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Variation in genomes occurs in many forms, from single nucleotide changes to gains and losses of entire

chromosomes. Large-scale rearrangements, called structural variants (SVs), are associated with numerous

diseases and are common in cancer genomes. However, many SVs in mammalian genomes are found

in highly repetitive regions, complicating their detection and characterization. Ongoing development of

genomic technologies invite new algorithmic approaches to SV detection.

In this thesis, we present a collection of four algorithms that identify SVs using data from current and

emerging genomic technologies. The first algorithm is designed for a technology called array-comparative

genomic hybridization (aCGH), which measures the number of copies of DNA segments present in a test

genome relative to a known reference genome. aCGH data is useful for measuring deletions and duplica-

tions, and it is obtainable for thousands of individuals from a single population or disease group. We describe

a method to identify SVs that are common to a group of individuals, and apply the method to aCGH data

from cancer patients. We recover an SV in prostate cancer that is known to be biologically important, and

we infer a number of novel SVs in brain cancer.

Our other algorithms are designed for DNA sequencing technologies, which measure a broader range

of SVs than aCGH data with the tradeoff of higher cost. One DNA sequencing technology, strobe sequenc-

ing, yields multiple sequences from a single, contiguous fragment of DNA. While strobes provide longer

sequenced portions of DNA compared to other sequencing technologies, the per-base error rate is substan-

tially higher. Our algorithms for SV detection exploit the benefits of multiply-linked DNA sequences while

being robust to high sequencing error rates. We describe the first published method for SV detection using

strobe sequencing, which finds the smallest number of SVs (relative to a known reference genome) that

explain the strobes. We then improve upon our method with a probabilistic algorithm that better models

the strobe sequencing data. Finally, we describe a de novo assembly algorithm for strobe sequencing data

when a reference genome is unavailable. We assess the performance of these algorithms on simulated and

real strobe sequencing data, and conclude that with appropriate algorithms, strobe sequencing compares

favorably to other DNA sequencing technologies.
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1.1 Structural Variants. Structural variants are large segments of DNA that have been rear-

ranged relative to some reference genome. Duplications involve the addition of a DNA seg-

ment, deletions involve the removal of a DNA segment, inversions involve flipping a DNA

segment, and translocations involve swapping DNA segments from different chromosomes.

Copy number variants are the SVs that alter the number of copies of a DNA segment, such
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1.2 Array comparative genomic hybridization (aCGH). Fluorophore-labeled DNA from a
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a ratio that represents the relative test:reference copy number. . . . . . . . . . . . . . . . . . 3

1.3 Applications with Paired-End Data. a test genome is sheared into DNA fragments, and

the ends of these fragments are sequenced from the ends inwards denoting a left (green) and

right(red) read for each fragment. (Left) In genome resequencing, the reads are mapped to a

reference genome. The expected distance between the mapped pairs is determined empiri-

cally by the distribution of mapped distances. Pairs that have the expected mapped distance

with reads in the proper orientation are concordant pairs, and pairs that are unexpected in

terms of mapped distance, read orientation, or both are discordant pairs. (Right) In de novo

assembly, an ordering of the reads (a layout) is determined from pairwise alignments of all

reads. From the layout, we identify contiguous sequenced regions, called contigs, which

may be linked to form scaffolds using the pairing information from individual reads in the

contigs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Paired-End Sequencing vs. Strobe Sequencing. In paired end sequencing, the ends of a

DNA fragment are sequenced inwards from a fragment of length L. In strobe sequencing (as

in this 3-strobe), the subreads are sequenced in the same orientation, creating three subreads

and two advances (A1 and A2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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2.1 The Neighborhood Breakpoint Correlation (NBC) algorithm. NBC consists of two

steps: computing breakpoint probabilities and recurrent breakpoint detection. Copy num-

ber ratios (CNRs) derived from aCGH data from multiple individuals are segmented using

a Bayesian change-point algorithm that computes the probability of a breakpoint between

adjacent probes (in red). The breakpoint probabilities are then combined to detect recurrent
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2.2 Hyperparameter estimation on simulated datasets. The first column shows the raw data

for a particular aberration log2 ratio. The second column shows the smoothed data and

the average NBC segmentation (red). The third column shows the breakpoint probability at

each location. (Left) A single artificial chromosome from Simulation #1 with gaussian noise

N(0, σ2
1) for σ2

1 = 0.1, 0.25, 0.5, 1, 1.25 or 1.5. (Right) A single artificial chromosome from

Simulation #2 with gaussian noiseN(0, 0.5) for aberration log2 ratios of 0.5, 1, 2, 3, 4, 5 and 6. 23

2.3 Hyperparameter Sensitivity Analysis. The number of true positive (TP) breakpoints (0,1,

or 2) and the number of false positive (FP) breakpoints for Simulation #1 and Simulation #2

over various values of variance parameters σ2
0 (top row) and σ2 (bottom row). The bars are

averaged over 100 iterations for each simulation, and error bars indicate 1 standard deviation. 24
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2.8 A Comparison of Bayesian Segmentation Algorithms for aCGH data. Bayesian seg-

mentations for BCP (Left) compared to NBC (Right) for the patients that have the TMPRSS-

ERG fusion gene. The mean segmentation is depicted on the top row, and the probability of

a breakpoint P (bi), averaged over the 5 patients, is depicted on the bottom row. . . . . . . . 33

2.9 Comparison with CBS segmentations. We show the CBS segmentation for the 5 patients

that have the TMPRSS-ERG fusion gene according to NBC. Only two of the five individuals

have co-occurring breakpoints within the gene regions (gray boxes). . . . . . . . . . . . . . 34

2.10 Predicted Gene Truncations in GBM. These three recurrent gene breakpoints found on

Chromosome 7, Chromosome X, and Chromosome 6 respectively suggest truncations of

genes associated with glioblastoma or other neuronal diseases. (A) The recurrent break-

point in ECOP has a large change in copy number; this gene is near EGFR and is the

breakpoint location for the EGFR amplification. (B) PCDHone1X appears to arise from

a short deletion within a relatively amplified region, though the deletion breakpoint varies

within the PCDHone1X gene region. (C) RUNX2 contains two probe locations with recur-

rent probe breakpoints that each have small copy number change at approximately 45.42Mb

and 45.58Mb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Predicted Intrachromosomal Fusion Genes in GBM. (A) The INTS2-MED13 rearrange-

ment on Chromosome 17 is identified in 9 individuals and arises from an amplification. A

tandem duplication that affects the 3’ end of MED13 and the 5’ end of INTS2 will fuse

the promoter region of INTS2 to MED13. (B) The PPP1R9A-PSMC2 rearrangement on

Chromosome 7 is identified in 6 individuals and arises from a deletion. . . . . . . . . . . . . 36

2.12 Predicted Fusion Genes with PTPN12 as a Gene Partner. (A) The inferred intrachromo-

somal fusion gene PTPN12/RSBN1L is one of two inferred intrachromosomal fusion genes.

This fusion gene arises from a deletion within an amplified region, and is only present in 8

individuals out of 16 that have some rearrangement with PTPN12. (B) The inferred inter-

chromosomal fusion gene TMEM30A-PTPN12 is one of 8 inferred interchromsomal fusion

genes. While the breakpoint in TMEM30A appears to arise due to a short amplification, a
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also explain this fusion gene signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.2 Discordant pairs that imply SVs and the constraints they pose on the type of variant.
For simplicity, we label the subreads 1, 2 and 3, and the corresponding intervals as [x1, y1],

[x2, y2], and [x3, y3]. SV coordinates are labeled as a and b in the reference genome. Each

strobe corresponds to two inequalities due to two sets of adjacent subreads (1, 2) and (1, 3).

In the deletion and insertion example, the set of adjacent subreads (1, 2) results in a concor-

dant pair. All other inequalities represent discordant pairs. Note that insertions are a special

case that includes the length of the inserted block rather than two cut points. The inequalities

for an example translocation are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Construction of graph for 3-strobes S1, . . . , S6. In step 1, the discordant pairs (dotted lines)
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using heuristics described in § 3.3.4. Step 3 is repeated until the graph has converged, upon

which it is used as input to the ILP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 The graph G that is constructed is not an example of a fixed-charge network flow
algorithm. Here we show an example graph G and potential solutions to the fixed-charge

network-flow problem. The graph edges are colored by the three strobes (blue, red and

green) that are allowed to travel that edge. Solution #1 shows a feasible solution to the

fixed-charged network-flow problem uses four internal vertices. Solution #2 also contains

with four internal vertices. However, solution #2 does not result in a path from source to

sink for each individual strobe. Thus, solution #2 is not a feasible solution to the t-Strobe
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Chapter 1

Introduction

Variation in genomes, including single nucleotide changes and deleted, duplicated, and rearranged seg-

ments of DNA, has played key roles in genetic disorders and diseases. Recently, there have been efforts

to accumulate growing amounts of data for genetic variation studies, including the International HapMap

Project [33,34] and the 1,000 Genomes Project [32] for identifying variation in healthy individuals and The

Cancer Genome Atlas [9, 85, 94] for identifying variation in individuals with cancer. These datasets have

motivated the algorithms community to develop new models and methods for identifying genetic variation.

It was initially believed that single nucleotide mutations (termed single nucleotide polymorphisms) were

the main contributing factor to genetic variation [34]. However, there has been growing appreciation for the

effect of larger-scale rearrangements [128, 130, 153]. These rearrangements, termed structural variants

(SVs) or structural aberrations, include segment insertions, deletions, inversions, and translocations (Fig-

ure 1.1). There are more total base pairs in the human genome affected by SVs than single nucleotide

polymorphisms [123]. The Database of Genomic Variants [161] currently lists 101,923 SVs. Although

some of these variants are redundant and/or erroneous, it is clear that structural variation is an important

component of human genome variation.

SVs have been associated with various diseases including Autism [84], Parkinson’s [25], and Schizophre-

nia [149], as well as a host of cancers [2, 18, 30]. Cancer in particular has been called a “disease of alter-

ations” [85], where a series of genetic mutations occur within a patient’s lifetime. Identifying SVs in disease

groups is important to gain understanding of the underlying biological mechanisms with which the disease

progresses.

Current experimental methods now allow for the detection of SVs whose sizes range from tens of

bases (such as diallelic insertions and deletions [152]) to entire chromosomes (such as duplicated chro-

mosomes [44]). This proposal focuses on identifying SVs that range from a few hundred base pairs to entire

chromosomal gains and losses. Genomic technologies that measure SVs are rapidly being developed and

improved, and analyses that were impractical when this thesis work began are now a reality. We have taken

1
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Figure 1.1: Structural Variants. Structural variants are large segments of DNA that have been rearranged
relative to some reference genome. Duplications involve the addition of a DNA segment, deletions involve
the removal of a DNA segment, inversions involve flipping a DNA segment, and translocations involve
swapping DNA segments from different chromosomes. Copy number variants are the SVs that alter the
number of copies of a DNA segment, such as duplications and deletions.

a technology-driven approach to identifying SVs that explicitly leverage the contributions of various tech-

nologies while making them robust to the technological limitations. We have developed a collection of four

algorithms whose development have been driven by two different genomic technologies.

This dissertation proceeds as follows: Chapter 1 provides a general background of the two genomic

technologies and a summary of research contributions from the four algorithms. Chapter 2 presents work

for the detection of somatic copy number variants (a subset of SVs) from multiple individuals with the

same type of cancer using an array-based technology. We then describe an emerging DNA sequencing

technology (termed strobe sequencing by Pacific Biosciences), and present methods for SV detection using

this technology in Chapters 3 and 4. Finally, Chapter 5 presents a de novo assembly method for strobe

sequencing data.

1.1 Recurrent Copy Number Variant Detection in Cancer Genomes

Copy number variants (CNVs) are a subset of SVs that result in a different number of copies of a genomic

segment, and include deletions, amplifications, and unbalanced translocations (Figure 1.1). While CNVs do

not encompass all types of variants (they do not include balanced rearrangements such as inversions), they

are detectable from measurements of the number of copies of DNA fragments in an individual genome.

Cancer genomes are highly-rearranged due to the somatic mutations that occur within a patient’s life-

time. Some of the resulting SVs might not affect cancer progression, and identifying the important SVs

(the driver SVs) in cancer is often difficult. Driver SVs that affect cancer progression tend to appear in

multiple individuals with the same cancer; thus, we wish to find recurrent SVs that appear in many patients.

Recurrent CNVs in cancer have been found to amplify oncogenes such as ERBB2 and eliminate tumor sup-

pressor genes such as PTEN [2]. The Cancer Genome Atlas (TCGA) [85] has compiled copy number data
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for hundreds of patients in a number of different cancers. The large number of samples from TCGA have

provided the statistical power to identify recurrent aberrations from copy number data.

We now describe the array-based sequencing technology to detect CNVs. The result of this technology

is that we get log2 ratios of the proportion of copies in the test genome compared to a known reference

genome at particular locations in the reference genome. For example, if the log2 ratio falls below zero for a

region, this suggests that there are fewer copies of the test genome than the reference genome at this region.

1.1.1 Array Comparative Genomic Hybridization (aCGH)

Array Comparative Genomic Hybridization (aCGH) [6,81,113,114] is a widely-used experimental technique

for measuring CNVs on a genome-wide scale. As the name suggests, aCGH involves the comparison of two

different cell populations, test DNA fragments and reference DNA fragments. These two populations are

differentially labeled with two different fluorophores (put simply, they are “colored” different colors). They

are then mixed in equal proportions and introduced to an array that contains DNA single-stranded sequences,

called probes, attached to the surface. These probes, which typically range between 50-75bp [93], include

short sequences that map uniquely to the reference genome.

The single-stranded, fluorescent-tagged DNA fragments hybridize to the probes on the array if the probes

are the reverse-complement of the fragment sequence. Multiple probes with the same sequence are placed

on the array in the same location, providing multiple fragments to hybridize near each other. Measurements

of the test-to-reference fluorescence ratio at each location on the array identify locations in the test genome

that are present in lower, higher, or similar copy in the reference genome. Typically, the log2 ratio of

the colors is reported. Plotting these ratios along the originating locations of each probe on the reference

genome produce a copy number profile of the test genome in terms of reference locations (Figure 1.2). From

these copy number profiles, algorithms typically infer duplications and deletions (see Chapter 2 for a further

discussion).

Test DNA 

Reference DNA 

Hybridized to an Array 

R
at

io
 

Genomic Probe 

Copy Number Profile 

Figure 1.2: Array comparative genomic hybridization (aCGH). Fluorophore-labeled DNA from a test
and a reference genome are hybridized to an array, and the fluorescence is interpreted as a ratio that repre-
sents the relative test:reference copy number.
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Obstacles While aCGH has been used successfully to identify many CNVs in human genomes, there are

some limitations to this technology. First, technologies to measure copy number (such aCGH) fail to detect

other copy-neutral SVs, such as balanced inversions and translocations. Second, array-based methods are

inherently limited by the size and origin of the probes used to hybridize the DNA. These probes must come

from unique regions of the reference genome, and they may be many kilobases apart [113]. Since SVs are

often found in repetitive regions [55] and the human genome itself is quite repetitive [127], array-based

methods have difficulty designing probes that capture all of the structural variation in mammalian genomes.

1.2 SV Detection using DNA Sequencing Data

As the cost of whole-genome sequencing decreases, detecting SVs from DNA sequencing data has be-

come an attractive option because sequencing technologies overcome the array-based limitations described

above. However, the current cost of whole-genome DNA sequencing has limited the number of sequenced

genomes. Efforts to accumulate large numbers of whole-genome sequenced samples such as the 1,000

Genomes Project [32] and TCGA [85] are currently in progress. Until there are enough fully-sequenced

whole genomes, identifying recurrent SVs using sequencing data will have to wait. Instead, we focus our

efforts on identifying SVs in single genomes from sequencing data. Since SVs are relatively rare (but func-

tionally important) in the human genome, the general SV detection framework uses the concept of whole

genome resequencing [12]. Resequencing takes sequenced fragments of an individual’s genome (the tar-

get genome) and aligns them to another completely sequenced genome called a reference genome. From

the alignments to the reference genome, we may identify differences between the target genome and the

reference genome. Identifying these differences is complicated by a number of factors, including sequenc-

ing error in the target genome and alignment error when aligning sequences from the target genome to the

reference genome. The presence of repetitive sequences in mammalian genomes provides an additional

challenge when detecting human SVs [127].

Below we describe the different types of sequencing technologies, and then discuss the sequencing

protocols that use linking, or pairing information between sequenced portions of DNA.

1.2.1 Next-Generation DNA Sequencing Technologies

Sequencing technologies have undergone many paradigm shifts in the past few decades, and each technology

has substantial tradeoffs in terms of throughput, cost, read length and accuracy (Table 1.1). Early Sanger

based methods [126] produce long, accurate reads, but have relatively low throughput. In the early 2000s, a

new phase of sequencing technologies aimed to sequence a larger number fragments in a single experiment

more quickly and cheaply than traditional Sanger sequencing. These second-generation, or next-generation,

technologies are categorized as massively parallel sequencers that are able to sequence large amounts of

DNA more cheaply than Sanger methods. Three of the most widely used next-generation platforms come
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Reference Genome 
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Sequence Ends 
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Figure 1.3: Applications with Paired-End Data. a test genome is sheared into DNA fragments, and the
ends of these fragments are sequenced from the ends inwards denoting a left (green) and right(red) read for
each fragment. (Left) In genome resequencing, the reads are mapped to a reference genome. The expected
distance between the mapped pairs is determined empirically by the distribution of mapped distances. Pairs
that have the expected mapped distance with reads in the proper orientation are concordant pairs, and pairs
that are unexpected in terms of mapped distance, read orientation, or both are discordant pairs. (Right) In
de novo assembly, an ordering of the reads (a layout) is determined from pairwise alignments of all reads.
From the layout, we identify contiguous sequenced regions, called contigs, which may be linked to form
scaffolds using the pairing information from individual reads in the contigs.

from Illumina, Roche/454, and Life Technologies. Though they have drastically different library preparation

and sequencing chemistry, they all rely on massively parallel sequencing to produce orders of magnitude

more bases per day than Sanger sequencing. Whole genomes have been sequenced with all of the next-

generation technologies, and data cohorts such as the Cancer Genome Atlas [9, 85, 94] and 1000Genomes

[32] collect samples sequenced by a variety of different technologies from different sequencing centers.

Next-generation sequencers have been extensively discussed a number of reviews [83,89,102,116,131] and

benchmarking papers [43, 70, 79, 80, 91, 118].

Measuring SVs using Paired-End Sequencing Data A sequencing protocol that is particularly useful

for SV identification is paired-end, or mate-pair sequencing [13, 153], which is available from a number of

different sequencing platforms (Table 1.1). In paired-end sequencing, DNA is sheared into longer fragments

and the ends of each fragment are sequenced, producing a pair of reads. Resequencing approaches [12]

align these reads to a reference genome, and the mapped distance between the aligned reads are observed

(Figure 1.3 Left). The empirical distribution of the mapped distances is used to determine the “expected”

fragment lengths. Most of the paired reads map to the reference genome with the expected distance and

in the expected orientation, implying that there is no difference between the test genome and the reference

genome at these mapped locations. We call these pairs concordant pairs. However, a small number of

paired reads do not map to the reference genome with the expected distance and in the expected orientation.
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These discordant pairs suggest an SV, where the test genome and the reference genome are different at these

mapped locations.

Obstacles Identifying SVs from paired-end data is complicated by a few factors. Many SVs are associated

with repeated sequences in the genome [62, 66], and the same read may align to many locations in the

genome. Additionally, reads might not align correctly to the reference (due to errors, novel sequence in

the test genome, or reads that span the rearranged breakpoints). To handle these obstacles, most methods

to detect SVs cluster paired reads that indicate the same SV, and assign a higher confidence if more paired

reads support the variant. However, these issues result in a large number of incorrect inferred SVs, despite

reasonably good sensitivity when identifying known SVs [26, 52, 65, 133]. These methods are ultimately

limited by the sequencing technology; in particular paired-end data does not completely disambiguate read

alignments to the reference.

1.2.2 Third-Generation DNA Sequencing Technologies

Emerging single-molecule sequencing technologies, coined “third-generation” technologies, have kept the

cost of sequencing low while being able to sequence longer fragments than next-generation technologies

(Table 1.1. The exception is Helicos, which sequences 32bp on average; Helicos is sometimes referred to as

a Next-Generation sequence technology, and was the first successful single-molecule sequencer available on

the market. Pacific Biosciences has recently introduced Single Molecule Real Time (SMRT) sequencing, a

DNA sequencing method that directly observes DNA polymerase as it synthesizes DNA [39,67]. Currently,

Pacific Biosciences has the ability to sequence fragments 1.5Kb on average, with some reads exceeding

14Kb (Michael Schatz, Biology of Genomes 2012). However, this long fragment length comes at the cost of

significantly higher sequencing error rates of 13%. Additionally, the Pacific Biosciences sequencing error

model is distinctly different from previous from other technologies because insertion and deletion errors

are observed more frequently than nucleotide substitution errors. Other technologies like Oxford Nanopore

promise the benefit of long reads with only a slight increase in the per-base error rates, but no official data

has been published with this technology.

Measuring SVs using Strobe Sequencing Data Pacific Biosciences have developed a new protocol called

strobe sequencing [142]. A strobe consists of multiple subreads from a single contiguous fragment of DNA

(Figure 1.4). These subreads are separated by a number of “dark” nucleotides, called advances, whose

identity is unknown. Conceptually, strobes generalize the concept of paired-end sequencing by allowing

more than two subreads for each DNA fragment. Strobes are many kilobases on average, and strobes

up to 20Kb with about 1Kb of total sequenced content have been obtained to-date (Ali Bashir, personal

communication).

Despite the high sequencing error rates, strobe sequencing may help SV detection in two ways. First, ad-

ditional subreads provide more unique locations to “anchor” strobes that have subreads in repetitive regions.
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Second, a single strobe with more than two subreads may detect and characterize multiple SVs with com-

plex, nested organizations, when paired-end data cannot distinguish nested variants. This is useful because

variants have been observed to be found near each other in rearrangement hotspots [130].

Obstacles The error rates in the subreads mean that there may be multiple alignments to the reference

genome, and the difficulty becomes choosing the correct alignment. Next-generation sequencing technolo-

gies also have dealt with the issue of multiple alignments because of the short read length coupled with the

repetitive nature of the reference genome, but this obstacle is exaggerated with the higher error rates from

Pacific Biosciences. Another issue when we have higher error rates is that it is more difficult to identify the

precise SV coordinates because there sometimes are incorrect alignments that overlap the true ones.

Paired End Fragment Strobe Read 

A
2 

A
1 

L
 

Figure 1.4: Paired-End Sequencing vs. Strobe Sequencing. In paired end sequencing, the ends of a DNA
fragment are sequenced inwards from a fragment of length L. In strobe sequencing (as in this 3-strobe), the
subreads are sequenced in the same orientation, creating three subreads and two advances (A1 and A2).

1.3 De novo Assembly of Individual Genomes

Sequencing cancer genomes invites the detection of a broader range of SVs compared to CNV-detection

methods such as aCGH. However, the large number of SVs that appear in cancer genomes potentially limits

the power of SV detection using a reference genome. Further, there might be inherent bias in the reference

genome, and aligning to the reference is less accurate than, say, aligning to a normal (non-tumor) genome

from the same patient. Thus, our last goal is to piece together highly-rearranged genomes without the use

of a reference genome. The task of determining the underlying sequence represented by a set of sequenced

reads is called de novo assembly, and it is computationally NP-hard [95]. As in the resequencing problem,

mate-pair sequencing is often used for de novo assembly (Figure 1.3 Right). However, the reads are aligned

to each other rather than to a reference genome, creating pairwise alignments of subreads. These pairwise

alignments are then assembled to produce contiguous sequences called contigs. The pairing information

from fragments where pairs are assembled into different contigs produce linked contigs which we call a

scaffold.

Many assembly methods have been developed specifically for handling short read lengths in next-

generation sequencing, and they have been extensively reviewed [90, 115, 127, 164]. Most algorithmic

approaches to genome assembly construct a graph to represent overlaps between reads and use various
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heuristics to find a path through the graph that corresponds to the genome sequence; see Chapter 5 for a

detailed description of these methods.

Obstacles While many de novo assemblers now exist, de novo assembly using next-generation sequencing

still faces many challenges, including overcoming the repeats in the human genome using the short read

lengths [3]. Additionally, sequencing errors in the reads (which vary by technology) pose an obstacle for de

novo assembly. While whole-genome assemblies are now feasible, they are highly fragmented. Fragmented

assemblies are particularly problematic for structural variation studies because many structural variants are

found in regions that are difficult to assemble [62]. Three reasons for highly-fragmented assemblies are

underrepresented (low-coverage) regions of the target genome, sequencing errors in the reads, and repetitive

regions in the target genome.

Potential Benefits of Strobe Sequencing The advantages of single-molecule sequencing, including longer

read lengths and multiple subreads (in the case of Pacific Biosciences), may help simplify and disambiguate

the graph constructions in current de novo assemblers. However, these advantage are reduced by higher

sequencing error rates. The anticipated sequencing error rates from single-molecule sequencers make many

seed-based algorithms, such as de Bruijn graph assemblers, impractical. However, many of these methods

are under-utilizing a key piece of information when constructing the graph - the pairing information. Most

of the graph-based methods incorporate pairing information after the graphs are constructed; instead, we

wish to simultaneously use the overlap information and the pairing information throughout the assembly

method.

1.4 Summary of Contributions

In this section, we describe the research contributions of this dissertation. These points are expanded upon

in the subsequent chapters.

CNV Detection in Multiple Cancer Genomes [125]. We present an algorithm called Neighborhood

Breakpoint Correlation (NBC) to identify recurrent breakpoints in copy number data from technologies

such as aCGH. This algorithm is comprised of the following novel concepts and components:

1. Some types of structural variation, such as fusion genes and gene truncations, require that the SV is

conserved at the end points, or breakpoints, across multiple copy number profiles. Other methods

typically identify recurrent intervals, rather than the precise recurrent breakpoints that our algorithm

identifies.

2. Obtaining a single set of breakpoints for a copy number profile is not always useful for identifying

recurrent breakpoints across multiple individuals, due to both the noise in the copy number profile



10

and the breakpoint variability across different individuals. Thus, we adapted a Bayesian changepoint

algorithm [78] to compute the probability of a breakpoint given the entire copy number profile, rather

than reporting an optimal set of breakpoints.

3. We developed a statistic that computes the statistical significance of a conserved breakpoint occurring

in a subset of individuals given the breakpoint probabilities in a copy number profile. We generalize

this statistic to compute the probability of a conserved breakpoint occurring within a specified window

of adjacent probes (i.e. within a gene). Finally, we use this statistic to compute the probability of pairs

of recurrent breakpoints that occur in a subset of individuals.

We apply NBC to two different datasets and obtain the following results:

1. We first apply NBC to a prostate cancer dataset, where we anticipate finding a single fusion gene,

TMPRSS2-ERG, that is known to be present in prostate cancer. We consider the TMPRSS-ERG

fusion gene a positive control.

(a) Our statistic finds the TMPRSS-ERG fusion gene as the only statistically significant pair of

genes that are not found near known structural variants, with a p-value of 2.7 × 10−10 after

multiple hypothesis correction.

(b) We show that using a single, optimal segmentation of the data does not produce breakpoints that

fall within the TMPRSS2 and ERG gene regions for all patients with the TMPRSS2-ERG fusion.

Further, we show that another recently-published Bayesian segmentation algorithm, BCP [41],

provides much noisier breakpoint probabilities than our method for the copy number profiles

containing the TMPRSS2-ERG fusion.

2. We apply NBC to hundreds of copy number profiles from glioblastoma (brain) tumors, and infer a

number of candidate fusion genes and gene truncations.

(a) We find that the phosphatase PTPN12 is an interacting gene partner with one third of all fusion

gene candidates. We hypothesize that the disregulation of PTPN12 might be important for the

progression of glioblastoma. While this hypothesis has yet to be experimentally validated, a

recent study discovered that PTPN12 is a tumor suppressor gene in breast cancer [137].

SV Detection with Strobe Sequencing Data (A Parsimony Approach) [124]. We present a new method

to detect SVs from strobe sequencing data. To our knowledge, this is the first method for SV detection

from strobe sequencing data (or, more generally, sequencing data with more than two linked reads). Our

algorithm is comprised of the following novel concepts and components:

1. We generalize the problem formulation in [52] to the t-strobe framework, where we have t linked DNA

sequences, called subreads, from each strobe. This formulation aims to find the minimum number of

SVs that describe the strobe alignments.
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2. Due to the higher error rates of strobe sequencing, multiple alignments from a single subread must be

considered. Other methods for paired-end data have made this observation [52, 119, 134], but using

multiple alignments for paired-end data does not seem to significantly improve performance [134].

3. We construct a graph representation of the solution space, where a solution to the formulated problem

is a subgraph subject to some constraints. This subgraph can be found by solving a flow problem on

the graph, and we describe an Integer Linear Program (ILP) that returns an optimal solution. The flow

problem is similar (but not identical) to the fixed-charge multi-commodity network flow problem [35].

We applied our method to simulated strobe sequencing data, since real strobe sequencing data was unavail-

able at the time. We generated simulated 3-strobe data and compared the strobes to paired-end datasets

constructed from the 3-strobe subreads, which simply destroys the multiple links for strobes. From this

simulation, we obtained the following results:

1. We find that the pairing information provided by the multiple links in strobes more than doubles the

specificity in the prediction of deletions over the paired-end datasets.

2. Inversions are particularly difficult to identify due to highly-repetitive regions near the breakpoints.

We find that strobes and paired-end datasets recover the same number of true inversions but strobes

reduce the number of false inversions by 78%.

3. Strobes identify translocations where the breakpoints lie in repetitive regions, and this result is con-

sistent when averaged over ten randomly-generated strobe datasets.

SV Detection with Strobe Sequencing Data (A Probabilistic Approach) [In preparation]. We found

that the algorithm described above did not consider some useful pieces of information from the strobe data.

Thus, we created a probabilistic framework for SV detection using strobes. This algorithm is comprised of

the following novel concepts and components:

1. To describe the space of possible SVs, we create a graph that is based on the overlaps of the align-

ments that indicate an SV. The graph uses concepts similar to GASV [133], but GASV describes

maximal sets of strobe alignments that are consistent with a SV breakpoint. Instead, our graph formu-

lation concisely describes all possible sets of strobe alignments that are consistent with a single SV

breakpoint.

2. We derive a probabilistic model for selecting at most one alignment for each strobe based on three

observations:

(a) Repetitive regions will have many incorrect strobe alignments that collectively support an SV.

The parsimony assumption of minimizing the number of SVs falls apart when many repetitive

regions are present in the genome, since these incorrect SVs will be selected. Since mammalian

genomes are highly repetitive, this poses a problem for SV detection in humans.
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(b) The alignment quality (the edit distance between a subread and the reference) is highly-variable

due to the sequencing error rate. Additionally, with an error rate of 13-15% we expect some

number of mismatches in the alignment (a 500bp subread alignment with zero errors, for exam-

ple, is suspicious).

(c) A strobe might not have a correct alignment to the reference genome; this may arise due to many

sequencing errors, novel sequence in the test genome, or a subread that spans an SV breakpoint.

3. Our probabilistic model allows strobes with different numbers of subreads (i.e mixing 3-strobes and

4-strobes) as well as mixing strobe and paired-end data with different sequencing error rates. The

model also allows split-read alignments (alignments where the first part aligns to one portion of the

reference and the second part aligns to another portion).

We applied the probabilistic method to a variety of simulated and real data from human genomes and obtain

the following results:

1. The probabilistic method applied to low-coverage simulated strobe sequencing data (15% error rate)

from two simulations (one on Chr17, one on Chr1) outperforms the previous approach in terms of

both sensitivity and specificity.

2. Low-coverage (5X) strobe sequencing data performs comparably to high-coverage (30X) paired read

data. Additionally, mixing high-coverage pairs with low-coverage strobes improves performance over

high-coverage pairs alone (improving sensitivity) and low-coverage pairs alone (improving speci-

ficity).

3. We compared our results to high-coverage (30X) paired read data run with other SV prediction meth-

ods [119, 133, 134]. We find that the probabilistic method, when applied to paired read data, enriches

for correct alignments better than the other methods.

4. We obtained real strobe sequencing data from Pacific Biosciences of four 40Kb regions of the human

genome that reportedly contain SVs. We recover the single “true positive” in each case with the prob-

abilistic method, despite the fact that the two inversions have breakpoints that lie in nearly-identical

regions.

De novo Assembly with Strobe Sequencing. We have developed a small-scale de novo assembly algo-

rithm for strobe sequencing data. This algorithm is ideal for small-scale assembly and it can be used as a

“finishing” step when most of the layout is known from other methods. It is comprised of the following

novel concepts and components:

1. We define an assembly “score” that uses pairwise alignment qualities, and we formulate the assembly

problem as a maximization problem for assemblies that are consistent with the linking information

provided by strobes.
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2. The constraints on the strobes may be written as a set of linear inequalities, and we design an Integer

Linear Program (ILP) to find an optimal solution. The number of variables scales quadratically with

the number of reads, so we have developed an iterative algorithm that greedily samples strobes and

uses the ILP to assemble them at each step.

3. A partial assembly consists of a series of scaffolds, or assembled sequenced linked by pairing infor-

mation. We represent these scaffolds as a special type of strobe, called a derived strobe, with different

subread and advance lengths than the other strobes.

We applied our method to simulated strobe sequencing data from four Bacterial Artificial Chromosomes

(BACs) that have been hard to assemble with paired-end sequencing. We obtain the following results:

1. The ILP-based assemblies on sequenced data with various sequencing error rates produce a single

scaffold for all datasets. Further, there are at most 7 contigs in any assembly, and 100% of the strobes

are placed in the final layout in three of the four datasets.

2. We compared our method to a de-Bruijn assembler called Velvet [159, 160], which performs poorly

when assembling datasets with large error rates. However, this is expected because de-Bruijn graphs

rely on a seed size for determining overlaps.

3. We compared our method to an overlap-graph assembler Bambus [140], which performs much better

than Velvet. However, it still produces much more fragmented assemblies than the ILP assembler and

assembles a smaller percentage of the reads, indicating that the assembly is less complete than the ILP

assembler.



Chapter 2

CNV Detection with Applications to Cancer

Array comparative genomic hybridization (aCGH) [6, 81, 113, 114] is a common technique for measuring

CNVs (Figure 1.2). An aCGH experiment produces a copy number profile of test:reference copy number

ratios. If we have copy number profiles from multiple individuals with the same type of cancer, the goal is

to identify SVs that appear in multiple copy number profiles; these recurrent SVs may be important in the

progression of the cancer of interest.

Previous methods have primarily focused on on identifying recurrent segments (adjacent probes with

similar copy number); however there are a number of drawbacks to this approach. In this chapter, we intro-

duce a novel algorithm called Neighborhood Breakpoint Correlation (NBC) to identify recurrent breakpoints

in copy number data. Here, a breakpoint is a pair of adjacent probes where the copy number ratio changes

from low to high or high to low. The work in this chapter is taken from [125], and was originally presented

at the Second Annual RECOMB Satellite Workshop on Computational Cancer Biology (RECOMB-CCB)

in 2010.

The power of NBC to detect recurrent breakpoints, particularly breakpoints that appear in a small percent

of cancer patients, relies on a large number of copy number profiles to provide statistical significance. The

Cancer Genome Atlas (TCGA) [85] is an effort to understand the genomic changes in cancer by analyzing

hundreds of tumors from a variety of cancer patients using many available technologies. Initiated in 2005

with a pilot project of two cancers, seventeen different cancers are now being analyzed with up to 588

publicly-available samples for each cancer type. The ultimate goal is to acquire hundreds of samples from

over twenty different cancers.

As a controlled experiment, we first apply NBC to aCGH data from 36 primary prostate tumors and

infer 12 CNVs, including one gene truncation and one fusion gene which is the well-known TMPRSS2-

ERG fusion gene. Next, we apply NBC to 227 glioblastoma (GBM) tumors from TCGA and infer 91

CNVs, including 23 gene truncations and 33 fusion genes. Additionally, we predict 35 germline CNVs

from 107 available matched blood samples from GBM patients. A number of the inferred somatic CNVs

in GBM involve the protein phosphatase PTPN12, suggesting that deregulation of PTPN12 via a variety of

14
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rearrangements is common in glioblastoma. We note that NBC is readily adapted to analyze copy number

profiles obtained from next-generation DNA sequencing data [28, 157].

2.1 Related Work

Copy number profiles contain experimental artifacts, including measurement error in the probes. Addition-

ally, isolated probes might be duplicated or deleted; we are not interested in these single-probe aberrations

because we wish to detect larger SVs. Thus, a first step in CNV detection often includes smoothing, or

segmenting the copy number profile into a set of segments of equal copy number. Numerous segmentation

methods exist to convert copy number profiles into segmentations; some methods ( [56,77,105,144]) return

a single optimal segmentation, while others ( [41], [47], [112]) produce a posterior probability of a change

in copy number at each location over all possible segmentations of the copy number profile. See [69] for a

comparative analysis of segmentation algorithms.

To identify recurrent CNVs in cancer, current methods [10, 15, 37, 150, 163] develop statistics to find

recurrent aberrant intervals from a set of copy number profiles. They first identify aberrant intervals within

each sample and then combine the aberrant intervals to produce statistically significant recurrent aberrant

intervals. These methods are good for identifying some types of recurrent CNVs, such as deletions and

amplifications that harbor tumor suppressor genes or oncogenes.

To identify recurrent CNVs in cancer, statistical methods are used to combine copy number profiles from

a set of individuals with the same cancer type. Several methods have been introduced to identify recurrent

CNVs. CoCoA [10] segments and scores candidate aberrations for each individual, and then combines

the scores using a binomial order statistic to find significant aberrations. GISTIC [15], STAC [37], and

DiNAMIC [150] all determine significant aberrations from segmented copy number profiles using various

permutation tests. These methods all suffer from the obstacle that a single segmentation is used for each copy

number profile, when it is often the case that many different segmentations of the copy number profile are

equally plausible. However, if all the highly-probable segmentations are similar, then this should not affect

the significance of large recurrent aberrations. CMDS [163] is a method that aims to identify recurrent

aberrations directly from copy number profiles by finding correlation blocks in a correlation matrix.

However, other CNVs such as unbalanced translocations are not characterized by a single interval. Ad-

ditionally, the targeted gene in a recurrent SV might not be within the aberrant interval, but rather at the ends

of the interval. Fusion genes, for example, are a type of CNV where a rearrangement fuses portions of two

genes to produce a functioning gene [92]. One documented fusion gene, the TMPRSS2-ERG fusion, arises

from a 3Mb deletion on Chr21 in patients with prostate cancer [92, 139]. Recurrent CNVs such as fusion

genes and unbalanced translocations are characterized by the end points, or breakpoints of the recurrent

rearrangement. Identifying recurrent breakpoints is much more sensitive to the resulting segmentation of

a copy number profile because we wish to find common loci of copy number change. Methods that use a

single segmentation to describe a copy number profile might miss recurrent breakpoints that appear in other
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slightly-less-optimal segmentations. Additionally, there might be biological variability in the breakpoints,

where there are multiple loci within a gene that may be used as a breakpoint that results in the same function.

2.2 The Neighborhood Breakpoint Correlation (NBC) Algorithm

The Neighborhood Breakpoint Correlation (NBC) algorithm takes, as input, aCGH data from many indi-

viduals and identifies recurrent breakpoints and pairs of recurrent breakpoints in a subset of the individuals

(Figure 2.1). The first step in NBC, as in most aCGH analysis, is to segment each copy number profile into

intervals of equal copy number. NBC uses a dynamic programming approach [78] to compute the probabil-

ity P (X|A) of a copy number profile X given a segmentation A. NBC then employs a stochastic backtrace

to compute the posterior probability P (A|X). Using this approach one can derive the segmentation Â with

maximum probability, but more importantly, one can compute the posterior probability of events of inter-

est over all possible segmentations of the data. In particular, we compute the probability of a breakpoint

between each pair of adjacent probes, as well as the probability of a breakpoint within a fixed interval or

probes (e.g. from a gene region).
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Figure 2.1: The Neighborhood Breakpoint Correlation (NBC) algorithm. NBC consists of two steps:
computing breakpoint probabilities and recurrent breakpoint detection. Copy number ratios (CNRs) derived
from aCGH data from multiple individuals are segmented using a Bayesian change-point algorithm that
computes the probability of a breakpoint between adjacent probes (in red). The breakpoint probabilities
are then combined to detect recurrent breakpoints (black rectangles). We identify recurrent breakpoints that
occur between adjacent probes as well as recurrent breakpoints that occur within a set of probes defined by
a genomic interval. To detect CNVs, we identify pairs of recurrent breakpoints.

The second step of NBC is to combine breakpoint probabilities in each individual to determine break-

points that appear in multiple individuals. Similar to [10], we use a binomial order statistic [36] to compute
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a p-value for the event that k or more individuals share a breakpoint between two adjacent probes. We then

extend this breakpoint score to consider pairs of breakpoints that are shared by multiple individuals. Finally,

we also define a score for a breakpoint that may occur anywhere within an interval of adjacent probes (e.g.

a gene) that is shared by multiple individuals. We detail each of these two steps in the following sections.

2.2.1 A Probability Model for Segmentation and Breakpoint Analysis

A probabilistic formulation of the segmentation problem assigns a probability to each possible segmentation

of X, and the probability of other events, such as a breakpoint occurring at a particular locus, are readily

computed from this model. Probabilistic segmentation approaches have been previously applied to CNV

detection [7, 41, 47, 162], but we found that these methods either: require a finite number of copy number

levels (as in the Bayesian Hidden Markov method of [47]); focus on probabilistic model selection rather than

an explicit probabilistic model for the segmentation itself [162]; or do not perform well on high-resolution

oligonucleotide arrays (see §2.3.1 for a comparison to [41] and [105]).

Our algorithm is based on the change-point model described in [78]. Consider a copy number profile

X = (X1, . . . , Xn), where Xi is the log2 ratio of test:reference DNA at the ith probe. We assume that

the test genome consists of an unknown number of segments K with corresponding segment values Θ =

{θ1, . . . , θK}. Following the usual assumptions for aCGH data [7, 41, 47, 112, 162], we assume that each

Xi is normally distributed with mean µi and variance σ2, where the variance σ2 is a hyperparameter that

must be estimated from the data and will be described later. The mean µi equals θs if probe i lies within to

segment s. Further, we assume that Xi from different segments are independent. Let lj denote the number

of probes in segment j, and let kmax denote the maximum number of segments in the test genome.

We define the breakpoint sequence A = (A1, . . . , AK+1), whereAv is the index of the probe at the start

of the v + 1st segment and AK+1 = n is a “dummy” breakpoint signifying the end of the sequence (i.e.

there are K+1 breakpoints representing K segments in A). Thus,

Av =
v∑
j=1

lj + 1 for 1 ≤ v ≤ K. (2.1)

The unknown variables in our model are the breakpoint sequence A, the number of segments K, and

the segment values Θ.

We assume a priori that Θ is independent of A and K, and we assume that the segment values θs ∈ Θ

are independent. We select a conjugate prior θs ∼ N (µ0, σ
2
0) on the segment values, where µ0 represents

equal copy number between the test and the reference genomes. We assign a prior on breakpoints sequences

A such that all A with K segments are equally likely,

P (A|K) =

(
n

K

)−1

. (2.2)



18

Additionally, we assign a prior on the number of segments K such that there is a probability of 1/2 of a

single segment and the remaining values of K are equally likely,

P (K) =

1/2 K = 1

1/(2(kmax)) 1 < K ≤ kmax

. (2.3)

Note that these priors do not make any strong assumptions on the data, except that we expect a single seg-

ment with probability 1/2. For notational convenience, let X[i:j] = (Xi, . . . , Xj), X(i:j] = (Xi+1, . . . , Xj),

and X[i:j) = (Xi, . . . , Xj−1). From the priors P (A|K) and P (K = k) and the hyperparameter values, the

probability of X is

P (X) =

kmax∑
k=1

P (X|K=k)P (K=k) (2.4)

=

kmax∑
k=1

P (K=k)

 ∑
A:||A||=k

∫
P (X,A=A|Θ,K=k)P (Θ)dΘ

 (2.5)

=

kmax∑
k=1

P (K=k)

 ∑
A:||A||=k

k∏
v=1

∫
P (X[Av :Av+1)|θv)P (θv)dθv

 . (2.6)

Here ||A|| is the length (number of breakpoints) of A, P (X|K = k) is the probability of the data X given

that the test genome is divided into k segments, and P (X[Av :Av+1)|θv) is the probability that X[Av−1:Av)

consists of a single segment. The product in Equation (2.6) results from the segment independence assump-

tion.

Analytical Computation of P (X)

The choice of a conjugate prior for P (θ) allows the integral

∫
P (X[Av :Av+1)|θv)P (θv)dθv = P (X[Av−1:Av)|µ0, σ

2
0, σ

2,K = 1) (2.7)

to be analytically computed.

For simplicity, we show the derivation for computing the integral for the entire dataset X, where |X| =
n; however in practice this can be done on any sequence of points X[i,j). Following Theorem 9.6 in [148],
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P (µ|X, µ0, σ
2
0, σ

2,K = 1) = N(µ∗, (σ∗)2), where (2.8)

µ∗ =
nXσ2

0 + µ0σ
2

nσ2
0 + σ2

, (2.9)

σ∗ =

√
σ2

0σ
2

nσ2
0 + σ2

, and (2.10)

X =
1

n

n∑
i=1

Xi. (2.11)

Each observation Xi is normally distributed with mean µi and the prior P (µ) is also normally dis-

tributed. We can multiply the n+ 1 normals and produce

P (X|µ, µ0, σ
2
0, σ

2,K = 1)P (µ) =
1

(2π)(n+1)/2σnσ0
× exp

[
−1

2σ2

n∑
i=1

(Xi −X)2

]
(2.12)

× exp

[
−1

2

(
n(X− µ)2

σ2
+

(µ− µ0)2

σ2
0

)]
. (2.13)

Using the identity

n∑
i=1

(Xi − µ)2 =

n∑
i=1

(Xi −X)2 + n(X− µ)2, (2.14)

expanding the exponent in (2.13) results in
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−1

2

[(
n(X− µ)2

σ2
+

(µ− µ0)2

σ2
0

)]
(2.15)

=
−1

2

[
µ2

(
nσ2

0 + σ2

2σ2σ2
0

)
− 2µ

(
nσ2

0X + µ0σ
2

σ2σ2
0

)
+

(
nσ2

0X
2

+ µ2
0σ

2

σ2σ2
0

)]
(2.16)

=
−1

2

[
µ2

(
1

(σ∗)2

)
− 2µ

(
nσ2

0X + µ0σ
2

σ2σ2
0

)
+

(
nσ2

0X
2

+ µ2
0σ

2

σ2σ2
0

)]
(2.17)

=
−1

2(σ∗)2

[
µ2 − 2µ

(
nσ2

0X + µ0σ
2

nσ2
0 + σ2

)
+

(
nσ2

0X
2

+ µ2
0σ

2

nσ2
0 + σ2

)]
(2.18)

=
−1

2(σ∗)2

[
µ2 − 2µµ∗ + (µ∗)2 −

(
nσ2

0σ
2
0(µ0 −X)2

(nσ2
0 + σ2)2

)]
(2.19)

=
−1

2(σ∗)2

[
µ2 − 2µµ∗ + (µ∗)2 −

(
(σ∗)2n(µ0 −X)2

nσ2
0 + σ2

)]
(2.20)

=
−1

2(σ∗)2

[
µ2 − 2µµ∗ + (µ∗)2

]
+

(
n(µ0 −X)2

2(nσ2
0 + σ2)

)
. (2.21)

(2.22)

Plugging this into P (X|µ, µ0, σ
2
0, σ

2,K = 1)P (µ) yields

P (X|µ, µ0, σ
2
0, σ

2,K = 1)P (µ) =
exp

[
−

∑n
i=1(Xi−X)2

2σ2 + n(µ0−X)2

2(nσ2
0+σ2)

]
(2π)(n+1)/2σnσ0

× exp

[
−(µ− µ∗)2

2(σ∗)2

]
. (2.23)

Marginalizing over µ finally gives the probability of the data X given that it is a single segment; we

need to multiply the top and bottom by
√

2π(σ∗)2 to accomplish this.
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P (X|µ0, σ
2
0, σ

2,K = 1) =

∫
P (X|µ, µ0, σ

2
0, σ

2,K = 1)P (µ)dµ (2.24)

=

√
2π(σ∗)2 exp

[
−

∑n
i=1(Xi−X)2

2σ2 + n(µ0−X)2

2(nσ2
0+σ2)

]
(2π)(n+1)/2σnσ0

(2.25)

×
∫

1√
2π(σ∗)2

exp

[
−(µ− µ∗)2

2(σ∗)2

]
(2.26)

=

√
2π(σ∗)2 exp

[
−

∑n
i=1(Xi−X)2

2σ2 + n(µ0−X)2

2(nσ2
0+σ2)

]
(2π)(n+1)/2σnσ0

(2.27)

=

√
σ2σ2

0

(nσ2
0 + σ2)

exp
[
−

∑n
i=1(Xi−X)2

2σ2 + n(µ0−X)2

2(nσ2
0+σ2)

]
(2πσ2)n/2σ0

(2.28)

=

√
σ2

(nσ2
0 + σ2)

exp
[
−

∑n
i=1(Xi−X)2

2σ2 + n(µ0−X)2

2(nσ2
0+σ2)

]
(2πσ2)n/2

(2.29)

Define the noise-to-signal ratiow(lv) = σ2/(nvσ
2
0 +σ2), which depends on the length lv of the segment.

We can now write down the probability that X is generated from k > 1 segments:

P (X) =

kmax∑
k=1

P (X|K = k)P (K = k) (2.30)

=

kmax∑
k=1

P (K=k)

 ∑
A:||A||=k

k∏
v=1

∫
P (X[Av :Av+1)|θv)P (θv)dθv

 (2.31)

∝
∑

A:||A||=k

[
k∏
v=1

[√
w(lv) exp

[∑Ak−1
i=Ak−1

(Xi −X [Ak−1:Ak))
2 + w(lv)lv(µ0 −X [Ak−1:Ak))

2

2σ2

]]]
.

(2.32)

However, calculating P (X|K=k) in this way requires summing over all possible breakpoint sequences

A and is computationally infeasible. A dynamic program allows the efficient computation of this term.
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Dynamic Program

Let P (X[i:j]|k) be the probability of observing X[i:j] given that it is generated from k different segments.

We compute this P (X[1:j]|k) for 1 ≤ k ≤ kmax and 1 ≤ j ≤ n as follows:

P (X[1:j]|k) =


∑

v<j

[
P (X[1:v)|k − 1)P (X[v:j]|1)

]
1 < k ≤ j

0 k > j.
(2.33)

Base case: P (X[i:j]|1) =

∫
P (X[i:j]|k = 1, θ, σ2)P (θ)dθ 1 ≤ i ≤ j ≤ n. (2.34)

The final row of the dynamic programming table contains P (X|K = k) for 1 ≤ k ≤ kmax, which is used in

Equation (2.4) to compute P (X).

Recursive Sampling

We describe a sampling strategy that will generalize to the computation of the probability of breakpoints

that lie within an interval or pairs or breakpoints in §2.2.2. We use P (X|K = k) as well as the base case

P (X[i:j]|1) and intermediate terms P (X[1:j]|k) in the dynamic program to sample exact and independent

breakpoint sequences A using a backward sampling technique [78]:

1. Draw K=k from P (K=k|X), determined by inverting P (X|K = k) using Bayes Rule.

2. Set Ak+1 = n.

3. Draw Ak, Ak−1, . . . , A1 recursively using the conditional distributions computed by the recurrences

in (2.33). Given Aq, the location of the beginning of the qth segment, the distribution of Aq−1 is

obtained as follows:

P (Aq−1 = j|X, Aq=m) =
P (X[1:j]|q − 1)P (X(j:m]|1)

P (X[1:m]|q)
. (2.35)

From a set of breakpoint sequences sampled in proportion to P (A|X), we determine the probability of

a breakpoint occurring between two adjacent probes by counting the proportion of samples that contain a

breakpoint at that locus. Other probabilities derived from these sampled breakpoint sequences are described

in subsequent sections.

Runtime analysis. The base cases P (X[i:j]|1) require O(n2) computations and the dynamic program

requires O(nkmax) computations; thus computing P (X|K = k) is achieved in O(n(n + kmax)) time. All

computations necessary to sample a breakpoint sequence A are already computed in the dynamic program,

so sampling is linear in the number of breakpoints K drawn from P (X|K=k).
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Figure 2.2: Hyperparameter estimation on simulated datasets. The first column shows the raw data
for a particular aberration log2 ratio. The second column shows the smoothed data and the average NBC
segmentation (red). The third column shows the breakpoint probability at each location. (Left) A single
artificial chromosome from Simulation #1 with gaussian noise N(0, σ2

1) for σ2
1 = 0.1, 0.25, 0.5, 1, 1.25 or

1.5. (Right) A single artificial chromosome from Simulation #2 with gaussian noiseN(0, 0.5) for aberration
log2 ratios of 0.5, 1, 2, 3, 4, 5 and 6.

Hyperparameter Estimation

The segmentation algorithm relies on setting values for the hyperparameters µ0 (the baseline mean), σ2
0 (the

segment variance), and σ2 (the variance from experimental error). We describe how to estimate these from

aCGH log2 ratios. First, we set µ0 to be the median value of the log2 ratios. To estimate the variances σ2
0 and

σ2, we break the dataset into sliding windows of 10 probes. Let V be the median of the sample variances of

the windows, and let M be the maximum absolute distance between the sample means of the windows and

µ0. We set the variance from experimental error σ2 = 2V and the segment variance σ2
0 = M2.

The datasets we segment have a wide range of variances in the log2 ratios (the Glioblastoma experiments,

for example, have log2 ratio variances that range from 0.0084 to 7.5591). To test the sensitivity of our choice

of hyperparameters, particularly σ2 and σ2
0 , we performed two simulations similar to the simulations of [41].

Simulation #1 We generated an artificial chromosome of length 100 with a 40 probe single-copy gain (log2

ratio of 1) placed in the center. We then introduced various amounts of gaussian noise N(0, σ2
1) in the probe

measurements, where σ2
1 = 0.1, 0.25, 0.5, 1, 1.25, or 1.5. For each value of σ2

1 , we generated 100 such

chromosomes.
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Simulation #2 We generated an artificial chromosome of length 100 with gaussian noise N(0, 0.5) in the

probe measurements. We then introduced a 40 probe aberration at various log2 ratios: 0.5, 1, 2, 3, 4, 5, and

6. For each log2 ratio, we generated 100 such chromosomes.

A representative sample of the datasets for Simulation #1 and Simulation #2 are shown in Figure 2.2.
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Figure 2.3: Hyperparameter Sensitivity Analysis. The number of true positive (TP) breakpoints (0,1, or 2)
and the number of false positive (FP) breakpoints for Simulation #1 and Simulation #2 over various values
of variance parameters σ2

0 (top row) and σ2 (bottom row). The bars are averaged over 100 iterations for each
simulation, and error bars indicate 1 standard deviation.

We ran NBC on datasets from the two simulations with different estimates for the variances σ2
0 and σ2,

which will be described in the following paragraphs. To assess the quality of the resulting set of inferred

breakpoints, we consider probe locations with Pr(breakpoint)≥ 0.5 to be an inferred breakpoint. We assume

that an inferred breakpoint detects a true breakpoint if the inferred breakpoint location is ≤ 2 probes away

from the true breakpoint location. We count the number of true positive breakpoints (0, 1, or 2). Addition-

ally, we count the number of false positive breakpoints for each dataset. We average the true positives and

false positives over the 100 artificial chromosomes.

Simulation #1 has a fixed aberration log2 ratio, so we set the segment variance σ2
0 = M2 and we test
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three different values of σ2: V , 2V , and 3V (Figure 2.3 top row). Compared to our estimated value of

σ2 = 2V , the number of true positives is similar to σ2 = V and σ2 = 3V at low noise σ2
1 . As σ2

1 increases,

setting σ2 = V results in more false positives compared to our estimate σ2 = 2V , while setting σ2 = 3V

results in fewer total inferred breakpoints, including true positives. Thus, we estimate σ2 as 2V .

Simulation #2 has fixed noise, so we set the variance of the experimental error σ2 = 2V and test three

different values of σ2
0 : M ,M2, and M3 (Figure 2.3 bottom row). With the exception of a large standard

deviation for σ2
0 = M3, the number of true positives and false positives are similar for the three different

estimates of σ2
0 .

The simulations with large noise σ2
1 reasonably demonstrate that when the segment variance is smaller

than the noise variance, the measurement noise obfuscates any subtle changepoints in the data. Thus, when

σ ≤ 3σ0, we do not segment the data and immediately report 0 breakpoints.

2.2.2 Identifying Recurrent Breakpoints

After sampling breakpoint sequences for a set of individuals, we identify recurrent breakpoints that appear

in many individuals at the same genomic locus. Let S = {S1, . . . , Sm} be a set of copy number profiles

from m individuals, where Sj = (X1, . . . , Xn) is the copy number profile for individual j. We assume that

the same array probes are used for each individual, i.e. the ith probe in individual Sj is at the same location

as the ith probe in individual Sj′ . We analyze recurrent breakpoints at two levels of resolution:

1. Recurrent probe breakpoints occur between the same two array probes in a subset of individuals.

2. Recurrent interval breakpoints occur within the same interval of the genome in a subset of individuals.

In addition to analyzing these types of recurrent breakpoints, we also consider pairs of recurrent breakpoints

to identify recurrent CNVs. Note that these pairs may indicate intrachromosomal CNVs, as in the case of

classic copy number aberrations like duplications and deletions, or interchromosomal CNVs, as in the case

of (unbalanced) translocations.

Recurrent Probe Breakpoints

For each probe, we define a score that measures the presence of a breakpoint in a subset of individuals. We

design this score to account for the observation that the number of breakpoints in copy-number profiles,

particularly in a set of cancer samples, is highly variable. That is, in a set of cancer samples, even from

the same cancer type, there will typically be highly rearranged cancer genomes with many breakpoints,

and less rearranged genomes with relatively few breakpoints. This variability in the number of breakpoints

is maintained following our Bayesian segmentation approach – despite the fact that we use the same flat

prior for each individual – because there is strong evidence to support a larger number of breakpoints in

some samples. Since there is a greater chance of recurrent breakpoints occurring randomly in a collection

of highly rearranged genomes than a collection of less rearranged genomes, it is advantageous to consider
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the number of breakpoints in each profile when scoring recurrent breakpoints. Because the variability of

number of breakpoints across different individuals is typically not well matched by a standard distribution,

one approach is to use a permutation test that preserves the number and probability of breakpoints in each

profile while permuting their location. We instead derive a score for recurrent probe breakpoints based on a

binomial order statistic [10,36]. This score first normalizes the breakpoint probability at each probe in each

individual according to the breakpoint probabilities across all probes in individual. These normalized values

are then combined across multiple individuals to produce a recurrent breakpoint score.

Let bi be the event that a breakpoint lies between probes i and i+1; P (bi|Sj) is the breakpoint probability

at probe i in individual Sj , and is computed by counting the proportion of sampled breakpoint sequences

A that have a breakpoint between i and i + 1. Let ρj(i) be the fraction of probes with a higher breakpoint

probability than probe i in individual Sj (the normalized rank of probe i):

ρj(i) =
|{g : P (bg|Sj) ≥ P (bi|Sj)}|

n
. (2.36)

Let π be a permutation of the individuals S such that ρπ1(i) ≤ ρπ2(i) ≤ . . . ≤ ρπm(i). For 1 ≤
h ≤ m, we wish to determine the probability that h or more individuals have a breakpoint at location i.

Because of our normalization of the breakpoint probabilities in each sample, under the null hypothesis the

individual scores ρj(i) are independent and uniformly distributed in [0, 1]. Thus, the probability that h or

more individuals have a breakpoint at location i is given by the tail of the binomial distribution with success

probability ρπh(i). Thus, the p-value for the probe location i is

p(i) = min
h=hmin,...,m

 m∑
j=h

(
m

j

)
ρπh(i)j(1− ρπh(i))m−j)

 , (2.37)

where we are only interested in scoring those breakpoints that are present in at least hmin patients. Note

that because the binomial order statistic is computed from the empirical distribution ρj of breakpoint prob-

abilities in each sample, the relative magnitude of the breakpoint probability is not used in the computation.

Despite this loss of information, we found that the binomial order statistic produced reasonable results on

real data (See Results below) and was more efficient than a permutation test.

Finally, we assume that a recurrent breakpoint is also conserved in the direction of the copy number

change: all samples with a recurrent breakpoint are either breakpoints that go from relatively low copy

number to high copy number of vice versa. A breakpoint sequence A defined a segmentation, and we use

the mean values of each segment to determine the direction of copy number change. The copy number

change is positive if the mean of the segment to the right of the breakpoint is higher than the mean of the

segment to the left. We test both cases for each recurrent breakpoint, doubling the number of hypotheses we

test. We control the False Discovery Rate (FDR) using the method of Benjamini and Hochberg [11].
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Recurrent Interval/Gene Breakpoints

We extend our approach to find recurrent breakpoints that lie within a genomic interval W . This interval

can represent the set of probes within a gene region, for example. Unlike the recurrent probe breakpoint

calculation above, where each probe was a priori equally likely to contain a breakpoint, intervals that contain

more probes are a priori more likely to contain a breakpoint than intervals that contain fewer probes. To

account for this, we use a log-odds score that is defined as follows. Let b ∈W be the event that one or more

breakpoints lie between any pair of adjacent probes within W . Similarly, let b /∈ W be the event that no

breakpoint lies between any adjacent probes within W . The log-odds score `j(W ) that patient Sj contains

a breakpoint within W is

`j(W ) = log
P (Sj |b ∈W )

P (Sj |b /∈W )
= log

P (b ∈W |Sj)
P (b /∈W |Sj)

P (b /∈W )

P (b ∈W )
. (2.38)

The conditional probabilities P (b ∈ W |Sj) and P (b /∈ W |Sj) describe probabilities over all possible

segmentations of the copy number profile Sj . P (b ∈ W |Sj) is determined by sampling breakpoint se-

quences A as described in §2.2.1 and counting the number of samples that contain one or more breakpoints

in the interval W . P (b /∈ W |Sj) is then simply 1− P (b ∈ W |Sj). The scaling factor P (b/∈W )
P (b∈W ) is computed

by counting the number of ways to place breakpoints such that none of them lie in W :

P (b /∈W ) =

kmax∑
k=1

P (K = k)P (b /∈W |K = k) (2.39)

=

kmax∑
k=1

P (K = k)

((n−|W |
k

)(
n
k

) )
, (2.40)

P (b ∈W ) = 1− P (b /∈W ). (2.41)

Here, the last term in (2.40) counts the number of ways to choose k breakpoints that do not lie in W .

As in the recurrent breakpoint computation above, we use the binomial order statistic to combine log-odds

scores across patients. First, in an analogous computation to (2.36) we normalize the log-odds scores using

the empirical cumulative distribution, which produces the normalized rank of `j(W ) for all j:

ρj(W ) =
|{g : `g(W ) ≥ `j(W )}|

|W|
. (2.42)

Finally, using the ρj(W ) scores for each patient Sj we compute the p-value ρ(W ) using the binomial

order statistic as in (2.37).

For the experiments below, we define the the copy number change for an interval W to be positive if at

least 90% of the breakpoints within the interval are positive and negative if at least 90% of the breakpoints

within the interval are negative. Otherwise, we do not call a breakpoint in W .
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Pairs of Recurrent Interval/Gene Breakpoints

We identify pairs of non-overlapping recurrent interval breakpoints using a log-odds score similar to Equa-

tion (2.38) that scores two breakpoints occurring in intervalsW1 andW2. An important case we will consider

is when W1 and W2 are genes. Let b ∈ W1 be the event that a breakpoint lies between any pair of adjacent

probes within W1, and Let b′ ∈ W2 be the event that a breakpoint lies between any pair of adjacent probes

within W2. We define the score for intervals W1 and W2 for a particular patient Sj :

`j(W1,W2) = log
P (Sj |b ∈W1 ∩ b′ ∈W2)

P (Sj |b /∈W1 ∪ b′ /∈W2)
(2.43)

= log
P (b ∈W1 ∩ b′ ∈W2|Sj)
P (b /∈W1 ∪ b′ /∈W2|Sj)

P (b /∈W1 ∪ b′ /∈W2)

P (b ∈W1 ∩ b′ ∈W2)
. (2.44)

Each term is computed similarly to (2.38). If W1 and W2 are on different chromosomes, the events

P (b ∈ W1) and P (b′ ∈ W2) are independent and Equations (2.40) and (2.41) are used to compute the

scaling factor P (b/∈W1∪b′ /∈W2)
P (b∈W1∩b′∈W2) . If the intervals are on the same chromosome then the events are dependent,

and the quantities in P (b/∈W1∪b′ /∈W2)
P (b∈W1∩b′∈W2) are

P (b /∈W1 ∪ b′ /∈W2) =

kmax∑
k=1

P (K = k)P (b /∈W1 ∪ b′ /∈W2|K = k) (2.45)

=

kmax∑
k=1

P (K = k)

((n−|W1|
k

)
+
(n−|W2|

k

)
−
(n−|W1|−|W2|

k

)(
n
k

) )
, (2.46)

P (b ∈W1 ∩ b′ ∈W2) = 1− P (b /∈W1 ∪ b′ /∈W2). (2.47)

The p-value ρ(W1,W2) is computed by normalizing as in Equation (2.42) according to the empirical

distribution of log-odds scores over all pairs of non-overlapping intervals and then using the binomial order

statistic to determine the final p-value. Here, we test four hypotheses for each pairW1 andW2 by considering

the four combinations of direction of copy number change: {(+,+), (−,−), (−,+), (−,−)}. Note that

restricting W1 and W2 to each contain a single probe identifies pairs of recurrent probe breakpoints.

2.2.3 Predicting Structural Variants, Gene Truncations, and Fusion Genes

Our statistics for single recurrent breakpoints (ρ(i) and ρ(W )) and pairs of recurrent breakpoints (ρ(i, j)

and ρ(W1,W2)) provide a flexible framework to infer particular rearrangement configurations. We classify

inferred breakpoints into three groups: (1) structural variants, (2) gene truncations, and (3) fusion genes.

Structural Variants

Pairs of recurrent probe breakpoints may indicate germline or somatic rearrangements that have recurrent

breakpoints at the highest resolution allowed by the spacing of probes. To identify these rearrangements, we
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compute the pairs of recurrent probe breakpoint statistic for every pair of probes within each chromosomal

arm. Note that this limits the inferred structural variants to intrachromosomal rearrangements only.

Gene truncations

Recurrent breakpoints found within a single gene may indicate a gene truncation, resulting in the loss of

functionality for a particular gene. To infer gene truncations, we compute the recurrent interval breakpoint

detection statistic, using the set of gene regions from RefSeq as our intervals of interest.

Fusion Genes

Pairs of recurrent interval breakpoints found within genes suggest potential fusion genes. We compute pairs

of recurrent interval breakpoints using all pairs of gene regions from RefSeq as our intervals of interest.

Note that not all pairs of recurrent genes suggest functional fusion genes. For example, a rearrangement that

joins the 3’ end of one gene to the 3’ end of another gene is typically not a functional fusion gene. Thus, we

restrict our attention to pairs of interval breakpoints with particular configurations (Figure 2.4).

5’ 3’

Higher CN

Lower CN

5’ 3’ 5’ 3’

…

(A) Average Segmentation (B) Functional Fusion Gene

G1 G2

orient( G1 ) = +
dir( G1 ) = -

orient( G2 ) = +
dir( G2 ) = +

fusion( G1 ,G2 ) = 1

Figure 2.4: Fusion Gene Configurations. Fusion genes are pairs of recurrent genes that have the following
configuration: (A) Each gene G1 and G2 has an associated orientation, orient(G1) and orient(G2). Addi-
tionally, each recurrent breakpoint has an associated change in relative copy number, dir(G1) and dir(G2).
(B) A fusion gene joins the ends of G1 and G2 such that the 5’ end of one gene is joined to the 3’ end of the
other gene.

Specifically, consider a pair of recurrent intervals G1 and G2 that represent gene regions. Each gene

has an orientation, orient(G1) ∈ {+,−} and orient(G2) ∈ {+,−}. Additionally, the breakpoint that lies

within each recurrent interval has an associated direction of copy number change, dir(G1) ∈ {+,−} and

dir(G2) ∈ {+,−}. We assume that a fusion gene contains the 5’ end of one gene joined to the 3’ end of

the other gene and thus satisfies the following rule:

fusion(G1, G2) =

1 if orient(G1)× dir(G1) 6= orient(G2)× dir(G2)

0 otherwise.
(2.48)
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2.2.4 Filtering and Ranking Inferred SVs

We apply a number of additional steps to remove and prioritize inferred breakpoints for real data.

Removing Single Probe Aberrations

Single probe aberrations are segments consisting of a single probe. Since these are difficult to distinguish

from experimental artifacts, we remove them from further consideration. Single probe aberrations are char-

acterized by two large changes in copy number in adjacent probes, where the segments adjacent to this

aberration have a similar copy number. We identify these probes and remove them from the analysis.

Removing Known CNVs

We remove inferred breakpoints that are near known CNVs. We say that a single probe is “near” a known

CNV in the Database of Genomic Variants (DGV) [58] if it is within 10kb of a recorded copy number variant

endpoint, and a gene region is “near” a known copy number variant if it is within 10kb of a recorded copy

number variant endpoint. Additionally, a pair of intrachromosomal recurrent breakpoints are near a variant

if at least one of the breakpoints is within 10kb of a recorded copy number variant endpoint and the mutual

overlap between the prediction interval (defined by the pair of breakpoints) and the variant interval is greater

than 50%.

Ranking Inferred Pairs of Breakpoints

Since fusion genes (and other recurrent pairs of breakpoints) are physically joined in the test genome, we

expect the copy number of either side of the breakpoint to be the same. Thus, we rank inferred fusion

genes by calculating the root mean squared difference (RMS) between the copy number levels of probes

surrounding the breakpoint. For fusion genes, we know the configuration of the gene partners but we do not

know exactly where the breakpoint lies. Thus, we determine the copy number on each side of the fusion as

the average of the three flanking probes of the left gene partner and the three flanking probes of the right

gene partner. If h patients have the breakpoint, determined by the argmax of Equation (2.37), c(i)
l is the

left-flanking copy number of the fusion and c(i)
r is the right-flanking copy number of the fusion, then the

RMS difference of the pair of conserved breakpoints is

RMS =

√√√√1

h

n∑
i=1

(c
(i)
l − c

(i)
r )2. (2.49)

2.3 Results

We applied NBC to two aCGH datasets: a collection of 36 primary prostate tumors, and 227 glioblastoma

(GBM) tumors. For each dataset, we computed recurrent probe breakpoints, recurrent gene breakpoints,
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pairs of recurrent probe breakpoints, and pairs of recurrent gene breakpoints.

2.3.1 Prostate Dataset

Breakpoint Type Rearrangement Type(s) # Predicted # in DGV # Novel
Recurrent Probes Highly Conserved Breakpoints 80 66 14
Recurrent Genes Gene Truncations 6 5 1

Pairs of Recurrent Probes
Germline or Somatic

38 28 10
Structural Variants

Pairs of Recurrent Genes Intrachromosomal Fusion Genes 2 1 1
With Fusion Gene Config.∗ Interchromosomal Fusion Genes 2 2 0
∗Novel pairs of recurrent gene breakpoints consistent with the fusion gene configuration (see § 2.2.3).

Table 2.1: Predicted Recurrent Breakpoints in 36 Prostate Samples. Breakpoint types are described
in §2.2.3 and are explained by the indicated rearrangement type. ‘# Predicted’ is the number of inferred
breakpoints that are significant with FDR < 0.01. ‘# in DGV’ counts the breakpoints near known structural
variants in the Database of Genomic Variants (DGV). ‘# Novel’ is the number of inferred breakpoints that
are not near any known variant in DGV.
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Figure 2.5: A Predicted Gene Truncation in Prostate Cancer. The Complement Factor H (CFH) gene
on Chromosome 1 contains a recurrent gene breakpoint, suggesting the truncation of the 3’ region in 9
individuals.

We applied NBC to Agilent aCGH data from a collection of 36 primary prostate tumors. Each sample

contained copy number ratios for 235,719 aCGH probes that were mapped to the hg17 human reference

genome. We examined recurrent gene breakpoints using the gene regions from 16,162 hg17 RefSeq genes.

Table 2.1 reports the number of inferred variants, and tables listing the breakpoint coordinates and additional

information are in Supplementary Tables 1 through 4 in [124]. We visualize inferred breakpoints by plotting

the average segmentation for each of the individuals that were involved of the final p-value computations

for recurrent breakpoints in Equation (2.37). The average segmentation is created by averaging the segment

values Θ at each probe for the sampled breakpoint sequences A.

We infer one novel gene truncation, which occurs in the Complement factor H (CFH) gene (Figure 2.5).
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CFH encodes a protein that is secreted into the bloodstream and is essential for complement system reg-

ulation, and CFH polymorphisms are associated with macular degeneration [31]. From pairs of recur-

rent probes, we infer 10 novel variants, the most significant of which lies in the β-Defensin locus ((p-

value=1.3×10−33, Figure 2.6). β-Defensin genes have been associated with the risk of prostate cancer [57],

and this locus lies near many known CNVs, complicating the study of nearby genes.
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Figure 2.6: A Predicted Rearrangement Highly Conserved at the Probe Level in Prostate Cancer. This
amplified region on Chromosome 8 lies in the β-Defensin locus, and the recurrent breakpoints are conserved
at the probe level in 17 individuals. Arrows on the right indicating β-Defensin genes are approximate.

We infer only one fusion gene, the well-known TMPRSS2-ERG fusion gene, which we detect in 5

patients with a p-value of 2.7×10−10 (Figure 2.7). The TMPRSS2-ERG fusion gene has an RMS difference

of 0.0759.

Comparison to Segmentation Approaches

The method by Erdman and Emerson, BCP [41], applies the change-point algorithm by Barry and Har-

tigan [7] to aCGH data using a different generative model than the segmentation portion of NBC. Their

segmentations tend to have many more probes with high breakpoint probabilities than expected, even on

relatively smooth data. Figure 2.8 shows the average segmentations and breakpoint probabilities averaged

over the 5 patients that contain the TMPRSS-ERG fusion gene in Prostate cancer. While the fusion gene

is clearly visible from the segmentations from BCP, the fusion gene cannot be clearly identified from the

breakpoint probabilities of BCP.

To demonstrate the importance of breakpoint uncertainty in computing recurrent breakpoints, we com-

pared inferred fusion gene to those obtained using a single segmentation for each individual. We segmented

copy number profiles from each individual using Circular Binary Segmentation (CBS) [105] (Figure 2.9).
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Figure 2.7: The TMPRSS2-ERG Fusion Gene in Prostate Cancer. We identify the TMPRSS2-ERG
fusion gene in 5 prostate cancer patients. The mean segmentations for each patient (shown in blue) are com-
puted by finding the segment parameters θ for each segmentation A drawn from the posterior distribution
P (A|X) and then averaging these values across all segmentations.
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Figure 2.8: A Comparison of Bayesian Segmentation Algorithms for aCGH data. Bayesian segmenta-
tions for BCP (Left) compared to NBC (Right) for the patients that have the TMPRSS-ERG fusion gene.
The mean segmentation is depicted on the top row, and the probability of a breakpoint P (bi), averaged over
the 5 patients, is depicted on the bottom row.
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Figure 2.9: Comparison with CBS segmentations. We show the CBS segmentation for the 5 patients that
have the TMPRSS-ERG fusion gene according to NBC. Only two of the five individuals have co-occurring
breakpoints within the gene regions (gray boxes).

The CBS implementation in the R package DNAcopy was used to segment the prostate samples. The pa-

rameters used were the same as The Cancer Genome Atlas protocol [85]: the data was smoothed using a

standard deviation smoothing technique (smooth.CNA with a smoothing region of 10), 10,000 hybrid per-

mutations were used (nperm-10000,p.method=“hybrid”), splits were undone using a standard deviation of

1 (undo.splits=“sdundo”” undo.SD=1), and alpha was 0.01. Figure 2.9 shows the CBS breakpoint locations

for the five individuals that NBC reports as having co-occurring breakpoints

CBS returns a single segmentation (and thus a set of breakpoints) for each individual. From these sets

of breakpoints, for each pair of genes from the same chromosome, we counted the number of patients with a

breakpoint in each gene. Only two individuals had a pair of breakpoints within TMPRSS2 and ERG from the

CBS segmentations. Further, there are 5 inferred fusion genes that occur in two individuals after applying

the filters described in §2.2.4, and zero predictions that occur in more than two individuals. Since no other

common fusion genes in prostate cancer are known, we assume that these remaining inferred fusion genes

are false positives. Thus, NBC is more sensitive and specific in fusion gene identification.
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Rearrangement Type(s) # Predicted # in DGV # in Blood # Novel
Highly Conserved Breakpoints 538 343 13 189
Gene Truncations 92 69 23 23
Germline Structural Variants 88 53 N/A 35
Intrachromosomal Fusion Genes 75 45 5 7
Interchromosomal Fusion Genes 396 316 53 26
∗FDR is increased to < 0.1 for blood samples.
∗∗Novel pairs of recurrent gene breakpoints consistent with the fusion gene configuration (see § 2.2.3).

Table 2.2: Predicted Recurrent Breakpoints in 227 GBM Samples and 107 Blood Samples. Columns
are described in Table 1, except for ‘# in Blood’ which indicates the number of inferred breakpoints that
also appear in the blood samples and are thus not considered somatic rearrangements.

2.3.2 Glioblastoma Dataset

We next applied our method to Agilent 244K aCGH data of glioblastoma (GBM) tumors from TCGA [85].

Data was collected from 233 GBM patients, including 227 tumor samples and 107 matched blood samples.

Each sample contains 227,612 aCGH probes across the hg18 human reference genome. Gene regions from

16,162 hg18 RefSeq genes were used to determine recurrent gene breakpoints. Classification and filtering

of breakpoints in the tumor samples were performed as above. Additionally, to restrict attention to somatic

breakpoints we remove from consideration any recurrent breakpoints found in the tumor samples that also

appear in the blood samples. When identifying recurrent probe breakpoints in the blood samples, we increase

the False Discovery Rate (FDR) from 0.01 to 0.1 to more aggressively filter recurrent breakpoints in tumor

samples. Table 2.2 reports the number of inferred variants, and tables listing the breakpoint coordinates and

additional information are in Supplementary Tables 5 through 8 in [124].
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Figure 2.10: Predicted Gene Truncations in GBM. These three recurrent gene breakpoints found on Chro-
mosome 7, Chromosome X, and Chromosome 6 respectively suggest truncations of genes associated with
glioblastoma or other neuronal diseases. (A) The recurrent breakpoint in ECOP has a large change in copy
number; this gene is near EGFR and is the breakpoint location for the EGFR amplification. (B) PCDHone1X
appears to arise from a short deletion within a relatively amplified region, though the deletion breakpoint
varies within the PCDHone1X gene region. (C) RUNX2 contains two probe locations with recurrent probe
breakpoints that each have small copy number change at approximately 45.42Mb and 45.58Mb.
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We infer 23 gene truncations from the tumor samples, three of which are shown in Figure 2.10. Each

of these has some support in the literature for an association with glioblastoma or other neuronal diseases.

ECOP is co-amplified with EGFR in glioblastoma as well as other cancers [5, 40], RUNX2 is expressed

in glioblastoma cells [145], and PCDH11X is associated with late-onset Alzheimer’s disease [19]. We

also infer 33 fusion genes from the tumor samples. One of the inferred gene fusion involving INTS2 and

MED13 might arise due to a tandem duplication whose breakpoints are within the two genes (Figure 2.11a).

Another prediction involves PPP1R9A, which is an imprinted gene that appears in neuronal tissues and has

been shown to be expressed in other embryonic tissues (Figure 2.11b). [97].
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Figure 2.11: Predicted Intrachromosomal Fusion Genes in GBM. (A) The INTS2-MED13 rearrangement
on Chromosome 17 is identified in 9 individuals and arises from an amplification. A tandem duplication that
affects the 3’ end of MED13 and the 5’ end of INTS2 will fuse the promoter region of INTS2 to MED13.
(B) The PPP1R9A-PSMC2 rearrangement on Chromosome 7 is identified in 6 individuals and arises from a
deletion.

The phosphatase PTPN12 appears highly rearranged in 16 GBM patients, and it is a partner in a surpris-

ingly large fraction (11/33) of the inferred fusion gene (Table 2.3). PTPN12 is known to dephosphorylate

oncogenes c-ABL and Src; thus deregulation of PTPN12 might contribute to tumor survival [88]. While the

5’ end of PTPN12 appears amplified with respect to the log2 copy number ratios at the 3’ end, many inferred

fusion genes consist of a deletion of the 3’ end (i.e. Figure 2.12a). Additionally, some fusion gene candi-

dates might indicate multiple rearrangements, such as a translocation occurring after an amplification that

results in a fusion gene configuration (Figure 2.12b). Due to the large number of candidate rearrangement

partners of PTPN12, it might be the deregulation of PTPN12, and not necessarily any single rearrangement,

that is important for GBM.
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Figure 2.12: Predicted Fusion Genes with PTPN12 as a Gene Partner. (A) The inferred intrachromoso-
mal fusion gene PTPN12/RSBN1L is one of two inferred intrachromosomal fusion genes. This fusion gene
arises from a deletion within an amplified region, and is only present in 8 individuals out of 16 that have
some rearrangement with PTPN12. (B) The inferred interchromosomal fusion gene TMEM30A-PTPN12 is
one of 8 inferred interchromsomal fusion genes. While the breakpoint in TMEM30A appears to arise due to
a short amplification, a translocation occurring after an amplification (where all of TMEM30A is amplified)
may also explain this fusion gene signature.
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Recurrent Gene PTPN12
Gene Genomic Location # Patients

PTPN12 chr7:77004708-77106533 16
Inferred Intrachromosomal Fusion Genes

5’ End Gene 3’ End Gene # Patients RMS
PTPN12 chr7:77005287-77106533 RSBN1L chr7:77163678-77246421 8 0.1081
PTPN12 chr7:77004708-77106533 LUC7L2 chr7:138695173-138757626 8 0.2605

Inferred Interchromosomal Fusion Genes
5’ End Gene 3’ End Gene # Patients RMSE

TMEM30A chr6:76019357-76051074 PTPN12 chr7:77005287-77106533 6 0.1306
RNF150 chr4:142006174-142273412 PTPN12 chr7:77005287-77106533 5 0.1409
PTPN12 chr7:77005287-77106533 MED13 chr17:57374747-57497348 9 0.1906
CLK1 chr2:201425977-201434830 PTPN12 chr7:77005287-77106533 8 0.3168

ZRANB2 chr1:71301561-71319266 PTPN12 chr7:77005287-77106533 9 0.3250
PTPN12 chr7:77005287-77106533 UBR1 chr15:41022389-41185512 9 0.3475
PTPN12 chr7:77005287-77106533 LINGO1 chr15:75692423-75711712 8 0.3787
PPIL3 chr2:201443923-201460583 PTPN12 chr7:77004708-77106533 6 0.4741

Table 2.3: Inferred Rearrangments involving PTPN12 in GBM. The phosphatase PTPN12 appears in 10
inferred fusion genes, and is also an inferred gene truncation for 16 patients. The inferred rearrangements
are ranked according to the root mean squared difference (RMS) of the copy number on either side of the
fusion point (§2.2.4).

2.4 Discussion

We have introduced Neighborhood Breakpoint Correlation (NBC), an algorithm that identifies recurrent

breakpoints in data from multiple individuals. NBC correctly identifies a known fusion gene (TMPRSS2-

ERG) in aCGH data from 36 prostate tumors and infers gene truncations, structural variants, and fusion

genes in aCGH data from glioblastoma. We expect that application of our method to additional samples will

allow us to uncover and categorize other recurrent germline and somatic rearrangements.

NBC computes the probability that a breakpoint occurs between each pair of adjacent probes over all

possible segmentations of a single copy number profile and then combines these probabilities across multi-

ple profiles to identify recurrent breakpoints. The probabilistic approach contrasts with the typical methods

for aCGH analysis that compute only a single segmentation of a copy number profile. Consideration of a sin-

gle segmentation is reasonable for identifying recurrent aberrations because large aberrations will typically

overlap in different individuals as long as the segmentations reasonably approximate the true underlying

copy number level. However, identification of recurrent breakpoints is more sensitive to the choice of seg-

mentation. Due to experimental noise in individual probes, the optimal segmentation of each individual

profile may not “align” across profiles. Thus it is necessary to consider multiple suboptimal segmenta-

tions. Moreover the probabilistic model allows use to account for biological variability in the location of a

breakpoint within a gene or other locus.
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NBC successfully identifies known fusion genes and structural variants. For fusion genes, NBC’s con-

sideration of uncertainty and variability in the locations of breakpoints provides an advantage over methods

that compare individual segmentations of copy number profiles. This advantage is mitigated for variants

with highly conserved breakpoints such as germline structural variants that are common in a population.

However, it is possible that NBC would be helpful for complex, or overlapping, structural variants, where

recurrent breakpoints might be a stronger signal than recurrent aberrant intervals.

Additionally, we note that NBC is equally applicable to copy number profiles generated by mapping

DNA sequence reads to a reference genome [28, 157]. With next generation sequencing technologies,

breakpoint resolution can be much higher than most current aCGH methods, but the problems of break-

point variability and uncertainty remain. Applying NBC to DNA sequencing data from multiple individuals

will provide a more locally refined set of breakpoints; however, the number of sequenced cancer patients

must grow before NBC is statistically powerful.



Chapter 3

SV Detection using Strobe Sequencing: A
Parsimony Approach

We now move from array-based methods for CNV detection to sequence-based methods for SV detection.

In particular, paired-end sequencing has improved the detection of SVs in human genomes by using a whole-

genome resequencing approach (see §1.2).

In this chapter, we introduce an algorithm to identify and characterize structural variants with strobe

reads by considering multiple possible alignments for each subread. The work in this chapter is taken

from [124], and was originally presented at the Conference on High-Throughput Sequencing Methods and

Applications (HitSeq) in 2010. We formulate the combinatorial optimization problem of selecting an align-

ment for each subread of every strobe read so that the total number of structural variants in the test genome

is minimized. This generalizes a formulation that has proved successful for paired read analysis [52]. We

show how to reduce the problem to an optimization problem on directed graphs, and derive an integer linear

program (ILP) for the problem. We apply our method to simulated strobe sequencing data. We find that

strobe reads outperform paired reads for SV detection. In particular, at a fixed sensitivity level strobe reads

have nearly double the specificity of paired reads.

3.1 Related Work

Whole-genome sequencing for SV detection has been demonstrated for a handful of human genomes using

different sequencing technologies. Older clone-based sequencing produced 2-150Kb fragments with 500bp-

1Kb sequenced reads in phenotypically normal genomes [62, 143] and cancer genomes [120, 147]. Next-

generation sequencing produces 200bp-3Kb fragments with 35-100bp sequenced reads [66].

Initially, computational methods to detect SVs from paired-end data simplified the issue of repeats by

ignoring any paired-end fragment that aligned to a repetitive region of the genome. Methods such as GASV

[133], PEMer [65], and Breakdancer [26] either removed paired reads with ambiguous mappings or chose

40
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the best mapping, breaking ties arbitrarily. Recently, the incorporation of ambiguous alignments for paired

reads, have been found to improve the detection of SVs. VariationHunter [52, 53], GASVPro [134], and

a method by [72] use probabilistic methods to choose a set of SVs from a list of clustered candidates by

ensuring that each fragment supports a single SV in the set.

Unfortunately, none of the above methods are generalizable to the t-strobe framework. While they all

work on 2-strobes, the multiply-linked subreads introduce a dependency on the selection of the discordant

pairs associated with each strobe. To our knowledge, the method introduced in this chapter is the first

published method for SV detection with strobe sequencing data.

Finally, we note that there are other methods to measure SVs from sequencing data besides the paired-

end paradigm we have described here. One such method to measure SVs from sequencing data uses read

coverage, which can be applied to single read data as well as paired-end read data. In these methods,

copy number variants are determined by regions where the number of fragments that cover that region

is different than the expected number of fragments [153, 157]. However, this can only measure CNVs

and cannot identify copy-neutral variants. Another method for SV detection from sequencing data is to

identify the reads that span the SV breakpoints in the test genome, which result in a gapped alignment in the

reference [155]. These methods have the ability to identify the breakpoint location at the base pair resolution,

but the repetitive nature of the reference genome often prohibits the identification of correct split reads.

Finally, assembly-based methods use a de novo approach to assemble potential SVs that are particularly

difficult to detect using a resequencing approach; these methods are often used as a post-processing step in

the resequencing pipeline [63, 119].

3.2 Preliminaries

Here we formalize the basic generative model of structural variation that we will assume throughout the

rest of this dissertation. This generative model has been described in detail in [133] for paired-end reads,

and is generalized here for strobes. We model a test genome that is generated by independently adding,

duplicating, removing, and rearranging segments of a reference genome. Each pair of adjacent coordinates

in the test genome that are not adjacent in the reference genome is called an SV. The number of SVs in the

test genome corresponds to the number of rearranged segments, and we assume that this number is relatively

small given the size of the genome.

The test genome and the reference genome are strings from an alphabet Σ (typically, Σ = {A,C,G, T}).
We model double-stranded DNA as two strings, a forward string and a reverse-complement string. The se-

quencing process is modeled by sampling substrings (from either strand) from the test genome and observing

some parts of those substrings with an additional sequencing error inserted into the substring, in the form of

substitution errors, insertion errors, or deletion errors.
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Figure 3.1: Strobe Reads. Here we show a t-strobe, where t=3. The subreads R1,R2, and R3 are sepa-
rated by strings of unknown bases A1 and A2 called advances. The subread length and advance length is
determined by the amount of time the laser that reads the pulses of fluorescence is turned on and off.

Generative Model for Strobe Sequencing As mentioned in §1.2.1, a strobe (also called a t-strobe) is an

alternating sequence of t subreads, whose sequence is observed, and (t− 1) advances, unknown sequences

of “dark” bases. More formally, a strobe S is comprised of a set of t subreads {R(S)
1 , R

(S)
2 , . . . , R

(S)
t }

(Figure 3.1). The subreads are strings from Σ, and have variable length distributed around some mean.

Each subread R(S)
i has a set of subread alignments A(R

(S)
i ) to the reference genome. There are three

pieces of information associated with each subread alignment a ∈ A(R
(S)
i ): the interval [xa, ya] in the

reference genome corresponding to the alignment location (where xa < ya), the orientation signa ∈ {F,R}
of the alignment that determines whether the alignment is on the forward or reverse-complement strand, and

the number of errors εa (mismatches, insertions, and deletions) in the alignment.

Inferring SVs from Strobes We define a consecutive subread pair as a pair of subread alignments from

adjacent subreads in the same strobe S, i.e. a1 ∈ A(R
(S)
i ) and a2 ∈ A(R

(S)
i+1) for i < t. The consecutive

subread pair (a1, a2) is concordant if the aligned distance and orientation of the pair is expected given the

generative model; that is, they have the following constraints:

1. signa1 = signa2 (they are in the same orientation in the reference).

2. If signa1 = signa2 = F , then l ≤ xa2 − ya1 ≤ u for bounds l and u on the advance length.

3. If signa1 = signa2 = R, then l ≤ xa1 − ya2 ≤ u for bounds l and u on the advance length.

The lower l and upper u bounds are bounds on the advance length (the unknown sequence between

subreads in a strobe). These bounds are often estimated from an empirical distribution of all consecutive

subread pairs, since much of the sequence between the test and reference genomes are similar. If the con-

secutive subread pair (a1, a2) is concordant, then this suggests that there is no difference (in terms of large

structural variants) between the reference genome and the test genome within the interval defined by the

subread alignments to the reference.

If the consecutive subread pair (a1, a2) is not concordant, then it is discordant and implies an SV in the

test genome. Further, these discordant pairs are categorized according to how they are unexpected, either
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in terms of the orientation or the distance between the subread alignments, called the aligned length. Some

examples of SVs and the type of discordant pairs that imply them are the following:

1. If there is a deletion in the test genome compared to the reference genome, then there is extra sequence

in the reference genome between the two subreads and thus the aligned length will be larger than

expected.

2. If there is an insertion in the test genome compared to the reference genome, there is missing sequence

in the reference and the aligned length will be smaller than expected.

3. If there is an inversion in the test genome compared to the reference genome, then the orientation of

the two subread alignments will differ.

4. If there is a translocation in the test genome compared to the reference genome, then there is no notion

of aligned length because the subread alignments are on different chromosomes.

An SV is defined by disparate coordinates in the reference genome that are near each other in the test

genome. If a discordant pair (a1, a2) suggests a deletion, for example, the two coordinates (x, y) in the

reference that denote the deletion satisfy the equation

l ≤ (x− ya1) + (xa2 − y) ≤ u. (3.1)

Similar equations hold for inversions, insertions, translocations and other variants [8] (Figure 3.2).

A collection of discordant pairs indicate the same SV, if they simultaneously satisfy these equations for

a particular choice of cut points. Regardless of the number of cut points determined by a discordant pair

(two in the case of deletions and one in the case of insertions, inversions, and translocations), we say that

each discordant pair represents a single breakpoint. Thus, a collection of discordant pairs indicate the same

breakpoint. Note that an SV may be defined as two cut points in the same breakpoint (as in a deletion), or

as two cut points in two different breakpoints (as in a balanced inversion) (Figure 3.2). Breakpoints are only

approximately defined according to the uncertainty in the advance lengths (e.g. according to Equation 3.1),

meaning that there is some number of cut points for which the inequalities hold true.

Generative Model for Paired-End Sequencing The generative model for paired-end sequencing, which

is described in [133], is that a fixed number of characters are observed from the ends of the substrings

sampled from the test genome, on opposite strands, producing a pair of reads. These reads are aligned to

the reference genome, and a selection of one alignment for each read produces an alignment pair, which is

either concordant or discordant according to inequalities similar to those above but adjusted for the expected

orientation of the read pairs.

Fundamentally, the difference between a strobe-sequenced substring and a paired-end-sequenced sub-

string from the test genome is the expected orientation of the subreads and reads (Figure 1.4). Note that if
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Test Genome 
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Deletion Insertion Inversion 

2 

a a a b b 

l ≤ (a - y2) + (x3 – b) ≤ u 

l ≤ (a - y1) + (b - x2) ≤ u 

l ≤ (y2 - a) + (x3 - b) ≤ u 

l ≤ x2 – y1 ≤ u 

length w 

l ≤ x3 - y2 + w ≤ u 

l ≤ x2 – y1 ≤ u 

Figure 3.2: Discordant pairs that imply SVs and the constraints they pose on the type of variant. For
simplicity, we label the subreads 1, 2 and 3, and the corresponding intervals as [x1, y1], [x2, y2], and [x3, y3].
SV coordinates are labeled as a and b in the reference genome. Each strobe corresponds to two inequalities
due to two sets of adjacent subreads (1, 2) and (1, 3). In the deletion and insertion example, the set of
adjacent subreads (1, 2) results in a concordant pair. All other inequalities represent discordant pairs. Note
that insertions are a special case that includes the length of the inserted block rather than two cut points. The
inequalities for an example translocation are not shown.
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we invert the right-most read for paired reads, we have a variant of a 2-strobe. Thus, we can treat alignment

pairs from paired-end sequencing as 2-strobes with fixed subread lengths (as opposed to variable subread

lengths), different bounds on the advance lengths (determined by the empirical distribution of the sampled

substrings), and a different model for sequence errors (substitutions, insertions, and deletions).

3.3 A Combinatorial Optimization Method for SV Detection with Strobes

For each strobe S, the selection of an alignment a ∈ A(R
(S)
i ) fixes the location of R(S)

i , and choosing an

alignment for every subread in S will produce a set of consecutive subread pairs. Because the test genome

is sequenced to a particular coverage, our intuition is that breakpoints of true structural variants will be

supported by many strobes. Thus, we aim to choose an alignment for each subread of every strobe so that

the resulting set of structural variants is optimal according to some objective function. This problem has

been considered in the paired read case by [52, 72]. In particular, [52] defines the maximum parsimony

objective function of choosing alignments to minimize the number of inferred structural variants. Below we

consider the equivalent problem for strobe reads, show a reduction to an optimization problem on directed

graphs, and derive an integer linear program (ILP) for the problem.

3.3.1 Problem Formulation

An alignment for strobe S is obtained by selecting an alignment a ∈ A(R
(S)
i ) for each subread R(S)

i . Let

A(S) = A(R
(S)
1 ) × A(R

(S)
2 ) × · · · × A(R

(S)
t−1) be the set of alignments for S. For a ∈ A(S), let B(a) be

the set of genomic breakpoints indicated by a. For ease of exposition assume that all discordant consecu-

tive subread pairs are deletions: B(a) is then the set of coordinates (x, y) that satisfy Equation 3.1 for the

discordant pairs in a. If a consists entirely of concordant pairs, then B(a) = ∅. We define the following

problem we wish to solve.

t-Strobe Minimum Breakpoints Problem. Given a set S of n t-strobes and the corresponding strobe align-

ments A(S) for each S ∈ S, find a set of breakpoints B of minimum cardinality such that for all S ∈ S

there is an a ∈ A(S) with B(a) ⊆ B.

This problem is NP-hard, as was shown for the paired read case (t = 2) by a reduction from the Set

Cover problem [52]. Below, we reformulate this problem as an integer linear program (ILP). We derive the

ILP from a directed graph G = (V,E) that represents breakpoints shared by multiple strobes (Figure 3.3).
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Step 2: Create Graph and Glue Vertices

Step 1: Cluster Discordant Pairs

Step 3: Simplify Graph
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Figure 3.3: Construction of graph for 3-strobes S1, . . . , S6. In step 1, the discordant pairs (dotted lines)
representing a particular breakpoint type (deletions) are clustered, producing 7 candidate deletions. In step
2, a graph is created with a source vertex α and a sink vertex β for each strobe and one vertex for each
cluster. The number on each vertex indicates the number of strobes with a discordant pair consistent with
the deletion. In step 3, the graph is simplified using heuristics described in § 3.3.4. Step 3 is repeated until
the graph has converged, upon which it is used as input to the ILP.
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3.3.2 Graph Construction

We begin by constructing a graph whose edges are alignments of a subread and vertices are advances be-

tween subreads. Formally, consider an individual strobe read S. We represent the set of all possible align-

ments for S with a directed graph GS = (VS , ES). The vertex set

VS =
t−1⋃
a=1

(
A(R

(S)
i )×A(R

(S)
i+1)

) ⋃
αS
⋃
βS (3.2)

is the set of all possible consecutive subread pairs, with an additional source vertex αS and sink vertex

βS corresponding to the start of the first subread and the end of the last subread, respectively. We refer to

vertices that are not sources or sinks as internal vertices. The edge set ES consists of three types of edges:

1. Edges from the source vertex αS to alignments from first subread:

⋃
v=(a1,a2):

a1∈A(R
(S)
1 )

(αS , v) . (3.3)

2. Edges from the alignments from the last subread to the sink vertex βS :

⋃
v=(a1,a2):

a2∈A(R
(S)
t )

(v, βS) . (3.4)

3. Edges between internal vertices: ⋃
u=(a1,a2),
v=(a2,a3)

(u, v) . (3.5)

The edges ES simply connects vertices that represent the same choice of alignment. The alignments

for strobe S are exactly the set of paths in GS from αS to βS , where the vertices in the path represent the

selection of alignments a ∈ A(R
(S)
i ) for each subread R(S)

i . We anticipate that strobe alignments consisting

of completely concordant pairs are more often correct than strobe alignments consisting of some discordant

pairs. If there exists a choice of alignments that results in a concordant pair for adjacent subreads, then

we ignore all other alignment choices with a lower alignment score. Note that this does not imply that

all concordant pairs must be chosen, but rather that if a discordant pair is chosen instead of a concordant

pair then at least the alignment score for the alignments in the discordant pair are better than score for the

alignments in the concordant pair. In the graph, if an internal vertex v represents a concordant pair then for

every pair of edges (u, v) and (v, w) we add an edge (u,w) and remove v from the graph. The new edges

(u,w) include a selection of alignments corresponding to the original vertex v.
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Now we form a graph G = (V,E) by merging vertices in the graphs GS whose alignments are con-

sistent with a single set of breakpoint according to an inequality such as (3.1). We compute the vertices

to merge using GASV [133], a program that efficiently computes whether paired reads indicate the same

breakpoint using a computational geometry algorithm. In each merged vertex, we store the identities of

subread alignments from the original vertices. Note that G may be a multigraph. The t-Strobe Minimum

Breakpoints Problem reduces to finding a subgraph H of minimum cardinality such that H contains a path

from source αS to sink βS for each strobe S ∈ S. Note that H will always contain the source and sink

vertices, so the minimum cardinality is at least 2n.

3.3.3 Integer Linear Program Formulation

The graph formulation is suggestive of a fixed charge multi-commodity network flow problem [35], with

each strobe representing a distinct commodity. Briefly, given a directed graph with capacities and costs

on each edge and a set of demands to satisfy between source vertices and sink vertices, the fixed charge

multi-commodity network flow problem aims to satisfy the demands while minimizing some cost. This

corresponds to assigning a demand of one to each source node αS and expecting a demand of one to be

satisfied for each sink node βS while placing costs on vertices.

However, our problem differs from this and related problems in that we require a path from αS to βS .

Simply using net flow does not capture this information (Figure 3.4). Thus, we need to maintain separate

accounting of each strobe entering and exiting a vertex rather than merely accounting for the net flow as in

a multi-commodity flow problem.

Graph Solution #1 Solution #2 

Figure 3.4: The graph G that is constructed is not an example of a fixed-charge network flow algo-
rithm. Here we show an example graph G and potential solutions to the fixed-charge network-flow prob-
lem. The graph edges are colored by the three strobes (blue, red and green) that are allowed to travel that
edge. Solution #1 shows a feasible solution to the fixed-charged network-flow problem uses four internal
vertices. Solution #2 also contains with four internal vertices. However, solution #2 does not result in a path
from source to sink for each individual strobe. Thus, solution #2 is not a feasible solution to the t-Strobe
Minimum Breakpoints Problem.

Motivated by an ILP for the fixed charge flow problem [51], we formulate our problem as an ILP. For

each vertex v ∈ G we define binary indicator variables pv such that pv = 1 if and only if v is in the optimal

solution. Similarly, we introduce variables q(S)
(u,v), which represent the flow across edge (u, v) for strobe
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S ∈ S. Lastly, we define N (S)
v+ and N (S)

v− as the outward and inward neighbors, respectively, of vertex v and

strobe S ∈ S. Our integer linear program for minimizing the total number of SVs is

min
∑
v∈V

pv (3.6)

s.t.

pv ∈ {0, 1} ∀ v ∈ V
0 ≤ q(S)

(u,v) ≤ pu ∀ (u, v) ∈ V, S ∈ S

0 ≤ q(S)
(u,v) ≤ pv ∀ (u, v) ∈ V, S ∈ S

(3.7)

∑
j∈N(S)

v+

q
(S)
(u,v) −

∑
jN

(S)
v−

q
(S)
(v,u) =


1 if v = αS

−1 if v = βS

0 otherwise.

(3.8)

Recall that each vertex v (except for the α and β vertices) corresponds to a breakpoint. The objective

(3.6), minimizes the number of vertices, thus minimizing the number of breakpoints. In the optimal solution,

the flow of each edge q(S)
(v,u) must have weight 0 or 1 (i.e. it is either used once for strobe S or not used at

all). Note that the flow for any edge,

q(u,v) =
∑
S∈S

q
(S)
(v,u), (3.9)

is only non-zero if u and v are in the optimal solution. Constraint (3.8) ensures that each strobe has a valid

sequence of subread alignments. A solution of the ILP corresponds to a selection of internal vertices from

G.

3.3.4 Graph Simplification

In order to improve performance, we developed several heuristics to simplify the graphG before solving the

ILP (Figure 3.3).

1. Vertex removal We define the support of a vertex as the number of strobe reads with paths through

it. We require that a vertex be supported by at least ∆ strobes; thus we remove internal vertices (and

their adjacent edges) with support less than ∆. Note that we must count the number of strobe reads

that travel through the vertex, rather than the number of discordant pairs that cluster together, because

the same strobe might have multiple discordant pairs supporting the same breakpoint.

2. Strobe removal Following vertex removal, some strobes may no longer have a path from source to

sink. We remove such strobes from the graph. We use a dynamic program to efficiently check that at

least one path exists for each strobe S.
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3. Edge removal Following vertex removal, each strobe S will have at least one path from source to

sink, but may have extraneous alignments that do not lie on any path from source to sink. We remove

such edges from the graph, since they cannot appear in the ILP solution due to the flow constraint.

We use a dynamic program to efficiently find all alignments that do not lie on any path from source to

sink for each strobe Si.

We iteratively perform these three operations on G until no more vertices, strobe reads, or edges are

removed. We then use this modified graph as input to the ILP described above and run it on an ILP solver.

3.4 Results

We applied our algorithm to simulated strobe sequencing data from Pacific Biosciences. We first generated

two datasets from the reference genome by introducing a set of rearrangements, and then from these datasets

we simulated strobes. We analyze two datasets: structural variants identified in the Venter whole-genome

assembly [73] and a synthetic complex rearrangement in highly repetitive regions.

3.4.1 Datasets

We simulated two datasets and assessed the detectability of deletions, inversions, and translocations from

simulated strobe and paired-end datasets.

Venter Dataset We simulated a test chromosome based on known rearrangements from Chr17 of the

Venter genome [73], following the procedure presented in [26]. Given a list of 17,376 insertions, deletions,

and inversions on Chr17, we concatenated intervals from the hg18 human reference corresponding to the

rearrangements. We simulated 3Kb strobes containing three 200bp subreads and two 1200bp advances at

10x, 20x and 30x coverage, producing 262,355, 524,709, and 787,064 strobes, respectively.

We then introduced error into each subread using PacBio’s error simulator. When these results were first

published, the capabilities of the Pacific Biosciences commercial machine were not yet known since data

first became available in early 2010. Thus, we assumed a sequencing error rate of 5%. We used Pacific

Biosciences’ error simulator, to accurately model the errors in their single-molecule sequencing technology.

Specifically, the simulator models the higher rate of insertions and deletions (using a a roughly equivalent

ratio of each) relative to miscall errors in subreads that is typically seen in their data [39].

We aligned the subreads to Chr17 of hg18 using PacBio’s in-house aligner, BLASR. BLASR is designed

to quickly align large reads and is tolerant to a wide range of sequencing errors [20].

Repetitive Dataset Repetitive regions in the genome are notoriously difficult for structural variant detec-

tion. To test the ability of strobe reads to capture breakpoints near repetitive regions, we constructed a 11.6kb

sequence with two translocations by concatenating three different transposons from hg18: a 6kb L1-family
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LINE (chr2:181406133-181413161), a 503bp Alu (chr7:66854543-66856104), and a 3kb L2-family LINE

(chr15:87930634-87933678), each flanked by 500 basepairs. From this sequence, we generated 10 simu-

lations with 10x coverage using the same sized 3Kb strobe reads as above and introduced 5% sequencing

error. We aligned the subreads to the entire hg18 genome using BLASR.

Comparison to Paired Reads For each dataset, we compare the results with strobe to those obtained via

paired reads. To remove differences due to read alignment, we simulate paired reads explicitly using the

strobe datasets. We consider two sets of paired reads by transforming each t-strobe S:

1. Paired Read Library (1.6Kb fragment length) We define the set of paired reads that are adjacent

subreads of S,

Paired Read Library =

t−1⋃
i=1

(
A(R

(S)
i )×A(R

(S)
i+1)

)
. (3.10)

2. Mixed Paired Read Library (1.6Kb & 3Kb fragment lengths) We define the set of paired reads

that are all combinations of subread pairs of S,

Mixed Paired Read Library =
⋃

1≤i<j<t

(
A(R

(S)
i )×A(R

(S)
j )
)
. (3.11)

The Paired Read Library dataset corresponds to a paired read dataset generated by a single size selection,

while the Mixed Paired Read Library dataset corresponds to multiple fragment sizes. Note that for Illumina

and ABI SOLiD machines, the latter requires preparation of multiple sequencing libraries. Given a set of

strobe reads with physical coverage c, the Paired Read Library will have approximately the same physical

coverage as strobe reads with twice as many reads. The Mixed Paired Read Library will have physical

coverage 2c with three times as many reads. Thus, we subsample the reads in the Mixed Paired Read

Library to achieve physical coverage c.

3.4.2 Variant Detection on the Venter Dataset

We tested our method on 124 deletions and four inversions from the Venter chromosome. We first present

the computations used to assess sensitivity and specificity in detecting a set of known deletions. We then

report the sensitivity and sensitivity of strobes and mate-pairs by varying ∆, the minimum support of a

vertex in the graph G. Finally, we report the results for the four inversions.

ROC Computations for Deletions

Consider a set of true deletions defined by intervals T = {[a1, b1], . . . , [a|T |, b|T |]} known to be present in

the test genome. Given a set P = {[c1, d1], . . . , [c|P |, d|P |]} of predicted (or inferred) deletions from an ILP

solution, we compute two different ROC-type plots.
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1. Variant-based “ROC” We wish to count the number of real deletions that the ILP infers; however we

must be careful in how we count because the inferred deletions are approximate due to the advance

length bounds. Thus, we count the number of true deletions [ai, bi] ∈ T that have a nonempty

intersection with some interval [cj , dj ] ∈ P and

(dj − cj) ≤ (bi − ai) + u,

where u is a the upper bound for the advance lengths and can be estimated from the collection of

advance length bounds. The equation above ensures that length of the inferred deletion length must

be smaller than the true deletion length plus the largest allowed length of an advance. Let the number

of such deletions be V . The true positive rate is V
|P | , and the number of false positives |P | − V . Note

that this is not a true ROC curve because we do not compute a false positive rate, but rather report the

number of false positives (hence the quotes).

2. Pair-based ROC. It is possible that, while we may have incorrectly predicted the deletion inter-

vals, we might have correctly identified which discordant pairs support true deletions. For example,

nearby deletions might produce incorrect breakpoint locations but contain the expected discordant

pairs. Thus, we also count the number of discordant pairs that support some true deletion. Let D(T )

be the set of discordant pairs that support some true deletion in T , and let D(T ) be the remaining

discordant pairs. Similarly, let D(P ) be the discordant pairs that support inferred deletions in P . The

true positive rate (TPR) and false positive rate (FPR) are then the following:

TPR =
|D(P ) ∩D(T )|
|D(T )|

and FPR =
|D(P ) ∩D(T )|
|D(T )|

.

Deletions

We computed the variant-based and pair-based ROC curves for the selected set of 124 deletions greater

than 120 basepairs, (Figure 3.5). For the variant-based ROC, strobes outperform paired reads for all three

coverages in ‘Area under the ROC Curve’ (AROC) values. Moreover, strobes outperform Mixed Paired

Reads for 10x and 30x coverages, where the advantage in AROC for the Mixed Paired Read library is a

result of slightly better specificity at extremely low (< 20%) values of sensitivity. On average, at fixed

values of sensitivity, strobe reads make 57.18% ± 4.282 fewer false positives than paired reads. At 20x

coverage and a maximum sensitivity of 87.10% for strobe reads, 90.32% for the Paired Read library, and

92.74% for the Mixed Paired Read library, strobe reads make 45.13% fewer false positives than the Paired

Read library, and 61.53% fewer false positives than the Mixed Paired Read library.

As noted, it is possible that some of the false positive breakpoints contain true discordant pairs whose

breakpoint intervals are incorrectly predicted. 39 of the considered deletions have another event (at least
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Figure 3.5: ROC curves for the Venter simulation. The top row is a variant-based “ROC” curve for
124 deletions ≥ 120 basepairs, which computes the number of real deletions out of 124 that appear in
the solution. The bottom row is a pair-based ROC curve for the same 124 deletions, which counts the
number of discordant pairs that support the real deletions. The reported “AROC” is the area under the
curves normalized by the maximum x-value in each plot. For 10x coverage, ∆ ranges from 2 to 10 in steps
of 2. For 20x and 30x coverage ∆ ranges from 4 to 20 in steps of 2.
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50 bp in size) within the corresponding advance which may affect the breakpoint locations. Thus, the pair-

based ROC curve quantifies the number of discordant pairs that are correct independent of the determined

breakpoint locations. In the pair-based ROC curves, strobes outperform paired reads and mixed paired reads

for all three coverages in terms of AROC values. Strobes decrease the false positive rate by an average of

50.83% ± 4.83 compared to the Paired Read datasets and 56.07% ± 8.11 compared to the Mixed Paired

Read libraries at fixed sensitivity.

Inversions

Only four inversions appear on Venter Chromosome 17 with lengths detectable by the simulated sequencing

data. Here, the true positive rate computation described previously for deletions does not apply because the

inequality assumes that a region is lost, while the region size isn’t affected by an inversion. Instead, we

counted an inferred inversion as a true positive if the mutual intersection between the inversion interval and

the prediction interval was greater than 50%, following [26]. Our method detects the two longest inversions

of these four for the Strobe and Paired Read libraries, while the Strobe dataset infers 22% fewer false

positives (Table 3.1).

Left Breakpoint Mixed
Coordinate Length Strobe Paired Read Paired Read
5,826,739 552bp
40,566,233 1,151bp X X
55,552,838 3,557bp X X X
57,999,778 472bp

Total # Predicted Inversions: 23 96 52

Table 3.1: Detection of Inversions from the Venter Simulation. Results from the 20X coverage Strobe
dataset, Paired Read dataset, and Mixed paired read dataset with ∆ = 10. The Strobe and Paired Read
libraries detect 2 of the 4 inversions, while the Mixed Paired Read library detects only the longest inversion.

Graph Analysis of the Venter Dataset

The size and topology of the graph G used as input to the ILP varies between the Strobe, Paired Read and

Mixed Paired Read libraries, affecting the runtime of the integer linear program. We investigated this for

the graphs constructed for the set of deletions described above with minimum support ∆ = 8 (Table 3.2).

We found that the strobe datasets construct graphs with fewer edges and vertices than the paired read and

mixed paired read libraries. For example, with support ∆ = 8 there are approximately 65% fewer edges and

internal vertices for 10x coverage, approximately 80% fewer edges and internal vertices for 20x coverage,

and approximately 83% fewer edges and internal vertices for 30x coverage. Note that the strobe and paired

read datasets predict the same number of clusters at each coverage (which is expected due to the paired read

library construction), and the Mixed Paired Read library uses a smaller set of clusters to construct the graph

G.
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Clustering Statistics Graph Statistics ILP Sol. Stats
# # # Clusters # Strobes/Pairs # Internal # # Verts that are

Dataset∗ Discord. Del. (≥ 8) Removed Retained Verts Edges in Sol. Correct
10x S 50,554 12,762 145 362 410 50 978 45 27
10x PR 50,543 12,762 145 321 518 143 2,638 66 26
10x MPR 35,881 5,984 83 330 542 83 1,650 59 31
20x S 101,367 25,701 807 389 1,585 159 4,182 131 89
20x PR 101352 25,698 807 265 1,974 785 19,270 198 94
20x MPR 70,022 11,896 372 288 1,976 365 8,658 179 100
30x S 151,053 38,711 1,492 545 2,540 229 7,784 171 100
30x PR 151034 38,705 1,492 345 3,240 1,465 42,322 283 104
30x MPR 107,577 19,451 810 430 3,028 802 21,650 228 105
∗S=Strobe, PR=Paired Read, MPR=Mixed Paired Read.

Table 3.2: Clustering, graph construction, and ILP solution statistics for the Venter simulation with
∆ = 8. The clustering statistics include the number of discordant pairs after removing concordant align-
ments, the number of these discordant pairs that indicate deletions, and the number of clusters that contain
8 or more discordant pairs. The graph statistics include the number of strobe reads or paired ends that are
removed from the graph, the number that are retained, the number of internal vertices, and the number of
edges in the graph. The solution statistics report the number of internal vertices in the final ILP solution and
the number of these vertices that are in the list of 124 deletions ≥ 120bp.

In addition to the size of the input graph G, the graph topology is different between the strobe datasets

and the paired read libraries. In general, graphs with many connected components are easily paralleliz-

able, as each connected component could be run independently of the others. While all graphs contain

many connected components, the graphs of Paired Read and Mixed Paired Read libraries contain connected

components with many more internal vertices than graphs with Strobe data. For example, at 10x coverage

with ∆ = 4, the largest connected component for the Paired Read library contained 350 internal vertices

while the largest connected component for the Strobe dataset contained only 6 internal vertices. One such

connected component from the Strobe dataset with 10x coverage is shown in (Figure 3.6).

Comparison to Short Read Sequencing

We illustrate the advantages of the longer fragments and subreads of strobe sequencing by comparing strobe

reads to simulated paired read data that approximates the fragments sizes and read lengths that are routinely

obtained with short read, short insert sequencing technologies (Figure 3.7).

Using the same Venter Chr17, we simulated 200bp fragments with 50bp reads using the wgsim program

from SAMtools [75] at 20x coverage. The simulated fragments have a base error rate of 0.02, a mutation

rate of 0.001, 10% indels, and 30% probability that an indel is extended. We aligned the reads using BWA

/gpfs/data/compbio/users/aritz/StrobeSV2/results/scripts. We then ran GASV [133] and VariationHunter

[52] on the discordant pairs that map uniquely to the reference. Since VariationHunter utilizes reads with

non-unique alignments, we considered discordant pairs that have multiple alignments to the reference. We
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Figure 3.6: An example of a connected component in the solution. A connected component from the
solution of the 10x coverage Strobe dataset with ∆ = 4. Edges in the final solution are in black. 6 strobe
reads support the first variant in the solution, 4 strobe reads support the second variant in the solution, and
two strobe reads span both variants.

considered reads with low mapping quality (≤ 10) for BWA and aligned them with Novoalign, an aligner

that has higher sensitivity than BWA at the cost of a longer running time [68]. We considered up to 100

alignments for reads aligned with Novoalign. At maximum specificity for strobe reads, where the true

positive rate is 0.87, VariationHunter achieves a true positive rate of 0.23 and GASV achieves a true positive

rate of 0.34 at approximately the same sensitivity (between 85-95 false positives).

We emphasize that this comparison is limited by its use of simulated data, and by our use of Varia-

tionHunter and GASV without further post-processing. For example, the VariationHunter publication [52]

describes several additional steps used to achieve better performance. Additionally, uncontrolled simulation

parameters such as the fragment length and the subread length affect the comparison, and explicitly compar-

ing the performance of different types of sequencing platforms is beyond the scope of this thesis. Since this

is not an “apples-to-apples” comparison, the main motivation of this work is to demonstrate the ability of

extra pairing information, not to demonstrate that our method applied to simulated strobe sequencing data

is better than other methods applied to simulated paired read data.

3.4.3 Variant Detection for the Repeat Dataset

We now move from the Venter dataset to the Repeat dataset we have previously described. We make two

points with this dataset: (1) our method can detect translocations, an SV that was missing in the Venter

dataset due to the single chromosome simulation, and (2) our method can detect breakpoints in highly-

repetitive sequences. We ran our method on the 10 strobe datasets, the 10 paired read datasets, and the

10 mixed paired read datasets. We computed the variant-based ROC by varying the support ∆ and then

averaging the values over the 10 simulations. The strobe datasets and Paired Read libraries report similar

true positive rates on average, while the Strobe dataset reports fewer false positives (Figure 3.8). Many
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Figure 3.7: Strobe reads vs. paired-end reads on the Venter simulation. ∆ ranges from 4 to 20 in steps
of 2 for all curves.

subreads in the simulations align to hundreds of different regions on the genome, causing the Paired Read

libraries to contain many internal vertices in the input graph for the ILP (Table 3.3). However, the number

of vertices in the graph is greatly reduced using strobe reads, indicating that many pairs in these repetitive

regions are eliminated by incorporating concordant information (Figure 3.8).

Avg # Input Avg # Final Avg # Correct
Dataset Vertices Inferred Translocations Inferred Translocations
Strobe 16± 25.88 2.1± 0.58 1.9± 0.32
Paired Read 85± 106.12 3.1± 1.37 1.9± 0.32
Mixed P.R 133± 183.20 2.9± 1.60 1.7± 0.48

Table 3.3: Statistics from the Repeat Simulation. For the Strobe dataset, the Paired Read dataset, and the
Mixed Paired Read dataset, we note the number of internal vertices in the input graph G, the number of
inferred translocations, and the number of correct inferred translocations out of a total of 2. These values
are averaged over the 10 simulations for each dataset.

3.5 Discussion

We have introduced a combinatorial algorithm for structural variant identification from strobe sequencing

data. This parsimony-based optimization objective to minimize the total number of SVs inferred by the
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Figure 3.8: Statistics for ten 10x coverage simulations of a highly repetitive region. (Left) ROC curve of
average number of false positives and average true positive rate, varying ∆ from 3 to 8. (Right) Distribution
of the number of internal vertices in the generated graph.

data assumes that we are trying to find a small number of SVs, and it has been used successfully by [52]

in the context of paired-end reads. However, the generalization from two to t linked reads required a new

approach to solve the t-strobe minimum breakpoints problem. We note that for 2-strobes, the t-strobe

minimum breakpoints problem is analogous to the problem posed by [52] for paired reads.

We have shown that strobes have advantages in sensitivity and specificity over paired reads for structural

variant detection in simulation. In particular, strobe reads nearly double the specificity at fixed sensitivity for

structural variation prediction. Our method is applicable to many types of SVs, including deletions, small

insertions, inversions, and translocations. Since a single strobe can resolve multiple breakpoints, inference

of duplications and rearrangements become more direct. For example, both breakpoints that denote an

inversion may be detected by the same t-strobe (Figure 3.2).

We can successfully detect SVs in highly-repetitive regions, which is highlighted in the Repeat Dataset

where the test genome is comprised of piecing together repetitive regions. Inversions in particular are

often difficult to detect because they are sometimes flanked by nearly-identical regions called segmental

duplications - in the next chapter we will see examples of these difficult inversions in human genomes.

There are some limitations to the parsimony-based model, however. First, since no strobe sequencing

data was available at the time of publication, our simulations were based on a lower sequencing error than

was eventually reported. All simulations in this chapter were conducted by adding 5% sequencing error

into the reads based on Pacific Biosciences’ in-house simulator; however real sequencing error rates are

currently reported to be closer to 15%. In the subsequent chapters we design our simulations to reflect the

true sequencing error rate. Additionally, the cost of Pacific Biosciences sequencing is currently higher than

a typical run of Illumina sequencing at the same sequencing coverage; thus it is currently not feasible to

sequence an entire human genome at 30X sequence coverage using PacBio. Future simulations also reflect
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this by simulating much lower PacBio sequencing coverage.

Additionally, while the simulations clearly show the improvement of multiply-linked subreads over

paired reads, the parsimony-based method infers a surprisingly large number of incorrect SVs. Consider

the Mixed Paired Read Library and the Strobe simulation in Figure 3.5, which assesses the detectability

of 124 deletions. While strobes reduces the number of false positive SVs by over 100 across all sequence

coverages, strobes still infers between 85 and 120 false positives. This is about the same number as true

positives in the set, implying that we have a false discovery rate of about 50%. In the next chapter, we take

a closer look at how to further improve the specificity of the method to get to a reasonable false discovery

rate.



Chapter 4

SV Detection using Strobe Sequencing: A
Probabilistic Approach

In the previous chapter, we introduced a parsimony-based algorithm for predicting SVs from strobe sequenc-

ing data [124]. This work was the first method for SV prediction using strobes, but while it showed that

there is extra information in multiply-linked subreads compared to paired reads, the total number of false

positives inferred on benchmark datasets were about the same as the total number of true positives: thus,

there is still room for significant improvement for improving prediction specificity. Further, [124] was not

tested on real sequencing data, and the simulations were conducted with an assumed sequencing error rate

that was lower than the currently-reported rates.

In this chapter, we describe a probabilistic model to detect SVs from strobe sequencing data and a

Markov Chain Monte Carlo (MCMC) method to sample from the space of possible solutions. Additionally,

we present a novel representation of the space of potential inferred SVs that provides a more accurate set

of coordinates for each SV. The improved performance on benchmark datasets over the parsimony-based

method shows that the extra information provided by the probabilistic framework is useful for predicting

SVs. Additionally, we show a direct comparison to simulated strobe sequencing and simulated paired-

end (e.g. Illumina) sequencing, and demonstrate that combining datasets is even more powerful than the

strobe or paired-end dataset alone. Finally, we apply our method to real strobe sequencing data that contain

reported SVs from the human genome, and successfully recover all the reported variants.

4.1 Preliminaries

We continue the notation from the Preliminaries section in the previous chapter (§3.2). For a set S of strobes,

let P be the set of all possible consecutive subread pairs:

P =
⋃
S∈S

t−1⋃
i=1

{
A
(
R

(S)
i

)
×A

(
R

(S)
i+1

)}
. (4.1)

60
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A consecutive subread pair (a1, a2) ∈ P is concordant if the aligned distance and orientation of the pair

is expected given the generative model; that is, if the alignment orientations are the same and the aligned

distance is within some bounds u, l on the expected advance length. If (a1, a2) is not concordant, then it is

discordant and implies an SV in the test genome. Let D ⊆ P be the set of discordant consecutive subread

pairs (which we will call discordant pairs when the context is clear). The discordant pairs may be further

classified as implying deletions, inversions, and translocations according to the alignment orientation and

aligned distance.

Each strobe S ∈ S has a set of strobe alignments A(S), defined as

A(S) = {A(R1)×A(R2)× . . .×A(Rt)} ∪ ∅. (4.2)

The empty set ∅ is an element of A(S) because the correct strobe alignment might be missing from the set

of alignments for S. A selection of one strobe alignment from each strobe is called a mapping M :

M ∈ (as ∈ A(S) ∀ S ∈ S) , (4.3)

where some elements in M may be duplicates (i.e. in the case where multiple strobes have ∅ selected).

4.2 A Probabilistic Method for SV Prediction with Strobes

We will first describe the novel representation of the space of potential inferred SVs, then describe the

probabilistic model and the MCMC method and present results.

4.2.1 A New Representation of Inferred SVs

Clustering the set of discordant pairs D determines the possible SVs implied by S. As before, we cluster

discordant pairs using GASV [133], which uses a geometric interpretation of discordant pairs as a trapezoid

in R2. Here we briefly describe the geometric interpretation developed by [133], and then we will extend

the geometric interpretation of clusters to more accurately report the coordinates implied by subsets of

discordant pairs in D.

Geometric Interpretation of Discordant Pairs For a discordant pair (a1, a2) ∈ D, the trapezoid in R2 is

defined as the coordinates (x, y) that could denote the SV breakpoint implied by the pair. If (a1, a2) implies

a deletion, for example, the points (x, y) are defined by the inequality in Equation 3.1. Similar equations

exist for other SV types such as inversions and translocations (see §3.2).

If two discordant pairs (a1, a2), (b1, b2) ∈ D intersect in R2, the intersection contains possible SV

breakpoints (x, y) that are consistent with both discordant pairs. By clustering the discordant pairs D based

on this geometric interpretation, we determine sets of discordant pairs that mutually intersect. The area
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Figure 4.1: Overview of the probabilistic model for SV prediction from strobe sequencing data. In this
example there are five strobes; three have a unique strobe alignment to the reference (blue, red, and orange),
and two have two strobe alignments to the reference (green and purple). There are five adjacencies that
are implied by different selections of strobe alignments; suppose that two of them (V3 and V5) are correct.
The implied adjacencies are represented as a cluster diagram G, where the nodes are the adjacencies and
the edges denote interval overlaps. Using an MCMC method, we compute the probability of each strobe
alignment in the space by sampling at most one alignment for each strobe with probability proportional to
the posterior of the mappings. Finally, these probabilities are used to assign a probability of each implied
adjacency (i.e. each node in G).



63

of intersection is called the breakpoint region because the intersection contains all points (x, y) that are

consistent with all pairs.

Consider a set of discordant pairs that all pairwise intersect in R2; often, all discordant pairs have a

common area of intersection (Figure 4.2 Top Left). In this case, all discordant pairs imply, or support,

the same candidate SV. However, when incorrect alignments are present, there may not be a single area

of intersection for all discordant pairs (Figure 4.2 Bottom Left). This may be the case in highly-repetitive

regions, as well as incorrect alignments due to the high sequencing error rate. In this case, we must identify

the collection of possible SVs implied by the overlaps, noting that the breakpoint coordinates (x, y) change

depending on the subset of discordant pairs. A previous publication [133] described the concept of maximal

clusters of discordant pairs in these complicated cases, which are maximal sets of discordant pairs that

mutually have an area of intersection. However, the maximal set of discordant pairs may not accurately

reflect the true SV coordinate, particularly if there are a small number of incorrect discordant pairs that align

to the same location. In the bottom left panel of Figure 4.2, there are two maximal clusters: one contains

discordant pairs {1, 2, 3, 4} and the other contains discordant pairs {2, 3, 4, 5}. However, neither of the

breakpoint regions overlaps the correct coordinate (x, y). In this sense, either of the maximal clusters are

“approximate” in their calling of the SV - they both contain discordant pairs that correctly span the true

deletion, but the coordinate implied by the clusters do not contain the real breakpoint.

x y 

x 

y 1,2,3 

Trapezoid  
Representation 

Discordant Pairs 

1 
2 
3 

Ref. 

Hasse Diagram Cluster Diagram 

x y x 

y 

5 

4 
1,2,3 

Trapezoid  
Representation 

Discordant Pairs 

1 
2 
3 
4 
5 

Ref. 

Hasse Diagram Cluster Diagram 

del. 

del. 

Figure 4.2: Cluster Diagram Construction. Cluster Diagrams for (Top) discordant pairs with a common
area of intersection and (Bottom) discordant pairs with no common area of intersection. Each discordant
pair can be represented as a trapezoid in R2, and the set of all transitively-reduced intersections is a Hasse
diagram (a partially ordered set on the pairs with the subset operator). After successively contracting nodes
with a single outgoing edge and removing transitive edges, we get a cluster diagram. For sets of pairs with
a common intersection, the cluster diagram is simply a single node.
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Comprehensively Describing All Possible Sets of Intersecting Discordant Pairs To gain better accu-

racy when calling breakpoint regions for inferred SVs, we have developed a novel representation of SVs

that describes the entire set of candidate SVs and their breakpoint coordinates. Keeping with the GASV

interpretation of discordant pairs as trapezoids in R2, we construct a graph G, called a cluster diagram.

Nodes in G represent candidate SVs (sets of discordant pairs that mutually intersect), and directed edges in

G describes the relationship between the overlaps. The maximal clusters described by [133] are recovered

as a subset of the nodes in the cluster diagram G.

Let H be all sets of discordant pairs in D that have non-empty intersections; there are as many as 2|D|

of them. We first construct the Hasse diagram for the partially ordered set (H,⊂), which we represent as a

directed acyclic graph. Nodes v with a single outgoing edge to u indicate that the set of discordant pairs in

v mutually intersect with only the set in u; thus we contract all nodes with a single outgoing edge. We call

the graph G = (V,E) a cluster diagram, and is built in the following steps:

1. Construct G = (V,E), where the nodes V = H are sets of discordant pairs with a non-empty

intersection, and there is a directed edge (u, v) if u ⊂ v.

2. Remove all edges implied by the transitive property. That is, if u ⊂ v and v ⊂ z, remove the edge

(u, z).

3. Contract all nodes v ∈ V with a single outgoing edge.

4. Repeat steps 2 and 3 until all nodes have outdegree of at least 2.

There are two types of nodes in G: the leaves of G are the maximal sets of discordant pairs with a non-

empty intersection, and the other nodes in G are sets of discordant pairs that appear in multiple maximal

sets. If all discordant pairs have a common area of intersection, then it will be represented as a single node

in the cluster diagram G (Figure 4.2). Note that the same discordant pair may appear in multiple nodes in

G, contributing to different sets of possible SV breakpoint coordinates.

An important step for constructing the cluster diagram is determining H , the sets of discordant pairs in

D that have non-empty intersections. For |D| discordant pairs, there can be as many as 2|D| possible sets in

H . Instead of computing the intersections for all 2|D| sets, we utilize the fact that these are represented as

convex polygons in R2. We use the following theorem from computational geometry:

Helly’s Theorem [154] Suppose we have X = {X1, X2, . . . , Xn} convex sets in Rd, where n > d. If the

intersection of all combinations of d+ 1 convex sets is nonempty, then the intersection of all n convex sets

is nonempty. Mathematically, let Y be all
(
n
d+1

)
sets of convex sets, where an element Y ∈ Y is a set of

convex sets, that is Y ⊆ X. If ⋂
Xi∈Y

Xi 6= ∅ ∀ Y ∈ Y, (4.4)
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then
n⋂
i=1

Xi 6= ∅. (4.5)

The trapezoids in R2 are convex, so we only compute the intersections for
(|D|

3

)
sets of discordant pairs.

From these sets, we can determine the entire set H .

4.2.2 Probabilistic Model

Now that we have a graph that represents all possible SVs given the strobe alignments from S, we turn our

attention to the probabilistic model. For each SV (and hence each node in the cluster diagram G), we wish

to compute the marginal probability of the SV given the data. However, the probability of observing the

SVs from the data depend on the strobe alignments selected for each strobe. So, we first compute the joint

probability of observing the strobe alignments as mappings M . The rest of this section proceeds as follows:

1. We first derive the probability of the mappings M given the data. Here, the data is the set of all

possible strobe alignments A(S) for each strobe S ∈ S, which in turn produces the implied SVs

(represented as a cluster diagram G).

2. We then describe the Markov Chain Monte Carlo (MCMC) algorithm to compute the posterior prob-

ability of the mappings.

3. Finally, we describe how to compute the marginal probability of the SVs (i.e. the nodes in G) using

the joint probability of the alignments.

The first goal is to compute the probability of a mapping M given the data. Let A(S) be all possible

strobe alignment sets.

P (M |A(S), G) =
P (M)P (A(S), G|M)

P (A(S), G)
(4.6)

∝ P (M)× P (A(S)|M)× P (G|M), (4.7)

where A(S) is the set of strobe alignments for all strobes S ∈ S. There are three main terms: (1) the prior

P (M), (2) the probability of the selected subread alignments P (A(S)|m), and the probability of the implied

SVs P (G|M)). We assume a uniform prior for P (M), meaning that the mappings are equally likely. The

other two terms are discussed in the following sections.

Computing P (A(S)|M). For a mapping M , there let A(M) be the set of subread alignments in the

mapping, and let eM be the number of strobes for which the empty set ∅ was selected. The probabil-

ity of subread alignments conditioned on M is independent of all subread alignments not in M : Thus,

P (A(S)|M) = P (A(M)). The probability P (A(M)) of the selected subread alignments depends on the
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sequencing technology; thus we have a probability pseq of the sequencing error (this may be set in advance

or inferred from the alignments). For a mapping M , let ε(M) =
∑

a∈A(M) εa be the total number of errors

and `(M) =
∑

a∈A(M)(ya − xa + 1) be the total aligned length of all subread alignments in M . We model

the probability of observing ε(M) errors in a string of length `(M) when the sequencing error is pseq as

Bin (ε(M); `(M), pseq) =

(
`(M)

ε(M)

)
pε(M)
seq (1− pseq)`(M)−ε(M).

We assume a fixed probability perr that the correct strobe mapping is not present in the collection of align-

ments. We approximate the Binomial term with a Normal distribution when `(M)pseq > 6 (which is often

the case).

Computing P (G|M). To compute P (G|M), we determine the implied SVs from the discordant pairs in

M and compute the probability of observing those SVs. Once a mapping M is selected, this determines a

subset D(M) ⊆ D of discordant pairs. We need to determine the SVs implied by D(M), assuming that

each discordant pair implies exactly one SV. To do so, we find the smallest number of nodes in the cluster

diagram G that cover the discordant pairs in D(M), which can be efficiently computed using a set cover

approximation on the leaves of the diagram. Let L ⊆ V be the set of leaves in G; remember that each leaf

node is a set of discordant pairs from D. Given a mapping M , we have a subset D(M) of discordant pairs.

The algorithm SetCover(D ⊆ D,U ⊆ V ) takes a set of discordant pairs and a set of nodes and returns the

smallest set of nodes that cover all the discordant pairs in D (Algorithm 1) and the discordant pairs from D

that are covered by each node. Thus, SetCover(D,U ) returns sets of discordant pair sets, and each discordant

pair set is a subset of some node in U .

Algorithm 1 SetCover(D,U )

1: Ũ ⇐ ∅
2: while D 6= ∅ do
3: u′ ⇐ arg maxu∈U u ∩D // Get node containing the most pairs in the current set.
4: d′ ⇐ u′ ∩D // set of discordant pairs in u′

5: Ũ ⇐ Ũ ∪ {d′} // Add the set of pairs
6: D ⇐ D \ d′ // Remove pairs from consideration.
7: end while
8: return Ũ

Running SetCover(D(M),L) produces a set Ũ of discordant pair sets, where each discordant pair sets

represents an implied SV. The support of the implied SV is the number of discordant pairs in the associated

set. Let the vector of supports be Φ(M), which has length |U |.
We assume that SVs appear independently in the test genome, so each coordinate in the test genome is

expected to be supported by λ strobes. Since each strobe contains t − 1 consecutive subread pairs, each
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coordinate is supported by

λd = Lavgλ(t− 1) (4.8)

consecutive subread pairs, where Lavg is the average advance length. Thus, we model the expected support

of an SV as a Poisson process with parameter λd. The probability of SVs with supports Φ(m) is then

P (G|M) = P (Φ(M)) =
∏

k∈Φ(M)

P (SV has support k) (4.9)

=
∏

k∈Φ(M)

Poiss(k;λd) =
∏

k∈Φ(M)

e−λdλkd
k!

. (4.10)

Thus, the full model is

P (M |A(S), G) ∝ P (M)Bin (ε(M); `(M), pseq)× peMerr ×
∏

k∈Φ(M)

Poiss(k;λd) (4.11)

with hyperparamters pseq,perr, and λd.

A Note on the Prior P (M). For the results presented below, we assume a uniform prior P (M), which

drops out of Equation 4.11. Other methods such as [134] employ an exponential prior on the number of

implied SVs, utilizing the parsimony assumption that we seek a relatively few number of SVs. We also used

this prior for a number of early simulations, but we ultimately found that the exponential prior was “too

strong” because the Poisson probability of the SV supports combined with the probability of the alignment

qualities naturally limited the number of SVs inferred by the method; that is, the exponential prior drove

many of the SV probabilities to zero.

Finally, we note that while we use a uniform prior P (M), this is not necessarily a uniform prior on the

strobe alignments. For example, suppose that there one strobe has a single, unique strobe alignment and

another strobe has a number of ambiguous strobe alignments. If we consider the space of mappings, a flat

prior P (M) will provide a much larger prior strobe alignment probability for the unique strobe alignment

compared to the ambiguous strobe alignments.

4.2.3 Generalizing to Multiple Data Types

Suppose, rather than one set of strobes S, we have E sets of strobes {S(1), . . .S(E)} corresponding to E

different experiments. S(e) may also be paired-read data from next generation sequencing technologies,

which are analogous to 2-strobes (see §3.2). For each experiment 1 ≤ e ≤ E, we have the following

information:

1. M(S(e)): the set of strobe alignments
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2. λ(e)
d : the expected number of strobes that supports an SV

3. p(e)
seq: the sequencing error rate

4. p(e)
err: the probability that a strobe is not aligned

We cluster the union of the strobe alignments {A(S(1)), . . . , A(S(E))} and get a cluster diagram G =

(V,E). For a node v ∈ V , let v(e) be the set of pairs that belong to experiment e. Finally, for a mapping

vector M let M (e) be the set of indices that correspond to strobes from experiment e. Then,

P (M |A(S(1)), . . . ,A(S(E)), G) ∝ P (M)× P (A(S(1)), . . . , A(S(E))|M)× P (G|M) (4.12)

=
E∏
e=1

[
P (M (e))× P (A(S(e))|M (e))× P (G|M (e))

]
(4.13)

=

E∏
e=1

Bin(ε(M (e)); `(M (e)), p(e)
seq

)
× pe

(e)
M
err ×

∏
k∈Φ(M(e))

Poiss(k;λ
(e)
d )

 (4.14)

Note that we could weigh the different experiments based on external information - in this dissertation, all

experiments are weighed equally.

4.2.4 Markov Chain Monte Carlo (MCMC)

The probability in 4.11 is computationally prohibitive because the number of possible strobe mappings M

is large. Thus, we develop a Markov Chain Monte Carlo (MCMC) method to sample mappings M with

probability proportional to P (M |A(S), G) using the Metropolis-Hastings algorithm.

The MCMC Algorithm Algorithm 2 takes the set of alignmentsA(S), a cluster diagramG, and a number

of iterations z, and returns a set of z + 1 mappings M that are sampled with probability proportional to

P (M |A(S), G).

This is an implementation of a lazy chain, where the mapping M stays the same with probability 1
2 . There

are two ways this chain moves through the solution space: via local moves that change the assignment of

a single strobe and via jump moves that change the assignment of multiple strobes. β is a user-defined

parameter that determines the proportion of local vs. jump moves: we set β = 0.9.

Let A′(S) be the set of strobe alignments excluding the empty set ∅ (this is useful for presenting the

algorithms). Algorithm 3 describes the local move, which takes the set of strobe alignments and a mapping

vector and returns the vector with a single entry changed.

Algorithm 4 describes the jump move, which moves sets of strobe alignments. To ensure that the move

is symmetric and not a naive move, we perform this move on a subset of connected components G̃ =

{G1, G2, . . . , Gk} of G. Consider a connected component Gk ⊆ G of the cluster diagram; there is a set
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Algorithm 2 MCMC(A(S),G,z)

1: Initialize M (0) with a random assignment of mappings
2: for i = 1→ z do

3: M ′ ⇐


M (i−1) with probability 1

2

makeLocalMove(M (i−1),M(S)) with probability β
2

makeJumpMove(M (i−1),M(S)) with probability 1−β
2

4: ratio⇐ P (M ′|A(S), G)q(M (i−1)|M ′)
P (M (i−1)|A(S), G)q(M ′|M (i−1))

5: M (i) ⇐

{
M ′ with probability α(M ′,M (i−1)) = min (1, ratio)

M (i−1) otherwise
6: end for
7: return {M (0),M (1),M (2), . . . ,M (z−1),M (z)}

Algorithm 3 makeLocalMove(A(S),M )
1: Select strobe S uniformly from S.
2: a⇐ the current alignment in mapping M from A(S) (which may be ∅)
3: aold ⇐ a
4: while a = aold do

5: a⇐

{
Select ∅ with probability perr
Otherwise, select a ∈ A′(S) uniformly from A′(S)

6: end while
7: return M

of strobes S ⊆ S that have discordant pairs present in Gk. Gk is in G̃ if there are at least two strobes

Si, Sj ∈ S such that |A′(Si)| = |A′(Sj)| = 1. Since there is only one alignment for each of these strobes,

then a move is deterministic (it moves from an error to the alignment or vice versa). Since there are at least

two alignments with this characteristic, then moving the alignments of all such strobes cannot be done with

a local move.

The Proposal Distribution

Observe that for any two mapping vectors M and M ′, there can only be one type of move that is feasible:

no move, the local move, or the jump move. Thus, the proposal distribution is described as follows:

q(A′|A) =


1 if M = M ′ (the lazy chain).

qlocal(M
′|M) if we can move from M to M ′ using a local move.

qjump(M
′|M) if we can move from M to M ′ using a jump move.

(4.15)

Below we describe the calculations required for qlocal and qjump.
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Algorithm 4 makeJumpMove(A(S),M )

1: Select connected component Gk uniformly from G̃.
2: for S ∈ Vk do
3: if |A′(S)| = 1 then
4: a⇐ the current alignment in mapping M from A(S) (which may be ∅ or the single alignment)
5: if a = ∅ then
6: a⇐ A′(S)
7: else
8: a⇐ ∅
9: end if

10: end if
11: end for
12: return M

qlocal: Suppose that we have made a move by selecting strobe S with probability 1/n. Thus, we have

proposed a mapping vector M ′ after calling makeLocalMove(A(S),M ). Note that M and M ′ differ only by

the alignment for strobe S, which has |A′(S)| possible strobe alignments (excluding the empty set). Let a

be the strobe alignment in M and a′ be the strobe alignment in M ′ (by definition, a 6= a′). The probability

of proposing M ′ from M is

qlocal(M
′|M) =

1

n
×



1 if a 6= ∅ and a′ = ∅ and |A′(S)| = 1

perr if a 6= ∅ and a′ = ∅ and |A′(S)| > 1

1
|A′(S)| if a = ∅ and a′ 6= ∅

1−perr
|A′(S)|−1 if a 6= ∅ and a′ 6= ∅

.

Conversely, the probability of proposing M from M ′ is

qlocal(M |M ′) =
1

n
×



1 if a = ∅ and a′ 6= ∅ and |A′(S)| = 1

perr if a = ∅ and a′ 6= ∅ and |A′(S)| > 1

1
|A′(S)| if a 6= ∅ and a′ = ∅

1−perr
|A′(S)|−1 if a 6= ∅ and a′ 6= ∅

.

qjump: Suppose that we have made a move by selecting connected component Gk with probability 1/|G̃|.
Thus, we have proposed a mapping vector M ′ after calling makeJumpMove(A(S),M ). By definition, all

the strobes with unique alignments that support Gk are flipped (if they are errors in M they are set to the

alignment in M ′, and if they are alignments in M they are set to errors in M ′). Thus,

qjump(M |M ′) = qjump(M
′|M) =

1

|G̃|
.
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Independent Subproblems and Sampling from the Chain Running MCMC(A(S),G,z) on the entire

space of strobes S would require a very long convergence time, since the number of possible solutions

grows exponentially with the number of strobes. However, the repetitive nature of the reference genome

allows us to divide S into independent subsets for which the MCMC algorithm can be run in parallel. Two

strobes S1, S2 ∈ S are dependent if they have discordant pairs that appear in the same node in the cluster

diagram G; from this definition, we determine sets of strobes that are mutually dependent and independent

of all other strobes. We run the MCMC chain for two-to-ten million iterations, depending on the number of

strobes and alignments in the subproblem.

Rather than recording all mapping vectors M sampled by the chain, in practice we run the chain for a

number of iterations before we start recording the sampled states. In all experiments we had a burnin time

of 90% of the iterations, and recorded the last 10%. We also tested our method with a shorter burnin (10%

burnin rate) and a thinning method (sampling every 100,000th iteration); however, the longer burnin of 90%

produced the most stable results due to the convergence of the chain.

4.2.5 Predicting Structural Variants from the MCMC Method

The MCMC method returns a set of z + 1 mappings {M (0),M (1),M (2), . . . ,M (z−1),M (z)}; however,

ultimately we aim to predict SVs (which are represented as nodes in the cluster diagram G). One option is

to select a single mapping M̂ from the chain (e.g. the M with the highest probability, M averaged over all

possible samples, etc.) and determine the nodes in G that cover the discordant pairs D(M̂). However, we

lose information when selecting a single mapping M from the chain; instead, we have designed a metric

that utilizes the probabilities for all sampled mappings. We describe how to compute an SV probability for

each node in the cluster diagram G. This probability, computed for each node v in the cluster diagram G,

is the marginal probability of the node; however, we use the joint probability of the strobe alignments to

compute these marginal probabilities.

Consider a node v in the cluster diagram with discordant pairs v = {d1, d2, . . . d|v|} ⊆ D. If v is a

correct SV, then we assume that at least some of the discordant pairs in v are correct. Further, we assume

that other discordant pairs not in v that intersect at least one of {d1, d2, . . . dnv} must be incorrect. Call

these pairs v̄ = {d̄1, d̄2, . . . , d̄|v̄|}. As a concrete example, consider the right child in the cluster diagram in

Figure 4.2 bottom. Here, there are four discordant pairs in v : {d1, d2, d3, d4}, and one discordant pair in

v̄ : {d5}.
We wish to compute the probability that v is supported by k discordant pairs for k = 0, 1, . . . , |v|. First,

however, we must determine the probability of a single discordant pair d ∈ D. The discordant pair d may

appear in a number of mappings M ; so we simply count the number of times the discordant pair appears in

the chain of {M (0),M (1),M (2), . . . ,M (z−1),M (z)}:

P (d) =
1

z + 1

z∑
i=0

1d∈D(M(i)). (4.16)
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To compute the probability that v is supported by k discordant pairs, we could compute all
(|v|
k

)
options.

In our example above, for k = 3 we compute the following:

P (v ={d1, d2, d3, d4}, v̄ = {d5} is supported by 3 discordant pairs) = (4.17)

[P (d1)× P (d2)× P (d3)× (1− P (d4))× (1− P (d5))] + (4.18)

[P (d1)× P (d2)× (1− P (d3))× P (d4)× (1− P (d5))] + (4.19)

[(1− P (d1))× P (d2)× P (d3)× P (d4)× (1− P (d5))] . (4.20)

We assume the discordant pairs are independent, so each term is simply a product of discordant pair

probabilities determined by Equation 4.16. For nodes with many discordant pairs in v, however, this enu-

merative method is prohibitively slow. Instead, we have a dynamic program takes as input v and v̄ and

returns the probability that v is supported by k discordant pairs for k = 0, 1, . . . , |v| (Algorithm 5). The

method fills a 0-indexed table T , where Tij is the probability that the node is supported by i discordant pairs

out of the first j pairs (which are arbitrarily ordered). Lines 2-6 in NodeProbability(v,v̄) are initializations

for the recurrence. There are two ways that the node can be supported by i discordant pairs in the first j

pairs in the recursive step (Line 9): either the jth pair is included in the count (and we use the probability in

T(i−1)(j−1) or it is not (and we use the probability in T(i−1)j). Lines 12-14 account for the discordant pairs

in v̄ by multiplying T by the probability that these are not selected (as these would denote other nodes in the

cluster diagram G).

Algorithm 5 NodeProbability(v,v̄)
1: T is a (|v|+ 1)-by-(|v|+ 1) table
2: T00 ⇐ 1
3: Tij ⇐ 0 for i > j
4: for j ⇐ 1 to |v| do
5: T0j ⇐ T0(j−1) × (1− P (dj))
6: end for
7: for i⇐ 1 to |v| do
8: for j ⇐ i to |v| do
9: Tij = T(i−1)(j−1) × P (dj) + Ti(j−1) × (1− P (dj))

10: end for
11: end for
12: for i⇐ 0 to |v| do
13: Ti|v| ⇐ Ti|v| ×

∏
d̄∈v̄(1− P (d̄))

14: end for
15: return Ti|v| for 0 ≤ i ≤ |v|

The probability that v is supported by k or more discordant pairs is

P (v has ≥ k discordant pairs) =

|v|∑
i=k

Ti|v|. (4.21)
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When there are multiple experiments (see §4.2.3), we have a k(e) for each experiment, and the probability

is computed as

P (v has ≥ k(e) discordant pairs for experiments 1 ≤ e ≤ E) =
1

E

E∑
i=1

|v(e)|∑
i=k(e)

Ti|v(e)|. (4.22)

4.3 Results

We formulate the problem of predicting structural variants from a dataset of multiply-linked reads, which

we solve with a probabilistic model of observing these structural variants. We benchmark our model on

simulated test chromosomes for low-coverage strobe sequencing, high-coverage paired-end sequencing,

and a mixture of strobe and paired-end data. Finally, we demonstrate the accuracy of our model by applying

our model to real strobe sequencing data from two fosmids containing known deletions and two fosmids

containing known inversions and correctly detect the reported variants.

A Model of Structural Variation

We model a test genome generated from a reference genome by independently adding, duplicating, and

rearranging segments of the reference genome. Each pair of adjacent coordinates in the test genome that are

not adjacent in the reference genome is called a novel adjacency. The number of novel adjacencies in the

test genome is related to the number of rearranged segments, or structural variants; some variants, such as

deletions, create one adjacency whereas other variants, such as inversions, create two adjacencies.

To identify novel adjacencies in a test genome, long reads and strobes generated from the genome

are formalized as an ordered set of contiguous substrings (or reads) from the test genome, which we will

term a t-multiread consisting of t reads {R1, R2, . . . , Rt}. From a set S of n t-multireads, we wish to

infer the novel adjacencies in the test genome.1 Each read Ri from a t-multiread S has a set of read

alignments A(R
(S)
i ) to the reference genome, each of which consists of an interval in the reference genome,

an orientation, and the edit distance to the reference. An alignment for a t-multiread S corresponds to

selecting a read alignment for each of the t reads. LetA(S) be the set of all combinations of such selections,

along with the empty set (which indicates that the correct alignment is not present). The correct alignment

for t-multiread S is thus an element in A(S).

A selection of one alignment for each t-multiread S ∈ S results in a candidate mapping M for the set S

of t-multireads. The goal of this work is to solve the following problem:

t-Multiread Mapping Problem: Given a set S of t-multireads and their read alignments, find the correct

mappingM∗ (that is, a selection of one element from A(S) for each S ∈ S) and the set of novel adjacencies

1The value of t might be different for t-multireads in S. For long reads, and long strobe subreads, this notation must be
generalized to account for overlapping subsequences.
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Figure 4.3: Overview of the Probabilistic Algorithm for SV Prediction. In this example, there are five
strobes in the set S: orange, green, red, blue, and purple. A) There are two strobe alignments for the
green and the purple strobes, and the rest of the strobes have a single strobe alignment. The correct strobe
alignments (the orange, dark green, red, blue, and dark purple alignments) support two novel adjacencies
(D1 and D2). However, the light green and light purple alignments introduce two incorrect novel adjacency
predictions. B) The space of all possible novel adjacencies is represented as a cluster diagram G, where
the nodes are novel adjacencies and the directed edges represent overlapping novel adjacencies. The edges
from the strobes to the nodes are not part of G, but are shown here for clarification. C) A solution to the t-
Multiread Mapping Problem is a selection of at most one alignment for each strobe in S, called a mapping,
which supports some subset of the deletions. We sample mappings from the solution space proportional to
the mapping’s posterior probability; from these sampled mappings, we finally compute the probabilities of
the four deletions.
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that M∗ implies.

Structural variant detection methods that handle ambiguous data such as [52,119,134] will not ensure that a

single strobe alignment is chosen for t-multireads when t > 2 because the dependence between consecutive

read pairs is destroyed (that is, paired-read methods will not ensure that a strobe alignment from A(S) is

selected for each S).

A solution to the t-Multiread Mapping Problem has two parts: the mappings and the adjacency pre-

dictions. In the Methods section we describe a probabilistic model for a mapping M given the data S. This

model incorporates two pieces of information from the alignments in M : the quality of the read alignments

and the implied novel adjacencies when we cluster pairs of alignments from M . We compute the probabil-

ity of M using a Markov Chain Monte Carlo (MCMC) method to address the first part of the t-Multiread
Mapping Problem. To determine the adjacency predictions, we represent the space of possible novel ad-

jacencies as a graph where the nodes are novel adjacencies and the edges connect novel adjacencies whose

coordinates overlap. We use this graph, called a cluster diagram, in addition to the mapping probabilities to

compute the probabilities of each novel adjacency (Figure 4.3).

4.3.1 Simulations

We assessed our method’s ability to detect deletions on two simulated test chromosomes: Chromosome

1 with hundreds of novel adjacencies inserted from 1000 Genomes individuals [32] and Chromosome 17

with thousands of novel adjacencies inserted from Craig Venter’s genome [73]. We simulated three types of

datasets from these test chromosomes:

Strobe Datasets. 3-multireads at 1X, 2X and 5X sequence coverage, with subread and advance lengths

distributions determined by the empirical fosmid data.

Paired Datasets. 100bp paired-end reads with 400bp inserts at 30X sequence coverage.

Hybrid Datasets. 1X and 2X 3-multireads combined with 30X paired-reads.

For the strobe datasets, we inserted 15% error using Alchemy [21] and aligned the strobes to the reference

chromosome with BLASR [22]. For the paired datasets, we inserted 1% error using wgsim [75] and aligned

the reads to the reference chromosome with BWA [74]. Though BWA retains unique alignments, we find that

including ambiguous alignments in the paired datasets decreased performance. Each dataset was evaluated

for:

Variant Calling Accuracy. Predictions where the discordant pairs imply a novel adjacency within a spec-

ified bound of the true, simulated coordinates. This is similar to the double uncertainty metric introduced

by [133].

Alignment Assignment Accuracy. Assignments for which there is at least 80% overlap between the true

coordinate interval and the interval returned by alignment.
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We compare the results produced by our probabilistic method to other methods by plotting the number of

true positive and false positive predictions while tuning some sensitivity parameter. For probabilistic meth-

ods such as ours and GASVPro [134], we vary the minimum probability of a novel adjacency prediction.

Otherwise we vary the minimum Hydra score [119] or the minimum support of a novel adjacency predic-

tion [124, 133]. We normalize assignment accuracy to plot a true receiver operating characteristic (ROC)

curve. Variant calling accuracy remains unnormalized since the number of false positive variants is not

strictly bounded.

1000 Genomes Simulation

We generated a simulated dataset based on validated variants from the 1000 Genomes Project [32]. There

are 734 deletions, 214 mobile element insertions, 26 tandem duplications, and 4 novel sequence insertions

reported on chromosome 1 for the individuals sequenced at low coverage and NA12878, which was se-

quenced to high coverage. We removed overlapping variants and inserted the remaining 794 rearrangements

(557 deletions and 237 insertions) in the reference. Of these deletions, 219 (42.86%) have repetitive se-

quence spanning both of the novel adjacency coordinates.

We assessed the accuracy of our model by comparing to other methods (Figure 4.4). First, we compared

to a parsimony method for strobe data which minimizes the number of predicted variants [124]. Our proba-

bilistic method improves over the parsimony method in both specificity and sensitivity in assigning variants

and alignments. For example, at a fixed specificity of 8 false positive variants the probabilistic method

recovers 82.24% more true positive predictions at 2X coverage and 83.32% at 5X coverage.

The paired dataset outperforms all other datasets in variant calling accuracy, regardless of the variant

prediction algorithm. Despite the lack of improvement over paired-end data in terms of the adjacency

predictions, the probabilistic method more accurately determines alignments (Figure 4.4) for the paired

dataset, improving over Hydra-HQ, GASV, and even GASVPro, which uses an additional signal from read

depth. Because ambiguous paired-end data was not passed into the method, this suggests that our method

is robust at eliminating spurious/in-correct alignments. The majority of the novel adjacency predictions are

true positive variants, each with a small number of incorrect alignments. These incorrect alignments are most

often caused by split reads (reads which span a novel adjacency). While the paired dataset improves over

the strobe and hybrid datasets in variant calling accuracy, the strobe and hybrid datasets enrich for correct

alignments better than the paired dataset, which demonstrates that the probabilistic method can utilize the

alignment quality to enrich for correct alignments when multiple alignments are possible. Additionally, this

suggests that even with low-accuracy reads the presence of additional subreads and increased read length

can lead to increased alignment accuracy.

The strobe datasets return a large number of ambiguous alignments due to their higher sequencing

error rates. These ambiguous alignments create groups of t-multiread alignments where distinct subsets

yield different, inconsistent, novel adjacency predictions (see Methods). For example, In the 5X strobe
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dataset, incorrect ambiguous alignments result in inconsistent novel adjacency predictions for 44 of the 511

deletions. The probabilistic method selects t-multiread alignments that are consistent with a single novel

adjacency prediction, often removing incorrect alignments from the prediction. Examples are shown in

Figures 4.5 and 4.6.
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Venter Simulation

Following other methods [26, 124, 134], we derived a test genome by including approximately 17,000 ad-

jacencies (including deletions, insertions, and inversions) from HuRef into hg18 chr17 [73]. From these

rearrangements, 124 deletions greater than 120bp are used as our set of detectable deletions. Of the 124

deletions, 112 (90.32%) have repetitive sequence spanning both of the novel adjacency coordinates. Fur-

ther, the inserted adjacencies consist mostly of small (< 20bp) insertions and deletions, which tend to “shift”

novel adjacency prediction coordinates.

As in the 1000 Genomes simulation, the probabilistic method improves sensitivity and specificity over

the parsimony method (Figure 4.7). In variant calling, the 5X strobe dataset outperforms all other datasets

when run with the probabilistic method, followed by the hybrid dataset (Figure 4.7). In fact, both 2X

and 5X strobe datasets perform better at all sensitivities than the paired dataset regardless of the method.

In alignment accuracy, the probabilistic method slightly enriches for correctly-assigned alignments in the

pairs dataset compared to other methods (Figure 4.7). As before, the strobe datasets are consistently more

enriched for correctly-assigned alignments than pairs.

The poor relative performance of the pairs dataset is caused by the increased difficulty of the Venter

simulation as it relates to short read alignment. First, many true positive alignments in the Venter dataset

are removed during the initial alignment stage. The BWA aligner, when run in the paired-mode, prefers to

find t-multiread alignments that are concordant. Thus, due to the repetitive sequence at the novel adjacency

coordinates, BWA mistakenly reports an incorrect concordant alignment for 47.9% of the t-multireads that

support a deletion in the Venter test chromosome compared to 10.0% in the 1000 Genomes simulation.

There are also more false positive alignments, 24.9% for Venter compared to 9.8% for 1000 Genomes,

derived from more varied sources of error (Table 4.1).

Lastly, we assessed the ability to recover the four inversions in the Venter simulation (Table 4.2). While

the 2X strobe dataset captures the four inversions, it also produces 50 false positives. The paired dataset, on

the other hand, predicts two of the inversions with no false positives, but cannot detect the other two. When

we combine the two datasets, the hybrid dataset detects all four inversions with six false positives. The 5X

strobe dataset does an even better job at predicting inversions, requiring only three false positives to recover

the four inversions.

MCMC Convergence

As we mention above, the solution space of all possible mappings is extremely large; however, we are able

to divide the solution space in such a way that we can run the MCMC method on independent subproblems.

Still, the question remains as to whether the method has converged on the subproblems. We performed

two analyses to assess the convergence, which we will describe in terms of the 2X strobe dataset, which

decomposes into 193 independent subproblems.

First, for the states that are sampled in the Markov chain, we have the frequency that the states were



82

0 5 10 15 20 25
0

20

40

60

80

100

#FP Variants

#T
P

 V
ar

ia
nt

s
Venter Variant Calling Accuracy

 

 

1X Strobe MCMC
1X Strobe Parsimony Sol.
2X Strobe MCMC
2X Strobe Parsimony Sol.
5X Strobe MCMC
5X Strobe Parsimony Sol.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Alignment FPR

A
lig

nm
en

t T
P

R

Venter Alignment Assignment Accuracy

 

 

1X Strobe MCMC
1X Strobe Parsimony Sol.
2X Strobe MCMC
2X Strobe Parsimony Sol.
5X Strobe MCMC
5X Strobe Parsimony Sol.

0 5 10 15 20 25
0

20

40

60

80

100

#FP Variants

#T
P

 V
ar

ia
nt

s

Venter Variant Calling Accuracy

 

 

30X Pairs MCMC
30X Pairs GASVPro−HQ
30x Pairs GASVPro−HQ Pruned
30X Pairs Hydra−HQ
30X Pairs GASV
60X Pairs MCMC

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Alignment FPR

A
lig

nm
en

t T
P

R

Venter Alignment Assignment Accuracy

 

 

30X Pairs MCMC
30X Pairs GASVPro−HQ
30x Pairs GASVPro−HQ Pruned
30X Pairs Hydra−HQ
30X Pairs GASV
60X Pairs MCMC

0 5 10 15 20 25
0

20

40

60

80

100

#FP Variants

#T
P

 V
ar

ia
nt

s

Venter Variant Calling Accuracy

 

 

2X Strobe MCMC
5X Strobe MCMC
1X Strobe MCMC
30X Pairs MCMC
2X Strobe + 30X Pairs MCMC
1X Strobe + 30X Pairs MCMC
5X Strobe + 30X Pairs MCMC
60X Pairs MCMC

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Alignment FPR

A
lig

nm
en

t T
P

R

Venter Alignment Assignment Accuracy

 

 

2X Strobe MCMC
5X Strobe MCMC
1X Strobe MCMC
30X Pairs MCMC
2X Strobe + 30X Pairs MCMC
1X Strobe + 30X Pairs MCMC
5X Strobe + 30X Pairs MCMC
60X Pairs MCMC

Figure 4.7: (Left) Variant calling accuracy and (Right) alignment assignment accuracy for datasets
from the Venter simulation. Dashed lines are strobe datasets, dot-dash lines are paired datasets, and solid
lines are hybrid datasets. The plots are plotted as (top) MCMC vs. Parsimony Solution for 1X,2X, and 5X
strobes, (middle) the paired dataset run with a variety of methods, and (bottom) all the datasets run with
the probabilistic method. Boldface lines are datasets run with our model: we compared the strobe datasets
to a parsimony solution [124] and the paired datasets to Hydra [119], GASV [133], and GASVPro [134].
GASVPro-HQ is the original predictions output by GASVPro on unique alignments, and GASVPro-HQ
Pruned removes overlapping variants from the predictions. Hydra-HQ is the Hydra method applied to unique
alignments.
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sampled and their (unnormalized) posterior probability. If the chain has converged, then the relative fre-

quencies of these states should correspond to the relative posterior probabilities. Second, if we initialize the

MCMC algorithm to start at the correct solution, then these relative frequencies should reflect the randomly-

initializes relative frequencies. Thus, we have three sets of values that should be similar relative to each

other. Figure 4.8 shows these values for three subproblems (out of 193 subproblems) we encounter for the

2X Strobe dataset. The small subproblem has four strobes with 16 possible solutions; the medium-sized

subproblem has nine strobes with 512 possible solutions, and the largest subproblem, set 27, has 29 pairs

from three different strobes with a total of 55, 296 possible solutions. We ran the largest subproblem for five

million iterations, and we sample 72 of these solutions. The smallest probability (normalized across the 72

states) is 3.1779× 10−4, which is an upper bound on this states’ true probability. The sampled states begin

to deviate from the relative ordering of the probabilities when the probabilities are lower than 8.5 × 10−3,

and the first time the correctly-initialized states and the randomly-initialized states differ is when the state

probability is less than 1.9× 10−3.

4.3.2 Sequenced Fosmids from Individual NA15510

In collaboration with Pacific Biosciences, we have sequenced four fosmids that contain reported SVs.

Fosmid Selection

To select fosmids for sequencing, we first evaluated the ability for next-generation paired read sequencing

data to detect reported SVs in 63 fully-sequenced fosmids (44 deletions and 19 inversions) sequenced from

individual NA15510 [62]. To assess the ability for paired-reads and strobes to detect the reported SVs, we

simulated 30X coverage of paired-reads and strobes and counted the number of SVs that were detectable by

the simulated data (Table 4.3). An SV is detectable if a cluster with at least five supporting discordant pairs

lies within fosmid’s coordinates when aligned to the reference.2

We selected two deletions detectable by both datasets as controls and two inversions that were de-

tectable by strobes but not paired-end reads as “difficult” cases (Figure 4.9). The reported breakpoints of

the inversions are flanked by segmental duplications; I1 contains segmental duplications with 95% sequence

similarity, while I2 contains segmental duplications with 99% sequence similarity. Inversions often appear

within such segmental duplications, making their detectability difficult (Figure 4.9 Bottom).

Fosmid Statistics

We obtained strobe sequencing data from Pacific Biosciences on the four fosmids harboring the selected

SVs. The 3-strobes were sequenced to 14X-54X coverage (Figure 4.10). The inversion datasets are about
2Since the fosmids harbor SVs, a full alignment to the reference is not always obtainable. Thus, we find the best-scoring

partial alignment (according to BLAST) and add a buffer of 100Kb. Since this region is much larger than the fosmid length, the
detectability counts are conservative in the sense they may include false positive calls.
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Figure 4.8: MCMC Convergence on Subproblems for 2X Strobes. MCMC convergence on a small
subproblem (Top), an average-sized problem (Middle), and the largest subproblem (Bottom). The black
asterisks denote the (unnormalized) probabilities of each state sampled in the 5 million iterations of the
MCMC method. The red crosses and the green circles denote the relative sampling frequencies of each state
for the correctly-initialized and randomly-initialized chains.
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Figure 4.9: Dot Plots for the Four Sequenced Fosmids. Plots showing the sequence similarity for (Top
Left) D1, (Top Right) D2, (Bottom Left) I1, and (Bottom Right) I2. Each plot shows the sequence similarity
of the fosmid (x-axis) aligned to hg19 (y-axis). D1 is from the revers-complement strand with respect to the
reference genome.
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Figure 4.10: Sequence coverage for the four fosmids. Sequence coverage is determined by aligning strobes
back to the fosmid sequence using BLASR and counting the number of times each base is covered by an
alignment.
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twice as large as the deletion datasets because two movies were taken for the inversion fosmids, compared

to one movie for the deletion fosmids. We aligned the sequenced 3-strobes to hg19 using BLASR, Pacific

Biosciences’ in-house aligner, and ran the MCMC method on the resulting alignments. When the method

has run to completion, we have a probability that each candidate SV is supported by k discordant pairs (see

Methods). An inferred SV is considered a true positive if the discordant pairs imply an SV breakpoint within

the junction range of the reported breakpoint in Table 4.4, otherwise it is a false positive.

Fosmid Results

To run the MCMC method on the fosmid datasets, we set the sequencing error rate pseq = 0.15 and varied

two user-defined input parameters: λd, the expected number of discordant pairs that support an SV, and perr,

the fixed probability that the correct strobe alignment is not present in the set of possible strobe alignments.

Results are shown in Table 4.5 and Figure 4.11.

The MCMC method infers the correct SV for all parameter choices for both of the deletions (D1 and

D2). Additionally, there are zero false positives for all parameter choices for D1 and when λd (the expected

number of supporting discordant pairs) is large enough for D2. In the worst case, a single false positive is

predicted for D2.

For inversion I1, the true positive prediction is found when the combination of parameters are small

enough (in 9 out of 20 runs). Further, I1 infers a number of false positives, reaching 9 false positives at

the smallest choices for λd and perr. For parameter choices where the true positive is found, the average

number of false positives for I1 is 5.89. The MCMC method infers the correct SV for all parameter choices

for inversion I2, however, and returns an average of 0.65 false positives. It is surprising that the inversion in

I2, with 99% sequence similarity, is easier to detect than the inversion in I1, with 95% sequence similarity.

Upon closer inspection of this segmental duplication, we found that the lengths of the segmental duplications

differed in I1, resulting in a lower sequence similarity. Partial alignments of the segmental duplications are

97% identical.

4.4 Discussion

In this chapter, we presented a probabilistic framework for SV detection for strobe sequencing data. The

method works with previous, paired-read technologies, as well as seamlessly integrates multiple data types.

It is robust to the sequencing error rate, and explicitly models the quality of the alignments in the probabilis-

tic framework.

We show that, in simulation, on highly-repetitive datasets combining strobes with paired-end sequencing

data improves performance. Further, on datasets where paired-end sequencing performs well, the MCMC

method infers more alignments that are correct when there is enough signal from the alignment quality to

differentiate the correct mappings from the incorrect mappings. The method outperforms previous methods
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Figure 4.11: Visual Representation of MCMC Results on Sequenced Fosmids. For each fosmid, (Top
Left)D1, (Top Right) D2, (Bottom Left) I1, (Bottom Left) and I2, the plot on the left indicates the number
of true positives recorded and the plot on the right indicates the number of false positives for combinations
of λd = (5, 10, 15, 20) and perr = (0.005, 0.01, 0.05, 0.1, 0.15). The true positive and false positive plots
are scaled by the same range on the Z-axis for each fosmid.

for strobe sequencing data by decreasing the number of inferred false positives, both in terms of the structural

variants predicted and in terms of the alignments.

Finally, we applied our method to real strobe sequencing data from four sequenced fosmids: two fosmids

contained deletions and were considered controls and two fosmids contained inversions that were impossible

to detect from simulated paired-read datasets due to flanking segmental duplications. We correctly predict

the true positive SV in all cases, but we also predict a number of false positives in the inversion datasets.

We note that our method, while designed for strobe sequencing, has a much broader range of impact for

SV prediction. One example is the application of our method for split reads - as sequenced reads become

longer, these reads may harbor multiple structural variants. Current split read mappers such as Pindel [155]

could produce candidate alignments of long reads represented as high-quality alignments with gaps; our

framework would allow candidate alignments that contained multiple gaps, producing a “virtual strobe”

with linked substrings. Further, our method is general enough to handle paired-end sequencing data as well,

allowing a method for cross-platform analysis.

There are some limitations to our method; in particular, it has been shown in [134] that there is sig-

nificant signal in the read depth from concordant pairs, which we completely disregard. This read depth

signal further reduces the number of false positives, particularly for copy number variants. An additional

improvement to this model would be to incorporate this type of information, in addition to the alignment

quality and expected support.
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Finally, we note that in highly-repetitive regions, sometimes there is not enough signal in the alignment

quality to be of much use; in these cases, our method performs as well on paired-end data as other methods.

In the case where there is additional signal in the alignment quality (i.e. the correct alignments align with

the sequencing error we expect, and incorrect alignments align with worse sequencing error) or method

incorporates this information in a useful manner.
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1000GChr1 1000GChr17 VenterChr17 VenterSimple
Test Chromosome Construction
Chr 1 17 17 17
# insertions 557 57 8752 389
# deletions 237 218 8801 425
# inversions 0 0 4 4
Total # of SVs 794 275 17377 822
# deletions ≥ 120bp (D) 511 197 124 124
Simulated Paired Data
# of fragments that span a del. in D (S) 16679 6020 3466 3585
Avg. # of fragments that span a deletion 32.6 30.5 29.5 28.9
BWA Alignments
# of deletion ESPs > 600bp and < 1Mb 15300 5371 1791 1845
– # with correct coordinates (TP) 13802 (90.2%) 4695 (87.4%) 1345 (75.1%) 1446 (78.3%)
– # with incorrect coordinates (FP) 1498 (9.8%) 676 (12.6%) 446 (24.9%) 399 (21.6%)
# in D supported by at least one TP 499 191 93 88
Where do FPs Come From?
–# from split read 1440 (96.1%) 674 (99.7%) 284 (63.7%) 261 (65.4%)
–# from read in novel sequence 55 (3.7%) 0 123 (27.6%) 107 (26.7%)
–# that span another SV 1 1 39 (8.7%) 31 (7.8%)
–# other 1 1 0 0
BWA Alignments for Fragments in S
# with a deletion ESP alignment 13606 (81.6%) 4631 (76.9%) 1351 (39.0%) 1429 (39.9%)
– # with correct coordinates 13570 (99.7%) 4630 (99.98%) 1304 (96.5%) 1395 (97.6%)
# with a non-del. ESP alignment 22 3 16 19
# that are unmapped/qual < 10 1392 (8.4%) 390 (6.4%) 639 (18.4%) 684 (19.1%)
# with a concordant alignment 1659 (10.0%) 996 (16.5%) 1659 (47.9%) 1452 (40.5%)
–# that are ≤ 600bp (truly concordant) 1120 (67.5%) 730 (73.2%) 663 (40.0%) 673 (46.4%)
–# that are > 600bp 537 (32.4%) 195 (19.6%) 716 (43.2%) 707 (48.7%)
–# with read in novel sequence 2 71 (7.1%) 81 (4.9%) 72 (5.0%)

Table 4.1: Simulation Statistics for 1000 Genomes and Venter simulations. (1000GChr1) Original 1000
Genomes simulation as described in the main document. (1000GChr17) 1000 Genomes simulation applied
to Chr 17, inserting 57 insertions and 218 deletions for 197 detectable deletions ≥120bp. (VenterChr17)
Original Venter simulation as described in the main document. (VenterSimple) Venter simulation with
variants >20bp applied to the test chromosome. Percentages are shown in parentheses when the value is
> 1%. The TP and FP alignments are determined by the alignment assignment accuracy.
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Inversion 1 Inversion 2 Inversion 3 Inversion 4
5826739-5827291 40566233-40567384 55552838-55556395 57999778-58000250
Prob # FPs Prob # FPs Prob # FPs Prob # FPs

2X Strobes 0.002 6 1.000 0 0.921 1 0.00 50
5X Strobes 1.000 0 1.000 0 1.000 0 0.365 3
30X Pairs NaN NaN 1.000 0 NaN NaN 1.000 0
Hybrid 0.001 6 1.000 0 0.479 1 0.500 0

Table 4.2: Inversion Results for the Venter Simulation. Four inversions predicted by the probabilistic
method in the Venter simulation on 2X strobes, 5X strobes, 30X pairs, and a 2X strobes + 30X pairs hybrid
dataset. Inversion coordinates refer to hg18 Chr17. The inversion probability and number of false positives
incurred to detect the inversion are reported. NaN indicates that the inversion was not in the candidate input
set; thus it could never be predicted.

Simulations for 44 Deletions Simulations for 19 Inversions
Paired-End Paired-End Paired-End Paired-End
Detected Undetected Total Detected Undetected Total

Strobe Detected 25 10 35 4 9 13
Strobe Undetected 2 7 9 0 6 6

Total 27 17 44 4 15 19

Table 4.3: Detectability of Reported Adjacencies on Simulated Strobe and Paired-Read Data. (Left)
Over half of the reported deletions are detectable by both paired-end and strobe datasets; we selected two
of the fosmids harboring these deletions as controls. (Right) Strobes are able to detect nine more inversions
than the paired-end dataset; we selected two of the fosmids harboring these deletions as “difficult” cases.

Reported Reported Reported Paired-Read Strobe
Name Accession Chr Start [63]∗ End [63]∗ Junction [63] Support Support

D1 AC158335 Chr3 68739688 68747866 2 74 19
D2 AC153483 Chr16 78371638 78384899 0 84 15
I1 AC195776 Chr19 39264278 39280958 1236 0 21
I2 AC193137 Chr14 35017063 35031477 7063 0 13

∗Coordinates lifted over from hg18 to hg19.

Table 4.4: Fosmids Selected for Pacific Biosciences Sequencing. The reported junction is the length of
unmatched sequence found across the SV [63]. The last two columns report the number of supporting
discordant pairs (or consecutive subread pairs) of the detectable SV in simulations.

Sequence λd = 10, perr = 0.01 Range of λd and perr ∗

Name Coverage TP FP TP FP
D1 31.74± 5.95 1 0 1± 0.00 0± 0.00
D2 14.79± 3.74 1 0 1± 0.00 0.25± 0.44
I1 54.35± 9.68 1 4 0.45± 0.51 3.7± 2.45
I2 46.86± 7.05 1 1 1± 0.00 0.65± 0.67

∗ λd = {5, 10, 15, 20} and perr = {0.005, 0.01, 0.05, 0.1, 0.15}

Table 4.5: MCMC Results on Sequenced Fosmids. For each fosmid (D1, D2, I1, and I2) multiple values of
λ and perr were simulated. ‘TP’ and ‘FP’ correspond to the number of ‘True Positives’ and ‘False Positives’,
respectively.



Chapter 5

De novo Assembly using Strobe Sequencing

In the previous chapters, we have described methods for SV detection from strobe sequencing data using

a resequencing approach, where we align the subreads to a known reference. However, there are many

scenarios where the reference may be unavailable; for example, if we sequence the genome of an organism

for which the reference may not have been determined yet. In the framework of sequencing human genomes,

some genomes have undergone significant rearrangement (as in the case of cancer), and some regions of the

reference may not be useful for determining structural variation. Further, there is a certain amount of bias in

the reference genome, which might affect the SV prediction calls. Thus, de novo assembly of reads, which

does not require a reference genome, becomes an attractive option.

In this chapter, we introduce a method for small-scale genome assembly using strobe sequencing data.

Many of the existing assembly methods (which are summarized below) under-utilize a key piece of infor-

mation when constructing the graph - the pairing information. Since strobes have more subreads than mate

pairs, this information is more powerful for strobes. All the graph-based methods incorporated pairing in-

formation after the graphs are constructed; instead, we wish to simultaneously use the overlap information

and the pairing information through the assembly method.

We propose a novel algorithm for small-scale de novo assembly from strobes that use both the sequences

of the subreads and information about the length of advances between subreads at the same time when

building the assembly. In brief, we determine a set of linear constraints that represent the relationships

between subreads from the same strobe, and we formulate the assembly problem as an optimization problem

that aims to maximize the expected pairwise overlaps while respecting these constraints.

5.1 Related Work

In general, assemblers construct one of two types of graphs. Overlap graphs [50, 96, 135] are graphs where

the vertices are reads and an edge exists between two vertices if the corresponding reads align to each other.

Overlap graphs are the first component of “overlap-layout-consensus” algorithms, where the overlap graph

is constructed, graph simplifications are performed, a path through this graph determines a layout of the

91
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reads, and the sequence is determined from the resulting layout. The size of overlap graphs scales linearly

with the number of reads, prohibiting whole-genome assemblies.

An alternative graph construction that has been considered is the de Bruijn graph [110, 111]. All strings

of length k (k-mers) are noted in the set of reads, and the vertices of a de Bruijn graph are the (k− 1)-mers.

An edge connects two vertices if there exists a k-mer that contains the two (k − 1)-mers. Currently, de

Bruijn graph assemblers [23, 24, 76, 86, 132] hold the most promise for handling large assemblies, and two

reported whole-genome assemblies used de Bruijn assemblers [76, 132].

The Euler algorithms (EULER [110, 111], EULER-SR [24] and EULER-USR [23]) first correct se-

quencing errors in reads by applying a filter to the reads before building the de Bruijn graph. They then

layer pairing information after the de Bruijn graph is constructed and choose paths in the graph according

to the pairing information in order to resolve repeats. These algorithms include the construction of the A

Bruijn graph [109], where nodes refer to consensus sequences from multiple sequence alignments rather

than k-mers from individual reads. Velvet [159,160] performs many types of graph simplifications on the de

Bruijn graph in an iterative fashion. In addition to tip removal (similar to a removal algorithm performed by

EULER) and bubble removal, it also removes paths that have low coverage in terms of the number reads each

path indicates. Velvet also incorporates mate pair information, first in an algorithm called breadcrumb [159]

and later in using an algorithm called pebble [160]. ALLPATHS [17,45] uses a de Bruijn graph framework,

but instead of building a graph representing a global assembly of the reads it instead builds local assemblies

from a set of seeds. The local assemblies are then glued together using information from all paths between

each pair of reads. In a similar vein, SHRAP [138] uses a hierarchical sequencing protocol that identifies

sets of reads to assemble from the k-mer content of each read and then uses EULER for the assembly. [86]

presents the first exact polynomial-time algorithm for a double-stranded genome by first estimates copy

counts with mate pair data, then uses a maximum likelihood approach to assemble the reads into contigs and

finally extends the contigs using pairing information.

Few of the de Bruijn assemblers are capable of assembling large genomes such as human genomes

due to large space and memory requirements. Only two de Bruijn based methods, SOAPdenovo [76] and

ABySS [132], have reported whole human genome assemblies. SOAPdenovo [76] uses a similar approach as

Velvet, but does not record all the information about the read locations and paired end locations in the graph.

This makes SOAPdenovo quite space-efficient, and able to handle larger amounts of data. ABySS [132]

implements a distributed de Bruijn graph, making the assembler memory-efficient. However, both methods

report highly fragmented assemblies: SOAPdenovo assembles only 85% of an African genome and 87% of

an Asian genome, and ABySS reports over 680,000 contigs ≥ 1Kb for an African genome.

Higher error rates, such as those found in Pacific Biosciences technologies, introduce further complica-

tions. Errors in the reads introduce erroneous edges in overlap graphs and de Bruijn graphs, and in the de

Bruijn graphs the seed size k is dependent on the sequencing error rate. In most assemblers, extra error-

correction steps are taken before, during, and after the graph construction phases. Repeats in the target

genome are collapsed in the graph constructions, and result in ambiguous path choices when determining
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the read layout. Additional use of paired-end sequencing helps identify paths in the graph by linking nodes

using the pairing information.

Finally, we note that there are a number of assemblers that differ from the overlap graph or de Bruijn

graph approaches. PE-Assembler [4], SSAKE [151], QSRA [16], and VCAKE [59] use greedy methods to

extend the 3’ end of the high-quality read sequences. [121] presents a different graph, the alignment graph,

that represents a multi-read alignment, which is used in a consensus algorithm for assembly. Genovo [71]

presents a probabilistic model for the generation and sequencing of fragments and applies the model to

metagenomic data. While this is a different application (the goal with metagenomic data is to construct

assemblies of multiple organisms simultaneously), Genovo has a number of attractive qualities. First, it

defines a generative probabilistic model of read generation from multiple organisms and second, it discov-

ers the most likely sequence of reconstructions under this model. However, it is designed for paired-end

sequencing data (as are all methods described above).

Current assembly algorithms do not use information from paired reads until after building an overlap

graph from individual reads. A similar approach could be used for t-strobes by constructing an overlap

graph from individual subreads and then finding paths in the graph that simultaneously satisfy the length

constraints between adjacent subreads. However, there are two downsides to this approach. First, because

of high per-nucleotide error rates (5-15%), an overlap/deBruijn graph constructed from individual subreads

of a strobe would have a large number of erroneous edges from spurious alignments. Second, the number

of possible paths to explore would grow enormously in repetitive regions, and even more so because of

erroneous edges. Aggressive heuristics designed to reduce the size of the search space would likely reduce

any advantage for strobes in resolving repetitive regions. Our approach aims to avoid these problems.

5.2 A Combinatorial Optimization Method for Small-Scale Assembly with
Strobes

Our method incorporates pairwise subread overlap information and strobe constraint information simulta-

neously to assemble a set of strobes. To do so, we design an Integer Linear Program (ILP) that properly

constrains the subreads in an assembly while including as many high-scoring pairwise overlaps as possi-

ble. While the number of integer variables scales linearly with the number of subreads, the number of

binary variables scales quadratically with the number of subreads. Thus, we iteratively build an assembly

by assembling subsets of strobes.

We first present the general assembly problem for a set of reads. The reads are modeled as substrings

of an original, unknown string G (which we will also call a genome G) with insertions, deletions and

substitutions introduced according to some error model. The number of differences between the read and

the original strings is bounded by the error rate. The task of genome assembly is to recover the substring

coordinates from the original string using the reads.
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Consider a set R of reads from a genome G, where each read R ∈ R is a sequence of bases from an

alphabet Σ (typically Σ = {A,C,G, T}) and the number of measured bases for read R is denoted by |R|.
We define an error function ε(r) that determines the maximal number of base pairs that may be inserted or

deleted in a read of length r. A layout LR of the reads R is a set of |R| pairs of integers

LR = {(xR, yR) : |R| − ε(|R|) ≤ |yR − xR| ≤ |R|+ ε(|R|)}R (5.1)

that give the coordinates of each read R ∈ R. Note that the coordinates must be within ε(|R|) of the

number of measured bases in R, denoting at most ε(|R|) insertions or deletions. Additionally, the (x, y)

pair for each subread R provides the subread orientation: if x < y, then R was generated from the target

string. Otherwise the reverse complement of R was generated from the target string (denoted by Rc). Thus,

a layout is a set of signed intervals on the number line. These intervals need not cover the entire line; rather,

there may be sets of intervals that collectively cover line segments. We call these sets of intervals contigs.

Two subreadsR andR′ overlap in the layout LR if the intervals defined by the coordinates (xR, yR) and

(xR′ , yR′) have a non-empty intersection. Given an overlap amount δ, we say that R and R′ delta-overlap

if the magnitude of their intersection is at least δ.

The Sequence Assembly Problem. Given reads R from a genome G, find a layout L∗R that maximizes

some layout score Q(L∗R).

A layout LR may be scored in any number of ways [48]. For instance, one may derive the target string

from the layout (a step known as consensus building) and assess the similarity of each read R and the sub-

string from the original string determined by the coordinates (xR, yR). Alternatively, one may assess the

similarities of all pairs of reads (R,R′) whose intervals (xR, yR) and (xR′ , yR′) have a nonempty inter-

section on the number line. We choose to score a layout using a pairwise similarity metric based on the

alignments of subreads.

Computing Pairwise Alignments. A global alignment of two subreads R,R′ ∈ R is a two-row matrix

where the top row contains characters of R in sequential order and the bottom row contains characters of

R′ in sequential order, and spaces (represented as dashes) may be interspersed in the characters of R and

R′ such that no column contains two spaces [48, 61]. Given a score for each pair of characters in the string

alphabet (including the space character), the scores for each column of an alignment are summed to produce

an alignment score Φ(R,R′). The Smith-Waterman algorithm is a dynamic program to compute the optimal

alignment given a scoring matrix for all pairs of characters in the alphabet (including the space character).

An end-space free alignment of R and R′ is a global alignment that does not score columns with spaces

at the beginning or the end of the alignment [48]. End-space free alignments are utilized in assembly

because the reads are expected to partially overlap each other (the prefix of one subread may overlap the
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suffix of another, for example). We use a trivial modification of the Smith-Waterman alignment to compute

the optimal end-space free alignment for all pairs of subreads.

Since DNA is double stranded, the optimal end-space free alignment of R and R′ might include their

reverse complements, denoted by Rc and R′c. Without loss of generality we assume that the first subread R

is in the forward orientation. Thus, in addition to computing the end-space free alignment of (R,R′) we also

compute the optimal end-space free alignment of (R,R′c) and choose the one with the best alignment score.

Note that if R is aligned to R′c, the second row of the alignment matrix contains the reverse complement of

R′ and the first character of R′ appears as the last character in the second row. Regardless of the orientation

of R′, we call the score of the resulting alignment Φ(R,R′).
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Figure 5.1: Alignment Examples and possible alignment configurations. (A) Two examples of end-space
free alignments. The alignment of R and R′ contains an indel and a substitution (in red in the alignment
matrix). The alignment of R and R′′c contains a substitution. (B) H1(R,R′) and H2(R,R′) for possible
alignment configurations of R and R′. Note that, if R and R′ are in the same orientation, then the sign of
H1(R,R′) is the same as the sign ofH2(R,R′) (or they are both 0). If R′ is in the reverse orientation, then
one ofH1(R,R′) andH2(R,R′) is non-negative and the other is negative.

From an optimal alignment of R and R′, we define two alignment terms that describe their alignment

configuration (Figure 5.1). In terms of the alignment matrix, H1(R,R′) is the difference between the col-

umn of the first character in R′ and the column of the first character in R. H2(R,R′) is the difference

between the column of the last character in R′ and the column of the last character in R. Note that, while
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H1(R,R′) and H2(R,R′) are related, they are not symmetric. From H1(R,R′), H2(R,R′), and the mea-

sured number of bases |R| and |R′|, the orientation of subread R′ is determined as well as the substrings of

R and R′ that are aligned (with matches, mismatches, or indels). However, H1(R,R′) and H2(R,R′) do

not uniquely determine the alignment matrix (i.e. there may be any number of gaps in the aligned portions

of the substrings).

We also define o(R,R′) as the aligned portion of the alignment (Figure 5.1). That is, o(R,R′) is the

difference of the largest column containing a starting or ending character inR orR′ and the smallest column

containing a starting or ending character in R or R′. We say that two subreads δ-align if o(R,R′) + 1 ≥ δ.

Note that whileH1(R,R′),H2(R,R′), and o(R,R′) collectively indicate the number of spaces interspersed

in the aligned portion, again they do not uniquely determine the alignment matrix.

Finally, we say that R contains R′ if the first and last columns of the alignment matrix contain the

first and last characters of R (in either order). Similarly, R′ contains R if the first and last columns of the

alignment matrix contain the first and last characters of Rj (in either order). If R and R′ contain each other,

then the end-space free alignment is identical to their optimal global alignment.

5.2.1 The Strobe Assembly Problem

Now, suppose strobes are generated from the genome G with sequencing error. Strobes are modeled as

longer substrings of the target string with introduced sequencing error, and subreads are modeled as sub-

strings of the strobe. Strobe notation is the same as §3.2; however, we removing the strobe indexing for

clarity and work with the set of strobes.

Given a set S of t-strobes, we now define R to be the set of all subreads from strobes in S. A strobe

layout LS is a layout that respects the ordering, orientation, and pairing information between subreads on

the same strobe.

LS = {(xR, yR)}R

such that

∀R ∈ R : |R| − ε(|R|) ≤ |yR − xR| ≤ |R|+ ε(|R|) (5.2)

∀Ri, Rj ∈ S, S ∈ S : 0 < (yRi − xRi)(yRj − xRj ) (5.3)

∀Ri, Ri+1 ∈ S, S ∈ S :

l ≤ xRi+1 − yRi ≤ u if xRi < yRi

l ≤ −
(
xRi+1 − yRi

)
≤ u otherwise

(5.4)

These constraints imply that all subreads from the same strobe are in the same orientation, and the

advance lengths between the subreads are within the proper bounds depending on the strobe orientation.

The pairing information may indicate a relative ordering of contigs, called scaffolds, where a contig with no
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relative ordering to other contigs is itself a scaffold. Each scaffold in a layout thus consists of one or more

contigs separated by strings of unknown bases with some lower and upper bound determined by pairing

information of the strobes.

Note that the strobe layout prohibits subreads from the same strobe to overlap; thus, when computing the

pairwise alignment scores for subreadsR ∈ S andR′ ∈ S′, we only do so for subreads from different strobes

(S 6= S′). We assign subreads from the same strobe an aligned portion of 0 (i.e. o(R,R′) = 0 if R,R′ ∈ S).

The Strobe Assembly Problem. Given a set S of t-strobes from a genome G, find a strobe layout L∗S that

maximizes a layout score Q(L∗S).

Scoring a strobe layout. We will define the strobe layout score Q(LS) by using the end-space free align-

ments of the subread pairs. Since strobes are generated from a single genome stringG, subreads that overlap

in the strobe layout LS should align with high similarity for the aligned portion. Thus, if R and R′ δ-align

with a large alignment score Φ(R,R′), we expect R and R′ to δ-overlap in the layout LS. We establish

a set of expected δ-overlaps that have high alignment scores and a set of unexpected δ-overlaps that have

low alignment scores. These are described in two binary matrices: an expected overlap matrix O and an

unexpected overlap matrix N. For R,R′ ∈ S, we define

OR,R′ =

1 if Φ(R,R′) ≥ tO

0 otherwise,
NR,R′ =

1 if Φ(R,R′) < tN

0 otherwise
, (5.5)

where tO and tN are score thresholds for an expected overlap and an unexpected overlap respectively

(tN ≤ tO). Note that there may be overlaps that have alignment scores between tN and t0; we call these

unspecified overlaps. Since we do not compute overlaps between pairs of subreads R and R′ from the same

strobe, i.e. R,R′ ∈ S, we trivially set OR,R′ = 0 and NR,R′ = 1.

Additionally, we need some terms to describe the strobe layout LS that we wish to score. We describe

the subread relationships in LS using a binary overlap matrix β and an orientation vector η. For S, S ∈ S

and R ∈ S,R′ ∈ S′, we define

βR,R′ =

1 if R and R′δ-overlap in LS

0 otherwise.
ηS =

1 if xR < yR ∀R ∈ S

0 otherwise.
(5.6)

Note that, since a strobe layout requires the same orientation for all subreads in a strobe, ηi describes the

orientation for the entire strobe. The layout score we define rewards expected overlaps, penalizes unexpected

overlaps, and is indifferent to unspecified overlaps.
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Q(LS) =
∑

R,R′∈S
OR,R′βR,R′Φ(R,R′)︸ ︷︷ ︸

reward expected overlaps

−OR,R′(1− βR,R′)Φ(R,R′)︸ ︷︷ ︸
penalize missing overlaps

−NR,R′βR,R′E[Φ(R,R′)]︸ ︷︷ ︸
penalize unexpected overlaps

(5.7)

where E[Φ(R,R′)] is the expected score of an alignment with an aligned portion of exactly o(R,R′).

This can be computed analytically with the alignment scoring functions and the sequencing error rate ε or

estimated empirically from the pairs of subreads of similar lengths whose aligned portions are o(R,R′).

5.2.2 Integer Linear Program (ILP) Formulation

We solve the strobe assembly problem by defining a set of linear constraints that determine a strobe layout

and finding a set of position variables (xR, yR) for each subread R that maximize Q(LS). We first describe

each constraint, and then we show how to convert these constraints into linear constraints.

The constraints fall into roughly four groups, position constraints, advance constraints, overlapping

constraints, and configuration constraints.

Position Constraints This group of constraints ensures that, for each subread R from strobe S, the posi-

tion variables xR and yR are set such that the resulting layout is a strobe layout. First, all subreads from S

must be in the same orientation, or the sign of yR − xR must be the same for all R ∈ S. The orientation

variable ηS determines the orientation for each subread in S, so we use ηS to ensure that the sign remains

the same for all subreads R ∈ S:

if ηS = 1 : 0 < yR − xR (5.8)

if ηS = 0 : 0 < −(yR − xR) (5.9)

Second, each subread R must have at most ε(|R|) indels. The distance between xR and yR must reflect

this, or

if ηS = 1 : |R| − ε(|R|) ≤ (yR − xR + 1) ≤ |R|+ ε(|R|) (5.10)

if ηS = 0 : |R| − ε(|R|) ≤ (−(yR − xR) + 1) ≤ |R|+ ε(|R|) (5.11)

Advance Constraints These constraints ensure that the distance between adjacent subreads Ri ∈ S and

Ri+1 ∈ S are within the specified lower and upper bounds. Again, we use the ηS variable to determine the

proper position variables to subtract.
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if ηS = 1 : l ≤ xRi+1 − yRi ≤ u (5.12)

if ηS = 0 : l ≤ −(xRi+1 − yRi) ≤ u (5.13)

max(xR,yR)
 

R and R’ δ-overlap R and R’ do not δ-overlap 

min(xR’,yR’) 

R 

R’ 

min(xR,yR)
 

max(xR’,yR’) 
δ 

R R’ 

δ 

max(xR,yR)
 

min(xR’,yR’) 

R’ R 

max(xR’,yR’) 
min(xR,yR)

 

Figure 5.2: δ-Overlapping vs. non-δ-overlapping strobes in a strobe layout. Here, the subread orien-
tations are ignored as the minimum or maximum value for each coordinate is selected. If subreads R and
R′ δ-overlap, then both (max(xR, yR)−min(xR′ , yR′) + 1) and (max(xR′ , yR′)−min(xR, yR) + 1) are
greater than or equal to δ. If they do not δ-overlap, then either (max(xR, yR)−min(xR′ , yR′) + 1) or
(max(xR′ , yR′)−min(xR, yR) + 1) is less than δ.

Overlapping Constraints These constraints ensure that βR,R′ = 1 if and only if R and R′ δ-overlap in

the strobe layout. The constraints subtract the minimum overlap length δ from the inner coordinates of R

and R′ and ensure that this is non-negative if βR,R′ is one (Figure 5.2).

if βR,R′ = 1 :

δ ≥ (max(xR, yR)−min(xR′ , yR′) + 1)

δ ≥ (max(xR′ , yR′)−min(xR, yR) + 1)
(5.14)

if βR,R′ = 0 :

δ < (max(xR, yR)−min(xR′ , yR′) + 1) if max(xR, yR) < min(xR′ , yR′)

δ < (max(xR′ , yR′)−min(xR, yR) + 1) if max(xR′ , yR′) < min(xR, yR)
(5.15)

In addition to βR,R′ , we introduce another binary variable αR,R′ that is 1 if R is to the right of R′ (and

max(xR′ , yR′) < min(xR, yR)) and 0 if R is to the left of R′ (and max(xR, yR) < min(xR′ , yR′)). Then,

the inequalities are written as
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if βR,R′ = 1 :

δ ≥ (max(xR, yR)−min(xR′ , yR′) + 1)

δ ≥ (max(xR′ , yR′)−min(xR, yR) + 1)
(5.16)

if βR,R′ = 0 and αR,R′ = 0 : δ < (max(xR, yR)−min(xR′ , yR′) + 1) (5.17)

if βR,R′ = 0 and αR,R′ = 1 : δ < (max(xR′ , yR′)−min(xR, yR) + 1) (5.18)

Configuration Constraints Note that the overlapping constraints above do not consider subread orienta-

tion for subread R. Thus, two subreads R and R′ might δ-overlap, but not in the appropriate configuration

determined by the pairwise alignments. For example, R and R′ might δ-overlap in the layout, while the

pairwise alignment of R and R′ involve R and the reverse complement of R′, R′c. In this case, we do not

want R and R′ to δ-overlap, only R and R′c. Further, if R and R′ do δ-overlap, they should overlap in the

same approximate configuration as the pairwise alignment of R and R′.

Thus, we further restrict the placement of the x and y variables for δ-overlapping subreads R and R′ by

requiring that (xR′ − xR) is at most ω bases away fromH1(R,R′) and (yR′ − yR) is at most ω bases away

from H2(R,R′). The user-defined parameter ω is necessary in practice when laying out a set of subreads

that all pairwise align with each other, and substitution and indel errors result in optimal pairwise alignments

with slightly different configurations. While ω accounts for the potential shift in the overlap configurations,

we must also include variability due to the indels, ε(·).

First, we define the overlap configurations Ĥ1(R,R′) and Ĥ2(R,R′) in terms of the position variables

x and y. As with with alignment configurationsH1(R,R′) andH2(R,R′), we compute the overlap config-

urations Ĥ1(R,R′) and Ĥ2(R,R′) such that the first subread R is in the forward orientation. We use the

orientation variable ηS to determine Ĥ1(R,R′) and Ĥ2(R,R′) (Figure 5.3).

if ηS = 1 :

Ĥ1(R,R′) = xR′ − xR

Ĥ2(R,R′) = yR′ − yR
(5.19)

if ηS = 0 :

Ĥ1(R,R′) = −(xR′ − xR)

Ĥ2(R,R′) = −(yR′ − yR)
(5.20)

We can now compare the overlap configurations Ĥ1(R,R′) and Ĥ2(R,R′) to the alignment configura-

tionsH1(R,R′) andH2(R,R′) for subreads R and R′,

if βR,R′ = 1 :

−ω − ε(|H1(R,R′)|) ≤ Ĥ1(R,R′)−H1(R,R′) ≤ ω + ε(|H1(R,R′)|)

−ω − ε(|H2(R,R′)|) ≤ Ĥ2(R,R′)−H2(R,R′) ≤ ω + ε(|H2(R,R′)|)
(5.21)
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Alignment  
Configuration 

R’ 

R 

H2(R,R’)
 

H1(R,R’)
 

xR yR 

xR’ yR’ 

H2(R,R’)
 

H1(R,R’)
 

yR xR 

xR’ yR’ 

-H2(R,R’)
 

-H1(R,R’)
 

4 Possible Overlap Configurations (8 total) 

yR xR 

yR’ xR’ 

-H1(R,R’)
 

-H2(R,R’)
 

xR yR 

yR’ xR’ 

H1(R,R’)
 

H2(R,R’)
 

H1(R,R’) ≈ H1(R,R’) 

H2(R,R’) ≈ H2(R,R’)
 

H1(R,R’) ≈ H1(R,R’) 

H2(R,R’) < H2(R,R’)
 

H1(R,R’) ≈ H1(R,R’) 

H2(R,R’) ≈ H2(R,R’)
 

H1(R,R’) > H1(R,R’) 

H2(R,R’) ≈ H2(R,R’)
 

Figure 5.3: Four of eight possible overlap configurations. The inequalities in red are instances where
Ĥ1(R,R′) is not near H1(R,R′) or Ĥ2(R,R′) is not near H2(R,R′); thus, R and R′ cannot δ-overlap
according to these configurations. The other four overlap configurations include subread R being to the
right of R′; in those configurations, none of Ĥ1(R,R′) or Ĥ2(R,R′) are near H1(R,R′) or H2(R,R′),
respectively.
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These inequalities ensure that there will be no strobe layouts in which R and R′ δ-overlap but are not

near the proper alignment configuration.

The Complete Set of Constraints. Putting it all together, the Strobe Assembly Problem corresponds to

satisfying the following set of (not necessary linear) constraints with boolean conditionals:
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Maximize:

max
x,y

Q(LS)

Subject to

∀S, S′ ∈ S, ∀R ∈ S, ∀R′ ∈ S′ :

Position and Advance Constraints:

if ηS = 1 :


0 < yR − xR

|R| − ε(|R|) ≤ (yR − xR + 1) ≤ |R|+ ε(|R|)

l ≤ xRi+1 − yRi ≤ u

(5.22)

if ηS = 0 :


0 < −(yR − xR)

|R| − ε(|R|) ≤ (−(yR − xR) + 1) ≤ |R|+ ε(|R|)

l ≤ −(xRi+1 − yRi) ≤ u

(5.23)

Overlapping Constraints:

if βR,R′ = 1 :

δ ≥ (max(xR, yR)−min(xR′ , yR′) + 1)

δ ≥ (max(xR′ , yR′)−min(xR, yR) + 1)
(5.24)

if βR,R′ = 0 and αR,R′ = 0 : δ < (max(xR, yR)−min(xR′ , yR′) + 1) (5.25)

if βR,R′ = 0 and αR,R′ = 1 : δ < (max(xR′ , yR′)−min(xR, yR) + 1) (5.26)

Configuration Constraints:

if βR,R′ = 1 :

−ω − ε(|H1(R,R′)|) ≤ Ĥ1(R,R′)−H1(R,R′) ≤ ω + ε(|H1(R,R′)|)

−ω − ε(|H2(R,R′)|) ≤ Ĥ2(R,R′)−H2(R,R′) ≤ ω + ε(|H2(R,R′)|)
(5.27)

where C > 0 is a sufficiently large integer, and ω is the number of bases allowed to deviate from the
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configuration determined byH1(R,R′) andH2(R,R′).

We first verify that a selection of position variables x and y that maximize Q(LS) with respect to the

above constraints is a strobe layout with an optimal layout score.

Theorem 5.2.1. A selection of position variables x and y that maximize Q(LS) with respect to constraints

(5.22) - (5.27) is a strobe layout L∗S with a maximum score Q(L∗S).

Proof. We first prove that a selection of x and y that respects constraints (5.22)-(5.27) is a strobe layout LS.

A strobe layout requires that, for each strobe,

1. The coordinates (xR, yR) for each subread R ∈ R indicate at most ε(|R|) insertions or deletions in

R (Equation (5.2)). The second constraint in (5.22) ensures this if R is in the forward orientation and

the second constraint in (5.23) ensures this if R is in the reverse orientation.

2. All subreads must be in the same orientation (Equation (5.3)). The first constraint in (5.22) ensures

this if strobe S is in the forward orientation and and the first constraint in (5.23) ensure this if strobe

S is in the reverse orientation.

3. The advance lengths are bounded by l and u (Equation (5.4)). The third constraint in (5.22) ensures

this if strobe S is in the forward orientation and and the third constraint in (5.23) ensure this if strobe

S is in the reverse orientation.

Second, we prove that the solution to the ILP is maximal in terms of Q(LS). To maximize the objective

function properly, the binary overlap variables βR,R′ must be 1 if and only if subreads R and R′ δ-overlap

in the solution and if that δ-overlap represents the pairwise alignment of R and R′. The constraint in (5.24)

ensure that βR,R′ = 1 ifR andR′ δ-overlap in the layout. Since αR,R′ must be zero or one, then one of (5.25)

or (5.26) ensures that βR,R′ = 0 if R and R′ do not δ-overlap. Finally, the configuration constraint (5.27)

ensures that the δ-overlapping subreads reflect the pairwise alignment configuration up to ω bases.

From Boolean Conditions to Linear Constraints. To convert (5.22) - (5.27) into linear constraints, we

employ a trick that allows “if/else” boolean conditions to become a set of linear constraints.

Lemma 5.2.2. Given a binary variable B and two linear inequalities X ∼ 0 and Y ∼̇ 0, where ∼ and ∼̇
are one of {<,≤, >,≥}, a boolean condition of the form

if B = 1 : X ∼ 0 (5.28)

if B = 0 : Y ∼̇ 0 (5.29)

can be transformed into a set of two linear constraints.



105

Proof. The main idea is to list X and Y and evaluate one or the other depending on the value of B. To do

so, we add a term to each of X and Y that makes the resulting inequality trivial for a certain value of B.

We first introduce a sufficiently large constant C to each constraint such that they are both automatically

satisfied,

if B = 1 :

X ∼ C if ∼∈ {<,≤}

X ∼ −C if ∼∈ {>,≥}
(5.30)

if B = 0 :

Y ∼̇ C if ∼̇ ∈ {<,≤}

Y ∼̇ − C if ∼̇ ∈ {>,≥}
. (5.31)

Now, we use B to set a coefficient of C to be zero or one. X ∼ 0 should be satisfied when B = 1 and

trivial if B = 0; thus, we set the coefficient of C to be (1 − B) in the first inequality. Alternatively, Y ∼̇ 0

should be satisfied when B = 0 and trivial if B = 1; thus, we set the coefficient of C to be B in the second

inequality. For example, for X > 0 and Y < 0 the boolean condition is equivalent to

X > −(1−B)C (5.32)

Y < BC. (5.33)

Such constraints are specified for general X ∼ 0 and Y ∼̇ 0, with ∼, ∼̇ ∈ {<≤, >,≥}.

Note that we may use this lemma by recursively applying it to inequalities whose non-linear terms may

be described as boolean conditions. Using this trick, we can now write the integer linear program.

Lemma 5.2.3. Maximizing Q(LS) with respect to constraints (5.22) - (5.27) over position variables x and

y can be written as an equivalent integer linear program.

Proof. First, observe that Q(LS) is a linear objective function; thus, it is a proper objective function for an

ILP. We now describe how each of the constraints in (5.22) - (5.27) may be transformed into a set of linear

constraints by recursively applying Lemma 5.2.2.

1. Position and Advance Constraints (5.22) and (5.23). With the use of a large constantC, the boolean
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conditions in the position and advance constraints are transformed into linear constraints,

− (1− ηS)C < yR − xR (5.34)

− (1− ηS)C + |R| − ε(|R|) ≤ (yR − xR + 1) ≤ |R|+ ε(|R|) + (1− ηS)C (5.35)

− (1− ηS)C + l ≤ xRi+1 − yRi ≤ u+ (1− ηS)C (5.36)

− ηSC < −(yR − xR) (5.37)

− ηSC + |R| − ε(|R|) ≤ (−(yR − xR) + 1) ≤ |R|+ ε(|R|) + ηSC (5.38)

− ηSC + l ≤ −(xRi+1 − yRi) ≤ u+ ηSC (5.39)

2. Overlapping constraints (5.24) - (5.26). The overlapping constraints incorporate both βR,R′ and

α′R,R into the coefficient of C:

(1− βR,R′)C + δ ≥ (max(xR, yR)−min(xR′ , yR′) + 1) (5.40)

(1− βR,R′)C + δ ≥ (max(xR′ , yR′)−min(xR, yR) + 1) (5.41)

− (βR,R′ + αR,R′)C + δ < (max(xR, yR)−min(xR′ , yR′) + 1) (5.42)

− (βR,R′ + (1− αR,R′))C + δ < (max(xR′ , yR′)−min(xR, yR) + 1) (5.43)

Note that these constraints are not linear due to the min and max terms. However, the min and max

terms can be written as boolean conditions,

if ηS = 1 :

min(xR, yR) = xR

max(xR, yR) = yR

(5.44)

if ηS = 0 :

min(xR, yR) = yR

max(xR, yR) = xR

. (5.45)

Thus, these constraints with min and max terms may be transformed to linear constraints. For exam-

ple, (5.40) becomes four linear constraints,

(
(1− βR,R′) + (1− ηS) + (1− ηS′)

)
C + δ ≥ yR − xR′ + 1 (5.46)(

(1− βR,R′) + ηS + (1− ηS′)
)
C + δ ≥ xR − xR′ + 1 (5.47)(

(1− βR,R′) + (1− ηS) + ηS′
)
C + δ ≥ yR − yR′ + 1 (5.48)(

(1− βR,R′) + ηS + ηS′
)
C + δ ≥ xR − yR′ + 1. (5.49)

3. Configuration Constraints (5.27). The configuration constraints may be written as the following.
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We slightly abuse notation for readability by defining e1 = ω + ε(|H1(R,R′)|) and e2 = ω +

ε(|H2(R,R′)|) to be the number of bases that the overlap configuration may be off by the alignment

configuration.

− (1− βR,R′)C − e1 ≤ Ĥ1(R,R′)−H1(R,R′) ≤ e1 + (1− βR,R′)C (5.50)

− (1− βR,R′)C − e2 ≤ Ĥ2(R,R′)−H2(R,R′) ≤ e2 + (1− βR,R′)C (5.51)

However, these are not linear yet due to the calculation of Ĥ1(R,R′) and Ĥ2(R,R′) in (5.19) and

(5.20). Thus, we apply the lemma again to produce linear constraints:

−
(
(1− βR,R′) + (1− ηS)

)
C − e1 ≤ (xR′ − xR)−H1(R,R′) ≤ e1 +

(
(1− βR,R′) + (1− ηS)

)
C

(5.52)

−
(
(1− βR,R′) + (1− ηS)

)
C − e2 ≤ (yR′ − yR)−H2(R,R′) ≤ e2 +

(
(1− βR,R′) + (1− ηS)

)
C

(5.53)

−
(
(1− βR,R′) + ηS

)
C − e1 ≤ − (xR′ − xR)−H1(R,R′) ≤ e1 +

(
(1− βR,R′) + ηS

)
C

(5.54)

−
(
(1− βR,R′) + ηS

)
C − e2 ≤ − (yR′ − yR)−H2(R,R′) ≤ e2 +

(
(1− βR,R′) + ηS

)
C (5.55)

Since constraints (5.22)-(5.27) are all transformed into linear constraints, then these provide proper con-

straints for an integer linear program.

We note that some of these linear inequalities may be simplified; in particular, the configuration con-

straints may be defined using only half of the number of constraints described above, as ηS may be used to

determine whether to add or subtract H1(R,R′) and H2(R,R′). However, this does not reduce the number

of binary variables, so for ease of exposition we leave the constraints as described. The complete ILP is

written in §A

Program Analysis For a set S of t-strobes, where |S| = n, there are 2(nt)2 variables due to the β

and α variables required for the overlapping and configuration constraints. However, we do not compute

alignments between subreads from the same strobe; thus, there are
(
t
2

)
variables that are fixed. There are

(2nt) position variables for the x’s and the y’s. With another n variables for the orientation vector η, there

are O(2(nt)2 − n
(
t
2

)
+ 2nt+ n) variables, which is quadratic in the number of subreads.

Remark 5.2.4. In the single-stranded case, where there is no reverse complement strand, ηi = 1 for all

strobes and the orientation vector is not necessary. Thus, the number of variables is reduced by n.
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Remark 5.2.5. If there are no indels in the subreads, we have the following additional equalities:

yR = (xR + |R| − 1) or (xr − (|R| − 1))

H2(R,R′) =

H1(R,R′) if R aligns to R′

|R|+ |R′|+H1(R,R′) if R aligns to R′c

Thus, the y variables can be written in terms of x variables and η variables, and the number of variables is

reduced by nt.

5.2.3 The ILP Assembler

We have shown that a solution to the integer linear program defined above will produce a strobe layout.

However, the number of variables in this program increases rapidly with the number of strobes. In particular,

while the number of position and orientation variables scales linearly with the number of strobes, the number

of α and β variables increases quadratically. Thus, an exact solution to the ILP can only be obtained for

only a small number of strobes. We employ a number strategies to reduce the number of variables in the

ILP.

Banning Overlaps. Based on pairwise alignments of subreads, we know that the majority of subread

pairs are highly unlikely to δ-overlap in the true assembly (when o(R,R′), for example). Thus, we set the

corresponding β variables to zero and do not consider them in the ILP. Each banned overlap reduces the

number of variables by one.

Forcing Overlaps. There may be pairwise subread alignments that we want to ensure are in the solution.

Thus, we set the corresponding β variables to one. Additionally, since the α variables are used only for

non-overlapping conditions then we arbitrarily set α. Each forced overlap reduces the number of variables

by two.

Incorporating Relative Ordering of Subreads. Forcing the overlap of two subreads provides additional

information about the other subreads in the relevant strobes. We define a subread Ria to contain another

subread Rjb if the forced overlap between Ria and Rjb is such that o(Ria , Rjb) = rjb .

1. Relative Subread Ordering. Suppose we have four subreads a,b,c, and d from different strobes, and

a contains b and c contains d. If a and c do not overlap, then the relative ordering of b and d are the

same as the relative ordering of a and c. That is, αa,c = αb,d. If a and c do overlap, then the choice

of α variables is arbitrary so they can still be equal. Specifying relative subread ordering reduces the

number of α variables if there are a few subreads that contain many other subreads.

2. Ignoring Impossible Alignments. Now suppose we have three subreads Ria ,Ria+1 , and Rjb , where

Rjb containsRia+1 andRjb aligns toRia with someH1(R,R′) and someH2(R,R′). We can compute
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the advance length between the contained subread and Ria if the alignment to Rjb and Ria is used

in the solution. If the advance length is now within the bounds l and u, then the ILP solution will

never choose this alignment for Rjb and Ria . Thus, we may ban this alignment or find a suboptimal

alignment of Rjb and Ria that respects the advance lengths.

Exploiting the solution structure to reduce the number of variables for the ILP using the strategies above

results in obtaining an exact solution to the ILP for a few dozen strobes. While this prevents a large number

of strobes to be assembled at the same time, we effectively assemble larger fragments by greedily assembling

a small number of strobes at a time, aggregating the assembled strobes in an iterative fashion by treating

the layout from one iteration as input strobes for the next iteration. This iterative method allows us to force

overlaps from previous iterations in the current iteration, which greatly reduces the number of variables

(Figure 5.5).

Derived Strobe Derived Strobe 

ILP Solution #1 ILP Solution #2 

Figure 5.4: A Derived Strobe from a layout of 3-strobes. The layout of 3-strobes produces a set of
contigs, which represent derived subreads that are linked by pairing information to produce a derived strobe.
Different layouts might produce different relative contig orderings; thus, while bounds are determined for
derived strobes, their absolute order cannot be determined.

Scaffolds as Derived Strobes. The iterative method hinges on the following observation. An ILP solution

provides a strobe layout consisting of sets of contigs organized into scaffolds. Suppose a scaffold consists

of k contigs. If we derive consensus sequences for each contig, we end up with k strings over the alphabet

Σ. Additionally, we can derive bounds on the distance between contigs in the scaffold. Thus, a scaffold is

similar to the definition of a t-strobe with different subread lengths and distance bounds on the advances

between the t subreads (Figure 5.4). Note that a scaffold is not quite the same as a strobe because of

the partial ordering of the contigs. We call strobes that are determined by scaffolds derived strobes to

differentiate them from the original input strobes, and we call the contigs derived subreads. Note that we

still use the term contigs to indicate the corresponding set of subreads, rather than the consensus sequence.

The notion of derived strobes reduces the number of variables in the ILP because every subread that

appears in a contig is a forced overlap. Additionally, we are now able to input a set of initial contigs into the

ILP that are easy to assemble, and let the ILP make the hard decisions for difficult regions.

There are six main components of the ILP Assembler: algorithm initialization, sampling strobes, de-

termining pairwise alignments, running the ILP, converting the ILP solution to an assembly, and algorithm
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Figure 5.5: Overview of the Iterative ILP Assembler. A set of initial contigs are established from the set
of strobes S. These contigs are formulated as derived strobes, combined with k strobes sampled from the
remainder of the set, and run through the ILP. The resulting strobe layout defines a set of new contigs and
scaffolds that are then passed as derived strobes in the next iteration. The method terminates when no ILP
solution is found or all the strobes are in the assembly.
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termination. We run the ILP using the CPLEX ILP solver, and we detail the other components below.

Algorithm Initialization. We begin with a set of initial contigs and scaffolds for easy-to-assemble regions;

we find these by constructing the fragment assembly string graph [96] from the top 90% pairwise alignments

that δ-overlap and selecting the longest edges from this graph. We then determine the derived strobes from

these scaffolds and combine them with a set of k strobes sampled from the strobe set S.

Sampling Strobes. We sample k strobes in the following way. First, we say that a subread is a floating

subread if it is not in the set of contigs and a fixed subread otherwise. We sample k/2 strobes with at least

one floating subread and at least one fixed subread (called anchored strobes), and we sample k/2 strobes

with no floating subreads (called unanchored strobes). Anchored strobes are constrained due to forced

overlaps of the fixed subreads to the corresponding derived subreads. Unanchored strobes, however, are only

constrained by pairing information and the subread overlaps. If we sampled unanchored strobes uniformly,

they might overlap with very few other strobes. If a strobe is under-constrained, we are in danger of placing

it in the incorrect position. Thus, we employ an sampling technique to avoid this issue (Figure 5.6). We

arbitrarily pick a derived subread and sample k/2 unanchored strobes where at least one floating subread

has a good alignment score with the derived subread. This localized sampling technique reduces the chance

that we misplace a strobe due to poor alignment information.

Determining Pairwise Overlaps. To run the ILP on the derived strobes and the k sampled strobes, we

must first determine all pairwise overlaps in the set. We ban all overlaps between derived subreads because

we assume that contigs do not overlap in the assembly. We also ban any overlap between subreads with a

smith-waterman alignment score of 0 and any alignment that is not a δ-overlap. We force overlaps between

fixed subreads and their corresponding derived subreads, and we ban overlaps between fixed subreads and

the other derived subreads. To determine the overlap of a floating subread Ria and a derived subread Rjb ,

we find the subread within the corresponding contig that has the best alignment score and calculate the

alignment offsets H1(R,R′) and H2(R,R′). If this alignment is incorrect or there is a misassembly within

the contig,H1(R,R′) andH2(R,R′) might represent an impossible alignment. If this is the case, we choose

the subread with the next best alignment, and so on. With this alignment information, we run the ILP on the

derived strobes and the k sampled strobes to produce a strobe layout LS.

Converting the ILP Solution to an Assembly. Once we find LS, we collapse the strobes and derived

strobes into a new set of contigs and scaffolds, where a contig contains subreads that δ-overlap in the strobe

layout as well as any original subreads from the derived strobes that δ-overlap. However, we must do this

conversion carefully, because the strobe layout provided by the solution is only correct up to the relaxation

parameter ω. In other words, if shifting one subread by a few bases satisfies all constraints and does not

change the optimal layout score, then the ILP solver will arbitrarily pick one of these solutions. Thus,
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Figure 5.6: Sampling technique used in the ILP Assembler. At a particular iteration in the assembler,
there is a set of contigs that contain anchored strobes; strobes where at least one subread is part of the contig
and at least one subread is not part of any contig (called a floating) subread. When we sample k strobes,
k/2 of them are anchored strobes (blue) and k/2 of them are unanchored strobes (green). Starred subreads
denote good alignments with the starred contig. Good alignments (determined from the ILP run) are then
merged into the contig for the subsequent iteration.
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we refine the strobe layout by going back to the subread sequences (for strobes) and consensus sequences

(for derived strobes) and re-aligning all δ-overlapping pairs according to LS. We do this in linear time

in a greedy fashion by scanning the layout from left to right and aligning pairs as we reach them; if the

subreads or derived subreads are very long we only align the first 500 bases. After we align we recompute

the position coordinates, which may shift up to ω bases. Once we have refined the layout, constructing the

consensus sequence from a substitution-only error model is trivial: each base is chosen by majority vote.

Once the consensus sequences for the contigs are established, scaffolds become the derived strobes in the

next iteration of the algorithm, k strobes are sampled once again, and the ILP is run.

Algorithm Termination. If there are no misassemblies, the algorithm terminates when all strobes are

incorporated into the assembly. However, the algorithm may terminate early if a misassembly is detected

and the method is unable to recover. There are many ways that misassemblies manifest in this method.

1. A subread in LS does not align well to other subreads that δ-overlap according to LS. This may

occur because the sampled set of strobes do not include any real overlaps to this subread and thus an

incorrect alignment with a poor score is chosen, and is partly corrected for with importance sampling

described above. Our method can detect misassemblies such as this in the layout refinement stage:

if the alignment of two subreads shifts the layout by more that ω bases, we assume that one of the

subreads is misplaced and the smaller of the subreads is removed. The removed subreads are placed

back in the set of strobes to sample, and will be chosen in a future iteration.

2. A strobe in LS results in a scaffold whose scaffold graph is not a DAG. This means that there’s

no possible linear order of contigs in the scaffold. Our method detects this and removes the entire

scaffold. If parts of the affected scaffold included initial contigs, then these are added again as derived

strobes. All other strobes are placed back in the set of strobes to sample, and will be chosen in a future

iteration.

3. Other misassemblies result in an infeasible ILP and the ILP solver terminates. The last set of contigs

and scaffolds are returned as the final assembly.

The number of iterations before the algorithm terminates varies drastically by the size of the input

contigs, the number of sampled strobes k, and the alignment thresholds tO and tN .

5.3 Results

We apply the ILP Assembler to simulated data from four different bacterial artificial chromosomes (BACs)

that have been hard to assemble with current technologies [27]: they are described in Table 5.1.
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Dataset GenBank ID Contig length # of Repeats Repeat % of Sequence Prevalent Repeat Families
B0 AF045449 32,613 36 17.90% Alu,L2,Mir,Mlt
B1 AF045450 40,205 54 62.60% Alu,Herv,Mlt
B2 AF129076 42,051 39 32.20% Alu,L1,Mer,Mlt
B3 AF015722 47,162 71 15.60% Alu,L1,Mer,The1b

Table 5.1: Hard-to-assemble BACs Selected for Strobe Sequencing Simulations.

We first demonstrate that the ILP Assembler accurately assembles these BACs with sequencing error as

high as 10%. We then show that our method outperforms current assemblers, even when they are provided

with the pairing information from strobes and optimal subread alignments.

5.3.1 ILP Assembler Results

Data Simulation. For each BAC sequencing, we simulated 3Kb strobes on the forward strand consisting

of three 200bp subreads and two 1200bp advances at 30X (B0-B3) or 15X (B4-B6) sequence coverage. We

then flipped the strobe orientation with probability 0.5, which included determining the reverse complements

of the sequences and reversing the subread order. Finally, we introduced 1%, 5%, and 10% substitution error

into the sequences, producing three different datasets.

ILP Assembler Parameters. We computed the end-space free alignments for all pairs of subreads that

were not from the same strobe using a score of +1 for a match and−3 for a mismatch (10% error) or−4 for

a mismatch (5% and 1% error). The indel penalty is 1000, ensuring that no alignment contains insertions or

deletions. We immediately discard any alignments that do not δ-overlap, where δ = 30.

To determine initial contigs, we constructed the fragment assembly string graph for the top 90% of

pairwise alignments, and we simplified the graph by removing nodes v with a single incoming edge (u, v)

and a single outgoing edge (v, x) and merging the overlaps from (u, v) and (v, x) into a single edge (u, x).

We select edges in the graph with more than 200 subreads involved in the alignments; we take care that

we don’t select two edges that represent the same region of the genome (both the forward and reverse

complement). We then convert the edges to layouts, and trim subreads within 200bp of the ends of the

layouts.

We run the ILP Assembler using CPLEX with k = 20 and ω = 10 and alignment thresholds of tN = 0

and tO = 1. We observed that while some iterations took hours for CPLEX to find an optimal solution,

most of the iterations took less than two minutes. Thus, we set a time limit on CPLEX to return after 5

minutes, and if a solution is not found within this time, we resample k and re-run CPLEX. If CPLEX returns

a suboptimal solution, we found that the layout refinement corrected any potential misassemblies produced

by the suboptimal layout; thus we use suboptimal solutions if they are found within 5 minutes. Results are

in Table 5.2.
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Contigs from String Graph ILP Assembler
Contigs Scaffolds % Contigs Scaffolds %

Dataset # N50 # N50 Assembled # N50 # N50 Assembled
B0 1% 4 9285 1 29659 91% 5 9285 1 30177 93%
B0 5% 5 14521 1 27103 83% 7 10609 1 29589 90%
B0 10% 4 14387 1 25594 80% 5 14423 1 28243 82%
B1 1% 9 4730 1 30250 76% 1 40188 1 40188 100%
B1 5% 8 4893 1 19882 76% 1 40188 1 40188 100%
B1 10% 7 3963 1 18896 67% 1 40188 1 40188 100%
B2 1% 3 32676 1 40876 96% 1 42034 1 42034 100%
B2 5% 6 13587 1 40062 93% 6 25746 1 44506 100%
B2 10% 4 32683 1 40705 95% 1 42034 1 42034 100%
B3 1% 8 9653 1 34797 83% 1 41061 1 41061 100%
B3 5% 7 9653 1 34630 82% 1 41091 1 41091 100%
B3 10% 9 3927 2 19463 66% 2 31838 1 44003 100%

Table 5.2: Initial Contigs and ILP Assembly Results. The initial contigs (Left) are constructed using the
string graph representation [96], and are used as the input to the ILP algorithm. The ILP algorithm (Right)
further completes the assemblies by adding unassembled subreads and merging contigs.

5.3.2 Comparison to Existing Assemblers

We compared our method to two assemblers: Velvet [158] and Bambus [140]. For both algorithms, we input

all the pairing information from the strobe sequencing dataset in the following way. For each 3-strobe, we

produced three mate-pairs that are simulated from two different insert libraries (Figure 5.7). This ensured

that the same amount of information was given to the Velvet and Bambus that was available in the ILP

Assembler.
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Figure 5.7: Converting Strobes to Pairs to Preserve Paring Information. Two paired reads with “short”
insert sizes and one paired read with a “long” insert size is created.

Since Velvet is a de-Bruijn graph assembler, at high sequencing error rates we do not expect Velvet

to produce accurate assemblies. The highly-fragmented assemblies, even at 5% error, indicates that the
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seed-based methods perform as expected (Table 5.3). For 5% and 10% error, where smaller k-mer sizes are

required to handle the higher error rate, the maximum N50 is 91bp.

k = 9 k = 11 k = 13
# #> 2k N50 # #> 2k N50 # #> 2k N50

B0 1% 44159 6 16 19179 331 30 4583 548 23122
B0 5% 92978 0 13 99565 1230 32 29332 3349 61
B0 10% 110484 0 12 189300 1943 33 55439 10239 91
B1 1% 54024 3 15 26480 356 28 5987 680 19572
B1 5% 102311 0 12 135179 1175 30 39702 4166 62
B1 10% 116621 0 11 252965 1655 31 73150 12689 85
B2 1% 50139 0 15 34208 283 26 8024 795 12034
B2 5% 92813 1 13 156510 987 29 50961 4281 61
B2 10% 108596 0 12 272288 1528 32 94435 12740 84
B3 1% 52013 1 15 29306 304 26 6904 703 23021
B3 5% 97958 1 13 144412 1056 30 43350 4195 61
B3 10% 113599 0 11 263326 1567 31 81010 12693 87

Table 5.3: Velvet Assembly Results. We ran Velvet for k-mer size of (k = 7, 9, 11, 13, 15); k = 9, 11, 13
is shown in this table. We use three statistics to describe the quality of the assembly: the number of contigs
(which are nodes in the final graph), the number of contigs that have length greater than 2k, and the contig
N50.

Since Bambus uses an overlap-graph approach to find an assembly, it performs much better than Velvet

in assembling the BACs up to 5% error (Table 5.4). However, at 10% error the hash-based aligner produces

bad alignments, resulting in a highly-fragmented assembly. To ensure a fair comparison to the assembler

portion of Bambus, we removed the aligner from the Bambus pipeline and instead inserted the top 90%

optimal alignments used by the ILP Assembler (“Modified Bambus,” Table 5.4), corresponding to the set of

alignments used to construct the fragment string graph. While Bambus produces reasonable assemblies at

10% error with the optimal alignments, there are still many more contigs and scaffolds than the assemblies

produced by the ILP assembler.

The comparison reveals that, even at lower error rates, the ILP assembler is more successful at assem-

bling the BACs than Minimus/Bambus. After scaffolding, Bambus selects a subset of the contigs in the final

layout; even this subset of contigs are more fragmented than the ILP assembler (Figure 5.8).
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Figure 5.8: Comparison of Assemblies of BACs with 10% Error. Each “dot plot” aligns the contigs pro-
duced by the assembly to the reference, each colored a different color. Assemblies from the ILP assembler
(Left) are more complete (less fragmented) than the assemblies from the Minimus/Bambus Assembler with
Smith-Waterman alignments (Right).
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Bambus Bambus w/ SW Alignments
Contigs Scaffolds % Contigs Scaffolds %

Dataset # N50 # N50 Assembled # N50 # N50 Assembled
B0 1% 63 8062 1 35187 98% 316 9740 1 31283 93%
B0 5% 281 593 2 49209 94% 324 7977 1 31839 92%
B0 10% 3864 209 81 496 11% 100 7943 1 35337 96%
B1 1% 87 3282 3 45485 96% 96 3931 3 40930 94%
B1 5% 380 504 5 68577 94% 78 3744 1 41969 96%
B1 10% 4757 208 110 483 12% 199 1361 4 43531 92%
B2 1% 17 33027 1 42086 99% 13 33027 1 42126 99%
B2 5% 320 688 2 63515 95% 34 13869 2 42376 99%
B2 10% 4904 209 111 504 13% 20 33016 1 42344 99%
B3 1% 89 3933 3 43056 96% 58 4158 2 43289 98%
B3 5% 289 567 3 61564 95% 62 4053 2 43067 97%
B3 10% 4890 209 100 501 11% 198 1498 9 45244 27%

Table 5.4: Bambus Results on Tangled Scaffolds. Original scaffolds produced by Minimus/Bambus are
“tangled”, and may undergo an optional untangling procedure. Here we report the Bambus results on the
tangled scaffolds, because untangling further fractures the assembly resulting in worse N50 values.
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5.4 Discussion

In this chapter, we have outlined an ILP-based de novo assembler. This assembler optimizes a strobe layout

score rather than building a graph and finding a path through this graph. This approach may be beneficial

over other, k-mer approaches as read lengths increase and sequencing error rates climb.

We have shown that, in terms of the number of contigs and scaffolds, the ILP assembler outperforms

current assemblers on relatively repeat-rich sequences using strobe sequencing data. In particular, it is

able to assemble genomes better than Velvet, which is a common assembly method using the de-Bruijn

graph, in terms of the contig N50 and the number of contigs produced. Additionally, the ILP assembler

produces a smaller number of contigs than Bambus, an overlap-graph assembler that is better designed to

handle assembling longer reads with higher error. Further, the assemblies produced by the ILP assembler

incorporates a larger portion of the subreads than Bambus, showing that the ILP assembly is more complete.

However, there are many limitations to this method; particularly that it is currently only suitable for

small, focused assemblies. That is, much of the assembly must be “easy” to assemble via other methods. In

this sense, the ILP assembler can be viewed as an “assembly finisher” to tackle the repeat-rich regions in the

assembly.

Additionally, this work conveys the importance of the pairwise alignments used as input to these meth-

ods; Bambus, for example, performs quite poorly using their internal aligner on higher error rates, while

the assembly construction is agnostic to the aligner used. In Table 5.4, we show that inputting the BLASR

alignments to the Bambus framework significantly improves the final assembly. This work has focused on

the assembler portion of the process, but careful attention must be paid to the alignments as well.



Chapter 6

Conclusion

It is important to identify and characterize structural variants in human and cancer genomes to gain insight

into genetic diversity and disease. Advances in genomic technologies have enabled the identification of

a number of structural variants, but these technologies typically require new algorithms to leverage the

full benefits of each technology. In this dissertation, we have described a number of technologies and the

methods we developed for inferring SVs.

6.1 Summary of Contributions

We have worked with two different types of genomic technologies, aCGH and DNA sequencing, with two

different end goals: (1) we inferred recurrent SVs from a group of individuals with the same cancer type,

and (2) we inferred SVs from a single individual. NBC generalizes the concept of identifying recurrent

intervals to identify recurrent breakpoints, which allows for interchromosomal SV detection. Similarly,

the algorithms aimed at DNA sequencing generalize the concept of paired-reads to multiply-linked reads,

which allows SV prediction from platforms other than next-generation paired-read sequencers. We briefly

summarize the major contributions of this dissertation.

6.1.1 Detecting SVs from aCGH Data

In Chapter 2 we describe NBC [125] to identify recurrent SVs from aCGH data from multiple individuals

with the same cancer type. This type of analysis is especially useful in the context of cancer, where we wish

to find SVs that may affect the progression of a particular cancer. Rather than identifying recurrent intervals

that imply duplications and deletions, NBC finds recurrent breakpoints in a probabilistic framework. NBC

is the first method for systematically inferring recurrent gene truncations and fusion genes from array copy

number data. We applied NBC to data from prostate and glioblastoma tumors, and infer a number of novel

fusion genes and gene truncations. These included the known TMPRSS2-ERG fusion gene in prostate

cancer, and a number of rearrangements involving the phosphatase PTPN12 in glioblastoma. Since our

120
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publication, PTPN12 has been identified as a known oncogene in breast cancer [137].

6.1.2 Detecting SVs from DNA Sequencing Data

With strobe sequencing data from a single individual, we developed the first resequencing methods to iden-

tify SVs from multiply-linked reads. The parsimony method [124] in Chapter 3 generalizes a previous

problem formulation from [52] and applies it to strobe sequencing data. The probabilistic method in Chap-

ter 4 incorporates the quality of strobe alignments to the reference genome and the expected number of

strobes that support an SV, which greatly improves over the parsimony assumption in simulation. Since

strobe sequencing has a significantly higher sequencing error rate, both algorithms are designed to handle

the large number of ambiguous alignments to the reference genome. In simulation, we demonstrate that

low-coverage strobe sequencing outperforms 30X coverage of paired-end sequencing in terms of detectabil-

ity of SVs and enrichment of correct alignments. Additionally, with the probabilistic method we show that

the alignment quality is useful to consider in paired-end sequencing, even though the sequencing error rate

is much lower than third generation technologies. Finally, we apply our methods to real strobe sequencing

data, including two inversions that are difficult to identify with paired-end sequencing.

Regardless of the DNA sequencing technology, there are still obstacles for SV detection using a rese-

quencing approach because it requires a reference genome, which is problematic for a number of reasons:

(1) single nucleotide variants appear as differences between the reference and test genomes, (2) the refer-

ence genome is highly-repetitive, so reads will still have ambiguous alignments, and (3) the current version

of the human genome draft (hg19) is still incomplete: there are 444 contigs that collectively represent the

23 human chromosomes. An alternate approach, which is becoming more attractive as the read length in-

creases, is to perform a de novo assembly of rearranged regions to prevent biases from the reference genome

in the SV predictions. In Chapter 5 we present the first steps toward this unbiased type of analysis, where we

explicitly use the pairing information as we construct a de novo assembly on small regions of the genome.

As with methods in the other DNA sequencing chapters, this method generalizes to multiply-linked reads;

however, the combinatorial formulation does not yet scale to many cancer genomes and thus our approach

is an assembly “finisher” that can be used after the easy-to-assemble portions are complete.

6.2 Future Computational Work and Applications

We designed the algorithms described in this dissertation with specific technologies in mind; NBC was

designed for aCGH data and the other algorithms were designed for Pacific Biosciences’ strobe sequencing

data. However, the methods themselves are applicable to a variety of technologies. We summarize the

overarching themes in this dissertation and describe how our techniques may be used in other settings.
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6.2.1 Identifying Recurrent SVs

Identifying recurrent SVs from a group of individuals is an important step for determining SVs that are asso-

ciated with a particular disease. While we focus on cancer applications, there are other types of case/control

applications. Analysis of DNA sequencing data from other genetic diseases such as autism [101,106] unveil

a number of recurrent SVs that may be associated with the disease.

NBC is applied to aCGH data from tumor genomes in our published work, but there are a number of

other technologies that can be used to identify recurrent SVs. As discussed in Chapter 2, there are a number

of limitations of aCGH data, including (1) the detectability of copy number variants (CNVs) rather than

copy-neutral variants, (2) limitations in the placement of probes along the genome, and (3) noise in the

measurements themselves. In contrast to aCGH, DNA sequencing provides a much higher resolution of

structural variation detection. Unlike array-based methods, shotgun sequencing of DNA provides a sam-

pling of all portions of a test genome, rather than measuring particular probe locations. DNA sequencing

technologies are becoming cheap enough that the concept of identifying recurrent SVs among genomes from

many individuals is now feasible, and we have begun acquiring a number of DNA sequencing datasets from

tumors from The Cancer Genome Atlas with the goal of analyzing them to identify recurrent SVs.

Identifying Recurrent CNVs from Read Depth One signal from DNA sequencing is the number of

reads that cover a particular base when aligned to the reference genome, called the read depth. Any DNA

sequencing protocol, including paired-read and single-read protocols, can be used to estimate read depth.

Read depth provides a “copy number profile” similar to the aCGH profiles, but at a much higher resolution.

Others have identified recurrent intervals using read depth from DNA sequencing data [28, 157], and this

type of data is immediately applicable to NBC. At the time of publication, relatively few tumor genomes

had been sequenced, and the small number was not enough to provide statistical significance for the set

of inferred CNVs. The Cancer Genome Atlas is currently working to release DNA sequencing data for

hundreds of tumors from over twenty different cancer types, so it is now feasible to determine statistically

significant breakpoints from read depth data using NBC.

Identifying a Broader Set of Recurrent SVs Using read depth for CNV detection is still limited by

the type of SVs detectable (namely duplications and deletions). Other signals from DNA sequencing data,

such discordant pairs and split reads, can be used to identify recurrent copy-neutral SVs such as balanced

inversions and translocations. An obvious first step is to run the SV detection algorithms on each sample and

compare the resulting predicted SVs, but one can imagine more sophisticated methods where all datasets are

considered simultaneously when predicting recurrent SVs. The first such formulation was presented in 2011

by [54], but was only demonstrated on mother-father-child trios. More recently, Genome STRiP [49] has

identified deletions across hundreds of genomes from the 1000 Genomes Project that were sequenced to low

(4x) coverage. For this framework to be applicable to hundreds of high-coverage genomes, the algorithms

must be scalable enough to handle potentially terabytes of data.
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Figure 6.1: “Virtual Strobes” from Next- and Third-Generation Sequencing Technologies. (Left) Iden-
tifying candidate split reads in paired-read sequencing data produces a virtual strobe with three linked reads.
(Right) As third-generation technologies produce longer reads, they might contain multiple SVs. Identifying
multiple candidate split reads from long reads produces virtual strobes with any number of linked reads.

6.2.2 Utilizing Multiply-Linked Pairing Information

Incorporating multiply-linked read information (when it is available) improves the performance of SV de-

tection (in Chapter 3) and the ability to assemble highly-repetitive regions (in Chapter 5). We use strobe

sequencing as an example of multiply-linked reads, there are a number of other scenarios in which multiple

segments of DNA from a single fragment are associated.

Multiply-Linked Reads from Next-Generation Paired-Read Sequencing The read length for paired

end sequencing has been steadily increasing; it is currently at 100-150bp for Illumina Hiseq, see Table 1.1.

With the increase in read length, there are opportunities to identify reads that span the coordinates of SVs

from next-generation sequencing data. For reads that span the precise breakpoints of the SVs, portions of

the reads align to disparate locations in the reference genome, resulting in split reads. Current methods for

split read detection from paired-read sequencing [1,60,122,155] “anchor” a read that is not split in order to

identify the paired read that is split. However, when considering paired-end data where one read contains

a split, there are three disparate locations that together comprise the true alignment for the pair (Figure 6.1

Left). We can consider this a virtual strobe with three subreads, where the advance lengths between the

subreads are different.1 The resequencing methods we developed are robust to a large number of ambiguous

alignments. Thus, rather than trying to identify the single correct split read alignment, we can input a set of

candidate partial alignments for each read. From these partial alignments we construct a valid set of virtual

strobe alignments and run our methods to determine the set of SVs best described by the data.
1One of the advances will be the distance between the paired reads, and the other advance will be a single base pair.
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Multiply-Linked Reads from Third-Generation Long Read Sequencing While the resequencing meth-

ods were designed with strobes in mind, the long reads produced by Pacific Biosciences and nanopore tech-

nologies such as Oxford Nanopore also present a relevant application of the “virtual strobe” concept. Pacific

Biosciences have published reads as along as 14Kb long, albeit with a 15% error rate. Oxford Nanopore has

reportedly sequenced a 48Kb long genome at a 4% error rate (see Table 1.1). As read length increases, a sin-

gle read may harbor multiple nearby or nested SVs. Again, partial alignments from long reads can constitute

a “virtual strobe” of multiply-linked regions, requiring our methods for SV prediction (Figure 6.1 Right).

Further, since our methods were designed for Pacific Biosciences data, they are robust to high sequencing

error rates of third-generation sequencing technologies.

6.2.3 Utilizing Alignment Quality in SV Detection from DNA Sequencing Data

For resequencing approaches, careful attention must be paid to the read alignments to the genome. Other

work has shown that using alignment quality [52, 119] and considering ambiguous alignments to the ref-

erence genome [53, 119, 134] improves the detection of SVs from paired-end sequencing data. Our work

in Chapter 4 demonstrates that considering multiple alignments along with alignment quality is particu-

larly necessary when considering technologies with higher sequencing error rates. We used PacBio’s strobe

sequencing to demonstrate this point, but other third-generation sequencing technologies such as Oxford

Nanopore report higher error rates than next-generation technologies (see Table 1.1).

6.2.4 Developing Algorithms for Data from Multiple Technologies

Many of the large data centers take multiple measurements of the same sample using different genomic

technologies. For example, The Cancer Genome Atlas provides both aCGH and DNA sequencing data for

each sample. Data of the same sample from multiple technologies may be combined to predict a more com-

prehensive set of SVs, or one technology may be used to verify predictions produced by another technology.

Additionally, new technologies are often first used to supplement data from existing, more established tech-

nologies. This, there is a need for algorithms that are applicable to data from a number of different genomic

technologies (such as aCGH and DNA Sequencing) and generalizable for a number of protocols (such as

next- and third-Generation sequencing technologies).

The methods described in Chapters 3-5 are immediately applicable to paired-end sequencing because

the multiply-linked reads from strobe sequencing is a generalization of paired-end sequencing. Specifically,

the probabilistic model for SV detection via resequencing explicitly models the sequence coverage and the

sequencing error rate of the DNA technology. However, a number of challenges remain for algorithms

that simultaneously analyze data from different technologies. Prior information about different technolo-

gies should be considered, including (1) confidence in older, more established technologies, (2) known

limitations in the detectability of technologies, and (3) details of the error models produced by different

technologies. For example, aCGH data would not be useful to help in the detection of inversions unless they
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are unbalanced inversions where the number of copies of DNA changes. However, if DNA sequencing data

implies a duplication or deletion near aCGH probes but the aCGH copy number profile appears to have a

normal copy count, then we might conclude that the DNA sequencing data is inferring an incorrect SV.

6.2.5 Additional Uses for the Small-Scale Assembler

The ILP-based assembler presented in Chapter 5 is described as an assembly “finisher,” to be used after

a partial assembly has been constructed. However, there are other opportunities for improving de novo

assemblies using the small-scale assembler. Here we describe an application of the small-scale assembler to

help resolve ambiguities in overlap graph-based de novo assemblers.

In an overlap graph, the edges are contigs and the vertices are junctions where one or more subreads

align to multiple contigs, presenting some ambiguity in the assembly. Some methods [23, 24, 110, 111]

incorporate pairing information after the overlap graph construction; this may resolve some, but not all,

of the vertices in the graph. The ILP assembler can help resolve the remaining vertices by considering

pairing information and alignment quality simultaneously in the following manner. Suppose we select a

vertex in the overlap graph with two incoming and two outgoing edges; the subreads in the vertex belong

to some set of strobes. If we assemble the strobe associated with some subread in the vertex, we will get a

set of contigs that represent a single optimal layout of the strobes (Figure 6.2). By greedily incorporating

strobes whose subreads appear in contigs represented by the adjacent edges, the two paths through the vertex

may be distinguishable. Thus, the node is resolved as two paths in the overlap graph. Using an assembly-

based approach for node resolution for multiply-linked pairs allows us to use both pairing information and

alignment information to resolve the node.

6.3 Future Biological Work and Applications

In this dissertation we present algorithms and analysis on both simulated and real datasets, but the the major

contributions are primarily computational. In many ways, the work presented here are “first steps” towards

answering much broader questions about genetic diversity in human populations and disease.

Identifying Biological Mechanisms of Structural Variation As we gain a better grasp of the SVs present

in a single individual (or recurrent SVs present in multiple individuals), we can begin to investigate the

underlying mechanisms and the potential effects of these SVs. For example, Figure 2.11a shows an inferred

fusion gene that might arise due to a tandem duplication. We also found support for a Breakage-Fusion-

Bridge event, a previously known biological mechanism, detected from DNA sequencing data in an Ovarian

tumor [104]. We found data supporting the event by manually looking for inverse tandem duplication

signatures in the set of SV predictions. This manual analysis is limiting, however; recently others have

begun to model mechanisms like the Breakage-Fusion-Bridge cycle [64].
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Figure 6.2: Resolving Vertices in the Overlap Graph. Assembling the strobes that are associated with
subreads from a vertex could potentially resolve the ambiguities represented by the vertex.

Tumor Organization and Progression in Cancer Genomes In cancer, there are a number of driver mu-

tations that promote tumor growth. The temporal order of these driver mutations has been a long-standing

question [146], but data limitations have made inference of the order difficult. In particular, a single sample

may contain cells from different sub-clonal tumor populations or the cells from the non-tumor genome.

Single-cell sequencing strategies [99] have emerged that eliminates the ambiguity of multiple cells se-

quenced in the same sample, but technological limitations remain [156].

Analysis to infer the genetic composition of tumors has been conducted using a number of different

technologies. For example, [103] has recently characterized sub-clonal populations using SNP data from

from a single sample with very high (188x) coverage, [42] performed exome sequencing of primary and

metastatic renal carcinomas, and [38] combined exome sequencing and copy number data to infer the tem-

poral order in skin and ovarian cancers. Additionally, CGH data [100] and single-cell sequencing data [99]

of multiple samples taken from the same tumor has shown a large amount of heterogeneity within a single

tumor.

Alternate Models of Cancer Progression Finally, we note that the model of cancer progression is not

completely understood. The standard assumption is that driver mutations are acquired in an incremental

fashion, and take years to accumulate. A recent hypothesis posed about cancer evolution is that, instead of

sequentially-acquired mutations, catastrophic events shatter portions of the genome and result in a simulta-

neous set of driver mutations. This type of event, called chromothripsis, has been observed in a number of



127

cancer types [14,136]. The improved prediction of “simple” SVs such as duplications, deletions, inversions,

and translocations will ultimately allow for the modeling of these more complex events.
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Maximize:

max
x,y

Q(LS)

Subject to
Position Constraints:

∀R ∈ S, S ∈ S :

0 ≤ xR, yR ≤ M

|R| − ε(|R|)− C(1− ηS) ≤ yR − xR + 1 ≤ |R| + ε(|R|) + C(1− ηS)

|R| − ε(|R|)− C(ηS) ≤ −(yR − xR) + 1 ≤ |R| + ε(|R|) + C(ηS)

Advance Constraints:

∀Ri, Ri+1 ∈ S,S ∈ S :

l− C(1− ηS) ≤ xRi+1
− yRi

≤ u + C(1− ηS)

l− CηS ≤ −
(
xRi+1

− yRi

)
≤ u + CηS

Overlapping Constraints:

∀R ∈ S,R′ ∈ S′
, S, S

′ ∈ S :(
yR − xR′

)
+ 1− δ ≥ −C(1− βR,R′ )− C(1− ηS)− C(1− ηS′ )(

yR − yR′
)
+ 1− δ ≥ −C(1− βR,R′ )− C(1− ηS)− CηS′(

xR − xR′
)
+ 1− δ ≥ −C(1− βR,R′ )− CηS − C(1− ηS′ )(

xR − yR′
)
+ 1− δ ≥ −C(1− βR,R′ )− CηS − CηS′(

yR − xR′
)
+ 1− δ ≤ CβR,R′ + CαR,R′ + C(1− ηS) + C(1− ηS′ )− 1(

yR − yR′
)
+ 1− δ ≤ CβR,R′ + CαR,R′ + C(1− ηS) + CηS′ − 1(

xR − xR′
)
+ 1− δ ≤ CβR,R′ + CαR,R′ + CηS + C(1− ηS′ )− 1(

xR − yR′
)
+ 1− δ ≤ CβR,R′ + CαR,R′ + CηS + CηS′ − 1(

yR′ − xR
)
+ 1− δ ≥ −C(1− βR,R′ )− C(1− ηS′ )− C(1− ηS)(

yR′ − yR
)
+ 1− δ ≥ −C(1− βR,R′ )− C(1− ηS′ )− CηS(

xR′ − xR
)
+ 1− δ ≥ −C(1− βR,R′ )− CηS′ − C(1− ηS)(

xR′ − yR
)
+ 1− δ ≥ −C(1− βR,R′ )− CηS′ − CηS(

yR′ − xR
)
+ 1− δ ≤ CβR,R′ + C(1− αR,R′ ) + C(1− ηS′ ) + C(1− ηS)− 1(

yR′ − yR
)
+ 1− δ ≤ CβR,R′ + C(1− αR,R′ ) + C(1− ηS′ ) + CηS − 1(

xR′ − xR
)
+ 1− δ ≤ CβR,R′ + C(1− αR,R′ ) + CηS′ + C(1− ηS)− 1(

xR′ − yR
)
+ 1− δ ≤ CβR,R′ + C(1− αR,R′ ) + CηS′ + CηS − 1

Configuration Constraints:

∀R ∈ S,R′ ∈ S′
, S, S

′ ∈ S :

xR′ − xR −H1(R,R
′
)ηS +H1(R,R

′
)(1− ηS) ≥ −C(1− βR,R′ )− ω − ε(

∣∣∣H1(R,R
′
)
∣∣∣)

xR′ − xR −H1(R,R
′
)ηS +H1(R,R

′
)(1− ηS) ≤ C(1− βR,R′ ) + ω + ε(

∣∣∣H1(R,R
′
)
∣∣∣)

yR′ − yR −H2(R,R
′
)ηS +H2(R,R

′
)(1− ηS) ≥ −C(1− βR,R′ )− ω − ε(

∣∣∣H2(R,R
′
)
∣∣∣)

yR′ − yR −H2(R,R
′
)ηS +H2(R,R

′
)(1− ηS) ≤ C(1− βR,R′ ) + ω + ε(

∣∣∣H2(R,R
′
)
∣∣∣)
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