Gaussian processes with a squared exponen-

tial kernel. The squared exponential covariance produces smooth functions with

high probability. In Chapter 3, we describe a class of models that exploit this

smoothness property to define prior distributions over realistic image partitions.

2.4.1.1 Regression

Gaussian processes, by specifying distributions over function spaces, naturally lend

themselves to nonparametric Bayesian regression problems. Consider a collection

of N data and observation pairs (x, t) = {(xi, ti)}Ni=1 with {ti}Ni=1 ∈ R1. We can

model ti as noise corrupted observations of a latent function sampled from a GP
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Figure 2.2: Functions sampled from a zero mean GP with a squared expo-

nential kernel (k(xi, xj) = exp(− |xi−xj |22
2ℓ2

)). ℓ is known as the characteristic
length scale which governs the expected number of zero crossings exhibited by
the function.

with an appropriate mean and covariance function.

f(x) ∼ GP(m(x), k(x,x′))

ti = f(xi) + ϵ

ϵ ∼ N (0, ψ)

(2.5)

Using 2.4, we can state the joint distribution specified by the above model:

p(t, f | x) = N (f |m, K)
N∏
i=1

p(yi | fi)

= N (f |m, K)N (y | f ,Ψ),

(2.6)

where Ψ is a diagonal matrix with Ψii = ψ and for notational convenience we have

dropped the explicit dependence on xi and denoted f(xi) = fi and m(xi) = mi.

The marginal likelihood is obtained by marginalizing over the latent function f :

p(t | x) =
∫
p(t, f | x)df = N (t |m, K +Ψ) (2.7)
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For a set of previously unobserved points x∗ the GP prior specifies the joint dis-

tribution over the function evaluations at the new and old locations as follows:

p

([
f

f∗

])
∼ N

([
m

m∗

]
,

[
K K∗

K∗ K∗,∗

])
(2.8)

Equations 2.7 and 2.8 together give us the joint distribution over t and the un-

known t∗:

p

([
t

t∗

]
|

[
x

x∗

])
= N

([
t

t∗

]
|

[
m

m∗

]
,

[
K +Ψ K∗

K∗ K∗,∗ +Ψ∗

])
(2.9)

Using standard Gaussian conditioning ([87]) properties, the posterior can be ex-

pressed in closed form as:

p(t∗ | t,x,x∗) = N (t∗ | µ∗,Σ∗), (2.10)

where µ∗ = KT
∗ (K + ψ)−1t and Σ∗ = (K∗,∗ +Ψ∗)−K∗(K +Ψ)−1K∗.

2.4.1.2 Classification

In binary classification, the responses ti ∈ {+1,−1} are binary random variables.

Such binary outputs are typically modeled in the Gaussian process framework as

follows,

f(x) ∼ GP(m(x), k(x,x′))

p(ti | fi) = Φ(tifi),
(2.11)

where Φ : R → [0, 1] is a “squashing” function. The nonlinearity introduced by

the squashing function produces a non Gaussian, non conjugate posterior over the

latent function f . Asa result, approximate inference techniques are necessary to

approximate the posterior.

Several techniques [88] for approximating the non Gaussian posterior have been

proposed. MCMCmethods occupy one end of the spectrum, they can be extremely



21

accurate provided that they are run for a (often prohibitively) long duration. Fast

deterministic deterministic techniques that approximate the posterior with Gaus-

sian distributions occupy the other end of the spectrum. These are motivated by

the observation that when the squashing function is log-concave the posterior turns

out to be unimodal [88]. Laplace approximation (LA) is a classic technique in this

space. It performs a second order Taylor expansion around the posterior mode to

construct a Gaussian approximation to the posterior [77]. Although computation-

ally efficient, the quality of the approximation is often poor, stemming from the

fact that the mode can be far from the mean for non Gaussian posteriors. In prac-

tice, Expectation propagation (EP) [89] an iterative message passing algorithm

is often used. It produces accurate approximations to the posterior while being

significantly more efficient than MCMC methods.

In Section 3.3 we will utilize EP to approximate posteriors over image partitions

induced by an ordered set of thresholded Gaussian Processes.

2.4.2 Dirichlet Processes

Dirichlet processes (DP) [90] are measures on probability measures, non negative

functions which integrate to one. Finite marginals of the Dirichlet process are

Dirichlet distributed, just like finite marginals of the Gaussian process follow the

Gaussian distribution. Formally, a random distribution G ∼ DP(α,H) is dis-

tributed according to a Dirichlet process with a concentration parameter α and

a base distribution H over a measurable space Θ, if for any finite measurable

partition {A1, . . . , Ak} of Θ,

[G(A1), . . . , G(Ak)] ∼ Dir(αH(A1), . . . , αH(Ak)). (2.12)

The base distribution H acts as the mean of the DP, while the concentration

parameter acts as the precision. For any measurable set A ∈ Θ we have:

E[G(A)] = H(A)

V ar[G(A)] =
H(A)(1−H(A))

(α + 1)
.

(2.13)
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The larger the value of α, the more concentrated G(A) is around H(A). Black-

well [91] showed that random distributions drawn from the Dirichlet process are

almost surely discrete and place their probability mass on a countably infinite

collection of atoms drawn independently from the base distribution H,

G =
∞∑
k=1

πkδ(θ, θk), (2.14)

here θk ∼ H correspond to the atoms and πk are the corresponding weights.

2.4.2.1 Stick breaking construction

The implicit characterization of the DP provided in the previous section does not

provide a mechanism for sampling distributions from the Dirichlet process. For

this, we have to rely on results from Sethuraman [92] who showed that if

βk ∼ Beta(1, α) θk ∼ H

πk = βk

k−1∏
l=1

(1− βl) G =
∞∑
k=1

πkδ(θ, θk),
(2.15)

then G ∼ DP(α,H). When combined with results [90, 91] that prove samples from

a DP are discrete and can be represented as in Equation (2.14), Equation (2.15)

provides an explicit procedure for sampling from the DP. The mixture weights

sampled as in Equation (2.15) are often denoted π ∼ GEM(α) in the literature

and we will adopt this notation in this thesis. The procedure for constructing the

mixture weights π = (π1, . . . , π∞), may be interpreted as sequentially breaking

off pieces from a unit length stick. The first weight is just π1 ∼ Beta(1, α), each

subsequent weight πk is some random fraction (βk) of the remaining unbroken

stick. This analogy engenders the name – “stick breaking” process.

The explicit stick breaking representations play a central role in computations

involving Dirichlet processes and prove useful for developing generalizations [22,

93] of the DP.
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2.4.2.2 Posterior and Predictive measures

Consider a random measure sampled from a DP, G ∼ DP(α,H) and let θi ∼ G;

i ∈ {1, . . . , N} denote independent samples from the random measure, then the

posterior measure also follows a Dirichlet process [90, 92]:

p(G | θ1, . . . , θN , α,H) = DP

(
α +N,

1

α+N
(αH +

N∑
i=1

δθi)

)
(2.16)

Further, since a random measure G ∼ DP(α,H) is discrete, {θ1, . . . , θN} exhibit
a clustering property – there is a strictly positive probability of multiple samples

sharing repeated values [90]. Let θ̄1, . . . θ̄K , K ≤ N be the set of unique values

exhibited by {θ1, . . . , θN}.

The realization of a new sample θN+1 is then characterized by a simple predictive

rule:

θN+1|θ1, . . . , θN , α,H ∼

{
H w.p. α

α+N
,

θ̄k w.p. 1
α+N

∑N
i=1 δ(θi, θ̄k).

(2.17)

Observe that by assigning samples θi to distinct values θ̄k, we are implicitly parti-

tioning the data. We can explicitly represent this partition by introducing latent

variables zi that index the set of distinct θ̄k. Equation (2.17) then immediately

leads to the following result,

zN+1|z1, . . . , zN , α,H ∼

{
K + 1 w.p. α

α+N
,

k ∈ 1, . . . , K w.p. Nk

α+N
,

(2.18)

where Nk =
∑N

i=1 δ(zi, k). This distribution over partitions is popularly referred to

as the Chinese restaurant process (CRP) [79] and can be described via the following

metaphor. Imagine a restaurant with an infinite number of tables. Customers i

enter the restaurant in sequence and select a table zi to join. They pick an occupied

table with probability proportional to the number of customers already sitting

there, or a new table with probability proportional to the concentration parameter

α. The final seating arrangement gives a partition of the data, where each occupied

table corresponds to a cluster of the data. From Equation (2.18) it follows that

the probability of a partition containing N customers and K occupied components
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is:

p(z1, . . . , zN | α) =
αK

K∏
k=1

(Nk − 1)!

N∏
n=1

(n− 1 + α)

(2.19)

Note that K is a random variable and it can be shown that E[K] = αlog(N)

as N → ∞. Dirichlet processes thus prefer models whose complexity grows with

data, a characteristic of nonparametric priors. Since Equation (2.19) only depends

on the number of occupied components K and its size Nk, we see that although de-

scribed sequentially, the CRP induces an exchangeable distribution on partitions.

The partition probability is invariant to the order in which customer allocations

are sampled. Exchangeability plays a key role in deriving MCMC inference algo-

rithms [94] for models that use the CRP representation of the Dirichlet process.

2.4.3 Pitman-Yor Process

The Pitman-Yor [79] process is a generalization of the Dirichlet process. It is

specified by the following stick breaking procedure,

βk ∼ Beta(1− d, α + kd) θk ∼ H

πk = βk

k−1∏
l=1

(1− βl) G =
∞∑
k=1

πkδ(θ, θk),
(2.20)

with 0 ≤ d < 1 and α > −d. d is known as the discount parameter. Observe

that when d = 0, we recover the DP. In the general case when d > 0, samples

from the PY process exhibit heavier tails. To see why, note that the expectation

of the random proportion of the stick broken for the kth mixture weight (πk) is

E[βk] =
1− d

1 + α + (k − 1)d
, which decreases with increasing k. This suggests that

the construction in Equation (2.20) breaks progressively smaller fractions of the

unbroken stick, thus preserving more probability mass (length of the unbroken

stick) to be distributed amongst subsequent weights. In fact, it can be shown

that the number of occupied components under a PY process grows as O(αNd), in

contrast to the logarithmic growth exhibited by the DP. Such a power-law behavior

is useful for modeling the size statistics of natural image segments. In Chapter 3
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we will utilize the Pitman-Yor process to generate priors over realistic partitions

of natural images.

2.4.4 Bayesian Nonparametric Mixtures

Both the Dirichlet and Pitman-Yor processes are distributions over discrete dis-

tributions. Such discrete distributions naturally lend themselves to mixture mod-

eling. Consider the following hierarchical model,

π ∼ GEM(α),

zi ∼ π, xi | zi ∼ F (θzi),
(2.21)

where xi is a random variable sampled from an indexed collection of some parametrized

distribution F (θ) and zi is a latent variable denoting the unique component (table)

responsible for generating xi. Marginalizing over z we see that the density takes

the form of a mixture model with infinitely many components:

p(x | π, θ1, θ2, . . .) =
∞∑
k=1

πkf(x | θk). (2.22)

A mixture model with infinite capacity is a powerful tool for data analysis. It

allows the complexity of the model to grow with observations (x). The predictive

distribution of a new data instance is not limited to the set of components already

used to describe existing data. The new data point may be allocated an unoccupied

component, if it is sufficiently different from the existing data.

Such models also provide elegant model selection properties. Given a collection of

N data instances, the model’s posterior distribution has support over the expo-

nentially large set of partitions of the N data points. The modes of the posterior

correspond to probable partitions of the data. Inference algorithms that seek such

modes then yield both the number of components in the partition as well as the

allocation of data instances to components. Throughout this thesis we will make

extensive use of this model selection property as we discover parts from fixed sized

images, videos, 3D meshes and MoCap sequences.



Chapter 3

Spatially Coupled Pitman-Yor

Processes for Layered Image

Segmentation

This chapter focuses on the problem of extracting depth ordered segments from

monocular natural images. We consider a variant of the dependent PY process

model introduced in [22]. It captures power law statistics exhibited by human im-

age segments via a stick-breaking construction, and uses an ordered set of Gaussian

processes (GPs) to induce spatial dependencies and model occlusion effects. We

develop an effective and reliable posterior inference algorithm that is substantially

more robust to local optima than previously used algorithms [22]. Our algorithm

combines a discrete stochastic search, capable of making large moves in the space of

image partitions, with an accurate higher-order variational approximation (based

on expectation propagation [89]) to marginalize latent GPs. We improve computa-

tional efficiency via a low rank representation of the GP covariance, an innovation

that could be applicable to other models with high-dimensional Gaussian variables.

Next, we develop algorithms for learning the model hyperparameters, including

image-dependent GP covariance functions, from example human segmentations.

Together the learning and inference algorithms result in substantial improvements

over prior work and demonstrate segmentations that are both qualitatively and

quantitatively competitive with state-of-the-art methods.

26
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3.1 Introduction

Image segmentation algorithms partition images into spatially coherent, approxi-

mately homogeneous regions. Segmentations provide an important mid-level rep-

resentation which can be leveraged for various vision tasks including object recog-

nition [12], motion estimation [15], and image retrieval [8]. Despite significant

research [17–20, 95], segmentation remains a largely unsolved problem. One ma-

jor challenge is to move beyond seeking a single “optimal” image partition, and

to recognize that while there are commonalities among multiple human segmen-

tations of the same image, there is also substantial variability [10].

Most existing segmentation algorithms are endowed with a host of tunable pa-

rameters; a particular configuration may work well on some images, and poorly

on others. Often these parameters are tuned via manual experimentation, or ex-

pensive validation experiments. Noting this issue, Russell et al. [48] produced a

“soup of segments” by varying the parameters of the normalized cuts algorithm,

and collecting the range of observed outputs. Others have used agglomerative

clustering methods to produce a nested tree of segmentations [20]. A limitation of

these approaches is that they do not provide any image-specific estimate of which

particular segmentations are most accurate.

In this chapter, we instead pursue a Bayesian nonparametric statistical approach

to modeling segmentation uncertainty. We reason about prior and posterior dis-

tributions on the space of image partitions, and thus consider segmentations of all

possible resolutions. In contrast with parametric segmentation models based on

finite mixtures [8, 34, 35] or Markov random fields [36], we do not need to pre-

specify the number of segments. Our inference algorithm automatically provides

calibrated estimates of the relative probabilities of segmentations with varying

numbers of regions.

Because we define a consistent probabilistic model and not just a segmentation

procedure, our approach is a natural building block for more sophisticated models.

We improve earlier work on spatially dependent Pitman-Yor (PY) processes [22],

which was motivated by the problem of jointly segmenting multiple related images.

This PY model was later extended to allow prediction of semantic segment labels,
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given supervised annotations of objects in training images [96]. Here we focus on

the problem of segmenting single images containing unknown object categories.

3.2 Nonparametric Bayesian Segmentation

We have two primary requirements of any segmentation model – a) it should

adapt to image complexity and automatically select the appropriate number of

segments and b) it should encourage spatial neighbors to cluster together. Fur-

thermore, human segmentations of natural scenes consist of segments of widely

varying sizes. It has been observed that histograms over segment areas [10] and

contour lengths [23] are well explained by power law distributions. Thus a third

requirement is to model this power-law behavior. In this section, we first describe

our image representation and then review increasingly sophisticated models which

satisfy these requirements. Finally, in Sec. 3.2.4, we propose a novel low-rank

model which improves computational efficiency while retaining the above desider-

ata .

3.2.1 Image Representation

Each image is dicided into roughly 1,000 superpixels [97] using the normalized cuts

spectral clustering algorithm [17]. The color of each superpixel is described using

a histogram of HSV color values with Wc = 120 bins. We choose a non-regular

quantization to more coarsely group low saturation values. Similarly, the texture

of each superpixel is modeled via a local Wt = 128 bin texton histogram [98],

using quantized band-pass filter responses. Superpixel n is then represented by

histograms xn = (xtn, x
c
n) indicating its texture xtn and color xcn.

3.2.2 Pitman-Yor Mixture Models

Pitman-Yor mixture models extend traditional finite mixture models by defining a

Pitman-Yor (PY) process [99] prior over the distribution of mixture components.
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The distributions sampled from a PY process are countably infinite discrete distri-

butions which place mass on infinitely many mixture components. Furthermore,

these discrete distributions follow a power law distribution and previous work [22]

has shown that they model the distribution over human segment sizes well. There

are various ways of formally defining the PY process, here we consider the stick

breaking representation. Let π = (π1, π2, π3, . . .),
∑∞

k=1 πk = 1, denote an infinite

partition of a unit area region (in our case, an image). The Pitman-Yor pro-

cess defines a prior distribution on this partition via the following stick-breaking

construction:

πk = wk

k−1∏
ℓ=1

(1− wℓ) = wk

(
1−

k−1∑
ℓ=1

πℓ

)
wk ∼ Beta(1− αa, αb + kαa)

(3.1)

This distribution, denoted by π ∼ GEM(αa, αb), is defined by two hyperpa-

rameters (the discount and the concentration parameters) satisfying 0 ≤ αa < 1,

αb > −αa. It can be shown that E[πk] ∝ k−1/αa , thus exhibiting the aforemen-

tioned power law distribution.

For image segmentation, each index k is associated with a different segment or

region with its own appearance models θk = (θtk, θ
c
k) parameterized by multinomial

distributions on the Wt texture and Wc color bins, respectively. Each superpixel n

then independently selects a region zn ∼ Mult(π), and a set of quantized color

and texture responses according to

p
(
xtn, x

c
n | zn,θ

)
= Mult

(
xtn | θtzn ,Mn

)
Mult(xcn | θczn ,Mn) (3.2)

The multinomial distributions themselves are drawn from a symmetric Dirichlet

prior with hyper-paramter ρ. Note that conditioned on the region assignment zn,

the color and texture features for each of the Mn pixels within superpixel n are

sampled independently. The appearance feature channels provide weak cues for

grouping superpixels into regions. Since, the model doesn’t enforce any spatial

neighborhood cues, we refer to it as the “bag of features” (BOF ) model.
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3.2.3 Spatially Dependent PY Mixtures

Next, we review the approach of Sudderth and Jordan [22] which extends the BOF

model with spatial grouping cues. The model combines the BOF model with ideas

from layered models of image sequences [100], and level set representations for

segment boundaries [101].

We begin by elucidating the analogy between PY processes and layered image

models. Consider the PY stick-breaking representation of Eq. (3.1). If we sam-

ple a random variable zn such that zn ∼ Mult(π) where πk = wk

∏k−1
ℓ=1 (1− wℓ), it

immediately follows that wk = P[zn = k | zn ̸= k − 1, . . . , 1]. The stick-breaking

proportion wk is thus the conditional probability of choosing segment k, given

that segments with indexes ℓ < k have been rejected. If we further interpret the

ordered PY segments {k = 1, . . .∞} as a sequence of layers, zn can be sampled

by proceeding through the layers in order, flipping biased coins (with probabilities

wk) until a layer is chosen. Given this, the probability of assignment to subsequent

layers is zero; they are effectively occluded by the chosen “foreground” layer.

The spatially dependent Pitman-Yor process of [22] preserves this PY construction,

while adding spatial dependence among super-pixels by associating a layer (real

valued function) drawn from a zero mean Gaussian process (GP) uk ∼ GP (0,Σ)

with each segment k. Σ captures the spatial correlation amongst super-pixels,

and without loss of generality we assume that it has a unit diagonal. Each super-

pixel can now be associated with a layer following the procedure described in the

previous paragraph, n.e.,

zn = min
{
k | ukn < Φ−1(wk)

}
, ukn ∼ N (0,Σnn = 1) (3.3)

Here, ukn ⊥ uℓn for k ̸= ℓ and Φ(u) is the standard normal cumulative distribution

function (CDF). Let δk = Φ−1(wk) denote a threshold for layer k. Since Φ(ukn) is

uniformly distributed on [0, 1], we have

P(zn = 1) = P(u1n < δ1) = P(Φ(u1n) < w1) = w1 = π1

P(zn = 2) = P(u1n > δ1)P(u2n < δ2) = (1− w1)w2 = π2
(3.4)
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and so on. The extent of each layer is determined via the region on which a real-

valued function lies below the threshold δlayer, akin to level set methods. If Σ = I,

we recover the BOF model. More general covariances can be used to encode the

prior probability that each feature pair occupies the same segment; developing

methods for learning these probabilities is a major contribution of this chapter.

The power law prior on segment sizes is retained by transforming priors on stick

proportions wk ∼ Beta(1− αa, αb + kαa) into corresponding randomly distributed

thresholds δk = Φ−1(wk):

p(δk | α) = N (δk | 0, 1) · Beta(Φ(δk) | 1− αa, αb + kαa) (3.5)

Figure 3.1 displays corresponding graphical model. Image features are generated

as in the BOF model.

3.2.4 Low-Rank Representation

In the preceding generative model, the layer support functions uk ∼ N (0,Σ) are

samples from a Gaussian distribution over N super-pixels. Inference involving

GPs involve inverting Σ which is in general a O(N3) operation and thus scales

poorly with increasing image sizes. To cope, we employ a low-rank representation

based on D ≤ N dimensions, analogous to factor analysis models. We proceed by

defining a Gaussian distributed D dimensional latent variable vk ∼ N (0, ID), we

then set uk = Avk + ϵk, where A is a N-by-D dimensional factor loading matrix

and ϵk ∼ N (0,Ψ), with Ψ being a diagonal matrix. Observe that marginalizing

over vk results in a model equivalent to the full rank model of the preceding

section with Σ = AAT + Ψ. The low rank model replaces the O(N3) operation

with an O(ND2) operation, thus scaling linearly with N1. Figure 3.1 displays the

corresponding graphical model.

1A complete time complexity analysis is available in the supplement.
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Figure 3.1: Generative models of image partitions. Left. Spatially dependent
PY model, (right) low rank model. Shaded nodes represent observed random
variables. vk ∼ N (0, ID) is a low dimensional Gaussian random variable and uk

is the corresponding N dimensional layer. wk ∼ Beta(1− αa, αb + kαa) controls
expected layer size and are governed by Pitman-Yor hyper-parameters α =
(αa, αb). The Dirichlet hyper-parameters ρ = (ρt, ρc) parametrize appearance
distributions. Finally, the color and texture histograms describing super-pixel
n are represented as xn = (xtn, x

c
n)

3.3 Inference

This section describes a novel, robust to local optima, inference algorithm which

is an example of a Maximization Expectation (ME) [102] technique. In contrast

to the popular Expectation Maximization algorithms, ME algorithms marginalize

model parameters and directly maximize over the latent variables. In our model,

the latent variables correspond to segment assignments of super-pixels (zn). Any

configuration of these variables defines a partition of the image. Our strategy is to

explore the space of these image partitions by climbing the posterior p (z | x, η)
surface, where η = {α, ρ, A,Ψ}. It is worth noting that since different partitions

will have different numbers of segments, we are in fact searching over models of

varying complexities akin to traditional model selection techniques.

The algorithm proceeds by first evaluating the posterior for an initial image par-

tition z. It then modifies the partition in an interesting fashion to generate a new
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partition z′ which is accepted if p(z′ | x, η) ≥ p(z | x, η). This process is repeated
until convergence. By caching the various mutated partitions, we approximate

the posterior distribution over partitions (Figure 3.7). In what follows, we first

describe the innovations required for evaluating the posterior marginal and then

the procedure for mutating a partition.

3.3.1 Posterior Evaluation

In our model (Figure 3.1), the posterior p (z | x, η) factorizes as p (z | x, η) ∝
p (x | z, ρ)p (z | α,A,Ψ). The likelihood:

p (x | z, ρ) =
∫
Θ

p (x | z,Θ)p (Θ | ρ)dΘ (3.6)

is a standard Dirichlet-multinomial integral and can be evaluated in closed form2.

Unfortunately, the prior can’t similarly be evaluated in closed form. Significant

innovations are required for its computation and the remainder of this section

details a major contribution of this chapter, an algorithm for evaluating p (z | η).

p(z | η) =
K(z)∏
k=1

∫
uk

∫
δk

∫
vk

p(z | δk,uk)p(uk,vk | A,Ψ) p(δk | α)dvkdukdδk (3.7)

where K(z) represents the number of layers in partition z. To simplify notation

in the remainder of this chapter we denote K(z) simply by K. Note that in the

BOF model z depends only on α and p(z|α) can be calculated in closed form:

p(z | α) = αK
a

Γ (αb/αa +K) Γ(αb)

Γ(αb/αa)Γ(N + αa)

(
K∏
k=1

Γ(Mk − αa)

Γ(1− αa)

)
(3.8)

where N is the number of super-pixels in the partition and Mk is the number of

super-pixels in layer k.

Spatial prior evaluation. The integrals in equation 3.7 can be evaluated in-

dependently for each layer. In the following analysis, it is implied that we are

2The result follows from Dirichlet multinomial conjugacy. Please see the supplement for
relevant details
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dealing with the kth layer and we drop the explicit dependence on k in our no-

tation. We approximate the joint distribution p(u,v, δ, z | η) with a Gaussian

distribution q(u,v, δ, z | η) and the corresponding marginal p(z | η) with q(z | η),
which is easy to compute. We use expectation propagation (EP) [89] to estimate

the Gaussian “closest” to the true joint distribution.

Recall that our model assigns super-pixel n to the first layer k whose value is less

than the layer’s threshold (δ), thus setting zn = k. Equivalently, we can introduce

an auxiliary random variable tn whose value is deterministically related to zn as

follows:

tn =

{
+1 if zn = k =⇒ un < δ

−1 if zn > k =⇒ un > δ
(3.9)

Note that super-pixels with zn < k have already been assigned to preceding layers

and can be marginalized out before inferring the latent Gaussian layer for the kth

layer. For a given partition t is known, allowing us to condition on it.

p(u,v, δ | t, η) = 1

Z
p(v) p(δ | α)

N∏
n=1

p(un | v)p(tn | un, δ)

p(u,v, δ | t, η) = 1

Z
N (v | 0, I) p(δ|α)

N∏
n=1

N (un | aTnv, ψn)I(tn(δ − un) > 0),

(3.10)

where Z is the appropriate normalization constant. Note that the indicator func-

tions I(tn(δ − un) > 0) and the threshold prior p(δ | α) are the only non Gaussian

terms. We approximate these with un-normalized Gaussians, leading to the fol-

lowing approximate posterior

q(u,v, δ | t, η) = 1

ZEP

N ([uT vT δ]T | µ≈,Σ≈) (3.11)

where ZEP ensures appropriate normalization. We now iteratively refine the Gaus-

sian approximation using EP. Applying EP to the low dimensional model requires

an interesting combination of Gaussian belief propagation and expectation prop-

agation, the relevant details can be found in the appendix. At convergence, we
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compute the normalization constant of the approximation

ZEP = p(t | η) =
∫
u

∫
v

∫
δ

q(u,v, δ, t | η), (3.12)

the probability of layer k under the spatial prior. Finally, combining Equations 3.6

and 3.12 we have,

log p(z | x, η) ∝ γ log p(x | z, ρ) +
K∑
k=1

logZEPk
. (3.13)

The parameter γ is used to weight the likelihood appropriately. We set γ = 1
m̄
,

where m̄ is the average number of pixels per super-pixel. Recall that our likelihood

treats pixels within a super-pixel as independent random variables, necessitating

the above down weighting.

3.3.2 Search over partitions

Armed with the ability to evaluate the posterior probability mass for a given image

partition, we explore the space of partitions using discrete search. The search per-

forms hill climbing on the posterior surface and explores high probability regions

of the partition space. This is similar in spirit to MCMC techniques. Perhaps most

similar to our approach is the data driven MCMC approach of Tu et al., [103],

which uses a version of the Metropolis-Hastings algorithm along with clever data

driven proposals to explore the posterior space. Here, we forgo the requirement of

eventually converging to the true posterior distribution in exchange for the ease of

incorporating flexible search moves and the ability to quickly explore high proba-

bility regions of the posterior.

Given a partition we propose a new candidate partition by stochastically choosing

one of the following moves:

Merge. Two layers in the current partition are merged into a single layer.

Split. A layer is split into two layers, which are adjacent in layer order. We

employ two types of shift moves. Given a layer to be split, the first move works by

randomly selecting two seed super-pixels and then assigning all remaining super-

pixels to the closest (in appearance space) seed. The initial seeds are chosen such
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Figure 3.2: Illustration of various moves used to explore the space of parti-
tions.

that with high probability they are far in appearance space. The second move

employs a connected component operation. If the given layer has disconnected

components then one such disconnected component is sampled at random and

deemed to be a new layer.

Swap. The swap move reorders the layers in the current partition, by selecting

two layers and exchanging their order.

Shift. The shift move refines the partitions found by the other moves. It iterates

over all super-pixels in the image assigning each to a segment which maximizes

the posterior probability. A naive shift move would evaluate the posterior proba-

bility of the partition after every super-pixel shift. This proves to be prohibitively
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expensive, instead we develop an alternative which allows us to evaluate the pos-

terior after one complete sweep through the super-pixels while ensuring that each

individual shift by-and-large increases the posterior 3.

The merge and split moves change the number of layers in a partition performing

model selection, while swap and shift attempt to find the optimal partition given

a model order.

3.4 Learning from Human Segmentations

In this section, we develop methods for quantitatively calibrating the proposed

models to appropriate human segmentation biases. Recall that our model has four

hyper-parameters, the PY region size hyper-parameter (α), the appearance hyper-

parameter (ρ) and the GP covariance parameters (A and Ψ). We tune these to the

human segmentations from the 200 training images of the Berkeley Segmentation

Dataset (BSDS) [10]. We show that in spite of the inherent uncertainty in the

segmentations of an image, we are able to learn important low level grouping cues.

3.4.1 Learning size and appearance hyper-parameters

The optimal region size hyper-parameters are the ones that best describe the

statistics of the training data. We select α̂ = (α̂a, α̂b) by performing a grid search

over 20 evenly spaced αa and αb candidates in the intervals [0, 1] and [0.5, 20]

respectively and choosing values which maximize the model’s likelihood of the

training partitions according to equation 3.8. The appearance hyper-parameters

ρ̂ = (ρ̂t, ρ̂c) are tuned through cross validation on a subset of the training set. For

BSDS, the estimated parameters equal α̂a = 0.15, α̂b = 1 ρ̂t = 0.01 and ρ̂c = 0.01

3See Appendix for details
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3.4.2 Learning covariance kernel hyper-parameters

The covariance kernel governs the type of layers that can be expressed by the

model. Estimating it accurately is crucial for accurately partitioning images.

In [22, 96] the authors use various heuristics to specify this kernel. Here, we take a

more data driven approach and learn the kernel from human segmentations. While

we cannot expect our training data to provide examples of all important region

appearance patterns, it does provide important cues. Similar to [104], we learn

to predict the probability that pairs of super-pixels occupy the same segment via

human segmentations.

For every pair of super-pixels, we consider several potentially informative low-level

cues: (i) pairwise Euclidean distance between super-pixel centers; (ii) intervening

contours, quantified as the maximal response of the probability of boundary (Pb)

detector [98] on the straight line linking super-pixel centers; (iii) local feature

differences, estimated via log empirical likelihood ratios of χ2 distances between

super-pixel color and texture histograms [97]. To model non-linear relationships

between these four raw features and super-pixel groupings, each feature is repre-

sented via the activation of 20 radial basis functions, with the appropriate band-

width chosen by cross-validation. Concatenating these gives a feature vector ϕij

for every super-pixel pair i, j. We then train a L2 regularized logistic regression

model to predict the probability of two super-pixels occupying the same segment

qij. Figure 3.4 illustrates the effect of these cues on partitions preferred by the

model.

When probabilities are chosen to depend only on the distance between super-pixels

the distribution constructed defines a generative model of image features. When

these probabilities also incorporate contour cues, the model becomes a condition-

ally specified distribution on image partitions, analogous to a conditional random

field [105].

From probabilities to correlations. Recall that our layers are functions sam-

pled from multivariate Gaussian distributions, with covariance Σ with unit vari-

ance and a potentially different correlation cij for each super-pixel pair i, j. For
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each super-pixel pair, qij is independently determined by the corresponding cor-

relation coefficient cij. Our learning procedure provides estimates of qij, we now

need to map these values to the corresponding correlations cij.

The mapping between the correlation (cij) of a pair of Gaussian random variables

( ui and uj), and the conditionally learned probability qij of the corresponding

super-pixels i and j being assigned to the same layer. According to our model,

superpixels i and j are assigned to the same layer k iff both ui and uj are less than

the threshold δk. The probability of this event conditioned on the threshold δk is

p−(1ui<δk1uj<δk | δk, c) =
∫ δk

−∞

∫ δk

−∞
N

([
ui

uj

]
|

[
0

0

]
,

[
1 c

c 1

])
duiduj (3.14)

Marginalizing over the latent thresholds δk gives the probability of superpixels i

and j being allocated to layer k.

qk−(α, c) =

∫ δk

−∞
pk(1ui<δk1uj<δk | α, c)dδk

=

∫ ∞

−∞

∫ δk

−∞

∫ δk

−∞
N

([
ui

uj

]
|

[
0

0

]
,

[
1 c

c 1

])
p(δk|α)duidujdδk

(3.15)

The corresponding probability that both ui and uj are greater than the δk is,

qk+(α, c) =

∫ δk

−∞
pk(1ui>δk1uj>δk | α, c)dδk

=

∫ ∞

−∞

∫ ∞

δk

∫ ∞

δk

N

([
ui

uj

]
|

[
0

0

]
,

[
1 c

c 1

])
p(δk|α)duidujdδk

(3.16)

Unfortunately neither q− nor q+ can be computed in closed form and have to be

numerically approximated.

Now observe that superpixels i and j can be assigned to the same layer, if they are

both assigned to the first layer or if neither is assigned to the first layer but both

are assigned to the second layer or if neither is assigned to the first two layers but
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both are assigned to the third layer and so on. We can thus express qij as

qij = q1−(α, c) + q2−(α, c)q
1
+(α, c) + q3−(α, c)q

1
+(α, c)q

2
+(α, c) + . . . (3.17)

≈
K∑
k=1

qk−(α, c)
K−1∏
l=1

ql+(α, c) (3.18)

where we have explicitly truncated our model to have K (some large number)

layers. The above equation defines the sought relationship and allows us to map

conditionally learned qij to pairwise correlations of Gaussian random variables.

The mapping is visualized in figure 3.3.

Figure 3.3: Mapping between correlation coefficients (c) and pairwise proba-
bilities (q)

The one-to-one mapping between the pairwise probabilities and correlations, al-

lows us to go from logistic regression outputs (qij) to correlation matrices. These

correlation matrices (C), learned from pairwise probabilities will in general not be

positive semi-definite (PSD). We cope by finding the closest PSD unit diagonal

matrix to the correlation matrix. We use the method of Borsdorf et al., [106],

which solves for A and Ψ by minimizing the Frobenius norm||C − (AAT +Ψ)||F .
We note that even the heuristic approaches of Sudderth and Jordan [22] and

Shyr textitet al., [96] can yield non PSD correlation matrices. There the authors

ensure positive semi-definiteness by performing an eigen-decomposition of C and

retaining only non-negative eigenvalues. This is a cruder approximation and leads

to poor results.
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Figure 3.4: Model Properties. TOP- Prior samples from models employing
heuristic distance+pb [22], learned distance (PYdist) , learned distance+pb and
all cues (PYall) based covariances. CENTER- Layered segmentations produced
by our method. BOTTOM - Three layer synthetic partitions illustrating pre-
ferred layer orderings, Layer 1 is displayed in blue and Layer 2 in green. Left to
right: Partition 1 (blue = low; red = high), the inferred Gaussian function for
layers 1 and 2, partition 2 and the corresponding Gaussian functions. Under
our model, partition 1 has a log probability of −77 while partition 2 has a log
probability of −90.

3.5 Samples, Layers and Implicit Ordering

In this section, we explore various properties of our model which may not be

immediately obvious.

Prior samples The model defines a distribution over image partitions, which

can be partially assessed by visualizing partitions sampled from the prior. Figure

3.4 displays such samples. Note that the samples from the conditionally specified

models better reflect the structure of the image.

Layers Our model produces partitions made up of layers, not segments. These

layers can have multiple connected components, due to either occlusion by a fore-

ground layer, or a layer support function with multimodal shape. The inferred par-

titions illustrated in the second row of figure 3.4 illustrate this point. The model

groups all buffaloes (in the first image), non-contiguous portions of sky, grass and

trees (in the second and third images) in the same layer. Traditional segmentation
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algorithms, having no notion of layers, would assign each non contiguous region

to a separate segment. Our layered representation provides a higher level repre-

sentation of the scene than is possible with a collection of segments, which allows

us to naturally deal with complex visual phenomena such as occlusion.

Implicit prior on layer order Recall that a partition is an ordered sequence

of layers, and the likelihood of a partition is governed by the likelihood of its con-

stituent layers. Note that reordering layers can change the set of support functions

which produce those layers, which in turn makes certain orderings preferable to

others. In general, our GP priors prefer simple shapes over complicated ones and

hence our model prefers explaining complicated shapes via an occlusion process.

Figure 3.4 illustrates these ideas using two synthetic partitions with the order

of layers 1 and 2 flipped. The model 4 prefers the partition in the first column

over the one in fourth. As can be seen from the inferred layers, partition 1 is

explained by the model using simpler Gaussian functions, while partition 2 has to

be explained using more complicated and hence less likely Gaussian functions.

3.6 Experiments

In this section we present quantitative evaluations of various aspects of the pro-

posed model along with qualitative results. In all experiments, our model (PYall)

used a 200 dimensional low rank representation and ran 200 discrete search itera-

tions, with three random restarts.

Experimental Setup. We benchmark the algorithm on the Berkeley Image

Segmentation Dataset (BSDS300 [10]) and a subset of of Oliva and Torralba’s [107]

eight natural categories dataset. We sampled the first 30 images from each of the

eight categories to create a 240 image dataset.

The performance of the algorithms are quantified using the probabilistic Rand

Index (PRI ) [45], and the segmentation covering (SegCover) metric [20]. The

partitions produced by our model are made up of layers, which may not be spa-

tially contiguous. However, the benchmarks we evaluate on, define segments to be

4Here, we have used a squared exponential covariance kernel with length scale set to half of
the partition’s diagonal length.
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spatially contiguous regions. To produce these we run connected components on

the layers splitting them into spatially contiguous segments.

Quantifying model enhancements. This chapter improves on both the model

(PYheur) and the corresponding inference algorithm presented in [22]. To quan-

tify the performance gains solely from model enhancements we devise the fol-

lowing test. On BSDS300 test images, we compare the log-posterior assigned to

the ground truth human segmentations p(zgt|x, η) under both models. Since, we

already have access to zgt no inference is required and the model which assigns

higher probability mass to the ground truth, models the data better. Figure 3.5

presents a scatter plot comparing both models. It is easy to see that PYall models

human segmentations significantly better.

Evaluating inference enhancements. Next, we evaluate the performance im-

provements resulting from the novel inference algorithm5. Figure 3.5 displays the

result of running mean field and search based inference from 10 random initial-

izations for a given test image. The log-likelihood plots clearly demonstrate mean

field being susceptible to local minima. In contrast, EP based search exhibits

robustness and all chains converge to high probability partitions. The bottom

row displays the best and worst partitions found by mean field and search. As

one would expect, there is wide variability in the quality of mean field partitions,

while the search partitions are consistently good. The rightmost top row plot

displays randomly chosen partitions from the 10 EP search runs. It demonstrates

a high correlation between log likelihoods and Rand indices, again verifying that

the partitions favored by our model are also favored by humans.

Comparison against competing methods. Our goal is not to produce one “op-

timal” segmentation but to provide a tractable handle on the posterior distribution

over image partitions. Nevertheless, here we demonstrate that by summarizing the

posterior with the MAP partition we produce results which are competitive with

the state-of-the-art segmentation techniques. We compare against four popular

segmentation techniques: Mean Shift (MS) [19], Felzenszwalb and Huttenocher’s

graph based segmentation (FH) [18], Normalized cuts [17] and gPb contour based

5100 search iterations takes about 30 minutes on a standard quadcore with 4GB of ram.
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Figure 3.5: TOP (Left to right) Log-likelihood (ll) trace plots of mean field
runs, search runs, scatter plot comparing PYall and PYheur, scatter plot of ll
vs Rand index. BOTTOM (Left to right) Test image, partitions with highest
and lowest ll found by mean field, best and worst search partitions.

BSDS300 LabelMe
Ncuts MS FH gPb PYheur PYdist PYall gPb PYall

PRI 0.73 0.77 0.77 0.80 0.60 0.69 0.76 0.74 0.73
segCover 0.40 0.48 0.53 0.58 0.45 0.50 0.54 0.54 0.55

Table 3.1: Quantitative performance of various algorithms on BSDS300 and
LabelMe.

segmentation [20]6. In addition, we also compare against a version of our model

which uses only distance cues for learning the covariance kernel (PYdist). Table 3.1

displays the quantitative numbers achieved on the BSDS300 test set. Figure 3.6

demonstrates qualitative differences amongst the methods. PYall is significantly

better than both PYheur and PYdist. According to a Wilcoxon’s signed rank test

(at an 0.01 significance level) it is also significantly better than Ncuts and MS (on

segCover metric, within noise on PRI), within noise of FH and statistically worse

than gPb on the BSDS300 dataset.

Next, in order to test generalizability, we compare PYall against the top performing

method on BSDS – gPb on the LabelMe dataset. The parameters for either method

6All model parameters were tuned by performing a grid search on the training set. See
supplement for more details.
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Figure 3.6: Comparisons across models. From Top to Bottom: PYdist, PYall,
gPb, FH, MS, Ncuts

were tuned on BSDS and were not re-tuned to the LabelMe dataset. Table 3.1

displays the results. PYall and gPb are now statistically indistinguishable.

Posterior Summary. Perhaps, a more accurate assessment of our model involves

exploring the posterior distribution over partitions. In Figure 3.7 we summarize

the posterior distributions, for a few randomly chosen test images, by presenting

a set of high probability partitions discovered by our algorithm. It is worth noting

that the set of multiple partitions produced by our method is richer than those

produced by a single multi-resolution segmentation tree [20]. For instance, the

partitions in the third and fourth columns of the first two rows of Figure 3.7

are mutually inconsistent with any one segmentation tree, but are nonetheless

produced by our algorithm. More interesting ways of leveraging the distribution

over partitions is an important direction of future work.
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Figure 3.7: Diverse Segmentations. Each row depicts multiple partitions for
a given image. Partitions in the second column are the MAP estimates. Other
partitions with significant probability masses are shown in the third and fourth
columns.
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3.7 Discussion

This chapter focused on developing reliable, efficient and effective inference and

learning algorithms for dependent PY processes priors over images partitions. We

developed substantially improved algorithms for learning from example human

segmentations, and robustly inferring multiple plausible segmentations of novel

images. The Maximization Expectation algorithm developed here is demonstra-

bly more reliable than corresponding mean field variational inference algorithms,

and is broadly applicable for models with Gaussian priors and non-conjugate like-

lihoods. Together, our learning and inference algorithms provide image segmenta-

tion results competitive with the state-of-the-art.

Furthermore, by defining a consistent distribution on segmentations of varying

resolution, our dependent PY process provides a promising building block for

other high-level vision tasks.



Chapter 4

Part Discovery from 3D Objects

The distance dependent Chinese restaurant process (ddCRP) [108] is a general-

ization of the Chinese restaurant process (CRP) Section 2.4.2. Recall that the

CRP induces an exchangeable distribution on all possible partitions of a set of

objects [79]. While exchangeability provides a computational advantage, from the

perspective of approximate inference, it is often an unrealistic assumption when

data exhibits strong spatial, sequential or other sorts of dependencies.

The ddCRP relaxes the CRP exchangeability assumption and accommodates ran-

dom partitions of non-exchangeable data [109]. It alters the CRP by modeling

customer links not to tables, but to other customers. The link cm for customer m

is sampled according to the distribution

p (cm = n | D, f, α) ∝

{
f(dmn) m ̸= n,

α m = n.
(4.1)

Here, dmn is an externally specified distance between data points m and n, and

α determines the probability that a customer links to themselves rather than

another customer. D is a matrix of pairwise distances with D[m,n] = dmn. The

monotonically decreasing decay function f(d) mediates how the distance between

two data points affects their probability of connecting to each other. The overall

link structure specifies a partition: two customers are clustered together if and

only if one can reach the other by traversing the link edges.

48
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The ddCRP can capture a wide variety of correlations among the data through

the specification of appropriate choices of distance and decay functions. They

have been used for language modeling, clustering time stamped documents and

networked data [108]. In this chapter, we use the ddCRP to segment articulated

3D objects. In subsequent chapters, we will develop hierarchical extensions to

the ddCRP as well as algorithms for learning distance and decay functions from

labeled partitions.

4.1 Distance Dependent Clusters

Like the CRP the ddCRP is a valid distribution over partitions [108] and can be

used as an allocation prior in mixture models. In this setting, the ddCRP clusters

data in a biased way: each data point is more likely to be clustered with other data

that are near it according to the externally specified distance d. This provides us

with a flexible class of models that both learn the cardinality of the partition and

capture apriori notions of correlations in the data.

The ddCRP mixture generates data as follows:

• For each data instance i ∈ [1, N ] sample a customer link ci according to

equation 4.1. The connected components of the links c = {ci | i = 1, . . . ,N}
determine a partition of the dataset Z(c) = {zi | i = 1, . . . ,N}.

• For each component k ∈ {1, . . . , } sample a data generating parameter from

a base distribution ϕk ∼ G0.

• Finally, generate data X = {xi | i = 1, . . . ,N} by sampling the data gener-

ating distribution xi ∼ p(xi | ϕzi).

Notice that the prior term uses the customer representation to take into account

distances between data points while the likelihood term uses the cluster represen-

tation to generate observations.
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4.1.1 Inference with Gibbs Sampling

The ddCRP mixture has two sets of latent variables the customer assignments c

and the cluster specific data generating distribution parameters ϕk. The distribu-

tion of c conditioned on the observed data X and the model parameters ,with ϕk

marginalized out is:

p(c |X,α, d, f,G0) =

(∏N
n=1 p(ci |D, f, α)

)
p(X |Z(c), G0)∑

c

(∏N
n=1 p(ci |D, f, α)

)
p(X |Z(c), G0)

(4.2)

where Z(c) is the cluster representation derived from the customer representation

c.

The posterior in Equation (4.2) is not tractable to compute and we approximate

it using Gibbs sampling by iteratively sampling each latent variable ci conditioned

on the others and the observations,

p(ci | c−i, X,D, α,G0) ∝ p(ci |D,α)p(X |Z(c), G0). (4.3)

The prior term is given in Equation (4.1). We can decompose the likelihood term

as follows:

p(X |Z(c), G0) =

K(c)∏
k=1

∫
p(ϕk | G0)

∏
{i|Z(c)i=k}

p(xi | ϕk)dϕk

=

K(c)∏
k=1

p(XZ(c)=k |Z(c), G0).

(4.4)

We have introduced notation to more easily move from the customer representation—

the primary latent variables of our model—and the cluster representation. We let

K(c) be the number of unique clusters in the customer assignments, z(c) be the

cluster assignments derived from the customer assignments, and XZ(c)=k be the

collection of observations assigned to the kth cluster. When the base distribution

G0 is conjugate to the data generating distribution the integral in Equation (4.4)

is easily computed. In nonconjugate settings, ϕk can no longer be analytically

marginalized out and an additional layer of sampling is needed to deal with them.



51

Sampling from Equation (4.3) happens in two stages. First, we remove the cus-

tomer link ci from the current configuration. Then, we consider the prior probabil-

ity of each possible value of ci and how it changes the likelihood term, by moving

from p(X |Z(C−i), G0) to p(X |Z(c), G0).

In the first stage, removing ci either leaves the cluster structure intact, i.e., Z(C
old) =

Z(C−i), or splits the cluster assigned to data point i into two. In the sec-

ond stage, randomly reassigning ci either leaves the cluster structure intact, i.e.,

Z(C−i) = Z(c), or joins the cluster assigned to data point i to another. Via these

moves, the sampler explores the space of possible segmentations.

Let ℓ and m be the indices of the tables that are joined to index k. We first remove

ci, possibly splitting a cluster. Then we sample from

p(ci | c−i, X,D, α,G0) ∝

{
p(ci |D,α)Γ(X,Z,G0) if ci joins ℓ and m;

p(ci |D,α) otherwise,
(4.5)

where

Γ(X,Z,G0) =
p(XZ(c)=k |G0)

p(XZ(c)=ℓ |G0)p(XZ(c)=m |G0)
. (4.6)

This defines a Markov chain whose stationary distribution is the posterior of the

ddCRP mixture.

4.2 Motion based 3D object segmentation

In this section, we leverage the ddCRP mixture machinery for performing mesh

segmentation. Mesh segmentation methods decompose a three-dimensional (3D)

mesh, or a collection of aligned meshes, into their constituent parts. This well-

studied problem has numerous applications in computational graphics and vision,

including texture mapping, skeleton extraction, morphing, and mesh registration

and simplification. We focus in particular on the problem of segmenting an ar-

ticulated object, given aligned 3D meshes capturing various object poses. The

meshes we consider are complete surfaces described by a set of triangular faces,

and we seek a segmentation into spatially coherent parts whose spatial transfor-

mations capture object articulations. Applied to various poses of human bodies
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Figure 4.1: Human body segmentation. Left: Reference poses for two female
bodies, and those bodies captured in five other poses. Right: A manual segmen-
tation used to align these meshes [110], and the segmentation inferred by our
ddCRP model from 56 poses. The ddCRP segmentation discovers parts whose
motion is nearly rigid, and includes small parts such as elbows and knees absent
from the manual segmentation.

as in Figure 4.1, our approach identifies regions of the mesh that deform together,

and thus provides information which could inform applications such as the design

of protective clothing.

Several issues must be addressed to effectively segment collections of articulated

meshes. First, the number of parts comprising an articulated object is unknown a

priori, and must be inferred from the observed deformations. Second, mesh faces

exhibit strong spatial correlations, and the inferred parts must be contiguous. This

spatial connectivity is needed to discover parts which correspond with physical

object structure, and required by target applications such as skeleton extraction.

Finally, our primary goal is to understand the structure of human bodies, and

humans vary widely in size and shape. People move and deform in different ways

depending on age, fitness, body fat, etc. A segmentation of the human body should

take into account this range of variability in the population. To our knowledge, no

previous methods for segmenting meshes combine information about deformation

from multiple bodies to address this corpus segmentation problem.

In the rest of this section, we develop a statistical model which addresses all of

these issues. We adapt the ddCRP to model spatial dependencies among mesh

triangles, and enforce spatial contiguity of the inferred parts [52]. Unlike most

previous mesh segmentation methods, our approach allows data-driven inference of

an appropriate number of parts, and uses an affine transformation-based likelihood

to accommodate object instances of varying shape.
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4.2.1 A Part-Based Model for Mesh Deformation

Consider a collection of J meshes, each with N triangles. For some input mesh j,

we let yjn ∈ R3 denote the 3D location of the center of triangular face n, and

Yj = [yj1, . . . , yjN ] ∈ R3×N the full mesh configuration. Each mesh j has an

associated N -triangle reference mesh, indexed by bj. We let xbn ∈ R4 denote the

location of triangle n in reference mesh b, expressed in homogeneous coordinates

(xbn(4) = 1). A full reference mesh Xb = [xb1, . . . , xbN ]. In our later experiments,

Yj encodes the 3D mesh for a person in pose j, and Xbj is the reference pose for

the same individual.

We estimate aligned correspondences between the triangular faces of the input pose

meshes Yj, and the reference meshes Xb, using a recently developed method [110].

This approach robustly handles 3D data capturing varying shapes and poses, and

outputs meshes which have equal numbers of faces in one-to-one alignment. Our

segmentation model does not depend on the details of this alignment method, and

could be applied to data produced by other correspondence algorithms.

4.2.2 Nonparametric Spatial Priors for Mesh Partitions

The ddCRP, endowed with an appropriate distance function, is particularly well

suited for modeling segmentations of articulated objects. In addition to allowing

data-driven inference of the true number of mostly-rigid parts underlying the ob-

served data and encouraging spatially adjacent triangles to lie in the same part,

it guarantees that all inferred parts are spatially contiguous.

We define the distance between two triangles as the minimal number of hops,

between adjacent faces, required to reach one triangle from the other. A “window”

decay function of width 1, f(d) = 1d≤1, then restricts triangles to link only to

immediately adjacent faces. Note that this doesn’t limit the size of parts, since all

pairs of faces are potentially reachable via a sequence of adjacent links. However,

it does guarantee that only spatially contiguous parts have non-zero probability

under the prior. This constraint is preserved by our MCMC inference algorithm.
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Figure 4.2: Left: A reference mesh in which links (yellow arrows) currently de-
fine three parts (connected components). Right: Each part undergoes a distinct
affine transformation, generated as in Equation (4.7).

4.2.3 Modeling Part Deformation via Affine Transforma-

tions

Articulated object deformation is naturally described via the spatial transforma-

tions of its constituent parts. We expect the triangular faces within a part to

deform according to a coherent part-specific transformation, up to independent

face-specific noise. The near-rigid motions of interest are reasonably modeled as

affine transformations, a family of co-linearity preserving linear transformations.

We concisely denote the transformation from a reference triangle to an observed

triangle via a matrix A ∈ R3×4. The fourth column of A encodes translation of the

corresponding reference triangle via homogeneous coordinates xbn, and the other

entries encode rotation, scaling, and shearing.

Previous approaches have treated such transformations as parameters to be esti-

mated during inference [72, 76]. Here, we instead define a prior distribution over

affine transformations. Our construction allows transformations to be analytically

marginalized when learning our part-based segmentation, but retains the flexibility

to later estimate transformations if desired. Explicitly modeling transformation

uncertainty makes our MCMC inference more robust and rapidly mixing [94], and

also allows data-driven determination of an appropriate number of parts.

The matrix of numbers encoding an affine transformation is naturally modeled

via multivariate Gaussian distributions. We place a conjugate, matrix normal-

inverse-Wishart [111, 112] prior on the affine transformation A and residual noise
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covariance matrix Σ:

Σ ∼ IW(n0, S0)

A | Σ ∼MN (M,Σ, K) (4.7)

Here, n0 ∈ R and S0 ∈ R3×3 control the variance and mean of the Wishart prior on

Σ−1. The mean affine transformation isM ∈ R3×4, andK ∈ R4×4 and Σ determine

the variance of the prior on A. Applied to mesh data, these parameters have

physical interpretations and can be estimated from the data collection process.

While such priors are common in Bayesian regression models, our application to

the modeling of geometric affine transformations appears novel.

Allocating a different affine transformation for the motion of each part in each

pose (Figure 4.2), the overall generative model can be summarized as follows:

1. For each triangle i, sample an associated link ci ∼ ddCRP (α, f,D). The

part assignments z are a deterministic function of the sampled links c =

[c1, . . . , cN ].

2. For each pose j of each part k, sample an affine transformation Ajk and

residual noise covariance Σjk from the matrix normal-inverse-Wishart prior

of Equation (4.7).

3. Given these pose-specific affine transformations and assignments of mesh

faces to parts, independently sample the observed location of each pose tri-

angle relative to its corresponding reference triangle, yji ∼ N (Ajzixbji,Σjzi).

Note that Σjk governs the degree of non-rigid deformation of part k in pose j.

It also indirectly influences the number of inferred parts: a large S0 makes large

Σjk more probable, which allows more non-rigid deformation and permits models

which utilize fewer parts. The overall model is

p(Y, c, A,Σ | x, b,D, α, f, η) = p(c | D, f, α)
J∏

j=1

[
K(c)∏
k=1

p(Ajk,Σjk | η)

][
N∏
i=1

N (yji | Ajzixbji,Σjzi)

]
(4.8)
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where Y = {Y1, . . . , YJ}, x = {X1, . . . , XB}, b = [b1, . . . , bJ ], the ddCRP links c

define assignments z to K(c) parts, and η = {n0, S0,M,K} are likelihood hyper-

parameters. There is a single reference mesh Xb for each object instance b, and Yj

captures a single deformed pose of Xbj .

4.2.4 Related Work

Mixture of Regression models The mesh-crp and mesh-ddcrp models are in-

stances of the mixture of regressions [113] model. When J = 1, the crp-mesh model

can be understood as a Bayesian nonparametric mixture of linear regressions [114]

while the ddcrp-mesh model is a further generalization accounting for dependen-

cies among covariates. When J > 1 the models provide a further generalization –

the ability to model multiple outputs.

4.2.5 Inference

We seek the constituent parts of an articulated model, given observed data (x,

Y, and b). These parts are characterized by the posterior distribution of the

customer links ci. Following, Section 4.1.1 we develop a collapsed Gibbs sampler,

which iteratively draws ci from the conditional distribution:

p(ci | c−i,x,Y, b,D, f, α, η) ∝ p(ci |D, f, α)p(Y |Z(c),x, b, η). (4.9)

Here, Z(c) is the clustering into parts defined by the customer links c. The likeli-

hood term in the above equation factorizes as:

p(Y |Z(c),x, b, η) =
K(c)∏
k=1

J∏
j=1

p(Yjk |Xbjk, η) (4.10)

where Yjk ∈ R3×Nk is the set of triangular faces in part k of pose j, and Xbjk are the

corresponding reference faces. Exploiting the conjugacy of the normal likelihood

to the prior over affine transformations in Equation (4.7), we marginalize the part-

specific latent variables Ajk and Σjk to compute the marginal likelihood in closed
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form (Chapter B):

p(Yjk |Xbjk, η) =
|K|3/2|S0|(n0/2)Γ3

(
Nk+n0

2

)
π(3Nk/2)|Sxx|(3/2)|S0+Sy|x|((Nk+n0)/2)Γ3(

n0
2
)
, (4.11)

Sxx = XbjkXbjk
T +K, Syx = YjkXbjk

T +MK, (4.12)

Sy|x = YjkYjk
T +MKMT − Syx(Sxx)

−1ST
yx. (4.13)

Putting Equation (4.5) and Equation (4.13) we have the required posterior distri-

bution:

p(ci | c−i,x,Y, b,D, f, α, η) ∝

{
p(ci |D, f, α)∆(Y,x, b, Z(c), η) if ci links k1 and k2;

p(ci |D,α) otherwise,

∆(Y,x, b, Z(c), η) =

∏J
j=1 p(Yjk1∪k2 |Xbjk1∪k2 , η)∏J

j=1 p(Yjk1 |Xbjk1 , η)
∏J

j=1 p(Yjk2 |Xbjk2 , η)
.

(4.14)

Here, k1 and k2 are parts in z(c−i). Note that if the mesh segmentation c is the only

quantity of interest, the analytically marginalized affine transformations Ajk need

not be directly estimated. However, for some applications the transformations are

of direct interest. Given a sampled segmentation, the part-specific parameters for

pose j have the following posterior [111]:

p(Ajk,Σjk |Yjk, Xbjk, η) ∝MN (Ajk |SyxS
−1
xx ,Σjk, Sxx)IW(Σjk |Nk+n0, Sy|x+S0)

(4.15)

Marginalizing the noise covariance matrix, the distribution over transformations

is then

p(Ajk |Yjk, Xbjk, η) =

∫
MN (Ajk |SyxS

−1
xx ,Σjk, Sxx)IW (Σjk |Nk + n0, Sy|x + S0) dΣjk

=MT (Ajk |Nk + n0, SyxS
−1
xx , Sxx, Sy|x + S0) (4.16)

whereMT (·) is a matrix-t distribution [112] with mean SyxS
−1
xx , and Nk + n0 − 2

degrees of freedom.
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4.2.6 Experiments

We now experimentally validate, the mesh-ddcrp model developed in the previous

sections. Both qualitative and quantitative comparisons are provided. Because

“ground truth” parts are unavailable for the real body pose datasets of primary

interest, we propose an alternative evaluation metric based on the prediction of

held-out object poses, and show that the mesh-ddcrp performs favorably against

competing approaches.

We primarily focus on a collection of 56 training meshes, acquired and aligned [110]

from 3D scans of two female subjects in 27 and 29 poses. For quantitative tests,

we employ 12 meshes of each of six different female subjects [115] (Figure 4.4).

For each subject, a mesh in a canonical pose is chosen as the reference mesh

(Figure 4.1). These meshes contain about 20,000 faces.

4.2.6.1 Hyperparameter Specification and MCMC Learning

The hyperparameters that regularize our mesh-ddcrp prior have intuitive inter-

pretations, and can be specified based on properties of the mesh data under con-

sideration. As described in Section 4.2.2, the ddCRP distances D and f are set

to guarantee spatially connected parts. The self-connection parameter is set to a

small value, α = 10−8, to encourage creation of larger parts.

The matrix normal-inverse-Wishart prior on affine transformations Ajk, and resid-

ual noise covariances Σjk, has hyperparameters η = {n0, S0,M,K}. The mean

affine transformation M is set to the identity transformation, because on average

we expect mesh faces to undergo small deformations. For the noise covariance

prior, we set the degrees of freedom n0 = 5, a value which makes the prior vari-

ance nearly as large as possible while ensuring that the mean remains finite. The

expected part variance S0 captures the degree of non-rigidity which we expect

parts to demonstrate, as well as noise from the mesh alignment process. The cor-

respondence error in our human meshes is approximately 0.01m; allowing for some

part non-rigidity, we set σ = 0.015m and S0 = σ2 × I3×3. K is a precision matrix

set to K = σ2×diag(1, 1, 1, 0.1).The Kronecker product of K−1 and S0 governs

the covariance of the distribution on A. Our settings make this nearly identity for
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most components, but the translation components of A have variance which is an

order of magnitude larger, so that the expected scale of the translation parameters

matches that of the mesh coordinates.

In our experiments, we ran the mesh-ddcrp sampler for 200 iterations from each of

five random initializations, and selected the most probable posterior sample. The

computational cost of a Gibbs iteration scales linearly with the number of meshes;

our unoptimized Matlab1 implementation required around 10 hours to analyze 56

human meshes.

4.2.6.2 Baseline Segmentation Methods

We compare the mesh-ddcrp model to three competing methods. The first is a

modified agglomerative clustering technique [116] which enforces spatial contiguity

of the faces within each part. At initialization, each face is deemed to be its own

part. Adjacent parts on the mesh are then merged based on the squared error

in describing their motion by affine transformations. Only adjacent parts are

considered in these merge steps, so that parts remain spatially connected.

Our second baseline is based on a publicly available implementation of spectral

clustering methods [117], a popular approach which has been previously used for

mesh segmentation [118]. We compare to an affinity matrix specifically designed

to cluster faces with similar motions [119]. The affinity between two mesh faces

u, v is defined as Cuv = exp{−σuv+
√
muv

S2 }, where muv = 1
J2

∑
j δuvj, δuvj is the

Euclidean distance between u and v in pose j, σuv =
√

1
J

∑
j(δuvj − δ̄uv)2 is the

corresponding standard deviation, and S = 1
M

∑
u,v σuv +

√
muv for all M pairs of

faces u, v.

For the agglomerative and spectral clustering approaches, the number of parts

must be externally specified; we experimented with K = 5, 10, 15, 20, 25, 30 parts.

We also consider a Bayesian nonparametric baseline which replaces the ddCRP

prior over mesh partitions with a standard CRP prior. The resulting mesh-crp

model may estimate the number of parts, but doesn’t model mesh structure or

enforce part contiguity. The expected number of parts under the CRP prior is

1Available at www.cs.brown.edu/ sghosh
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roughly α logN ; we set α = 2 so that the expected number of mesh-crp parts is

similar to the number of parts discovered by the mesh-ddcrp. To exploit bilateral

symmetry, for all methods we only segment the right half of each mesh. The

resulting segmentation is then reflected onto the left half.

4.2.6.3 Part Discovery and Motion Prediction

We first consider the synthetic Tosca dataset [120], and separately analyze the

Centaur (six poses) and Horse (eight poses) meshes. These meshes contain about

31,000 and 38,000 triangular faces, respectively. Figure 4.3 displays the segmen-

tations of the Tosca meshes inferred by mesh-ddcrp. The inferred parts largely

correspond to groups of mesh faces which undergo similar transformations.

Figure 4.4 displays the results produced by the ddCRP, as well as our baseline

methods, on the human mesh data. Qualitatively, the segmentations produced by

mesh-ddcrp correspond to our intuitions about the body. Note that in addition to

capturing the head and limbs, the segmentation successfully segregates distinctly

moving small regions such as knees, elbows, shoulders, biceps, and triceps. In all,

the mesh-ddcrp detects 20 distinctly moving parts for one half of the body.

We now introduce a quantitative measure of segmentation quality: segmentations

are evaluated by their ability to explain the articulations of test meshes with novel

shapes and poses. Given a collection of T test meshes Yt with corresponding

reference meshes Xbt , and a candidate segmentation into K parts, we compute

E =
1

T

T∑
t=1

K∑
k=1

||Ytk − A∗
tkXbtk||2. (4.17)

Here, A∗
tk is the least squares estimate of the single affine transformation respon-

sible for mapping Xbtk to Ytk. Note that Equation (4.17) is trivially zero for a

degenerate solution wherein each mesh face is assigned to its own part. However,

segmentations of similar resolution may safely be compared using Equation (4.17),

with lower errors corresponding to better segmentations.

On our test set of human meshes, the mesh-ddcrp model produces an error of

E = 1.39 meters, which corresponds to sub-millimeter accuracy when normalized
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Figure 4.3: Segmentations produced by mesh-ddcrp on synthetic Tosca
meshes [120]. The first mesh in each row displays the chosen reference mesh.
For illustration, we have only segmented the right half of each mesh.

by the number of faces. Figure 4.4 displays a plot comparing the errors achieved

by the different methods. Mesh-ddcrp is significantly better than all other meth-

ods, including for settings of K which allocate 50% more parts to competing

approaches, according to a Wilcoxon’s signed rank test (5% significance level).

Next, we demonstrate the benefits of sharing information among differently shaped

bodies. We selected an illustrative articulated pose for each of the two training

subjects in addition to their respective reference poses (Figure 4.4). The chosen

poses either exhibit upper or lower body deformations, but not both. The meshes

were then segmented both independently for the two subjects and jointly sharing

information across subjects. Figure 4.5 demonstrates that the independent seg-

mentations exhibit both undersegmented (legs in the first set) and oversegmented

(head in the second) parts. However, sharing information among subjects results

in parts which correspond well with physical human bodies. Note that with only

two articulated poses, we are able to generate meaningful segmentations in about

an hour of computation. This data-limited scenario also demonstrates the benefits

of the ddCRP prior: as shown in Figure 4.5, the parts extracted by mesh-crp are

“patchy”, spatially disconnected, and physically implausible.
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Figure 4.4: Top two rows (left to right): Segmentations produced by spectral
and agglomerative clustering with 15, 20, and 25 clusters respectively, followed
by the mesh-crp and mesh-ddcrp segmentations. Bottom row: Test set results.
We display mesh-ddcrp segmentations for several test meshes, and quantita-
tively compare methods.

4.2.7 Bilateral Symmetry

In the prequel, we dealt with bilateral symmetry exhibited by human bodies,

and more generally by symmetric objects by segmenting a half of the object and

projecting the resulting labels across the axis of symmetry. As we have seen such a

procedure produces reasonable results. However, it prevents us from modeling any

variance in the deformations of the symmetric halves and forces both halves to the

same part, giving rise to potentially suboptimal partitions. An obvious alternative

would be to endow each symmetric half with its own link random variable allowing

it to choose its part membership given the observed deformations. However, such a
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Ref. pose Illust. pose ind. mesh-crp ind. mesh-ddcrp mesh-crp mesh-ddcrp

Figure 4.5: Impact of sharing information across bodies with varying shapes.
The two rows correspond to the training subjects. Each row displays the refer-
ence pose, an illustrative articulated pose, mesh-crp and mesh-ddcrp segmenta-
tions produced by independently segmenting the pair of poses of each individual,
and mesh-crp and mesh-ddcrp segmentations produced by jointly segmenting
the chosen poses from both subjects.

model doubles the latent variables involved and thus requires much longer sampler

runs and poses a significant computational challenge.

To alleviate such concerns, here we propose an alternate procedure. First, we

extend the model presented in Section 4.2.3 to explicitly account for deformations

observed in both symmetric halves, without increasing the number of associated

latent varaibles. The allocation of triangles to parts and sampling of pose specific

transformations and noise variables proceeds as before. However, given parts

and transformations, we now sample the observed location of each pose triangle

relative to its corresponding reference triangle in both symmetric halves, ylji ∼
N (Ajzix

l
bji
,Σjzi) and yrji ∼ N (Ajzix

r
bji
,Σjzi). Here the superscripts l and r refer

to the triangles associated with the left and right symmetric halves. The overall
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extended model is then described as follows,

p(Y, c, A,Σ | x, b,D, α, f, η) = p(c | D, f, α)
J∏

j=1

[
K(c)∏
k=1

p(Ajk,Σjk | η)

] N∏
i=1

∏
h∈{l,r}

N (yhji | Ajzix
h
bji
,Σjzi)

 . (4.18)

Inference in the extended model can be performed using the Gibbs sampling al-

gorithm presented in Section 4.2.5 after suitably replacing the likelihood terms of

the original model with those from the extended model. After inferring part as-

signments, we perform a post-hoc test to ascertain whether two symmetric halves

should share a common part. For every part k, we test whether the likelihood of

assigning the symmetric halves to the same part exceeds the likelihood of assigning

them to independent parts,
p(Y l

jk ∪ Y r
jk | X l

bjk
∪Xr

bjk
, η)

p(Y l
jk | X l

bjk
, η)p(Y r

jk | Xr
bjk
, η)

> 1. If the test succeeds

then the inferred parts are retained, else they are split in two. We find that this

procedure leads to intuitive results (Figure (4.6)). Parts such as the head and neck

are never split, while arms, legs and breasts split into distinctly deforming parts.

4.2.8 Large Scale Human Studies

We further validate the generalizability of our conclusions with a significantly

larger experiment. We acquired 1732 meshes from 78 human (both male and

female) subjects of varying body types and in diverse poses. A subset of these

meshes are depicted in Figure (4.6).

The availability of a large number of male and female meshes allows us to explore

whether there were systematic differences in the parts discovered for the different

sexes. We perform separate analyses of the male and female meshes by running

5 independent MCMC chains for 250 iterations each and selected the MAP sam-

ple. We then perform a hill climbing operation, wherein each mesh face selects

the most likely link according to its conditional distribution, to the closest mode.

Symmetry is accounted for using the methods described in Section 4.2.7. The

resulting mesh decompositions are shown in Figure (4.6). We find that the dis-

covered segmentations are largely consistent with those from the smaller dataset.
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We also find that both male and female meshes exhibit similar deformations and

provide no evidence of systematic biases between sexes.

Figure 4.6: A large dataset of meshes acquired from 78 human subjects. The
subjects exhibit diverse body shapes and poses. The last row depicts the parts
discovered from observed deformations of male and female bodies. The male
and female meshes were analyzed separately.
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4.3 Discussion

Adapting the ddCRP to collections of 3D meshes, we have developed an effective

approach for the discovery an unknown number of parts underlying articulated

object motion. Unlike previous methods, our model guarantees that parts are

spatially connected, and uses transformations to model instances with potentially

varying body shapes. Via a novel application of matrix normal-inverse-Wishart

priors, our sampler analytically marginalizes transformations for improved effi-

ciency. While we have modeled part motion via affine transformations, future

work should explore more accurate Lie algebra characterizations of deformation

manifolds [121].

Experiments with a moderately large collection of real human body poses provide

strong quantitative evidence that our approach produces state-of-the-art segmen-

tations with many potential applications.



Chapter 5

Hierarchical Partitions of Non

Exchangeable Data

In this chapter we develop hierarchical versions of the distance dependent Chinese

restaurant process presented in the previous chapter. Such generalizations are

useful for shared analysis of multiple groups of related but distinct data, such

as collections of images, documents, time series. In such cases, it is often useful

to share information across groups. For instance, consider a video sequence with

objects spanning several frames. Segments representing these objects must then be

shared among the frames. Additionally, the segments should be of similar shape

and size and exhibit coherent motion across frames. The hierarchical ddCRP

(hddCRP), discussed in this chapter, captures these desiderata.

The hddCRP captures local relationships among data instance like the ddCRP,

but also uses affinities among latent clusters to extract further global dependen-

cies. After an initial ddCRP partitioning, local clusters are grouped via additional

links that depend on a user-specified measure of cluster similarity. This framework

allows the hddCRP to model relationships that depend on aggregate properties of

clusters such as size and shape, which may be difficult to capture with likelihoods

alone. Given arbitrary cluster and data affinity functions, which need not arise

from true distance metrics, the hddCRP defines a valid joint probability distribu-

tion on partitions.

67
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5.1 Hierarchical Distance Dependent Clusters

Figure 5.1: Graphical model representations for the CRP and ddCRP mixture
models and the hddCRP hierarchical mixture model. In the CRP mixture, a
partition is sampled from a CRP Λ ∼ CRP(α); each component of the partition
m is endowed with a parameter ϕm from a base distribution H and xi ∼ ϕm for
i ∈ m. The ddCRP mixture replaces the prior over partitions with a ddCRP.
Data links are sampled according to ci ∼ p(ci | α,A), a connected components
operation then generates the partition Λ. The hddCRP model first samples
partitions Λg from group specific ddCRPs. Cluster links kt, t ∈ Λ1:G are sampled
from a cluster level ddCRP, kt ∼ p(kt | α0, A

0(c)). Connected components of
the cluster links define a partition of the dataset Λ0.

In Chapter 4, we noted that the distance-dependent CRP [108] defines a distribu-

tion over partitions indirectly via distributions over links between data instances.

A data point i has an associated link variable ci which links to another data

instance j, or itself, according to the following distribution:

p (ci = j | A,α) ∝

{
Aij i ̸= j,

α i = j.
(5.1)

The affinity Aij = f(d(i, j)) depends on a user-specified distance d(i, j) between

pairs of data points, and a monotonically decreasing decay function f(d) which

makes links to nearby data more likely. The resulting link structure induces a

partition, where two data instances are assigned to the same cluster if and only
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Figure 5.2: An example link variable configuration for a hierarchical ddCRP
model of three groups (rectangles). Observed data points (customers, depicted
as diamonds) link to other data points in the same group (black arrows), pro-
ducing local clusters (dashed circles, labeled A through I). Cluster links (colored
arrows) then join clusters to produce (in this case, four) global mixture compo-
nents.

if one is reachable from the other by traversing the link edges. Larger self-affinity

parameters α favor partitions with more clusters.

5.1.1 The Hierarchical ddCRP

We propose a novel generative model that applies the ddCRP formalism twice, first

for clustering data within each group into local clusters, and then for coupling

the local clusters across groups. Like the ddCRP, our hddCRP defines a valid

distribution over partitions of a dataset. It places higher probability mass on

partitions that group nearby data points into latent clusters, and couple similar

local clusters into global components. Examples of these data and cluster links

are illustrated in Figure 5.2.

Consider a collection of G groups, where group g contains Ng observations. We

denote the ith data point of group g by xgi, and the full dataset by x. The data

link variable cgi for xgi is sampled from a group-specific ddCRP:

p(cgi = gj | αg, A
g) ∝

{
Ag

ij i ̸= j,

αg i = j.
(5.2)
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At this first level of link variables, we set the probability of linking observations

in different groups to zero. The connected components of the links cg = {cgi | i =
1, . . . , Ng} then determine the local clustering for group g.

Data links c = {c1, . . . , cG} across all groups divide the dataset into group-specific

local clusters T (c). The hddCRP then associates each cluster t ∈ T (c) with a

cluster link kt drawn from a global ddCRP distribution:

p(kt = s | α0, A
0(c)) ∝

{
A0

ts(c) t ̸= s,

α0 t = s.
(5.3)

Here α0 is a global self-affinity parameter, and A0(c) is the set of pairwise affinities

between the elements of T (c). We let A0
ts(c) = f0(d0(t, s, c)), where d0(t, s, c) is a

“distance” based on arbitrary properties of clusters t and s, and f0(d0) a decreasing

decay function. The connected components of k = {kt | t ∈ T (c)} then couple

local clusters into global components shared across groups. Let zgi denote the

global component associated with observation i in group g, and z = {zgi | g =

1, . . . , G; i = 1, . . . , Ng}. Data instances xgi and xhj are clustered (zgi = zhj) if

and only if they are reachable via some combination of data and cluster links.

Given this partition structure, we endow component m with likelihood parameters

ϕm ∼ G0(λ), and generate observations xgi ∼ p(xgi | ϕzgi). Let M(c,k) equal the

number of global components induced by the cluster links k and data links c.

Because data links c are conditionally independent given A1:G, and cluster links k

are conditionally independent given c and the cluster affinities A0(c), the hddCRP

joint distribution on partitions and observations factorizes as follows:

p(x,k, c | α1:G, α0, A
1:G, A0, λ) =

M(c,k)∏
m=1

p(xz=m | λ)
G∏

g=1

Ng∏
i=1

p(cgi | αg, A
g)
∏
kt∈k

p(kt | c, α0, A
0(c)) (5.4)

The set of data in component m is denoted by xz=m, and

p(xz=m | λ) =
∫ ∏

gi|zgi=m

p(xgi | ϕm) dH(ϕm | λ), (5.5)
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where λ are hyperparameters specifying the prior distribution H. Our inference

algorithms assume this integral is tractable, as it always is when an exponential

family likelihood is coupled with an appropriate conjugate prior. We emphasize

that for arbitrary data and cluster affinities, the sequential hddCRP generative

process defines a valid joint distribution p(x,k, c) = p(c)p(k | c)p(x | k, c).

5.1.2 Related Models

The hddCRP subsumes several recently proposed hierarchical extensions to the dd-

CRP, as well as the HDP itself, by defining appropriately restricted data affinities

and local cluster affinities. Blei and Frazier [108] show that the CRP is recovered

from the ddCRP by arranging data in an arbitrary sequential order, and defining

affinities as

Aij =

1 if i < j,

0 if i > j.
(5.6)

Data points link to all previous observations with equal probability, and thus the

probability of joining any existing cluster is proportional to the number of other

data points already in that cluster. The probability of creating a new cluster

is proportional to the self-connection weight α. The resulting distribution on

partitions can be shown to be invariant to the chosen sequential ordering of the

data, and thus the standard CRP is exchangeable [122].

5.1.2.1 Hierarchical Chinese Restaurant Process (hCRP)

The hCRP representation of the HDP, which Teh et al. [123] call the “Chinese

restaurant franchise”, is recovered from the hddCRP by first defining group-specific

affinities as in Eq. (5.6). We then arrange local clusters t (tables, in the CRF

metaphor) sequentially with affinities

A0
ts(c) =

1 if t < s,

0 if t > s.
(5.7)
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Just as the two-level hCRP arises from a sequence of CRPs, the hddCRP is defined

from a sequence of two ddCRP models.

5.1.2.2 Distance Dependent Chinese Restaurant Franchise

An alternate approach to capturing group-specific metadata uses a standard

CRP to locally cluster data, but then uses the group labels to define affinities

between clusters. Kim and Oh [124] use this model to learn topic models of

time-stamped documents. By constraining cluster affinities to depend on group

labels, but not properties of the data assigned to within-group clusters, inference

is simplified.

5.1.2.3 Naive Hierarchical ddCRP (naive-hddCRP)

The image segmentation model of Ghosh et al. [52] clusters data within each

group via a ddCRP based on an informative distance (in their experiments, spa-

tial distance between image pixels). A standard CRP, as in the upper level of the

HDP, is then used to combine these clusters into larger segments. The upper level

CRP could either be expressed through cluster links with sequential affinities (

Equation (5.7)) or directly through a CRP. In the direct representation clusters

sample global component memberships kt ∼ CRP(α0)
1 directly instead of sam-

pling links to other clusters. The absence of cluster links substantially simplifies

inference for this special case.

5.2 Markov Chain Monte Carlo Inference

The posterior distribution over the data and cluster links p(c,k | x, α1:G, α0, A
1:G, A0, λ)

is intractable, and we thus explore it via a Metropolis-Hastings MCMC method.

Our approach generalizes the non-hierarchical ddCRP Gibbs sampler of Blei and

1We are slightly abusing notation here. Here kt are global component memberships instead
of cluster links.
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Frazier [108], which iteratively samples single data links conditioned on the obser-

vations and other data links. Evolving links lead to splits, merges, and other large

changes to the partition structure. In the hddCRP, local clusters belong to global

components, and these component memberships must be sampled as well.

5.2.1 Markov Chain State Space

The number of possible non-empty subsets (clusters) of N data points is 2N − 1.

The state space of our Markov chain consists of the data links c, and the set

of all possible cluster links K, one for each candidate non-empty cluster. For

instance, given three observations {h, i, j} the set of non-empty subsets is T =

{[h], [i], [j], [hi], [ij], [jh], [hij]}, and the corresponding set of possible cluster links

is K = {kh, ki, kj, khi, kij, kjh, khij}, where |K| = 23 − 1.

For any configuration of c, a strict subset of T will have data associated with it.

We call this the active set. For instance, if ch = h, ci = i, cj = j, then only the

clusters {[h], [i], [j]} and the corresponding links {kh, ki, kj} are active. Given c,

we split K into the active set k, and the remaining inactive cluster links k̃ = K\k.
We account for the inactive clusters by augmenting A0(c) as follows:

Ã0(c) =

[
A0(c) 0

0 α0I

]
. (5.8)

Here, we have sorted the links so that affinities among the active clusters are

listed in the upper-left quadrant of Ã0(c). As indicated by the identity matrix I,

inactive clusters have zero affinity with all other clusters, and link to themselves

with probability one. Under this augmented model, the joint probability factorizes

as follows:

p(x,k, k̃, c) = p(c)p(k | c)p(k̃ | c)p(x | c,k, k̃)

= p(c)p(k | c)p(k̃ | c)p(x | c,k)

= p(x,k, c)p(k̃ | c).

(5.9)

Here, we have recovered the joint distribution of Eq. (5.4) because given c, the

observations x are conditionally independent of the inactive links k̃. Crucially,
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Figure 5.3: Illustration of changes induced by a data link proposal. Chang-
ing c22 (in the left configuration) splits cluster C into two clusters C ′ and
C ′′. The cluster links associated with C (shown in red) must also be resam-
pled. The MH step of the sampler proposes a joint configuration of the links
{c22, kC′ , kC′′ , kD, kE}. The dashed red arrows illustrate the possible values the
resampled cluster links could take. A single data link can create large changes
to the partition structure, with local clusters splitting or merging, and groups
of clusters shifting between components.

because inactive cluster links have no uncertainty, we must only explicitly represent

the active clusters at each MCMC iteration.

As the Markov chain evolves, clusters are swapped in and out of the active set.

Although the number of active clusters varies with the state of the chain, the

dimensionality of the augmented state space (c,k, k̃) remains constant, allowing us

to ignore complications that arise when dealing with chains whose state spaces have

varying dimensionality. In particular, we employ standard Metropolis-Hastings

(MH) proposals to change data and cluster links, and need not resort to reversible

jump MCMC [125].

5.2.2 Sampler Description

In samplers previously developed for the hCRP [123] and the naive-hddCRP [52],

local clusters directly sample their global component memberships. However for

the hddCRP, cluster links indirectly determine global component memberships.
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This complicates inference, as any change to the cluster structure necessitates

coordinated changes to cluster links. As illustrated in Figure 5.3, consider the

case where a data link proposal causes a cluster to break into two components.

The new cluster must sample a cluster (outgoing) link, and cluster links pointing

to the old cluster (incoming links) must be divided among the newly split clusters.

Thus, we use a MH proposal to jointly resample data and affected cluster links.

After cycling through all data links c, we use a Gibbs update to resample the

cluster links k. Algorithm 1 summarizes our procedure.

Algorithm 1: Hierarchical ddCRP sampler

For data instance i ∈ {1 . . . NG} jointly propose data and affected cluster links
{c∗,k∗} ←− ProposeLinks(x,k, c, α1:G, A

1:G, α0, A
0(c)).

Evaluate the proposal according to the Metropolis Hastings acceptance
probability a({c∗,k∗}, {c,k}). If the proposal is accepted, {c∗,k∗} becomes the
next state. If the proposal is rejected, the original configuration is retained.
For clusters t ∈ T (c) resample cluster links via a Gibbs update:
kt ∼ p(kt | k−t, c,x, α0, A

0(c)).

5.2.2.1 Link Proposal Distributions

We now describe the algorithm for jointly proposing data and affected cluster links

in more detail. To simplify the exposition, we focus on a particular group g and

denote cgi as ci. Let the current state of the sampler be k(c) and c = {c−i, ci = j},
so that i and j are members of the same cluster tij. Let Ktij = {ks | ks = tij, s ̸=
tij} denote the set of other clusters linking to tij.

Split? To construct our link proposal, we first set ci = i. This may split current

cluster tij into two new clusters, in which case we let ti denote the cluster containing

data i, and tj the cluster containing formerly linked data j. Or, the partition

structure may be unchanged so that ti = tij.

Incoming links ks ∈ Ktij to a split cluster are independently assigned to the new

clusters with equal probability:

qin(Ktij) =
∏

ks∈Ktij

(
1

2

)δ(ks,ti)(1

2

)δ(ks,tj)

=

(
1

2

)|Ktij |

. (5.10)
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The current outgoing link is retained by one of the split clusters, ktj = ktij . To

allow likelihood-based link proposals, we temporarily fix the other cluster link as

kti = ti.

Propose Link We compare two proposals for ci, the ddCRP prior distribution

q(ci) = p(ci | α,A), and a data-dependent “pseudo-Gibbs” proposal distribution:

q(ci) ∝ p(ci | α,A)Γ(x, z(∆), λ), ∆ = (ci, c−i, kti = ti,k−ti)

Γ(x, z(∆), λ) =


p(xz(∆)=ma ∪ xz(∆)=mb

| λ)
p(xz(∆)=ma | λ)p(xz(∆)=mb

| λ)
if ci merges ma, mb,

1 otherwise.

(5.11)

The prior proposal, although näıve, can perform reasonably when A is sparse.

The pseudo-Gibbs proposal is more sophisticated, as data links are proposed con-

ditioned on both the observations x and the current state of the sampler. Our

experiments in Sec. 5.3 show it is much more effective.

Merge? Let ci = j∗ denote the new data link sampled according to either the

ddCRP prior or Eq. (5.11). Relative to the reference configuration in which ci = i,

this link may either leave the partition structure unchanged, or cause clusters ti

and tj∗ to merge into tij∗ . In case of a merge, the new cluster retains the current

outgoing link ktij∗ = ktj∗ , and inherits the incoming links Ktij∗ = Kti ∪ Ktj∗ .

If a merge does not occur, but tij was previously split into ti and tj, the outgoing

link ktj = ktij is kept fixed. For newly created cluster ti, we then propose a

corresponding cluster link kti from its full conditional distribution:

qout(kti) = p(kti | α0, A
0(c),x,k−ti , c). (5.12)

Note that the proposal ci = j∗ may leave the original partition unchanged if ci = i

does not cause tij to split, and ci = j∗ does not result in a merge. In this case, the

corresponding cluster links are also left unchanged.
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Accept or Reject Combining the two pairs of cases above, our overall proposal

distribution equals

q(c∗,k∗|c,k,x)=



q(c∗i )qin(K∗
tij
) split, merge,

q(c∗i ) no split, merge,

q(c∗i )qout(k
∗
ti
)qin(K∗

tij
) split, no merge,

p(c∗i | α,A) otherwise.

(5.13)

Here, c∗ and k∗ denote the proposed values, which are then accepted or rejected

according to the MH rule.

5.2.2.2 Metropolis-Hastings Acceptance Probability

The MH acceptance probability takes the following well known form,

a(β, β∗) = min

(
1,
p(β∗)

p(β)

p(x | β∗)

p(x | β)
qrev(β | β∗,x)

qfwd(β∗ | β,x)

)
, (5.14)

where β = {c,k} and we have dropped the hyper-parameters from the notation.

The four cases in Equation (5.13) need to be considered. Here, we derive the

acceptance ratio ρs for the split, no merge case. The acceptance ratios for the

other cases follow analogously.

ρs(β, β
∗) =

p(x, β∗)

p(x, β)

qrev(β | β∗,x)

qfwd(β∗ | β,x)
(5.15)

Observe that the split, no merge move and the merge, no split moves are reverses

of each other. Thus, from Equation (5.13) we have:

ρs(β, β
∗) =

p(x, β∗)

p(x, β)

q(ci)

q(c∗i )qout(k
∗
ti)qin(K∗

tij)
(5.16)
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First, considering the case where customer links are proposed from the prior q(ci) =

p(ci | α,A) and expanding β, we have,

ρs(β, β
∗) =

(0.5)
|Lti,i′ |p(c∗)p(k∗ | c∗)p(x | k∗, c∗)

p(c)p(k | c)p(x | k, c)
p(ci = j)

p(ci = j∗)p(k∗ti | x,k∗
−ti , c

∗)
(5.17)

The customer links cancel and the above equation simplifies as follows,

ρs(β, β
∗) = (0.5)

|Lti,i′ |
p(k∗ | c∗)p(x | k∗, c∗)

p(k | c)p(x | k, c)
1

p(k∗ti | x,k∗
−ti , c

∗)
,

= (0.5)
|Lti,i′ |

p(k∗ti | c
∗)

p(k∗ti | x,k∗
−ti , c

∗)

p(k∗
−ti
| c∗)

p(k | c)
p(x | k∗, c∗)

p(x | k, c)

(5.18)

The likelihood terms further simplify, yielding

ρs(β, β
∗) =


τ
p(xz=ma | λ)p(xz=mb

| λ)
p(xz=ma ∪ xz=mb

| λ)
if ci = j∗ splits a component into ma and mb,

τ otherwise,

τ =
(0.5)

|Lti,i′ |p(k∗ti | c
∗)

p(k∗ti | x,k∗
−ti , c

∗)

p(k∗
−ti
| c∗)

p(k | c)
.

(5.19)

Next, let us consider the pseudo-Gibbs proposals. When a proposed data link

causes a component to split, the forward transition probability according to the

pseudo-Gibbs proposal is,

qfwd(β
∗ | β,x) = q(c∗i )qout(k

∗
ti
)qin(K∗

tij
)

=
1

(0.5)
|Lti,i′ |Ci

p(ci = j∗ | α,A)p(k∗ti | A
0(c∗),x,k−ti),

(5.20)

where Ci is the appropriate normalization constant for the discrete pseudo Gibbs

proposal. The reverse move must cause two distinct components (ma and mb) to

merge, yielding the following reverse transition probability,

qrev(β | β∗,x) = q(ci)

=
1

Ci
p(ci = j | α,A)

p(xz(∆)=ma ∪ xz(∆)=mb
| λ)

p(xz(∆)=ma | λ)p(xz(∆)=mb
| λ)

.
(5.21)
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Together with Equation (5.16), this leads to the following acceptance ratio,

ηs(β, β
∗) =

(0.5)
|Lti,i′ |p(k∗

−ti
| c∗)

p(k | c)
p(k∗ti | c

∗)

p(k∗ti | x,k∗
−ti , c

∗)

p(xz=ma | λ)p(xz=mb
| λ)

p(xz=ma ∪ xz=mb
| λ)

p(xz(∆)=ma ∪ xz(∆)=mb
| λ)

p(xz(∆)=ma | λ)p(xz(∆)=mb
| λ)

,

= τ
p(xz=ma | λ)

p(xz=ma ∪ xz=mb
| λ)

p(xz(∆)=ma ∪ xz(∆)=mb
| λ)

p(xz(∆)=ma | λ)
.

(5.22)

When the proposed link does not cause a component to split into distinct compo-

nents the prior and the pseudo Gibbs proposals are identical. Thus, the acceptance

ratio for the split move under the pseudo Gibbs proposal is,

ρpgs (β, β∗) =

ηs(β, β∗) if ci = j∗ splits a component into ma and mb,

τ otherwise.
(5.23)

The acceptance ratio for the other moves are computed similarly and are available

in the appendix.

5.2.2.3 Cluster Links Resampling Procedure

After having resampled the data and affected links, we resample all cluster links

conditioned on data links using a simple Gibbs step. This is analogous to the

original ddCRP sampler, cluster link kt is sampled from,

p(kt | α0, A
0(c),x,k−t) =


p(kt | α0, A

0(c))
p(xz=ma ∪ xz=mb

| λ)
p(xz=ma | λ) p(xz=mb

| λ)
if kt merges ma and mb,

p(kt | α0, A
0(c)) otherwise.

(5.24)

5.2.2.4 Data link proposal comparisons

Intuitively, one would expect the prior proposals to be less effective than the data

informed pseudo-Gibbs proposal. The intuition was confirmed in [126], where the

authors demonstrated that the pseudo-Gibbs proposal more consistently reached
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higher probability states (Figure 5.4). In the remainder of this article, we focus

solely on the pseudo-Gibbs proposal.

Worst prior proposal Best prior proposal Worst  pseudo-Gibbs prop Best pseudo-Gibbs prop 

Increasing Probability 

pseudo-Gibbs
prior

Figure 5.4: Data link proposal comparisons (reproduced from [126]). Left:
Two frames from the “garden” video sequence, and partitions corresponding to
the best and worst MAP samples using prior or pseudo-Gibbs proposals. Right:
Joint log-likelihood trace plots for 25 trials of each proposal.

5.3 Experiments

The Hierarchical distance dependent Chinese restaurant process is a flexible sta-

tistical model that can be applied to several problems. In this section we explore

its application to the tasks of activity and discourse segmentation.

5.3.1 Activity Discovery from Multiple Time Series

We consider the problem of analyzing collections of related time series with the

goal of discovering shared commonalities among them. We restrict our attention to

time series produced by motion capture sensors on the joints of people performing

exercise routines. Each recording generates a multivariate time series that com-

prises of several locally coherent, simple dynamics that persist over a contiguous

period of time and correspond to an exercise type (e.g., twists, jumping jacks and

arm-circles). Here, we analyze motion capture recordings from multiple subjects,

each performing a subset of a global set of exercises. By jointly analyzing these

sequences we aim to discover the set of global exercises and their occurrences in

each subject’s motion capture stream.
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5.3.1.1 Data

We analyze the motion capture recordings from the CMU MoCap database

(http://mocap.cs.cmu.edu). Each motion capture sequence in this database con-

sists of 64 measurements of human subjects performing various exercises. Follow-

ing [127], we select 12 measurements deemed most informative for capturing gross

motor behaviors: body torso position, neck angle, two waist angles, and a sym-

metric pair of right and left angles at each subjects shoulders, wrists, knees, and

feet. Each recording thus provides a 12-dimensional time series. [127] provide a

curated subset of the CMU MoCAP data set that contains six twelve dimensional

sequences, three from two subjects each. In addition to having several exercise

types in common this subset comes with human annotated ground truth labels

allowing for easy quantitative comparisons across different models. We perform

our experiments on this annotated subset.

5.3.1.2 Prior

We model the shared partition across MoCap sequences via the hddCRP. We use

sequential ddCRPs to model individual time series. Each measurement within a

MoCap sequence connects to others with probability

p(cgi = gj | αg, A
g) ∝


exp(− (i−j)

Nγ
g
) i > j,

0 i < j,

1 i = j.

(5.25)

Based on preliminary experiments we set γ = 1
5
. Series specific segments (or

local clusters) then connect across time series with distances that correspond to a

regular CRP prior (See Section 5.1).

5.3.1.3 Likelihood

Our data consists of six MoCap series. We denote by xgi ∈ RD×1;D = 12 the

measurement belonging to series g at time step i. We model the dynamics within

a series using switching vector autoregressive (VAR) processes of order 1. Thus
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Figure 5.5: Motion capture segmentation. Left: Joint Log likelihood trace
plots for 15 MCMC runs. Right: Corresponding normalized hamming distances
achieved by the chains. In general, higher probability states correspond to lower
hamming distances (and errors).

conditioned on the global component membership zgi the measurement at time

step i is modeled as follows:

xgi = Bzgixgi−1 + ϵzgi (5.26)

Further, we place a matrix normal inverse wishart (MNIW) prior on the auto

regressive matrix B as follows:

Σzgi | n0, S0 ∼ IW(n0, S0),

Bzgi |M,Σzgi , L ∼MN (M,Σzgi , L),

ϵzgi ∼ N (0,Σzgi),

(5.27)

where n0 is the degrees of freedom, S0 the scale matrix, M the mean dynamic

matrix, and L along with Σzgi together control the covariance around M . In our

experiments we setM to the identity matrix encoding our belief that in expectation

the MoCap sequences locally exhibit simple random walk dynamics. Following

[127], we set n0 to D + 2 and S0 to 0.5 times the empirical covariance of first

differences of all observation sequences and L to 0.5ID where ID is a D dimensional

identity matrix.

5.3.1.4 Empirical Comparisons

We begin by exploring the benefits of the hierarchical ddCRP by comparing it

with the ddCRP. The ddCRP model ignores sequence boundaries and segments
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a MoCap sequence created by stacking the six individual sequences together. We

endow the ddCRP with the same likelihood model as the hddCRP (equation 5.27)

and a prior identical to the local ddCRP models (equation 5.25) used by the

hddCRP.

We also compare against the state of the art Beta process auto regressive hidden

Markov model (BP-AR-HMM) presented in Fox et al. [127]. Additionally, we also

compare against a Gaussian mixture model (GMM) and a Hidden Markov model

(HMM) previously proposed [128] for activity clustering.

We benchmark performance using the normalized Hamming distance which is com-

puted by measuring the fraction of time-steps where the inferred segmentation and

the human annotated ground truth labels differ. Before computing the Hamming

distance we find the optimal alignment of the estimated and true labels using the

Hungarian algorithm.

We ran 15 randomly initialized hddCRP and ddCRP MCMC chains each for 3000

iterations. After discarding the first 10% of each chain to account for burn in, we

selected the MAP sample from the remaining samples as our solution. The com-

parisons are presented in Figure 5.5. The hddCRP significantly outperforms the

GMM and HMM baselines. It also performs much better than the ddCRP demon-

strating the benefits of incorporating the hierarchy into the model. It achieves a

normalized Hamming distance of 0.23 which is within noise of the BP-AR-HMM

utilizing the most sophisticated data driven sampler developed in [127]. The BP-

AR-HMM with a more naive sampler performs significantly worse. In contrast,

the hddCRP allows for a collapsed sampler which works off the shelf requiring

no additional tuning. A subset of the activities discovered by the hddCRP are

visualized in Figure 5.6.

5.3.2 Discourse Segmentation

Next, we consider the problem of discourse segmentation. Given a collection of

documents, the goal is to partition each document into a sequence of topically

coherent non-overlapping discourse fragments. Previous work by Riedl and Bie-

mann [129] found that sharing information across documents tends to produce
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Figure 5.6: Illustrative examples of activities discovered by hddCRP – left-
to-right jumping jacks, squats, arm circles, twists and knee raises. The model
is robust to natural variability in activities arising from different subjects per-
forming the activities.

better segmentations, motivating the development of several text segmentation

algorithms that exploit document relationships.

5.3.2.1 Data

We conducted experiments on the wikielements dataset [130], which consists of

118 Wikipedia articles (at paragraph resolution) describing chemical elements.

Although not explicitly made available in the dataset, each article corresponds to

a chemical element characterized by its chemical properties and a unique location

in the periodic table. Our distance-dependent models are capable of exploiting
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Figure 5.7: Discourse segmentation results on the wikielements dataset. Left:
A partial visualization of the inferred customer links when clustering Wikipedia
articles describing 118 chemical elements. The distance between articles equals
the Manhattan distance between their locations in the periodic table. Only
three of the nine discovered clusters have been visualized. Right : windowDiff
scores and corresponding variances, achieved by competing methods. Lower
scores indicate better performance. For the three hddCRP variants, the error
bars are subsumed by the thickness of the plotted line.

this additional information to produce better discourse segmentations. As an il-

lustration, consider the alternative problem of clustering articles. Figure 5.7 illus-

trates such a clustering where we leverage element properties by defining distances

between documents as the Manhattan distance between corresponding element lo-

cations in the periodic table. The discovered clustering corresponds well with

known element groupings. Discourse segmentation requires clustering the content

describing documents, instead of the documents themselves. Nonetheless, we find

that exploiting the periodic table location of each document’s element leads to

noticeable performance gains.

5.3.2.2 Prior

We experiment with three hddCRP priors capturing different intuitions about

shared discourse structure across related documents. To encourage topic contigu-

ity, all versions use data affinities that allow paragraphs to either link to themselves

or to other paragraphs immediately preceding or succeeding them.

First, to capture the linguistic observation [131] that similar documents tend to

present similar topics in similar orders, we consider a cluster level affinity function
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that bias clusters of paragraphs to connect to those that occur at similar loca-

tions within other documents. We refer to this model as location-hddCRP. We

also define an affinity function (Manhattan-hddCRP) that captures the intuition

that clusters are more likely to be shared among articles about similar elements.

It models affinities between articles using the Manhattan distance between the

corresponding element locations in the periodic table, modulated by a logistic de-

cay function f(d) = (1 + exp(d))−1. Cluster affinities are defined as the affinity

between the articles containing them. Further, the affinity between clusters in the

same article is defined to be 0 for both models. Finally, as a baseline we also

compare against the naive-hddCRP model.

5.3.2.3 Likelihood

Following previous work [130], we treat each article as a collection of paragraphs.

Paragraph i in document g is represented as a histogram of words xgi. Given the

global component membership zgi, xgi is modeled as a Multinomial distribution

with a symmetric Dirichlet prior.

xgi | zgi ∼ Mult(ϕzgi) , ϕzgi ∼ Dir(λ). (5.28)

In our experiments, the hyper-parameter λ is set to 0.1 to encourage sparsity.

5.3.2.4 Empirical Comparisons

We benchmark our algorithms against the generalized Mallows model based text

segmentation [130] approach and a näıve baseline that groups the entire dataset

into one segment. We quantify performance using the windowDiff metric, which

slides a window through the text incurring a penalty on discrepancies between

the number of segmentation boundaries in the inferred segmentation and a gold

standard segmentation. Lower windowDiff numbers indicate a better match with

the ground truth.
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Since the generalized mallow’s model requires the number of clusters (K) to be

pre-specified, we run the model with a number of different choices for K. Fol-

lowing the protocol presented in [130], we run five MCMC chains and collect the

10000th sample from each chain. The mean windowDiff scores along with the as-

sociated variance, across the different cluster choices is summarized in Figure 5.7.

For the hddCRP variants, we run 15 independent MCMC chains for 3000 itera-

tions and select the 5 most probable samples across the chains. The results in

Figure 5.7 report the mean windowDiff score (and variance) achieved by the dif-

ferent hddCRP variants. We observe that naive-hddCRP performs poorly, closely

followed by location-hddCRP. This suggests that capturing structure between la-

tent clusters is important, but ordering of discourse elements across documents is

not pronounced in this collection of multi author wikipedia articles. Manhattan-

hddCRP however performs quite well and is within noise of the state-of-the-art

Mallows model for well chosen K and is superior for suboptimal choices of K. This

significant improvement over naive-hddCRP suggests that modeling dependencies

between latent clusters is important for discourse segmentation. For the collec-

tion of wikipedia chemical elements, similarity in content appears to be a stronger

effect than similarity in location within the article.

5.4 Discussion

In this chapter we developed and investigated properties of the hierarchical dis-

tance dependent Chinese restaurant process, a versatile probabilistic model for

shared clustering of groups of data exhibiting complex structure. We also designed

effective MCMC algorithms for exploring the posterior over partitions induced by

the hddCRP.

Applying the hddCRP to diverse domains is straightforward: one need only spec-

ify appropriate distance functions. The hierarchical ddCRP defines a valid joint

probability distribution for any choice of affinities, which need not be metrics or

have any special properties. Using temporal affinities, it produces state-of-the-art

activity recognition results and leveraging distances based on paragraph order and
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element positions in the periodic table, it performs comparably to state-of-the-art

textual discourse segmentation techniques.

Finally, we note that while our MCMC inference methods are highly effective

for moderate-sized datasets, further innovations will be needed for computational

scaling to very large datasets.



Chapter 6

Learning Distributions Over

Partitions

The ddCRP and hddCRP models introduced in preceding chapters, specify dis-

tributions over partitions that are capable of modeling a wide variety of data

dependencies through user specified affinity functions. Although, affinity func-

tions are crucial for capturing domain specific information, designing functions

that appropriately capture domain knowledge can be challenging. Moreover, the

labor intensive design process often needs to be repeated for new application do-

mains. As a result, previous applications [52, 108, 132, 133] have resorted to

simple, intuitive affinity functions. However, it is unclear whether such functions

are optimal or how functions for new domains may be designed without significant

experimentation.

In this chapter, we alleviate such issues by developing covariate augmented models

that express pairwise similarities between data points or clusters as functions of

covariates. The modeler is no longer required to specify arbitrary affinity functions.

Instead, she is only required to provide potentially weak cues encoding similarities

between data instances and between latent clusters.

89
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6.1 Covariate Augmented Models

We model pairwise affinities as weighted linear combinations of covariates modu-

lated via monotonic nonlinear functions (f),

Aij = f(wT
c θ

c
ij), wc ∼ N (0,Ψc),

A0
ts = f(wT

k θ
k
ts), wk ∼ N (0,Ψk).

(6.1)

Here, θcij, θ
k
ts are user provided covariates encoding similarities between data in-

stances i, j and latent clusters t, s. We endow the weights wc and wk with large

variance, independent, zero mean Gaussian priors. Graphical model representa-

tions of the covariate augmented models are presented in Figure 6.1. Observe,

that the affinity functions are now parametrized by weight vectors wc and wk. In

the next section, we will develop algorithms for reliably learning these parame-

ters from moderate sized collections of human annotated partitions. We also note

that similar models [134] have recently been proposed in the literature. However,

to the best of our knowledge, the challenging problem of learning from human

annotations has not been previously addressed.

6.2 Loss Aware Learning

We consider the problem of learning weights w = {wc, wk} given human anno-

tated training partitions Y = {y1 . . . yD}. Here a partition d containing Nd data

instances is labeled with a vector yd ∈ NNd×1 encoding the allocation of data

instances to partition elements.

Our learning algorithms require human labeled partitions but not the underlying

links responsible for generating the partitions. The mapping from links to par-

titions is many-to-one and exponentially many link combinations exist that can

generate an observed partition. Labeling links would involve enumerating over this

exponentially large set and is clearly infeasible. Instead, we develop algorithms

that estimate the probability of a link between two data instances (or latent clus-

ters) without directly observing training links. This is a significantly more involved
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Figure 6.1: Covariate augmented ddCRP and hddCRP. The affinities are
modeled via a weighted combination of the covariates.

problem than that has been previously addressed in the literature. Affinity learn-

ing work [135–138] that aims to estimate the pairwise probability of data instances

belonging to a common partition component from observed partitions, is perhaps

closest to our work. However, since there are no latent links to reason about,

learning is simpler and off the shelf tools like logistic regression [135, 136] have

proved effective.

Our algorithms that approximately marginalize the exponentially large set of la-

tent links and learn the marginal distribution p(w | Y ). The corresponding joint

distribution p(w, Y ) = p(w)p(Y | w) requires the specification of the likelihood

model p(Y | w). As we have seen ( Figure (1.3)), human interpretations of im-

ages and videos vary wildly. Designing likelihoods that model the noise process

responsible for producing different human partitions of an image is challenging.

We bypass this issue by resorting to recent advances in likelihood free approximate

Bayesian computation(ABC) [139]. ABC algorithms assume that it is possible to

simulate data from a simulation of the likelihood model, even though the likeli-

hood itself might be intractable. Inferences about latent variables are then made
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by matching summary statistics of the simulated and observed data. Various ABC

algorithms have been proposed in the literature, here we consider MCMC based

ABC algorithms which are known to sample from a target distribution restricted

to some neighborhood around the observed data [139]. In the context of learning

from partitions, this requires the ddCRP and hddCRP models to concentrate their

probability mass on partitions “similar” to human produced partitions. We thus

have the following model of human like partitions:

p(c,k, w, Y ) ∝ p(w)
D∏

d=1

p(cd | wc)p(kd | cd, wk)δ(z(cd,kd), yd), (6.2)

δ(ya, yb) =

{
1 if ∆(ya, yb) < ϵ,

0 otherwise,
(6.3)

where for notational simplicity, we have dropped the explicit dependence on the

various hyperparameters. The model restricts it’s probability mass over partitions

to those observations that are at most ϵ away from the ground truth partition. The

notion of closeness is modeled via a loss function ∆(ya, yb). With an appropriate

loss function and threshold ϵ the marginal posterior density p(w | Y ) will concen-

trate around realizations of w that favor human annotated partitions. We can then

summarize the marginal posterior via its MAP estimate ŵ = argmax
w

p(w | Y ).

More sophisticated estimates that better account for the posterior uncertainty are

certainly possible and constitute planned future work. For the tasks of image and

video segmentations considered in this paper, we use a loss function based on the

Rand index [45].

∆(ya, yb) = 1− RI(ya, yb), (6.4)

Observe that the likelihood in Equation 6.2 is only specified to within a constant

of proportionality. This is because normalizing the loss aware likelihood δ(ya, yb)

involves computing a summation over an exponentially large set. Importantly, our

algorithms do not require the evaluation of this normalization constant.

MCMC-ABC [139, Algo. 3] algorithms are typically initialized via a rejection

sampler that samples the prior distribution till a sample within the threshold is

encountered. Such an initialization procedure is extremely inefficient in the high
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dimensional space of partitions, and would render the entire algorithm ineffec-

tive. Instead, we initialize our samplers with a human annotated partition, thus

bypassing the need for rejection sampling.

Learning ddCRP weights We first consider the covariate dependent ddCRP

model. Here, Equation 6.2 simplifies to

p(c, wc, Y ) ∝ p(wc)
D∏

d=1

p(cd | wc)δ(z(cd), yd), (6.5)

We explore the posterior p(c, wc | Y ) by embedding a random walk Metropolis

Hastings step within the ddCRP Gibbs sampler. We proceed by proposing wc

from a Gaussian distribution:

w∗
c ∼ N (wc, νI), (6.6)

where ν is a free parameter controlling the scale of the proposals. The proposed

w∗
c is accepted with probability ∝ min(1, ρc) where ρc is:

ρc =
p(c, w∗

c , Y )q(wc | w∗
c )

p(c, wc, Y )q(w∗
c | wc)

=

p(w∗
c )
∏
d

p(cd | w∗
c )

p(wc)
∏
d

p(cd | wc)
. (6.7)

Next, we sample cluster links c using a Gibbs step:

cdi | c−di, wc, Y ∼ p(cdi | c−di, wc, Y )

∼ p(cdi | wc)δ(z(cd), yd).
(6.8)

Neither sampling step involves evaluating the likelihood’s normalization constant.

After running the sampler for a sufficiently long period of time and collecting S

samples, we can estimate the MAP sample ŵ,

ŵ ≈ argmax
w∈{w(1),...,w(S)}

S∑
s′=1

p(c
(s′)
d | w)p(w, Y ) . (6.9)

Learning hddCRP weights Learning in the hddCRP involves exploring the

posterior of Equation 6.2. We proceed analogously to the ddCRP case by proposing
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w from a random walk Gaussian proposal and accept it with probability propor-

tional to min(1, ρk), where ρk is given by:

ρk =
p(c, w∗

c , Y )q(wc, wk | w∗
c , w

∗
k)

p(c, wc, Y )q(w∗
c , w

∗
k | wc, wk)

=

p(w∗
c )
∏
d

p(cd | w∗
c )p(kd | cd, w∗

k)

p(wc)
∏
d

p(cd | wc)p(kd | cd, wk)
.

(6.10)

Conditioned on w∗, we sample the links c,k using the algorithm presented in Sec-

tion 5.2. We again collect S samples and estimate the MAP sample by marginal-

izing over the link variables.

ŵ ≈ argmax
w∈{w(1),...,w(S)}

S∑
s′=1

p(c
(s′)
d ,k

(s′)
d | w)p(w, Y ) . (6.11)

6.3 Applications

In this section we explore its properties as well as the learning and inference

algorithms developed in the previous sections. We then present results on the

tasks of image, video, activity and discourse segmentation.

6.3.1 Image Segmentation

Image segmentation is the problem of partitioning an image into self-similar groups

of adjacent pixels. Segmentation is an important step towards other tasks in image

understanding, such as object recognition, detection,or tracking. We model images

as observed collections of “superpixels” [140], which are small blocks of spatially

adjacent pixels. Given a collection of superpixels our aim is to find segments made

up of superpixels homogeneous in appearance and whose size statistics loosely

match with human annotated segments. Further, we restrict ourselves to the

problem of single image segmentation with G = 1 and drop the explicit dependence

on g from our notation.
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Figure 6.2: Partitions sampled from ddCRPs using various fixed affinity
functions. The first two samples are sampled from a ddCRP using a fixed
symmetric affinity function – Aij = (1 − bij) × 1[i, j], the final four samples
utilize asymmetric affinites – Aij = (1 − bij) × 1[i, j] × 1[(yi − yj) ≥ 0] and
Aij = (1− bij)× 1[i, j]× 1[(ri − rj) ≥ 0].

We use image segmentation to explore the benefits of learning ddCRP affinities

over using manually specified affinities. In particular, we compare the covariate de-

pendent ddCRP against the fixed affinity ddCRP on standard image segmentation

benchmarks, to empirically quantify the effects of learning.

6.3.1.1 Data

We benchmark the models on two image segmentation datasets. The first dataset

comprises a collection of images drawn from eight natural scene categories [141]

available as a subset of the LabelMe [142] dataset.1 The images come anno-

tated with human segmentations, performed by non-expert users. For each cat-

egory we select 150 images using the first 50 for training and the rest for test-

ing. We also benchmark performance on the Berkeley image segmentation dataset

(BSDS300) [143] using the standard train and test splits. The segmentations

produced by the competing methods are quantitatively evaluated with respect to

human segmentations via the Rand index [45].

As a preprocessing step, we divide each image from the two datasets into approx-

imately 1000 superpixels [140, 144] 2 using the normalized cut algorithm [145].3

1labelme.csail.mit.edu/browseLabelMe/
2www.cs.sfu.ca/˜mori/
3www.eecs.berkeley.edu/Research/Projects/CS/vision/
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6.3.1.2 Prior

We consider a few different ddCRP priors. First, for the fixed affinity version

(ddCRP) we manually specify data affinities that encourage spatial neighbors not

separated by strong intervening contours to connect to one another by setting

Aij = (1− bij)× 1[i, j]. Here, 0 ≤ bij ≤ 1 is the maximum Pb [26] response along

a straight line segment connecting the centers of superpixels i, j, and 1[i, j] takes

a value of 1 if i and j are spatial neighbors, and 0 otherwise. The self connection

parameter α is set to 10−8. The restriction to immediate spatial neighbors guar-

antees spatially connected segments, a desirable property for image segmentation

algorithms. However, samples from such priors exhibit severe over segmentation

(Figure 6.2). This is caused by the symmetric nature of spatial affinities between

superpixels. It allows neighboring superpixels i and j to link to one another with

equal probability and gives rise to several small groups of interconnected super-

pixels. To tackle the over segmentation problem [52] used the naive-hddCRP to

specify a prior over image segmentations. Alternatively, one could use the dd-

CRP over an ordered collection of superpixels to break the symmetry exhibited by

the spatial affinity function. Figure 6.2 illustrates samples from two such affinity

functions. The first, allows links only between a superpixel and its immediate

neighbors to the left and the second restricts a superpixel’s connections to imme-

diate neighbors to the north giving rise to segmentations that favor horizontal and

vertical structures.

Next, instead of relying on the user to determine the appropriate superpixel or-

dering we specify covariates, signed distances between superpixel locations along

x and y axes (δx = ri− rj, δy = yi− yj), for encoding superpixel orderings. Here,

ri and yi represent the x and y location of superpixel i. The relative importance of

these structural covariates are learned from data. Together with bij they specify

the learned-ddCRP prior over image partitions.

Aij = f(w, i, j) = (1 + exp(dij))
−1 × 1[i, j],

dij = wT
c θ

c
ij = wT

c [
ri − rj
R

,
yi − yj
Y

, bij]
T ,

(6.12)

where R = max(|ri − rj|) and Y = max(|yi − yj|).
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Both ddCRP and learned-ddCRP, through their dependence on image contours,

describe conditional priors on image partitions. We also consider a generative

version that only considers superpixel locations: θcij = wT
c [
ri − rj
R

,
yi − yj
Y

]T .

Qualitative comparisons Figure 6.3 illustrate partitions sampled from the

learned ddCRP. We consider both generative and conditional affinities. The gener-

ative affinities learn more general characteristics of the scene category, for instance

the tall buildings category contains partitions with vertical structures while the

mountain category consists of more triangular structures. Conditional samples

adapt to particular images and more closely reflect the particular structure of the

image being conditioned on.

Figure 6.4 presents summary statistics computed from 10, 000 partitions sampled

from learned generative affinities. We find that the Forest, Street and Inside city

categories on average have a larger number of segments per partition. The ground

truth partitions of these categories contain a large number of small segments, as

a result we learn weights that prefer smaller segments. In contrast, the Coast and

Highway category human partitions contain fewer but larger segments. This is

again reflected in the learned weights, partitions of these categories contain fewer

segments. We also find that the segment sizes in the learned partitions roughly

follow a power law distribution, across all categories. This is a well known property

exhibited by natural image segmentations [11].

6.3.1.3 Likelihood

We describe the texture of each superpixel via a local texton histogram [146],

using band-pass filter responses quantized to 128 bins. A 120-bin HSV color

histogram is used to describe the color of the superpixel. Each superpixel i is

summarized via these histograms xi = {xci , xti}. These histograms are treated

as conditionally independent given the cluster allocations z and are modeled as

samples from multinomial distributions with Dirichlet priors.

xci ∼ Mult(ϕc
zi
), ϕc

zi
∼ Dir(λc),

xti ∼ Mult(ϕt
zi
), ϕt

zi
∼ Dir(λt).

(6.13)
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Hyperparameters The multinomial likelihoods treat pixels within a super-

pixel as independent random variables. However, the ddCRP prior models affini-

ties between superpixels. This can cause the prior to get washed away in favor of

the likelihoods. To rectify this we introduce a hyperparameter γ that controls the

relative importance of the prior and the likelihood,

p(x, c | α,A, γ, λ) ∝ p(c | α,A) {p(x | c, λ)}γ. (6.14)

The Dirichlet hyperparmaeters λ = {λc, λt} along with γ are learned via a grid

search on the training set. Given a grid of possible hyperparameters we hill climb

on the posterior probability surface by running a small number of MCMC itera-

tions. Finally, we select the set of hyperparameters that produce optimal results

according to a chosen loss function, Rand index in this case. For the Dirichlet

hyper-parameters we searched over a coarse grid located at locations:

{0.01, 0.1, 1, 5, 10, 20, 25, 40, 50, 100}, for γ we searched over the range:

{0.001, 0.005, 0.05, 0.01, 0.1, 1, 10}.

6.3.1.4 Empirical Comparisons

In addition to the various ddCRP models, we also compare to a image segmenta-

tion algorithm based on the gPb boundary detector that achieves state-of-the-art

results [20] on standard benchmarks. It has one tunable scale parameter which

we tune on the training sets. We learn independent models and also search the

optimal gPb scale for each of the eight LabelMe categories independently. We ran

500 iterations of the MCMC samplers for the ddCRP variants and selected the

MAP sample as the desired segmentation. The performance summary is presented

in Figure 6.4 and qualitative comparisons can be found in Figure 6.5. Armed with

well tuned likelihoods all three ddCRP models perform well. Nonetheless, learning

the affinities provides a modest but statistically significant gain. Of the eight cat-

egories, the learned-ddCRP outperforms ddCRP on two categories (Outside and

Tall Buildings) and is statistically indistinguishable on the remaining six. The

learned ddCRP using only the impoverished generative features also manages to

be competitive with the conditional ddCRP model. It outperforms ddCRP on

images from the Street category while being worse on Highway images. Image



99

contours are a strong cue for segmentation utilized by ddCRP but not by the

generative version. The generative version being competitive inspite of this can

be attributed to learning.

The gPb based algorithm is outperformed by the learned-ddCRP on five categories,

worse on one and within noise on the rest. The contour responses on LabelMe

images is weaker causing gPb to not perform as well.

6.3.2 Video Segmentation

Finally, we consider the problem of discovering segments from videos that are

coherent in space, time and appearance. The problem is a natural fit for the

hierarchical ddCRP. We model video frames using independent spatial ddCRPs

and couple them using a temporal ddCRP. As with image segmentation, instead

of working with pixels we preprocess the video into a collection of superpixels.

6.3.2.1 Data

We perform experiments on of the recently introduced VSB100 [67] dataset. It

contains 40 training and 60 testing videos. We restrict our attention to the general

benchmark subset where the 100 videos are annotated by multiple human subjects

with temporally smooth segments coherent in appearance.

6.3.2.2 Prior

The hddCRP prior requires affinity functions to be specified between both data

instances and clusters. We experiment with both learned and manually specified

affinity functions. In the learned case (learned-hddcrp), we reuse the image seg-

mentation affinity functions between data instances. Affinity between clusters t,

s is expressed as a linear weighted combination of covariates (θkts) encoding shape,

size and positional affinities,

θkts = [ϑts, φts,
|ζt − ζs|

S
]T . (6.15)
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The variable ζt denotes the size of cluster t and S = max|ζt − ζs|. The covariates

collectively represented by ϑts capture within frame affinities and are defined as

follows:

ϑts = 1[t,s|t∈g,s∈g]
[rt − rs

R
,
yt − ys
Y

]T
. (6.16)

Across frame affinities are captured in φts,

φts = 1[t,s|t∈g+1,s∈g]
[ |rt − rs|

R
,
|yt − ys|

Y
, 1− t ∩ s

t ∪ s
]T
. (6.17)

Within a frame we capture similarity between cluster locations using signed Man-

hattan distances. Across frame positional similarities are captured using standard

Manhattan distances and through an intersection over union measure of the pro-

jection of one cluster on another. Finally, the affinity between clusters t, s is

modeled via a sigmoidal transformation:

dts = wT
k θ

k
ts,

A0
ts = (1 + exp(dts))

−1.
(6.18)

We also consider a version of the naive-hddCRP (Section5.1.2) that employs co-

variate dependent affinity functions at the data level but at the cluster level resorts

to CRP affinities.

6.3.2.3 Likelihood

As a preprocessing step, we divide each frame into approximately 1200 superpixels

using the method proposed by Chang et al. [147].4 Following the image segmen-

tation likelihood model, we describe a superpixel using 120-bin HSV color and

128-bin local texton histograms. The color and texture features for super-pixel i

in video frame g are denoted by xgi = {xcgi, xtgi}, where

xcgi ∼ Mult(ϕc
zgi
), ϕc

zgi
∼ Dir(λc),

xtgi ∼ Mult(ϕt
zgi
), ϕt

zgi
∼ Dir(λt).

(6.19)

4Chang et al. [147] also estimate temporal correspondences between superpixels, but we do
not utilize this information.
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The proposed likelihood model forces clusters across video frames belonging to the

same video segment share a common appearance model, encoding the assumption

that appearance of objets doesn’t change significantly over the course of the video.

More elaborate likelihoods could be developed to capture appearance changes and

is interesting future work.

As with image segmentation, in addition to the Dirichlet hyperparameters con-

trolling the texture and color likelihoods we introduce an additional parameter

controlling the relative importance of the likelihood,

p(x,k, c | α1:G, α0, A
1:G, A0, λ) ∝ p(c,k | α1:G, α0, A

1:G, A0) {p(x | c,k, λ)}γ.
(6.20)

All likelihood hyperparameters are learned through validation analogously to im-

age segmentation.

6.3.2.4 Empirical Comparisons

We quantify video segmentation performance using two measures: probabilistic

Rand index (PRI) and volumetric precision and recall (VPR) [67]. In order to

penalize spatially coherent but temporally inaccurate segmentations that exhibit

frequent “label switching” between video frames we compute the segmentation

quality measures by treating the entire video sequence as a single spatio-temporal

block.

We compare video segmentation performance against two state-of-the-art video

segmentation algorithms. First, we consider the latest iteration5 of a popular non

probabilistic hierarchical graph-based video segmentation (HGVS) algorithm [53].

We also compare against the algorithm (VSS) proposed in [148] which has been

shown to perform well on the VSB100 dataset. For both these methods we present

the numbers reported in [67]. For the hddCRP variants, we ran three MCMC

chains each for 1000 iterations and selected the MAP video segmentation. Fig-

ure 6.8 provides a qualitative summary of this experiment. In spite of using iden-

tical likelihood models, the learned-hddCRP consistently produces segments that

are visually cleaner, exhibit smaller under segmentation errors and better temporal

5http://www.videosegmentation.com/
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coherence. These qualitative results translate to improved empirical performance

(Figure 6.8), with leanred-hddCRP outperforming the naive version both in terms

of PRI and VPR. Together these results demonstrate the effectiveness of learn-

ing the hddCRP affinities over manually specified affinities. The learned-hddCRP

performs comparably to both the VSS and the HGVS and is statistically indistin-

guishable from either.

Limitations A glance at Figure 6.8 reveals that naive-hddCRP and to a lesser

degree the learned-hddCRP tend to under segment videos. This preference can

be attributed to the biases induced by the likelihood model. First, multinomial

likelihoods with high probability allow histograms of widely varying shapes and

thus segments that merge regions with distinct appearance are often preferred,

especially when the Dirichlet hyper-parameters are set to large values. Next, since

a common likelihood model is used to describe the entire video we are unable to

model subtle appearance variations across time. Thus, large Dirichlet hyperpa-

rameters are required to explain temporally consistent video segments that span

multiple video frames in the validation set. The validated hyper-parameters thus

tend to be large and give rise to the observed undersegmentation errors. Inter-

esting future work would involve exploring different likelihood models that use

alternate exponential family distributions while decoupling temporal and spatial

consistency.

6.4 Discussion

In this chapter, we dealt with the difficult problem of designing ddCRP and hd-

dCRP affinity functions. We developed algorithms for automatically learning ef-

fective affinity functions from human annotated clusterings. The learned affinity

functions provided clear, demonstrable benefits of over manually crafted counter-

parts, popular in the literature. On the tasks of image and video segmentation

our learned models performed competitively with established image and video

segmentation algorithms.
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Figure 6.3: Samples from ddCRP priors with learned affinities. Rows display
samples from a ddCRP model trained on the Mountain, Tall building, Coast
and Forest categories. The first three columns correspond to generative sam-
ples while the two rightmost columns were generated by conditioning on the
displayed image.
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Figure 6.4: Top. Summary statistics of partitions sampled from ddCRP mod-
els with learned generative weights. Left: Empirical distribution of the number
of segments, broken down by the eight natural image category. Right: Number
of segments occupying varying proportions of the image area, on a log-log scale.
Bottom. Segmentation performance on the eight LabelMe categories. Rows
1 and 3 display Rand index (higher is better) achieved by competing models.
Rows 2 and 4 present results from a Wilcoxon’s signed rank test. Statistically
indistinguishable, better and worse methods are denoted by 0, 1 and -1 respec-
tively at 95% confidence interval.
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Image GT learned-ddCRP ddCRP gPb

Figure 6.5: Rand index produced by competing methods on the LabelMe
dataset. From left to right we have, the original image, the human segmentation,
segmentations produced by learned ddCRP, naive ddCRP and gPb.
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Figure 6.8: Examples from VSB100 test set. For each video the first, middle
and last frames are displayed. The row immediately below the video displays
the ground truth. The following two rows display segmentations produced by
learned and naive-hddCRP models.



Chapter 7

Contributions and

Recommendations

In the preceding chapters, we have introduced statistical models and methods for

discovering layers from images, segments from videos, parts from 3D representa-

tion of objects, activities from MoCap data and discourse units from collections

of related documents. Here, we summarize our main contributions and discuss

interesting directions of future research.

7.1 Summary of Contributions

Discovery of regions, parts, activities and discourse units from scenes, objects,

sensor streams and documents are all examples of ill-posed problems. To make

progress, assumptions about underlying physical processes are necessary. In this

thesis, we have focused on developing flexible statistical priors that attempt to

closely model physical regularities while lending themselves to the development of

efficient computational algorithms.

In Chapter 3, we extend the layered segmentation model of Sudderth and Jor-

dan [22] to more closely match the statistics of natural image segmentations. We

develop new algorithms for learning conditional versions of the model from large

108
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collections of natural image segmentations. We find that such conditionally spec-

ified models more closely match the statistics of human image segmentations and

lead to improved segmentation performance.

Performing effective inference in the layered model is challenging. The mean field

approach suggested in [22] is fraught with local optima issues and leads to unre-

liable results. We develop a sophisticated discrete optimization based inference

algorithm that escapes local optima through large moves in the partition space.

The algorithm requires a marginalization over an infinite set of thresholded Gaus-

sian processes, a challenging undertaking. To address this, we resort to an ex-

pectation propagation based message passing algorithm for approximately (but

accurately) performing such marginalizations. Through extensive experiments,

we find that the learning and inference enhancements result in significant per-

formance improvements producing results competitive with state-of-the-art image

segmentation techniques.

Chapter 4 develops methods for discovering parts from observed articulations of

deformable objects. To the best of our knowledge, the model developed in Chap-

ter 4 is the first to simultaneously infer the number and spatial extent of parts

while guaranteeing that the inferred parts are spatially contiguous. We adapt the

distance dependent Chinese restaurant process prior to define a distribution over

partitions of objects that places zero probability mass on partitions with spatially

non-contiguous parts. We model the observed affine deformations through a ma-

trix variate normal distribution. Studies on a large corpus of human body scans

of widely varying shapes and poses demonstrate the effectiveness of our methods.

Hierarchical extensions to the ddCRP are developed in Chapter 5. Such hierar-

chical models allow us to perform shared segmentation of groups of related data.

Hierarchical ddCRP (hddCRP) models non-exchangeability both between data in-

stances inside a group and between clusters of data items across groups. Through

the specification of affinities between data points and between clusters, data ex-

hibiting very different structures can be easily modeled. Inference in such models

is challenging and necessitates the development of new Metropolis Hastings based

algorithms that make coordinated changes at both data and cluster levels. We
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demonstrate the effectiveness of the hddCRP models by applying them to the di-

verse tasks of activity recognition and discourse segmentation. On both tasks, we

find that the hddCRP achieves state-of-the-art performance.

Our final contribution, involves developing algorithms for automatically learn-

ing effective affinity functions from human annotated data partitions (Chapter 6).

Borrowing ideas from recent advances in approximate Bayesian computation (ABC),

we show that it is possible to learn affinity functions between data instance and

their clusters from human clusterings without needing to observe the links respon-

sible for generating the clustering. We find that such learned affinity functions

lead to a significant performance boost over hand crafted affinities and extremely

competitive results on standard image and video segmentation benchmarks.

7.2 Recommendations

We conclude with a discussion of the limitations of the proposed methods and

exciting avenues of research to remedy them.

7.2.1 Image and Video Segmentation

Improved Likelihood Models While a significant focus of this thesis has been

on developing realistic priors on partitions of natural images and videos, our treat-

ment of region and object appearances have been quite rudimentary. We have

modeled quantized color and texture responses via multinomial likelihoods. While

such likelihoods are popular in the literature, they are primarily motivated by

computational ease rather than modeling capacity. Such multinomial likelihoods

ignore correlations across bins, incorrectly treat pixels within a super pixel as

independent observations and depending on hyper parameter settings do not ob-

ject to grouping together pixels with vastly different appearances. Covariance

based region descriptors [149] capture feature correlations and allay many of the

issues with multinomial likelihoods. Wishart and inverse-Wishart distributions

have support over positive definite matrices and are natural choices for modeling
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region covariance descriptors. Relatively recent work [150] has used such likeli-

hoods for clustering faces and matching image patches across video frames but

application to segmentation problems appears to be as yet unexplored. Nonethe-

less, combining such likelihoods with our sophisticated segmentation priors will

likely lead to improved performance.

Image Understanding Systems Recent years have seen significant progress

in object recognition and image labeling [3, 4]. State-of-the-art systems place

bounding boxes around objects in images and optionally produce a dense label-

ing into one of K predefined classes. Such labelings while useful only provide a

superficial understanding of the image. Humans on the other hand, are addition-

ally able to infer rich geometric structure and disambiguate occlusion and support

relationships by reasoning about the underlying 3D scene space rather than the

2D image space. The inability to reason in 3D is one plausible explanation for

computer vision systems falling well short of human performance on image under-

standing tasks. Coherent statistical models of objects, their appearances in 2D

and their shapes and poses in the encompassing 3D scene provide an exciting di-

rection for bridging this gap. The layered representation introduced in Chapter 3

is a promising building block for such models. Extending the latent layers with

explicit depth and shape parameters will allow coarse modeling of the underlying

3D scene responsible for generating an image or a collection of images. Further,

the layered representation could be shared among images allowing for the sharing

of statistical strength and better characterize ambiguous image regions. Sharing

latent layered representations among related images instead of observed appear-

ance features provides robustness to appearance variations arising from occlusion

effects and changes in viewpoint. Development of such models and corresponding

computational algorithms will likely lead to better image understanding systems.

7.2.2 Articulated object segmentation

Our work on part discovery from observed articulations requires that the corre-

spondence between different poses are known. Aligning large collections of 3D

meshes exhibiting a diversity of poses, resolutions and shapes is a challenging

problem. We currently use a two step procedure – aligning meshes through off the
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shelf alignments algorithms before segmenting the aligned meshes. Consequently,

we are unable to recover from alignment errors.

An interesting direction for future research would involve exploring enhanced mod-

els that jointly infer correspondences between meshes and segment meshes into

parts. Recent work [65], in the context of optical flow estimation, has found that

models that simultaneously discover image segments and image motion lead to

improvements in both segmentation and motion estimation. It is likely that sim-

ilar gains can be had in the analysis of large collections of meshes when jointly

tackling the correspondence and segmentation problems.

7.2.3 Scalable and Reliable Inference

The ddCRP and its hierarchical variants developed in this thesis have relied on

MCMC algorithms for inference. Such MCMC methods provide strong asymp-

totic guarantees and can be applied to complex models relatively easily. However,

for large problems it is often not possible to run MCMC chains to convergence.

Furthermore, assessing convergence is itself difficult. Recent progress combining

ideas from variational inference and stochastic optimization provides a promis-

ing alternative for large data collections. In the context of ddCRP, Bartunov

and Vetrov [151] have recently developed variational inference schemes for ddCRP

models employing sequential distances. Generalizations of these algorithms for the

larger class of ddCRP and hierarchical ddCRP models may lead to more scalable

inference algorithms.

The discrete stochastic search based inference algorithms developed in Chapter 3,

provide another promising avenue of future research. Through explicit split and

merge moves these algorithms are more robust to shallow local optima. Combining

these ideas with more recent advances in combinatorial optimization will likely lead

to improved inference algorithms for models with discrete latent variables.



Appendix A

Algorithmic Details from

Chapter 3

A.1 Low rank Expectation Propagation

v

ui uj uk

v

ui uj uk

Figure A.1: True and Approximate distributions. Graphical models repre-
senting the distribution of random variables in a layer (We have left out the
hyper-parameters on δ and v). Left: True distribution. Right: Approximate
distribution.

As previously noted, the random variables associated with each layer of our model

can be treated independently of the others. Following the notation introduced in

113
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Section 3, we have

p(u,v, δ | t, α) ∝ N (v|0, I)p(δ|α)
N∏

n=1

N (un|aTnv, ψn)I(tn(δ − un) > 0) (A.1)

We approximate this distribution with a Gaussian distribution of the form:

q(u,v, δ | t, α) ∝ N (v|0, I)N (δ | µ̃p, σ̃
2
p)

N∏
n=1

N (un | aTnv, ψn)N (un | µ̃n, σ̃
2
n)

N (δ | µ̃δn , σ̃
2
δn)

(A.2)

The graphical models corresponding to the true and approximate distributions

are shown in Figure A.1. EP proceeds by removing an approximate factor and

substituting it with the corresponding true factor, giving rise to the augmented

distribution. The moments of this augmented distribution are then computed and

the parameters of the approximate factor is updated by matching the moments of

the approximate and augmented distributions. Next, we demonstrate how these

quantities are computed for our model.

Firstly, note that our approximation assumes independence between δ and {u,v}.
From figure A.1 and using standard Gaussian BP results we have

q(v | t) ∝ N (v|0, I)
N∏

n=1

mno(v) (A.3)

with

mno(v) ∝ N (v | τ−1
no νno, τ

−1
no ), τ no =

τ̃n
1 + ψnτ̃n

ana
T
n (A.4)

νno =
ν̃n

1 + ψnτ̃n
an, ν̃n = τ̃nµ̃n, τ̃n = σ̃−2

n (A.5)
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Thus, we have the following result

q(v | t) ∝ N (v |, τ−1
posνpos, τ

−1
pos) (A.6)

τ pos = I +
N∑

n=1

τ̃n
1 + ψnτ̃n

ana
T
n (A.7)

νpos =
N∑

n=1

ν̃n
1 + ψnτ̃n

an (A.8)

We can remove the effect of an approximate factor by dividing out the correspond-

ing message.

q(v | t−n) ∝ N (v |, τ−1
−nν−n, τ

−1
−n) (A.9)

τ−1
−n = (τ pos − τ no)

−1 (A.10)

ν−n = νpos − νno (A.11)

Note that τ−1
−n can be efficiently computed using the following rank one update:

τ−1
−n = Σ− (−m)

Σana
T
nΣ

1−maTnΣan
(A.12)

m =
τ̃n

1 + ψnτ̃n
and τ−1

−n = Σ (A.13)

Next observe that

q(un|t) ∝ N (un | µ̃n, σ̃
2
n)mon(un) (A.14)

q(un|t−n) ∝ mon(un) (A.15)

mon(un) ∝ N (un | τ−1
on νon, τ

−1
on ) (A.16)

A little algebra reveals that the parameters of mon are given by

τ−1
on = ψn + aTnτ

−1
−nan and τ

−1
on νon = aTnτ

−1
−nν−n (A.17)

Similarly, the parameters of the distribution q(δ | t−n) ∝ N (δ | τ−1
−δn

ν−δn , τ
−1
−δn

) can

be computed. Finally, the moments of the following augmented distribution need
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to be computed:

q(un, δ | t−n)I(tn(δ − un) > 0) = q(δ | t−n)q(un | t−n)I(tn(δ − un) > 0) (A.18)

A little bit of algebra leads to the following closed form formula for the relevant

normalization constants.

Normalization constant of the augmented distribution (0th order moment):

P = Φ

tn(µ−δn − µ−n)√
σ2
−n + σ2

−δn

 = Φ(hn) (A.19)

First and Second order moments for δ:

E[δ] = µ−δn + tn
σ2
−δn
N (hn)

Φ(hn)
√
σ2
−n + σ2

−δn

(A.20)

E[δ2] = 2µ−δnE[δ]− µ2
−δn + σ2

−δn −
σ4
−δn

hnN (hn)

Φ(hn)(σ2
−n + σ2

−δn
)

(A.21)

First and Second order moments for un:

E[un] = µ−n − tn
σ2
−nN (hn)

Φ(hn)
√
σ2
−n + σ2

−δn

(A.22)

E[u2n] = 2µ−nE[un]− µ2
−n + σ2

−n −
σ4
−nhnN (hn)

Φ(hn)(σ2
−n + σ2

−δn
)

(A.23)

where µ−n = τ−1
on νon , µ−δn = τ−1

−δn
ν−δn , σ

2
−δn

= τ−1
−δn

, σ2
−n = τ−1

on .

The parameters of the approximate factor corresponding to un can now be com-

puted and the posterior on v updated using a rank one update, analogous to

standard Gaussian process classification [77]. A final issue worth noting is that

we have a non standard prior on δ which is difficult to deal with. We approx-

imate the prior on δ with another Gaussian factor. The moments required for

computing the parameters of this Gaussian are estimated numerically. Since, δ is

an unidimensional quantity, numerical moment computation is easy and efficient.

Furthermore, these moments are required only once per EP sweep, where a sweep
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is defined as circling through all the super-pixels. Thus the added computational

cost of numerical moment computation is negligible.

A.1.1 Computational Complexity

Observe that we only explicitly maintain a Gaussian posterior distribution on

v which is a D dimensional quantity. Thus, the complexity of one EP sweep

is O(ND2) as opposed to standard Gaussian process classification which has a

complexity of O(N3) where N is the number of super-pixels. Observe that for

any candidate partition, the prior for all layers can be evaluated in parallel. Thus,

the cost of running T search iterations, each iteration running t sweeps of EP is

O(tTND2).

A.2 Likelihood Evaluation

The likelihood computation involves evaluating the independent color and texture

integrals∫
Θ

p(x|z,Θ)p(Θ|ρ)dΘ =

∫
θc
p(xc|z, θc)p(θc|ρc)dθc

∫
θt
p(xt|z, θt)p(θt|ρt)dθt

(A.24)

which is a standard multinomial-Dirichlet integral. We provide the solution to the

color integral here for the sake of completeness (To simplify notation we denote

θc, xc by just θ and x).

For K segments and N super-pixels we have,

∫
θ

p(x|z, θc)p(θ|ρc)dθ =
K∏
k=1

∫
θk

p(θk|ρc)
N∏

n=1

p(xn|zn, θk)I(zn=k)dθk (A.25)

=
K∏
k=1

∫
θk

∆(ρc)
Wc∏
w=1

θ
ρcw−1
kw

N∏
n=1

Wc∏
w=1

(θxnw
kw )I(zn=k)dθk (A.26)
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=
K∏
k=1

∆(ρc)

∫
θk

Wc∏
w=1

θ
ρcw−1
kw

Wc∏
w=1

(θkw)
∑

n xnw×I(zn=k)dθk (A.27)

=
K∏
k=1

∆(ρc)

∫
θk

Wc∏
w=1

(θkw)
xk
w+ρw−1dθk (A.28)

=
K∏
k=1

∆(ρc)

∆(ρc + xk)
(A.29)

In the above derivation ∆(ρc) =
Γ(

∑
w ρcw)∏

w Γ(ρcw)
and xkw = number of times word w occurs

with segment k. Putting it all together we have

∫
Θ

p(x|z,Θ)p(Θ|ρ)dΘ =
K∏
k=1

∆(ρc)

∆(ρc + x
(c)
k )

∆(ρt)

∆(ρt + x
(t)
k )

(A.30)

A.3 Search Details

In this section we provide details of our search algorithm.

A.3.1 Shift move details

Notation note: zn is a categorical random variable assuming one of K values,

where K is the number of components in the partition z. tn on the other hand is

a binary random variable indicating whether super-pixel n is assigned to layer k

or not. A is a N-by-D matrix, with rows aT1 . . . a
T
N

We are interested in optimizing p(z | x, η) with respect to z = {z1, z2...zn}.
In the shift move we assign each zn = k̂ such that k̂ = argmax

k
p(zn = k |

z−n, α, A,Ψ)p(x | z, ρ). Note that this implies we are optimizing p(z | x, η) one zn
at a time.

1. for each super-pixel n
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Algorithm 2: Search Pseudo-code

Get the initial partition z0 using k-means.
Set maxIter = 200, i = 1, bestMode = z0

while i ≤ maxIter do
while p(zi | x, η) ≥ p(zi−1 | x, η) do
Apply shift move to zi−1 to get zi

bestMode = zi

i = i+ 1
end while
if i ≤ maxIter then
Select a move from the set { Merge, Swap, Split }
Apply the selected move to zi−1 to get zi

if p(zi | x, η) ≥ p(zi−1 | x, η) then
bestMode = zi

end if
i = i+ 1

end if
end while
return bestMode

(a) for each layer k

i. If super-pixel n is defined for layer k; Compute the approximate

posterior cavity distribution on v; q(v|t−n) ∝ N (v|µ−n,Σ−n) and

the approximate posterior cavity distribution for the layer’s thresh-

old δk; q(δk|t−n) = N (δk|µ−δn , σ
2
−δn

)

ii. If super-pixel n is not defined for layer k (ie it has already been

assigned to a previous layer) the posterior distributions on v and

δk are themselves the cavity distributions.

iii. Next, compute the parameters of the conditional distribution

q(un|v, t−n) = q(un|µ∗, σ
2
∗), given by

µ∗ = aTnµ−n (A.31)

σ2
∗ = Ψn + aTnΣ−nan (A.32)

iv. Finally, compute πnk = p(tn = 1|t−n) as follows
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πnk = Eq[I(un < δk)]

=

∫
I(un < δk)N (un|µ∗, σ

2
∗)N (δk|µ−δn , σ

2
−δn)dundδk

= Φ

 µ−δn − µ∗√
σ2
∗ + σ2

−δn


v. The probability of super-pixel n getting assigned to layer k is given

by

p(zn = k | z−n) = p(un < δk | un > δl) = πnk

k−1∏
l=1

(1− πnl) (A.33)

vi. Compute the posterior probability of the super-pixel assignment

p(z | x, ρ, α) ∝ p(zn = k | z−n)

∫
p(x | z, θ)p(θ | ρ)dθ (A.34)

(b) Finally, assign n to layer k̂ which maximizes posterior probability

k̂ = argmax
k

p(zn = k | z−n)

∫
p(x | z, θ)p(θ | ρ)dθ (A.35)

(c) For all layers affected by the shift of super-pixel n, update the corre-

sponding posterior distribution on v by a EP projection for the relevant

super-pixel. Care is taken such that when a previously invalid super-

pixel gets shifted into a layer, the old posterior is treated as the new

cavity distribution. Likewise when a super-pixel is shifted out of a layer,

the old cavity distribution is treated as the new posterior.



Appendix B

Marginal Likelihoods for

Chapter 4

Let Y = [y1, ...yN ] ∈ R3×N denote the coordinates of mesh faces assigned to the

same part in a given pose. Let X = [x1, ...xN ] ∈ R4×N represent the corresponding

reference (homogeneous) coordinates. The distribution of Y |X (for a given part

and pose) is then given by

Y |X ∼MN (AX,Σ, I) (B.1)

From [111] - F.10 we have

p(Y |X,Σ) =
∫
p(Y,A|X,Σ)dA =

|K|3/2

|2πΣ|N/2|Sxx|3/2
exp{−1

2
tr(Σ−1Sy|x)} (B.2)

and

Sxx = XXT +K (B.3)

Syx = Y XT +MK (B.4)

Sy|x = Y Y T +MKMT − Syx(Sxx)
−1ST

yx (B.5)
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Finally, the marginal likelihood is given by

N (p(Y |X) =
∫
p(Y |X,Σ)p(Σ|n0, S0)dΣ (B.6)

=
∫ |K|3/2

|2πΣ|3N/2|Sxx|3/2
exp{−1

2
tr(Σ−1Sy|x)} (B.7)

|S0|n0/2|Σ|−(4+n0)/2

23n0/2Γ3(n0/2)
exp{−1

2
tr(Σ−1S0)}dΣ (B.8)

p(Y |X) =

∫
|K|3/2|S0|n0/2|Σ|−(4+n0)/2

|2πΣ|3N/2|Sxx|3/223n0/2Γ3(n0/2)
exp{−1

2
tr(Σ−1(Sy|x + S0))}dΣ

(B.9)

p(Y |X) =
|K|3/2|S0|n0/2

|2π|3N/2|Sxx|3/223n0/2Γ3(n0/2)

∫
|Σ|−(3+N+n0+1)/2

exp{−1

2
tr(Σ−1(Sy|x + S0))}

(B.10)

p(Y |X) =
|K|3/2|S0|n0/22(N+n0)3/2Γ3((N + n0)/2)

|2π|3N/2|Sxx|3/223n0/2Γ3(n0/2)|S0 + Sy|x|(N+n0)/2

∫
IW (N + n0,

Sy|x + S0)dΣ

(B.11)

The marginal likelihood for one part in one pose is then given by

p(Y |X,K, n0, S0) =
|K| 32 |S0|

n0
2 Γ3

(
N+n0

2

)
π

3N
2 |Sxx|

3
2 |S0 + Sy|x|

(N+n0)
2 Γ3(

n0

2
)

(B.12)



Appendix C

MCMC Details from Chapter 5

C.1 Inference Details

Algorithm 3: Iterative sampling of customer and table links.

for i ∈ 1 . . . N do
c∗,k∗ ←− CustLinkProposal(i,x,k, c, α,D, α0, A

0(c))
Compute acceptance ratio ρ ; /*See supplement*/

With probability ∝ min(1, ρ), accept c,k←− c∗,k∗

for t ∈ T (c) do
kt ∼ p(kt | k−t, c,x, α0, A

0(c)) ; /*Gibbs update kt*/

123
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Algorithm 4: CustLinkProposal

input : i,x,k, c, α,D, α0, A
0(c)

output: k∗, c∗, q.(c
∗,k∗ | k, c)

i′ ←− ci
Set ci = i and update co = {c1, . . . , ci−1, ci = i, . . . , cN};
Lti = {tℓ | ktℓ = ti & tℓ ̸= ti} ; /*Set of all tables pointing to ti, except

self loops.*/

if A new table is created by setting ci = i then
Set split = true; /*Record the occurrence of a split.*/

k←− ReassignLinks (Lti)
k∗ti′ ←− kti,i′ ; /*A split table retains the current table’s link.*/

Sample c∗i ∼ q(c∗i )
if c∗i causes two existing tables to merge then

Set ti,i∗ = ti ∪ ti∗
Lti,i∗ = Lti ∪ Lti∗ and Update k to reflect the merge

if split then /* Split+Merge */
k∗ti,i∗ ←− kti∗

qsm(c
∗,k∗ | c,k, X) = (0.5)|Lti |q(c∗i )

else /* No split + Merge */
Delete kti
k∗ti,i∗ ←− kti∗
qm(c

∗,k∗ | c,k, X) = q(c∗i )

else
if split then /* Split+No Merge */

Sample k∗ti ∼ p(k∗ti | α0, A
0(c)(c∗),x,k−ti) ;

qs(c
∗,k∗ | c,k, X) = (0.5)|Lti |q(c∗i )p(k

∗
ti
| A0(c)(c∗),x,k∗

−ti
)

else /* No Split+No Merge */

/*No change to partition - Do Nothing. */

qnc(c
∗,k∗ | c,k, X) = q(c∗i )

Algorithm 5: ReassignLinks

input : Lti

output: k
/*Reassign links pointing to a split table. Links are assigned to

one of the two split tables. */

for ℓ ∈ Lti do
bℓ ∼ Ber(0.5)
if bℓ = 1 then

Lti = Lti/tℓ
Lti′

= Lti′
∪ tℓ

ktj = ti′ ;



Bibliography

[1] E Wachsmuth, MW Oram, and DI Perrett. Recognition of objects and their

component parts: responses of single units in the temporal cortex of the

macaque. Cerebral Cortex, 4(5):509–522, 1994.

[2] Nikos K Logothetis and David L Sheinberg. Visual object recognition. An-

nual review of neuroscience, 19(1):577–621, 1996.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification

with deep convolutional neural networks. In P. Bartlett, F.C.N. Pereira,

C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural

Information Processing Systems 25, pages 1106–1114. 2012.

[4] Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic texton

forests for image categorization and segmentation. 2013 IEEE Conference

on Computer Vision and Pattern Recognition, 0:1–8, 2008. doi: http://doi.

ieeecomputersociety.org/10.1109/CVPR.2008.4587503.

[5] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gevers, and Arnold WM

Smeulders. Segmentation as selective search for object recognition. In Com-

puter Vision (ICCV), 2011 IEEE International Conference on, pages 1879–

1886. IEEE, 2011.

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-

ture hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2014.

[7] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu.

Sketch2photo: Internet image montage. In ACM SIGGRAPH Asia 2009

125



Bibliography 126

Papers, SIGGRAPH Asia ’09, pages 124:1–124:10, New York, NY, USA,

2009. ACM.

[8] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image

segmentation using expectation-maximization and its application to image

querying. PAMI, 24(8):1026–1038, August 2002.

[9] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of polyhedral

surfaces using decomposition. In Computer Graphics Forum, volume 21,

pages 219–228. Wiley Online Library, 2002.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms

and measuring ecological statistics. In ICCV, volume 2, pages 416–423, July

2001.

[11] Erik B. Sudderth and Michael I. Jordan. Shared segmentation of natural

scenes using dependent pitman-yor processes. In D. Koller, D. Schuurmans,

Y. Bengio, and L. Bottou, editors, Advances in Neural Information Process-

ing Systems 21, pages 1585–1592. 2008.

[12] Tomasz Malisiewicz and Alexei A. Efros. Improving spatial support for

objects via multiple segmentations. In BMVC, September 2007.

[13] Chunhui Gu, Joseph J Lim, Pablo Arbelaez, and Jitendra Malik. Recognition

using regions. In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 1030–1037. IEEE, 2009.

[14] Jianbo Shi and Jitendra Malik. Motion segmentation and tracking using

normalized cuts. In Computer Vision, 1998. Sixth International Conference

on, pages 1154–1160. IEEE, 1998.

[15] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and

their principles. In CVPR, pages 2432–2439. IEEE, June 2010.

[16] Richard Szeliski. Computer vision: algorithms and applications. Springer

Science & Business Media, 2010.



Bibliography 127

[17] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.

PAMI, 22(8), 2000.

[18] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2):167–181, 2004. ISSN 0920-5691.

[19] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature

space analysis. PAMI, 24(5):603–619, May 2002.

[20] Pablo Arbelaez, Michael Maire, Charless C. Fowlkes, and Jitendra Malik.

From contours to regions: An empirical evaluation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2009.

[21] ZhenyuWu and Richard Leahy. An optimal graph theoretic approach to data

clustering: Theory and its application to image segmentation. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on, 15(11):1101–1113,

1993.

[22] Erik B. Sudderth and Michael I. Jordan. Shared segmentation of natural

scenes using dependent Pitman-Yor processes. In NIPS, pages 1585–1592,

2008.

[23] X. Ren and J. Malik. A probabilistic multi-scale model for contour comple-

tion based on image statistics. In ECCV, volume 1, pages 312–327, 2002.

[24] Lawrence G. Roberts. Machine Perception of Three-Dimensional Solids.

Outstanding Dissertations in the Computer Sciences. Garland Publishing,

New York, 1963. ISBN 0-8240-4427-4.

[25] Judith MS Prewitt. Object enhancement and extraction. Picture processing

and Psychopictorics, 10(1):15–19, 1970.

[26] D. R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image

boundaries using local brightness, color, and texture cues. IEEE Trans.

PAMI, 26(5):530–549, 2004.

[27] Pierre Parent and Steven W Zucker. Trace inference, curvature consis-

tency, and curve detection. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 11(8):823–839, 1989.



Bibliography 128

[28] Lance R Williams and David W Jacobs. Stochastic completion fields: A

neural model of illusory contour shape and salience. Neural Computation, 9

(4):837–858, 1997.

[29] James H Elder and Steven W Zucker. Computing contour closure. In Com-

puter VisionECCV’96, pages 399–412. Springer, 1996.

[30] Xiaofeng Ren, Charless C Fowlkes, and Jitendra Malik. Scale-invariant con-

tour completion using conditional random fields. In Computer Vision, 2005.

ICCV 2005. Tenth IEEE International Conference on, volume 2, pages 1214–

1221. IEEE, 2005.

[31] Pedro Felzenszwalb and David McAllester. A min-cover approach for find-

ing salient curves. In Computer Vision and Pattern Recognition Workshop,

2006. CVPRW’06. Conference on, pages 185–185. IEEE, 2006.

[32] S. Beucher and Centre De Morphologie Mathmatique. The watershed trans-

formation applied to image segmentation. In Scanning Microscopy Interna-

tional, pages 299–314, 1991.

[33] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Con-

tour detection and hierarchical image segmentation. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 33(5):898–916, 2011.

[34] Marco Andreetto, Lihi Zelnik-Manor, and Pietro Perona. Non-parametric

probabilistic image segmentation. In ICCV, 2007.

[35] Giorgos Sfikas, Christophoros Nikou, and Nikolaos Galatsanos. Edge pre-

serving spatially varying mixtures for image segmentation. CVPR, 0:

1–7, 2008. doi: http://doi.ieeecomputersociety.org/10.1109/CVPR.2008.

4587416.

[36] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distribu-

tions, and the Bayesian restoration of images. PAMI, 6(6):721–741, 1984.

[37] Andrew Blake, Carsten Rother, Matthew Brown, Patrick Perez, and Philip

Torr. Interactive image segmentation using an adaptive gmmrf model. In

Computer Vision-ECCV 2004, pages 428–441. Springer, 2004.



Bibliography 129

[38] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. ACM Transactions

on Graphics (TOG), 23(3):309–314, 2004.

[39] Yizong Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 17(8):790–799, 1995.

[40] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Graph cut based

image segmentation with connectivity priors. In Computer Vision and Pat-

tern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,

2008.

[41] Brian L Price, Bryan Morse, and Scott Cohen. Geodesic graph cut for in-

teractive image segmentation. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 3161–3168. IEEE, 2010.

[42] Victor Lempitsky, Pushmeet Kohli, Carsten Rother, and Toby Sharp. Image

segmentation with a bounding box prior. In Computer Vision, 2009 IEEE

12th International Conference on, pages 277–284. IEEE, 2009.

[43] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy

minimization via graph cuts. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23:1222–1239, November 2001.

[44] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Free-

man. Labelme: A database and web-based tool for image annotation. IJCV,

77(1-3):157–173, 2008. ISSN 0920-5691. doi: http://dx.doi.org/10.1007/

s11263-007-0090-8.

[45] W. M. Rand. Objective criteria for the evaluation of clustering methods.

JASA, 66(336):846–850, 1971.

[46] R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward objective evaluation

of image segmentation algorithms. IEEE Trans. PAMI, 29(6):929–944, 2007.

[47] M. Meila. Comparing clusterings–an information based distance. Journal of

Multivariate Analysis, 98(5):873–895, 2007.



Bibliography 130

[48] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman.

Using multiple segmentations to discover objects and their extent in image

collections. In CVPR, pages 1605–1614, 2006.

[49] RD Morris, X Descombes, and J Zerubia. The ising/potts model is not

well suited to segmentation tasks. In Digital Signal Processing Workshop

Proceedings, 1996., IEEE, pages 263–266. IEEE, 1996.

[50] Peter Orbanz and Joachim M Buhmann. Nonparametric bayesian image

segmentation. International Journal of Computer Vision, 77(1-3):25–45,

2008.

[51] Lu Ren, Lan Du, Lawrence Carin, and David Dunson. Logistic stick-breaking

process. The Journal of Machine Learning Research, 12:203–239, 2011.

[52] S. Ghosh, A. B. Ungureanu, E. B. Sudderth, and D. Blei. Spatial distance

dependent Chinese restaurant processes for image segmentation. In NIPS,

pages 1476–1484, 2011.

[53] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph

based video segmentation. In CVPR, 2010.

[54] Sylvain Paris. Edge-preserving smoothing and mean-shift segmentation of

video streams. In Computer Vision–ECCV 2008, pages 460–473. Springer,

2008.

[55] Hayit Greenspan, Jacob Goldberger, and Arnaldo Mayer. A probabilistic

framework for spatio-temporal video representation & indexing. In Computer

VisionECCV 2002, pages 461–475. Springer, 2002.

[56] David Tsai, Matthew Flagg, and James M.Rehg. Motion coherent tracking

with multi-label mrf optimization. BMVC, 2010.

[57] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M.

Rehg. Video segmentation by tracking many figure-ground segments. In

ICCV, 2013.

[58] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of moving ob-

jects by long term video analysis. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 36(6):1187–1200, 2014.



Bibliography 131

[59] Thomas Brox and Jitendra Malik. Object segmentation by long term anal-

ysis of point trajectories. In Computer Vision–ECCV 2010, pages 282–295.

Springer, 2010.
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