
Abstract of “On Scalable Transaction Execution in Partitioned Main Memory Database Management Sys-

tems” by Andrew Pavlo, Ph.D., Brown University, May 2014.

An emerging class of distributed database management systems (DBMS) seek to provide high-performance

transaction processing for data-intensive applications while maintaining strong consistency guarantees. These

systems achieve this by storing databases in a cluster of shared-nothing, main memory partitions. This par-

titioning enables them to eschew much of the legacy, disk-oriented architecture that slows down traditional

systems, such as heavy-weight concurrency control algorithms, thereby allowing for the efficient execution

of single-partition transactions. But many applications cannot be partitioned such that all of their transactions

execute in this manner; these multi-partition transactions require expensive coordination that inhibits perfor-

mance. In this dissertation, we study the problem of scalable transaction execution for modern on-line trans-

action processing (OLTP) applications. We present the design of H-Store, a distributed, main memory DBMS

that is optimized for short-lived, write-heavy transactional workloads. We then present domain-specific appli-

cations of optimization and machine learning techniques to improve the performance of fast database systems

like H-Store. Our first contribution is an approach for automatically generating a database design for an OLTP

application that both minimizes both the amount of cross-node communication and skew in the cluster. We

then present a Markov model-based approach for automatically selecting which optimizations to enable at

run time for new transaction requests based on their most likely behavior. Finally, we present a method for

using these models to schedule speculative transactions and queries whenever a DBMS stalls because of a

multi-partition transaction. All together, these allow enable H-Store to support transactional workloads that

are beyond what single-node systems can handle.

On Scalable Transaction Execution in
Partitioned Main Memory

Database Management Systems

by

Andrew Pavlo

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2014

This dissertation by Andrew Pavlo is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Stanley B. Zdonik, Director

Recommended to the Graduate Council

Date
Michael Stonebraker, Reader

(Massachusetts Institute of Technology)

Date
Ugur Cetintemel, Reader

(Brown University)

Approved by the Graduate Council

Date
Peter Weber

Dean of the Graduate School

iii

♥ K.B.

Acknowledgements

The best part of my time in graduate school was the chance to work with Stan Zdonik at Brown. I cannot

thank him enough for his guidance and patience with me after the various “misunderstandings” about me in

the Brown Computer Science department. I am grateful that he always had time to discuss research with me,

but that he also gave me the freedom to pursue my own research agenda. After VoltDB forked the H-Store

source code in 2008, Stan pushed me to continue developing the original system rather than relying on the

commercial version. This was not an easy choice and Stan stood by me as I spent almost two years building

it out so that we could run the experiments in this dissertation. In hind sight, this was the correct choice and

I attribute much of my success to this decision. I could not have asked for a better advisor.

I am fortunate for having the opportunity to work with Mike Stonebraker and Sam Madden at MIT. Mike’s

years of experience in database systems were helpful for me to figure out what were interesting research

problems and how to distill issues down to their simplest form. I also greatly enjoyed working with Sam

because of his ability to quickly understand problems and then provide useful feedback or incisive questions

during meetings (even though he may seem aloof at times).

I would like to also thank the original members of the H-Store team: Evan Jones (MIT), Hideaki Kimura

(Brown), Jonathan Natkins (Brown), Yang Zhang (MIT), and John Hugg (VoltDB). Evan was particularly

helpful later on when figuring out how to leverage the capabilities of our prediction framework (cf. Chapter 5)

in H-Store. I later worked on the automatic partitioning component (cf. Chapter 4) in H-Store with Carlo

Curino who was helpful in getting the paper published after multiple rejections. At Brown, I had help in

writing benchmark and utility code from Visawee Angkanawaraphan, Zhe Zhang, and Xin Jia. I am also

appreciative of the fruitful conversations about machine learning and optimization problems that I had with

Yuri Malitsky and Carleton Coffrin at Brown. Finally, I would also like to thank Leon Wrinkles for his

invaluable (albeit strident) criticisms and suggestions on the speculative execution project (cf. Chapter 6).

There are many others that I have worked with on other research projects that are not part of this dis-

sertation. Foremost is Ning Shi, who stood by me after we got in trouble for the Graffiti Network project.

David DeWitt at Microsoft, Eric Paulson at the University of Wisconsin–Madison, Dan Abadi at Yale, and

Alex Rasin at Brown for their help on the MapReduce analysis paper. Yang Zou and Emanuel Buzek at

Brown for their help with the MongoDB designer project. Djellel Difallah and Philippe Cudre-Mauroux at

the University of Fribourg for their help on the OLTP-Bench framework.

v

Contents

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Modern On-Line Transaction Processing Workloads . 3

1.2 Modern Computer Hardware . 4

1.3 Implications for DBMS Architectures . 5

1.4 Summary of Goals & Contributions . 6

2 High-Performance Transaction Processing 8
2.1 Motivating Example . 8

2.2 Traditional DBMS Architectures . 10

2.2.1 Buffer Pool Management . 11

2.2.2 Concurrency Control Scheme . 11

2.2.3 Recovery Mechanism . 12

2.3 Strategies for Scaling DBMSs . 13

2.4 A Scalable DBMS Architecture for OLTP Applications . 15

3 The H-Store OLTP Database Management System 17
3.1 Overview . 17

3.2 System Architecture . 19

3.2.1 Transaction Coordinator . 19

3.2.2 Execution Engine . 20

3.2.3 Storage Layer . 20

3.3 Stored Procedures . 22

3.4 Database Design Specification . 23

3.4.1 Table Partitioning . 24

3.4.2 Table Replication . 24

3.4.3 Secondary Index Replication . 24

3.4.4 Stored Procedure Routing . 24

vi

3.5 Query Plan Compilation & Optimization . 26

3.5.1 Single-Partition Query Plans . 27

3.5.2 Multi-Partition Query Plans . 27

3.6 Runtime Operation . 29

3.6.1 Transaction Initialization . 29

3.6.2 Query Routing . 30

3.6.3 Query Execution . 32

3.6.4 Transaction Commit Protocol . 33

3.7 Recovery Mechanism . 35

3.7.1 Command Logging . 35

3.7.2 Snapshots . 36

3.7.3 Crash Recovery . 37

3.8 Replication . 38

3.8.1 Single-Partition Transactions . 38

3.8.2 Distributed Transactions . 39

3.9 Comparison . 39

4 Automatic Database Design 42
4.1 Distributed Transaction Overhead . 43

4.2 Database Design Challenges . 45

4.3 Large-Neighborhood Search . 46

4.3.1 Initial Design . 47

4.3.2 Relaxation . 48

4.3.3 Local Search . 49

4.4 Temporal Skew-Aware Cost Model . 50

4.4.1 Coordination Cost . 51

4.4.2 Skew Factor . 52

4.4.3 Incomplete Designs . 53

4.5 Optimizations . 54

4.5.1 Access Graphs . 54

4.5.2 Workload Compression . 55

4.6 Experimental Evaluation . 56

4.6.1 Benchmark Workloads . 56

4.6.2 Design Algorithm Comparison . 57

4.6.3 Transaction Throughput . 58

4.6.4 Cost Model Validation . 60

4.6.5 Compression & Scalability . 61

4.6.6 Search Parameter Sensitivity Analysis . 61

4.7 Conclusion . 63

vii

5 Predictive Transaction Modeling 64
5.1 Runtime Transaction Optimizations . 65

5.2 Transaction Models . 68

5.2.1 Definition . 68

5.2.2 Model Generation . 70

5.3 Predictive Framework . 71

5.3.1 Parameter Mappings . 71

5.3.2 Initial Execution Path Estimation . 73

5.3.3 Initial Optimizations Selection . 75

5.3.4 Optimization Updates . 75

5.3.5 Model Maintenance . 76

5.3.6 Limitations . 76

5.4 Model Partitioning . 77

5.4.1 Clustering . 78

5.4.2 Feed-Forward Selection . 79

5.4.3 Run Time Decision Tree . 80

5.5 Experimental Evaluation . 80

5.5.1 Model Accuracy . 80

5.5.2 Estimation Overhead . 82

5.5.3 Transaction Throughput . 82

5.5.4 Confidence Sensitivity Analysis . 86

5.6 Conclusion . 86

6 Speculative Execution 88
6.1 Distributed Transaction Stalls . 89

6.2 Fast Speculative Execution in Distributed DBMSs . 92

6.3 Speculative Transactions . 93

6.3.1 Candidate Identification . 94

6.3.2 Execution . 95

6.3.3 Recovery . 95

6.3.4 Replicated Environments . 96

6.4 Speculative Queries . 96

6.4.1 Candidate Identification . 97

6.4.2 Execution . 98

6.5 Conflict Detection . 99

6.5.1 Table-level Conflict Detection . 100

6.5.2 Row-level Conflict Detection . 100

6.6 Experimental Analysis . 101

6.6.1 Performance Evaluation . 101

6.6.2 Conflict Detection Comparison . 104

viii

6.6.3 Optimistic Scheduling Comparison . 106

6.7 Conclusion . 106

7 Related Work 107
7.1 Database Management Systems . 107

7.1.1 Distributed Systems . 107

7.1.2 Main Memory Systems . 109

7.1.3 Distributed, Main Memory Systems . 110

7.1.4 NoSQL Systems . 111

7.1.5 NewSQL Systems . 111

7.2 Database Design . 112

7.2.1 Database Partitioning . 112

7.2.2 Secondary Index Selection . 114

7.2.3 Transaction Routing . 114

7.2.4 Cost Models . 114

7.3 Predictive Modeling . 114

7.4 Speculative Execution . 115

7.4.1 Speculative Transactions . 115

7.4.2 Speculative Queries . 115

8 Future Work 117
8.1 Distributed Transaction Optimizations . 117

8.1.1 Transaction Batching . 117

8.1.2 Transaction Splitting . 118

8.2 Many-Core Concurrency Control . 118

8.3 Database Design . 119

8.4 Database Reorganization & Elasticity . 120

8.5 Predictive Transaction Modeling . 120

8.6 Larger-than-Memory Databases . 121

8.7 Workload Expansion . 121

8.8 Non-Volatile Memory . 122

9 Conclusion 123

A OLTP Benchmarks 125
A.1 AuctionMark . 125

A.2 SEATS . 125

A.3 SmallBank . 126

A.4 TATP . 126

A.5 TPC-C . 126

A.6 TPC-E . 127

ix

A.7 Voter . 127

B Query Plan Operators 128
B.1 Scan Operators . 128

B.2 Join Operators . 129

B.3 Modifying Operators . 129

B.4 Data Operators . 129

B.5 Output Operators . 130

x

List of Tables

5.1 The list of feature categories that are extracted from the stored procedure input parameters

for each transaction trace record. These features are used when sub-dividing the models for

each stored procedure to improve scalability and prediction accuracy. 78

5.2 The feature vector extracted from the transaction example in Fig. 5.7. The value for the

ARRAYLENGTH(w_id) feature is null because the w_id procedure parameter in Fig. 5.2 is

not an array. 78

5.3 Measurements of the global and partitioned Markov models’ accuracy in predicting the exe-

cution properties of transactions. 82

5.4 The percentage of transactions that Houdini successfully enabled one of the four optimiza-

tions. In the case of OP4, the measurement represents how many transactions were specula-

tively executed as a result of the early prepare optimization. The rightmost column contains

the average amount of time that Houdini spent calculating the initial optimization estimates

and updates at run time. 84

A.1 Profile information for the benchmark workloads. 126

xi

List of Figures

2.1 The throughput measurements for the Voter benchmark on MySQL and Postgres. 9

2.2 The percentage CPU instructions in the Shore DBMS when executing the NewOrder transac-

tion from the TPC-C benchmark [112]. 11

3.1 An overview of the H-Store distributed OLTP DBMS. Each H-Store node consists of a trans-

action coordinator that manages single-threaded execution engines, each with exclusive ac-

cess to a data partition stored in memory. All tuples in H-Store are stored in main memory

replicated on multiple nodes and all transactions are executed as pre-defined stored proce-

dures. 18

3.2 An overview of the in-memory storage layer for H-Store. 21

3.3 A stored procedure defines (1) a set of parameterized queries and (2) control code. For each

new transaction request, the DBMS invokes the procedure’s run method and passes in (3)

the procedure input parameters sent by the client. The transaction invokes queries by passing

their unique handle to the DBMS along with the values of its (4) query input parameters. . . 23

3.4 A database design for H-Store consists of the following: (a) splits tables into horizontal parti-

tions, (b) replicates tables on all partitions, (c) replicates secondary indexes on all partitions,

and (d) routes transaction requests to the best base partition. 25

3.5 Examples of a single-partition and multi-partition query plan for the same SQL statement. . 28

3.6 The runtime execution flow of a transaction in H-Store. 30

3.7 An overview of H-Store’s logging and checkpoint scheme. 35

3.8 A timeline diagram for the execution of a single-partition transaction with one replica. Each

node in the replica set will execute the transaction’s control code independently. The master

node will then verify at the end that all of its slave nodes returned the same result. 38

3.9 A timeline diagram for H-Store’s replication scheme when executing a distributed transaction.

The transaction needs to execute one query at its base partition (i.e., Query1) and a different

query at its remote partition (i.e., Query2). Each partition is replicated on two nodes. 39

3.10 The single-node throughput measurements for the Voter benchmark on MySQL, Postgres,

and H-Store. All DBMSs were deployed with the same serializable isolation level and dura-

bility guarantees. 40

xii

3.11 The multi-node throughput measurements for the Voter benchmark on MySQL, Postgres, and

H-Store. Each cluster configuration has eight CPU cores per node. 40

4.1 The impact on H-Store’s throughput for different workload variations in TPC-C NewOrder. . 45

4.2 An overview of Horticulture’s LNS design algorithm. The algorithm generates a relaxed

design from the initial design and then uses local search to explore solutions. Each level of

the search tree contains the different candidate attributes for tables and procedures for the

target database. After the search finishes, the process either restarts or emits the best solution

found. 47

4.3 Example CalculateSkew estimates for different distributions on the number of times parti-

tions are accessed. Each entry along the x-axis represents a unique partition. 54

4.4 An access graph derived from a workload trace. 55

4.5 Off-line measurements of the designs algorithms in Section 4.6.2. 58

4.6 Transaction throughput measurements for the HR+, SCH, and MFA design algorithms. . . 59

4.7 Workload Compression Rates . 61

4.8 LNS search time for different cluster sizes . 61

4.9 A comparison of LNS-generated designs for TPC-E using different (a) local search times and

(b) backtrack limits. 62

4.10 The best solution found by Horticulture over time. The red dotted lines represent known

optimal designs (when available). 62

5.1 The throughput of the system on different partition sizes using three different execution sce-

narios: (1) All transactions are executed as distributed; (2) All transactions are executed as

single-partitioned, distributed transactions are restarted; (3) Single-partition transactions run

without concurrency control and distributed transactions lock the minimum number of parti-

tions. 67

5.2 A stored procedure defines (1) a set of parameterized queries and (2) control code. For each

new transaction request, the DBMS invokes the procedure’s run method and passes in (3)

the procedure input parameters sent by the client. The transaction invokes queries by passing

their unique handle to the DBMS along with the values of its (4) query input parameters. . . 68

5.3 An example of a Markov model for the NewOrder stored procedure shown in Fig. 5.2. The

full model with all of the possible execution states is shown in Fig. 5.3a. Fig. 5.3b shows a

detailed view of the boxed region in the larger graph. 69

5.4 The probability table for the GetWarehouse state from Fig. 5.3. The table shows that with

100% certainty any transaction that reaches this state will execute another query that accesses

partition #0 before it commits. Conversely, there is a 5% chance that it will need to either

read or write data on partition #1. 70

xiii

5.5 An overview of the Houdini predictive framework: (1) at initialization time, Houdini gen-

erates the Markov models and parameter mappings using a workload trace; (2) at run time,

the client sends transaction requests to the DBMS’s transaction coordinator; (3) the DBMS

passes this request to Houdini, which generates an initial path estimate and selects optimiza-

tions; (4) Houdini monitors the transaction as it executes and provides updates to the DBMS.

. 72

5.6 A parameter mapping for the NewOrder procedure. 73

5.7 An example of generating the initial execution path estimate for a NewOrder invocation. As

shown in the trace record in Fig. 5.6, the procedure parameters in this example are (w_id=0,

i_ids=[1001,1002], w_i_ids=[0,1], i_qtys=[2,7]). 74

5.8 A partitioned set of NewOrder Markov models. The decision tree above the models divides

transactions by the hash value of the first procedure parameter and the length of the array of

the second procedure parameter. The detail of the models in the above figure is not relevant

other than to note that they are less complex than the global model for the same procedure

shown in Fig. 5.3. 78

5.9 Markov models for select stored procedures from the TATP, TPC-C, and AuctionMark OLTP

benchmarks used in our evaluation in Section 5.5. 81

5.10 Relative measurements of the time spent for each transaction (1) estimating optimizations,

(2) executing, (3) planning, (4) coordinating its execution, and (5) other setup operations. . 83

5.11 Throughput measurements of H-Store for different execution modes: (1) Houdini with parti-

tioned Markov models; (2) Houdini with global Markov models; and (3) DB2-style transac-

tion redirects and assuming that all partitions are single-partitioned. 85

5.12 Throughput measurements of H-Store under varying estimation confidence coefficient thresh-

olds (Section 5.3.2). 86

6.1 Distributed Transaction Measurements – (a) the average execution time for transactions; (b)

the average time spent at stall points for distributed / multi-node transactions; (c) the average

elapsed time until a distributed transaction executes a remote partition query and then receives

its result. 90

6.2 Timeline diagram of a distributed transaction with its corresponding stall points. The transac-

tion’s control code executes at its base partition and invokes queries at the remote partition.

. 91

6.3 An example of a stored procedure’s Markov model. Each state in the model represents (1)

the query being executed, (2) the partitions that the query will access, (3) the number of times

that the transaction has executed this query in the past, and (4) the partitions the transaction

has accessed in the past. The commit/abort states represent the transaction’s exit status. . . 93

6.4 An example of comparing the initial path estimate of a speculative transaction candidate with

a stalled distributed transaction. The conflict detection rules identified that the QueryZ query

in the distributed transaction has a write conflict with the QueryB in the candidate. 94

xiv

6.5 Hermes uses a transaction’s initial path estimate to identify queries to prefetch. Such queries

are dispatched for execution on the remote partition. When the transaction requests the same

query in its control code, the DBMS checks the tracking table to see whether the prefetched

results have arrived. 96

6.6 Timeline diagram of speculatively executing a query for a distributed transaction. The query

result arrives at the transaction’s base partition before it is needed, thus the DBMS will not

send out a request when the procedure control code invokes it. 98

6.7 Throughput Measurements . 102

6.8 Latency Measurements . 103

6.9 Conflict Detection – (a) the average length of the computation time per invocation; (b) the

percentage of queued transactions correctly identified as eligible for speculative execution;

(c) the DBMS’s throughput for each detection algorithm; (d) the transactions’ latencies for

each detection algorithm. 104

6.10 OCC Comparison – Performance measurements for H-Store using Hermes’ pessimistic schedul-

ing or optimistic scheduling. The “hotspot transactions” are the percentage of the the work-

load that all target a fixed subset of the database. 105

xv

Chapter 1

Introduction

Changes in Internet usage trends in the last decade have given rise to numerous Web-based, front-end ap-

plications that support a large number of concurrent users. Creating one of these large-scale, data-intensive

applications is easier now than it ever has been, in part due to the proliferation of open-source distributed

system tools, cloud-computing platforms, and affordable mobile sensors. Developers are able to deploy ap-

plications in a short amount of time that have the potential to reach millions of users and collect large amounts

of data from a variety of sources.

These large-scale database applications are generally divided into two parts: (1) the front-end transaction

processing system and (2) the back-end data warehouse. A transaction processing system is a computer

system that is designed to execute on-line transaction processing (OLTP) workload of the application [32, 95].

New data and updates from the transaction processing system are then streamed or bulk loaded to the back-

end data warehouse. This is where an organization can execute an on-line analytical processing (OLAP)

workloads for extrapolating information from the entire database.

The term transaction processing system is generally used to mean a complete system that includes appli-

cation, operations tools, one or more database management systems (DBMSs), utilities, and networking and

operating system software [95]. On one end of such a system there is a front-end application that contains

the code that interfaces with the “outside” world. This is the part of the system that interacts with end-users;

for example, it is the system that processes new orders, responds to a page request, or performs a financial

transaction. Such users could be humans on their personal computer or mobile device, or another computer

program potentially running somewhere else in the world.

One of the first OLTP applications was the SABRE airline reservation system developed in the 1960s [32].

It was one of the biggest computer systems built at the time and is still used today by over 200 airlines and

thousands of travel agencies. Other OLTP workloads include maintaining the state of Internet games, real-

time advertising on web pages, and processing incoming message streams (either from humans or machines)

in order to maintain some runtime state.

End-users interact with the front-end application by sending it requests to perform some function (e.g.,

reserve a seat on a flight). The application processes these requests and then executes transactions in the

DBMS. A transaction in the context of one of these systems is the execution of a sequence of one or more

1

operations (e.g., SQL queries) on a shared database to perform some higher-level function [32, 94, 95]. It

is the basic unit of change in a DBMS: partial transactions are not allowed, and the effect of a group of

transactions on the database’s state is equivalent to any serial execution of all transactions [185].

These transactions invoke operations that either read or modify the current state of the database, and then

either commit or abort. If the transaction commits, then the DBMS saves any changes that it made to the

database and then returns its result to the application. If it aborts, then the modifications that the transactions

made to the database are reverted.

A transaction processing system is expected to maintain four properties for each transaction that it exe-

cutes: (1) atomicity, (2) consistency, (3) isolation, and (4) durability [95, 185]. These unifying concepts for

distributed computation are collectively referred to with the ACID acronym [106]:

Atomicity: The changes that a transaction makes to the state of the database either all happen or none of

them happen at all. If a transaction aborts, then the state of the database will be as if the transaction

never executed at all. There are no partial changes.

Consistency: A transaction performs a correct transformation of the database’s state. The transaction’s op-

erations taken as a group do not violate any of the integrity constraints associated with the state [95].

Examples of a constraint are that all of the primary key values are unique or that all foreign key ref-

erences are valid [32]. It is assumed that the program logic contained within the front-end application

itself is correct [177].

Isolation: This means that even though the system may execute transactions concurrently, it appears to each

transaction that all other transactions executed either before it or after it. A system can provide different

levels of isolation. The strongest isolation level, known as serializability, means that each transaction

executes as if it has exclusive access to the database and no transaction can see the changes made by

another incomplete transaction [32].

Durability: The changes made to the database by a completed transaction are persistent (i.e., they will

survive failures and system restarts). If the application receives an acknowledgement that a transaction

has committed, then at any point in the future the application should be able to retrieve the updates made

to the database by that transaction (assuming that they were not overwritten by another transaction).

Transactions are a useful abstraction for developers as it allows them to reason more easily about con-

current programs. The ACID guarantees of transactions are essential in any application that deals with high-

profile information, where an inconsistent or lost operation may result in a significant financial loss to a

company. Achieving good performance in a transaction processing system that supports ACID transactions

is notoriously difficult [127, 143, 211], but it is believed that it is better to have application programmers

deal with performance problems due to overuse of transactions, rather than always coding around the lack of

transactions [63].

Many of the DBMSs used in these front-end transaction processing systems are based on the “traditional”

system architecture that was developed in the 1970s. This architecture comes from the pioneering work on the

original relational DBMSs, IBM’s System R [24] and the University of California’s INGRES [209]. These

2

early DBMSs were designed for the computers that were available at that time; a typical computer had a

single CPU core and a small amount of main memory. They were also developed at a time when the primary

market for databases was interactive transaction processing applications. Most commercial DBMSs in today’s

market are based on this traditional architecture model, including Oracle, IBM’s DB2, and Microsoft’s SQL

Server, as well as popular open-source DBMSs, such as Postgres and MySQL.

But nearly four decades after System R and INGRES were created, the processing and storage needs of

modern OLTP applications are now surpassing the abilities of these legacy systems [11, 87, 198, 201]. With

the number of Internet-enabled devices currently estimated to be in the billions [12], even a medium-sized

Internet application can become popular enough that it will need to service thousands of requests per second.

Larger transaction processing systems can have workloads with millions of active users at the same time. A

traditional DBMS deployed on a single node is unable to keep up with these demanding workloads.

To better understand why existing database systems are insufficient for modern transaction processing ap-

plications, we now discuss the key characteristics of OLTP workloads that make high-performance transaction

processing particularly challenging. We then discuss how traditional DBMS architectures are inadequate for

modern processor technologies and memory capacities.

1.1 Modern On-Line Transaction Processing Workloads
The workloads for today’s OLTP applications are much different than the business processing applications

from the 1970s. In these earlier applications, a human operator started a transaction through a terminal and

then entered new data into the system manually. Back then, the expected peak throughput of a DBMSs was

only tens to hundreds transactions per second [83, 212] and the response times were measured in seconds [96].

Once business and organizations collected a large amount of data from these front-end systems, they then

wanted to analyze it to extrapolate new information to guide their decision making. Thus, during the 1990s,

DBMS vendors extended traditional DBMSs to include support for more complex OLAP workloads [13, 207,

211]. But modern OLTP workloads are distinct from OLAP workloads, and thus these enhancements do not

help the DBMS to support high-performance transaction processing applications.

In general, we characterize transactions in OLTP applications as having the following four properties:

Small Footprint: Each transaction only accesses a small subset of the entire database. A transaction uses

indexes to retrieve a small number of tuples and only performs its operations on that data. These

look-ups are based on a key provided by the application that corresponds to a single “entity” in the

database (e.g., the account number for a single customer). This key is also used to retrieve or update

the records related to that entity (e.g., the order records for a single customer). OLTP transactions do

not perform full table scans or large distributed joins. This differs from OLAP systems, where queries

tend to compute aggregate information from multiple entities in the database (e.g., the average order

amount for all customers) [13, 210]

Short-lived: As a result of having a small footprint in the database, each transaction only runs for a short

amount of time. Their response time requirements are measured in milliseconds, rather minutes or

seconds. In contrast, OLAP queries tend to run for longer periods of time because they have to read

3

more data [13]. The short execution times for OLTP transactions also imply that they never stall waiting

for additional input from an operator; all of the input that the transaction needs to complete is provided

in the transaction request.

Write-Heavy: The workloads for OLTP applications are inherently write-heavy because the end-user is

performing some action that causes the application to update its state. Most transactions update the state

of the database by inserting new records or updating existing ones. Again, because each transaction has

a small footprint, new data is added to the database in small batches. This differs from OLAP systems,

where the workload is primarily read-only and new data is bulk loaded.

Repetitive: End-users have fixed number of ways that they can interact with the application (e.g., through

a web site). Thus, in an OLTP application, there are a limited number of transaction types. Each

transaction type executes the same set of pre-defined, parameterized queries whose variables are filled

in at runtime. The workloads for OLAP systems, on the other hand, are less predictable. This is

common in exploratory data analysis applications, where the user often does not know what they are

looking for in the database right away and will execute random queries.

OLTP workloads can also contain ad hoc (or “one-shot”) queries that are interspersed with the regular

transactional workload. These queries are used to make rare, one time modifications to the database (e.g.,

apply a discount to an existing order for a customer due to a mistake). These queries are still short-lived and

only touch a small amount of data. Other one-shot operations include analytical queries to compute a simple

metric for a particular aspect of the database (e.g., count the number of items sold within the last hour). These

types of queries are also rare in an OLTP workload and are customarily executed on a separate OLAP or data

warehouse DBMS [210].

1.2 Modern Computer Hardware
Current hardware trends are much different now than they were in the 1970s. Back then, a DBMS was

usually deployed on a computer that only had a single CPU with a single core (i.e., hardware thread). The

amount of memory available on these machines was much smaller relative to the size of the database back

then. Thus, a traditional DBMS assumes that most of the database is stored on disk. But with the advent

of large-memory computers, it is now affordable to purchase a small number of machines that have almost

a terabyte of DRAM. This is enough main memory to store all but the largest OLTP databases [211]. In our

experience, the databases’ for modern OLTP applications are typically several hundred gigabytes in size. The

largest one that we are aware of is approximately 10 terabytes. Contrast this with an OLAP data warehouse,

where the DBMS could be managing databases that are several petabytes in size. This difference is because

an OLTP database stores the current state of an application (e.g., the orders from the last 90 days), whereas

an OLAP database stores all of the historical information for an enterprise (e.g., all orders ever placed).

Multi-core processors also a challenge for traditional DBMSs. Earlier systems supported concurrent

transactions [52], but since the CPUs at the time only had a single hardware thread that meant that only

one transaction would actually be running at a time. Thus, these DBMSs employed a lock-based concur-

rency control schemes to ensure correctness when one transaction’s thread would block while another thread

4

started running [98]. But now with multiple cores, there could be transactions running at the same time in

the DBMS on a single computer. The concurrency control scheme still ensures correctness, but now lock

contention impedes performance [127, 211]. Hence, adding additional cores does not automatically improve

the performance of a traditional DBMS. This is problematic because manufacturers are not creating chips

with higher clock speeds due to heat and energy limitations, and instead are adding more cores to a single

CPU.

1.3 Implications for DBMS Architectures
There is substantial evidence that shows that many organizations struggle with scaling traditional DBMSs

for modern OLTP applications [198, 201]. These difficulties strongly demonstrate the need to rethink sys-

tem architectures for high-performance transaction processing. Rather than improve on the existing design

decisions of traditional DBMS architectures, we contend that a new “clean-slate” architecture that is specifi-

cally designed for the high throughput and low latency requirements of modern OLTP applications is a better

approach.

It has long been observed that a main memory DBMS outperforms a disk-oriented systems [72, 88, 145].

If a database is stored in memory, rather than disk, then the concurrency control techniques employed by

traditional DBMSs to mask disk access latency and provide the illusion of the serial execution of multiple

transactions will take just as long to execute as accessing the data itself. That is, if the data needed by a

transaction is already in memory, then it takes just as long to access that data as it does for the DBMS’s

concurrency control scheme to set a lock or latch in memory.

But the amount of memory available on a single node might not be enough for some applications. Further-

more, if the database is only stored on a single node, then it may take a long time to get an OLTP application

back on-line if that node fails. All of this argues for the use of a distributed DBMS architecture [175] where

the database is deployed on a cluster of shared-nothing nodes [206]. In addition to this, since an OLTP appli-

cation is what end-users typically interact with, it is important that the system is always on-line and available.

The cost of an outage for these applications is significant [22], thus the DBMS must be tolerant to failures

and reduce the amount of time that it is off-line because of them.

Although distributed DBMSs are a well-studied research area [70, 160], much of the previous work as-

sumes that the DBMS operates on single-CPU, disk-based machines [73]. The demands of modern enterprise

transactional and Web-based workloads, as well as changes in infrastructure and CPU architecture trends,

means that many of the design decisions and techniques used in previous systems must be re-examined. For

example, just because a database is now stored in memory across multiple nodes does not mean that it will

automatically perform well. Moving to a multi-node architecture introduces a new performance bottleneck:

distributed transactions [30, 173]. These transactions access data that is stored at two or more nodes in the

database cluster. Since transactions may modify data at those nodes, a distributed DBMS must use an atomic

commit protocol, such as two-phase commit (2PC) [35, 93], to ensure that operations occur in the right order

and that the state of the database is correct across all nodes. The coordination overhead of such protocols

inhibits the scalability of distributed DBMSs, because the network becomes the main bottleneck [113].

The scalability and performance of a distributed DBMS depends on the number of transactions that access

5

data on multiple nodes. Whether or not a transaction needs to access multiple nodes depends on the design

(i.e., physical layout) of the database. Such a design defines how an application’s data and workload is

partitioned or replicated across DBMS’s nodes in a cluster, and how queries and transactions are routed to

nodes. This in turn determines the number of transactions that access the data stored on each node and how

skewed the load is across the cluster. But the problem of generating the optimal database design is known

to be NP -Complete [164, 176], and thus it is not practical to examine every possible design to find one that

works well [230].

It is also not possible for some applications to eliminate distributed transactions entirely through careful

partitioning. This is either because of the application’s workload properties (e.g., the database is not per-

fectly partitionable) [113] or for regulatory reasons (e.g., customers’ financial data must be partitioned by

their country of residence). Furthermore, decomposing distributed transactions into multiple single-partition

transactions [173] are not extensible or may not provide the correct level of isolation [45].

Even if the application has a database design that minimizes the number of distributed transactions in its

workload, the DBMS must still know at runtime what each transaction request will do when it executes. This

information enables the system to apply certain optimizations to execute transactions more efficiently [180].

But it is not practical to require administrators to explicitly inform the DBMS how individual transaction

requests are going to behave. Transaction invocations of the same stored procedure may not always access

data at a single partition depending on the state of the database or the values of their input parameters. This is

especially true for complex enterprise applications where a change in the database’s configuration can affect

transactions’ execution behavior. This non-determinism makes it difficult for the DBMS to select the proper

optimizations at runtime [72, 193]. Thus, the DBMS needs to infer the runtime behavior of transactions

before they start running to overcome these impediments. It needs to be able to do this quickly and in a

decentralized manner (e.g., the DBMS cannot spend 100 ms figuring out this information for a transaction

that will only run for 5 ms).

1.4 Summary of Goals & Contributions
The above discussion illustrates the challenges of high-performance transaction processing. That is, just

because a database is deployed on a distributed or main memory DBMS, does not mean that it will automat-

ically perform better than a traditional DBMS on a single node. Thus, the overall goal of this dissertation

is to improve the state-of-the-art in high-performance transaction processing by solving the issues identified

above. This effort brings together a rich history of previous distributed DBMSs, main memory DBMSs, and

transaction processing systems. Our work also incorporates techniques from the optimization and machine

learning research communities in order to overcome the inherent scaling problems in DBMSs for OLTP ap-

plications. In essence, we hope that this document serves as a guide for the future endeavors of others in

building a distributed, main memory OLTP DBMS.

The contributions in this dissertation are as follows:

Distributed, Main Memory DBMS Architecture for OLTP Applications: We provide a detailed descrip-

tion of our implementation of a new DBMS that is designed for the efficient execution of transactions

in modern OLTP workloads. This system is a distributed, row-storage relational OLTP DBMS that runs

6

on a cluster of shared-nothing, main memory-only nodes [133, 211]. Such a clean slate architecture for

OLTP applications has been referred to as a NewSQL system [23].

Automatic Database Design: We present an automatic tool for generating a near-optimal database design

that partitions an OLTP database in such a way that minimizes communication overhead of transactions

and manages skew [181].

Predictive Transaction Modeling: We present a method to automatically predict the runtime behavior of

individual transactions using a low-impact machine learning framework integrated in the DBMS [180].

The DBMS then uses this information to enable various optimizations.

Speculative Transaction & Query Execution: We present a technique to improve the DBMS’s performance

through aggressive speculative execution of transactions and queries whenever a distributed transaction

stalls waiting for messages to arrive over the network. This speculative execution allows the DBMS to

perform useful work when it would otherwise be idle.

All of our contributions in this dissertation are in the context of the H-Store [3] DBMS that we developed.

Although we use the H-Store system as our experimental test-bed in our analysis, the concepts discussed here

are applicable to similar DBMSs.

The outline of this dissertation is as follows. We begin in Chapter 2 with a more thorough discussion

of traditional DBMS architectures and demonstrate how they are insufficient for OLTP workloads. This

analysis serves as a motivation for our new DBMS architecture that is optimized for modern applications.

We then discuss in Chapter 3 the internals of the H-Store system that we built to explore and validate this

proposed architecture. We then present three different optimizations that allow a distributed, main memory

DBMS system to scale its performance. In Chapter 4, we discuss our automatic database design algorithm.

Then in Chapter 5, we discuss our approach for integrating a machine learning framework in the DBMS to

automatically derive execution properties for transactions. Such information is used to selectively enable

runtime optimizations for individual transactions. We then build on this idea in Chapter 6 and show how this

framework allows the DBMS to speculatively execute other transactions and queries whenever the DBMS

waits for network communication. We conclude with a discussion of the related work in Chapter 7 and future

work in Chapter 8.

7

Chapter 2

High-Performance Transaction
Processing

The architecture of a traditional DBMS is inimical to the scaling demands of modern, high-performance

transaction processing workloads [112, 127]. Many of the problems are due to the assumption in a traditional

DBMS that the database is stored primarily on disk. But one cannot just store a database in main memory

using a traditional system (e.g., with a RAM disk) and expect that an application will immediately perform

better. As we discuss in this chapter, these DBMSs are comprised of tightly-coupled, disk-oriented compo-

nents that are not designed for main memory storage and cannot be avoided without a complete rewrite of the

system.

To better appreciate the problems of these components, we begin with a simple example that measures

how well traditional DBMSs scale when they are provided with more CPU cores. We then examine another

study that measures how much time the CPU spends in a traditional architecture’s components when execut-

ing transactions. The results from our first example and the findings from the overhead study motivate the

creation of a new DBMS architecture for high-performance transaction processing systems.

2.1 Motivating Example
The Voter benchmark is based on the transaction processing system used for two talent shows on Japanese

and Canadian television (cf. Section A.7). The format of this type of show is the same in both countries.

Contestants appear on stage and perform some act, and then viewers either call in or go on-line to vote for

their favorite contestant. For each vote, the DBMS executes a transaction that first checks to see how many

times the user has voted in the past, and then inserts a new vote entry for the contestant and updates a vote

counter. While the show is on the air, viewers are shown a tally of the number of votes that each contestant

has received. Since the results are needed in “real-time”, the system must process votes as they arrive. This

means that it cannot write votes to a log file and then run a batch program to compute the vote count at the

end of the day. This transaction processing use case is known as a “leader board” and is also common in

on-line gaming applications [122].

8

2,000

4,000

6,000

8,000

10,000

12,000

 1 2 3 4 5 6 7 8 9 10 11 12

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

of CPU Cores

MySQL
Postgres

Figure 2.1: The throughput measurements for the Voter benchmark on MySQL and Postgres.

The nature of this type of television program also means that the arrival rate of transactions is inherently

“bursty.” Although the total number of transactions executed during a one-hour episode is not large (i.e., only

several million requests per hour), the arrival rate of requests is heavily skewed at multiple intervals during

that hour. This is because viewers are more likely to vote immediately after a contestant performs and each

viewer is allowed to vote multiple times (up to a limit). Thus, the purpose of this benchmark is to measure

the DBMS’s peak performance by saturating it with many short-lived transactions that all update the same

small number of records.

To evaluate how well traditional DBMSs perform on this workload, we ran an experiment using the Voter

benchmark on two popular, open-source systems: MySQL (v5.6) [6] and Postgres (v9.1) [208]. We tuned

each DBMS for OLTP workloads according to best-practice guidelines. The systems were deployed on a

node with an Intel Xeon E7-4830 CPU running 64-bit Ubuntu Linux 12.04. The data for each respective

DBMS was stored on a single 7200 RPM disk drive. According to hdparm, this disk delivers 7.2 GB/sec for

cached reads and about 297 MB/sec for buffered reads. All transactions were executed with a serializable

isolation level.

For each trial, we increase the number CPU cores that we allocate to the DBMS to process transactions.

This allows us to measure how well these systems scale when they are provided more resources. Each DBMS

is provided with enough DRAM to keep the entire database in main memory. This particular benchmark only

touches a small number of tuples, so giving the systems more DRAM beyond this amount will not affect their

runtime performance. For each CPU configuration on a DBMS, we ran the benchmark three times and report

the average results. Transaction requests are submitted from up to 100 clients running on a separate node in

the same cluster. Each client submits transactions to any DBMS node in a closed loop (i.e., it blocks after it

submits a request until the result is returned). In each trial, the DBMS “warms-up” for 60 seconds and then

the performance metrics are collected for five minutes. The throughput results are the number of transactions

completed divided by the total time (excluding the warm-up period).

The results in Fig. 2.1 show that both MySQL and Postgres are unable to scale past 12,000 transactions

a second. In the case of Postgres, the performance degrades as the system is allotted more CPU cores; at 12

9

cores, its throughput is 46.4% lower than its peak of ∼8,600 transactions per second at six cores. Likewise,

MySQL’s throughput drops by 44.2% from its peak of ∼10395.3 transactions per second at eight cores. Both

of these performance degradations are due to increased lock contention of the DBMSs’ shared resources at

the larger core counts. As such, these peak throughputs for both DBMS’s is insufficient.

2.2 Traditional DBMS Architectures
To understand why these DBMSs are unable to scale for what is a seemingly simple workload like the Voter

benchmark, we need to discuss the key components of traditional, disk-oriented DBMS architectures. As

discussed in Section 1.2, the design of traditional DBMSs is based on the computing hardware that was

prevalent in the 1970s when the amount of memory available in typical a node was small. For these systems,

disks were the primary storage location of databases because they were able to store more data than could fit

in memory and were less expensive.

Many of the architectural components used in the early DBMSs are based on this hardware assumption.

For example, traditional DBMSs assume that the node does not have enough memory to store the entire

database, thus they use a buffer pool manager to store and manage data in heavily-encoded blocks stored on

disks [24, 52, 209]. They also assume that a transaction could run for a long time (e.g., the transaction may

have to wait for additional input from a human operator). Therefore, these systems employ a concurrency

control scheme to allow multiple transactions to run simultaneously to keep the system busy in the event

of a stall. These systems also rely on a complex recovery mechanism that allows them to quickly restore

the database in the event of a crash [161]. Recovery speed was important because it was assumed that the

database was managed by only one node. As a result, supporting high throughputs and low latencies for a

large number of concurrent users is difficult [198, 201].

But because large-memory computers are now affordable, using a DBMS that is oriented towards storing

data on slow disks does not make sense. To quantify the overhead of the obsolete components in traditional

DBMS architectures, we now discuss the study by Harizopoulos et al. that measured the CPU instructions in

a DBMS when it executes transactions [112]. For this evaluation, they instrumented the open-source Shore

DBMS [47] to allow them to measure the overhead of the system’s (1) buffer pool, (2) concurrency control

scheme, and (3) recovery mechanism. They used the NewOrder transaction from the TPC-C benchmark [216]

with a database that is stored entirely in main memory.1 Since they only counted CPU instructions, this

experiment only measures the processing time of the system and not the time needed to retrieve data.

As the results in Fig. 2.2 show, these three traditional architecture components account for ∼88% of

the total CPU time in the DBMS [112]. That means that only ∼12% of the CPU’s instructions is spent

processing transactions (e.g., executing queries, invoking the transaction’s program logic). The additional

contention caused by multiple CPU cores cause the DBMS’s threads to spend more time trying to acquire

locks for shared data structures (e.g., B-trees) than actually executing transactions. This explains why the

systems used in the experiments in Section 2.1 perform worse as they use more CPU cores. These findings

are not isolated to Shore, but rather are similar to findings in other studies on running OLTP workloads on

traditional DBMSs [127, 128, 220].
1The NewOrder transaction performs the same set of operations as the transactions in the Voter benchmark (i.e., read some data,

insert new tuples, and update existing tuples).

10

30%

30%
28%

12%

Buffer Pool

Concurreny Control

Recovery Mechanism

Real Work

Figure 2.2: The percentage CPU instructions in the Shore DBMS when executing the NewOrder transaction
from the TPC-C benchmark [112].

We now discuss the results from the study in [112] for the three architecture components.

2.2.1 Buffer Pool Management

In a traditional DBMS architecture, the system maintains a buffer pool of disk blocks in main memory. This

provides a cache for recently retrieved records to speed up access times. When the application invokes a

query that attempts to read a disk block, the system first checks to see whether that block already exists in

this buffer pool. If not, then the DBMS retrieves the block from disk, translates it into a main memory format

(called “swizzling” [62]), and then copies it into the buffer pool. If the buffer pool is full (i.e., there is no

more space to store the new block), then the DBMS must evict a block from the pool to make room for the

needed one. In order to decide what block to evict, the DBMS maintains an eviction order policy (e.g., least

recently used) to increase the likelihood that it evicts blocks that will not be needed by future queries [92].

The results in Fig. 2.2 show that maintaining all of this information for the buffer pool accounts for∼30%

of the CPU instructions in Shore. This result is significant because these instructions represent completely

wasted work. That is, since the database was already in memory, the DBMS never needed to retrieve a block

from disk and it never had to evict a block from the buffer pool in order to make room for a new block. Any

DBMS based on the traditional architecture will always incur this unnecessary overhead to check whether a

block is in the buffer pool, regardless if the entire database is in main memory.

2.2.2 Concurrency Control Scheme

Whenever a transaction needs a block that is not in the buffer pool, the DBMS will stall that transaction until

that block is retrieved. The amount of time that it takes to fetch a block from stable storage can be large.

For example, the latencies for a read or write operation in a hard-disk drive storage device is approximately

∼3 ms/op [186, 190]. Although newer solid-state storage devices are faster (i.e., ∼0.025 ms/read, ∼0.2

ms/write), they are still much slower than DRAM (i.e., ∼0.000055 ms/op). Transactions could also stall

if the DBMS has to wait for the application to send the next query to execute. This conversational-style

transaction interface is commonly used in Web-based, application frameworks.

11

To mask high disk latency and network stalls, traditional DBMSs execute multiple transactions simulta-

neously. Now when one transaction stalls because the block that it needs is not in the buffer pool, the DBMS

services other transactions while that block is retrieved. The DBMS’s concurrency control scheme ensures

that transactions execute with serializable consistency [35, 93], meaning that each transaction effectively ex-

ecutes as if no other transaction is running at the same time. One of the first concurrency control scheme for

DBMSs was the multi-granularity two-phase locking protocol from the System R project [98]. This type of

locking is the basis of all pessimistic concurrency control schemes that block transactions if there is a possi-

bility that a non-serializable schedule could occur [115]. That is, if a transaction needs to acquire a lock for

a particular tuple that is currently held by another transaction, then the first transaction has to wait until the

other transaction releases that lock. To ensure that transactions are not blocked waiting for locks indefinitely,

the DBMS can either run a deadlock detection algorithm or restart transactions if they stall for longer than an

administrator-defined threshold. Other optimistic approaches [138], such as multi-version concurrency con-

trol [31, 53], continue to process transactions even when a potential conflict occurs and then checks whether

serializability was compromised when the transactions complete. Regardless of which approach a DBMS

uses, a concurrency control scheme adds overhead to transaction processing.

Concurrent transactions also complicate the management of the DBMS’s buffer pool. When a transaction

stalls because it needs a block on disk, the DBMS has to pin all the other blocks that are already in memory

that the transaction needs to ensure that they are not evicted while the system waits for the new block. This

means that the DBMS must protect the internal data structure it uses to track pinned blocks with more locks

to ensure that it is not corrupted by concurrent modifications.

The runtime measurements from Shore in Fig. 2.2 indicate that the overhead due to its concurrency con-

trol scheme is non-trivial. The DBMS’s lock-based scheme accounts for ∼30% of the total CPU instructions

during transaction execution [112]. This expense from coordinating multiple transactions is again unneces-

sary because the transactions never stalled waiting for a block on disk or waiting for the next query (i.e., all

of the program logic for the transactions were embedded in the system). This result strongly suggests that the

heavy-weight concurrency control schemes used in traditional DBMSs are unnecessary. Some disk-oriented

DBMSs use small lock granularities to reduce contention, but the benefit of using finer-grained locks is small

if the contention is already low because all of the data is in memory and transactions are short-lived. Instead,

a main memory DBMS is better off using larger lock granularities [148, 151, 192]. That is, if the cost of

acquiring a lock in memory is the same as just accessing a tuple in memory, the transaction is better off just

accessing the tuple. This removes almost all of the cost of concurrency control and reduces the number of

CPU cache flushes that result from transaction context switches [88].

2.2.3 Recovery Mechanism

Every enterprise-quality DBMS ensures that all of a transaction’s modifications to the database are durable

and persistent [115]. But they do not write each individual change made to the database to disk separately,

since this would likely involve multiple random writes to the disk per transaction. This approach is also

problematic if the DBMS crashes in the middle of the transaction because when the system comes back on-

line the database will be in an inconsistent state (i.e., the transaction’s updates were not atomic). Instead, all

DBMSs employ a log-based recovery mechanism that stores the changes made by transactions separately so

12

it can restore the database to the proper state after a crash.

In a traditional architecture, like the one used in Shore, the DBMS updates blocks in the buffer pool

and then maintains a separate write-ahead log for recovery that is written to disk [161]. These changes are

written out in batches to amortize the cost of syncing the disk [114]. After a crash, this log is first processed

backwards to undo the effects of uncommitted transactions, and then again in the forward direction to redo

the effects of committed transactions [115].

Since the DBMS does not write changes to tuples immediately to disk, it will keep those blocks in the

buffer pool but mark them as “dirty.” Now when the DBMS needs to evict a block from its buffer pool to make

room, it has to check this flag for each block selected for eviction. If the selected block does not have the

dirty flag enabled, then the DBMS can simply discard it. Otherwise, the system will need to write that block

out to disk. This means that the DBMS essentially maintains the database state in two separate locations on

disk: in the primary storage of blocks and in its log files. Other approaches, such as log-structured merge

trees [172], seek to resolve this dichotomy by using just the log to represent the state of the database.

The need to store a log of the transactions’ modifications on stable storage can undermine the performance

of a high-performance transaction processing system, even if the database is in main memory [88, 128].

Similarly, it can also affect the system’s response time because each transaction must wait for at least one write

to stable storage before they can commit. Although technologies like battery-backed memory controllers

and uninterruptable power supplies are available, there will still need to be a copy of the database on disk.

But the cost the preparing the undo and redo log entries in traditional DBMS recovery mechanisms is non-

trivial [161]. In the case of the results shown in Fig. 2.2, this accounts for ∼28% of the CPU instructions in

Shore. Much of this is due to the preparation of writing the DBMS’s data structures into log entries. This

data must be protected so that the log entries are transactionally consistent. Hence, a main memory-oriented

DBMS will need a recovery scheme that is optimized for main memory-resident data and can avoid this

preparation overhead [128, 150, 155].

2.3 Strategies for Scaling DBMSs
Given the significant overhead of disk-based DBMS architectures, there are several different approaches

that one can use to improve the throughput and responsiveness of a DBMS for OLTP workloads. The first

strategy that most organizations usually take is to migrate the database to a node with faster, more powerful

hardware. Although moving to a faster node may provide an immediate performance boost, it is not a long-

term solution. If the number of requests continues to increase after an upgrade, then the database will need

to be moved again to even faster hardware. But every upgrade requires a difficult migration from the old

node to the new one that may require significant downtime [87]. Previous studies have also shown that the

performance of a single-node, traditional DBMS does not always improve with each upgrade due to increased

lock contention [112, 128, 187].

Another common approach is to replicate the database in its entirety on multiple nodes [97, 117]. The

most widely used replication scheme is to designate one DBMS node as the master copy that receives all

update requests from the application. This master then streams modifications out to slave nodes (i.e., replicas).

If the master node crashes, then the system will use a consensus protocol, such as Paxos [142], to elect a new

13

master. Using this type of replication scheme will improve the latency of read-only requests, since they can

now be serviced by the replica nodes. But it will slow down the performance of write requests because the

master node has to wait for the slaves to acknowledge that they received the changes before it can send a

message back to the application that the modification was successful [97].

Organizations can also deploy a main memory distributed cache to minimize the load on the DBMS [85].

Under this two-tier architecture, the application first looks in the cache for the tuple of interest. If this tuple

is not in the cache, then the application executes a query in the DBMS to fetch the desired data. Once the

application receives this data from the DBMS, it updates the cache for fast access in the future. Whenever

a tuple is modified in the database, the application must invalidate its cache entry so that the next time

that the tuple is accessed the application will retrieve the current version from the DBMS. This is similar

to replicating the database to speed up read-only requests except that it requires developers to embed logic

in their application to keep the two systems independently synchronized. For example, when an object is

modified, the update is sent to the back-end DBMS. But now the states of the object in the DBMS and in the

cache are different. If the application requires up-to-date values, the application must also update the object

in the cache.

The next scaling tactic is to use custom middleware that resides in between the application and multiple,

single-node DBMSs [198, 201]. Each DBMS node contains a subset of the database, called a shard, and the

middleware routes each query from the application to the shard containing the data that it needs. This allows

the organization to combine multiple, single-node DBMSs together to appear as a single DBMS instance to

the application. This also makes it easier to expand capacity because a new node can be added into the system

without potentially needing to copy data from other nodes. The downside of this approach, however, is that

certain functionalities, such as joins, must be implemented in application code and more advanced features,

such as transactions, are notoriously difficult to implement correctly. This approach is also prohibitively

expensive for most organizations, as it requires their developers to build infrastructure rather than working on

the applications directly related to their business.2

Finally, the most momentous change in scaling large-scale applications is to not use a relational DBMS

at all and instead use a NoSQL system [49]. These systems are noted for providing better scalability and

availability that traditional, monolithic DBMSs. NoSQL systems achieve this better performance, however,

by forgoing much of the ACID guarantees of traditional DBMSs. For example, many NoSQL systems only

provide eventual consistency guarantees or limit atomic operations to single records [54, 69]. This approach

is desirable if the consistency requirements of the data are “soft” (e.g., status updates on a social networking

site that do not need to be immediately propagated throughout the application) [222]. These trade-offs made

in NoSQL DBMSs are appropriate for some situations, but they are unsuitable for many applications that need

multi-operation transactions and serializability [137]. Such systems are too unwieldy for these applications

because they again require developers to re-implement the features that are normally provided by a DBMS,

such as atomicity and consistency [30, 95].

2We note that there are now several companies that offer middleware DBMS products, but these were not available in the early
2000s when companies like eBay [198] and Facebook [201] famously built their own large-scale sharding middleware.

14

2.4 A Scalable DBMS Architecture for OLTP Applications
Our analysis in Section 2.2 shows that traditional DBMSs are insufficient for modern transaction processing

systems [88]. And although the scaling solutions described above are inadequate by themselves, there are

several aspects of them that are desirable in a DBMS architecture if they are combined together. Thus, what is

needed is a new class of distributed DBMSs [70, 95] that provide the same scale-out capabilities of the mid-

dleware and NoSQL approaches, the high-availability of a replicated deployment, the high-performance of

an in-memory cache, all while still maintaining the ACID guarantees of single-node, relational DBMSs [23].

To achieve this, we propose a new DBMS architecture that is comprised of five design principles:

Main Memory Storage: The DBMS uses main memory as the primary storage location for the database.

This is different than just using a disk-oriented DBMS with a large buffer pool. For example, the

indexes in a disk-oriented DBMS will still be designed for disk access [88], whereas a main memory-

oriented DBMS can exploit cache locality [158].

Distributed Deployments: In order to support databases that are larger than the amount of memory avail-

able on a single node, the DBMS will split databases across shared-nothing [206] compute nodes into

disjoint segments called partitions [49, 73]. This differs from traditional DBMSs, where multi-node

support was added as an afterthought [160]. Partitions will be replicated across multiple nodes to

provide the transaction processing system with high-availability and fault-tolerance.

Stored Procedure Execution: Rather than sending SQL commands at runtime, the application registers a set

of SQL-based procedures with the DBMS and only invokes transactions through these procedures. En-

capsulating all transaction logic in a single stored procedure prevents application stalls mid-transaction

and also avoids the overhead of transaction parsing at run-time. Although this scheme requires all

transactions to be known in advance, this assumption is reasonable for OLTP applications [155, 211].

Serial Execution: Instead of allowing transactions to execute concurrently, the DBMS executes transactions

serially at each partition [148, 151, 192, 224]. This means that it does not need to employ a heavy-

weight concurrency control scheme to manage fine-grained locks. When a transaction executes, it

never has to stall because all of the memory that it needs is already in main memory and it will never

block waiting to acquire a lock held by another transaction.

Compact Logging: To avoid the overhead of a heavy-weight recovery mechanism [161], the DBMS uses

a lightweight logical logging scheme that only needs to record what transactions were rather than the

individual physical changes that it made to the database.

A DBMS based on this new architecture will avoid all of the overhead described in Section 2.1 from

(1) buffer pool management, since everything is in memory, (2) heavy-weight concurrency control schemes,

since transactions execute serially, and (3) creating the physical undo/redo log entries for transactions, since

the DBMS only records logical log entries. We note that we do not intend this to be a general purpose

DBMS architecture. Rather than try to have the system perform somewhat well for a variety of workloads,

we restrict our focus to a specific application domain that are amenable to partitioning. We believe that

15

part of the reason why earlier distributed DBMSs were unsuccessful were that they were targeting general

transactional workloads [113, 212, 225].

We next describe the system that we built, called H-Store [3], which embodies these design principles.

We then describe in Chapters 4 to 6 the different optimizations that we developed to ensure that the system

can scale its performance for larger cluster sizes.

16

Chapter 3

The H-Store OLTP Database
Management System

In the previous chapter, we demonstrated how the performance of OLTP workloads does not scale in tra-

ditional DBMSs even if the database fits entirely in main memory. This is because of the overhead of the

legacy architectural components in a disk-oriented system [20, 112]. We then proposed a new architecture

for a distributed, main memory DBMS that targets modern hardware and OLTP workloads.

We have developed a new DBMS from the ground up based on this proposal, called H-Store [3], that is

designed for the efficient execution of transactions in OLTP applications [133, 211]. The H-Store project is a

collaboration between Brown University, MIT, and Yale University.

Over the years, there have been several incarnations of the H-Store system. The initial proof-of-concept

was a single-node engine developed at MIT in 2007 that only could execute a simplified version of the TPC-C

benchmark [211]. The full-featured, general purpose version of H-Store was developed in 2008 by Brown,

MIT, Yale, and Vertica Systems [133]. In 2009, this version of H-Store was forked and commercialized

as VoltDB [10]. In 2010, some of the changes from VoltDB were merged back into the original H-Store

source code, but we rewrote the runtime transaction management and coordination subsystems. Since then,

H-Store’s development has occurred primarily at Brown by the author of this dissertation in order to create a

test-bed for the experimental results presented here. As of 2013, many of the core components of the original

H-Store system still exist in VoltDB (e.g., the underlying execution engine).

We now describe the internals of H-Store’s architecture. We begin with an overview of the terminology

and concepts that are used throughout this dissertation. Then in the subsequent sections, we describe H-

Store’s main components and discuss how the system operates at runtime.

3.1 Overview
We define a single H-Store instance as a cluster of one or more shared-nothing [206] nodes deployed within

the same administrative domain. A node is a single physical computer system that hosts an H-Store process

17

...

Partition
Data

Partition
Data

Execution EngineExecution Engine

Txn Coordinator

Client
Application

Main
Memory

Core Core

Procedure Name
Input Parameters

Figure 3.1: An overview of the H-Store distributed OLTP DBMS. Each H-Store node consists of a transaction
coordinator that manages single-threaded execution engines, each with exclusive access to a data partition
stored in memory. All tuples in H-Store are stored in main memory replicated on multiple nodes and all
transactions are executed as pre-defined stored procedures.

that contains one transaction coordinator that manages one or more partitions. We assume that the typical H-

Store node contains multiple CPU cores. H-Store is designed to operate on commodity hardware. This makes

it easier and more affordable to scale the database out across multiple nodes to increase both the DBMS’s

CPU and memory capacity.

The transaction coordinator is how the DBMS at one node communicates with other nodes in the cluster.

H-Store’s transaction and cluster management subsystem is completely decentralized. Collectively, the coor-

dinators are responsible for ensuring that the DBMS executes transactions in the correct order, execute queries

and process commit protocol messages for multi-partition transactions, and to perform system administrative

functions.

A partition is a disjoint subset of the entire database [109, 230]. Each partition is assigned a single-

threaded execution engine [224] that is responsible for executing transactions and using the coordinator to

communicate with other execution engines. Each execution engine has exclusive access to the data at its

partition. That means that if a transaction needs to access data at a partition, then it has to get added to the

queue for that partition’s engine and wait to be executed by it.

All tuples in H-Store are stored in main memory using a row-oriented format. The DBMS replicates

partitions to ensure both data durability and availability in the event of a node failure. Data replication in

H-Store occurs in two ways: (1) replicating partitions on multiple nodes and (2) replicating an entire table

at all partitions (i.e., each partition has a complete copy of the table). For the former, we adopt the k-safety

concept, where k is defined by the administrator as the number of node failures a database can tolerate

before it is deemed unavailable [133]. We discuss partition replication in Section 3.8 and table replication in

Section 3.4.2.

We assume that the majority of the application’s transactions are executed in H-Store as pre-defined

stored procedures. Although H-Store supports ad hoc transactions that do not use stored procedures, such

transactions are not the common case and thus the system is not optimized for them [48]. Each stored

18

procedure is comprised of (1) parameterized queries and (2) control code that contains application logic

intermixed with invocations of those queries (cf. Fig. 3.3). We use the term transaction in the context of

H-Store to refer to an invocation of a stored procedure. Client applications initiate transactions by sending

the procedure name and input parameters to any node in the cluster. The location where the transaction’s

control code executes is known as its base partition [180]. The transaction’s base partition will have most (if

not all) of the data the transaction needs. Any other partition that is involved in the transaction that is not its

base partition is referred to as a remote partition.

3.2 System Architecture
H-Store’s architecture is divided into two parts: (1) the front-end transaction management component and

(2) the back-end query executor and storage manager. The front-end consists of all the networking libraries

for communicating with the application’s clients, the transaction coordinator, and the stored procedures. This

part of the system is written in Java. The back-end C++ execution engine for each partition contains the

storage manager, indexes, and query plan executors. This part of the system is responsible for managing all

of the data in the system.

3.2.1 Transaction Coordinator

When H-Store starts, each node is provided with a list the host-names and port numbers of the other nodes in

the cluster. Each node’s transaction coordinator then establishes a TCP/IP connection with these nodes. We

use Google’s Protocol Buffer serialization library to construct the coordinator’s messages and invoke remote

operations over the network. The coordinators also send periodic “heartbeats” to each other to let them know

that the DBMS is operating correctly at their corresponding node.

Instead of using a heavy-weight concurrency control scheme where multiple transactions execute simul-

taneously at a partition [29], H-Store executes transactions one-at-a-time at each partition. That is, when a

transaction executes in H-Store, it has exclusive access to the data and indexes at the partitions that it needs.

Transactions never stall waiting to acquire a latch held by another transaction because no other transaction

will be running at the same time at either its base partition or its remote partitions.

H-Store uses timestamp-based scheduling for transactions [29]. When a transaction request arrives at

a node, the coordinator assigns the request a unique identifier based on its arrival timestamp. This id is a

composite key comprised of the current wall time at the node (in milliseconds), a counter of the number of

transactions that have arrived since the last tick of the wall time clock (in case multiple transactions enter the

system at the exact same time), and the transaction’s base partition id [217].

Each partition is protected by a single lock managed by its coordinator that is granted to transactions

one-at-a-time based on the order of their transaction ids [15, 29, 64, 224]. A transaction acquires a partition’s

lock if (1) the transaction has the lowest id that is not greater than the one for last transaction that was granted

the lock and (2) it has been at least 5 ms since the transaction first entered the system [211]. This wait time

ensures that distributed transactions that send their lock acquisition messages over the network to remote

partitions are not starved. We assume that the standard clock-skew algorithms are used to keep the various

CPU clocks synchronized at each node.

19

Serializing transactions at each partition in this manner has several advantages for OLTP workloads. In

these applications, most transactions only access a single entity in the database at a time (e.g., a transaction

that operates on a single customer). That means that if the DBMS will perform significantly faster than a

traditional DBMS if the database is partitioned in such a way that most transactions only to access a single

partition. Smallbase was an early proponent of this approach [118], and more recent examples include K [224]

and Granola [64]. The downside of this approach, however, is that it means transactions that need to access

data at two or more partitions are significantly slower. If a transaction attempts to access data at a partition

that it does not have the lock for, then the DBMS aborts that transaction (releasing all of the locks that it

holds), reverts any changes, and then restarts it once the transaction re-acquires all of the locks that it needs

again. Employing such an approach removes the need for distributed deadlock detection, resulting in better

throughput for short-lived transactions in OLTP applications [112].

The coordinator queues the request at that all of the nodes that contain the partitions that the transaction

will access. When the transaction acquires a partition’s lock, the coordinator prepares an acknowledgement

message to send back to the transaction’s base partition. Once the transaction acquires all the locks that it

needs from a node’s partitions, the coordinator sends this acknowledgement. Once a transaction receives all

of the lock acknowledgements for the partitions that it needs, the coordinator for its base partition schedules

the transaction to run immediately on its base partition’s execution engine [30, 46].

3.2.2 Execution Engine

Every partition in H-Store is managed by a single-threaded execution engine that has exclusive access to the

data at that partition. An execution engine is comprised of two parts, one written in Java and one written

in C++. In the Java-level component, the execution engine’s thread blocks on a queue waiting for messages

to perform work on behalf of transactions. This work can either instruct the engine to invoke a procedure’s

control code to start a new transaction or to execute a query plan fragment on behalf of a transaction running

at another partition. Note that for the latter, H-Store’s transaction coordination framework ensures that no

transaction is allowed to queue a query request at an execution engine unless the transaction holds the lock

for that engine’s partition.

The execution engine’s C++ library is where H-Store stores databases (cf. Section 3.2.3) and processes

queries. The Java layer uses the Java Native Interface (JNI) framework to invoke the methods in the C++

library and passes it the query plan identifiers that the transaction invoked. This library is not aware of other

partitions or nodes in the cluster; it only operates on the input that it is provided.

3.2.3 Storage Layer

The diagram in Fig. 3.2 shows an overview of this storage layout for H-Store’s tables and indexes. All of the

execution engines at a single node operate in the same address space, but their underlying partitions do not

share any data structures. Each partition maintains separate indexes for the database tables that only contain

entries for the tuples associated with that particular partition. This means that an execution engine is unable

to access data stored in another partition at the same node.

The in-memory storage area for tables is split into separate pools for fixed-sized blocks and variable-

length blocks. The fixed-size block pool is the primary storage space for the tables’ tuples. All tuples are a

20

Fixed-Size Blocks
Tuple

Variable-Size Blocks

Header

Non-Inline Data

...

8-byte Pointers

Indexes

Block Look-up Table

1001
BlockId Location

1002 ######
1003 ######
1004 ######
1005 ######

Figure 3.2: An overview of the in-memory storage layer for H-Store.

fixed size (per table) to ensure that they are byte-aligned. Any field in a table that is larger than 8-bytes is

stored separately in a variable-length block. The 8-byte memory location of this block is stored in that field’s

location in the tuple [192]. All other fields that are less than 8-bytes are stored in-line. Each tuple is prefixed

with a 1-byte header that contains meta-data on whether a tuple has been modified or has been deleted by the

current transaction. This information is used for H-Store’s snapshot mechanism (cf. Section 3.7.2).

The DBMS maintains a look-up table of the id numbers of blocks to their corresponding memory location.

This look-up table allows the execution engine to reference individual tuples using a 4-byte offset in the table’s

storage area rather than an 8-byte pointer. That is, from a 4-byte offset the storage layer can compute the id

of the block with the tuple and the tuple’s location within that block.

The DBMS stores the tables’ tuples unsorted within the storage blocks. For each table, the DBMS main-

tains a list of the 4-byte offsets of unoccupied (i.e., free) tuples. When a transaction deletes a tuple, the offset

of the deleted tuple is added to this pool. When a transaction inserts a tuple into a table, the DBMS first

checks that table’s pool to see if there is an available tuple. If the pool is empty, then the DBMS allocates a

new fixed-size block to store the tuple being inserted. The additional tuple offsets that are not needed for this

insert operation are added to the table’s free tuple pool. H-Store does not compact blocks if a large number

of tuples are deleted from a table.1 We note that such mass deletions are rare in OLTP workloads and do not

occur in the workloads we used to evaluate H-Store in this dissertation (cf. Appendix A).

H-Store supports hash table and B-tree data structures for unique and non-unique indexes. The values of

the entries in the indexes are offsets for tuples. We use the C++ standard template library implementations

for these data structures; more optimized, cache-conscious alternatives are available [158]. For the B-tree

indexes, the copies of key fields for each tuple are stored in the data structure.

Before a new application can be deployed on H-Store, the administrator has to provide the DBMS’s

Project Compiler with (1) the database’s schema, (2) the application’s stored procedures, and (3) the database’s

1The commercial version of H-Store’s design (VoltDB) supports automatic block compaction and reorganization

21

design specification. The compiler will generate a catalog that contains the meta-data for the components in

the application’s database (e.g., tables, indexes, constraints) and the compiled query plans for each of the

application’s stored procedures. We now describe these stored procedures in Section 3.3 and design specifi-

cation in Section 3.4. We then discuss how the Project Compiler generates the query plans in Section 3.5.

3.3 Stored Procedures
Many OLTP applications utilize stored procedures to reduce the number of round-trips per transaction be-

tween the client and the DBMS [207]. Support for stored procedures first emerged in commercial DBMSs in

the late 1980s and has been part of the ISO SQL standard for years. All major DBMS vendors support stored

procedures today.

In H-Store, each stored procedure is identified by a unique name and consists of user-written Java control

code (i.e., application logic) that invokes pre-defined parameterized SQL commands. The application initiates

transactions by sending a request to the DBMS that contains the procedure name and input parameters to the

cluster. The input parameters to these stored procedures can be either scalar or array primitive values.

As shown in the example in Fig. 3.3, a stored procedure has a “run” method that contains the application

logic for that procedure. There are no explicit begin or commit commands for transactions in H-Store. A

transaction begins when the execution engine of its base partition invokes this method and then completes

when this method returns (either through the return or abort commands). When this control code exe-

cutes, it makes query invocation requests at runtime by passing the target query’s handle along with the input

parameters for that invocation to the H-Store runtime API (e.g., queueSQL). The values of these input param-

eters will be substituted for the query’s parameter placeholders (denoted by the “?” in the SQL statements in

Fig. 3.3). The DBMS queues each invocation and then immediately returns back to the control code. Multiple

invocations of the same query are treated as separately even if they use the same input parameters.

After adding all of the invocation requests that it needs to the current batch, the control code then instructs

the DBMS to dispatch the batch for execution (e.g., executeBatch). At which point, the control code is

blocked until the DBMS finishes executing all of the queries in the current batch or aborts the transaction due

to an error (e.g., if one of the queries violates a integrity constraint). This command returns an ordered list

of the output results for each query invocation in the last batch executed. We will discuss in Section 3.6.2

how H-Store determines what partitions each query invocation in the batch will access and how it uses its

transaction coordinators to dispatch them to those partitions.

H-Store includes special “system” stored procedures that are built into the DBMS. These procedures

allow users to execute administrative functions in the system, such as bulk loading data into tables, modifying

configuration parameters, and shutting down the cluster.

Although stored procedures in H-Store contain arbitrary user-written Java code, we require that all of

their actions and side-effects are deterministic. That is, each stored procedure must be written such that if the

DBMS executes a transaction again with the same input parameters and in the same order (relative to other

transactions), then the state of the database after that transaction completes will be the same. This means

that the procedure’s control code is not allowed to execute operations that may give a different result if it is

executed again. This requirement is necessary for H-Store’s replication scheme (cf. Section 3.8) and recovery

22

PRE-DEFINED SQL STATEMENTS
QueryX = "SELECT * FROM X WHERE X_ID=? AND VAL=?"
QueryY = "SELECT * FROM Y WHERE Y_ID=?"
QueryZ = "UPDATE Z SET VAL=? WHERE Z_ID=?"

TRANSACTION CONTROL CODE
run(x_id, y_id, value):
 result = executeSQL(QueryX, x_id, value)
 if result == null: abort()
 result = executeSQL(QueryY, y_id)
 # ADDITIONAL PROCESSING...
 executeSQL(QueryZ, result, x_id)
 return

1

2 3

4

Figure 3.3: A stored procedure defines (1) a set of parameterized queries and (2) control code. For each new
transaction request, the DBMS invokes the procedure’s run method and passes in (3) the procedure input
parameters sent by the client. The transaction invokes queries by passing their unique handle to the DBMS
along with the values of its (4) query input parameters.

mechanism (cf. Section 3.7).

The types of non-deterministic operations that are forbidden in a stored procedure’s control code include

(1) using an RPC library inside of a procedure to communicate with an outside system, (2) retrieving the

current time from the node’s system clock, or (3) using a random number generator. As an example of why

these are problematic, consider a procedure that contacts an outside third-party fraud detection system to

determine whether a financial transfer is fraudulent during the transaction. The transaction will then choose

whether to commit or abort based on the response from this system. One problem with doing this in an H-

Store transaction is that this service may report a false positive if the same request is sent to it multiple times

by different invocations of the same transaction running on different nodes (i.e., replicated deployments).

Additionally, the service may be unavailable at a later date when the DBMS replays the transaction (i.e.,

crash recovery). In either case, the database will be inconsistent. Thus, in order for this application to work

reliably in H-Store, the developer would need to move the fraud detection operation outside of the procedure.

3.4 Database Design Specification
An application’s database design specification defines the physical configuration of the database, such as

whether to divide a particular table into multiple partitions or to replicate it at every node. This determines

the partitions that each transaction will access at runtime. A design determines whether the H-Store executes

a transaction request from the application as a fast, single-partition transaction, or as a slow, distributed

transaction. That is, if tables are divided amongst the nodes such that a transaction’s base partition has all of

the data that the transaction needs, then it is single-partitioned [66, 181].

We now describe the four components of a database design in H-Store. The administrator must provide

this information to the system before it can be started. But determining the optimal configuration for an

23

arbitrary application is non-trivial, especially for a complex enterprise application with many dependencies.

Thus, in Chapter 4 we discuss how to automatically compute a database design that minimizes the number of

distributed transactions and the amount of skew.

3.4.1 Table Partitioning

A table can be horizontally divided into multiple, disjoint fragments whose boundaries are based on the

values of one (or more) of the table’s columns (i.e., the partitioning attributes) [230]. The DBMS assigns

each tuple to a particular fragment based on the values of these attributes using either range partitioning or

hash partitioning. Related fragments from multiple tables are combined together into a partition [90, 176].

Most tables in OLTP applications will be partitioned in this manner. In the example database in Fig. 3.4a,

each record in the CUSTOMER table has one or more ORDERS records. Thus, if both tables are partitioned

on their WAREHOUSE id (e.g., CUSTOMER.W_ID and ORDERS.W_ID), then all transactions that only access data

within a single warehouse will execute as single-partitioned, regardless of the state of the database.

3.4.2 Table Replication

Instead of splitting a table into multiple partitions, the DBMS can replicate that table across all partitions.

Table replication is useful for read-only or read-mostly tables that are accessed together with other tables

but do not share foreign key ancestors. This is different than replicating entire partitions for durability and

availability. For example, the read-only ITEM table in Fig. 3.4b does not have a foreign-key relationship

with the CUSTOMER table. By replicating this table, transactions do not need to retrieve data from a remote

partition in order to access it. But any transaction that modifies a replicated table has to be executed as a

distributed transaction that locks all of the partitions in the cluster, since those changes must be broadcast

to every partition in the cluster. In addition to avoiding additional distributed transactions, one must also

consider the space needed to replicate a table at each partition.

3.4.3 Secondary Index Replication

When a query accesses a table using a column that is not that table’s partitioning attribute, it is broadcast to all

partitions. This is because the DBMS does not know what partition has the tuple(s) that the query needs. In

some cases, however, these queries can become single-partitioned if the database includes a secondary index

for a subset of a table’s columns that is replicated across all partitions. Consider a transaction for the database

shown in Fig. 3.4c that executes a query to retrieve the id of a CUSTOMER using their last name. If each partition

contains a secondary index with the id and the last name columns, then the DBMS can automatically rewrite

the stored procedures’ query plans to take advantage of this data structure, thereby making more transactions

single-partitioned. Just as with replicated tables, this technique only improves performance if the columns

chosen in these indexes are not frequently updated.

3.4.4 Stored Procedure Routing

In addition to partitioning or replicating tables, a database design can also ensure that each transaction request

is routed to the partition that has the data that it will need (i.e., its base partition) [184]. H-Store uses a

procedure’s routing attribute(s) defined in a design at runtime to redirect a new transaction request to a node

24

(a) Horizontal Partitioning (b) Table Replication

(c) Secondary Index (d) Stored Procedure Routing

Figure 3.4: A database design for H-Store consists of the following: (a) splits tables into horizontal parti-
tions, (b) replicates tables on all partitions, (c) replicates secondary indexes on all partitions, and (d) routes
transaction requests to the best base partition.

that will execute it [169]. The best routing attribute for each procedure enables the DBMS to identify which

node has the most (if not all) of the data that each transaction needs, as this allows them to potentially execute

with reduced concurrency control [181]. Fig. 3.4d shows how transactions are routed according to the value

of the input parameter that corresponds to the partitioning attribute for the CUSTOMER table. If the transaction

executes on one node but the data it needs is elsewhere, then it must execute with full concurrency control.

This is difficult for many applications, because it requires mapping the procedures’ input parameters to their

queries’ input parameters using either a workload-based approximation or static code analysis.

25

3.5 Query Plan Compilation & Optimization
Prior to deployment, H-Store’s Project Compiler analyzes the application’s stored procedures and generates

the execution plans for each of their queries. This step is necessary because queries in the stored procedures

do not have any information about how the database is partitioned or how many partitions there are in the

cluster. This is desirable because it means that the developer does not need to consider the physical location

of data when they write a procedure’s control code and can therefore only interact with the database through

declarative SQL queries. Compiling these plans before the system starts allows the DBMS to execute queries

without needing to invoke the query planner for each transaction request at runtime [211].

A query plan is a directed tree that represents the steps that the DBMS will execute to process a query

invocation [197]. The DBMS substitutes the parameters from the query using the input parameters that the

procedure control code passed in when it invoked the query (cf. Fig. 3.5). At runtime, each operator in the

tree is executed at one or more participating partitions for the transaction [73]. Each operator performs some

computation and then produces an output table [70]. This output table is then passed as the input to the next

operator in the tree as the DBMS continues processing the plan. An execution engine will not execute a

vertex’s operator until the vertex that generates its input finishes. The output table of the plan’s root vertex is

the final result of that query that is returned to the control code.

Since H-Store’s query optimizer runs before the DBMS is brought on-line, it does not use statistics about

the database’s contents (e.g., table cardinalities) when generating query plans. This is not a problem for OLTP

applications because the queries in these workloads are typically index look-ups on a single table. Thus, the

optimizer can infer from a static analysis of a query’s WHERE clause what the best index to use for it. But

for those queries where the database’s properties could change what query plan the DBMS chooses (e.g., the

join order of two tables), the administrator can provide hints about the tables to the Project Compiler. In

Section 8.7, we discuss alternative techniques for choosing the best query plan at runtime without needing to

use the query planner each time.

When the Project Compiler processes an application’s stored procedures, it examines their compiled Java

class files and extracts their pre-defined SQL statements using Java’s reflection API. The Project Compiler

generates two types of query plans for each statement. One plan is optimized for execution at a single

partition that the DBMS uses if a query invocation only needs to access data at one partition (even if it is

a remote partition). The other plan type is optimized for execution on multiple partitions [81]. The multi-

partition plan allows the DBMS to transfer data from one partition to another and is optimized to reduce the

amount of network traffic [34, 175]. The Project Compiler generates both plan types regardless of whether

a procedure will only ever execute as a single-partition transaction (e.g., if the procedure’s queries only read

from replicated tables).

Each query plan is assigned a unique identifier in H-Store’s internal catalog. These identifiers are used in

the messages sent between the coordinators at runtime; when a transaction invokes a query that will run on a

remote partition, the coordinator sends a message that contains only this identifier and not the entire plan.

We now describe these two types of query plans and the optimizations that the Project Compiler applies to

them. We will then discuss how H-Store determines at runtime which plan to execute for a query invocation

at runtime in Section 3.6.2. A full description of H-Store’s query plan operators and additional examples are

26

provided in Appendix B.

3.5.1 Single-Partition Query Plans

Consider the following SELECT query from the Payment transaction in the TPC-C benchmark. For this

example, assume that the database uses the design described in Section 3.4.1, where the CUSTOMER table is

horizontally partitioned by its C_W_ID column:

SELECT C_ID, C_FIRST, C_MIDDLE, C_LAST, C_BALANCE
FROM CUSTOMER WHERE C_W_ID = ? AND C_D_ID = ? AND C_LAST = ?
ORDER BY C_FIRST;

Each invocation of this query is always single-partitioned because its WHERE clause contains an equal-

ity predicate on the table’s partitioning column. The single-partition plan generated by H-Store’s Project

Compiler for this query is shown in Fig. 3.5a. The leaf INDEXSCAN operator vertex in the tree retrieves

the CUSTOMER records using the index on the C_W_ID and C_D_ID columns. The output table generated by

this vertex is passed into the ORDERBY operator. This next operator sorts a copy of its input table based

on the values of the C_FIRST column. The output table of this the ORDERBY operator is then passed to the

PROJECTION operator to discard any columns from the tuples that are not needed. The final output table is

then returned to stored procedure’s control code.

The Project Compiler uses a heuristic-based optimizer to refine single-partition query plans. For example,

in the above example, the projection operation can be embedded in the scan operator so that it is applied

immediately after the DBMS finds the tuple that it matches the query’s WHERE clause predicates. This

reduces the amount of data that the DBMS needs to copy into the operators’ output tables and avoids the

overhead of processing an extra operator vertex. The Project Compiler applies this same technique to other

operators in single-partition query plans, including LIMIT and DISTINCT qualifiers. Support for operation

embedding must be explicitly added to the execution engine and the project compiler needs to be configured

as to what operators can be embedded inside of others.

3.5.2 Multi-Partition Query Plans

A multi-partition query plan enables the DBMS to execute a query on multiple partitions and coalesce the

results into a single output table [73]. This is not the same as executing a single-partition plan independently

at multiple partitions. In some cases, H-Store will execute a portion of a plan at one group of partitions and

then transfer their output to execute another part of the plan on another group of partitions [175].

As an example of how H-Store generates a multi-partition plan, consider the same query in the example

from above, except now assume that the CUSTOMER table is partitioned by the C_ID column. Since this query

does not contain an equality predicate on the C_ID column in its WHERE clause, the DBMS must check

every partition in the cluster to find the records that it needs. Each partition will execute this portion of the

plan and then sends their intermediate results to the base partition. The execution engine at the base partition

waits until it receives responses from each of the other partitions. Once it does, it combines their individual

results them into a single intermediate table and performs the final ORDERBY operation to sort the output

table. With this approach, all of the global decisions about the query are made at the base partition, while

27

IndexScan

Send

Projection

OrderBy

Search the index and retrieve the tuples
that match the first input parameter with
the C_W_ID column and the second
parameter with the C_D_ID column.

Sort the output of the previous operator
in ascending order by the C_FIRST
column.

Strip out any columns that are not
needed in the final output for the query.

Send the output of the previous
operator to the control code. This is the
final result for the query.

(a) Single-Partition Query Plan

Send

OrderBy

Receive

Send

IndexScan

Projection

Send the output of the previous
operator back to the base partition.

Retrieve the output dependency of the
previous operator and copy it into a
temp table in the Execution Engine.

Sort the output of the previous operator
in ascending order by the C_FIRST
column at the base partition.

Send the output of the previous
operator to the control code. This is the
final result for the query.

Search the index and retrieve the tuples
that match the first input parameter with
the C_W_ID column and the second
parameter with the C_D_ID column.
And then immediately strip out any
columns not needed in the OrderBy
operator or the final output.

(b) Multi-Partition Query Plan

Figure 3.5: Examples of a single-partition and multi-partition query plan for the same SQL statement.

each remote partition makes local decisions about what data to return [175]. This is the same strategy used in

other distributed DBMSs, such as IBM’s R* [225].

The multi-partition query plan is similar to the single-partition plan, except that it contains additional

operators to send data between partitions and the plan is divided into multiple fragments. As shown in

Fig. 3.5b, the Project Compiler adds these special SEND and RECEIVE operators in a multi-partition query

plan to instruct one partition to send an intermediate result to another partition. In the current version of

H-Store, these operators can send data from the transaction’s base partition to a remote partition or from a

remote partition to the base partition. Some commercial distributed DBMSs, such as Clustrix [1], are able to

send data directly between partitions during query execution to improve data locality. This is typically only

useful for queries that perform a join on many tables, which are more common in OLAP workloads.

H-Store’s Project Compiler supports several optimizations for multi-partition plans to reduce the amount

of data that one partition will need to send to another [175]. These include pushing LIMIT, DISTINCT,

PROJECTION, and AGGREGATE operators down to the lower parts of the query plan tree so that they are

executed on the remote partitions. Some operators may have to be executed again at the base partition (e.g.,

DISTINCT) after the intermediate results from multiple partitions are collected together. But this additional

computational cost is not problematic if the optimization reduces the amount of data that is transmitted over

the network each time. In the case of non-commutative aggregates (e.g., AVERAGE), the query plan is

rewritten so that each partition computes the local sum and count aggregates and then this the base partition

computes the weighted average from this data.

28

3.6 Runtime Operation
We now present the execution process for transactions in H-Store from beginning to end. We begin with

describing how H-Store determines what node to invoke a transaction on and how the system decides whether

to execute it as a fast, single-partition transaction or a slow, distributed transaction. We then describe how

the system routes query invocation requests for running transactions to the partitions with the data that they

need to access or modify, and how the execution engines process the plans for these queries and return their

results. Finally, we discuss H-Store’s commit protocol that ensures that the database stays consistent across

multiple nodes.

3.6.1 Transaction Initialization

When a new transaction request arrives at a node, the coordinator needs to determine (1) the partition to invoke

the control code for that transaction (i.e., its base partition), and (2) the partition(s) that the transaction is

expected to access data from. For the former, a transaction’s base partition is computed from the procedure’s

routing parameter (cf. Section 3.4.4). If the transaction’s base partition is not at the node that the request

arrived on, then it is redirected to the proper location. When the transaction completes, the result is sent back

to the client through the original node. H-Store’s client library can be configured to be aware of the database’s

partitioning scheme so that the application always sends requests to the correct node to avoid incurring these

extra network hops.

H-Store supports a variety of methods for determining the partitions that the transaction will access. The

default option is to assume that the transaction’s base partition is the only partition that the transaction will

access and thus all transactions are assumed to be single-partitioned. In VoltDB [10], the developer annotates

the stored procedure’s control code to statically declare whether the transaction is always single-partitioned or

not. Both of these approaches are only approximations and can fail to capture certain nuances for procedures

that are only single-partitioned some of the time [180]. The transaction may need to access more partitions

than was originally predicted, in which case the transaction will be restarted when it attempts to execute a

query that accesses data at a partition that the transaction did not acquire its lock. Or the transaction may

only access a subset of the partitions that were identified for it when it was initialized, which means that these

partitions are idle while the transaction executes. In the case of VoltDB, if a procedure is marked as always

being multi-partition, then the DBMS will lock the entire cluster for each transaction for that procedure. One

could allow the application to provide hints to the DBMS, but this would require the developer to embed

additional logic that was aware of the physical layout of the database. For the purpose of this discussion, we

assume that the DBMS can correctly determine the partitions that the transaction will access. We describe a

machine learning-based technique for automatically determining this information at runtime in Chapter 5.

Once the transaction’s partitions are computed and the request is at the node that contains the transaction’s

base partition, then the coordinator assigns the transaction a globally unique id and then queues the request

to acquire the locks for the partitions that it needs to access. The transaction starts executing only after it

acquires all of these locks.

29

Client
Application

...

Partition
Lock Queues

{Transaction
Initialization

{
Execution

Engines { Stored
Procedures

Query
Executor

Network
Processing

Thread

Network
Processing

Thread

Network
Processing

Thread

Stored
Procedures

Query
Executor

Stored
Procedures

Query
Executor

Stored
Procedures

Query
Executor

Command Log
Queues {

Command Log Thread

Figure 3.6: The runtime execution flow of a transaction in H-Store.

3.6.2 Query Routing

As a transaction runs, its control code will queue batches of query invocations using H-Store’s procedure

API and then dispatch them for execution. The control code is blocked until the execution engine finishes

executing these queries and returns with their results. For each batch, H-Store uses the Batch Planner

component to create an execution schedule for its queries. This schedule specifies what plans to execute at

different partitions for each query invocation and the order in which they are executed. This process, known

as localization in distributed query processing [175], determines whether a query invocation is executed using

a single-partition or multi-partition plan.

H-Store’s Batch Planner examines each query invocation in a batch and determines the location of the

data that they need to access based on the database’s design specification [175, 181]. The plan that the

Batch Planner selects for each query invocation in the batch depends on (1) the query’s type (i.e., SELECT,

INSERT, UPDATE, or DELETE), (2) the partitioning scheme of the table(s) that the query targets, and (3) the

query’s WHERE clause predicate (for non-INSERT queries). An execution schedule can contain a mixture

30

of single-partition or multi-partition query plans. The same query could also be invoked multiple times in

a batch with some invocations using the single-partition plan and others using the multi-partition plan. If a

query invocation will execute on a remote partition and that is the only partition that it accesses, then H-Store

still uses the single-partition plan for invocation.

The following rules are how H-Store’s Batch Planner determines what plan to use for each query invoca-

tion in a batch and how it computes what partitions those queries will access:

1. The simplest case is for an INSERT query on a non-replicated table. With these queries, the Batch

Planner examines the values of the input parameters that correspond to that table’s partitioning columns

to determine what partition to insert the tuple into.

2. A SELECT query that only accesses replicated tables is always executed as a single-partition at the

transaction’s base partition. If a SELECT query joins a replicated table with a non-replicated table,

then the replicated table is ignored when determining what partitions to execute the query and the

Batch Planner uses the same process described above.

3. Any INSERT, UPDATE, or DELETE query on a replicated table is always broadcast to all of the

partitions in the cluster. This is necessary to ensure that each copy of the table is synchronized.

4. For SELECT, UPDATE, and DELETE queries on non-replicated tables, the Batch Planner examines

the query’s WHERE clause to determine what partitions it needs to access. It first selects the single-

partition plan for each query and computes what partitions it accesses. If the Batch Planner determines

that the query needs to access multiple partitions, then it re-computes the partitions using the query’s

multi-partition plan.

For the last case, the Batch Planner extracts the predicates from the query’s WHERE clause to find the

predicates on the partitioning column(s) for any non-replicated table (as defined in the application’s database

design specification). A predicate is represented as a pair where the first element is partitioning column and

the second element is either (1) a query input parameter, (2) a constant value, or (3) another column from

the same table or a different table. If second element is an input parameter or a constant value, the Batch

Planner uses H-Store’s internal API to determine what partition the predicate references based on this value.

But if the second element of a predicate pair is another column, then the Batch Planner recursively searches

the other predicates to find another predicate pair that references an input parameter or a constant value.

As an example of this process, consider the following query in the StockLevel transaction from the

TPC-C benchmark [216]. Assume that the ORDER_LINE and STOCK tables are partitioned on their OL_W_ID

and S_W_ID columns, respectively:

SELECT COUNT(DISTINCT(OL_I_ID))
FROM ORDER_LINE, STOCK
WHERE OL_W_ID = ? AND OL_D_ID = ? AND OL_O_ID < ? AND OL_O_ID >= ?
AND S_W_ID = OL_W_ID AND S_I_ID = OL_I_ID AND S_QUANTITY < ?

For this query, the Batch Planner computes the partitions needed for the ORDER_LINE by examining the

value of the input parameter used in the predicate on the table’s warehouse id (e.g., OL_W_ID = ?). But for the

31

STOCK table, the predicate on its partitioning column references another column (e.g., S_W_ID = OL_W_ID).

Since the OL_W_ID column is used in another equality predicate with an input parameter, the Batch Planner

replaces that column reference with value of the input parameter used in the other warehouse id predicate

(e.g., OL_W_ID = ?). The other predicates are ignored, since they do not contain a partitioning column for

either table.

3.6.3 Query Execution

After the Batch Planner generates the execution schedule, the system then distributes the query plans for

execution. There are three different execution scenarios in this process:

1. If all of the queries in the batch only access data from the transaction’s base partition, then the engine

executes the queries immediately and returns the results to the control code.

2. If one or more queries need to access data from a remote partition and the transaction has the locks for

those partitions, then the system transmits the query plan execution requests to the appropriate locations

through its coordinator.

3. If at least one query in the batch attempts to access data from a remote partition that the transaction

does not have the lock for, then the DBMS will abort that transaction and reschedule it to acquire the

original locks that it had along with the locks for the partitions that it attempted to access.

When the Batch Planner chooses the multi-partition plan for a query invocation, it groups that plan’s

operators into fragments based on the partitions that they access. Each fragment has an output dependency

and an optional input dependency. The input dependency corresponds to the output table generated by the last

operator in the previous plan fragment (if it exists). Likewise, the output dependency is the output table for

the last operator in that fragment. The Batch Planner assigns each separate identifiers for a fragment’s input

and output dependencies. The DBMS uses these identifiers to ensure that it does not schedule a fragment for

execution until the other fragments that generate the data that it needs as its input complete.

H-Store executes all queries with an in-memory undo log at each partition so that it can rollback any

changes in case that the transaction aborts. Each entry in the undo log contains an ordered list of actions

that reverse the modifications made by the transaction’s queries since the last log entry. For example, if a

transaction executes a query that inserts a new tuple, then the undo action for that query will remove that

tuple from the table and any affected indexes. Likewise, for DELETE queries, the removed tuple is added

back into the table and its indexes. For updates, the DBMS overwrites a tuple’s original fields with the new

values, thus the log entry must contain a copy of the original contents of the tuple so that the modified fields

can be replaced in the undo action. The DBMS does not copy non-inlined fields (e.g., fields that are not stored

directly in the tuple memory space) in the undo action if they were not modified by the update operation.

For each new query batch, the execution engines at each partition decide whether to create a new log entry

for that batch. If it is the first query batch for the transaction, then the DBMS will always start a new undo log

entry. In the case of single-partition transactions, this will be the only log entry needed for that transaction at

its base partition because the transaction will never be pre-preempted by another transaction. For distributed

transactions, the engines at all of the partition’s involved in the transaction will create a new log entry any

32

time that the transaction submits a batch that contains queries that will execute on remote partitions. This

is necessary to support speculative transaction execution. For example, when the distributed transaction

is stalled waiting for query results from remote partitions, the execution engine for the transaction’s base

partition can execute queued single-partition transactions while it waits [131]. Each of these speculative

transactions will create their own undo log entry in case the DBMS needs to rollback their changes without

affecting the in-flight changes of the current distributed transaction. We discuss speculative execution in more

detail in Chapter 6.

3.6.4 Transaction Commit Protocol

A transaction automatically closes when the control code completes or when it invokes the command in H-

Store’s API to abort. The execution engine at the transaction’s base partition then notifies the other partitions

that the transaction is finished. This is to ensure that all of the partitions involved in the transaction agree

with the final outcome [35, 93, 142, 160]. The protocol that H-Store uses to complete a transaction depends

on whether that transaction was single-partitioned or not.

For single partition transactions, the execution engine immediately commits or aborts the transaction

when it finishes. The base partition’s engine does not need to coordinate with any other partition because they

were not involved in the transaction, thus the transaction can commit quickly without waiting for network

communications. This is why it is important that most requests in the system are processed as single-partition

transactions.

To commit distributed transactions, H-Store uses the two-phase commit (2PC) protocol [93, 160]. When

a distributed transaction’s control code finishes at its base partition, the engine sends the “prepare” 2PC mes-

sage to the transaction’s remote partitions through their transaction coordinators. The remote partition that

receive this message will check whether the transaction is safe to commit,2 and then returns an acknowl-

edgement response to the base partition’s coordinator. Once the base partition’s engine receives acknowl-

edgements from all of the transaction’s remote partitions, it sends the “finish” 2PC message to have them

commit that transaction and begin processing the next transaction in their queues. If engine does not receive

these acknowledgements before an administrator-defined timeout or if one of the responses from the remote

partitions is negative (e.g., one partition needs to abort the transaction), then the transaction is aborted. As

we will describe in Section 6.4.2, there are special cases where the transaction is aborted at one partition, due

to errant speculative queries, but the transaction will still commit at all other partitions. If the control code

explicitly requests to abort the transaction, then the base partition’s engine only sends the “finish” message to

the remote partitions to indicate them to revert the transaction’s changes.

When a partition commits a transaction, it discards the undo log entries for that transaction. Likewise,

when the transaction is aborted at a partition, that partition’s execution engine executes the undo actions in

the transaction’s log entries and then discards them.

Given that H-Store stores all data in main memory and the computational cost of OLTP queries is small,

the overhead of running the 2PC protocol over the network is significant compared to the overall execution

2H-Store only checks whether a transaction is safe to commit when using the speculative transaction and query pre-fetching opti-
mizations described in Chapter 6. Non-global integrity constraints are checked immediately after a table is modified. H-Store does not
currently support enforcing distributed global integrity and referential constraints.

33

time of transactions. Thus, there are two optimizations that H-Store employs to reduce the overhead of

2PC. The first is that if a transaction was read-only at a particular remote partition, then the transaction is

immediately committed at that partition when it receives the prepare message and the DBMS does not need

to send the final 2PC message [193]. This reduces the number of network messages and allows the remote

partition to begin processing the next transactions in its queue [130].

The second optimization is when H-Store can identify when a transaction is finished with a remote parti-

tion (i.e., it will not execute any more queries at that partition), it will send an early “prepare” message to that

partition [72, 160]. This allows the execution engine for this remote partition to speculatively execute other

transactions while it waits for the “finish” message. If the transaction tries to execute another query at a re-

mote partition that it already declared as being finish with, then that transaction is aborted and restarted. This

technique is called the “early prepare” or “unsolicited vote” optimization, and has been shown to improve

both latency and throughput in distributed systems [131, 180, 193].

The two main challenges in implementing the early prepare optimization is (1) how the DBMS will

know when the transaction is finished with a particular partition and (2) how to notify that partition that the

transaction is finished with it. One way to solve the first problem in H-Store is to have the developer annotate

a procedure’s control code to indicate to the DBMS that it is submitting the last batch of query invocations for

the transaction. The DBMS can then set a flag in the invocation request messages that is sent to the partitions

to indicate that it is the last batch. When a remote partition receives a request with this flag enabled, then it

will execute the query, return the result to the base partition, and then invoke the checking procedures for the

transaction.

One problem with this approach is that it is too coarse-grained. That is, it only indicates that the trans-

action is finished with all partitions; there is no way for the transaction to easily inform the DBMS that it is

done with individual partitions at different parts in the control code. As such, this technique is insufficient

for procedures that read data from remote partitions in the beginning of the transaction and then only operate

on local data for the remainder of the transaction. This is because the control code has no knowledge of

what partitions the queries will touch and thus it would require that transactions maintain their own execution

state. To overcome this problem, we discuss in Chapter 5 how H-Store uses machine learning techniques

to automatically determine when a transaction is finished with each individual partition at any point of the

transaction’s lifetime.

When the DBMS learns that a transaction is finished with a partition, it needs to decide how to notify

that partition that the transaction no longer needs it. As described above, if the transaction is executing a

query at a remote partition that is the last one it will execute at that partition, then the DBMS can set a flag

in execution request. But the DBMS may be notified that a transaction is finished with a partition after it

has already executed the last query at that partition. Thus, it needs to send this notification separately. If

the transaction submits a batch that contains at least one query that needs to execute at a remote partition

that is one the same node as the partition that the transaction just marked as being finished, then the DBMS

piggybacks the prepare notification onto the query invocation request. If the transaction is not executing any

queries at the same node, then it will send a separate notification message. The DBMS will not send this

notification if the batch contains only single-partition queries that execute at the transaction’s base partition.

34

...

Command Log

Stored
Procedures

Query
Executor

Snapshots

Partition 1 Partition 2 Partition 3

Partition 1 Partition 2 Partition 3

...
TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

SNAPSHOT #1002

#1002

#1001

Figure 3.7: An overview of H-Store’s logging and checkpoint scheme.

3.7 Recovery Mechanism
Since H-Store is a main memory DBMS, it must ensure that all of a transaction’s modifications are durable

and are recoverable if a node crashes. The key, however, is to provide this guarantee without significantly hin-

dering the performance advantages of the system. Since H-Store is designed to run on commodity hardware,

we cannot assume that the DBMS will be deployed using special-purpose components (e.g., battery-backed

up memory) [88].

Given this, H-Store uses a lightweight, logical logging scheme that has less overhead than existing ap-

proaches for disk-oriented systems [161]. It will also take periodic checkpoints of the database to reduce

the recovery time of the system after a crash. We now discuss these two mechanisms. We then discuss in

Section 3.7.3 how H-Store restores the state of the database from these logs and checkpoints.

3.7.1 Command Logging

As described in Section 2.2.3, DBMSs record the changes made by transactions in separate logs on disk. This

is to avoid multiple write operations to random locations on the disk to update the tuples modified by each

transaction. The log entries for multiple transactions can be written together in a batch to amortize the cost

of synchronizing the disk [73, 114].

There are a variety of approaches to transaction logging in DBMSs [106, 115, 128, 155]. At one extreme,

there is physical logging, where the DBMS records the before and after image of an element in the database

35

(e.g., a tuple, block, or internal data structure for an index) being modified by the transaction [106, 160]. An-

other approach is known as logical logging (sometimes called event logging) where the DBMS only records

the high-level operation that the transaction executed (e.g., a query invocation).

Logical logging reduces the amount of data that needs to be written to disk compared to physical logging,

since it only needs to record what the operation was rather than what it actually did to the database. But

recovering the database using logical logging will take longer because the DBMS will need to re-execute

each operation. This is not a significant problem for main memory DBMSs, however, because they are able

to execute transactions much faster than disk-oriented systems.

H-Store uses a variant of logical logging, known as command logging, where the DBMS only records the

transaction invocation requests to the log [155]. Each log record contains the name of the stored procedure

and the input parameters sent from the application, and the transaction’s id. Because one log record represents

the entire invocation of the transaction, command logging does not support transaction save points [160]. This

is not a significant limitation because OLTP transactions are short-lived.

H-Store writes out the log records using a separate thread; the execution engines are never blocked by

the logging operations. The DBMS writes the entries after the transaction has executed but before it returns

the result back to the application. This is different than write-ahead logging [106], where the DBMS logs the

transaction request before it executes. This has two advantages. The first is that the DBMS does not need

to write out entries for transactions that abort, since the system ensures that all of the changes made by an

aborted transaction are rolled back first before executing the next transaction. Thus, an aborted transaction’s

affect on the database’s state is the same as if it was never executed at all. Second, because H-Store can

restart transactions due to internal control mechanisms, a transaction may be assigned multiple transaction

identifiers. For example, when a transaction attempts to access a partition that it does not have the lock

for, the DBMS will restart that transaction, rollback any changes that it made, assign it a new transaction

identifier, and then resubmit the lock acquisition requests at the partitions that it needs. If the DBMS logged

the transaction’s command prior to execution, it would need to write a new entry every time a transaction

restarted that marked the previous entry as voided.

The DBMS combines command log entries together for multiple transactions and writes them in a batch

to amortize the cost of writing to disk [73, 114, 224]. Modifications made by transactions are not visible

to the application until their log record has been flushed. Similarly, a transaction cannot be released to the

application until all transactions that executed before it have been written to the command log.

3.7.2 Snapshots

As the DBMS executes transactions and writes their commands out to the log, the DBMS also creates non-

blocking snapshots of the database’s tables [151, 211]. The snapshot for each partition is written to the local

disk at their host node. When the system needs to recover the database after a crash, it loads in the last

checkpoint that was created and then replays only the transactions that appear in the command log after this

checkpoint [155]. This greatly reduces the time needed to recover the database. H-Store’s snapshots only

contain the tuples in the tables and not the indexes.

The DBMS can be configured to take checkpoints periodically or manually using a system stored pro-

cedure. The system also maintains a catalog of the snapshots that it has taken that is retrievable by the

36

application through another system procedure.

When H-Store starts a new checkpoint, one node in the DBMS is elected as the coordinating node for

the next checkpoint. This node is either selected at random (if it for is a scheduled checkpoint initiated by

the DBMS) or the node with the transaction’s base partition (if it was initiated through a system procedure).

The DBMS at this node sends a special transaction request to every partition in the cluster to instruct them to

begin the checkpoint process. This request locks all of the partitions to ensure that each node starts writing

the checkpoint from a transactionally consistent database state [182]. This system procedure causes each

execution engine at all of the partitions to switch into a special “copy-on-write” mode. With this, any changes

made by future transactions do not overwrite the tuples that existed when the current checkpoint started and

any new tuples that were inserted after the checkpoint was started are not included in the snapshot data.

Once all of the partitions send back acknowledgements to begin the snapshot, the DBMS commits the special

transaction and each partition starts writing out the snapshot to disk in a separate thread. The execution

engines then return to processing transactions while the snapshot processing occurs in the background.

The amount of time that it takes the execution engine at a a partition to complete the database snapshot

out to disk depends on the size of the database and the write speed of the storage device. After a partition’s

engine finishes writing the snapshot, it disables the “copy-on-write” mode and sends a notification message

back to the coordinating node. Once the coordinating node has notifications from every partition, it sends a

final finish message to each partition that instructs them to clean up transient data structures and marks the

snapshot as complete.

3.7.3 Crash Recovery

The process for restoring a database from the command log and snapshot is straightforward [155]. First, when

the H-Store node starts, each execution engine at the node reads in contents from the last snapshot taken at

its partition. For each tuple in a snapshot, the DBMS has to determine what partition should store that tuple,

since it may not be the same one that is reading in that snapshot. This situation can occur if the administrator

changes number of partitions in the cluster when the system was brought off-line. As the engines load in each

row, it will also rebuild the tables’ indexes at its partitions.

Once the snapshot has been loaded into memory from the file on disk, the DBMS will then replay the

command log to restore the database to state that it was in before the crash. A separate thread scans the

log backwards to find the record that corresponds to the transaction that initiated the snapshot that was just

loaded in. It then scans the log in the forward direction from this point and re-submits each entry as a new

transaction request at that node. The transaction coordinator ensures that these transactions are executed in the

exact order that they arrived in the system; this differs from the normal execution policy where transactions

are allowed to get re-ordered and re-executed.

The state of the database after this recovery process is guaranteed to be correct, even if the number of

partitions during replay is different from the number of partitions at runtime. This is because (1) transac-

tions are logged and replayed in serial order, so the re-execution occurs in exactly the same order as in the

initial execution, and (2) replay begins from a transactionally-consistent snapshot that does not contain any

uncommitted data, so no rollback is necessary at recovery time [106, 155, 182].

37

Master
Node

Slave
NodeR

ep
lic

a
Se

t
B

as
e

Pa
rt

iti
on

Transaction Execution

Transaction Execution

Verify

Commit

Commit

Figure 3.8: A timeline diagram for the execution of a single-partition transaction with one replica. Each
node in the replica set will execute the transaction’s control code independently. The master node will then
verify at the end that all of its slave nodes returned the same result.

3.8 Replication
Because of the potentially long recovery time in H-Store to rebuild the database from the command log

and snapshots, a production OLTP deployment will use a replication scheme that allows the system to keep

running even if one node crashes. Replication is the standard technique to protect against node failures in

distributed systems [97] and reduces the likelihood that the DBMS will need to perform a full recovery [155].

A replica set is a collection of nodes that all contain the same partitions. Each node maintains its own

command log and database snapshots. The system uses the Paxos consensus protocol to elect one node as the

master (i.e., initiator) of the replica set [141]. The other nodes in the corresponding replica set are referred

to as slave nodes. When the master node fails, the system runs a new election round to promote one of the

slaves as the new master. The DBMS remains on-line as long as k replicas nodes are still operational for

each replica set, where k is an administrator-defined failure threshold [210]. Hence, in terms of the CAP

theorem [91], H-Store is strongly consistent and highly available, but it is not network partition-tolerant.

We now discuss how H-Store executes single-partition and distributed transactions on deployments with

replicated nodes.

3.8.1 Single-Partition Transactions

When the master node receives a new single-partition transaction request, it sends it to the slave nodes in

its replica set. Each node in the replica set will execute the control code for the transaction’s procedure

independently. They do not need to coordinate the queries that the transaction invokes while it executes. This

is another reason why the stored procedure’s control code must be deterministic (cf. Section 3.3). Since the

transaction is independently executed at each replica, the database transformation must be the same at each

node to ensure that the final state of the database after the transaction commits is the same.

The master node waits until it gets responses from each of the replicas. It then verifies that all of the

replicas produced the same result for that transaction. As long as a majority of the transactions agree, then

the result is sent back to the application. Any replica whose response deviates from the agreed upon result is

considered to have a hardware failure and the node is shut down.

3.8.2 Distributed Transactions

Since distributed transactions could modify multiple partitions, H-Store cannot use the same execution strat-

egy for these transactions as it uses for single-partition transactions. Otherwise, a transaction that invokes

38

Master
Node

Slave
NodeR

ep
lic

a
Se

t
B

as
e

Pa
rt

iti
on

Master
Node

Slave
Node

Query1

R
ep

lic
a

Se
t

R
em

ot
e

Pa
rt

iti
on

Transaction Execution

Query2

Query2

Verify

Prepare

Prepare

Prepare

2PC:Prepare 2PC:Commit

Commit

Commit

Commit

Figure 3.9: A timeline diagram for H-Store’s replication scheme when executing a distributed transaction.
The transaction needs to execute one query at its base partition (i.e., Query1) and a different query at its
remote partition (i.e., Query2). Each partition is replicated on two nodes.

queries that modify remote partitions would have those queries executed multiple times (one for each replica).

Thus, instead of executing the transaction’s control code at every node in the its replica set, the control code

will only execute at the master node’s base partition. As the transaction invokes queries on remote partitions,

they are broadcast to the replicas. The master node does not need to wait for each replica to acknowledgement

that it completed each query successfully. It only needs to confirm that they executed the all of the queries

for the transaction in the correct order during the prepare phase in 2PC. If the replicas fail to agree with the

master’s execution order, then the transaction is aborted.

3.9 Comparison
We now revisit the Voter benchmark used in the evaluation in Section 2.1. This time we ran the same

experiment with H-Store using its built-in benchmark framework (cf. Appendix A). We first deployed the

DBMS with one partition to process transactions (i.e., one CPU core), and then ran the benchmark three

times we ran the benchmark three times and report the average results. Just as with MySQL and Postgres,

for each trial run we allowed the DBMS to “warm-up” for 60 seconds and then measured the number of

transactions completed after five minutes. We then increased the number of partitions allocated in the DBMS.

We configured H-Store with a design specification that makes all Voter transactions single-partitioned. The

system also uses command logging to write out transactions entries to disk to provide the same persistence

and durability guarantees as MySQL and Postgres.

The results in Fig. 3.10 show that with only a single partition, H-Store processes ∼25,000 transactions

per second. This is over twice the maximum throughput of both of the traditional DBMSs. This highlights

the advantages of H-Store’s serial execution model; transactions never stall waiting to acquire a lock held by

another transaction. As more cores are allocated to it, H-Store is able to almost able to scale linearly. At

eight partitions, H-Store’s throughput is ∼250,000 transactions per second. This is over 25× the throughput

achieved by either MySQL or Postgres.

The inherent limitation of main memory DBMSs is that they can only support that are smaller than the

39

0

50,000

100,000

150,000

200,000

250,000

300,000

 1 2 3 4 5 6 7 8 9 10 11 12

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

of CPU Cores

MySQL
Postgres
H-Store

Figure 3.10: The single-node throughput measurements for the Voter benchmark on MySQL, Postgres, and
H-Store. All DBMSs were deployed with the same serializable isolation level and durability guarantees.

0

200,000

400,000

600,000

800,000

 1 2 4

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Nodes

MySQL
Postgres
H-Store

Figure 3.11: The multi-node throughput measurements for the Voter benchmark on MySQL, Postgres, and
H-Store. Each cluster configuration has eight CPU cores per node.

amount of memory on a single node. As described above, H-Store overcomes this by supporting multi-node

deployments out of the box. We ran the Voter benchmark again, but this time we scaled the system out over

one, two, and four nodes (with eight partitions per node). Since all of the transactions in this benchmark are

single-partitioned, we had ran multiple instances of the client drivers for MySQL and Postgres trials that were

each configured to target one node in the cluster.

Once again, the results in Fig. 3.11 show that H-Store is able to scale almost linearly as the number of

nodes in the cluster is doubled. The throughput for MySQL and Postgres also scales linearly, but it is still

significantly less than what H-Store achieves with the same hardware.

40

Chapter 4

Automatic Database Design

The scalability of OLTP applications on many of the distributed DBMSs, such as H-Store, depends on the

existence of an optimal database design (i.e., partitioning and replication scheme). Such a design defines how

an application’s data and workload is partitioned or replicated across nodes in a cluster, and how queries and

transactions are routed to nodes. This in turn determines the number of transactions that access data stored

on each node and how skewed the load is across the cluster. Optimizing these two factors is critical to scaling

systems: we collected experimental evidence that a growing fraction of distributed transactions and load skew

can degrade performance by over a factor 10×. Hence, without a proper design, a DBMS will perform no

better than a single-node system due to the overhead caused by blocking, inter-node communication, and load

balancing issues [131, 180].

Many of the existing techniques for automatic database partitioning, however, are tailored for large-scale

analytical applications (i.e., data warehouses) [179, 195]. These approaches are based on the notion of data

declustering [153], where the goal is to spread data across nodes so that the execution of each query is

parallelized across them [18, 50, 188, 230]. Much of this corpus is not applicable to OLTP systems be-

cause the multi-node coordination required to achieve transaction consistency dominates the performance

gains obtained by intra-query parallelism; previous work [66] has shown that, even ignoring effects on lock-

contention, this overhead can be up to 50% of the total execution time of a transaction when compared to

single-node execution.

Although other work has focused on distributed OLTP database design [66, 230], these approaches lack

three features that are crucial for enterprise OLTP databases: (1) support for stored procedures to increase

execution locality, (2) the use of replicated secondary indexes to reduce distributed transactions, and (3)

handling of time-varying skew in data accesses to increase cluster load balance. These three salient aspects

of enterprise databases hinder the applicability and effectiveness of the previous work.

Given the lack of an existing solution for our problem domain, we present Horticulture, a scalable tool to

automatically generate database designs for stored procedure-based distributed OLTP systems that is focused

on complex schemas and that can handle temporally-skewed workloads. The two key contributions in this

work are (1) an automatic database partitioning algorithm based on an adaptation of the large-neighborhood

search technique [86] and (2) a new analytical cost model that estimates the coordination cost and load

41

distribution for a sample workload. Horticulture analyzes a database schema, the structure of the application

stored procedures and sample transaction workload, and then automatically generates partitioning strategies

that minimize distribution overhead, while balancing access skew. The run time of this analysis is independent

of database size, and thus is not subject to the scalability limits of existing solutions [66, 230]. Moreover, the

partitioning strategies that Horticulture supports are not limited to horizontal partitioning and replication but

also include replication of secondary indexes, and stored procedure routing.

Although our tool produces database designs that are usable with any shared-nothing DBMS or middle-

ware solution, we integrated and tested Horticulture with H-Store. Testing on main memory DBMSs like

H-Store presents an excellent challenge for Horticulture because they are particularly sensitive to the quality

of partitioning in the database design, and require a large number of partitions.

We thoroughly validated the quality of our partitioning by comparing Horticulture with four competing

approaches, including another state-of-the-art database design tool [66], and running several experiments on

five enterprise-class OLTP benchmarks: TATP, TPC-C (standard and skewed), TPC-E, SEATS, and Auc-

tionMark. Our tests show that the three novel contributions of our system (i.e., stored procedure routing,

replicated secondary indexes, and temporal-skew management) are much needed in the context of enterprise

OLTP systems. Furthermore, our results indicate that our design choices provide an overall performance

increase of up to a factor 4× against a state-of-the-art partitioning tool [66] and up to a factor 16× against a

practical baseline approach.

4.1 Distributed Transaction Overhead
To illustrate how the presence of distributed transactions affects performance, we executed a workload de-

rived from the TPC-C benchmark [216] on H-Store. We postpone the details of our experimental setting

to Section 4.6. In each round of this experiment, we varied the number of distributed transactions and exe-

cute the workload on five different cluster sizes, with at most seven partitions assigned per node. Fig. 4.1a

shows that a workload mix of just 10% distributed transactions has a significant impact on throughput. The

graph shows that the performance difference increases with larger cluster sizes: at 64 partitions, the im-

pact is approximately 2×. This is because single-partition transactions in H-Store execute to completion in

a single thread, and thus do not incur the overhead of traditional concurrency control schemes [112]. For

the distributed transactions, the DBMS’s throughput is limited by the rate at which nodes send and receive

the two-phase commit messages. These results also show that the performance repercussions of distributed

transactions increases relative to the number of partitions because the system must wait for messages from

more nodes. Therefore, a design that minimizes both the number of distributed transactions and the num-

ber of partitions accessed per transaction will reduce coordination overhead, thereby increasing the DBMS’s

throughput [66, 230].

Related to this, determining the “best” base partition for each stored procedure subject to the tables’

layout will also improve performance because it reduces the number of transactions that must be aborted and

restarted. This is the approach used by IBM DB2 [59]: if a transaction deemed single-partitioned executing

on one node attempts to access data on another, then the DBMS will abort that transaction and restart it at

the other location. But this technique has been shown not to scale as the number of partitions increase, since

42

the likelihood that a transaction is already at the best base partition decreases as the number of partitions

increases. As an alternative, a database design can designate one or more attributes for each procedure that

will indicate the base partition for each new request at run time (e.g., by hashing the value of that attribute).

This allows the DBMS to quickly determine the best base partition for a transaction, assuming that the

procedure is always single-partitioned.

Even if a given database design enables every transaction to execute as single-partitioned, the DBMS

may still fail to scale linearly if the application’s workload is unevenly distributed across the nodes. Thus,

one must also consider the amount of data and transactions assigned to each partition when generating a new

database design, even if certain design choices that mitigate skew cause some transactions to be no longer

singled-partitioned. Existing techniques have focused on static skew in the database [66, 230], but failed

to consider temporal skew [223]. Temporally skewed workloads might appear to be uniformly distributed

when measured globally, but can have a significant effect on not only performance but also availability in

shared-nothing DBMSs [87].

As a practical example of temporal skew, consider Wikipedia’s approach to partitioning its database

by language (e.g., English, German) [11]. This strategy minimizes the number of distributed transactions

since none of the common transactions access data from multiple languages. This might appear to be a

reasonable partitioning approach, however the database suffers from a non-trivial amount of temporal skew

due to the strong correlation between languages and geographical regions: the nodes storing the articles for

one language are mostly idle when it is night time in the part of the world that speaks that language. If the

data set for a particular language is large, then it cannot be co-located with another partition for articles that

are mostly accessed by users from another part of the world. At any point during the day the load across the

cluster is significantly unbalanced even though the average load of the cluster for the entire day is uniform.

Wikipedia’s current solution is to over-provision nodes enough to mitigate the skew effects, but a temporal-

skew-aware database design may achieve identical performance with lower hardware and energy costs.

We also experimentally tested the impact of temporal skew on our H-Store cluster. In this experiment, we

use a 100% single-partition transaction workload (to exclude distribution costs from the results) and impose

a time-varying skew. At fixed time intervals, a higher percentage of the overall workload is directed to one

partition in the cluster. The results are shown in Fig. 4.1b. For large number of partitions, even when only an

extra 5% of the overall load is skewed towards a single-partition, the throughput is reduced by a large factor,

more than 3× in our test. This is because the execution engine for the partition that is receiving a larger

share of the workload is saturated, which causes other partitions to remain idle while the clients are blocked

waiting for results. The latency increases further over time since the target partition cannot keep up with the

increased load.

The above examples show that both distributed transactions and temporal workload skew must be taken

into account when deploying a distributed database in order to maximize its performance. Manually devising

optimal database designs for an arbitrary OLTP application is non-trivial because of the complex trade-offs

between distribution and skew: one can enable all requests to execute as single-partitioned transactions if the

database is put on a single node (assuming there is sufficient storage), but one can completely remove skew if

all requests are executed as distributed transactions that access data at every partition. Hence, a tool is needed

43

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 4 8 16 32 64

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

of Partitions

All Single-Partitioned
10% Distributed
20% Distributed
30% Distributed

(a) Distributed Transactions

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 4 8 16 32 64

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

of Partitions

Uniform Workload

5% Skewed

10% Skewed

15% Skewed

(b) Workload Skew

Figure 4.1: The impact on H-Store’s throughput for different workload variations in TPC-C NewOrder.

that is capable of partitioning enterprise OLTP databases to balance these conflicting goals.

4.2 Database Design Challenges
Horticulture is an automatic database design tool that selects the best physical layout for a distributed DBMS

that minimizes the number of distributed transactions while also reducing the effects of temporal skew. As

described in Section 3.4, a database design specification for a distributed DBMS defines:

1. The horizontal partitioning attribute(s) for tables,

2. Whether a table is replicated at every partition,

3. Any secondary indexes that are replicated at every partition,

4. The routing attribute(s) for stored procedures.

44

The administrator provides Horticulture with (1) the database schema of the target OLTP application,

(2) a set of stored procedures definitions, and (3) a reference workload trace. A workload trace is a log of

previously executed transactions for an application. Each transaction record in the trace contains its proce-

dure input parameters, the timestamps of when it started and finished, and the queries it executed with their

corresponding input parameters. Horticulture works under the reasonable assumption that the sample trace is

representative of the target application.

Using these inputs, Horticulture explores an application’s solution space, where for each table the tool

selects whether to (1) horizontally partition or (2) replicate on all partitions, as well as to (3) replicate a

secondary index for a subset of its columns. The DBMS uses the column(s) selected in these design elements

with either hash or range partitioning to determine at run time which partition stores a tuple. The tool also

needs to determine how to enable the DBMS to effectively route incoming transaction requests to the partition

that has most of the data that each transaction will need to access [169]. As we will discuss in this section,

this last step is particularly challenging for applications that use stored procedures.

The problem of finding an optimal database design is known to beNP -Complete [164, 176], and thus it is

not practical to examine every possible design to discover the optimal solution [230]. Even if one can prune

a significant number of the sub-optimal designs by discarding unimportant table columns, the problem is still

exceedingly difficult when one also includes stored procedure routing parameters—as a reference, the number

of possible solutions for TPC-C and TPC-E are larger than 1066 and 1094, respectively. Indeed, we initially

developed an iterative greedy algorithm similar to the one proposed in [16], but found that it obtained poor

results for these complex instances because it is unable to escape local minima. There are, however, existing

search techniques from optimization research that make problems such as this more tractable.

Horticulture employs one such approach, called large-neighborhood search (LNS), to explore potential

designs off-line in a guided manner [68, 86]. LNS compares potential solutions with a cost model that

estimates how well the DBMS will perform using a particular design for the sample workload trace without

needing to actually deploy the database. For this work, we use a cost model that seeks to optimize throughput

by minimizing the number of distributed transactions [66, 90, 159] and the amount of access skew across

servers [223]. Since the cost model is separate from the search model, one could replace it to generate designs

that accentuate other aspects of the database (e.g., minimizing disk seeks, improving crash resiliency). We

discuss alternative cost models for Horticulture for other DBMSs in Section 8.3.

We now present our LNS-based approach in the next section, and then describe in Section 4.4 how Hor-

ticulture estimates the number of distributed transactions and the amount of skew for each design. Various

optimization techniques, such as how to extract, analyze, and compress information from a sample workload

trace efficiently and to speed up the search time, are discussed in Section 4.5.

4.3 Large-Neighborhood Search
LNS is well-suited for our problem domain because it explores large solution spaces with a lower chance of

getting caught in a local minimum and has been shown to converge to near-optimal solutions in a reasonable

amount of time [86]. An outline of Horticulture’s design algorithm is as follows:

1. Analyze the sample workload trace to pre-compute information used to guide the search process.

45

Figure 4.2: An overview of Horticulture’s LNS design algorithm. The algorithm generates a relaxed design
from the initial design and then uses local search to explore solutions. Each level of the search tree contains
the different candidate attributes for tables and procedures for the target database. After the search finishes,
the process either restarts or emits the best solution found.

2. Generate an initial “best” design Dbest based on the database’s most frequently accessed columns.

3. Create a new incomplete design Drelax by “relaxing” (i.e., resetting) a subset of Dbest.

4. Perform a local search [230] for a new design using Drelax as a starting point. If any new design has

a lower cost than Dbest, then mark it as the new Dbest. The search stops when a certain number of

designs fail to improve on Dbest or there are no designs remaining in Drelax’s neighborhood.

5. If the total time spent thus far exceeds a limit, then halt the algorithm and return Dbest. Otherwise,

repeat Step 3 for a new Drelax derived from Dbest.

When generating either the initial design in Step 1 or subsequent designs using local search in Step 4,

Horticulture verifies whether a design is feasible for the target cluster (i.e., the total size of the data stored on

each node is less than its storage limit) [68]. Non-feasible designs are immediately discarded.

Next, we describe each of these steps in more detail.

4.3.1 Initial Design

The ideal initial design is one that is easy to compute and provides a good upper bound to the optimal solution.

This allows LNS to discard many potential designs at the beginning of the search because they do not improve

on this initial design. To this purpose our system builds compact summaries of the frequencies of access and

co-access of tables, called access graphs. We postpone the detailed discussion of access graphs and how we

derive them from a workload trace to Section 4.5.1.

Horticulture uses these access graphs in a four-part heuristic to generate an initial design:

1. Select the most frequently accessed column in the workload as the horizontal partitioning attribute for

each table.

46

2. Greedily replicate read-only tables if they fit within the partitions’ storage space limit.

3. Select the next most frequently accessed, read-only column in the workload as the secondary index

attribute for each table if they fit within the partitions’ storage space limit.

4. Select the routing parameter for stored procedures based on how often the parameters are referenced in

queries that use the table partitioning columns selected in Step 1.

To identify which read-only tables in the database to replicate in Step 2, we first sort them in decreasing

order by each table’s temperature (i.e., the size of the table divided by the number of transactions that access

the table) [61]. We examine each table one-by-one according to this sort order and calculate the new storage

size of the partitions if that table was replicated. If this size is still less than the amount of storage available

for each partition, then we mark the table as replicated. We repeat this process until either all read-only tables

are replicated or there is no more space.

We next select the secondary index column for any non-replicated table as the one that is both read-

only and accessed the most often in queries’ predicates that do not also reference that table’s horizontal

partitioning column chosen in Step 1. If this column generates an index that is too large, we examine the next

most frequently access column for the table.

Now with every table either replicated or partitioned in the initial design, Horticulture generates parame-

ter mappings [181] from the workload trace that identify (1) the procedure input parameters that are also used

as query input parameters and (2) the input parameters for one query that are also used as the input parame-

ters for other queries. These mappings allow Horticulture to identify without using static code analysis which

queries are always executed with the same input parameters using the actual values of the input parameters in

the workload. The technique described in [181] removes spurious results for queries that reference the same

columns but with different values. We then select a routing attribute for each stored procedure as the one that

is mapped to the queries that are executed the most often with predicates on the tables’ partitioning columns.

If no sufficient mapping exists for a procedure, then its routing attribute is chosen at random.

4.3.2 Relaxation

Relaxation is the process of selecting random tables in the database and resetting their chosen partitioning

attributes in the current best design. The partitioning option for a relaxed table is undefined in the design,

and thus the design is incomplete. We discuss how to calculate cost estimates for incomplete designs in

Section 4.4.3.

In essence, relaxation allows LNS to escape a local minimum and to jump to a new neighborhood of

potential solutions. This is advantageous over other approaches, such as tableau search, because it is relatively

easy to compute and does not require the algorithm to maintain state between relaxation rounds [86]. To

generate a new relaxed design, Horticulture must decide (1) how many tables to relax, (2) which tables to

relax, and (3) what design options will be examined for each relaxed table in the local search.

As put forth in the original LNS papers [68, 86], the number of relaxed variables (i.e., tables) is based on

how much search time remains as defined by the administrator. Initially, this size is 25% of the total number

47

of tables in the database; as time elapses, the limit increases up to 50%1. Increasing the number of tables

relaxed over time in this manner is predicated on the idea that a tighter upper bound will be found more

quickly if the initial search rounds use a smaller number of tables, thereby allowing larger portions of the

solution space to be discarded in later rounds [68, 86].

After computing the number of tables to reset, Horticulture then randomly chooses which ones it will

relax. If a table is chosen for relaxation, then all of the routing parameters for any stored procedure that

references that table are also relaxed. The probability that a table will be relaxed in a given round is based

on their temperatures [61]: a table that is accessed frequently more likely to be selected to help the search

find a good upper bound more quickly [86]. We also reduce these weights for small, read-only tables that are

already replicated in the best design. These are usually the “look-up” tables in OLTP applications [211], and

thus we want to avoid exploring neighborhoods where they are not replicated.

In the last step, Horticulture generates the candidate attributes for the relaxed tables and procedures. For

each table, its candidate attributes are the unique combination of the different design options available for that

table. For example, one potential candidate for CUSTOMER table is to horizontally partition the table on the

customer’s name, while another candidate partitions the table on the customer’s id and includes a replicated

secondary index on the customer id and name. Multiple candidate attributes for a single table are grouped

together as an indivisible “virtual” attribute. The different options in one of these virtual attributes are applied

to a design all at once so that the estimated cost never decreases during the local search process.

4.3.3 Local Search

Using the relaxed design Drelax produced in the previous step, Horticulture executes a two-phase search

algorithm to iteratively explore solutions. This process is represented as a search tree, where each level of the

tree coincides with one of the relaxed database elements. As shown in Fig. 4.2, the search tree’s levels are

split into two sections corresponding to the two search phases. In the first phase, Horticulture explores the

tables’ candidate attributes using a branch-and-bound search [166, 230]. Once all of the relaxed tables are

assigned an attribute in Drelax, Horticulture then performs a brute-force search in the second phase to select

the stored procedures’ routing parameters.

As Horticulture explores the table portion of the search tree, it changes the current table’s design option

in Drelax to each candidate attribute and then estimates the cost of executing the sample workload using that

new design. If this cost estimate is less than the cost of Dbest and is feasible, then the search traverses down

the tree and examines the next table’s candidate attributes. But if this cost is greater than or equal to the cost

of Dbest or if the design is not feasible, the search continues on to the next candidate attribute for the current

table. If there are no more attributes for this level, then the search “backtracks” to the previous level.

Horticulture maintains counters for backtracks and the amount of time spent in the current search round.

Once either of these exceed a dynamic limit, the local search halts and returns to the relaxation step. The num-

ber of backtracks and search time allowed for each round is based on the number of tables that were relaxed

in Drelax. As these limits increases over time, the search is given more time to explore larger neighborhoods.

We explore the sensitivity of these parameters in our evaluation in Section 4.6.6.

1These values were empirically evaluated following standard practice guidelines [68].

48

In the second phase, Horticulture uses a different search technique for procedures because their design

options are independent from each other (i.e., the routing parameter for one procedure does not affect whether

other procedures are routed correctly). Therefore, for each procedure, we calculate the estimated costs of its

candidate attributes one at a time and then choose the one with the lowest cost before moving down to the

next level in the search tree. We examine the procedures in descending order of invocation frequency so that

the effects of a bad design are discovered earlier.

If Horticulture reaches the last level in the tree and has a design that is both feasible and has a cost that

is less than Dbest, then the current design becomes the new best design. The local search still continues but

now all comparisons are conducted with the new lower cost. Once either of the search limits is reached or

when all of the tree is explored, the process restarts using a new relaxation.

The entire process halts after after an administrator-defined time limit or when Horticulture fails to find a

better design after a certain period of time (Section 4.6.6). The final output is the best design found overall

for the application’s database. The administrator then configures the DBMS using the appropriate interface

to deploy their database according to this design. We leave the problem of how to reorganize an already

deployed database as future work, but note that the high-level process described in this section is likely to

remain the same.

4.4 Temporal Skew-Aware Cost Model
Horticulture’s LNS algorithm relies on a cost model that can estimate the cost of executing the sample work-

load using a particular design [61, 157, 176, 230]. Using an analytical cost model is an established technique

in automatic database design and optimization [56, 79], as it allows one to determine whether one design

choice is better than others and can guide the search process towards a solution that accentuates the proper-

ties that are important in a database. But it is imperative that these estimations are computed quickly, since the

LNS algorithm can generate thousands of designs during the search process. The cost model must also be able

to estimate the cost of an incomplete design. Furthermore, as the search process continues down the tree, the

cost estimates must increase monotonically as more variables are set in an incomplete design. That is, for two

incomplete designsD andD′, whereD⊂D′, and a workloadW , we require that cost(D,W) ≤ cost(D′,W).

Given these requirements, our cost model is predicated on the key observation that the execution overhead

of a multi-partition transaction is significantly more than a single-partition transaction [112, 211]. Some

OLTP DBMSs execute a single-partition transaction serially on a single node with reduced concurrency

control, whereas any distributed transactions must use an expensive concurrency control scheme to coordinate

execution across two or more partitions [131, 181, 211]. Thus, we estimate the run time cost of a workload

as being proportional to the number of distributed transactions.

In addition to this, we also assume that (1) either the working set for an OLTP application or its entire

database is stored in main memory and (2) that the run times for transactions are approximately the same.

This means that unlike other existing cost models [56, 61, 230], we can ignore the amount of data accessed

by each transaction, and that all of a transaction’s operations contribute an equal amount to the overall load

of each partition. In our experience, transactions that deviate from these assumptions are likely analytical

operations that are either infrequent or better suited for a data warehouse DBMS.

49

Algorithm 1 CoordinationCost(D,W)

txnCount← 0, dtxnCount← 0, partitionCount← 0
for all txn∈W do
P ← GetPartitions(D, txn)
if |P | > 1 then
dtxnCount← dtxnCount+ 1
partitionCount← partitionCount+ |P |

end if
txnCount← txnCount+ 1

end for
return

(
partitionCount

(txnCount× numPartitions)
×
(
1.0 +

dtxnCount

txnCount

))

We developed an analytical cost model that not only measures how much of a workload executes as

single-partition transactions, but also measures how uniformly load is distributed across the cluster. The final

cost estimation of a workload W for a design D is shown below as the function cost(D,W), which is the

weighted sum of the normalized coordination cost and the skew factor:

cost(D,W) =
(α× CoordinationCost(D,W)) + (β × SkewFactor(D,W))

(α+ β)
(4.1)

The parameters α and β can be configured by the administrator. In our setting, we found via linear

regression that the values five and one respectively provided the best results. All experiments were run with

this parameterization.

This cost model is not intended to estimate actual run times, but rather as a way to compare the quality

of competing designs. It is based on the same assumptions used in H-Store’s distributed query planner. We

show that the underlying principals of our cost model are representative of actual run time performance in

Section 4.6.3.

4.4.1 Coordination Cost

We define the function CoordinationCost(D,W) as the portion of the cost model that calculates how

well D minimizes the number of multi-partition transactions inW; the cost increases from zero as both the

number of distributed transactions and the total number of partitions accessed by those transactions increases.

As shown in Algorithm 1, the CoordinationCost function uses the DBMS’s internal API function Get-

Partitions to estimate what partitions each transaction will access [55, 181]. This is the same API that the

DBMS uses at run time to determine where to route query requests. For a given design D and a transaction

txn, this function deterministically returns the set of partitions P , where for each p∈P the transaction txn

either (1) executed at least one query that accessed p or (2) executed its stored procedure control code at

the node managing p (i.e., its base partition). The partitions accessed by txn’s queries are calculated by

examining the input parameters that reference the tables’ partitioning columns in D (if it is not replicated) in

the pre-computed query plans.

There are three cases that GetPartitions must handle for designs that include replicated tables and

secondary indexes. First, if a read-only query accesses only replicated tables or indexes, then the query

50

Algorithm 2 SkewFactor(D,W)

skew ← [] , txnCounts← []
for i← 0 to numIntervals do
skew[i]← CalculateSkew(D,W, i)
txnCounts[i]← NumTransactions(W, i)

end for

return


numIntervals∑

i=0

skew[i]× txnCounts[i]∑
txnCounts



executes on the same partition as its transaction’s base partition. Next, if a query joins replicated and non-

replicated tables, then the replicated tables are ignored and the estimated partitions are the ones needed by the

query to access the non-replicated tables. Lastly, if a query modifies a replicated table or secondary index,

then that query is broadcast to all of the partitions.

After counting the distributed transactions, the coordination cost is calculated as the ratio of the total

number of partitions accessed (partitionCount) divided by the total number of partitions that could have

been accessed. We then scale this result based on the ratio of distributed to single-partition transactions. This

ensures, as an example, that the cost of a design with two transactions that both access three partitions is

greater than a design where one transaction is single-partitioned and the other accesses five partitions.

4.4.2 Skew Factor

Although by itself CoordinationCost is able to generate designs that maximize the number of single-

partition transactions, it causes the design algorithm to prefer solutions that store the entire database in as few

partitions as possible. Thus, we must include an additional factor in the cost model that strives to spread the

execution workload uniformly across the cluster.

The function SkewFactor(D,W) shown in Algorithm 2 calculates how well the design minimizes skew

in the database. To ensure that skew measurements are not masked by time, the SkewFactor function divides

W into finite intervals (numIntervals) and calculates the final estimate as the arithmetic mean of the skew

factors weighted by the number of transactions executed in each interval (to accommodate variable interval

sizes). To illustrate why these intervals are needed, consider a design for a two-partition database that causes

all of the transactions at time t1 to execute only on the first partition while the second partition remains idle,

and then all of the transactions at time t2 execute only on the second partition. If the skew is measured as a

whole, then the load appears balanced because each partition executed exactly half of the transactions. The

value of numIntervals is an administrator-defined parameter. In our evaluation in Section 4.6, we use an

interval size that aligns with workload shifts to illustrate that our cost model detects this skew. We leave it as

future work to derive this parameter using a pre-processing step that calculates non-uniform windows.

The function CalculateSkew(D,W, interval) shown in Algorithm 3 generates the estimated skew fac-

tor ofW on D for the given interval. We first calculate how often partitions are accessed and then determine

how much over- or under-utilized each partition is in comparison with the optimal distribution (best). To

51

Algorithm 3 CalculateSkew(D,W, interval)

partitionCounts← []
for all txn∈W , where txn.interval = interval do

for all p∈GetPartitions(D, txn) do
partitionCounts [p]← partitionCounts [p] + 1

end for
end for
total←

∑
partitionCounts

best← 1
numPartitions

skew ← 0
for i← 0 to numPartitions do
ratio← partitionCounts[i]

total
if ratio < best then
ratio← best+

((
1− ratio

best

)
× (1− best)

)
end if
skew ← skew + log

(
ratio
best

)
end for

return

(
skew

log
(

1
best

)
× numPartitions

)

ensure that idle partitions are penalized as much as overloaded partitions, we invert any partition estimates

that are less than best, and then scale them such that the skew value of a ratio as it approaches zero is the

same as a ratio as it approaches one. The final normalized result is the sum of all the skew values for each

partition divided by the total skew value for the cluster when all but one partition is idle.

Fig. 4.3 shows how the skew factor estimates increase as the amount of skew in the partitions’ access

distribution increases.

4.4.3 Incomplete Designs

Our cost model must also calculate estimates for designs where not all of the tables and procedures have

been assigned an attribute yet [166]. This allows Horticulture to determine whether an incomplete design has

a greater cost than the current best design, and thus allows it to skip exploring the remainder of the search

tree below its current location. We designate any query that references a table with an unset attribute in a

design as being unknown (i.e., the set of partitions accessed by that query cannot be estimated). To compute

the coordination cost of an incomplete design, we assume that any unknown query is single-partitioned. We

take the opposite tack when calculating the skew factor of an incomplete design and assume that all unknown

queries execute on all partitions in the cluster. As additional information is added to the design, queries

change to a knowable state if all of the tables referenced by the query are assigned a partitioning attribute.

Any unknown queries that are single-partitioned for an incomplete designD may become distributed as more

variables are bound in a later designD′. But any transaction that is distributed inD can never become single-

partitioned in D′, as this would violate the monotonically increasing cost function requirement of LNS.

52

(a) Random Skew = 0.34 (b) Gaussian Skew = 0.42 (c) Zipfian Skew = 0.74

Figure 4.3: Example CalculateSkew estimates for different distributions on the number of times partitions
are accessed. Each entry along the x-axis represents a unique partition.

4.5 Optimizations
We now provide an overview of the optimizations that we developed to improve the search time of Horti-

culture’s LNS algorithm. The key to reducing the complexity of finding the optimal database design for an

application is to minimize the number of designs that are evaluated [230]. To do this, Horticulture needs to

determine which attributes are relevant to the application and are thus good candidates for partitioning. For

example, one would not horizontally partition a table by a column that is not used in any query. Horticulture

must also discern which relevant attributes are accessed the most often and would therefore have the largest

impact on the DBMS’s performance. This allows Horticulture to explore solutions using the more frequently

accessed attributes first and potentially move closer to the optimal solution more quickly.

We now describe how to derive such information about an application from its sample workload and store

them in a graph structure used in Sections 4.3.1 and 4.3.3. We then present a novel compression scheme for

reducing the number of transactions that are examined when computing cost model estimates in Section 4.4.

4.5.1 Access Graphs

Horticulture extracts the key properties of transactions from a workload trace and stores them in undirected,

weighted graphs, called access graphs [17, 230]. These graphs allow the tool to quickly identify important

relationships between tables without repeatedly reprocessing the trace. Each table in the schema is repre-

sented by a vertex in the access graph and vertices are adjacent through edges in the graph if the tables they

represent are co-accessed. Tables are considered co-accessed if they are used together in one or more queries

in a transaction, such as in a join. For each pair of co-accessed attributes, the graph contains an edge that is

weighted based on the number of times that the queries forming this relationship are executed in the work-

load trace. A simplified example of an access graph for the TPC-C benchmark is shown in Fig. 4.4. An

access graph also contains self-referencing edges for those tables used in single table operations, including

all INSERT, UPDATE, and DELETE queries.

We extend prior definitions of access graphs to accommodate stored procedure-based DBMSs. In previous

work, an access graph’s structure is based on either queries’ join relationships [230] or tables’ join order in

query plans [17]. These approaches are appropriate when examining a workload on a query-by-query basis,

but fail to capture relationships between multiple queries in the same transaction, such as a logical join

operation split into two or more queries—we call this an implicit reference.

To discover these implicit references, Horticulture uses a workload’s parameter mappings [181] to de-

termine whether a transaction uses the same input parameters in multiple query invocations. Since implicit

53

C

OLO

2

4

3

1
Edge# Columns Weight

(1) C.C_ID↔ C.C_ID 200
(2) C.C_ID↔ O.O_C_ID 100
(3) O.O_ID↔ OL.OL_O_ID 100
(4) O.O_ID↔ OL.OL_O_ID 100

O.O_C_ID↔ OL.OL_C_ID

Figure 4.4: An access graph derived from a workload trace.

reference edges are derived from multiple queries, their weights are based on the minimum number of times

those queries are all executed in a single transaction [230].

A simplified example of an access graph for the TPC-C benchmark is shown in Fig. 4.4. To create this

graph from a workload trace, we first insert a new vertex vi in the graph for every unique table Ti that is

referenced in all of the stored procedures’ queries. Two vertices vi, vj are adjacent through an edge ei,j if the

tables Ti and Tj are co-accessed either explicitly (i.e., using a single query that joins them) or implicitly (i.e.,

using two separate queries that each only access one of the tables but use input parameters that are mapped

together). Fig. 4.4 shows that there is an edge (#3) incident to CUSTOMER and ORDERS, meaning that the trace

contains queries that co-access the columns C_ID and O_C_ID. Access graphs can be built in a single pass

over the trace and allows Horticulture to scale easily with larger trace sizes.

4.5.2 Workload Compression

Using large sample workloads when evaluating a potential design improves the cost model’s ability to esti-

mate the target database’s properties. But the cost model’s computation time depends on the sample work-

load’s size (i.e., the number of transactions) and complexity (i.e., the number of queries per transaction).

Existing design tools employ random sampling to reduce workload size [66], but this approach can produce

poor designs if the sampling masks skew or other potentially valuable information about the workload [57].

We instead use an alternative approach that compresses redundant transactions and redundant queries without

sacrificing accuracy. Our scheme is more efficient than previous methods in that we only consider what tables

and partitions that queries access, rather than the more expensive task of comparing sets of columns [57, 79].

Compressing a transactional workload is a two-step process. First, we combine sets of similar queries in

individual transactions into fewer weighted records [79]. Such queries often occur in stored procedures that

contain loops in their control code. After combining queries, we then combine similar transactions into a

smaller number of weighted records in the same manner. The cost model will scale its estimates using these

weights without having to process each of the records separately in the original workload.

To identify which queries in a single transaction are combinable, we compute the input signature for each

query from the values of its input parameters and compare it with the signature of all other queries. A query’s

input signature is an unordered list of pairs of tables and partition ids that the query would access if each

table is horizontally partitioned on a particular column. As an example, consider the following query on the

54

CUSTOMER table:

SELECT * FROM CUSTOMER WHERE C_ID = 10 AND C_LAST = "Smith"

Assuming that the input value “10” corresponds to partition #10 if the table was partitioned on C_ID and

the input value “Smith” corresponds to partition #3 if it was partitioned on C_LAST, then this query’s signature

is {(C, 10) , (C, 3)}. We only use the parameters that are used with co-accessed columns when computing the

signature. For example, if only C_ID is referenced in the access graph, then the above example’s input

signature is {(C, 10)}.
Each transaction’s input signature includes the query signatures computed in the previous step, as well as

the signature for the transaction’s procedure input parameters. We use the parameter mappings [181] to find

which of the tables’ columns are used in predicates that are linked to procedure input parameters, and then

prune any columns that are not referenced in the access graph. Any set of transactions with the same query

signatures and procedure input parameter signature are combined into a single weighted record.

4.6 Experimental Evaluation
To evaluate the effectiveness Horticulture’s design algorithms, we integrated our tool with H-Store and ran

several experiments that compare our approach to alternative approaches. These other algorithms include a

state-of-the-art academic approach, as well as other solutions commonly applied in practice:

HR+: Our large-neighborhood search algorithm from Section 4.3.

HR–: Horticulture’s baseline iterative greedy algorithm, where design options are chosen one-by-one inde-

pendently of others.

SCH: The Schism [66] graph partitioning algorithm.

PKY: A simple heuristic that horizontally partitions each table based on their primary key.

MFA: The initial design algorithm from Section 4.3.1 where options are chosen based on how frequently

attributes are accessed.

4.6.1 Benchmark Workloads

We now describe the workloads from H-Store’s built-in benchmark framework that we used in our evaluation.

See Appendix A for a full description of each workload. The size of each database in these experiments is

approximately 1GB per partition.

TATP: This is an OLTP testing application that simulates a typical caller location system used by telecom-

munication providers [226]. It consists of four tables, three of which are foreign key descendants of the

root SUBSCRIBER table. Most of the stored procedures in TATP have a SUBSCRIBER id as one of their

input parameters, allowing them to be routed directly to the correct node.

TPC-C: This is the current industry standard for evaluating the performance of OLTP systems [216]. It

consists of nine tables and five stored procedures that simulate a warehouse-centric order processing

application. All of the procedures in TPC-C provide a warehouse id as an input parameter for the

transaction, which is the foreign key ancestor for all tables except ITEM.

55

TPC-C (Skewed): Our benchmarking infrastructure also allows us to tune the access skew for benchmarks.

In particular, we generated a temporally skew load for TPC-C, where the WAREHOUSE id used in the

transactions’ input parameters is chosen so that at each time interval all of the transactions target a

single warehouse. This workload is uniform when observed globally, but at any point in time there is

a significant amount of skew. This help us to stress-test our system when dealing with temporal-skew,

and to show the potential impact of skew on the overall system throughput.

SEATS: This benchmark models an on-line airline ticketing system where customers search for flights and

make reservations [105]. It consists of eight tables and six stored procedures. The benchmark is

designed to emulate a back-end system that processes requests from multiple applications that each

provides disparate inputs. Thus, many of its transactions must use secondary indexes or joins to find the

primary key of a customer’s reservation information. For example, customers may access the system

using either their frequent flyer number or customer account number. The non-uniform distribution of

flights between airports also creates imbalance if the database is partitioned by airport-derived columns.

AuctionMark: This is a 16-table benchmark based on an Internet auction system [104]. Most of its 10

procedures involve an interaction between a buyer and a seller. The user-to-item ratio follows a Zipfian

distribution, which means that there are a small number of users that are selling a large portion of

the total items. The total number of transactions that target each item is temporally skewed, as items

receive more activity (i.e., bids) as the auction approaches its closing time. It is difficult to generate

a design for AuctionMark that includes stored procedure routing because several of the benchmark’s

procedures include conditional branches that execute different queries based on the transaction’s input

parameters.

TPC-E: Lastly, the TPC-E benchmark is the successor of TPC-C and is designed to reflect the workloads

of modern OLTP applications [215]. Its workload features 12 stored procedures, 10 of which are

executed in the regular transactional mix while two are periodically executed “clean-up” procedures.

Unlike the other benchmarks, many of TPC-E’s 33 tables have foreign key dependencies with multiple

tables, which create conflicting partitioning candidates. Some of the procedures also have optional

input parameters that cause transactions to execute mutually exclusive sets of queries based on which

of these parameters are given at run time.

4.6.2 Design Algorithm Comparison

The first experiment that we present is an off-line comparison of the database design algorithms listed above.

We execute each algorithm for all of the benchmarks to generate designs for clusters ranging from four

to 64 partitions. Each algorithm is given an input workload trace of 25k transactions, and then is tested

using a separate trace of 25k transactions. We evaluate the effectiveness of the designs of each algorithm by

measuring the number of distributed transactions and amount of skew in those designs over the test set.

Fig. 4.5a shows that HR+ produces designs with the lowest coordination cost for every benchmark except

TPC-C (Skewed), with HR– and SCH designs only slightly higher. Because fewer partitions are accessed

using HR+’s designs, the skew estimates in Fig. 4.5b greater (this why the cost model uses the α and β

56

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

TATP TPC−C TPC−C (SK) SEATS AuctionMark TPC−E

C
o

o
rd

in
a
ti

o
n

 C
o

st
HR+
HR−
SCH
PKY
MFA

(a) The estimated coordination cost for the benchmarks.

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

TATP TPC−C TPC−C (SK) SEATS AuctionMark TPC−E

S
k

e
w

 F
a
c
to

r

HR+
HR−
SCH
PKY
MFA

(b) The estimated skew of the transactions’ access patterns.

Figure 4.5: Off-line measurements of the designs algorithms in Section 4.6.2.

parameters). We ascribe the improvements of HR+ over HR– and MFA to the LNS algorithm’s effective

exploration of the search space using our cost model and escaping local minima.

For TPC-C (Skewed), HR+ chooses a design that increases the number of distributed transactions in

exchange for a more balanced load. Although the SCH algorithm does accommodate skew when selecting a

design, it currently does not support the temporal skew used in this benchmark. The skew estimates for PKY

and MFA are lower than others in Fig. 4.5b because more of the transactions touch all of the partitions, which

causes the load to be more uniform.

4.6.3 Transaction Throughput

The next experiment is an end-to-end test of the quality of the designs generated in the previous experiment.

We compare the designs from our best algorithm (HR+) against the state-of-the-art academic approach (SCH)

and the best baseline practical solution (MFA). We execute select benchmarks in H-Store using the designs

for these algorithms and measure the system’s overall throughput.

We execute each benchmark using five different cluster sizes of Amazon EC2 nodes allocated within a

single region. Each node has eight virtual cores and 70GB of RAM (m2.4xlarge). We assign at most seven

partitions per node, with the remaining partition reserved for the networking and administrative functionalities

of H-Store. The execution engine threads are given exclusive access to a single core to improve cache locality.

57

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(a) TATP

0

10,000

20,000

30,000

40,000

50,000

60,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(b) TPC-C

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(c) TPC-C (Skewed)

0

10,000

20,000

30,000

40,000

50,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(d) SEATS

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(e) AuctionMark (f) Design Components

Figure 4.6: Transaction throughput measurements for the HR+, SCH, and MFA design algorithms.

Transaction requests are submitted from up to 5000 simulated client terminals running on separate nodes

in the same cluster. Each client submits transactions to any node in the H-Store cluster in a closed loop: after

it submits a request, it blocks until the result is returned. Using a large number of clients ensures that the

execution engines’ workload queues are never empty.

We execute each benchmark three times per cluster size and report the average throughput of these trials.

In each trial, the DBMS “warms-up” for 60 seconds and then the throughput is measured after five minutes.

The final throughput is the number of transactions completed in a trial run divided by the total time (excluding

the warm-up period). H-Store’s benchmark framework ensures that each run has the proper distribution of

executed procedures according to the benchmark’s specification.

All new requests are executed in H-Store as single-partitioned transactions with reduced concurrency

control protection; if a transaction attempts to execute a multi-partition query, then it is aborted and restarted

with full concurrency control. Since SCH does not support stored procedure routing, the system is unable to

determine where to execute each transaction request even if the algorithm generates the optimal partitioning

scheme for tables. Thus, to obtain a fair comparison of the two approaches, we implemented a technique

from IBM DB2 [59] in H-Store to handle this scenario. Each transaction request is routed to a random node

58

by the client where it will start executing. If the first query that the transaction dispatches attempts to access

data not stored at that node, then it is aborted and re-started at the proper node. This ensures that single-

partition transactions execute with reduced concurrency control protection, which is necessary for achieving

good throughput in H-Store.

The throughput measurements in Fig. 4.6 show that the designs generated by HR+ improve the through-

put of H-Store by factors 1.3× to 4.3× over SCH and 1.1× to 16.3× over MFA. This validates two important

hypotheses: (1) that our cost model and search technique are capable of finding good designs, and (2) that by

explicitly accounting for stored procedure routing, secondary indexes replication, and temporal-skew man-

agement, we can significantly improve over previous best-in-class solutions. Other notable observations are

that (1) the results for AuctionMark highlight the importance of stored procedure routing, since this is the

only difference between SCH and HR+, (2) the TATP, SEATS, and TPC-C experiments demonstrate the

combined advantage of stored procedures and replicated secondary indexes, and (3) that TPC-C (Skewed)

illustrates the importance of mitigating temporal-skew. We also note that the performance of H-Store is less

than expected for larger cluster sizes due to clock skew issues when choosing transaction identifiers that

ensure global ordering [211].

For this last item, we note that TPC-C (Skewed) is designed to stress-test the designs algorithms under

extreme temporal-skew conditions to evaluate its impact on throughput; we do not claim this to be a common

scenario. In this setting, any system ignoring temporal-skew will choose the same design used in Fig. 4.6b,

resulting in near-zero scale-out. Fig. 4.6b shows that both SCH and MFA do not improve performance as

more nodes are added to the cluster. On the contrary, HR+ chooses a different design (i.e., partitioning by

WAREHOUSE id and DISTRICT id), thus accepting many more distributed transactions in order to reduce

skew. Although all the approaches are affected by skew resulting in an overall lower throughput, HR+ is

significantly better with more than 6× throughput increase for the same 8× increase in nodes.

To further ascertain the impact of the individual design elements, we executed TATP again using the HR+

design but alternatively removing: (1) client-side stored procedure routing (falling back on the redirection

mechanism we built to test SCH), (2) the secondary indexes replication, or (3) both. Fig. 4.6f shows the rela-

tive contributions with stored procedure routing delivering 54.1% over the baseline approach (that otherwise

coincide with the one found by SCH), secondary indexes contribute 69.6%, and combined they deliver a

3.5× improvement. This is because there is less contention for locking partitions in the DBMS’s transaction

coordinators [131].

4.6.4 Cost Model Validation

Horticulture’s cost model is not meant to provide exact throughput predictions, but rather to quickly estimate

the relative ordering of multiple designs. To validate that these estimates are correct, we tested its accuracy

for each benchmark and number of partitions by comparing the results from Fig. 4.5 and Fig. 4.6. We note

that our cost model predicts which design is going to perform best in 95% of the experiments. In the cases

where the cost model fails to predict the optimal design, our analysis indicates that they are inconsequential

because they are from workloads where the throughput results are almost identical (e.g., TATP on four parti-

tions). We suspect that the throughput differences might be due to transitory EC2 load conditions rather than

actual difference in the designs. Furthermore, the small absolute difference indicates that such errors will not

59

 0%

 20%

 40%

 60%

 80%

 100%

TATP TPC−C SEATS AuctionMark TPC−E

R
e
d

u
c
e
d

 S
iz

e
10 partitions
100 partitions
1000 partitions
10000 partitions

Figure 4.7: Workload Compression Rates

significantly degrade performance.

4.6.5 Compression & Scalability

We next measured the workload compression rate for the scheme described Section 4.5.2 using the bench-

mark’s sample workloads when the number of partitions increases exponentially. The results in Fig. 4.7 show

that the compression rate decreases for all of the benchmarks as the number of partitions increases due to the

decreased likelihood of duplicate parameter signatures. The workload for the TPC-C benchmark does not

compress well due to greater variability in the procedure input parameter values.

We also analyzed Horticulture’s ability to generate designs for large cluster sizes. The results in Fig. 4.8

shows that the search time for our tool remains linear as the size of the database increases.

 0

 50

 100

 150

 200

 250

 300

 350

TATP TPC−C SEATS AuctionMark TPC−E

M
in

u
te

s

10 partitions
100 partitions
1000 partitions
10000 partitions

Figure 4.8: LNS search time for different cluster sizes

4.6.6 Search Parameter Sensitivity Analysis

As discussed in Section 4.3.3, there are parameters that control the run time behavior of Horticulture: each

local search round executes until either it (1) exhausts its time limit or (2) reaches its backtrack limit. Al-

though Horticulture dynamically adjusts these parameters [86], their initial values can affect the quality of

the designs found. For example, if the time limit is too small, then Horticulture will fail to fully explore each

neighborhood. Moreover, if it is too large, then too much time will be spent exploring neighborhoods that

never yield a better design. The LNS algorithm will continue looking for a better design until either it (1)

surpasses the total amount of time allocated by the administrator or (2) has exhausted the search space. In

60

0%

50%

100%

 0 10 20 30 40 50 60 70

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes per Round

(a) Local Search Times

0%

50%

100%

 0 200 400 600 800 1000 1200

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Back Tracks per Round

(b) Backtrack Limits

Figure 4.9: A comparison of LNS-generated designs for TPC-E using different (a) local search times and (b)
backtrack limits.

0%

50%

100%

 0 1 2 3 4 5

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(a) TATP

0%

50%

100%

 0 2 4 6 8 10

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(b) TPC-C

0%

50%

100%

 0 24 48 72 96 120

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(c) TPC-C (Skewed)

0%

50%

100%

 0 20 40 60 80 100

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(d) SEATS

0%

50%

100%

 0 10 20 30 40 50

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(e) AuctionMark

0%

50%

100%

 0 24 48 72 96 120

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(f) TPC-E

Figure 4.10: The best solution found by Horticulture over time. The red dotted lines represent known optimal
designs (when available).

this experiment, we investigate what are good default values for these search parameters.

We first experimented with using different local search and backtrack limits for the TPC-E benchmark.

We chose TPC-E because it has the most complex schema and workload. We executed the LNS algorithm

for two hours using different local search time limits with an infinite backtrack limit. We then repeated this

experiment using an infinite local search time limit but varying the backtrack limit. The results in Fig. 4.9

show that using the initial limits of approximately five minutes and 100–120 backtracks produces designs

with lower costs more quickly.

Non-deterministic algorithms, such as LNS, are not guaranteed to discover the optimal solution, which

61

means that there is no way for the administrator to know how much time to let Horticulture to continue

searching. Thus, we need a way to know when to stop searching for a better design. A naïve approach is

to halt when the algorithm fails to find a new solution after a certain amount of time. But this is difficult to

estimate for arbitrary inputs, since the search time is dependent on a number of factors.

Another approach is to calculate a lower bound using a theoretical design [166] and then halt the LNS

algorithm when it finds a design with a cost that is within a certain distance to that bound [86]. We compute

this bound by estimating the cost of the workload using a design where all transactions execute as single-

partitioned and with no skew in the cluster (i.e., round-robin assignment). Note that such a design is likely

infeasible, since partitioning a database to make every transaction single-partitioned cannot always be done

without making other transactions distributed. The graphs in Fig. 4.10 show the amount of time it takes for

the LNS algorithm to find solutions that converge towards the lower bound. We show the quality of the design

in terms of single-partition transactions as time proceeds. The red dotted line in each graph represents the best

known design we are aware of for each benchmark—we do not have reference designs for TPC-C (Skewed)

and TPC-E, other than the one found by our tools. The cost improvements shown in the graphs plateau after

a certain point, which is the desired outcome.

Overall, these experiments show that to achieve great performance for enterprise-class OLTP workloads,

especially on modern NewSQL systems, it is paramount that a design tool supports stored procedures, repli-

cated secondary indexes, and temporal skew. To the best of our knowledge, Horticulture is the first to consider

all of these issues.

4.7 Conclusion
We presented a new approach for automatically partitioning a database in a shared-nothing, distributed

DBMS. Our algorithm uses a large-neighborhood search technique together with an analytical cost model

to minimize the number of distributed transactions while controlling the amount of skew. To the best of our

knowledge, the system that we present is the first to target enterprise OLTP systems by supporting stored

procedure routing, replicated secondary indexes, and temporal-skew handling. We experimentally prove that

these options are important in distributed OLTP systems, and that our approach generates database designs

that enable improve performance by up to 16× over other solutions.

62

Chapter 5

Predictive Transaction Modeling

Even after generating a database design using the techniques described in Chapter 4, achieving good perfor-

mance in distributed DBMSs still requires significant tuning because of distributed transactions that access

multiple partitions. Such transactions require the DBMS to either (1) block other transactions from using

each partition until that transaction finishes or (2) use fine-grained locking with deadlock detection to execute

transactions concurrently [131]. In either strategy, the DBMS may also need to maintain an undo buffer in

case the transaction aborts. Avoiding such onerous concurrency control is important (cf. Section 2.2) [112].

To do so, however, requires the DBMS to have additional information about transactions before they start.

For example, if the DBMS knows that a transaction only needs to access data at one partition, then that

transaction can be redirected to the machine with that data and executed without heavy-weight concurrency

control schemes [211].

It is not practical, however, to require users to explicitly inform the DBMS how individual transactions

are going to behave. This is especially true for complex applications where a change in the database’s con-

figuration, such as its partitioning scheme, affects transactions’ execution properties. Hence, we now present

a novel method to automatically select which optimizations the DBMS can apply to transactions at runtime

using Markov models. A Markov model is a probabilistic model that, given the current state of a transaction

(e.g., which query it just executed), captures the probability distribution of what actions that transaction will

perform in the future. Based on this prediction, the DBMS can then enable the proper optimizations. Our

approach has minimal overhead, and thus it can be used on-line to observe requests to make immediate pre-

dictions on transaction behavior without additional information from the user. We assume that the benefit

outweighs the cost when the prediction is wrong. This work is focused on stored procedure-based transac-

tions, which have four properties that can be exploited if they are known in advance: (1) how much data is

accessed on each node, (2) what partitions will the transaction read/write, (3) whether the transaction could

abort, and (4) when the transaction will be finished with a partition.

In describing this work, we begin with an overview of the optimizations used to improve the throughput

of OLTP workloads. We then describe our primary contribution: representing transactions as Markov models

in a way that allows a DBMS to decide which of these optimizations to employ based on the most likely

behavior of a transaction. Next, we present Houdini, an on-line framework that uses these models to generate

63

predictions about transactions before they start. We have integrated this framework into H-Store and measure

its ability to optimize three OLTP benchmarks. The results from these experiments demonstrate that our

models select the proper optimizations for 93% of transactions and improve the throughput of the system by

41% on average with an overhead of 5% of the total transaction execution time.

5.1 Runtime Transaction Optimizations
We first discuss the optimizations that are possible if one knows what a transaction will do prior to its execu-

tion in a stored procedure-based DBMS. Stored procedures are an effective way to optimize OLTP applica-

tions because they reduce the number of round-trips between the client and the database, thereby eliminating

most network overhead and shrinking the window for lock contention. They contain parameterized queries

separated by control code (i.e., application logic), and thus most DBMSs do not know what each transaction

invocation of a procedure will do at run time (e.g., what set of pre-defined queries it will execute and what

partitions those queries will access). This is because the procedure can contain loops and conditionals that

depend on the parameters from the application and the current values stored in the database.

We now discuss the four transaction optimizations that OLTP systems like H-Store can employ at run

time if they know certain properties about transactions before they begin to execute.

OP1. Execute the transaction at the node with the partition that it will access the most.
When a new transaction request is received, the DBMS’s transaction coordinator must determine which

node in the cluster should execute the procedure’s control code and dispatch queries. In most systems, this

node also manages a partition of data. We call this the base partition for a transaction. The “best” base

partition is the one containing most of the data that will be accessed by that transaction, as that reduces

the amount of data movement. Any transaction that needs to access only one data partition is known as a

single-partition transaction. These transactions can be executed efficiently on a distributed DBMS, as they

do not require multi-node coordination [211]. Hence, determining the correct base partition will dramatically

increase throughput and decrease latency in any distributed database that supports stored procedures.

One naïve strategy is to execute each transaction on a random partition to evenly distribute work, but

the likelihood that this approach picks the “wrong” partition increases with the number of partitions. An

alternative approach, used by IBM’s DB2, is to execute the procedure on any node, then if the first statement

accesses data in some other partition, abort and re-start the transaction there [59]. This heuristic does not

work well, however, for transactions where the first statement accesses data in the wrong partition or a large

number of partitions all at once.

OP2. Lock only the partitions that the transaction accesses.
Similarly, knowing all of the partitions that each transaction will access allows the DBMS to avoid tra-

ditional concurrency control. If a single-partition transaction will only access data from its base partition,

then it can be executed to completion without any concurrency control. Otherwise, the DBMS will “lock” the

minimum partitions needed before the transaction starts; partitions that are not involved will process other

transactions. Accurately predicting which partitions are needed allows the DBMS to avoid the overhead of

64

deadlock detection and fine-grained row-based locking [131]. But if a transaction accesses an extra partition

that was not predicted, then it must be aborted and re-executed. On the other hand, if the DBMS predicts

that a transaction will access multiple partitions but only ends up accessing one, then resources are wasted by

keeping unused partitions locked.

OP3. Disable undo logging for non-aborting transactions.
Since a distributed DBMS replicates state over multiple nodes, persistent logging in these environments

is unnecessary [19, 112]. These systems instead employ a transient undo log that is discarded once the

transaction has committed [211]. The cost of maintaining this log per transaction is large relative to its

overall execution time, especially for those transactions that are unlikely to abort (excluding DBMS failures).

Thus, if the DBMS can be guaranteed that a transaction will never abort after performing a write operation,

then logging can be disabled for that transaction. This optimization must be carefully enabled, however, since

the node must halt if a transaction aborts without undo logging.

This optimization is applicable to all main-memory DBMSs, as undo logging is only needed to abort a

transaction and not for recovery as used in disk-based systems. This also assumes that that each procedure’s

control code is robust and will not abort due to programmer error (e.g., divide by zero).

OP4. Speculatively commit the transaction at partitions that it no longer needs to access.
The final optimization that we consider is using speculative execution when a distributed transaction is

finished at a partition. For distributed transactions, many DBMSs use two-phase commit to ensure consis-

tency and atomicity. This requires an extra round of network communication: the DBMS sends a prepare

message to all partitions and must wait for all of the acknowledgements before it can inform the client that the

transaction committed. If the DBMS can identify that a particular query is the last operation that a transaction

will perform at a partition, then that query and the prepare message can be combined. This is called the “early

prepare” or “unsolicited vote” optimization, and has been shown to improve both latency and throughput in

distributed systems [193].

Once a node receives this early prepare for the distributed transaction, the DBMS can begin to process

other queued transactions at that node [37, 131]. If these speculatively executed transactions only access

tables not modified by the distributed transaction, then they will commit immediately once they are finished.

Otherwise, they must wait until the distributed transaction commits. This optimization is similar to releasing

locks early in traditional databases’ two-phase commit prepare phase [72].

Predicting whether a query is the last one for a given partition is not straightforward for the traditional

“conversational” interface because the DBMS does not know what the clients will send next. But even for

stored procedures this is not easy, as conditional statements and loops make it non-trivial to determine which

queries will be executed by the transaction. As with the other optimizations, the DBMS will have to undo

work if it is wrong. If a transaction accesses a partition that it previously declared to be finished with, then

that transaction and all speculatively executed transactions at the partition are aborted and restarted.

To demonstrate how the above optimizations improve transaction throughput, we consider an example

65

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4 8 16 32 64

T
ra

n
s
a
c
ti
o
n
 T

h
ro

u
g
h
p
u
t
(t

x
n
/s

)

of Partitions

Proper Selection
Assume Single-Partition

Assume Distributed

Figure 5.1: The throughput of the system on different partition sizes using three different execution scenar-
ios: (1) All transactions are executed as distributed; (2) All transactions are executed as single-partitioned,
distributed transactions are restarted; (3) Single-partition transactions run without concurrency control and
distributed transactions lock the minimum number of partitions.

from the TPC-C benchmark [216]. A simplified version of the TPC-C NewOrder stored procedure is shown

in Fig. 5.2. Approximately 90% of the NewOrder requests create orders using items from a single warehouse.

If the database is partitioned by warehouse ids (w_id), then most of these requests are executed as single-

partitioned transactions [211].

We executed NewOrder transactions using H-Store in three different ways: (1) all requests are assumed

to be distributed and are executed on a random node locking all partitions; (2) all requests are assumed to be

single-partitioned and are executed on a random node, and if the transaction tries to access multiple partitions

it is aborted and restarted as a distributed transaction that locks the partitions it tried to access before it was

aborted; and (3) the client provides the system with the partitions needed for each request and whether it

will abort, and the DBMS only locks the necessary partitions. This last case is the best possible scenario for

the DBMS. We execute each configuration using five different cluster sizes, with two partitions/warehouses

assigned per node. Transaction requests are submitted from clients executing on separate machines in the

cluster. Each trial is executed three times and we report the average throughput of the three runs. Note that

this experiment only utilizes optimizations OP1 and OP2; we discuss all of the optimizations together in

Section 5.5.

The results in Fig. 5.1 show the significance of knowing what a transaction will do before it executes in a

system like H-Store. The throughput for the “assume distributed” case is constant for all cluster sizes because

the DBMS is limited to the rate that it can send and receive the two-phase commit acknowledgements. When

there are only a small number of partitions, the other strategies are roughly equivalent because the likelihood

that a transaction is on the partition that has the data it needs is higher. The throughput of H-Store, however,

scales better when the system has the proper information before a transaction begins, as opposed to restarting

a transaction once it deviates from the single-partitioned assumption.

66

= "SELECT * FROM WAREHOUSE WHERE W_ID = ?";
= "SELECT S_QTY FROM STOCK
 WHERE S_W_ID = ? AND S_I_ID = ?";
= "INSERT INTO ORDERS VALUES (?, ?)";
= "INSERT INTO ORDER_LINE VALUES (?, ?, ?,?)";

int run(int w_id, int i_ids[], int i_w_ids[], int i_qtys[]) {
 queueSQL(GetWarehouse, w_id);
 for (int i = 0; i < i_ids.length; i++)
 queueSQL(CheckStock, i_w_ids[i], i_ids[i]);
 Result r[] = executeBatch();

 int o_id = r[0].get("W_NEXT_O_ID") + 1;
 queueSQL(InsertOrder, w_id, o_id);
 for (int i = 0; i < r.length; i++) {
 if (r[i+1].get("S_QTY") < i_qtys[i]) abort();
 queueSQL(InsertOrderLine, w_id, o_id, i_ids[i], i_qtys[i]);
 queueSQL(UpdateStock, i_qtys[i], i_w_ids[i], i_ids[i]);
 }
 return (executeBatch() != null);

Query UpdateStock = "UPDATE STOCK SET S_QTY = S_QTY - ?
 WHERE S_W_ID = ? AND S_I_ID = ?";

Query CheckStock
Query GetWarehouse

Query InsertOrder
Query InsertOrdLine

}}

class NewOrder extends StoredProcedure {

1

2 3

4

Figure 5.2: A stored procedure defines (1) a set of parameterized queries and (2) control code. For each new
transaction request, the DBMS invokes the procedure’s run method and passes in (3) the procedure input
parameters sent by the client. The transaction invokes queries by passing their unique handle to the DBMS
along with the values of its (4) query input parameters.

5.2 Transaction Models
The throughput improvements in the previous experiment require the application to specify exactly which

partitions will be accessed and whether the transaction will abort, which depends on how the data is par-

titioned and the state of the database. This adds additional burden on developers. Worse, this will change

any time the database is reorganized. An alternative approach is to model transactions in such a way that

allows the DBMS automatically extract properties for each new transaction and then dynamically enable

optimizations without needing to modify the application’s code.

Markov models are an excellent fit for our problem because they can be both generated quickly and used

to estimate transaction properties without expensive computations [121]. The latter is important for OLTP

systems, since it is not useful to spend 50 ms deciding which optimizations to enable for a 10 ms transaction.

In this section, we define our transaction Markov models and outline how they are generated. We describe

how to use these models to select optimizations, as well as how to maintain them, in subsequent sections.

5.2.1 Definition

Stored procedures are composed of a set of queries that have unique names. A given invocation of a stored

procedure executes a subset of these queries in some order, possibly repeating queries any number of times

due to loops. For a stored procedure SP`, we define the transaction Markov modelM` as an acyclic directed

graph of the execution states and paths of SP`. An execution state is defined as a vertex vi ∈ V (M`) that

represents a unique invocation of a single query within SP`, where vi is identified by (1) the name of the

query, (2) the number of times that the query has been executed previously in the transaction (counter), (3)

67

1.00

0.23

1.00

0.00

0.01

0.26

0.64

0.04

1.00

0.49

1.00

0.67

0.96

0.56

0.01

0.50

0.99

0.78

0.50

0.23 0.50

0.52

0.33

1.00

0.49

0.76

0.00

1.00

0.22

1.00
1.00

0.50

0.01

0.00

0.04
0.96

0.48

0.27

0.99

0.74

0.75

0.25

0.51

1.00

0.50

0.00

0.50

1.00

0.48

0.36

0.44

0.261.00

0.50

0.50

1.00 1.00

0.25

0.01

1.00

0.01

commitabort

begin

InsertOrder
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

InsertOrdLine
Counter: 1

Partitions: { 1 }
Previous: { 1 }

InsertOrdLine
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

InsertOrdLine
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

UpdateStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 1 }

InsertOrder
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

GetWarehouse
Counter: 0

Partitions: { 1 }
Previous: ∅

UpdateStock
Counter: 1

Partitions: { 1 }
Previous: { 1 }

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 1 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 1 }

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

GetWarehouse
Counter: 0

Partitions: { 0 }
Previous: ∅

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

UpdateStock
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

InsertOrdLine
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

InsertOrder
Counter: 0

Partitions: { 0 }
Previous: { 0 }

InsertOrdLine
Counter: 0

Partitions: { 1 }
Previous: { 1 }

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

InsertOrdLine
Counter: 0

Partitions: { 0 }
Previous: { 0 }

UpdateStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

InsertOrdLine
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

InsertOrdLine
Counter: 1

Partitions: { 0 }
Previous: { 0 }

InsertOrder
Counter: 0

Partitions: { 1 }
Previous: { 1 }

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

(a) Markov Model

0.64

0.04

0.67

0.33

1.00

0.50

0.04

1.00

0.36

0.50

1.00

begin

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 1 }

GetWarehouse
Counter: 0

Partitions: { 1 }
Previous: ∅

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 1 }

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

GetWarehouse
Counter: 0

Partitions: { 0 }
Previous: ∅

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

(b) Detailed View

Figure 5.3: An example of a Markov model for the NewOrder stored procedure shown in Fig. 5.2. The full
model with all of the possible execution states is shown in Fig. 5.3a. Fig. 5.3b shows a detailed view of the
boxed region in the larger graph.

the set of partitions that this query will access (partitions) as returned by the DBMS’s internal API [55],

and (4) the set of partitions that the transaction has already accessed (previous). In essence, a vertex encodes

all of the relevant execution history for a transaction up to that point. Each model also contains three vertices

that represent the begin, commit, and abort states of a transaction. The two vertices vi, vj are adjacent in

M` through the directed edge ei,j ∈E(M`) if a transaction executes vj’s query immediately after executing

vi’s query.

The outgoing edges from a vertex vi ∈ V (M`) represent the probability distribution that a transaction

transitions from vi’s state to one of its subsequent states. If a transaction committed, then the vertex for

the last query it executed is connected by an edge to the commit state; in the same way, if the transaction

aborted, then the last query’s vertex is connected to the abort state. A transaction’s execution path inM` is

an ordered list of vertices from the begin state to one of these two terminal states.

These Markov models are used to predict the future states of new transactions based on the history of

previous transactions. Each model is generated from a sample workload trace for an application. A trace

contains for each transaction (1) its procedure input parameters and (2) the queries it executed, with their

corresponding parameters. Because the trace does not encode what partitions each query accessed, new

models must be regenerated from the trace whenever the database’s partitioning scheme changes.

Fig. 5.3 shows an example of a Markov model for the NewOrder procedure in Fig. 5.2. In the detailed

view shown in Fig. 5.3b, we see that there are two GetWarehouse vertices that are adjacent to the begin

vertex. The sets of previously accessed partitions for these vertices are empty since they are the first query in

the transaction, while the subsequent CheckStock states include partitions that were touched by their parent

vertices. For simplicity, Fig. 5.3 was generated for a database that has only two partitions, and thus every

68

G
LO

BA
L

PA
RT

IT
IO

N
S

Partition 0
Partition 1

1.00
0.05

Read
1.00
0.05

Write
0.00
0.95

Finish

Single-Partitioned:
Abort:

0.95
0.01GetWarehouse

Counter: 0
Partitions: { 0 }

Previous:

Figure 5.4: The probability table for the GetWarehouse state from Fig. 5.3. The table shows that with 100%
certainty any transaction that reaches this state will execute another query that accesses partition #0 before it
commits. Conversely, there is a 5% chance that it will need to either read or write data on partition #1.

NewOrder transaction executes the GetWarehouse query on just one of the two partitions (assuming that each

warehouse is assigned to one partition). The begin state’s edge probabilities are equal, which means that

transactions will execute the GetWarehouse query on either partition with equal probability.

These edge weights are used to calculate the confidence level of an execution path and predict what a

transaction will do when its procedure input parameters is insufficient to predict what query a transaction will

execute next (see Section 5.3.2).

Every vertex is also annotated with a table of probabilities for events that may occur after the transaction

reaches that particular state. This is used to make initial predictions about a transaction, and to refine and

validate those predictions as it executes. The table’s values are derived from the probability distributions of

the state transitions inherent in a Markov model, but are pre-computed in order to avoid having to perform an

expensive traversal of the model for each transaction. This step is optional but reduces the on-line computing

time for each transaction by an average of 24%, which is important for short-lived transactions. As shown in

Fig. 5.4, a probability table contains two types of estimates. The first type are global predictions on (1) the

probability that the transaction’s future queries will execute on the same partition as where its control code is

executing (OP1) and (2) the probability that the transaction will abort (OP3). For each partition in the cluster,

the table also includes the probability that a transaction will execute a query that either reads or writes data at

that partition (OP2), or conversely whether a transaction is finished at that partition (OP4).

5.2.2 Model Generation

A stored procedure’s Markov model is generated in two parts. In the first part, called the construction phase,

we create all known execution states from the workload trace. Next, in the processing phase, we traverse the

model and calculate its probability distributions. We discuss adding new states at run time in Section 5.3.4.

Construction Phase: A new model for a transaction initially contains no edges and the three vertices

for the begin, commit, and abort states. For each transaction record in the workload trace, we estimate the

partitions accessed by its queries using the DBMS’s internal API for the target cluster configuration [55]. We

then traverse the corresponding path in the model, adding vertices and edges where appropriate. After all

queries in the transaction have been processed, the last vertex in the transaction’s path is connected to one of

the terminal states. At the end of this phase, all of the initial execution states and edges have been created.

69

Processing Phase: In terms of the model, an edge’s probability represents the likelihood that a transac-

tion at the parent vertex will transition along the edge to the child vertex. In terms of the transaction, this

is the probability that a transaction that has reached the parent state will execute the child’s query next. The

processing phase visits each vertex in the model, assigning probabilities to each outgoing edge. The proba-

bility is computed as the number of times an edge was visited divided by the total number of times the vertex

was reached in the construction phase.

After the edge probabilities are calculated, we then pre-compute the vertex probability tables. A vertex’s

probability table is based on its children’s tables weighted by their edge probabilities. The first step is,

therefore, to initialize the default probabilities in the terminal states: all of the partition-specific probabilities

at the commit vertex and the global abort probability at the abort vertex are both set to one. Then to calculate

the tables for the remaining vertices, we traverse the model in ascending order based on the length of the

longest path from each vertex to either the commit or abort vertex. Traversing the graph in this manner

ensures that a vertex’s table is only calculated after the tables for all of its children have been calculated. If

the query at a vertex reads or writes data at a particular partition, then the corresponding entry in that vertex’s

probability table for that partition is set to one and the finish probability is set to zero. For those partitions not

accessed at a state, then the read/write/finish probabilities are the sum of their children vertices’ table entries

at that partition weighted on the edge probabilities to each of those child vertices.

5.3 Predictive Framework
Given this definition of our Markov models, we now present Houdini , a framework for “magically” predicting

the actions of transactions at run time. Such a framework can be embedded in a DBMS to enable it to

automatically optimize its workload. Houdini’s functionalities are designed to be autonomous, and thus do

not require human intervention to maintain once it is deployed.

As shown in Fig. 5.5, Houdini is deployed on each node in the cluster and is provided with all of the

Markov models generated off-line for the application’s stored procedures. When a transaction request arrives

at a node, the DBMS passes the request (i.e., procedure name and input parameters) to Houdini, which then

generates an initial estimate of the transaction’s execution path. This path represents the execution states

that the transaction will likely reach in the Markov model for that procedure. From this initial path, Houdini

informs the DBMS which of the optimizations described in Section 5.1 to enable for that request.

Determining the initial properties of a transaction before it executes is the critical component of our work.

We first describe a technique for mapping the procedure input parameters to query parameters so that we can

predict what partitions queries will access. We then describe how to construct the initial path in our Markov

models using these parameter mappings and how Houdini uses it to select which optimizations to enable.

Lastly, we discuss how Houdini checks whether the initial path matches what the transaction does and makes

adjustments in the DBMS.

5.3.1 Parameter Mappings

We first observe that for most transactions in OLTP workloads, the set of partitions that each query will access

is dependent on its input parameters and the database’s current state [211]. A corollary to this is that the query

70

...

Partition
Data

Partition
Data

Execution EngineExecution Engine

Txn Coordinator

Parameter
Mappings

Model Generator

Markov
Models

O
N

-L
IN

E
O

FF
-L

IN
E

Mapping Generator
Workload

Trace

2 3 Txn Estimator
Initial:

Actual:4

1

Client
Application

?

Figure 5.5: An overview of the Houdini predictive framework: (1) at initialization time, Houdini gener-
ates the Markov models and parameter mappings using a workload trace; (2) at run time, the client sends
transaction requests to the DBMS’s transaction coordinator; (3) the DBMS passes this request to Houdini,
which generates an initial path estimate and selects optimizations; (4) Houdini monitors the transaction as it
executes and provides updates to the DBMS.

parameters that are used in predicates on tables’ partitioning attributes are often provided as procedure input

parameters, and therefore they are not dependent on the output of earlier queries in the transaction. For

example, the first input parameter to Fig. 5.2 is the warehouse id (w_id) that is used as an input parameter

for almost all of the queries in NewOrder. Given this, for those queries whose input parameters that are

“linked” to procedure parameters, we can determine what partitions the queries will access using the values

of the procedure parameters at run time. Although procedures that do not follow this rule do exist, in our

experience they are the exception in OLTP applications or are the byproduct of poor application design.

To capture such relationships, we use a data structure called a parameter mapping that is derived from the

sample workload trace. A procedure’s parameter mapping identifies (1) the procedure input parameters that

are also used as query input parameters and (2) the input parameters for one query that are also used as the

input parameters for other queries. We use a dynamic analysis technique to derive mappings from a sample

workload trace. One could also use static analysis techniques, such as symbolic evaluation or taint checking,

but these approaches would still need to be combined with traces using dataflow analysis since a transaction’s

execution path could be dependent on the state of the database.

To create a new mapping for a procedure, we examine each transaction record for that procedure in the

workload and compare its procedure input parameters with all of the input parameters for each query executed

in that transaction. For each unique pairwise combination of procedure parameters and query parameters, we

count the number of times that the two parameters had the same value in a transaction. After processing all of

the records in this manner, we then calculate the mapping coefficient for all parameter pairs as the number of

times that the values for that pair were the same divided by the number of comparisons performed. As shown

in the example in Fig. 5.6, the first procedure parameter has the same value as the first query parameter

71

int i_ids[], int i_w_ids[] Input Parameter:

int w_id Input Parameter:

int w_idInput Parameter:

GetWarehouse SELECT * FROM WAREHOUSE WHERE W_ID=?

InsertOrder INSERT INTO ORDERS VALUES (?, ?);

CheckStock SELECT S_QTY FROM STOCK WHERE S_I_ID=? AND S_W_ID=?

1.0

1.0

1.0

1.0

Parameter Mapping

Figure 5.6: A parameter mapping for the NewOrder procedure.

for GetWarehouse (i.e., the mapping coefficient is equal to one), and thus we infer that they are the same

variable in the procedure’s control code. We apply this same technique to the other queries and map their

input parameters as well. Note that there is not a mapping from W_NEXT_O_ID to the input parameters for

InsertOrder because we do not keep track of the output values produced by queries.

A parameter mapping also supports transactions where the same query is executed multiple times and

when the stored procedure has non-scalar input parameters. If a query is executed multiple times in the same

transaction, then each invocation is considered a unique query. Likewise, if a procedure input parameter is

an array, then each element of that array is treated as a unique parameter. From the mapping in Fig. 5.6, we

identify that the n-th element of the i_ids array is linked to the third parameter of the n-th invocation of

InsertOrdLine in Fig. 5.2. For each element in a procedure parameter array, we compare it with all of the

query parameters within the current transaction just as before. The coefficients for multiple query instances

or array parameters are aggregated into a single value using their geometric mean.

We remove false positives by discarding any mapping coefficients that are below a threshold; these occur

when parameters randomly have the same values or when the control code contains a conditional block that

modifies the input parameter. We found empirically that coefficients greater than 0.9 seem to all give the

same result for the workloads that we investigated.

5.3.2 Initial Execution Path Estimation

Now with the procedure parameter mappings, Houdini constructs the initial execution path estimate in the

Markov models for each new transaction request that arrives at the DBMS.

To generate a path estimate for a transaction, we first enumerate all of the successor states to the begin

state and construct the set of candidate queries. We then estimate which partitions these candidates queries

will access using the procedure’s parameter mapping. This determines whether transitioning from the current

state to the state represented by these queries (and the set of partitions that they access) is valid. A state

72

0.04
0.96

0.50

0.04
0.96

0.50
begin

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 1 }

GetWarehouse
Counter: 0

Partitions: { 1 }
Previous: ∅

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

GetWarehouse
Counter: 0

Partitions: { 0 }
Previous: ∅

GetWarehouse SELECT * FROM WAREHOUSE WHERE W_ID=?

 int w_id=0

Parameter Mapping:

Candidate Queries:

Current State:

(a)

0.64

0.96

0.50
0.33 0.49

0.04

0.50

0.01

begin

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 1 }

GetWarehouse
Counter: 0

Partitions: { 1 }
Previous: ∅

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

GetWarehouse
Counter: 0

Partitions: { 0 }
Previous: ∅

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

CheckStock SELECT S_QTY FROM STOCK
 WHERE S_I_ID=? AND S_W_ID=?

int i_ids[0]=1001, int i_w_ids[0]=0

Parameter Mapping:

Candidate Queries:

Current State:

(b)

0.96

0.50
0.490.01

1.00

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

InsertOrder INSERT INTO ORDERS VALUES (?, ?);

CheckStock SELECT S_QTY FROM STOCK
 WHERE S_I_ID=? AND S_W_ID=?

0 99

1.00
InsertOrder

Counter: 0
Partitions: { 0 }
Previous: { 0 }

int i_ids[1]=1002, int i_w_ids[1]=1, int w_id = 0

Parameter Mapping:

Candidate Queries:

Current State:

(c)

Figure 5.7: An example of generating the initial execution path estimate for a NewOrder invocation.
As shown in the trace record in Fig. 5.6, the procedure parameters in this example are (w_id=0,
i_ids=[1001,1002], w_i_ids=[0,1], i_qtys=[2,7]).

transition is valid for a transaction if (1) we can determine all the query parameters needed for calculating the

partitions accessed by that state’s query and (2) the next state’s set of previously accessed partitions contains

all the partitions accessed by the transaction up to this point. For those transitions that are valid, we choose

the one with the greatest edge probability, append this state to the initial path estimate, and then repeat the

process.

We now illustrate these steps using the NewOrder Markov model shown in Fig. 5.3. As shown in Fig. 5.7a,

the only candidate query when a transaction starts is GetWarehouse. Using the parameter mapping shown in

Fig. 5.6, we identify that GetWarehouse’s first parameter is mapped to the procedure’s first parameter (w_id).

Therefore, we can compute which partitions GetWarehouse accesses because we know with a high-degree of

certainty the value of its only input parameter is the same as the value of w_id. We then select the next state as

the particular GetWarehouse state that accesses the same partitions as was estimated. This process is repeated

in the next step in Fig. 5.7b: the candidate query set contains only CheckStock, so we again use the mapping

to get the values of the procedure parameters that are used for that query and compute which partitions that

the query accesses. We then select the next state in the path as the one that represents the first invocation

of CheckStock that accesses these partitions and also has the correct previously accessed partitions for the

transaction.

The technique described above works well when either the procedure’s control code is linear or all the

pertinent query parameter are mappable to procedure parameters, whereupon the Markov model is essentially

a state machine. But many procedures contain conditional branches, and thus it is not always possible to

resolve which state is next simply by estimating partitions. An example of this is shown in Fig. 5.7c. There

are two choices for which query that the transaction could execute next: (1) the second invocation of Check-

Stock or (2) the first invocation of InsertOrder. Both transitions are valid if the size of the i_ids procedure

input parameter array is greater than one. If the size of this array was one, then Houdini would infer that the

transaction could never execute CheckStock a second time. When such uncertainty arises, we chose the edge

with the greater weight.

73

The path estimate is complete once the transaction transitions to either the commit or abort state.

5.3.3 Initial Optimizations Selection

Using a transaction’s initial path estimate, Houdini chooses which optimizations the DBMS should enable

when it executes the transaction. We now describe how Houdini selects these optimizations.

For each potential optimization, we calculate a confidence coefficient that denotes how likely that it is

correct. This coefficient is based on the probabilities of the edges selected in the transaction’s initial path

estimate. Houdini prunes estimations if their corresponding confidence is less than a certain threshold. Set-

ting this threshold too high creates false negatives, preventing the DBMS from enabling valid optimizations.

Conversely, setting this threshold too low creates false positives, causing the DBMS to enable certain opti-

mizations for transactions that turn out to be incorrect and therefore it will have to rollback work. We explore

the sensitivity of this threshold in our evaluation in Section 5.5.4.

OP1: Houdini counts each time that a partition is accessed by a query in the transaction’s initial path esti-

mate. The partition that is accessed the most is selected as the transaction’s base partition.

OP2: Similarly, the set of partitions that the transaction needs (and therefore the DBMS should lock) is the

based on the execution states in the initial path estimate. The probability that a partition is accessed is

the confidence coefficient of the edges in the initial path up to the first vertex that accesses that partition.

OP3: Because multi-partition and speculatively executed transactions can be aborted as a result of other

transactions in the system, these transactions are always executed with undo logging enabled. Thus,

Houdini will only determine which non-speculative single-partition transactions can be executed with-

out undo buffers. Houdini is more cautious when estimating whether transactions could abort because

unlike the other optimizations, it will be expensive to recover if it is wrong. To avoid this, we use the

greatest abort probability in the all of the tables in the initial path estimate. That is, the probability that

the transaction will abort is the largest abort probability value in all of the states’ tables.

5.3.4 Optimization Updates

After creating the initial path and optimization estimates for a transaction, Houdini provides this information

to the DBMS. The transaction is then queued for execution at the current node or redirected based on the

estimate. Once the transaction starts, Houdini tracks its execution and constructs the path of execution states

that the transaction enters in its stored procedure’s model. At each state, Houdini (1) determines whether

the transaction has deviated from the initial path estimate and (2) derives new information based on the

transaction’s current state. If the transaction reaches a state that does not exist in the model, then a new vertex

is added as a placeholder; no further information can be derived about that state until Houdini recomputes

the model’s probabilities (Section 5.3.5). Otherwise, Houdini uses the current state to provide updates to the

DBMS’s transaction coordinator:

OP3: Houdini uses the pre-calculated probability tables to check whether a single-partition transaction has

reached a point in its control code that will never abort (i.e., there is no path from the current state to the

74

abort state). When this occurs, the DBMS disables undo logging for the remainder of the transaction’s

execution.

OP4: Houdini also uses the probability tables to determine whether a distributed transaction is finished with

partitions. If the finish probability for a particular partition is above the confidence threshold, then

Houdini informs the DBMS that the transaction no longer needs that partition. This allows the DBMS

to send the early prepare message [193] and speculatively execute transactions at these partitions [37,

131]. If the transaction was read-only at a partition, then it commits immediately and the DBMS

begins to execute other transactions on that partition. Otherwise, the speculative transaction waits until

the distributed transaction finishes.

5.3.5 Model Maintenance

The probability that a transaction transitions from one state to another is based on static properties of the

sample workload trace that was used to generate the models. If an application’s workload shifts, then the

models may no longer represent the current behavioral state of that application. For example, if previous

NewOrder transactions in the trace only inserted two items but now incoming requests have three or more,

then Houdini will incorrectly choose initial paths that only executed the CheckStock query twice. Houdini

can identify when the workload has changed [119] and to adjust to these changes without having to re-create

the models. This occurs on-line without stopping the system; new models only need to be generated off-line

when the database’s partitioning scheme changes or when the procedure’s control code is modified.

Houdini determines whether a model is no longer accurate by measuring how often it chooses a state

transition for transactions that does not match the expected edge probability distribution. As a transaction

executes, Houdini constructs its actual execution path in the model and increments internal counters whenever

the transaction “visits” an edge. As long as the distribution of the transitions from each vertex is within some

threshold of the original probabilities in the Markov model, then Houdini infers that the model is still in sync

with the application. If the distribution no longer matches the model’s expectations, then Houdini recalculates

the edge and vertex probabilities based on the edge counters. Since this is an inexpensive operation (≤ 5 ms),

our current implementation uses a threshold of 75% accuracy before Houdini recomputes the probabilities.

We defer the exploration of more robust techniques as future work, such as a sliding window that only

includes recent transactions for fast changing workloads.

5.3.6 Limitations

There are three ways that Houdini may fail to improve the throughput of the DBMS. The first case is if the

overhead from calculating the initial path estimate negates the optimizations’ performance gains. This can

occur if a model is very wide (i.e., many transition possibilities per state) or very long (i.e., many queries

executed per transaction). For the latter, the limit is approximately 175-200 queries per transaction in our

current implementation. It simply takes too long for Houdini to traverse the model for these transactions

and compute the partitions that could be accessed at each state. Pre-computing initial path estimates for

stored procedures that are always single-partition would alleviate this problem to some extent, but it is not

applicable for procedures that are distributed only some of the time since Houdini needs the path estimate to

75

determine what partitions will be accessed. We note, however, that procedures that execute many queries and

touch a large portion of the database are not the main focus of high-performance OLTP systems. They are

often “clean-up” transactions that are executed at periodic intervals to perform maintenance operations on the

entire database and thus are unlikely to benefit from the optimizations enabled by Houdini.

Additionally, storing all of the execution states for a stored procedure in a single “global” Markov model

can be difficult to scale for large clusters. The total number of states per model is combinatorial for procedures

like NewOrder that access combinations of partitions, most of which are unreachable based on where the

transaction’s control code is executing. For example, a transaction executing at a particular partition can only

reach just one of the GetWarehouse states in Fig. 5.3b and based on which one that is, other states can never

be reached. These global models are also problematic on multi-core nodes, since Houdini must either use

separate copies of the models for each execution thread, or use locks to avoid consistency issues when it

updates the models.

The last type of limitation that can hinder DBMS performance is if the models are unable to accurately

predict what a transaction will do, causing the DBMS to make wrong decisions and possibly have to redo

work. As an example of this, consider a NewOrder request that has two items to insert from different ware-

houses (i.e., partitions). If Houdini uses the Markov model in Fig. 5.3 to predict this transaction’s initial path,

then it would not select the correct execution state from the choices shown in Fig. 5.7c. This is because the

second invocation of CheckStock and the InsertOrder query are both valid states; the length of the length

of the warehouse id array (i_w_ids) is greater than one, and thus the transaction could potentially execute

either query. As described in Section 5.3.2, when such uncertainty arises, we choose the next state transition

based on edge with the greatest probability. This is still insufficient, however, since the probability of the

transition that the transaction will actually take is less than the other potential transition. The Markov model

in Fig. 5.3 does not capture the fact that the number of CheckStock queries corresponds to the length of the

i_w_ids array. This is problematic in our example because the query that Houdini failed to predict in the

model accesses a partition that is different than the ones from the transaction’s previous queries. This means

that Houdini will have incorrectly predicted that the transaction is single-partitioned.

5.4 Model Partitioning
Given these limitations, we now describe how Houdini automatically partitions the Markov models for a

given application to improve their prediction efficacy and scalability. Houdini clusters the transactions for

each procedure in the sample workload trace based on salient attributes of its input parameters. This allows

us to capture certain nuances of the transactions, such as variability in the size of input parameter arrays. As

shown in Fig. 5.8, we generate models for each of these clusters and support them with a decision tree that

allows Houdini to quickly select the right model to use for each incoming transaction request at run time.

Dividing the models in the manner that we now describe is a well-known and effective technique from

the machine learning and optimization communities [132, 227].

76

InsertOrder
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

commitabort

0.01

InsertOrdLine
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

1.00

GetWarehouse
Counter: 0

Partitions: { 1 }
Previous:

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

0.96

InsertOrder
Counter: 0

Partitions: { 1 }
Previous: { 0 }

0.01

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

0.99

1.00

InsertOrdLine
Counter: 0

Partitions: { 1 }
Previous: { 0 }

1.00

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

0.99

begin

0.04

1.00

1.000.99
0.00

1.00

InsertOrder
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

commitabort

0.01

InsertOrdLine
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

1.00

GetWarehouse
Counter: 0

Partitions: { 0 }
Previous:

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.96

InsertOrder
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.01

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.99

1.00

InsertOrdLine
Counter: 0

Partitions: { 0 }
Previous: { 0 }

1.00

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

0.99

begin

0.04

1.00

1.000.99
0.00

1.00

InsertOrder
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

0.23

commit abort

0.01InsertOrdLine
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

UpdateStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

0.54

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

GetWarehouse
Counter: 0

Partitions: { 0 }
Previous:

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.96

UpdateStock
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

InsertOrder
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.01

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.99

0.46

InsertOrdLine
Counter: 0

Partitions: { 0 }
Previous: { 0 }

UpdateStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

0.99

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

1.00

1.00

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

0.99

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

0.76

1.00

InsertOrdLine
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

1.00

InsertOrdLine
Counter: 1

Partitions: { 0 }
Previous: { 0 }

1.00

begin

0.04

1.00

1.00

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

1.00

0.01

1.001.00

0.50

1.00

0.01

1.00
InsertOrder

Counter: 0
Partitions: { 1 }
Previous: { 0, 1 }

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

0.23

commit abort

0.01InsertOrdLine
Counter: 0

Partitions: { 1 }
Previous: { 0, 1 }

UpdateStock
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

0.54

CheckStock
Counter: 0

Partitions: { 0 }
Previous: { 0 }

GetWarehouse
Counter: 0

Partitions: { 1 }
Previous:

CheckStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

0.96

UpdateStock
Counter: 1

Partitions: { 0 }
Previous: { 0, 1 }

InsertOrder
Counter: 0

Partitions: { 1 }
Previous: { 0 }

0.01

UpdateStock
Counter: 0

Partitions: { 1 }
Previous: { 0 }

0.99

0.46

InsertOrdLine
Counter: 0

Partitions: { 1 }
Previous: { 0 }

UpdateStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

0.99

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

1.00

1.00

CheckStock
Counter: 1

Partitions: { 1 }
Previous: { 0 }

0.99

UpdateStock
Counter: 0

Partitions: { 0 }
Previous: { 0, 1 }

0.76

1.00

InsertOrdLine
Counter: 1

Partitions: { 1 }
Previous: { 0, 1 }

1.00

InsertOrdLine
Counter: 1

Partitions: { 1 }
Previous: { 0 }

1.00

begin

0.04

1.00

1.00

CheckStock
Counter: 1

Partitions: { 0 }
Previous: { 0 }

1.00

0.01

1.001.00

0.50

1.00

0.01

1.00

= 0

= 2= 1

HashValue(w_id)

ArrayLength(i_ids)

2 Partitions
= 1

= 2= 1

ArrayLength(i_ids)

Figure 5.8: A partitioned set of NewOrder Markov models. The decision tree above the models divides
transactions by the hash value of the first procedure parameter and the length of the array of the second
procedure parameter. The detail of the models in the above figure is not relevant other than to note that they
are less complex than the global model for the same procedure shown in Fig. 5.3.

Feature Category Description
NORMALIZEDVALUE(x) The normalized value of the parameter x.
HASHVALUE(x) The hash value of the parameter x.
ISNULL(x) Whether the value of the parameter x is null.
ARRAYLENGTH(x) The length of the array parameter x.
ARRAYALLSAMEHASH(x) Whether all elements of the array parameter x hash to the value.
EQUALSBASEPARTITION(x) Whether parameter x hashes to the same value as the txn’s base partition.

Table 5.1: The list of feature categories that are extracted from the stored procedure input parameters for each
transaction trace record. These features are used when sub-dividing the models for each stored procedure to
improve scalability and prediction accuracy.

Feature Instance Value Feature Instance Value
HASHVALUE(w_id) 0 ARRAYLENGTH(w_id) null
HASHVALUE(i_ids) null ARRAYLENGTH(i_ids) 2
HASHVALUE(i_w_id) null ARRAYLENGTH(i_w_ids) 2
HASHVALUE(i_qtys) null ARRAYLENGTH(i_qtys) 2

Table 5.2: The feature vector extracted from the transaction example in Fig. 5.7. The value for the AR-
RAYLENGTH(w_id) feature is null because the w_id procedure parameter in Fig. 5.2 is not an array.

5.4.1 Clustering

The goal of the clustering process is to group transactions together based on their features in such a way

that the Markov models for each cluster more accurately represent the transactions. We define a feature in

77

this context as an attribute that is derived from a transaction’s stored procedure input parameters [103]. For

example, one feature could be the length of the array for one particular parameter, while another could be

whether all of the values in that array are the same. Table 5.1 shows the different categories of features that

are extracted from transaction records. A feature vector is a list of values for these features that are extracted

from each transaction trace record in the sample workload. Each transaction’s feature vector contains one

value per input parameter per category. An example of a feature vector is shown in Table 5.2

After extracting the feature vectors for each of the transaction records in the workload trace, we then

employ a machine learning toolkit to cluster the transactions of each procedure based on these vectors [107].

We use the expected maximization clustering algorithm, as it does not require one to specify the number of

clusters beforehand. The transaction records are each assigned to a cluster by this algorithm and then we train

a new Markov model that is specific for each cluster using these records. For example, if we clustered the

NewOrder transactions based on the length of the i_w_ids input parameter, then the number of CheckStock

invocations for all transactions in each cluster will be the same.

5.4.2 Feed-Forward Selection

The problem with the above clustering approach is that it is decoupled from Houdini’s ability to predict a

transaction’s properties accurately using the models; that is, the clustering algorithm may choose clusters for

a stored procedure based on features that do not improve the accuracy of the models’ predictions compared

to the single non-clustered model. Therefore, we need to determine which set of features are relevant for

each procedure in order to cluster the transactions properly. Enumerating the power set of features with a

brute-force search to evaluate the accuracy of all feature combinations is not feasible, since the amount of

time needed to find the optimal feature set is exponential. This would simply take too long for applications

either with a large number of stored procedures or with stored procedures that have many input parameters.

We instead use a greedy algorithm called feed-forward selection as a faster alternative [103, 132]. This

algorithm first iterates all unique feature combinations for small set sizes and then constructs larger sets using

only those features that were in the smaller sets that improve the predictions. In each round r, we create all

sets of features of size r and measure how well they predict the initial execution paths of transactions. After

each round, we sort the feature sets in ascending order and select the features in the top 10% sets with the

best accuracy. We repeat the process in the next round using sets of size r + 1. The search stops when at the

end of a round the algorithm fails to find at least one feature set that produces clustered models with better

prediction accuracy than the best feature set found in the previous rounds.

To begin, we first split the sample workload for the target stored procedure into three disjoint segments,

called the training workset (30%), the validation workset (30%), and the testing workset (40%) [132]. Then

we enumerate the power set of features for the current round (e.g., if there n features, then the initial round

will have n one-element sets). For each feature set in the round, we seed the clustering algorithm on that set

using the training workset. We then use the seeded clusterer to divide the transaction records in the validation

workset and generate the Markov models for each cluster using the same method described in Section 5.2.2.

Now with a separate Markov model per cluster for a particular feature set, we estimate the accuracy of the

clustered models using the remaining records in the testing workset. For each of these transaction records, we

generate an initial path estimate using Houdini just as if it was a new transaction request and then simulate the

78

transaction executing in the system by generating the “actual” execution path of the transaction. We measure

the accuracy of these initial path estimates not only based on whether it has the same execution states as the

actual path, but also based on whether Houdini correctly generates transaction updates.

The accuracy for each initial path estimate is based on the optimizations defined in Section 5.1. The

penalty for incorrectly predicting that a single-partition transaction will not abort is infinite, since it puts the

database in an unrecoverable state. The total accuracy measurement for each feature set is the sum of these

penalties for all transactions in the testing workset.

5.4.3 Run Time Decision Tree

After the search terminates, we use the feature set with the lowest cost (i.e., most accurately models the

transactions for the target stored procedure) to generate a decision tree for the models using the C4.5 classifier

algorithm from the same machine learning toolkit [107]. When a new transaction request arrives at the DBMS

at run time, Houdini extracts the feature vector for the transaction and traverses this decision tree to select

which Markov model to use for that request. For example, the Markov models shown Fig. 5.8 for the New-

Order stored procedure are clustered on the value of the w_id parameter and the length of the i_w_ids array.

The models in the leaf nodes of the tree are specific to these features. This mitigates the scaling, concurrency,

and accuracy problems from using a single model per procedure.

5.5 Experimental Evaluation
We have integrated our modeling algorithms and prediction framework in the H-Store system and now present

an evaluation of its usefulness. We use three OLTP benchmarks that have differing levels of complexity in

their workloads: TATP, TPC-C, and AuctionMark (cf. Appendix A). We assume that the databases for each

benchmark are partitioned in such way that it maximizes the number of single-partition transactions [181].

For each benchmark, we generate sample workload traces of 100,000 transactions collected over a simulated

one hour period.

All of the experiments measuring throughput were conducted on a cluster at the University of Wisconsin-

Madison. Each node has a single 2.4GHz Intel Core 2 Duo processor with 4GB RAM.

5.5.1 Model Accuracy

We first calculated the off-line accuracy of the optimization estimates generated by Houdini for a simulated

cluster of 16 partitions. The accuracy of an estimate is based on whether Houdini (1) identifies the optimiza-

tions at the correct moment in the transaction’s execution (e.g., disabling undo logging at the right time –

OP3), (2) does not cause the DBMS to perform unnecessary work (e.g., locking partitions that are never used

– OP1, OP2), and (3) does not cause the transaction to be aborted and restarted (e.g., accessing a partition

after it was deemed finished – OP4). For each procedure, we generate a single “global” model and a set

of “partitioned” models using the first 50,000 transaction records from the sample workloads. We then use

Houdini to estimate optimizations for the remaining 50,000 transactions. We reset the models after each

estimation so as to not learn about new execution states, which would mask any deficiencies.

The results in Table 5.3 show that the global Markov models enable accurate path estimates for 91.0% of

79

4 Partitions

1.00 1.001.00

commit

begin
1.00

0.36
0.34

0.31

abort

0.70

0.21

0.66

0.23

0.64

0.25

0.76
0.24

1.00

0.30

GetSFType
Counter: 0

Partitions: { 3 }
Previous: { 0, 1, 2, 3 }

InsertCallFwrd
Counter: 0

Partitions: { 3 }
Previous: { 0, 1, 2, 3 }

GetSFType
Counter: 0

Partitions: { 2 }
Previous: { 0, 1, 2, 3 }

InsertCallFwrd
Counter: 0

Partitions: { 2 }
Previous: { 0, 1, 2, 3 }

GetSFType
Counter: 0

Partitions: { 0 }
Previous: { 0, 1, 2, 3 }

InsertCallFwrd
Counter: 0

Partitions: { 0 }
Previous: { 0, 1, 2, 3 }

GetSubscriber
Counter: 0

Partitions: { 0, 1, 2, 3 }
Previous:

GetSFType
Counter: 0

Partitions: { 1 }
Previous: { 0, 1, 2, 3 }

InsertCallFwrd
Counter: 0

Partitions: { 1 }
Previous: { 0, 1, 2, 3 }

(a) TATP

1.00

1.00

1.00

0.91

1.00

0.09
UpdateBCCustomer

Counter: 0
Partitions: { 0 }
Previous: { 0 }

1.00
InsertHistory

Counter: 0
Partitions: { 0 }
Previous: { 0 }

UpdateGCCustomer
Counter: 0

Partitions: { 0 }
Previous: { 0 }

begin

commit

1.00
GetWarehouse

Counter: 0
Partitions: { 0 }
Previous: { 0 }

GetCustomer
Counter: 0

Partitions: { 0 }
Previous:

UpdateWarehouseBalance
Counter: 0

Partitions: { 0 }
Previous: { 0 }

4 Partitions

(b) TPC-C

0.34

0.08

1.00

0.670.33

GetBuyerFeedback
Counter: 0

Partitions: { 0, 1, 2, 3 }
Previous: { 0 }

0.25

GetSellerItems
Counter: 0

Partitions: { 0 }
Previous: { 0 }

0.66

GetBuyerItems
Counter: 0

Partitions: { 0, 1, 2, 3 }
Previous: { 0 }

0.67

1.00

commit

GetBuyerFeedback
Counter: 0

Partitions: { 0, 1, 2, 3 }
Previous: { 0, 1, 2, 3 }

1.00

GetUser
Counter: 0

Partitions: { 0 }
Previous:

begin4 Partitions

(c) AuctionMark

Figure 5.9: Markov models for select stored procedures from the TATP, TPC-C, and AuctionMark OLTP
benchmarks used in our evaluation in Section 5.5.

the transactions evaluated, while the partitioned models improved the accuracy rate to 93.4%. Although Hou-

dini fails to select the base partition (OP1) for 5% of TATP’s transactions, they are all distributed transactions

that either update every partition (i.e., the base partition does not matter) or access a single partition based

on the result of a multi-partition query (i.e., the best base partition depends on the state of the database).

The accuracy for TPC-C is nearly perfect in the partitioned models for OP1-3, but that it can miss that a

transaction is with finished a partition (OP4). The accuracy for AuctionMark transactions is also high, except

for the two procedures with conditional branches. Houdini never mispredicts that a transaction will not abort

for any benchmark, but it does miss a small number of transactions (<1%) where it could have disabled undo

logging (OP3).

80

TATP TPC-C AuctionMark

OP1 Global 95.0% 94.8% 94.9%
Partitioned 94.9% 99.9% 94.7%

OP2 Global 98.9% 90.9% 90.7%
Partitioned 100% 99.0% 95.4%

OP3 Global 100% 100% 100%
Partitioned 100% 100% 100%

OP4 Global 99.5% 100% 100%
Partitioned 99.5% 95.8% 99.9%

Total Global 94.9% 93.8% 85.6%
Partitioned 94.9% 95.0% 90.2%

Table 5.3: Measurements of the global and partitioned Markov models’ accuracy in predicting the execution
properties of transactions.

5.5.2 Estimation Overhead

Next, we measured the overhead of using Houdini to estimate the optimizations at run time. We implemented

a profiler [112] that records the amount of time H-Store spends for each transaction (1) estimating the initial

execution path and updates, (2) executing its control code and queries, (3) planning its execution, (4) coordi-

nating its execution, and (5) miscellaneous setup operations. We executed the benchmarks on a 16-partition

H-Store cluster and report the average time for each of these measurements. Profiling begins when a request

arrives at a node and then stops when the result is sent back to the client. We use the partitioned models so

that the cost of traversing the decision tree is included in the measurements.

The results in Fig. 5.10 show that only an average of 5.8% of the transactions’ total execution time is spent

in Houdini. This time is shared equally between estimating the initial path versus calculating updates. All

procedures with an overhead greater than 15% are short-lived single-partitioned transactions. For example,

46.5% of AuctionMark NewComment’s execution time is spent selecting optimizations, but it is the shortest

transaction (i.e., average execution time is just 0.29 ms). Although we do not discuss such techniques in

this dissertation, Houdini can completely avoid this if it caches the estimations for any non-abortable, always

single-partition transactions.

5.5.3 Transaction Throughput

We next measured the throughput of H-Store when deployed with Houdini. We execute each benchmark using

five different cluster sizes, with two partitions assigned per node. Transaction requests are submitted from

multiple client processes running on separate machines in the cluster. We use four client threads per partition

to ensure that the workload queues at each node are always full. We execute each benchmark three times per

cluster size and report the average throughput of these trials. In each trial, the DBMS is allowed to “warm-

up” for 60 seconds and then the throughput is measured after five minutes. As H-Store executes, we record

the percentage of transactions for each procedure where Houdini successfully selected an optimization. Note

that this is different than the accuracy measurements shown Table 5.3, because Houdini now must consider

the run time state of the DBMS (e.g., it cannot disable undo logging for speculative transactions).

We executed the benchmarks with Houdini first using the global Markov models and then again using the

81

 0%

 20%

 40%

 60%

 80%

 100%

A B C D E F G H I J K L M N O P

%
 o

f T
ra

ns
ac

tio
n

Ti
m

e

A B C D E F G H I J K L M N O P
TATP

A B C D E F G H I J K L M N O P Q R S T U V

Estimation Execution Planning Coordination Other

TPC-C AuctionMark

Figure 5.10: Relative measurements of the time spent for each transaction (1) estimating optimizations, (2)
executing, (3) planning, (4) coordinating its execution, and (5) other setup operations.

partitioned models. We allow Houdini to “learn” about new execution states in the models in the warm-up

period, and then recompute the probabilities before running the measured workload. For each new transaction

request, Houdini generates the initial path estimate and determines whether the request needs to be redirected

to a different node (OP1) and can be executed with undo logging (OP3). As the transaction executes, Houdini

checks whether it is finished with other partitions (OP4) or no longer needs undo logging (OP3). Any

transaction that attempts to access a partition that Houdini failed to predict (OP2) is aborted and restarted as

a multi-partition transaction that locks all partitions.

To compare how H-Store performs without Houdini, we also executed the benchmarks using DB2-style

transaction redirects [59]. When operating in this mode, the DBMS first executes every request as single-

partition transaction at a random partition on the node where the request originally arrived. If a transaction

attempts to access a partition that is different than the one it was assigned to, then it is aborted and redirected

to the correct node. If the transaction attempts to access multiple partitions, none of which are at the node

where it is currently executing at, then it is redirected to the partition that it requested the most and is exe-

cuted as a multi-partition transaction (with random tiebreakers). Because the DBMS has no way to infer the

transaction properties without Houdini, it cannot use the other optimizations.

TATP: The results in Fig. 5.11a show that there is a 26% throughput improvement when using the par-

titioned models with Houdini. This is mainly attributable to Houdini identifying the best base partition for

82% of TATP’s workload that is singled-partitioned (OP1, OP2). The other 18% first execute a broadcast

query on all partitions, thus locking a subset of the partitions is not possible (OP2). Subsequent queries in

these transactions only access a single partition based on the result of the first query. This also makes it im-

possible to select the correct base partition for each transaction (OP1), since the Houdini cannot know which

partition will be needed after the broadcast query. Thus, without the early prepare optimization, all of the

other partitions would remain idle (OP4), albeit for just a short amount of time. An example of a Markov

model for this access pattern is shown in Fig. 5.9a. Additionally, as shown in Table 5.4, Houdini disables

82

Procedure OP1 OP2 OP3 OP4 Estimate
TA

T
P

A DeleteCallFwrd - 100% - - 0.02 ms
B GetAccessData 98.5% 100% 64.8% 33.7% 0.01 ms
C GetNewDest 100% 100% 66.4% 33.6% 0.01 ms
D GetSubscriber 98.9% 100% 64.9% 34.1% 0.01 ms
E InsertCallFwrd - 100% - - 0.04 ms
F UpdateLocation - 100% - - 0.01 ms
G UpdateSubscriber 100% 100% - 53.2% 0.02 ms

T
PC

-C

H Delivery 100% 100% 78.6% 22.4% 4.23 ms
I NewOrder 99.5% 93.2% 72.5% 19.6% 0.43 ms
J OrderStatus 100% 100% 89.6% 85.3% 0.05 ms
K Payment 99.1% 99.7% 60.6% 16.4% 0.08 ms
L StockLevel 99.2% 100% 46.7% 22.0% 0.05 ms

A
uc

tio
nM

ar
k

M CheckWinningBids - - - - -
N GetItem 100% 100% 89.0% 11.0% 0.04 ms
O GetUserInfo 99.9% 100% 75.3% 8.4% 0.05 ms
P GetWatchedItems 100% 100% - - 0.04 ms
Q NewBid 100% 100% 83.2% 13.3% 0.26 ms
R NewComment 99.5% 100% 44.6% 11.3% 0.13 ms
S NewItem 100% 100% 95.9% 4.1% 0.20 ms
T NewPurchase 99.0% 100% 46.4% 11.1% 0.12 ms
U PostAuction - 55.0% - 16.7% 0.32 ms
V UpdateItem 100% 100% 90.5% 9.5% 0.04 ms

Table 5.4: The percentage of transactions that Houdini successfully enabled one of the four optimizations. In
the case of OP4, the measurement represents how many transactions were speculatively executed as a result
of the early prepare optimization. The rightmost column contains the average amount of time that Houdini
spent calculating the initial optimization estimates and updates at run time.

undo logging for 57.3% of TATP’s transactions (OP3), but this has negligible impact since the transactions

execute only 1-3 queries or are read-only.

The throughput of global models is 4.5% slower on average than the partitioned models due to lock con-

tention in Houdini.

TPC-C: This benchmark’s results in Fig. 5.11b show that the “assume single-partition” method performs

6% better than Houdini for small clusters. This is because the likelihood that a transaction is already at

the best base partition is greater when there are fewer partitions (OP1). TPC-C’s procedures also execute

more queries per transaction than the other benchmarks, and thus the estimations take longer to compute.

As shown in Table 5.4, Houdini takes an average of 4 ms to compute estimates for Delivery transactions,

but these transactions take over 40 ms to execute. The benefit of our techniques therefore is only evident

for larger clusters: Houdini’s ability to identify not only whether a transaction is distributed or not, but also

which partitions it accesses improves throughput by 33.6% (OP2). Table 5.4 also shows that 65.3% of TPC-

C’s workload is executed without undo logging, most of which are after the transactions have started (OP3).

These results also highlight the advantage of model partitioning: the global models’ size grows exponen-

tially relative to the number of partitions, thereby increasing the time Houdini needs to traverse the model.

83

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 4 8 16 32 64

T
ra

n
s
a
c
ti
o
n
 T

h
ro

u
g
h
p
u
t
(t

x
n
/s

)

of Partitions

Houdini - Partitioned
Houdini - Global

Assume Single-Partition

(a) TATP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 4 8 16 32 64

T
ra

n
s
a
c
ti
o
n
 T

h
ro

u
g
h
p
u
t
(t

x
n
/s

)

of Partitions

Houdini - Partitioned
Houdini - Global

Assume Single-Partition

(b) TPC-C

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4 8 16 32 64

T
ra

n
s
a
c
ti
o
n
 T

h
ro

u
g
h
p
u
t
(t

x
n
/s

)

of Partitions

Houdini - Partitioned
Houdini - Global

Assume Single-Partition

(c) AuctionMark

Figure 5.11: Throughput measurements of H-Store for different execution modes: (1) Houdini with parti-
tioned Markov models; (2) Houdini with global Markov models; and (3) DB2-style transaction redirects and
assuming that all partitions are single-partitioned.

The partitioned models also allow Houdini to identify the correct partitions needed for NewOrder and Pay-

ment transactions more often, resulting in fewer aborted transactions. As shown in Fig. 5.9b, partitioning

Payment’s models creates almost linear models, which enables Houdini to easily identify when the transac-

tion is distributed (OP2).

AuctionMark: The results in Fig. 5.11c show that H-Store achieves an average 47.3% performance

improvement when using Houdini with partitioned models for this workload. Like TPC-C, the global models

have scalability issues as the size of the cluster increases. AuctionMark mostly benefits from identifying

the two partitions the lock for distributed transactions: one for the buyer and one for the seller (OP2). As

shown in Table 5.4, Houdini identifies this optimization for 100% of the transactions. The “assume single-

partition” strategy does not scale because the transactions do not access the remote partition in the first set of

queries (OP1), thus they must always be restarted again and lock all of the partitions. Other procedures, such

as GetUserInfo shown in Fig. 5.9c, contain conditional branches with separate single-partition and multi-

partition paths. Such procedures are ideal for our model partitioning technique, but most of AuctionMark’s

transactions are short-lived, which means that disabling undo logging (OP3) and early prepare optimizations

(OP4) only provide a modest benefit.

As explained in Section 5.3.6, we disabled Houdini for the maintenance CheckWinningBids requests, as

it takes too long process due to the large number of queries (>175) in each transaction. Houdini also does not

correctly predict the accessed partitions for 45.0% of PostAuction transactions (OP2) because their input

84

 0

 2000

 4000

 6000

 8000

 10000

0.0 0.2 0.4 0.6 0.8 1.0

T
ra

n
s
a

c
ti
o

n
 T

h
ro

u
g

h
p

u
t

(t
x
n

/s
)

Confidence Coefficient Threshold

TATP
TPC-C

AuctionMark

Figure 5.12: Throughput measurements of H-Store under varying estimation confidence coefficient thresh-
olds (Section 5.3.2).

parameters are large, arbitrary length arrays, which does not work well with our model partitioning technique.

5.5.4 Confidence Sensitivity Analysis

Lastly, we measured how H-Store performs when Houdini uses different confidence coefficient thresholds

to select which optimizations to enable. Recall from Section 5.3.3 that this threshold determines whether a

prediction will be included for a transaction based on its confidence coefficient. We executed the benchmarks

again in H-Store on a 16-partition cluster and vary the confidence threshold from zero (i.e., all estimations

are permitted) to one (i.e., only the most certain estimations are permitted).

As expected, when the threshold is set to zero, the results in Fig. 5.12 show that all transactions are ex-

ecuted as multi-partition since Houdini predicts that each transaction will always touch all partitions. Once

the threshold is >0.06 (i.e., 1
16), the throughput for TATP remains the same because Houdini correctly iden-

tifies which partitions transactions will access (OP1, OP2) and when they are finished with them (OP4). For

TPC-C, the throughput reaches a plateau at >0.3 because the number of mis-predicted OP1 for NewOrder

transactions is reduced from 10% to 5%, but declines slightly as the threshold approaches one because Hou-

dini no longer selects to disable undo logging as much as it could. In the case of AuctionMark, there are two

procedures with conditional branches where Houdini does predict the correct partitions (OP1, OP2) until the

threshold is >0.33 and >0.66.

5.6 Conclusion
We introduced a new approach for representing the stored procedures of OLTP applications using Markov

models to forecast the behavior of transactions. Such models are used to identify when the DBMS can execute

a transaction using four different optimizations. From this, we then presented Houdini, a new prediction

framework that uses our Markov models to estimate the execution path of future transactions. We described

a method for generating these models, as well as how to partition them on certain features to improve their

scalability and accuracy. To evaluate our work, we integrated Houdini into the H-Store distributed OLTP

85

system. The results from our experimental analysis show that our models accurately predict the execution

paths of 93% of transactions in three OLTP benchmarks. We also demonstrated that our technique has only

an average overhead of 5.8%, while increasing the throughput of the system by an average of 41% compared

to a naïve approach. These results suggest that predicting transaction properties using Markov models could

be useful for any distributed OLTP database. In future work, we will attempt to apply it to real applications

and systems.

86

Chapter 6

Speculative Execution

In Chapter 4, we showed how the Horticulture tool generates database designs that minimize the number

distributed transactions. Then in Chapter 5, we showed how the Houdini framework allows the DBMS to

identify whether a transaction request should be executed as a distributed transaction or not. But despite

these advancements, distributed transactions are still unavoidable in some OLTP applications. As we will

now discuss, this means that a distributed DBMS needs to be able to minimize their impact.

Some distributed DBMSs employ a concurrency control scheme that allows other transactions to exe-

cute simultaneously whenever one transaction is waiting for data or synchronization messages from other

nodes [30]. This allows the DBMS to mask high network latency. But even though most transactions in

OLTP applications are not distributed, all transactions in the DBMS must be executed with the same con-

currency control scheme to ensure correctness. But as we showed in Section 2.2, such schemes will reduce

the performance of single-partition transactions on memory-resident databases due to overhead of manag-

ing concurrent transactions [112, 149]. This means that in order to support distributed transactions, these

concurrency control schemes degrade the performance of the majority of an application’s workload.

For many applications, a better approach is to optimize for the common case (i.e., single-partition trans-

actions) and then have the DBMS handle distributed transactions as an exception [131, 211, 224]. Under this

scheme, transactions are executed serially at their respective partitions, thereby removing all contention due

to transactions accessing data at the same time. This is the approach that we use in H-Store (cf. Section 3.2).

The downside of executing transactions one-at-a-time at a partition, however, is that it means the DBMS is

unable to do work whenever a distributed transaction has to stall and wait for a message to arrive over the net-

work. These stalls significantly affect performance of workloads with only a small percentage of distributed

transactions [181].

Rather than always stalling in this manner, the DBMS can speculatively execute queued tasks in antici-

pation that the current distributed transaction will succeed. That is, when the DBMS does not have work for

the current transaction, it executes work on behalf of other transactions that it would normally only execute

after that transaction finishes. This allows the DBMS to execute tasks concurrently without the overhead of a

heavy-weight scheme.

87

One well-known application of speculative execution is for the DBMS to begin processing queued trans-

actions once it receives the distributed transaction’s 2PC prepare notification [37, 72, 131, 180, 193]. This

only accounts for a small portion of the time that transactions are stalled in distributed DBMSs. Supporting

additional speculation opportunities in a system that is optimized for single-partition transactions requires

knowledge about what operations each transaction will perform before it starts [131]. Otherwise, a spec-

ulative transaction may create an inconsistent view of the database for the stalled distributed transaction.

Moreover, while this improves the system’s overall throughput, it does not improve the latency of individual

distributed transactions. This is also non-trivial, because again the DBMS needs to know what operations

the transaction is likely to request in the future. But recent work has explored integrating machine learning

techniques in the DBMS for discovering this information in OLTP applications [180].

We now present new approaches for lock-free speculative execution in distributed DBMSs. We devel-

oped a fast and efficient method, called Hermes, that uses probabilistic models generated from observing the

behavior of previous transactions to:

1. Speculatively interleave single-partition transactions at a node whenever the distributed transaction

stalls.

2. Speculatively prefetch queries on remote nodes for distributed transactions to reduce the wait time for

results.

These techniques improve both the throughput and response time for OLTP applications without giving

up consistency guarantees.

We implemented Hermes in H-Store and measured the system’s performance using three OLTP work-

loads. Our results demonstrate that speculative execution improve the system’s overall throughput by 211–

771% while reducing latency by 74–88%. We also evaluate an optimistic speculation strategy [138] and show

that Hermes outperforms it by up to 113%.

6.1 Distributed Transaction Stalls
To illustrate how multi-partition transactions are a bottleneck in distributed DBMSs, we now discuss the

different types of stalls that can occur because of them.

In H-Store, each transaction has exclusive access to its partitions when it executes [211, 224]. At no

point will a single-partition transaction block because of a concurrent transaction nor will it ever need to wait

for a network message. Distributed transactions, however, encounter stall points where the DBMS halts the

transaction until a message arrives that allows its execution to proceed. As shown in the timeline diagram

in Fig. 6.2, there are three possible stall points for these transactions: when the DBMS waits for a result

from a remote partition after the transaction sends a query request (SP1); when the DBMS waits for a new

query request from the transaction’s base partition (SP2); and when the DBMS waits for the transaction’s

2PC messages (SP3).

To demonstrate their affect on performance, we ran a series of benchmarks to measure the amount of time

that transactions spend at these stall points. For these experiments, we used an instrumented version of H-

Store that is able to collect various measurements at runtime [112, 180]. The DBMS begins measuring time at

88

0.0

0.8

1.6

2.4

Av
er

ag
e

Ti
m

e
(m

s)

SEATS SmallBank TPC-C

Single-Partition
Distributed / Single-Node

Distributed / Multi-Node

(a) Transaction Execution Times

Base Remote Base Remote Base Remote0%

25%

50%

75%

100%

%
 o

f T
ra

ns
ac

tio
n

Li
fe

tim
e

SEATS SmallBank TPC-C

SP1:Query Response
SP2:Query Request

SP3:Two-Phase Commit
Execution

(b) Stall Point Times (Distributed / Multi-Node)

SEATS SmallBank TPC-C
0.0

0.2

0.4

0.6

Av
er

ag
e

El
ap

se
d

Ti
m

e
(m

s) Query Requested Remote Result Returned

(c) Remote Query Execution Times

Figure 6.1: Distributed Transaction Measurements – (a) the average execution time for transactions; (b) the
average time spent at stall points for distributed / multi-node transactions; (c) the average elapsed time until
a distributed transaction executes a remote partition query and then receives its result.

a transaction’s base partition and remote partitions from the moment that the transaction acquires a partitions

lock until it commits. We do not include the time the DBMS spends writing recovery log entries or waiting

for acknowledgements from replicas, as this overhead is the same for all transactions and is amortizable [128,

155]. For these experiments, we deployed H-Store on a 2-node, 16-partition cluster and execute workloads

that are entirely (1) single-partition transactions, (2) single-node, multi-partition transactions, and (3) multi-

node, multi-partition transactions. We postpone the details of the execution environment until Section 6.6.

The results in Fig. 6.1a show the total execution times for transactions for the three different workload

scenarios. The results in Fig. 6.1b are the percentage of the transaction’s lifetime that is spent at the stall

points for multi-node, multi-partition transactions. Lastly, Fig. 6.1c shows the amount of time that elapses

from when a distributed transaction starts until it (1) executes a remote partition query and (2) receives the

result of that query. We now discuss the stall points in the context of these results:

SP1. Waiting for Query Responses
The first stall point is when a transaction blocks at its base partition waiting for the results of a query ex-

ecuted on a remote partition. As shown in Fig. 6.2, when the transaction’s control code invokes such queries,

the DBMS sends the query request and then stalls until it receives the response [131]. Sending these mes-

sages to remote nodes is expensive: multi-node distributed transactions are 3–5× slower than single-node

distributed transactions (Fig. 6.1a). The results in Fig. 6.1c show that it takes approximately 0.5 ms for the

89

Init Query
Request

Query
Response

SP1 SP3

SP2 SP2 SP3

Base
Partition

Remote
Partition

2PC
Prepare

ACK

2PC
Finish

ACKACK

Figure 6.2: Timeline diagram of a distributed transaction with its corresponding stall points. The transac-
tion’s control code executes at its base partition and invokes queries at the remote partition.

DBMS to execute and return the result of a remote partition query. This is roughly twice the amount of time

that it takes the DBMS to execute a single-partition transaction.

SP2. Waiting for Query Requests
Once the DBMS grants a remote partition’s lock to a transaction, it sends back the acknowledgement to

the transaction’s base partition. While the transaction holds this lock, no other transaction or query is allowed

to execute at that partition or access its data. Thus, this stall point represents the time that the DBMS spends

waiting for a query execution request for these remote partitions. Once such a request arrives, the DBMS

immediately executes it and sends the results back, but then it stalls again until it receives a new request.

Fig. 6.1b shows that the DBMS is idle at this stall point for 68–85% of a distributed transaction’s lifetime

at its remote partitions. This means that when a distributed transaction holds the lock for a remote partition,

it only executes work on that partition transaction for less than 25% of the time that it holds that lock. This

stall point is the major reason why distributed transactions degrade the performance of DBMSs that employ

a concurrency scheme that is optimized for single-partition transactions [181, 211].

SP3. Waiting for Two-Phase Commit
Lastly, once a distributed transaction finishes, the DBMS sends the 2PC “prepare” message to all of the

remote partitions that the transaction locked. The DBMS performs its final checks at these remote partitions

to determine whether it is safe to commit that transaction and then send an acknowledgement (or a rejection

in case of an abort) back to the base partition. The DBMS cannot begin executing the next transaction at

these partitions queue until it receives the 2PC “finish” message that informs it that all of the partitions have

agreed to commit the transaction. This is only approximately 2–6% of the time while a transaction holds the

lock for its remote partition. But at its base partition, the DBMS has to wait for the second acknowledgement

from all the partitions before it is safe to release the lock and execute the next transaction. This accounts for

nearly 22% of the transaction’s total run time.

These results show the substantial amount of time that the DBMS wastes at these stall points and motivate

the need for the DBMS to do something useful instead. Previous work has already shown that speculatively

90

executing transactions at SP3 will improve the system’s throughput [37, 131, 180, 193]. With this technique,

the DBMS executes other transactions at remote partitions before it learns whether the distributed transaction

will commit. But as Fig. 6.1b shows, SP3 only accounts for at most 22% of transactions’ total time at their

base partition, and just 6% of their total time at remote partitions. This means that existing techniques do not

address up to 88% of a transaction’s lifetime that the DBMS is idle at the SP1 and SP2.

One approach for dealing with these other stall points is to optimistically execute single-partition trans-

actions whenever a distributed transaction stalls [15, 138]. When the DBMS goes to commit a distributed

transaction, it checks whether the speculative transactions violated atomicity and consistency guarantees. If

they did, then the DBMS aborts these transactions and schedules them for re-execution. As we show in Sec-

tion 6.6.3, this approach works reasonably well when there is little skew in the workload. But this is not the

case for modern workloads, and thus continually restarting transactions because of conflicts will negate the

performance gains of optimistic speculative execution. Furthermore, it does not improve the response time

of distributed transactions, since that is limited by the RTT of executing queries on remote nodes.

To improve both the throughput and latency of transactions in a distributed DBMS, we developed the

Hermes method for scheduling speculative transactions and queries. Hermes is the first work that we are

aware of that targets all three distributed transaction stall points. Instead of detecting conflicts after they

occur, our approach uses machine learning to determine whether speculative work will conflict before before

it executes. To ensure correctness, Hermes uses a lightweight verification process that only checks that

transactions did what they were predicted to do. Thus, when transactions commit, the DBMS knows that the

database state is correct.

We now present an overview on how Hermes uses probabilistic models to predict the execution properties

of transactions. We then discuss in subsequent sections how Hermes chooses which transactions or queries

to speculatively execute at runtime.

6.2 Fast Speculative Execution in Distributed DBMSs
Hermes is a method for scheduling speculative tasks in a distributed DBMS. Such tasks can either be other

transactions or queries from the same transaction. The entire process is autonomous and does not require

human intervention to maintain once it is deployed.

To identify whether speculatively executing certain tasks will violate transactional guarantees, Hermes

must know three things about each transaction before they begin:

1. The queries that it is likely to execute at each partition.

2. Whether it is likely to abort.

3. Its estimated execution time.

One way to acquire this information is for the application to provide hints to the DBMS. But this means

additional coding by the developer that would likely require modifications any time that the database or

workload changes. Alternatively, the DBMS could collect this information for transactions by simulating

their execution [165]. This is insufficient as well because it may fail for cases where a transaction’s behavior

depends on the state of the database.

91

begin

QueryX
Counter: 0

Partitions: {0}
Previous: ∅

1.00

QueryY
Counter: 0

Partitions: {0}
Previous: {0}

0.72

QueryY
Counter: 0

Partitions: {1}
Previous: {0}

0.24

QueryZ
Counter: 0

Partitions: {0}
Previous: {0}

1.00

QueryZ
Counter: 0

Partitions: {0}
Previous: {0,1}

1.00

commit

1.00 1.00
abort

0.04

PRE-DEFINED SQL STATEMENTS
QueryX = "SELECT * FROM X WHERE X_ID=? AND VAL=?"
QueryY = "SELECT * FROM Y WHERE Y_ID=?"
QueryZ = "UPDATE Z SET VAL=? WHERE Z_ID=?"

TRANSACTION CONTROL CODE
run(x_id, y_id, value):
 result = executeSQL(QueryX, x_id, value)
 if result == null: abort()
 result = executeSQL(QueryY, y_id)
 # ADDITIONAL PROCESSING...
 executeSQL(QueryZ, result, x_id)
 return

Figure 6.3: An example of a stored procedure’s Markov model. Each state in the model represents (1) the
query being executed, (2) the partitions that the query will access, (3) the number of times that the transaction
has executed this query in the past, and (4) the partitions the transaction has accessed in the past. The
commit/abort states represent the transaction’s exit status.

A better approach is to integrate a machine learning framework, like Houdini, in the DBMS that auto-

matically derives this information for each incoming transaction. Such a framework will construct Markov

models for each of the application’s stored procedures from observing the behavior of previously executed

transactions [180]. For each new transaction, Hermes selects a model from Houdini that is tailored for that

request and then predicts the path that the transaction will take through that model when it executes. Hermes

then derives the three properties listed above for the transaction from this path.

We now present how Hermes uses the runtime transaction estimates (cf. Section 5.3.2) and parameter

mappings (cf. Section 5.3.1) from Houdini to identify speculative execution opportunities in a distributed

DBMS. We first discuss in Section 6.3 how to speculatively execute other transactions when a distributed

transaction stalls. Then in Section 6.4, we describe how to prefetch queries on remote partitions for distributed

transactions.

6.3 Speculative Transactions
A speculative transaction is one that is executed at a partition without waiting to acquire that partition’s

lock currently held by a stalled distributed transaction at SP1, SP2, or SP3. This allows the DBMS to

execute transactions at that partition while it waits for the distributed transaction to resume. Hermes ensures

the database’s state is isomorphic to one where transactions execute serially. This means that a speculative

transaction cannot read inconsistent data (e.g., reading partial changes from the distributed transaction) and

cannot modify the database in a way that causes subsequent transactions to read inconsistent data (e.g., the

distributed transaction cannot read its own writes). We define such violations as conflicts.

A transaction conflicts with a distributed transaction if speculatively executing it before the distributed

transaction commits makes the database inconsistent [48, 93]. Hermes takes a pessimistic approach towards

92

QueryX
Counter: 0

Partitions: {0}
Previous: ∅

commitbegin
QueryY
Counter: 0

Partitions: {0,1}
Previous: {0}

QueryZ
Counter: 1

Partitions: {0}
Previous: {0,1}

Distributed Transaction

QueryA
Counter: 0

Partitions: {0}
Previous: ∅

commitbegin
QueryB
Counter: 0

Partitions: {0}
Previous: {0}

WRITE Z

WRITE Z

SP1

Conflict

Speculation Candidate

Figure 6.4: An example of comparing the initial path estimate of a speculative transaction candidate with a
stalled distributed transaction. The conflict detection rules identified that the QueryZ query in the distributed
transaction has a write conflict with the QueryB in the candidate.

scheduling speculative transactions in that it assumes that such conflicts are common [175]. Thus, it uses pre-

computed heuristics to identify whether a transaction might conflict with the stalled distributed transaction

before that transaction is executed, as opposed to checking for a conflict after it has occurred [138]. When

the DBMS attempts to commit a speculative transaction, as long as that transaction executed the same queries

that Hermes originally predicted in its initial path estimate, then the system is guaranteed that a conflict did

not occur.

We now discuss the heuristics that Hermes uses to identify non-conflicting candidates. We then describe

how the DBMS executes these candidates. We also discuss how this protocol works in the context of the

DBMS’s recovery mechanism and for deployments with replicated nodes. For this work, we only consider

scheduling single-partition transactions for execution; we defer the problem of speculatively executing dis-

tributed transactions as future work.

6.3.1 Candidate Identification

When Hermes recognizes that a transaction is stalled at a partition, it examines the queue of transactions

waiting to acquire that partition’s lock to find the best transaction to speculatively execute at that moment. A

queued single-partition transaction is eligible for speculation if (1) the transaction is predicted to finish before

the distributed transaction is expected to resume and (2) the transaction is to predicted to not conflict with the

distributed transaction.

To determine how much time the DBMS has before the stalled transaction will resume, Hermes uses the

time estimates computed in the transactions’ initial path estimates. This time is the sum of the state transition

time estimates in the initial path. Consider the initial path estimate for a distributed transaction running at

partition 0 shown in Fig. 6.4. This transaction has just sent a request over the network to execute QueryY at

partition 1 and will now stall at its base partition (SP1). The run time of a candidate must be less than the

estimated stall time to ensure that the distributed transaction can resume executing as soon as it is ready.

93

For each transaction with a small enough expected run time, Hermes next checks which ones conflict

with the distributed transaction. This conflict detection is based on the future execution states of transactions

according to their initial path estimates. Some conflicts are detected from static rules (e.g., two queries access

different tables, therefore they can never conflict), while others can only be determined at runtime (e.g., two

queries access the same table, therefore they only conflict if they use the same input parameters). We discuss

how to automatically generate these rules in Section 6.5.

A transaction never conflicts with a distributed transaction that has not executed any queries at a particular

partition and is stalled at either SP1 or SP2. The DBMS therefore can execute any single-partition transaction

regardless of what data it will access, because the distributed transaction has not observed the state of the

database at this partition. A speculative transaction never conflicts with a distributed transaction stalled at

SP3, since the distributed transaction will never execute more queries. Hermes also skips detection for two

procedures that are both read-only or contain queries that access disparate tables. Thus, Hermes only checks

for conflicts when the distributed transaction is stalled at SP1 or SP2 and has executed at least one query at

the partition in question.

Since there may be multiple candidates at a time for a distributed transaction, Hermes must choose which

one to execute. We found that selecting the first eligible transaction in the queue provided the best results.

More sophisticated approaches, such as choosing the transaction with the shortest expected run time, did not

noticeably improve performance and often made it worse because Hermes spent too much time evaluating

candidates during the stall points.

6.3.2 Execution

After identifying the best candidate, the DBMS executes that transaction at the target partition as if it had

acquired that partition’s lock through the normal process. As the transaction executes, Hermes tracks its

query invocations and follows the transaction’s actual path through the model. The DBMS executes all

transactions with an in-memory undo log so that it can rollback in case of an abort.

When the distributed transaction finishes, Hermes decides whether that transaction and any speculative

transactions that were executed at the stall points deviated from their initial path estimates in such a way that

caused a conflict. A path is considered errant if the transaction reached a state that was not in its initial path

estimate. If a speculative transaction executed at SP3, or at SP1 or SP2 before the distributed transaction

executed a query at that partition, then Hermes does not need to perform this final check. Similarly, aborted

transactions are returned immediately to the application. The DBMS only checks for conflicts at SP1 and

SP2 if the distributed transaction executed a query at that partition.

Hermes continues to schedule speculative transactions until either it runs out of non-conflicting transac-

tions in the partition’s work queue or the distributed transaction resumes.

6.3.3 Recovery

If a node crashes, the DBMS replays the command log for all of the transactions committed after the last

checkpoint to get the database back to the state that it was in before the crash [155]. The DBMS normally

re-executes transactions from the log in order according to their original timestamps. But since speculative

transactions violate this ordering, additional information is needed to ensure that the recovery matches how

94

Proc Name: Procedure1
Parameters: (101, 202, "Squirrels")

Transaction Request #9999begin

QueryX
Counter: 0

Partitions: {0}
Previous: ∅

QueryY
Counter: 0

Partitions: {1}
Previous: {0}

QueryZ
Counter: 0

Partitions: {0}
Previous: {0,1}

commit

Speculative Query Candidate
SELECT * FROM Y
 WHERE Y_ID=202

Tracking Table
Txn

...

Query Checksum Partitions

9999 QueryY ###### {1}

- - - -

- - - -

- - - -

PRE-DEFINED SQL STATEMENTS
QueryX = "SELECT * FROM X WHERE X_ID=? AND VAL=?"
QueryY = "SELECT * FROM Y WHERE Y_ID=?"
QueryZ = "UPDATE Z SET VAL=? WHERE Z_ID=?"

TRANSACTION CONTROL CODE
run(x_id, y_id, value):
 result = executeSQL(QueryX, x_id, value)
 if result == null: abort()
 result = executeSQL(QueryY, y_id)
 # ADDITIONAL PROCESSING...
 executeSQL(QueryZ, result, x_id)
 return

Prefetch
Result

Prefetch
Request

Figure 6.5: Hermes uses a transaction’s initial path estimate to identify queries to prefetch. Such queries are
dispatched for execution on the remote partition. When the transaction requests the same query in its control
code, the DBMS checks the tracking table to see whether the prefetched results have arrived.

transactions were executed at runtime. With Hermes, a transaction’s log entry includes all of the speculative

transactions that were executed with it and at which stall point the DBMS executed them. This stall point in-

dicates whether the speculative transaction was executed (logically) before or after the distributed transaction

finished (i.e., speculative transaction cannot read partial changes from an in-flight distributed transaction).

Thus, for each distributed transaction that contains speculative transactions, the DBMS first re-executes all

of transactions that were executed at SP1 and SP2 before the distributed transaction executed a query. Next,

the DBMS replays the distributed transaction, followed by the remaining speculative transactions.

6.3.4 Replicated Environments

The process of executing speculative transactions on partitions’ replicas is the same for the distributed trans-

action’s base partition and its remote partitions. At the transaction’s base partition, the master replica is

responsible for executing the procedure’s control code and dispatching queries to other nodes. If a query ex-

ecutes on the transaction’s base partition, then the master sends asynchronous query requests to its replicas.

This is necessary even if that query is read-only to ensure that the replicas’ internal tracking mechanism for

tuples’ access patterns are synchronized. As Hermes selects speculation candidate transactions on the master

replica, it will also send asynchronous messages to its slave replicas. These execution messages are tagged

with a sequence number to ensure that the slaves execute in the same order as the master. Only the master

replica makes decisions about what to speculatively execute, otherwise the replicas could execute different

transactions and get out of sync.

6.4 Speculative Queries
Although executing speculative transactions improves the system’s overall throughput, it does not improve

the latency of individual distributed transactions. This is because their speed is limited by the network RTT

of invoking queries on remote nodes (SP1). One could use faster network hardware to reduce this RTT, but

95

such a change is often not an option for many deployments. For example, if the DBMS is deployed on a

cloud computing platform, then the administrator may not have the ability to upgrade the network.

This means that the only way to reduce the amount of time that distributed transactions are stalled at SP1
is to have query results from remote partitions available at the moment that the transaction needs them. That

is, when the transaction’s control code dispatches a query for execution at a remote partition, it does not stall

because the result is already there [200]. These could be either single-partition queries, or fragments of a

multi-partition query (e.g., a COUNT query that spans multiple partitions). In order to do this, the DBMS

needs to know what queries the transaction will execute prior to starting so that the system has enough time

to prefetch results from remote partitions.

We now present how Hermes enables speculative query execution in a distributed DBMS. The process

of identifying speculative query execution opportunities is similar to the process for scheduling speculative

transactions. Hermes first uses a transaction’s initial path estimate to identify which queries it is likely to

execute on remote partitions. The DBMS then asynchronously executes these queries and caches their results

at the transaction’s base partition. When the transaction invokes a query that was speculatively executed,

the DBMS will use the cached result instead of re-executing that query. All of this is transparent to the

transaction’s control code. At commit time, Hermes verifies that its decisions were correct based on whether

the transaction’s actual execution path through the target Markov model deviated from its initial path.

Speculative query execution does not require changes to an application’s stored procedures. Likewise, no

change is needed for the DBMS’s recovery mechanism or the execution process in replicated environments,

since the database’s state is the same regardless of whether transactions execute with speculative queries or

not.

6.4.1 Candidate Identification

Just as with speculative transactions, the process of identifying speculative query candidates has both an

off-line, static analysis component and a runtime component.

Prior to deployment, Hermes analyzes the queries in the application’s stored procedures to determine

which ones the DBMS can speculatively execute. A query is eligible if the DBMS can extract all of the

values for that query’s input parameters from its procedure’s input parameters. That is, if the values for a

query’s parameters are derived from the values sent by the application, as opposed to coming from the output

of a previously executed query [187]. Hermes identifies the queries with this property using the parameter

mappings that it generates from a sample workload trace. As shown in the example in Fig. 6.5, Hermes uses

a mapping to fill in all of the input parameters for QueryX and QueryY from the procedure’s parameters, but

not for QueryZ. Thus, QueryZ is not eligible for speculation since it is incomplete.

Next, for each procedure with at least one query that is eligible for speculative execution, Hermes analyzes

that procedure to find pairs of potentially conflicting (i.e., non-commutative) queries. For example, two read-

only queries never conflict because their results are the same regardless of their execution order. But if the

first query reads a table and then the second one modifies that same table, then their execution order does

matter. The DBMS will verify that the execution order of such queries is correct. Hermes detects these

conflicts using the rules described in Section 6.5.

At runtime, when a new transaction arrives, Hermes uses that transaction’s initial path estimate to find

96

Query
Result

X

Speculative Query

Transaction Execution

Init +
Query

Base
Partition

Remote
Partition

2PC
Prepare

ACK

2PC
Finish

ACKACK

Figure 6.6: Timeline diagram of speculatively executing a query for a distributed transaction. The query
result arrives at the transaction’s base partition before it is needed, thus the DBMS will not send out a request
when the procedure control code invokes it.

execution states that correspond to eligible remote partition queries. Hermes evaluates the positions of the

candidate states in the initial path to determine whether executing them out-of-order will create a conflict

with other queries that the transaction is expected to execute at their target partitions. For example, consider a

transaction that updates a table and then immediately read from it. If the read query is eligible for speculation

but the update is not, then the read query is not a speculation candidate since it must occur after the update.

Unlike with speculative transactions, where Hermes only selects one candidate at a time, all of the query

candidates are selected together. If no such conflict exists, then Hermes marks a query as a speculative

execution candidate for the transaction.

6.4.2 Execution

For a transaction with speculative query candidates, the DBMS must send the query invocation requests to the

remote partitions before that transaction starts running. As shown in Fig. 6.6, the DBMS piggybacks these

requests onto the partition lock acquisition messages. When this message arrives at a node, the DBMS holds

the query requests until the transaction acquires the lock for that partition. After the transaction is granted the

lock, the speculative queries for that partition are released for execution. Once they complete, their results are

sent back to the transaction’s base partition. The DBMS does not wait for the transaction to acquire the locks

that it needs at a node before executing queries at a remote partition. It is therefore possible that the DBMS

could receive results for speculative queries before the transaction’s control code starts running. Hence, the

DBMS must accommodate prefetch results that arrive both before and after the transaction has started.

To facilitate this, Hermes maintains a tracking table in the DBMS for transaction’s speculative queries.

This enables Hermes to match runtime query invocations with the results from speculative queries, thereby

preventing the DBMS from executing the same query twice. It is integrated with the DBMS’s internal in-

frastructure that coordinates multi-partition query execution. When a transaction invokes a regular query

(i.e., non-speculative), Hermes checks its tracking table to determine whether that particular invocation was

requested as a speculative query based on its (1) input parameters, (2) relative execution order in the trans-

action, and (3) accessed partitions. If it was, then Hermes links the DBMS’s internal record for the regular

97

query to the speculative query’s tracking table entry.

When a transaction commits, Hermes verifies all of the transaction’s speculative queries executed (1)

with the correct input parameters and at the correct partitions, and (2) in the correct order relative to non-

commutative queries.

To determine whether queries executed correctly, Hermes checks its tracking table for entries that are

not linked to a regular query invocation. Such queries are deemed unnecessary because the transaction

ended up not needing them. For each partition that executed unnecessary queries, Hermes must decide if

it is still safe to commit the transaction, or whether it needs to revert the errant queries’ changes. If all of

the speculative queries at a partition were read-only, then the transaction can commit since the superfluous

queries are discarded. But if the speculative queries modified the partition, then Hermes checks whether

those changes were accessed by the same transaction or a different (speculative) transaction. If they were

read by the distributed transaction, then that transaction is restarted because the changes may have caused

other modifications. If the changes were read by a speculative transaction, then the speculative query is

reverted and that transaction is restarted. The distributed transaction still commits at other partitions, since

the transaction did not read these modifications.

A speculative query is deemed out-of-order if the DBMS executes it in a different order relative to con-

flicting queries in the same transaction at a partition. To determine whether a query is out-of-order, the DBMS

includes an ordered list of the query invocations for the transaction derived from its actual path execution in

the 2PC messages. Hermes checks its tracking table to see whether the DBMS executed the queries in the

correct order. This is necessary because there is a race condition between when the speculative query is exe-

cuted and when the first non-speculative query arrives at that partition. If any speculative query was executed

in the incorrect order relative to a non-commutative query, then the distributed transaction is restarted.

Hermes monitors how often transactions abort due to these above conditions. If the percentage of suc-

cessful transactions reaches below a threshold for a particular procedure, then it will disable all speculative

query execution for that procedure. This avoids the problem of the DBMS continually aborting transactions

because of conflicts.

6.5 Conflict Detection
Hermes’ conflict detection rules are the key component that allows it to safely schedule speculative tasks in

Sections 6.3 and 6.4. These rules are generated off-line from analyzing the queries in the application’s pre-

defined stored procedures. Conflicts are detected based on pairs of queries: two queries are said to conflict

if executing them in reverse order (as part of either a speculative transaction or a speculative query) would

violate isolation guarantees [33, 224].

There is an inherent trade-off between the amount of time that Hermes spends detecting conflicts versus

the time that the DBMS spends executing speculative operations. In the case of speculative transactions, a

thorough detection algorithm may allow Hermes to find more candidates at a particular stall point, but it will

take longer to discover them. Likewise, for speculative queries, a faster algorithm may incorrectly declare

that out-of-order operations conflict, causing the DBMS to restart the transaction. A slower algorithm can

avoid these unnecessary restarts but will slow down the total execution time of transactions.

98

Given this, we present two algorithms for detecting conflicts at runtime. Our first approach is a coarse-

grained detection that compares queries based on what tables they access. The second algorithm analyzes the

input parameters and predicates of the queries to estimate whether they access the same rows. It is important

to note that both approaches never have false negatives, but they may have false positives. We compare the

efficacy and performance of these two detection algorithms in Section 6.6.2.

6.5.1 Table-level Conflict Detection

The first type of detection is based on whether two queries access the same tables in a conflicting manner.

Given two queries q1 and q2, Hermes identifies that q1 conflicts with q2 if any of the following conditions are

true:

1. Both q1 and q2 are either an INSERT, UPDATE, or DELETE on the same table.

2. q1 is an INSERT or DELETE on a table, and q2 is a SELECT on that same table.

3. q1 is an UPDATE that modifies a table, and q2 is a SELECT references the same columns modified in

q1 in either its output or WHERE clause.

The intuition behind the first rule is that the DBMS cannot allow q1 to modify a table that is also modified

by q2, since the second query may violate the table’s integrity constraints when it otherwise would not if the

queries were executed in the proper serializable schedule order. The other two rules ensure that modifications

made by q1 are not read by q2. For example, if q1 is executed in a speculative transaction and q2 is executed

later by the distributed transaction after it unstalls, then these two queries conflict because the distributed

transaction should not be able to read any modifications made by the speculative transaction.

6.5.2 Row-level Conflict Detection

There are cases where table-level detection generates false positives for queries that obviously do not conflict.

For example, if q1 updates a table and q2 reads that same table, a conflict only arises if these two queries access

the same row(s). Thus, Hermes’ row-level conflict detection seeks to overcome this limitation and only report

true conflicts. But since these rules are evaluated at runtime before the queries are executed, Hermes needs a

way to identify what rows each query accesses without having to run it.

Normally predicting rows an arbitrary query accesses is non-trivial. But we can rely on the observation

that most transactions in OLTP applications access a small number of records from a single table using

indexes [211]. This means that for the queries with this property, Hermes can derive what rows those queries

access based on the values their transaction input parameters using the same parameter mapping technique

used to schedule speculative queries (cf. Section 6.4.1). For example, if a SELECT query uses a table’s

primary key index, then Hermes can use the mappings to identify which of the transaction’s input parameters

correspond to the columns in the index from the query’s WHERE clause. A query will access a single row if

its WHERE clause contains equality predicates on unique indexes without a disjunctive operator (i.e., OR).

Such queries are common in OLTP applications [49, 180]. These rules only compare the rows that queries

potentially access; it does not matter whether those records actually exist.

99

Given two queries q1 and q2, Hermes identifies that q1 conflicts with q2 if any of the following conditions

are true:

1. Both q1 and q2 are INSERTs on the same table and key.

2. q1 is an INSERT, UPDATE, or DELETE on a table, and q2 is a SELECT that accesses that same table

using a join, range scan, or aggregate.

3. q1 is an INSERT or DELETE on a table using a key, and q2 is a SELECT on the same table and key.

4. q1 is an UPDATE that modifies a table using a key, and q2 is a SELECT references the same columns

modified in q1 in either its output or WHERE clause.

For the first rule, we disallow queries that insert rows with the same key. The second rule is broadly

defined because q2 is likely to access multiple rows, thus Hermes no way of knowing whether that query will

access the same record accessed in q1. The remaining two rules are the same as the last two in the table-level

rules.

6.6 Experimental Analysis
To evaluate Hermes’ speculative execution techniques, we integrated it with H-Store [3] and ran several

experiments using three OLTP benchmarks with differing workload complexities: SEATS, SmallBank, and

TPC-C (cf. Appendix A). For each benchmark, we trained Hermes’ models and parameter mappings using a

workload trace of 100,000 transactions collected over a 30 minute period.

All of the experiments were conducted on a cluster at MIT. Each node has a Intel Xeon E7-4830 CPU

running 64-bit Ubuntu Linux 12.04 with OpenJDK 1.7. We use the latest version of H-Store with command

logging enabled to write out transaction commit records to a single 7200 RPM disk drive. The nodes are in a

single rack connected by a 10GB switch with an average RTT of 0.42 ms.

6.6.1 Performance Evaluation

We first compare H-Store’s performance when using Hermes’ speculative execution techniques. For each

benchmark, we ran H-Store with the following system configurations and measure the throughput and la-

tency of transactions:

SpecTxn: Speculative Transactions (Section 6.3)

SpecQuery: Speculative Queries (Section 6.4)

SpecAll: Speculative Transactions + Queries

None: No Speculation

We use three cluster sizes in this evaluation (1, 2, and 4 nodes) with eight partitions per node. The

DBMS’s execution engine threads are given exclusive access to a single core to improve cache locality.

Remaining cores are used for the networking and administrative functionalities of H-Store. Transaction

requests are submitted from up to 800 clients running on a separate node in the same cluster. Each client

submits transactions to any DBMS node in a closed loop (i.e., it blocks after it submits a request until the

100

8 16 32
Partitions

 0

 5000

 10000

 15000

 20000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) SpecAll

SpecTxn
SpecQuery
None

(a) SEATS

8 16 32
Partitions

 0

 30000

 60000

 90000

120000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) SpecAll

SpecTxn
SpecQuery
None

(b) SmallBank

8 16 32
Partitions

 0

 10000

 20000

 30000

 40000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) SpecAll

SpecTxn
SpecQuery
None

(c) TPC-C

Figure 6.7: Throughput Measurements

result is returned). For the configurations with speculative transactions, the clients submit additional single-

partition transaction requests to ensure that the DBMS’s queues always contain speculation candidates. The

overall number of distributed transactions executed is the same across all configurations per cluster size. We

also configure Hermes to use row-level conflict detection for these experiments (cf. Section 6.5.1).

For each cluster size and configuration combination, we execute each benchmark three times and report

the average results. In each trial, the DBMS “warms-up” for 60 seconds and then the performance metrics

are collected for five minutes. The throughput results in Fig. 6.7 are the number of transactions completed

divided by the total time (excluding the warm-up period). The latency results in Fig. 6.8 are measured as the

from when the client submits a request to when it gets the transaction’s result. We report the single-partition

and distributed transaction latencies separately.

We now discuss several aspects of the results from these experiments. We first note that for all cluster

sizes and workloads, the None configuration has both lower throughput and longer latencies. This vali-

dates previous results that demonstrated that distributed transactions hinder shared-nothing DBMSs from

scaling [131, 180].

With the SEATS benchmark, we see in Fig. 6.7a that SpecAll and SpecTxn improve the DBMS’s through-

put by roughly the same amount, whereas there is no improvement for SpecQuery. This is because there are

few remote queries to prefetch in this workload.

The results for SmallBank highlight the individual benefits of the SpecTxn and SpecQuery techniques. In

Fig. 6.7b, we see that SpecTxn improves H-Store’s throughput by 2× over the None configuration, but that

with SpecQuery it only improves slightly. This is expected, since with SpecTxn the DBMS is speculatively

101

8 16 32
Partitions

 0

 25

 50

 75

100
La

te
nc

y
(m

s) SpecAll
SpecTxn
SpecQuery
None

(a) SEATS (Single-Partition Transactions)

8 16 32
Partitions

 0

 25

 50

 75

100

La
te

nc
y

(m
s) SpecAll

SpecTxn
SpecQuery
None

(b) SEATS (Distributed Transactions)

8 16 32
Partitions

 0

 25

 50

 75

100

La
te

nc
y

(m
s) SpecAll

SpecTxn
SpecQuery
None

(c) SmallBank (Single-Partition Transactions)

8 16 32
Partitions

 0

 25

 50

 75

100

La
te

nc
y

(m
s) SpecAll

SpecTxn
SpecQuery
None

(d) SmallBank (Distributed Transactions)

8 16 32
Partitions

 0

 25

 50

 75

100

La
te

nc
y

(m
s) SpecAll

SpecTxn
SpecQuery
None

(e) TPC-C (Single-Partition Transactions)

8 16 32
Partitions

 0

 25

 50

 75

100

La
te

nc
y

(m
s) SpecAll

SpecTxn
SpecQuery
None

(f) TPC-C (Distributed Transactions)

Figure 6.8: Latency Measurements

executing more single-partition transactions. Likewise, Fig. 6.8c shows that SpecTxn and SpecQuery have

lower single-partition transaction latencies because they spend less time waiting in the partitions’ queues.

But in Fig. 6.8d, SpecQuery has lower distributed transaction latencies than with SpecTxn. This is because

Hermes prefetches all remote partition queries for every distributed transaction in the workload. It is the over-

head of distributed transactions that prevents H-Store’s performance from scaling with SpecTxn in Fig. 6.7b.

Thus, when using speculative transactions and queries together in SpecAll, the DBMS’s throughput improves

by 770.8% and its latencies are reduced by 88.4% for the 32-partition cluster.

Lastly, TPC-C contains a transaction (NewOrder) that invokes a remote partition query that uses the output

of a previous query as its input. This query cannot be prefetched, and thus these transactions will always stall

at SP1. The results in Fig. 6.7c show that DBMS’s throughput with SpecQuery does not improve because

of this. Even though the DBMS is unable to prefetch this one query, the ones that it can prefetch do provide

some benefit. For example, H-Store almost achieves the same throughput for the SpecAll and SpecTxn

configurations on the 8- and 16-partition clusters, but the performance with SpecAll is much better on the

32-partition cluster. This is because distributed transactions are more likely to need data that is not on the

same node as their base partition. When all of a transaction’s partitions are local, the benefit of speculative

102

SEATS SmallBank TPC-C0.00

0.50

1.00

1.50

Av
er

ag
e

Ti
m

e
(µ

s) Table Conflicts Row Conflicts

(a) Computation Time Per Invocation

SEATS SmallBank TPC-C
0%

25%

50%

75%

100%

C
an

di
da

te
 T

xn
s

Table Conflicts Row Conflicts

(b) Candidates Per Stall Point

SEATS SmallBank TPC-C 0

 3000

 6000

 9000

12000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) Table Conflicts Row Conflicts

(c) Throughput (16 partitions)

SEATS SmallBank TPC-C 0

 25

 50

 75

100

La
te

nc
y

(m
s)

Table Conflicts Row Conflicts

(d) Latency (16 partitions)

Figure 6.9: Conflict Detection – (a) the average length of the computation time per invocation; (b) the
percentage of queued transactions correctly identified as eligible for speculative execution; (c) the DBMS’s
throughput for each detection algorithm; (d) the transactions’ latencies for each detection algorithm.

queries is reduced; this why the transaction latencies in Fig. 6.8f for SpecQuery are roughly the same as for

None on the 8-partition cluster. Hence, on the 32-partition cluster the advantages of prefetching are more

pronounced because of the network latency.

In general, these results show that by speculative transactions and speculative queries by themselves do

not scale H-Store. But when combined together, the DBMS achieves both higher throughput and lower

latencies on larger cluster sizes.

6.6.2 Conflict Detection Comparison

Next, we investigate the performance characteristics of Hermes’ two conflict detection algorithms (cf. Sec-

tion 6.5) when identifying candidate transactions for speculative execution. For each algorithm, we measured

its (1) computation time and (2) candidate identification yield. The former is the amount of time that Hermes

spends looking for candidates in a partitions’ lock queues. The candidate yield is the percentage of transac-

tions that an algorithm identifies as non-conflicting at runtime. For these experiments, Hermes will examine

every transaction in a partition’s queue and counts the number of candidates it identifies (as opposed to stop-

ping as soon as it finds one). We ran all the three benchmarks again in H-Store using each detection algorithm

and collected profiling information whenever the DBMS requests Hermes to find a candidate transaction. All

of these experiments were conducted on a 2-node, 16-partition cluster using the SpecTxn configuration.

The results in Fig. 6.9a show that the table-level detection algorithm is 131.8% and 231.4% faster than

103

0% 25% 50% 75% 100%
Hotspot Transactions

 0

 25000

 50000

 75000

100000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) Hermes Optimistic Spec

(a) SmallBank (Throughput)

0% 25% 50% 75% 100%
Hotspot Transactions

0

25

50

75

100

La
te

nc
y

(m
s)

Hermes Optimistic Spec

(b) SmallBank (Latency)

0% 25% 50% 75% 100%
Hotspot Transactions

 0

 6000

 12000

 18000

 24000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) Hermes Optimistic Spec

(c) TPC-C (Throughput)

0% 25% 50% 75% 100%
Hotspot Transactions

0

25

50

75

100

La
te

nc
y

(m
s)

Hermes Optimistic Spec

(d) TPC-C (Latency)

Figure 6.10: OCC Comparison – Performance measurements for H-Store using Hermes’ pessimistic schedul-
ing or optimistic scheduling. The “hotspot transactions” are the percentage of the the workload that all target
a fixed subset of the database.

row-level detection for SmallBank and TPC-C, respectively. This is again because that algorithm only com-

pares queries based on the tables that they access. The results in Fig. 6.9b show that the additional time used

in the row-level detection enables Hermes to identify 29.3% more candidates for SmallBank and 57.6% more

candidates for TPC-C. There was no measurable difference between the two algorithms computation time for

the SEATS workload, but the row-level detection yielded 10.3% more candidates.

One interesting thing to note is that the standard deviations are greater for the TPC-C measurements in

Fig. 6.9a than for the other two workloads. This is because its distributed transactions stall at SP1 and SP2
multiple times and thus the number of queries in the transaction path estimates that the detection algorithms

must analyze varies. TPC-C’s transactions also execute more queries on average than the transactions in the

other two workloads, which means that it takes longer for Hermes to evaluate them each time.

The results in Figs. 6.9c and 6.9d show that there is little difference in the runtime performance of the

DBMS using either detection algorithm. The row-level detection improved throughput only slightly over the

table-level detection algorithm. It is likely that the advantages of row-level detection will be more apparent

with more complex workloads, but based on our experience we found that the workloads that we used here

are representative of a larger number of real-world OLTP applications.

104

6.6.3 Optimistic Scheduling Comparison

Finally, we compare Hermes to a scheduling approach based on optimistic concurrency control (OCC) [15,

138]. With OCC scheduling, when a distributed transaction stalls at a partition, the DBMS executes the

next single-partition transaction in that partition’s lock queue without first checking whether it conflicts. The

DBMS tracks the read/write sets at each partition for all transactions as they execute. At the prepare phase in

2PC, the DBMS checks whether any of these speculative transactions conflict with the distributed transaction

based on their read/write sets. If there was a conflict, then both the distributed transaction and the speculative

transaction are aborted and restarted. These aborts cascade to any speculative transaction that read data

modified by another aborted transaction.

For this evaluation, we use the SmallBank and TPC-C workloads on a 2-node, 16-partition cluster. A

portion of the database in each benchmark is declared as the hot spot and we vary the percentage of the

transactions that access only those records [45]. The number of distributed transactions is fixed at 10% of the

original workload. We also modified the benchmark’s workload generators so that all distributed transactions

access data located on two nodes. This increases the length of stall points, thereby maximizing the time

that the DBMS has to execute speculative transactions. We deployed Hermes in H-Store using the SpecTxn

configuration, since the OCC scheme is unable to prefetch remote partition queries.

The results in Figs. 6.10b and 6.10d show that the transactions in H-Store with OCC have on average 74.3–

81.5% longer latencies than with Hermes. The measurements in Figs. 6.10a and 6.10c show that the OCC has

a 1.8× lower throughput. This is due to the nature of H-Store’s architecture [133]. In H-Store, transactions’

tasks at a partition are processed by a single-threaded execution engine that has exclusive access to the data

at that partition. With OCC, it takes longer for the DBMS to complete 2PC because it needs to check the

read/write sets for all of the speculative transactions at each partition. Thus, the DBMS cannot execute any

other tasks at the partition during this time.

The throughput results for TPC-C in Fig. 6.10c are notable because they demonstrate the known problem

in OCC for skewed workloads. When the entire workload targets the hotspot region in the database, the

likelihood that a speculative transaction will conflict with the stalled distributed transaction is great. Thus,

with OCC, H-Store has to abort more transactions, thereby causing the throughput to drop. Hermes avoids

this problem because it only schedules transactions that it knows will not conflict. Our results in Fig. 6.10a

indicate that this is not a problem for SmallBank. This is because some of its transactions only read data from

the hotspot, whereas in TPC-C the transactions almost always modify the database.

6.7 Conclusion
Our Hermes approach uses Markov models to forecast the behavior of transactions in OLTP workloads and

then enables the DBMS to (1) interleave transactions whenever the distributed transaction stalls and (2)

prefetch remote partition queries before a transaction starts. At runtime, Hermes chooses operations to spec-

ulatively execute in the DBMS if they will not conflict with the stalled distributed transaction. To evaluate

our work, we integrated Hermes into the H-Store distributed OLTP system. The results from our experiments

show that our approach improves the DBMS’s throughput by an average of 467.9% and reduces transactions’

latencies by 108.6% on average.

105

Chapter 7

Related Work

Since transaction processing was the first workload targeted by the original database management systems,

there is a long history and an extensive corpus on the problems on executing transactions correctly and

efficiently in these systems. Thus, we first provide a review of the previous academic and industrial systems

for transaction processing that are similar to H-Store. For this discussion, we will examine the various

components of these systems as they relate to H-Store, including concurrency control schemes, recovery

mechanisms, fault tolerance measures, and query processing. We then discuss the previous work in automatic

database design, predictive transaction modeling, and speculative execution techniques.

7.1 Database Management Systems
The advantages of scaling a database across multiple nodes were apparent during the initial research of

relational DBMSs in the 1970s. But all of these earlier distributed DBMSs focused on disk-based systems

and how to complex joins efficiently [61, 74]. At the same time, others began exploring main memory-

oriented DBMSs [72].

We now discuss the history of the development of these two types of systems, as well as those systems

that are both distributed and main memory-oriented. We restrict this review to focus only front-end trans-

action processing systems. There is a prodigious amount of previous work on distributed DBMSs for other

types of problem domains, including large-scale data analytics [71], scientific databases [65], and stream

processing [14] that are beyond the scope of this dissertation. Although these other workloads are different

than what H-Store supports, many of the core concepts for these systems DBMSs (e.g., concurrency control,

high availability, fault tolerance) are still the same.

7.1.1 Distributed Systems

Many of the fundamentals of distributed database management systems came from the seminal work in the

SDD-1 project. SDD-1 was the first DBMS specifically designed for distributed operation across a cluster of

shared-nothing nodes [191]. It used a centralized coordinator to manage distributed query processing [34],

concurrency control [27, 33], and system availability [110]. SDD-1 split databases into disjoint fragments

stored on disk using horizontal and vertical partitioning. It is also noteworthy for supporting serializable

106

transactions using timestamp-based ordering and conflict graph analysis instead of the traditional two-phase

locking that was used in other early DBMSs [28]. SDD-1’s transaction coordinator could detect “classes”

of transactions that would never conflict and thus could be executed with little or no synchronization over-

head [191]. This is similar to our predictive modeling framework in H-Store for identifying transactions that

can execute with minimal concurrency control protection.

After SDD-1, the teams behind the two pioneering, single-node DBMSs, System R [24] and INGRES [209],

both created distributed versions of their respective systems. IBM’s R* was also a shared-nothing, disk-

oriented distributed DBMS like SDD-1 [225]. The main difference, however, was that the coordination of

transactions in R* was completely decentralized just line in H-Store. R* used distributed two-phase lock-

ing protocol where transactions locked data items that they needed to access directly at nodes [160]. Since

deadlocks are inevitable in such a system, each node would independently run a distributed deadlock detec-

tion algorithm that polled other nodes to identify cycles in transactions’ dependency graphs [171]. The R*

researchers explored various optimizations to two-phase commit in [160] that are relevant to H-Store, such

as presumed commit (cf. Section 3.6.4). Another interesting feature of R* was its ability to relax consistency

guarantees to allow read-only snapshots of previous states of tables on multiple nodes that are periodically

refreshed [154, 225].

The distributed version of INGRES also used decentralized two-phase locking with centralized deadlock

detection [204, 205]. The system is mostly remembered for its dynamic query optimization algorithm that

recursively breaks a distributed query into smaller pieces [81].

Tandem’s Encompass was the first commercial distributed relational DBMS [196], but it did not support

SQL or data independence [42]. In 1986, Tandem released the NonStop SQL system that was built on top of

the earlier Encompass architecture [212]. The initial version only supported single-node transactions using

strict two-phase locking; support for multi-node transactions were added in 1989. The system was noted for

being one of the few DBMSs at the time that were able to scale its performance linearly as new nodes were

added to the system [70].

Around the same time that NonStop SQL was being developed, researchers at the University of Wisconsin–

Madison developed the Gamma system [73]. This was another shared-nothing DBMS that supported mul-

tiple horizontal partitioning strategies [70], including round-robin, range, hash, and a hybrid approach [89].

Gamma was similar to distributed INGRES in that it used two-phase locking with a combination of local and

global deadlock detection [75].

In the Bubba system [40], developers write transactional control code and queries using a special-purpose

programming language (instead of SQL). When this code is compiled, the Bubba compiler detects operations

that can execute in parallel based on the database’s design specification. This is similar to our approach in

H-Store for compiling SQL statements into query plans before the system starts and then computing conflict

detection rules based on those plans (cf. Section 6.5).

There are also several other distributed DBMS research projects that were started after H-Store. In 2010,

the RelationalCloud [67] project from MIT was built using the same distributed transaction coordinator

framework from an earlier version of H-Store [130, 131]. The main differences between RelationalCloud

and H-Store is that it was more akin to a middleware system, whereas H-Store is a monolithic (i.e., tightly

107

coupled) system. The RelationalCloud uses a centralized router [213] that dispatches queries over shared

instances of MySQL, thus it was inherently disk-based. The Granola system used the same lightweight serial

concurrency control model from H-Store for efficient transaction execution [64].

7.1.2 Main Memory Systems

In the 1980s, researchers at the University of Wisconsin–Madison explored the design issues related to main

memory DBMSs [72]. From this work came that the primary goals of a main memory DBMS were to reduce

the overall computation time and to use as little memory as possible. The seminal research by Lehman and

Carey provide the foundation for many aspects of main memory DBMSs, including indexes [146], query

processing [147], and recovery algorithms [148]. This work was conducted as part of Lehman’s disserta-

tion [145]. Garcia-Molina and Salem also provide a good summary of the differences between traditional,

disk-oriented DBMSs and main memory DBMSs [88].

Dalí [38, 125] was the first main memory DBMS that was designed for high-performance transaction

processing. It uses a memory mapping-based architecture, where the database is stored in virtual memory

address space and queries access data through pointers. The runtime components, such as the concurrency

control manager and logging services, communicate via shared memory. Dalí was later commercialized

as DataBlitz [26]. H-Store does not use Dalí’s memory mapping-based approach and instead manages a

databases storage in memory itself. This distinction is important because of H-Store’s single-threaded execu-

tion model; with virtual memory, if a transaction attempts to access a page not in memory, then the execution

engine will stall.

Two other commercially available main-memory DBMSs are Oracle’s TimesTen [139, 219] (originally

SmallBase [118] from Hewlett-Packard Laboratories) and IBM’s solidDB [152]. Both are primarily single-

node systems that can replicate a database across multiple nodes. TimesTen uses single-version locking with

multiple granularities (e.g., row, table, and database) [139]. solidDB supports both main memory-resident and

disk-resident tables; for the former, the system provides single-version locking at either table- or row-level,

while for the latter it supports both optimistic and pessimistic concurrency control [152].

The architecture of the New York University’s K system proposed in [224] is probably the most similar

to H-Store’s design. Their main memory execution engine processes transactions sequentially at in-memory

partitions that are each assigned to a single CPU core. The system also uses a logical logging scheme similar

to the one that we describe in Section 3.7. They also provide a system for developers to manually specify at

runtime which types of transactions conflict. The key difference, however, is that K did not support distributed

deployments or multi-partition transactions.

The Shore-MT project was the leading research rival for H-Store during this author’s time in graduate

school [127]. They developed a single-node, shared-everything main memory DBMS with a multi-threaded

kernel [126, 129] that is based on the Shore DBMS [47]. DORA is an OLTP execution engine built on top of

Shore-MT [178]. Instead of assigning transactions to threads, as in traditional DBMS architectures, DORA

assigns partitions to threads. That means when a transaction needs to access data at a specific partition, the

transaction handle must be sent to the thread that manages that partition and then wait to be executed by

it. This similar to H-Store’s partitioning model, except that DORA supports multiple record-level locks per

partition (instead of one lock per partition) [177].

108

Hekaton [76] is a main memory table extension for Microsoft’s SQL Server. The administrator designates

certain tables in their application as special in-memory tables that are managed by Hekaton. The DBMS

supports transactions that access the in-memory tables together with regular, disk-resident tables. Instead of

the partitioned model employed in H-Store, Hekaton uses multi-version concurrency control scheme with

lock-free data structures [116, 143]. They also compile queries that only main memory tables into machine

code for faster execution, which was a technique applied earlier in System R [52].

The HyPer DBMS [134] is a hybrid main memory system that is designed to execute both OLTP and

OLAP queries simultaneously. Similar to H-Store, OLTP queries in HyPer are executed serially at partitions

without the need for a heavyweight concurrency control scheme. But to prevent longer running OLAP queries

from blocking regular transactions for too long, HyPer creates in-memory snapshots by forking the DBMS’s

process and executes those queries on separate CPUSs in the forked process. These snapshots are then

periodically refreshed, similar to the approach used in R* [160]. Like Dalí, HyPer relies on virtual memory

to support databases that are larger than the amount of available memory. We discuss in Section 8.7 our future

plans to extend H-Store to support mixed OLTP/OLAP workloads like HyPer.

7.1.3 Distributed, Main Memory Systems

There are a number of distributed, main memory DBMSs that have been proposed, each with different design

decisions.

One of the earliest of these systems is PRISMA/DB [135]. PRISMA uses two-phase locking concur-

rency control and 2PC to execute general purpose workloads over a partitioned database using main memory

storage [21]. PRISMA differs from H-Store in that it has a centralized transaction coordinator and supports

dynamic runtime compilation of query operators into machine code.

Another system that was developed around the time of PRISMA was the ClustRa Telecom Database [123].

Instead of partitioning a database across multiple nodes, ClustRa fully replicated the database at each node.

ScyPer [163] is a distributed version of the HyPer DBMS that supports simultaneous OLTP and OLAP

workloads. The database is stored on two separate sets of nodes, where the first set contains only a primary

node where all transactions are executed and secondary set contains a potentially stale copy of the database.

The primary node streams updates to the secondary nodes. All long-running OLAP queries are only executed

on the secondary nodes.

SAP’s HANA [144, 199] is another distributed, main memory hybrid DBMS. Like ScyPer, this system

supports simultaneous OLTP and OLAP workloads running in the same system. But HANA splits a database

into separate in-memory row and columnar stores [84], whereas ScyPer’s snapshots are byte-for-byte copies

of the in-memory row store. Each storage type in HANA can be split across multiple machines using either

horizontal or vertical partitioning. An application’s OLTP transactions operate on the row-storage data while

the OLAP queries use the column-storage [13]. HANA’s OLTP execution engine is based on the P*TIME [51]

DBMS. It uses optimistic concurrency control [31, 138] to avoid runtime contention for locks in shared data

structures.

Two notable research systems are Stanford’s RAMCloud and Yale’s Calvin projects. RAMCloud [174]

is a scalable main memory resident key-value store that provides low latency operations (i.e., less than 5

µs per operation) on cloud computing platforms. It is not a general purpose DBMS like H-Store, since it

109

does not provide certain features, such as secondary indexes and multi-object transactions. Calvin [218] is

a transaction scheduler middleware that batches together commutative operations for multiple transactions

by exploiting knowledge about their future read/write requirements. It sends batches to separate DBMS

nodes where they are executed without cross communication. As we discuss in Section 7.4, Calvin does

not support stored procedures and lacks any mechanism to determine transaction’s dependency information

automatically.

We next discuss the leading systems that are part of the NoSQL and NewSQL movements.

7.1.4 NoSQL Systems

During the beginning of the 2000s, developers turned to NoSQL systems to build large-scale, Internet-based

applications [49]. These NoSQL systems are mostly characterized as forgoing the relational data model and

traditional features found in single-node DBMSs in favor of availability and scalability.1 That is, they fa-

vor availability and network partition-tolerance over consistency [222]. Notable proprietary systems include

Google’s BigTable [54], Yahoo!’s PNUTS [60], and Amazon’s Dynamo [69]. Later in the decade, others be-

gan re-implementing these ideas in open-source projects, such as HBase [2] (i.e., BigTable), Cassandra [140]

(i.e., Dynamo). A non-distributed NoSQL DBMS, called Redis [8], is a non-transactional, single-threaded

execution engine that is similar to the one used in H-Store (cf. Section 3.2.2).

The first generation NoSQL systems typically only allowed applications to perform consistent operations

over a single table key space. This means that operations, such as joins, must be performed in the application.

By reducing the functionality of the DBMS, it is easier to distribute operations and data across multiple

machines than general purpose DBMS [222]. Newer NoSQL systems provide support for multi-key and

multi-node transactions [82].

7.1.5 NewSQL Systems

After the general purpose version of H-Store was created in 2008 [133], the code was forked and commercial-

ized as VoltDB [162]. Since then, several other high-performance transaction processing distributed DBMSs

were developed. Like H-Store/VoltDB, these DBMSs were designed to provide the same scalable perfor-

mance of NoSQL systems for OLTP workloads while still maintaining the ACID guarantees of a traditional

database system. In response to the NoSQL moniker, modern OLTP DBMSs are colloquially referred to as

NewSQL systems [23].2,3

Along with H-Store, Clustrix is one the oldest NewSQL DBMSs [1]. Its architecture is similar to ear-

lier distributed, disk-oriented DBMSs, such as Gamma [70] and NonStop SQL [212], except that it uses

distributed multi-version concurrency control. Up until 2013, Clustrix was only available on proprietary

hardware.

NuoDB [7] is another shared nothing, disk-oriented DBMS that also uses multi-version concurrency

control. NuoDB’s architecture is much different than other systems. All components of a database (e.g.,

1The NoSQL community argues that the sobriquet should be interpreted as “Not Only SQL”, since some of these systems do support
some variant of SQL.

2Some companies have used the NewSQL label for any OLTP database technology created after 2008, such as new storage engines
or indexes for single-node DBMSs. We will only discuss the NewSQL systems that are new distributed DBMS architectures.

3The authors of this dissertation believe that H-Store was one of the first NewSQL systems.

110

tables, indexes, meta-data, etc.) are split into “atoms” that are spread out across a cluster [170]. These atoms

then migrate to nodes based on query access patterns. Like SDD-1, each node in NuoDB is either a storage

manager or a transaction executor (or both). When an executor node processes a query, it must retrieve a

copy of the atoms that have that data that the query needs to access from a storage node. Before a transaction

can commit, the atoms notify their other copies of any modifications and then resolve potential conflicts.

Overtime, the atoms that are used together in the same transaction will end up on the same executor node.

Thus, NuoDB can potentially reach the same optimal database design that Horticulture generates for H-Store.

VMWare’s SQLFire [9] splits databases into main memory partitions stored across a cluster. It is similar

to H-Store in that uses a decentralized transaction coordinator and supports Java-based stored procedures. The

key difference, however, is SQLFire by default does not provide any isolation guarantees for transactions. For

stronger isolation levels, it uses row-level read/write locks with 2PC.

MemSQL [4] is a distributed, main memory DBMS that targets “real-time” analytical workloads. It

is similar to Hekaton in the execution engine at each node uses lock-free data structures with multi-version

concurrency control. It does not support strongly consistent, serializable multi-node transactions like H-Store.

Finally, after starting the NoSQL movement with their BigTable system [54], Google has developed their

own NewSQL system, called Spanner [63]. Spanner is as significant advancement in distributed transaction

processing because it is the first large-scale system to support strong transaction consistency over geograph-

ically distributed data clusters. It uses two-phase locking with timestamp-based ordering that is similar to

H-Store, where transactions wait for a period of time to see if any other transaction arrives with a lower id.

They achieves this global ordering by using GPS devices and atomic clocks installed in each rack that allows

each cluster to have a synchronized clock.

7.2 Database Design
The most notable advancements in automatic database design come from two commercial database vendors:

Microsoft’s SQL Server AutoAdmin [17, 18, 55, 57, 166] and IBM’s DB2 Database Advisor [188, 231, 232].

We limit this discussion to the prior work that is relevant for distributed DBMSs.

7.2.1 Database Partitioning

A database table can be horizontally divided into multiple, disjoint fragments whose boundaries are based on

the values of one (or more) of the table’s columns (i.e., the partitioning attributes) [100, 230]. The DBMS as-

signs each tuple to a particular fragment based on the values of these attributes using either range partitioning

or hash partitioning. Related fragments from multiple tables are combined together into a partition [90, 176].

Alternatively, a table can be replicated across all partitions. This is different than replicating entire partitions

for durability and availability. Replication is useful for read-only or read-mostly tables that are accessed

together with other tables but do not share foreign key ancestors.

The major differences amongst previous database partitioning approaches are in (1) selecting the candi-

date partitioning attributes [231] and (2) the search process used to find the optimal partitioning scheme. The

former examines a sample workload and represents the usefulness of the candidate attributes extracted from

the queries in auxiliary structures [17, 50, 188, 230]. Further heuristics can then be applied to prune this

111

candidate set [231] or combine attributes into multi-attribute sets [18]. The partitioning attributes for each

table are selected using either an exhaustive search [230, 231], greedy search [188], or an approximation [66]

algorithm that identify which of these candidates provide the best performance for the DBMS. This process

usually occurs off-line: the partitioning algorithm compares potential solutions using a cost model that es-

timates how well the DBMS will perform using a particular design for the sample workload trace without

needing to actually deploy the database (Section 7.2.4).

The study done in [230] compares the performance versus quality trade-offs of different search strategies.

This work was completed as part of IBM’s DB2 Database Advisor initiative [188, 221, 231]. The initial work

in [231] describes an exhaustive search algorithm that chooses attributes based on relative weights derived

from how the tables are referenced in the queries in a sample workload. Their later work in [188] uses

the DBMS’s own query optimizer to generate relevant partitioning attributes and then employs a brute-force

algorithm that ranks them based on the queries’ estimated disk I/O.

Microsoft’s AutoAdmin finds sets of candidate attributes for individual queries and then attempts to merge

them based on the entire workload [18]. The design tool in [166] also employs a branch-and-bound algorithm

for selecting whether to partition or replicated tables in Microsoft’s SQL Server 2008 Parallel Data Ware-

house. The lack of support for stored procedures, replicated secondary indexes, and temporal skew handling

limit the effectiveness of [18, 166] for the enterprise OLTP applications that we consider.

Schism is an automatic partitioning tool for the RelationalCloud system that also seeks to minimize

multi-partitioned transactions [66]. For a given database, Schism scans all of the tables and populates a graph

containing a separate vertex for every unique tuple. An edge is created between two vertices if the tuples that

they represent are co-accessed together in a single transaction in the sample workload. Schism then applies a

min-cut algorithm on the graph to produce partition boundaries that minimize the number of edges that cross

partitions (i.e., distributed transactions), while also attempting to evenly distribute the workload and data.

This partition assignment is then passed to a machine learning tool that generates a decision tree that routes

tuples to the proper partition at run time.

Schism does not generate a design that includes replicated secondary indexes or stored procedure routing.

The range partitioning scheme produced by Schism is also problematic for shared-nothing, main memory

database environments. For example, when Schisms fails to find a decision tree for the min-cut graph parti-

tions, it falls back to using a single lookup table that explicitly maps every tuple to a partition. These tables

are large for even moderate-sized databases [66], and because memory is the critical resource in a main mem-

ory database, it is unlikely that one would be able to store such a table at every single node. Thus, one or

more nodes must be designated as the centralized coordinators for the cluster and all queries are required to

pass through them. This approach is adequate for the environment assumed in [66], where all of the trans-

actions’ control code is executed at the application; these central coordinators simply act as routers to direct

incoming queries from the application to the right partition. But these coordinators and the maintenance of

their lookup table are an unnecessary performance bottleneck for short-lived transactions that are indicative

of the high-performance OLTP applications targeted by H-Store [211].

Even when Schism is able to generate a decision tree, it is still susceptible to scalability problems when

dealing with new tuples that are outside the decision tree’s computed boundaries. These “unmappable” tuples

112

are temporarily assigned to a random spare node until the partitioning algorithm is executed again. Schism

does not guarantee that mapping these tuples to temporary partitions is done so in a manner that minimizes

multi-partition transactions and that running the partitioning algorithm again requires scanning the entire

database in order to generate a new graph. Conversely, H-Store’s hash-based partitioning approach avoids

Schism’s problems by assigning tuples to partitions according to the schema tree generated our partitioning

algorithm: every tuple is assigned to the partition that is likely to have the data that it is co-accessed with

based on workload history. Our LNS algorithm is also based on workload traces and does not require the

entire database to be loaded first.

Other work has focused on partitioning in main memory DBMSs. The method in [25] generates non-

uniform partition sizes to accommodate the start-up delay in multi-node full-table sequential scan queries for

data residing in memory. The authors in [99] compare different partitioning techniques for a main memory

system to reduce the amount of disk I/O needed to reload the database after a crash.

7.2.2 Secondary Index Selection

Several approaches exist for selecting the indexes that reduce the amount of I/O needed to execute queries

in traditional, disk-based DBMSs [56, 102, 108, 124]. This is different than the problem of selecting a

replicated secondary index, since they are designed to reduce the number of distributed transactions in a

distributed DBMS. Selecting vertical partitions in a database, however, is similar to selecting secondary

indexes. For example, the AutoPart tool identifies conflicting access patterns on tables and creates read-only

vertical partitions from disjoint subsets that are similar to our secondary indexes [179].

7.2.3 Transaction Routing

For stored procedure routing on shared-nothing DBMSs, the authors in [169, 184] provide a thorough dis-

cussion of the static, decentralized scheme supported by H-Store. The affinity-based routing approach in

[184] directs requests to the nodes with data that the transactions will need using a broad categorization. The

approaches in [168, 181] automatically generate a more fine-grained classification based on the previously

executed transactions.

7.2.4 Cost Models

Database design algorithms use cost models to estimate how many resources the DBMS will use to execute

a particular query or transaction for a given database design [197]. Each model is categorized as either (1) an

analytical model that approximates resource consumption based on heuristics [50, 231] or (2) a “real-world”

model that leverage’s the DBMS’s internal query optimizer to calculate the estimated cost [55, 230]. Much of

the literature on cost estimation for main memory DBMSs is for single-node systems [58] or do not consider

workload skew [156, 157].

7.3 Predictive Modeling
Modeling workloads using machine learning techniques is a well-known approach for extracting information

about a database system [229]. To our knowledge, however, our work is the first to generate intra-transaction

execution models (i.e., modeling what queries a transaction executes rather than simply what transactions

113

were executed) and use them to optimize the execution of individual transactions in a distributed database

environment. Previous approaches either model workloads based on individual queries or sets of transactions

in order to (1) manage resource allocation or (2) estimate future actions of other transactions.

In the former category, the Markov models described in [119, 120] are used to dynamically determine

when the workload properties of an application have changed and the database’s physical design needs to

be updated. The techniques proposed in [80] identify whether a sample database workload is either for an

OLTP- or OLAP-style application, and then tunes the system’s configuration accordingly. The authors in

[101] use decision trees to schedule and allocate resources for long running OLAP queries.

The authors in [194] generate Markov models that estimate the next query that an application will execute

based on what query it is currently executing and then pre-fetches that query if there are enough resources

available. Similarly, the authors in [78] use Markov models to estimate the next transaction a user will execute

based on what transaction the DBMS is executing now. The work described in [228] does use Markov models

based on queries much like ours, but their models are designed to identify user sessions across transactional

boundaries and to extract additional usage patterns for off-line analysis purposes.

7.4 Speculative Execution
There are several techniques that are similar to the speculative execution methods that we propose in Chap-

ter 6. These other approaches also seek overcome the overhead of distributed transactions. The differences are

in the assumptions about workloads and in how to derive the information needed to make runtime decisions.

7.4.1 Speculative Transactions

The OCC technique from the seminal work in [15, 138] executes any transaction whenever a distributed

transaction is stalled. The DBMS tracks transactions’ read/write sets and checks for conflicts at commit time.

The original work in [138] assumes that such conflicts are rare, and thus few transactions will be aborted.

But for modern workloads targeted by NewSQL systems, this assumption is often incorrect. The work [189]

in shows that OCC still performs better than two-phase locking in applications with a high frequency of

transaction aborts. H-Store takes a pessimistic approach [175] and avoids conflicts in order to minimize the

verification overhead at commit time.

Escrow transactions [173] allow transactions to update a record without needing to first acquire the lock

for that record. This is similar to how we allow speculative transactions to execute at a partition without first

acquiring its lock. The key difference, however, is that escrow transactions only work on single rows with

numeric values and are not generalized for arbitrary data types.

Calvin [218] lacks mechanisms to determine this information automatically and thus requires the applica-

tion to annotate each request. Furthermore, Calvin is unable to change execution order at runtime to improve

cache locality. One way to support out-of-order execution of transactions is to use a more relaxed consistency

model [187], but this is unacceptable in many OLTP applications. The coordination protocol in [37] allows

out-of-order transaction execution while maintaining serializability.

Compensable transactions enable the DBMS to undo operations and correct the database in order to

compensate for an error or conflict. They can be used to speculatively execute other transactions during long

114

running transactions [44].

7.4.2 Speculative Queries

Prefetching is a well-studied technique used in many aspects of computing systems, including CPU archi-

tectures and file systems. Speculator [167] enables the OS to speculatively execute processes while ensuring

correct results by requiring that a speculative process wait until all previous processes that could affect it have

finished. In the event that the process that speculative processes are waiting for fails, then the speculative pro-

cess are restarted from checkpoints. QuickMine [202] predicts the blocks that a running transaction is likely

to need and then prefetches them from the storage device.

Previous work has explored prefetching queries in DBMSs across transactional boundaries to compensate

for high disk latency [200]. The authors in [194] generate Markov models that prefetches the next query that

an OLAP application will execute based on what query the DBMS it is currently executing. SCOUT [214]

prefetches data for a visualization tool based on the intrinsic structure of the object being viewed. Info-

bright [41] uses prefetching to retrieve and decompress data needed for future queries. Our technique is the

first work that we are aware of that applies query prefetching to improve the response times of distributed

transactions.

115

Chapter 8

Future Work

We now discuss several extensions to our work presented in this dissertation.

8.1 Distributed Transaction Optimizations
The techniques presented in Chapters 4 and 5 seek to minimize the total number of in a given application. In

many workloads, however, distributed transactions are unavoidable in a large-scale, distributed DBMS [113].

These DBMSs use a commit protocol to ensure that operations happen atomically. The most used of

these systems use two-phase commit (2PC) [35, 93]. The conventional wisdom, however, is that 2PC is a

slow operation [142], and many optimizations [193] and variations [111, 136] have been proposed.

Rather than replace the 2PC protocol, we seek to exploit certain inherent properties of distributed trans-

actions in OLTP workloads to increase the throughput of the overall system while also reducing latency of

distributed transactions. Thus, we propose two optimizations for multi-partition transactions in a distributed

DBMS: (1) transaction batching and (2) transaction splitting. These techniques are optimistic (i.e., they

assume that most transactions will not abort and that hardware problems are infrequent), but are still fault

tolerant and resilient to unexpected node or network failures.

8.1.1 Transaction Batching

With transaction batching, the DBMS will reduce both the amount of time spent initializing a distributed

transaction across multiple partitions and the amount of time that a partition remains idle. The main idea is

to amortize these costs across multiple requests and allow for multiple distributed transactions that need to

access the same partitions to execute in parallel. We can do this by batching together transactions that either

have the same or different base partitions.

In same-partition batching, the transaction coordinator at a particular node will execute multiple transac-

tions at the same base partition in succession using the same partition leases. This means that there is only

a single initialization message and a single “finish” 2PC (or abort) message for multiple transactions. When

one transaction completes, the next one in the batch is immediately executed at the same partition. This is

similar to the speculative lock-inheritance technique proposed for Shore-MT [126].

116

With cross-partition batching, the transaction coordinator will combine partition lock leases for commuta-

tive transactions that are executing on disparate partitions. This allows for a distributed transaction to execute

on each of these partitions concurrently. The queries for each of the combined transactions will be interleaved

with the local transaction’s queries.

8.1.2 Transaction Splitting

The main idea of transaction splitting is to divide a distributed transaction into multiple single-partition

transactions that each perform an independent piece of the transaction that does not need to be coordinated

across the cluster. As opposed to the batching optimization described above, which seeks to minimize the

total number of coordination messages for the entire workload, this splitting technique seeks to minimize the

number of coordination messages for a single transaction.

Consider a transaction t1 for a stored procedure that always executes two queries. The procedure is given

as its input a unique, non-partitioning identifier that has a one-to-one mapping to the primary key for a table.

The first query is a full-table scan that searches for the primary key of a table using the non-partitioning

identifier. This query is broadcast to all nodes, executed in parallel, and the results from each partition are

sent back to the transaction’s base partition. Then the procedure submits a second query that updates one

record using the primary key that was returned in the first query. All other partitions will remain idle until

they receive the “prepare” 2PC message. Thus, the DBMS must execute the stored procedure’s control code

(cf. Section 3.3) for each transaction invocation on a random node that the client sent the request to because

it is not possible for the coordinator to know what partition the transaction needs until after it executes the

first query.

Instead of running the control code at a single location and then broadcasting queries out to remote

partitions, we can instead split a distributed transaction into multiple single-partition transactions that are

each executed on one partition. As each transaction executes at each partition, the execution engine forces

the query planner to direct all query requests to the local partition. Using the above example, the first query

will attempt to retrieve the primary key value based on the transaction’s input parameter (i.e., the unique,

non-partitioning identifier). Only one partition will have a record that matches that value, and thus all other

partitions will return an empty result.

8.2 Many-Core Concurrency Control
When all of the transactions are single-partitioned irrespective to the number of partitions, then H-Store’s

architecture model can scale infinitely. Note, however, that scaling out the database over more partitions will

improve the overall throughput of the system, but will not increase the execution speed of each transaction

(i.e., the time that it takes for the DBMS to process the transaction from beginning to end, excluding setup

time and queue delays). This is because the speed of a single-partition transaction is limited to the clock

speed of a single CPU core. Because H-Store avoids any shared data structures, a single core must execute

all of the components needed to process transaction at a single partition, including the control code executor,

the query planner, and the storage manager.

In prior decades, one could rely on the expectation that the clock speeds of a single-core increases year

117

after year. This trend, however, has tapered off in recent years; the current hardware trend from chip manufac-

turers is to increase the number of cores on a single CPU rather than increase the clock speed. Furthermore,

it is also speculated that although future CPU architectures will have many more cores than in current chip

designs, many of these cores will be specialized for a specific type of computation, rather than being general-

purpose core [36]. This means that only a subset of the CPU’s cores could be used to execute transactions

under the current H-Store model. Since the only way to increase performance in H-Store is to increase the

number of partitions, an administrator will have to provision more machines for their database cluster.

There are several drawbacks, however, of increasing performance by only adding more partitions. Many

OLTP applications have a small number of distributed transactions can never be single-partitioned unless the

database only has one partition. Thus, scaling out horizontally by just adding more cores (and as a result

more partitions) will have diminishing returns for many workloads. As the number of partitions increases,

the likelihood that the data that a transaction needs to access is stored in another partition increases: what

was once a single-partition transaction in a smaller cluster now becomes a distributed transaction in the larger

cluster, which means that such a transaction is executed with heavyweight concurrency control.

Other scaling problems can arise if a main-memory DBMS is deployed on a machine with several hun-

dreds or even thousands of cores. As the number of partitions increases on a single-machine and more trans-

actions are executed concurrently, the memory controller for that node will become the main bottleneck [39].

Non-uniform memory access architectures attempt to alleviate this problem by using separate physical mem-

ory modules per CPU socket, but are still susceptible to cache contention problems for intensive workloads

that utilize all workloads evenly. Administrators will have to decide to leave some cores idle and provision

more nodes to the cluster, which increases both the management and energy costs

To overcome this limitation, we plan to explore the limitations of existing concurrency control schemes

using a distributed parallel simulator for multi-core architectures. We will measure the lock contention and

overhead on a simulated platform of thousands of cores. We will then develop new lock-free execution model

that allows transactions to execute concurrently on the same logical partition [116, 143].

8.3 Database Design
We are extending our Horticulture tool from Chapter 4 to generate database designs for different types of

systems. For example, we are working adapting our tool for document-oriented NoSQL DBMSs to select the

optimal sharding and index keys, as well to denormalize schemas. This work shows that Horticulture’s LNS-

based approach is adaptable to many different systems just by changing the cost model. We modified our cost

model for NoSQL systems to estimate the number of disk operations per operation [230] and the overall skew

using the same technique presented in Section 4.4.2. Because these systems do not support joins or distributed

transactions, we do not need to use our coordination cost estimation. Supporting database partitioning for

a mixed OLTP and analytical workloads in Horticulture is another interesting research area. A new cost

model would have to accommodate multiple objectives, such as improving intra-query parallelization in

analytical workloads while also satisfying service-level agreements for the front-end workload. As our work

continues on automatic database design for distributed systems, we plan to integrate a commercial constraint

programming solver into Horticulture.

118

8.4 Database Reorganization & Elasticity
Previous studies have shown the important of placing data that is used together often in transactions physically

closer together [183]. This reduces the amount of cross-partition communication. Another problem in H-

Store is that it is highly susceptible to skew [181]. If there is one hot record at a partition, then transactions will

get backed up in the queue for that partition’s execution engine. Thus, that partition will become overloaded

while the other partitions are under-utilized.

Given this, we are interested in how to identify these affinities and hotspots in the system at runtime.

We plan to apply our data partitioning algorithms for on-line database reorganization. When the workload

properties of an existing DBMS installation changes, our algorithms will generate new designs that adjust

to changes in workload and data skew [223]. This will allow H-Store to identify overloaded partitions and

then automatically migrate data to either other existing partitions or bring new partitions on-line. We are

also developing data placement algorithms that assign the location and sizes of partitions to particular nodes

in a cluster [176]. Generating an optimal placement strategy can improve the performance of a distributed

transaction by increasing the likelihood that any “non-local” partition is located on the same node.

8.5 Predictive Transaction Modeling
Representing transactions with Markov models in the manner discussed in Chapters 5 and 6 is also applicable

to several other research problems in distributed OLTP systems. We plan on extending our models to include

additional information about transactions, such as their resource usage and execution times. This information

could then be used for admission control or the intelligent scheduling of transactions based on the results of

the initial path estimates [101]. For example, the execution states in a model could also include the expected

remaining run time for a transaction. By examining the relationships between queries and the procedure

parameters, we can discover commutative sets of queries that could then be pre-fetched if the transaction

enters some “trigger” state [194]. Similarly, the models could also identify sets of redundant queries in a

transaction that could automatically be rewritten and grouped into a smaller batch.

We are currently investigating techniques for the automatic reorganization of on-line H-Store deployments

in order to respond to changes in demand and workload skew. We plan on leveraging our models’ ability to

quickly compare the expected execution paths of transactions with the actual execution properties of the

current workload. Such automatic changes include scaling up the number of partitions in the system or

repartitioning the database.

The obvious addition to our speculative execution scheme presented in Chapter 6 is to add support for

distributed transactions. This is will be part of our effort for dynamically constructing batches of transactions

at runtime, as described in Section 8.1.1.

We are interested in improving support for workloads whose properties are not easily captured by our

Markov models. This includes allowing the DBMS to prefetch remote partition queries whose input pa-

rameters are derived from the output of previous queries in the transaction. The DBMS can add triggers

automatically to a procedure’s control code so that queries are dispatched once the results of those earlier

queries are received. Similar to “runahead” execution [165], the DBMS could also make all query requests

non-blocking and then resolve their results during 2PC so that transactions never stall at SP1. Alternatively,

119

if only some of the input parameters are known for the WHERE clause of a remote partition query, then the

DBMS can prefetch a “less precise” query and return the results to the transaction’s base partition. Once the

full query is known, then the DBMS can resolve locally what tuples the query actually needs.

8.6 Larger-than-Memory Databases
The fundamental problem with main memory DBMSs is that their improved performance is only achievable

when the database is smaller than the amount of physical memory available in the system. If the database

does not fit in memory, then the operating system will start to page virtual memory, and main memory

accesses will cause page faults. Because page faults are transparent to the user, in this case the main memory

DBMS, the execution of transactions is stalled while the page is fetched from disk. This is a significant

problem in a DBMS, like H-Store, that executes transactions serially without the use of heavyweight locking

and latching [203]. Because of this, all main memory DBMSs warn users not to exceed the amount of real

memory [219]. If memory is exceeded (or if it might be at some point in the future), then a user must either

(1) provision new hardware and migrate their database to a larger cluster, or (2) fall back to a traditional

disk-based system, with its inherent performance problems.

To overcome these problems, we are developing a new architecture for main memory DBMSs that we call

anti-caching. In a DBMS with anti-caching, when memory is exhausted, the DBMS gathers the “coldest”

tuples and writes them to disk with minimal translation from their main memory format, thereby freeing up

space for more recently accessed tuples. As such, the “hotter” data resides in main memory, while the colder

data resides on disk in the anti-cache portion of the system. Unlike a traditional DBMS architecture, tuples

do not reside in both places; each tuple is either in memory or in a disk block, but never in both places at the

same time. In this new architecture, main memory, rather than disk, becomes the primary storage location.

Rather than starting with data on disk and reading hot data into the cache, data starts in memory and cold data

is evicted to the anti-cache on disk.

8.7 Workload Expansion
We are interested in expanding the scope of the workloads supported in H-Store. Normally organizations

stream data out of a front-end system using an ETL process and store it in a data warehouse. They can

then execute longer running, analytical queries on this back-end system without affecting the front-end OLTP

DBMS. But because there is a delay in getting transferring this information from one DBMS to the other,

the OLAP system could be viewing potentially stale data. Thus, we are interested in supporting what is

known as “real-time” analytics in a high-performance DBMS like H-Store. The goal is to allow users to

perform OLAP queries directly in the front-end DBMS, thereby reducing the time to find answers. Related to

this, we are working on adding support for continuous queries (i.e., stream processing) as first entities in the

system. The DBMS will execute these more complex operations alongside the OLTP transactional workload

without affecting the performance of the front-end application. We plan to investigate different strategies

for supporting these workloads, including using snapshots like in HyPer [134], or maintaining multiple data

stores inside of the same DBMS like in SAP HANA [84, 199] and OctopusDB [77].

120

To support more complex queries in H-Store’s query planner, we plan to investigate an alternative ap-

proach that is used by MongoDB [5]. In that system, instead of using a cost-based query optimizer [197], the

DBMS generates all possible plans for a query and tries them each out to determine which one is the best.

At runtime, the system will select a random plan for a query and keep track of how long it takes to complete.

Once enough samples are collected, the DBMS will then choose the query plan with the lowest run time. The

information gained about query plans can be written into the DBMS’s internal catalog so that if the DBMS is

restarted it can use the best query without having to run trials first.

Lastly, we will develop a new DBMS beyond H-Store that supports high-performance transaction pro-

cessing for non-partitionable workloads. The TPC-E benchmark (cf. Section A.6) is an example of such a

workload [215].

8.8 Non-Volatile Memory
Just as changes in the number of cores per CPU and the reduction of memory prices enabled H-Store’s de-

parture from a traditional DBMS architecture, the onset of non-volatile memory (NVM) devices will require

a re-evaluation of the dichotomy between memory and durable storage. The next phase in database system

development will focus on using NVM-based storage [190] – also referred to as storage class memory [43].

The promise of this new nanoscale technology is that it will have the read/write performance of DRAM, but

with the persistency and durability of SSDs. There are several emerging technologies that will compete in

the NVM space [43, 190]. These devices promise to overcome the disparity between processor performance

and DRAM storage capacity limits that encumber data-centric applications.

We believe that there are several avenues for research with these NVM devices. Foremost is the potential

of resistive NVM devices to dynamically change their storage area into executable logic gates. We plan

to explore integrating machine learning components into a DBMS to automatically enable these executable

configurations in NVMs. For example, if a user is sequentially scanning large segments of DNA data, then the

DBMS could migrate the processing logic for identifying interesting sequences from the application down

into the NVM. Once again, the research challenge lies in how to enable the DBMS to identify when it is

appropriate to perform this optimization and to understand the trade-offs. We will also explore partitioning

techniques that consider locality when storing data in these NVM devices, since the difference between

accessing data on the same CPU socket versus a different socket in the same node will be significantly

greater than it is now [183]. We believe that a NVM-based system that account for these types of problems

will greatly outperform existing DBMSs because they do not need to copy data from storage to the CPU.

121

Chapter 9

Conclusion

In this dissertation, we presented H-Store, a new DBMS that is designed for main memory storage with

minimal concurrency control overhead in OLTP applications. H-Store executes transactions efficiently using

stored procedures without fine-grained locks or latches. It splits a database into in-memory partitions that are

managed by single-threaded execution engines. Each partition can contain a disjoint subset of a table or a

copy of a replicated table. When one these engines executes a transaction, that transaction never stalls waiting

to acquire a lock held by another transaction or waiting for additional input from the application. As shown

in Section 3.9, H-Store performs up to 25× faster on a single node than traditional, disk-based DBMSs.

Although H-Store is not a general purpose DBMS, and thus will not perform well for all workloads, there are

a sizable number of applications with the workload characteristics targeted by our system (cf. Appendix A).

Many OLTP databases, however, are larger than the amount of memory available on a single node. For

these applications, the database is partitioned across a cluster of shared-nothing nodes. The main drawback

of a distributed deployment is that transactions that used to only access data at a single node may now need to

access multiple nodes. The network communication overhead for these multi-node transactions can cause a

distributed, main memory DBMS to perform no better than a single-node system. But it is non-trivial to scale

a distributed, main memory DBMS to execute larger volumes of transactions effectively; the recent trend in

scaling DBMSs without ACID is insufficient for OLTP applications that need strong consistency guarantees.

To overcome this problem, we presented three different optimization techniques in this dissertation for

high-performance transaction processing in a distributed, main memory DBMS. First, we showed in Chap-

ter 4 how to generate a physical design that deploys a database across nodes in such a way that minimizes the

number of partitions that each transaction needs to access. If all of the data that a transaction needs is stored

within the same partition, then the DBMS executes that transaction using a lightweight concurrency control

scheme that does not require it to coordinate with other nodes in the cluster. These designs also minimize the

amount of skew in the workload so that no one partition becomes overloaded.

In order to utilize this lightweight concurrency control scheme, the DBMS needs to know certain informa-

tion about each transaction’s expected runtime behavior. This information includes the number of partitions

that they need to access or whether a particular transaction could abort. The system derives this information

122

from developer-written annotations in the application, but they are too coarse-grained and thus may be inac-

curate. Another approach is to blindly execute the transaction as single-partitioned and then restart it when

it deviates from this expectation. The problem with this approach is that the system’s throughput decreases

on larger cluster configurations due to transactions having to continually restart. Hence, in Chapter 5 we

showed how to incorporate a machine learning framework in the DBMS to predict the execution behavior

of transactions before they start running. When a transaction request comes into the system, the DBMS

uses this framework to identify whether it should be executed as a fast, single-partition transaction or a slow,

multi-partition transaction.

Our first two techniques allow the DBMS to avoid distributed transactions. They do not improve the

throughput or latency of the system when distributed transactions are actually running. Thus, in Chapter 6,

we identified the points during a distributed transaction’s lifetime that the DBMS will stall because of cross-

partition communication. We then described how to leverage the predictions generated by our machine

learning framework from Chapter 5 to schedule speculative tasks at partitions during these stall points. We

showed how the system can interleave single-partition transactions at a partition without violating the seri-

alizability guarantees of the system. We also showed how to identify queries that the DBMS can prefetch

before a distributed transaction starts so that it does not need to wait for their results at runtime.

All together, the work described in this dissertation allow a distributed, main memory DBMS to support

transactional workloads beyond what a single node system can support.

123

Appendix A

OLTP Benchmarks

We now provide a more thorough description of the OLTP benchmarks used in our evaluations in this dis-

sertation. These benchmarks were ported to H-Store in a good faith to follow the original spirit of each

benchmark’s specification, but may differ in the implementation details.

A.1 AuctionMark
AuctionMark is a OLTP benchmark by Brown University and a well-known online auction web site [104].

The benchmark is specifically designed to model the workload characteristics of an online auction site run-

ning on a shared-nothing parallel database. It consists of 16 tables and 14 stored procedures, including one

procedure that is executed at a regular interval to process recently ended auctions. On particularly challeng-

ing aspect of AuctionMark for partitioning algorithms is that there are several tables of varying size that

are “read-mostly”. If these tables are replicated at all partitions, then many of the transactions can execute

as single-partitioned. But depending on the rate in which these read-mostly tables are updated, the bene-

fits gained from allowing some transactions to execute as single-partitioned are offset by the multi-partition

transactions that update the replicated tables. Partitioning the tables by the ITEM id and the seller’s USER id

maximizes the number of single-partitioned transactions while also minimizing the amount of skew. The

user-to-item ratio follows a Zipfian distribution, meaning that there are a small number of users that are sell-

ing a large portion of the total items. Thus, if the tables are only partitioned on the seller’s id, then both the

USER-centric data and transactions would overload partitions.

A.2 SEATS
The SEATS benchmark models an airline ticketing system where customers search for flights and make

reservations [105]. It consists of eight tables and six stored procedures. Finding a good design for SEATS

is more challenging than TATP and TPC-C because of non-read-only table replication candidates and data

access patterns. For example, the non-uniform distribution of flights between airports creates imbalance for

large cluster sizes if the database was horizontally partitioned by airport-related columns.

124

Tables Columns Foreign Keys Indexes Procedures Read-Only Txns
AuctionMark 16 123 41 14 9 55%
SEATS 8 197 16 18 6 45%
SmallBank 3 6 2 4 6 15%
TATP 4 51 4 7 7 40%
TPC-C 9 92 24 3 5 8%
TPC-E 33 191 50 43 12 77%
Voter 3 9 1 3 1 0%

Table A.1: Profile information for the benchmark workloads.

A.3 SmallBank
This workload models a banking application where transactions perform simple read and update operations on

customers’ accounts [45]. All transactions involve a small number of tuples that are retrieved using primary

key indexes. The transactions’ access patterns are skewed such that a small number of accounts receive most

of the requests. We extended the original SmallBank implementation to include a transaction that transfers

money from one customer’s account to another [83].

A.4 TATP
The TATP benchmark (formerly Telecom One or TM1) is a newer OLTP testing application that simulates a

typical caller location system used by telecommunication providers [226]. The benchmarks consists of four

tables, three of which are foreign key descendants of the root SUBSCRIBER table. All procedures reference

tuples using either SUBSCRIBER’s primary key or a separate unique identification string. Those stored proce-

dures that are given this primary key in their input parameters are always single-partitioned, since they can be

immediately directed to the proper partition. Other procedures that only provide the non-primary key identi-

fier have to broadcast queries to all partitions in order to discover the partition that contains the SUBSCRIBER

record that corresponds to this separate identification string.

A.5 TPC-C
The TPC-C benchmark is the current industry standard for evaluating the performance of OLTP systems [216].

It consists of nine tables and five stored procedures that simulate a warehouse-centric order processing ap-

plication. All of the stored procedures in TPC-C provide a warehouse id as an input parameter for the

transaction, which is the ancestral foreign key for all tables except ITEM. Approximately 90% of the ORDER

records can be processed using single-partition transactions because all of the corresponding ORDER_LINE

records are derived from the same warehouse as the order. The other 10% transactions have queries that must

be re-routed to the partition with the remote warehouse fragment. Thus, the two main challenges for auto-

matically partitioning the TPC-C database is (1) deciding what warehouse id column to use for partitioning

ORDER_LINE and (2) identifying that the ITEM table should be replicated. For the former, the ORDER_LINE ta-

ble is co-accessed with the STOCK table more often that it is with the ORDERS table, but the supply warehouse

id of the STOCK table is not considered the “local” warehouse of the order.

125

A.6 TPC-E
Since TPC-C is 20 years old, the TPC-E benchmark was developed to represent more modern OLTP appli-

cations [215]. The TPC-E schema contains 33 tables with a diverse number of foreign key dependencies

between them. It also features 12 stored procedures, of which ten are executed in the regular transactional

mix and two that are considered “clean-up” procedures that are invoked at fixed intervals. These clean-up

procedures are of particular interest because they perform full-table scans and updates for a wide variety of

tables. It is very challenging to find the optimal design for the TPC-E benchmark for several reasons. Fore-

most is that unlike the TPC-C and AuctionMark benchmarks, where the schema trees are long and narrow, the

TPC-E schema tree is short and wide. This means that many of the tables have foreign key dependencies to

other disparate tables, which creates many conflicting partitioning candidates. Many of the stored procedures

also have optional input parameters that cause transactions to execute different sets of queries based on what

parameters are given at run time. For example, the DataMaintenance procedure will execute one out of 12

possible sets of queries based on the name of the table passed in to the transaction. This means that is difficult

to find a static partitioning parameter that directs these procedures to the proper partition for all cases.

A.7 Voter
The Voter benchmark simulates a phone-based election application. It is designed to saturate the DBMS

with many short-lived transactions that all update a small number of records. There are a fixed number

of contestants in the database. The majority of the Voter’s workload are transactions that update the total

number of votes for a particular contestant. The DBMS records the number of votes made by each user based

on their phone number; each user is only allowed to vote a fixed number of times. A separate transaction is

periodically invoked in order to display the vote totals while the show is broadcast live.

126

Appendix B

Query Plan Operators

We now present an overview of the query plan operators that H-Store supports. H-Store supports most of the

SQL-92 specification. In some cases, we chose to implement non-standard functionality used in Postgres and

MySQL (e.g., LIMIT) rather than follow the SQL standard. But the operators listed here are independent to

the actual SQL dialect that the DBMS supports.

We have grouped the 16 operators together here based on their function.1 Each non-leaf operator takes

in one or more input tables that are generated from another operator, and produces one and only one output

table. An operator can also have additional configuration options that are added by the DBMS’s query planner

(e.g., the number of tuples to include the output for the LIMIT operator). We refer the interested reader to

Section 3.5 for a description of how H-Store generates query plans based on these operators.

B.1 Scan Operators
These operators are used to retrieve tuples from database’s tables. With the exception for INSERT queries,

these two operators are always the leaf vertexes in the query plan tree.

SEQSCAN: This will cause the engine to perform a complete sequential scan on a single table. The operator

examines each individual tuple in the table and emits those tuples into its output table that satisfy the

predicates in the query’s WHERE clause. The scan will stop until all tuples are examined or if there is

an embedded LIMIT operator for this operator that has been satisfied (which ever comes first). Since

tuples are stored in unsorted order, there is no terminating predicate that will cause the operator to stop

scanning.

INDEXSCAN: Scan the tuples for a table through one of its indexes. The operator is provided with a search

key used to jump to a location in the index and then it will iterate over the index’s entries in sorted

order. Tuples are emitted to the output table if they satisfy the predicates in the query’s WHERE

clause. The search halts when the query’s stop predicate evaluates to false or if there is an embedded

LIMIT operator for the this operator that has been satisfied (which ever comes first). H-Store does not

1As of 2013, VoltDB still uses all 16 of these original operators from H-Store plus two additional ones for performing scans on
materialized views and computing faster count aggregates on indexes.

127

currently support covering indexes, so the operator will always follow the pointer from the indexes to

retrieve the full tuple contents.

B.2 Join Operators
H-Store currently supports two variants of the canonical nested-loop join algorithm [185]. Although other

more optimized and cache-consious implementations exist, they would provide little improvements for the

workloads that we used in this dissertation because the scope of joins are small.

NESTLOOP: Given two input tables, the operator designates the first one as the “outer” table and the second

one as the “inner” table. For each tuple in the outer table, the engine scans every tuple in the inner table

and evaluates the operator’s join predicate. If this predicate evaluates to true, then the tuple is added to

the operator’s output table.

NESTLOOPINDEX: This operator takes in one input table that it designates as the “outer” table. The “inner”

table comes from an embedded INDEXSCAN operator. For each tuple in the outer table, the engine

extracts the values for the columns that correspond to the join predicate and then uses the INDEXSCAN

to find the tuples in the inner table that match that key. This is the most common join operator used for

all of the workloads in Appendix A.

B.3 Modifying Operators
These operators are used to modify the contents of a database.

INSERT: This operator inserts all of the tuples in its input table into a target table in the database. As each

tuple is inserted, the engine will update the table’s indexes and write an entry in the transaction’s undo

log (cf. Section 3.6.3).

DELETE: Given an input table, this operator will delete all the entries in that input table from a target table

in the database. The DELETE operator checks whether its input table is produced from a PROJECTION

operator executing on the same partition. If it is, then the tuples in that input table will contain a single

column that corresponds to their 4-byte offset. The operator uses that offset to retrieve the tuple’s

location in memory so that it can be deleted directly from the table. Note that the system still has to

traverse all of the target table’s indexes using the values of each tuples’ fields to remove them from the

indexes.

UPDATE: The input table for this operator contains the primary keys of the tuples to be updated and the

columns with the new values for those tuples. This input is generated from one of the scan operators.

The operator iterates over each record and writes the new values directly into the tuple’s location in

memory and updates any indexes for the target table.

B.4 Data Operators
These operators are for performing certain actions on transient data (i.e., output tables generated from other

operators, or data from the transaction’s control code).

128

MATERIALIZE: The MATERIALIZE operator is used to convert the query invocation’s input parameters into

tuples. These tuples are then copied into the operator’s output table. This is typically used with the

INSERT operator.

RECEIVE: This is used to combine one or more input tables from a corresponding SEND operator. This is

the similar to the UNION except that the data comes from transaction coordinator (rather than from an

output table from another operator in the same execution engine). The RECEIVE operator may execute

on a different partition than from where the SEND operator executed, but its input data will always

be sent from the transaction’s base partition coordinator. This operator is only used in multi-partition

query plans (cf. Section 3.5.2).

SEND: This instructs the execution engine to send the output table from this operator back to the transaction’s

base partition. This output table will be used as input for a corresponding RECEIVE operator. The

SEND operator always emits its input tables directly as its output table. This operator is only used in

multi-partition query plans (cf. Section 3.5.2).

UNION: This operator combines one or more input tables from other operators running in the same partition.

The tuples from each input table are merged in unsorted order.

B.5 Output Operators
The following operators are used to control the contents of the output tables for a query plan. These are

typically invoked at the top of the query plan’s tree.

AGGREGATE: This operator will compute one or more aggregates on the target columns of its input table.

H-Store supports the MIN, MAX, SUM, COUNT, and AVERAGE aggregate functions. This operator

also supports the GROUP BY operation.

DISTINCT: This prunes out the non-distinct tuples from the operators input table. For a given set of columns,

the operator examines its input table and constructs a composite key for each tuple. If that tuple does

not already exist in the set of previous keys seen for that invocation, then the key is added to that set

and the tuple is added to the operator’s output table. This operator can be embedded in the SEQSCAN

and INDEXSCAN operators.

LIMIT: Given an input table, this operator will only emit a certain number of tuples from that input table into

its output table. The number of tuples to include in the output table can come from a constant value in

the SQL statement or from an input parameter. H-Store’s LIMIT operator also supports offsets so that

the first n tuples are skipped. This operator can be embedded in the most commonly used operators for

OLTP queries (i.e., SEQSCAN, INDEXSCAN, and ORDERBY).

ORDERBY: This operator sorts its input table based on one or more of its columns. It supports multiple sort

columns in either ascending or descending direction.

129

PROJECTION: The PROJECTION operator has a special output column type that stores the tuple’s 4-byte

offset in the output table (instead of its full tuple). This is used for DELETE and UPDATE operators that

execute on the same node.

130

Bibliography

[1] Clustrix. http://www.clustrix.com.

[2] Apache HBase. http://hbase.apache.org.

[3] H-Store. http://hstore.cs.brown.edu.

[4] MemSQL. http://www.memsql.com.

[5] MongoDB. http://mongodb.org.

[6] Mysql. http://www.mysql.com.

[7] NuoDB. http://www.nuodb.com.

[8] Redis. http://redis.io.

[9] VMware vFabric SQLFire. http://www.vmware.com/go/sqlfire.

[10] VoltDB. http://www.voltdb.com.

[11] Wikipedia MySQL Server Roles. https://wikitech.wikimedia.org/view/Server_roles.

[12] The World in 2013: ICT Facts and Figures. ITU, 2013.

[13] D. J. Abadi. Query Execution in Column-Oriented Database Systems. PhD thesis, MIT, 2008.

[14] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang, W. Lindner, A. S. Maskey,

E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the borealis stream processing

engine. In CIDR, pages 277–289, 2005.

[15] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient optimistic concurrency control using

loosely synchronized clocks. In SIGMOD, pages 23–34, 1995.

[16] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materialized views and in-

dexes in sql databases. In VLDB, 2000. ISBN 1-55860-715-3.

[17] S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya. Automating layout of relational databases. In

ICDE, pages 607–618, 2003.

131

http://www.clustrix.com
http://hbase.apache.org
http://hstore.cs.brown.edu
http://www.memsql.com
http://mongodb.org
http://www.mysql.com
http://www.nuodb.com
http://redis.io
http://www.vmware.com/go/sqlfire
http://www.voltdb.com
https://wikitech.wikimedia.org/view/Server_roles

[18] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal partitioning into automated

physical database design. In SIGMOD, 2004. ISBN 1-58113-859-8. doi: http://doi.acm.org/10.1145/

1007568.1007609.

[19] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: a new paradigm for

building scalable distributed systems. In SOSP, pages 159–174, 2007.

[20] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. Dbmss on a modern processor: Where does

time go? VLDB, pages 266–277, 1999.

[21] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L. Kersten, and A. N. Wilschut.

PRISMA/DB: A parallel, main memory relational DBMS. IEEE Trans. on Knowl. and Data Eng., 4

(6):541–554, 1992.

[22] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58,

Apr. 2010.

[23] M. Aslett. How will the database incumbents respond to NoSQL and NewSQL? The 451 Group, April

2011.

[24] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F.

King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.

System r: relational approach to database management. ACM Trans. Database Syst., 1(2):97–137,

June 1976.

[25] N. Bassiliades and I. P. Vlahavas. A non-uniform data fragmentation strategy for parallel main-menory

database systems. In VLDB, pages 370–381, 1995. ISBN 1-55860-379-4.

[26] J. Baulier, P. Bohannon, S. Gogate, S. Joshi, C. Gupta, A. Khivesera, H. F. Korth, P. McIlroy, J. Miller,

P. P. S. Narayan, M. Nemeth, R. Rastogi, A. Silberschatz, and S. Sudarshan. DataBlitz: A high

performance main-memory storage manager. VLDB, pages 701–, 1998.

[27] P. Bernstein, J. Rothnie, J.B., N. Goodman, and C. Papadimitriou. The concurrency control mechanism

of SDD-1: A system for distributed databases (the fully redundant case). Software Engineering, IEEE

Transactions on, SE-4(3):154–168, 1978.

[28] P. Bernstein, D. Shipman, and W. Wong. Formal aspects of serializability in database concurrency

control. IEEE Transactions on Software Engineering, 5(3):203–216, 1979.

[29] P. A. Bernstein and N. Goodman. Timestamp-based algorithms for concurrency control in distributed

database systems. In VLDB, pages 285–300, 1980.

[30] P. A. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM Comput.

Surv., 13(2):185–221, 1981.

132

[31] P. A. Bernstein and N. Goodman. Multiversion concurrency control - theory and algorithms. ACM

Trans. Database Syst., 8(4):465–483, Dec. 1983.

[32] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. 2nd edition, 2009.

[33] P. A. Bernstein and D. W. Shipman. The correctness of concurrency control mechanisms in a system

for distributed databases (SDD-1). ACM Trans. Database Syst., 5(1):52–68, Mar. 1980. ISSN 0362-

5915.

[34] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query processing in a

system for distributed databases (sdd-1). ACM Trans. Database Syst., 6(4):602–625, Dec. 1981.

[35] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems, chapter 7. Addison Wesley Publishing Company, 1987. ISBN 0-201-10715-5.

[36] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory hash join algorithms for

multi-core cpus. SIGMOD, pages 37–48, 2011.

[37] S. Blott and H. F. Korth. An almost-serial protocol for transaction execution in main-memory database

systems. In VLDB, pages 706–717, 2002.

[38] P. Bohannon, D. Lieuwen, R. Rastogi, A. Silberschatz, S. Seshadri, and S. Sudarshan. The architecture

of the dalí main-memory storage manager. Multimedia Tools Appl., 4(2):115–151, Mar. 1997.

[39] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for the new bottleneck:

Memory access. In Proceedings of the 25th International Conference on Very Large Data Bases,

VLDB ’99, pages 54–65, 1999. ISBN 1-55860-615-7.

[40] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and

P. Valduriez. Prototyping bubba, a highly parallel database system. IEEE Trans. on Knowl. and Data

Eng., 2(1):4–24, Mar. 1990.

[41] J. Borkowski. Increasing query speed with multithreaded data prefetching. PARELEC, pages 117–122,

April 2011.

[42] A. J. Borr. Transaction monitoring in ENCOMPASS: reliable distributed transaction processing. vol-

ume 7 of VLDB, pages 155–165, 1981.

[43] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy. Overview of

candidate device technologies for storage-class memory. IBM J. Res. Dev., 52(4):449–464, July 2008.

ISSN 0018-8646.

[44] M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In Commu-

nicating Sequential Processes, volume 3525 of Lecture Notes in Computer Science, pages 707–711.

2005.

133

[45] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for snapshot databases. SIGMOD,

pages 729–738, 2008. ISBN 978-1-60558-102-6.

[46] M. J. Carey and M. Livny. Distributed concurrency control performance: A study of algorithms,

distribution, and replication. VLDB, pages 13–25, 1988.

[47] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F. Naughton, D. T. Schuh,

M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling. Shoring up persistent

applications. SIGMOD, pages 383–394, 1994.

[48] M. R. Casanova and P. A. Bernstein. A formal system for reasoning about programs accessing a

relational database. ACM Trans. Program. Lang. Syst., 2(3):386–414, July 1980. ISSN 0164-0925.

[49] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39:12–27, 2011.

[50] S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database schemas. IEEE Trans.

Softw. Eng., 9(4):487–504, 1983. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.1983.234957.

[51] S. K. Cha and C. Song. P*TIME: highly scalable OLTP DBMS for managing update-intensive stream

workload. VLDB, pages 1033–1044, 2004.

[52] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay, R. Lorie,

J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger, M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W.

Wade, and R. A. Yost. A history and evaluation of system r. Commun. ACM, 24:632–646, October

1981. ISSN 0001-0782.

[53] A. Chan, S. Fox, W.-T. K. Lin, A. Nori, and D. R. Ries. The implementation of an integrated concur-

rency control and recovery scheme. SIGMOD, pages 184–191, 1982.

[54] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and

R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst.,

26:4:1–4:26, June 2008. ISSN 0734-2071.

[55] S. Chaudhuri and V. Narasayya. Autoadmin “what-if” index analysis utility. SIGMOD Rec., 27(2):

367–378, 1998. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/276305.276337.

[56] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool for microsoft sql

server. In VLDB, pages 146–155, 1997. ISBN 1-55860-470-7.

[57] S. Chaudhuri, A. K. Gupta, and V. Narasayya. Compressing sql workloads. In SIGMOD, pages 488–

499, 2002. ISBN 1-58113-497-5.

[58] Y. C. Cheng, L. Gruenwald, G. Ingels, and M. T. Thakkar. Evaluating partitioning techniques for main

memory database: Horizontal and single vertical. In ICCI, pages 570–574, 1993. ISBN 0-8186-4212-

2.

134

[59] J. Coleman and R. Grosman. Unlimited Scale-up of DB2 Using Server-assisted Client Redirect. http:

//ibm.co/fLR2cH, October 2005.

[60] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):

1277–1288, Aug. 2008.

[61] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data placement in bubba. SIGMOD, 17(3):

99–108, 1988. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/971701.50213.

[62] G. Copeland, M. Franklin, and G. Weikum. Uniform object management. volume 416 of EDBT, pages

253–268. 1990.

[63] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,

S. Quinlan, R. Rao, L. Rolig, M. S. Yasushi Saito, C. Taylor, R. Wang, and D. Woodford. Spanner:

Google’s Globally-Distributed Database. In OSDI, 2012.

[64] J. Cowling and B. Liskov. Granola: low-overhead distributed transaction coordination. In USENIX

ATC, pages 21–34, June 2012.

[65] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov, D. L.

Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker,

and S. Zdonik. A demonstration of SciDB: a science-oriented DBMS. Proc. VLDB Endow., 2(2):

1534–1537, Aug. 2009.

[66] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach to database

replication and partitioning. VLDB, 3:48–57, 2010. ISSN 2150-8097.

[67] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan, and N. Zeldovich.

Relational cloud: The case for a database service. In CIDR, pages 1–7, 2011.

[68] E. Danna and L. Perron. Structured vs. unstructured large neighborhood search: A case study on job-

shop scheduling problems with earliness and tardiness costs. In Principles and Practice of Constraint

Programming, volume 2833, pages 817–821, 2003.

[69] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available key-value store. SIGOPS Oper. Syst.

Rev., 41:205–220, October 2007. ISSN 0163-5980.

[70] D. DeWitt and J. Gray. Parallel database systems: the future of high performance database systems.

Commun. ACM, 35(6):85–98, June 1992. ISSN 0001-0782.

[71] D. DeWitt, M. Smith, and H. Boral. A single-user performance evaluation of the teradata database ma-

chine. In High Performance Transaction Systems, volume 359 of Lecture Notes in Computer Science,

pages 243–276. 1989.

135

http://ibm.co/fLR2cH
http://ibm.co/fLR2cH

[72] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. Wood. Implementation

techniques for main memory database systems. SIGMOD Rec., 14(2):1–8, 1984.

[73] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna. GAMMA -

a high performance dataflow database machine. In VLDB, pages 228–237, 1986. ISBN 0-934613-18-4.

[74] D. J. Dewitt, S. Ghandeharizadeh, and D. Schneider. A performance analysis of the gamma database

machine. SIGMOD, pages 350–360, 1988.

[75] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and R. Rasmussen. The

GAMMA database machine project. IEEE Trans. on Knowl. and Data Eng., 2(1):44–62, Mar. 1990.

[76] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and M. Zwill-

ing. Hekaton: Sql server’s memory-optimized oltp engine. SIGMOD, pages 1243–1254, 2013.

[77] J. Dittrich and A. Jindal. Towards a one size fits all database architecture. In CIDR, pages 195–198,

2011.

[78] N. Du, X. Ye, and J. Wang. Towards workflow-driven database system workload modeling. In DBTest

’09, pages 1–6, 2009. ISBN 978-1-60558-706-6. doi: http://doi.acm.org/10.1145/1594156.1594169.

[79] S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters with ituned. VLDB,

2:1246–1257, August 2009.

[80] S. S. Elnaffar. A methodology for auto-recognizing dbms workloads. In CASCON, page 2. IBM Press,

2002.

[81] R. Epstein, M. Stonebraker, and E. Wong. Distributed query processing in a relational data base

system. SIGMOD, pages 169–180, 1978.

[82] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: a distributed, searchable key-value store. SIGCOMM

Comput. Commun. Rev., 42(4):25–36, Aug. 2012.

[83] A. et al, D. Bitton, M. Brown, R. Catell, S. Ceri, T. Chou, D. DeWitt, D. Gawlick, H. Garcia-Molina,

B. Good, J. Gray, P. Homan, B. Jolls, T. Lukes, E. Lazowska, J. Nauman, M. Pong, A. Spector,

K. Trieber, H. Sammer, O. Serlin, M. Stonebraker, A. Reuter, and P. Weinberger. A measure of

transaction processing power. Datamation, 31(7):112–118, Apr. 1985.

[84] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. SAP HANA database: data

management for modern business applications. SIGMOD Rec., 40(4):45–51, 2012. ISSN 0163-5808.

[85] B. Fitzpatrick. Distributed caching with Memcached. Linux J., 2004(124):5–, Aug. 2004. ISSN

1075-3583.

[86] F. Focacci, F. Laburthe, and A. Lodi. Handbook of Metaheuristics, chapter Local Search and Constraint

Programming. Springer, 2003.

136

[87] N. Folkman. So, that was a bummer. http://blog.foursquare.com/2010/10/05/

so-that-was-a-bummer/, October 2010.

[88] H. Garcia-Molina and K. Salem. Main memory database systems: An overview. IEEE Trans. on

Knowl. and Data Eng., 4(6):509–516, Dec. 1992.

[89] S. Ghandeharizadeh and D. J. DeWitt. Hybrid-range partitioning strategy: A new declustering strategy

for multiprocessor database machines. VLDB, pages 481–492, 1990.

[90] S. Ghandeharizadeh, D. J. DeWitt, and W. Qureshi. A performance analysis of alternative multi-

attribute declustering strategies. SIGMOD, 21(2):29–38, 1992. ISSN 0163-5808. doi: http://doi.acm.

org/10.1145/141484.130293.

[91] S. Gilbert and N. A. Lynch. Perspectives on the CAP theorem. Computer, 45(2):30–36, 2012.

[92] G. Graefe. The five-minute rule twenty years later, and how flash memory changes the rules. DaMoN,

pages 6:1–6:9, 2007.

[93] J. Gray. Concurrency Control and Recovery in Database Systems, chapter Notes on data base operating

systems, pages 393–481. Springer-Verlag, 1978.

[94] J. Gray. The transaction concept: virtues and limitations. volume 7 of VLDB, pages 144–154, 1981.

[95] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. 1992. ISBN 1558601902.

[96] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques, chapter What is a Transac-

tion Processing System?, pages 5–21. 1992. ISBN 1558601902.

[97] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. SIGMOD,

pages 173–182, 1996.

[98] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Modelling in data base management systems.

chapter Granularity of locks and degrees of consistency in a shared data base, pages 365–393. 1976.

[99] L. Gruenwald and M. H. Eich. Database partitioning techniques to support reload in a main memory

database system: MARS. In International Conference on Parallel Processing and Databases, pages

107–109, March 1990.

[100] L. Gruenwald and M. H. Eich. Selecting a database partitioning technique. Journal of Database

Management, 4(3):27–39, 1993.

[101] C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting Query Execution Times for Autonomous Work-

load Management. In ICAC, pages 13–22, 2008. ISBN 978-0-7695-3175-5.

[102] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for olap. In ICDE, pages

208–219, 1997. ISBN 0-8186-7807-0.

137

http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/
http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/

[103] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction: Foundations and Applications.

Springer-Verlag, 2006. ISBN 3540354875.

[104] H-Store Project. AuctionMark: A Benchmark for High-Performance OLTP Systems. http://

hstore.cs.brown.edu/projects/auctionmark, .

[105] H-Store Project. The SEATS Airline Ticketing Systems Benchmark. http://hstore.cs.brown.

edu/projects/seats, .

[106] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Comput. Surv.,

15(4):287–317, Dec. 1983.

[107] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining

software: an update. SIGKDD Explorations Newsletter, 11:10–18, November 2009. ISSN 1931-0145.

[108] M. Hammer and A. Chan. Index selection in a self-adaptive data base management system. In SIG-

MOD, pages 1–8, 1976.

[109] M. Hammer and B. Niamir. A heuristic approach to attribute partitioning. In SIGMOD, pages 93–101,

1979. ISBN 0-89791-001-X. doi: http://doi.acm.org/10.1145/582095.582110.

[110] M. Hammer and D. Shipman. Reliability mechanisms for SDD-1: a system for distributed databases.

ACM Trans. Database Syst., 5(4):431–466, Dec. 1980.

[111] J. R. Haritsa, K. Ramamritham, and R. Gupta. The prompt real-time commit protocol. IEEE Trans.

Parallel Distrib. Syst., 11:160–181, February 2000. ISSN 1045-9219.

[112] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through the looking glass, and

what we found there. In SIGMOD, pages 981–992, 2008. ISBN 978-1-60558-102-6.

[113] P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR, pages 132–141,

2007.

[114] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett, and A. Reuter. Group commit timers and high

volume transaction systems. In Proceedings of the 2nd International Workshop on High Performance

Transaction Systems, pages 301–329, 1989. ISBN 3-540-51085-0.

[115] J. M. Hellerstein and M. Stonebraker. Readings in database systems. chapter Transaction Management,

pages 238–243. 4th edition, 1998.

[116] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, Jan. 1991.

[117] G. Herman, K. C. Lee, and A. Weinrib. The datacycle architecture for very high throughput database

systems. SIGMOD, pages 97–103, 1987.

[118] M. Heytens, S. Listgarten, M.-A. Neimat, and K. Wilkinson. Smallbase: A main-memory dbms for

high-performance applications. Technical report, Hewlett-Packard Laboratories, 1995.

138

http://hstore.cs.brown.edu/projects/auctionmark
http://hstore.cs.brown.edu/projects/auctionmark
http://hstore.cs.brown.edu/projects/seats
http://hstore.cs.brown.edu/projects/seats

[119] M. Holze and N. Ritter. Towards workload shift detection and prediction for autonomic databases. In

PIKM, pages 109–116, 2007.

[120] M. Holze and N. Ritter. Autonomic Databases: Detection of Workload Shifts with n-Gram-Models.

In ADBIS, pages 127–142, 2008. ISBN 978-3-540-85712-9.

[121] R. A. Howard. Dynamic Programming and Markov Processes. MIT˜Press, 1960.

[122] J. Hugg. New age transactional systems – not your grandpa’s OLTP. StrangeLoop Conference, 2011.

[123] S.-O. Hvasshovd, O. Torbjørnsen, S. E. Bratsberg, and P. Holager. The ClustRa telecom database:

High availability, high throughput, and real-time response. VLDB, pages 469–477, 1995.

[124] M. Y. L. Ip, L. V. Saxton, and V. V. Raghavan. On the selection of an optimal set of indexes. IEEE

Trans. Softw. Eng., 9(2):135–143, 1983. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.1983.

236458.

[125] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. Dali: A high perfor-

mance main memory storage manager. In VLDB, pages 48–59, 1994. ISBN 1-55860-153-8.

[126] R. Johnson, I. Pandis, and A. Ailamaki. Improving oltp scalability using speculative lock inheritance.

Proc. VLDB Endow., 2(1):479–489, Aug. 2009. ISSN 2150-8097.

[127] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-MT: a scalable storage

manager for the multicore era. EDBT, pages 24–35, 2009.

[128] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki. Aether: a scalable approach to

logging. Proc. VLDB Endow., 3(1-2):681–692, 2010. ISSN 2150-8097.

[129] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki. Scalability of write-ahead logging

on multicore and multisocket hardware. The VLDB Journal, 21(2):239–263, Apr. 2012.

[130] E. P. Jones. Fault-Tolerant Distributed Transactions for Partitioned OLTP Databases. PhD thesis,

MIT, 2011.

[131] E. P. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control for partitioned main

memory databases. In SIGMOD, pages 603–614, 2010. ISBN 978-1-4503-0032-2.

[132] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. Isac – instance-specific algorithm configura-

tion. In ECAI, pages 751–756, 2010.

[133] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden, M. Stone-

braker, Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: A High-Performance, Distributed Main Memory

Transaction Processing System. Proc. VLDB Endow., 1(2):1496–1499, 2008.

[134] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database system based on

virtual memory snapshots. ICDE, pages 195–206, 2011.

139

[135] M. L. Kersten, P. M. Apers, M. A. Houtsma, E. J. Kuyk, and R. L. Weg. A distributed, main-memory

database machine. In M. Kitsuregawa and H. Tanaka, editors, Database Machines and Knowledge

Base Machines, volume 43 of The Kluwer International Series in Engineering and Computer Science,

pages 353–369. 1988.

[136] H. Kolltveit and S.-O. Hvasshovd. The circular two-phase commit protocol. In Proceedings of the

12th international conference on Database systems for advanced applications, DASFAA’07, pages

249–261, 2007. ISBN 978-3-540-71702-7. URL http://dl.acm.org/citation.cfm?id=1783823.

1783854.

[137] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner, P. Dubey, and A. Zeier.

Fast updates on Read-Optimized databases using Multi-Core CPUs. VLDB, 5:61–72, September 2011.

[138] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans. Database

Syst., 6(2):213–226, June 1981. ISSN 0362-5915.

[139] T. Lahiri, M.-A. Neimat, and S. Folkman. Oracle TimesTen: An in-memory database for enterprise

applications. IEEE Data Eng. Bull., 36(2):6–13, 2013.

[140] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst.

Rev., 44(2):35–40, Apr. 2010.

[141] L. Lamport. Paxos Made Simple. SIGACT News, (4):51–58, Dec. 2001.

[142] B. W. Lampson and D. B. Lomet. A new presumed commit optimization for two phase commit. In

Proceedings of the 19th International Conference on Very Large Data Bases, VLDB ’93, pages 630–

640, 1993. ISBN 1-55860-152-X.

[143] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling. High-performance

concurrency control mechanisms for main-memory databases. VLDB, 5(4):298–309, Dec. 2011. ISSN

2150-8097.

[144] J. Lee, M. Muehle, N. May, F. Faerber, V. S. H. Plattner, J. Krueger, and M. Grund. High-performance

transaction processing in SAP HANA. IEEE Data Eng. Bull., 36(2):28–33, 2013.

[145] T. J. Lehman. Design and performance evaluation of a main memory relational database system. PhD

thesis, University of Wisconsin–Madison, 1986.

[146] T. J. Lehman and M. J. Carey. A study of index structures for main memory database management

systems. VLDB, pages 294–303, 1986.

[147] T. J. Lehman and M. J. Carey. Query processing in main memory database management systems.

SIGMOD, pages 239–250, 1986.

[148] T. J. Lehman and M. J. Carey. A recovery algorithm for a high-performance memory-resident database

system. SIGMOD, pages 104–117, 1987.

140

http://dl.acm.org/citation.cfm?id=1783823.1783854
http://dl.acm.org/citation.cfm?id=1783823.1783854

[149] T. J. Lehman, E. J. Shekita, and L.-F. Cabrera. An evaluation of starburst’s memory resident storage

component. TKDE, 4:555–566, 1992.

[150] E. Levy and A. Silberschatz. Incremental recovery in main memory database systems. IEEE Trans.

on Knowl. and Data Eng., 4(6):529–540, Dec. 1992.

[151] K. Li and J. F. Naughton. Multiprocessor main memory transaction processing. DPDS, pages 177–187,

1988.

[152] J. Lindstrom, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila. IBM solidDB: In-memory database

optimized for extreme speed and availability. IEEE Data Eng. Bull., 36(2):14–20, 2013.

[153] M. Livny, S. Khoshafian, and H. Boral. Multi-disk management algorithms. SIGMETRICS Perform.

Eval. Rev., 15(1):69–77, 1987. ISSN 0163-5999. doi: http://doi.acm.org/10.1145/29904.29914.

[154] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance evaluation for local

queries. SIGMOD, pages 84–95, 1986.

[155] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Recovery algorithms for in-memory OLTP

databases. In Submission, 2013.

[156] S. Manegold. Understanding, Modeling, and Improving Main-Memory Database Performance. PhD

thesis, Universiteit van Amsterdam, December 2002.

[157] S. Manegold, P. Boncz, and M. L. Kersten. Generic database cost models for hierarchical memory

systems. In VLDB, pages 191–202, 2002.

[158] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value storage. EuroSys,

pages 183–196, 2012.

[159] M. Mehta and D. J. DeWitt. Data placement in shared-nothing parallel database systems. The VLDB

Journal, 6(1):53–72, 1997. ISSN 1066-8888. doi: http://dx.doi.org/10.1007/s007780050033.

[160] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the r* distributed database

management system. ACM Trans. Database Syst., 11(4):378–396, Dec. 1986. ISSN 0362-5915.

[161] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: a transaction recovery

method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM

Trans. Database Syst., 17(1):94–162, 1992. ISSN 0362-5915.

[162] C. Monash. H-Store is now VoltDB. http://www.dbms2.com/2009/06/22/

h-store-horizontica-voltdb/, June 2009.

[163] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann. ScyPer: elastic olap throughput

on transactional data. DanaC, pages 11–15, 2013.

141

http://www.dbms2.com/2009/06/22/h-store-horizontica-voltdb/
http://www.dbms2.com/2009/06/22/h-store-horizontica-voltdb/

[164] R. Mukkamala, S. C. Bruell, and R. K. Shultz. Design of partially replicated distributed database

systems: an integrated methodology. SIGMETRICS Perform. Eval. Rev., 16(1):187–196, 1988. ISSN

0163-5999. doi: http://doi.acm.org/10.1145/1007771.55617.

[165] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient processing in runahead execution engines.

ISCA, pages 370–381, 2005. ISBN 0-7695-2270-X.

[166] R. Nehme and N. Bruno. Automated partitioning design in parallel database systems. In SIGMOD,

SIGMOD, pages 1137–1148, 2011. ISBN 978-1-4503-0661-4.

[167] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in a distributed file system. ACM

Trans. Comput. Syst., 24(4):361–392, Nov. 2006. ISSN 0734-2071.

[168] C. Nikolaou, A. Labrinidis, V. Bohn, D. Ferguson, M. Artavanis, C. Kloukinas, and M. Marazakis. The

impact of workload clustering on transaction routing. Technical report, FORTH-ICS TR-238, 1998.

[169] C. N. Nikolaou, M. Marazakis, and G. Georgiannakis. Transaction routing for distributed OLTP sys-

tems: survey and recent results. Inf. Sci., 97:45–82, 1997. ISSN 0020-0255.

[170] NuoDB Emergent Architecture – A 21st Century Transactional Relational Database Founded On Par-

tial, On-Demand Replication. NuoDB LLC., Jan. 2013.

[171] R. Obermarck. Distributed deadlock detection algorithm. ACM Trans. Database Syst., 7(2):187–208,

June 1982.

[172] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (LSM-tree). Acta Inf.,

33(4):351–385, June 1996.

[173] P. E. O’Neil. The escrow transactional method. ACM Trans. Database Syst., 11:405–430, December

1986. ISSN 0362-5915.

[174] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,

A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman. The case

for ramclouds: scalable high-performance storage entirely in dram. SIGOPS Oper. Syst. Rev., 43(4):

92–105, Jan. 2010. ISSN 0163-5980.

[175] M. T. Ozsu. Principles of Distributed Database Systems. 3rd edition, 2007. ISBN 9780130412126.

[176] S. Padmanabhan. Data placement in shared-nothing parallel database systems. PhD thesis, University

of Michigan, 1992.

[177] I. Pandis. Scalable Transaction Processing through Data-Oriented Execution. PhD thesis, Carnegie

Mellon, 2012.

[178] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented transaction execution. Proc.

VLDB Endow., 3:928–939, September 2010.

142

[179] S. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for large scientific

databases using data partitioning. In SSDBM, 2004.

[180] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing transaction execution in

parallel oltp systems. Proc. VLDB Endow., 5:85–96, October 2011.

[181] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-Aware Automatic Data Partitioning in Shared-Nothing,

Parallel OLTP Systems, 2012.

[182] S. Pilarski and T. Kameda. Checkpointing for distributed databases: Starting from the basics. IEEE

Trans. Parallel Distrib. Syst., 3(5):602–610, Sept. 1992.

[183] D. Porobic, I. Pandis, M. Branco, P. TÃűzÃijn, and A. Ailamaki. OLTP on Hardware Islands. Proc.

VLDB Endow., 5:1447–1458, July 2012.

[184] E. Rahm. A framework for workload allocation in distributed transaction processing systems. J. Syst.

Softw., 18:171–190, May 1992. ISSN 0164-1212.

[185] R. Ramakrishnan and J. Gehrke. Database Management Systems. 3rd edition, 2003.

[186] P. Ranganathan. From microprocessors to nanostores: Rethinking data-centric systems. Computer, 44

(1):39–48, Jan. 2011. ISSN 0018-9162.

[187] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance of database workloads

on shared-memory systems with out-of-order processors. SIGPLAN Not., 33(11):307–318, Oct. 1998.

ISSN 0362-1340.

[188] J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical database design in a parallel

database. In SIGMOD, pages 558–569, 2002. ISBN 1-58113-497-5. doi: http://doi.acm.org/10.1145/

564691.564757.

[189] P. K. Reddy and M. Kitsuregawa. Speculative Locking Protocols to Improve Performance for Dis-

tributed Database Systems. IEEE Trans. on Knowl. and Data Eng., 16(2):154–169, 2004.

[190] D. Roberts, J. Chang, P. Ranganathan, and T. N. Mudge. Is storage hierarchy dead? co-located

compute-storage nvram-based architectures for data-centric workloads. Technical Report HPL-2010-

119, HP Labs, 2010.

[191] J. B. Rothnie, Jr., P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers, C. Reeve, D. W.

Shipman, and E. Wong. Introduction to a system for distributed databases (SDD-1). ACM Trans.

Database Syst., 5(1):1–17, Mar. 1980.

[192] K. Salem and H. Garcia-Molina. System M: A transaction processing testbed for memory resident

data. IEEE Trans. on Knowl. and Data Eng., 2(1):161–172, Mar. 1990.

143

[193] G. Samaras, K. Britton, A. Citron, and C. Mohan. Two-phase commit optimizations and tradeoffs in the

commercial environment. In Proceedings of the Ninth International Conference on Data Engineering,

pages 520–529, 1993. ISBN 0-8186-3570-3.

[194] C. Sapia. PROMISE: Predicting Query Behavior to Enable Predictive Caching Strategies for OLAP

Systems. In DaWaK, pages 224–233, 2000. ISBN 3-540-67980-4.

[195] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and load balancing in parallel disk

systems. The VLDB Journal, 7(1):48–66, 1998. ISSN 1066-8888. doi: http://dx.doi.org/10.1007/

s007780050053.

[196] S. A. Schuster. Relational data base management for on-line transaction processing. Technical report,

Tandem, Feb. 1981.

[197] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection

in a relational database management system. In SIGMOD, pages 23–34, 1979. ISBN 0-89791-001-X.

doi: http://doi.acm.org/10.1145/582095.582099.

[198] R. Shoup and D. Pritchett. The ebay architecture. SD Forum, November 2006.

[199] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd. Efficient transaction processing

in SAP HANA database: the end of a column store myth. SIGMOD, pages 731–742, 2012.

[200] A. J. Smith. Sequentiality and prefetching in database systems. ACM Trans. Database Syst., 3(3):

223–247, Sept. 1978. ISSN 0362-5915.

[201] J. Sobel. Scaling Out (Facebook). http://on.fb.me/p7i7eK, April 2006.

[202] G. Soundararajan, M. Mihailescu, and C. Amza. Context-aware prefetching at the storage server.

In USENIX ATC, pages 377–390, 2008. URL http://dl.acm.org/citation.cfm?id=1404014.

1404045.

[203] R. Stoica and A. Ailamaki. Enabling efficient os paging for main-memory OLTP databases. In DaMon,

2013.

[204] M. Stonebraker. Concurrency control and consistency of multiple copies of data in distributed IN-

GRES. IEEE Trans. Softw. Eng., 5(3):188–194, May 1979.

[205] M. Stonebraker. MUFFIN: a distributed data base machine. Technical report, University of California,

Berkeley. Electronics Research Laboratory, 1979.

[206] M. Stonebraker. The Case for Shared Nothing. Database Engineering, 9:4–9, 1986.

[207] M. Stonebraker and R. Cattell. 10 rules for scalable performance in ’simple operation’ datastores.

Commun. ACM, 54:72–80, June 2011.

[208] M. Stonebraker and L. A. Rowe. The design of POSTGRES. SIGMOD, pages 340–355, 1986.

144

http://on.fb.me/p7i7eK
http://dl.acm.org/citation.cfm?id=1404014.1404045
http://dl.acm.org/citation.cfm?id=1404014.1404045

[209] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and implementation of INGRES. ACM

Trans. Database Syst., 1(3):189–222, Sept. 1976.

[210] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Mad-

den, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A column-oriented

dbms. In VLDB, pages 553–564, 2005.

[211] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The end of

an architectural era: (it’s time for a complete rewrite). In VLDB, pages 1150–1160, 2007. ISBN

978-1-59593-649-3.

[212] Tandem Database Group. NonStop SQL, A Distributed, High-Performance, High-Availability Imple-

mentation of SQL. Technical report, Tandem, Apr. 1987.

[213] A. L. Tatarowicz, C. Curino, E. P. C. Jones, and S. Madden. Lookup tables: Fine-grained partitioning

for distributed databases. ICDE, pages 102–113, 2012.

[214] F. Tauheed, T. Heinis, F. Schürmann, H. Markram, and A. Ailamaki. SCOUT: prefetching for latent

structure following queries. VLDB, 5(11):1531–1542, 2012.

[215] The Transaction Processing Council. TPC-E Benchmark (Draft Revision 0.32.2g). http://www.tpc.

org/tpce/, July 2006.

[216] The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0). http://www.tpc.org/

tpcc/spec/tpcc_current.pdf, June 2007.

[217] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy databases.

ACM Trans. Database Syst., 4(2):180–209, June 1979.

[218] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: fast distributed

transactions for partitioned database systems. In SIGMOD, pages 1–12, 2012. ISBN 978-1-4503-

1247-9.

[219] TimesTen Team. In-memory data management for consumer transactions the timesten approach. SIG-

MOD, pages 528–529, 1999. ISBN 1-58113-084-8.

[220] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki. From A to E: analyzing TPC’s OLTP

benchmarks: the obsolete, the ubiquitous, the unexplored. EDBT, pages 17–28, 2013.

[221] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 advisor: an optimizer smart enough

to recommend its own indexes. In ICDE, pages 101–110, 2000.

[222] W. Vogels. Eventually consistent. Queue, 6:14–19, October 2008.

[223] C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and performance model of data skew

effects in parallel joins. In VLDB ’91, pages 537–548, 1991. ISBN 1-55860-150-3.

145

http://www.tpc.org/tpce/
http://www.tpc.org/tpce/
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

[224] A. Whitney, D. Shasha, and S. Apter. High Volume Transaction Processing Without Concurrency

Control, Two Phase Commit, SQL or C++. In HPTS, 1997.

[225] R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck, P. Selinger, A. Walker,

P. Wilms, and R. Yost. Distributed systems, vol. ii: distributed data base systems. chapter R*: an

overview of the architecture, pages 435–461. 1986.

[226] A. Wolski. TATP Benchmark Description (Version 1.0). http://tatpbenchmark.sourceforge.net,

March 2009.

[227] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based algorithm selection for

sat. J. Artif. Int. Res., 32:565–606, June 2008. ISSN 1076-9757.

[228] Q. Yao, A. An, and X. Huang. Mining and modeling database user access patterns. In Foundations of

Intelligent Systems, volume 4203 of Lecture Notes in Computer Science, pages 493–503. 2006.

[229] P. S. Yu, M.-S. Chen, H.-U. Heiss, and S. Lee. On workload characterization of relational database

environments. IEEE Trans. Softw. Eng., 18(4):347–355, 1992. ISSN 0098-5589. doi: http://dx.doi.

org/10.1109/32.129222.

[230] D. C. Zilio. Physical Database Design Decision Algorithms and Concurrent Reorganization for Par-

allel Database Systems. PhD thesis, University of Toronto, 1998.

[231] D. C. Zilio, A. Jhingran, and S. Padmanabhan. Partitioning key selection for shared-nothing parallel

database system. Technical Report 87739, IBM Research, November 1994.

[232] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and S. Fadden. DB2

design advisor: integrated automatic physical database design. In VLDB, pages 1087–1097, 2004.

ISBN 0-12-088469-0.

146

http://tatpbenchmark.sourceforge.net

