Abstract of “Select Problems at the Intersection of Comp8téence and Economics” by Victor Naroditskiy,
Ph.D., Brown University, May 2010.

We apply computer science techniques to try to solve a sefeof problems that arise in economics and
electronic commerce. The problems we address and oursesalsummarized below.

The first problem is from the field of Mechanism Design. Thelgo#o find a procedure for allocating
identical items among agents with private values in the raatitat maximizes the total utility of the agents.
We approach this problem computationally: solutions atmbalgorithmically rather than through math-
ematical derivations. Our computational approach yieldgarly optimal solution greatly improving prior
results. In the case with 3 agents and 2 items, we were abled@a fprovably optimal solution.

Next, we address a game-theoretic problem of finding NaskliBga in auctions. We investigate when a
computational procedure finds an equilibrium in first andseédgrice auctions with discrete bids and values.

The rest of the thesis is devoted to automated decision makielectronic commerce domains. Three
domains are considered: sponsored search, supply chamgeraent, and simultaneous auctions. The last
two domains are studied in the context of the SCM and Trawas$idns of the Trading Agent Competition
(TAC).

Our contributions to automated decision making are bothtfwa and theoretical. On the practical side,
the bidding strategy we designed for sponsored searchoasds currently being used by a large advertiser.
Our work on TAC Travel culminated in winning the competition2006. In the TAC SCM competition, the
agent we built was among the top 5 out of over 20 agents alnvesy gear of the competition. For theo-
retical contributions, we characterized optimal straedor bidding in simultaneous auctions when prices
are known and complemented this analysis with an empirimalparison of different strategies. We identi-
fied that bidding decisions in TAC SCM can be modeled as a imma# knapsack problem and proved the
asymptotic optimality of a greedy algorithm for solving as$ of non-linear knapsack problems.
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Chapter 1

Introduction

In this thesis, we apply computer science techniques tootrgotve a selection of problems that arise in
economics and electronic commerce. Roughly speaking,aniributions can be divided into two parts. In
the first part, we use a computational approach to find selstio problems from economic theory. In the
second part, we design and implement agents for making @mnalgicisions in various electronic commerce
domains. The thesis is organized into chapters most of wdnietbased on previously published joint work
with other authors. The title of each chapter has a footnudécating the authors and, if applicable, the
original publication.

The first part of the thesis focuses on applying computensei¢echniques to problems in economics;
specifically, in mechanism design (Chapter 2) and game yhiirapter 3). Mechanism design and game
theory are concerned with problems where multiple setrested participants take actions to optimize utility
based on théncentivesprovided to them. The interplay between incentives andqgipaints’ behavior is at
the core of the disciplines.

Computer science optimization problems, on the other haset] to pay no attention to incentives. Most
classic computer science problems (e.g., knapsack, imgv&hlesman) are not concerned with multiple self-
interested agents. Instead, they are characterized bygle siacision maker seeking to maximize an objective
function assuming all factors that affect the objectiveratinfluenced by the decisions being made.

In the last decade, computer scientists have become itedri@seconomics. On the one hand, the concept
of incentives has been applied to computer science problemgs shortest path problem on a graph where
edges report their weights [82]). On the other hand, compaaientists have searched for computationally-
efficient solutions to classic economics problems (e.gmmaationally efficient VCG-like combinatorial
auctions [29]).

In this thesis, we employ computer science techniques tstigate economics problems in a different
way. The problem we study (in Chapter 2) is not a computemnseig@roblem but a problem from economic
theory, so we are not introducing incentives into a compst@nce problem. Further, we are not concerned
with finding a more computationally efficient solution toghiroblem as the problem has never before been
solved. Instead, we apply computational techniques teesavopen problem in economic theory.

Specifically, in Chapter 2, we focus on designing a proceflurallocating items among participants

1



in the manner that maximizes the total utility of all pagiants. ThisAllocation Problemmay arise when
conference rooms are allocated among employees or a connaanty to distribute a limited number of free
tickets to its employees. We approach this problem comioumaty: the solutions are discovered algorithmi-
cally rather than through mathematical derivations.

In Chapter 3, we address another problem from economicgeTive computationally study the problem
of finding Nash equilibria in auctions. While Nash equilibeiee known to exist, they can be described
analytically only for a very small class of auctions. We istigate when a computational procedure finds an
equilibrium in simple auctions for which no analytical cheterization exists.

In the second part of the thesis we use computer sciencedmate decision making in various electronic
commerce domains. The teragentwill denote a piece of software that makes decisions autousiy. In
contrast to the game-theoretic focus of the first two chaptaur focus from now on will concern decision-
theoretic problems.

We begin with a problem in the domain of sponsored search.n&ped search is a way for search
engines to monetize search activity and an opportunity doetisers to provide highly targeted ads. For
example, when a person searches for a laptop on Google,al@hgesults page displays relevant links along
with a few sponsored linkgi.e., ads) usually located above and to the right of the {sgmsored) search
results. Leading search engines sell ad space in auctichpramide advertisers with the ability to place
bids automatically. Large advertisers spend millions dfedls a year on sponsored search ads. The bidding
strategy has a tremendous effect on advertising cost arduev In Chapter 4, we design an effective strategy
for buying sponsored ads.

Making effective automated decisions in real-world doreagquires a lot of learning and, inadvertently,
some trial and error. The errors are bound to be expensivadenin live systems. The Trading Agent
Competition (TAC) provides a cost-free venue for desigrang evaluating automated strategies in certain
problem domains. In this thesis, we develop strategiesviorTAC divisions. We automate supply chain
decisions in the context of the Supply Chain Management (Bdiikion and study the problem of bidding
in simultaneous auctions in the Travel division.

A supply chain consists of three participants: supplieenufacturers, and consumers. Suppliers produce
raw materials that are sold to manufacturers who convertmaterials into finished products bought by
consumers. Supply chain management is concerned withioatih of raw material purchases and product
sales. Supply chain transactions add up to trillions ofadell year. Historically, procurement agreements
have been based on personal contacts among manufactudesspiiers. A limitation to this way of doing
business is that shopping for new contracts is relativepeasive as it requires personal negotiation. The
proliferation of information technology we have seen in thet few decades is likely to change the way
supply chain transactions are made. In all likelihood, tetetic marketplaces for procurement contracts
will soon become widespread providing manufacturers apglgrs with an easy and inexpensive way to
enter into agreements. A similar change has already talee in the consumer side with more and more
purchases being made online rather than in bricks-andamstdres.

An electronic marketplace offers participants more oggtifor buying and selling raw materials. Taking



full advantage of the extra flexibility requires manufaetsrto choose from a large number of possible pro-
curement contracts. Each desired raw material can be mddéarvarious quantities and with various lead
times. In the presence of multiple suppliers providing thme raw material and interdependencies among
raw materials, choosing the best procurement contractgasiating task. The task is complicated even fur-
ther as the appropriate parameters of a procurement codépend on demand for products as well as future
prices, both of which are uncertain. Computer science cawige algorithms that greatly improve human
decision making in the procurement domain.

Developing strategies for participating in an electronarketplace is an interesting and important prob-
lem. However, because it is too expensive to experiment rgilhcontracts, automated agent development
has to be carried out in a simulated environment. FortupafldlC SCM provides such an environment for
the supply chain domain. TAC SCM participants design sgiatefor computer manufacturers that buy raw
materials from suppliers and sell assembled computersstomers. The effectiveness of a strategy is eval-
uated based on its performance relative to strategies afttiex participants. Chapters 5, 6, and 7 discuss
solutions to some of the problems that arise when automatipgly chain decisions. Chapter 5 addresses the
problem of choosing which products to manufacture (scheeftwlproduction) given limited factory capacity
and uncertain demand for products. Chapters 6 and 7 tacktre difficult problem where sales decisions
are made in combination with scheduling decisions.

Another domain where we automate decision making is bidafirggmultaneous auctions. The problem
of buying complementary and substitutable items from dififie sellers is common in the real world (eBay is
the most notable example). To illustrate the problem, amrsh buyer interested in buying a cell phone and
a head set. The items are complementary; i.e., the buyeev#he cell phone/head set package more than
the sum of the values of each item alone. Not being allowedlbmit a single bid for the package, the buyer
needs to decide how to split the total value of the packagetimbd separate bids. If the buyer bids too high
on both items, she risks spending more than the value of tblkeaga. If she places bids that are not high
enough, she risks winning only one of the items for the prineva the value from having that item alone.
Strategies for bidding in simultaneous auctions are dissifn Chapter 8.

We continue investigation of bidding strategies in the €talivision of TAC. TAC Travel provides a
simulated market environment consisting of simultaneaus sequential auctions selling complementary
and substitutable items. We describe the details of the etitigm and the strategy of our winning agent in
Chapter 9.

A fundamental feature of most electronic commerce problisnisat decisions have to be made without
having accurate information about the future. Considec#se of bidding in multiple auctions. Bids must be
submitted before closing prices of auctions are known. éddelosing prices cannot be known beforehand
as they are determined by the bids. However, optimal biddegisions depend on the bids submitted by the
other agents making it necessary for a successful agenetticpthose bids as accurately as possible. The
predictions are inherently imperfect as the other agentsotimake their bids known before submitting them
and their bids also depend on their predictions of the bidb®ftompetitors. Robustness to imperfect pre-
dictions is a crucial feature of a successful agent. Chdftés devoted to an investigation of the robustness
of various strategies to imperfect prediction.



Our contributions to automated decision making are bothtjwa and theoretical. On the practical side,
the bidding strategy we designed for sponsored searchoasgds currently being used by a large advertiser.
Our work on TAC Travel culminated in winning the competition2006 (Chapter 9). Theoretically, we
characterized optimal strategies for bidding in simultargeauctions when prices are known (Chapter 8) and
complemented that analysis with an empirical comparisdifferent strategies (Chapter 10). We proved the
asymptotic optimality of a greedy algorithm for solving ass$ of non-linear knapsack problems (Chapter 7).

In the realm of economics, we demonstrated that computtiechniques can be used synergistically
with theoretical economics. Our results on a computatiseatch for Nash equilibria in auctions (Chapter 3)
are very preliminary, but point to potential avenues fotHar investigation. Our computational approach to
solving the Allocation Problem (Chapter 2) yielded solnidhat greatly improved prior results. For a certain
case, we found a provably optimal solution. We plan to appéydlgorithms used to solve the Allocation
Problem to other mechanism design problems with similagritice structures. More generally, we believe
that a computational approach is a fruitful direction folvéty a variety of economics problems.



Chapter 2

The Allocation Problem: Destroy to
Save

We study the problem of how to allocateidentical items among > m agents, assuming each
agent desires exactly one item and has a private value feuoaing it. We assume the items are
jointly owned by the agents, not by one uninformed centearsauction cannot be used to solve
our problem. Instead, the agents who receive items comfeetigzsse who do not.

This problem has been studied by others recently, and tbkitiens have modified the classic
VCG mechanism. This approach guarantees strategy-preofred allocative efficiency. Fur-
ther, in an auction setting, VCG guarantees budget baldmsmmuse payments are absorbed by
the auctioneer. In our setting, however, where paymentsealistributed to the agents, some
money must be burned in order to retain strategy-proofness.

While strategy-proofness is necessary for truthful impletagon, allocative efficiency (allocat-
ing them items to those that desire them most), is not always an apptegoal in our setting.
Rather, we contend that maximizing social surplus is. Iniserof this goal, we study a class
of mechanisms that may burn not only money but destroy iteswgedl. Our key finding is that
destroying items can save money, and hence lead to greatal sarplus.

More specifically, our first observation is that a mechansstriategy-proof iff it admits a thresh-
old representation. Given this observation, we restrietgibn to specific threshold and payment
functions for which we can numerically solve for an optimaehanism. Whereas the worst-
case ratio of the realized social surplus to the maximumiplesis close to 1 whem = 1 and 0
whenm = n — 1 under the VCG mechanism, the best mechanism we find coinwiilles/CG
whenm = 1 but has a ratio approaching 1 when= n — 1 asn increases.

1Based on [28].



2.1 Introduction

Suppose six roommates jointly own a car that seats five pedpley decide to take a weekend trip to the
countryside. While they all would like to go, there is not roéon all of them. Some really need the fresh
country air while others would not mind staying home. Thematates don't necessarily know one another’s
desires, but each of them knows her own true value of gettingbthe city. How should they decide who
gets to go?

More generally, we study a class of resource allocation Iprob, in whichn agents commonly own
m < n identical items that they wish to distribute among themsghassuming each agent wants exactly one
item, and has &aluefor that item which is known to her alone. As further examplase could think of
the allocation of free tickets for a sport event among clulmniners, or seats on an overbooked plane. This
kind of problem is often discussed in the literature on doth@ice where the goal is fairness, often under
the assumption that the agents’ values are commonly knoetthi assumption is rarely satisfied, and self-
interested agents will misreport their private values ihdoso would be profitable. This is why our primary
focus is incentives, instead of fairness.

Significant progress has been made in the field of mechanisigrden the general topic of incentives
since the seventies. Most research efforts have been detmtenderstanding what is achievable in the
presence of informational constraints (e.g., revelatigmgples in mechanism design). Professors Hurwicz,
Maskin and Myerson received the 2007 Sveriges Riksbanle RriEconomic Sciences in Memory of Alfred
Nobel for their groundbreaking contributions in this dilen. Much less is known, however, about how to
select a mechanism that is socially optimal, among thogeatigaincentive compatible. In other words, the
extension of social choice theory to problems charactéfigeasymmetric information remains an important
avenue of further exploration.

In this work we will focus orstrategy-proomechanisms, which require that it is a dominant strategy for
each agent to report her value truthfully. This requirenigfgss permissive, but more robust than Bayesian
implementation. In particular, agents are more likely @ dominant strategy than a strategy that is optimal
only when other agents play their part of the truthful eduilim. Perhaps even more importantly, dominant-
strategy implementation does not require any assumptibastahe distribution of the agents’ values (or
their beliefs), nor their attitude towards risk.

As for measuring the appeal of various strategy-proof meishas, we will apply a worst-case measure.
More specifically, if one fixes the agents’ profile of valuesg @an compute the ratio of the total social surplus
realized by the mechanism over the maximal total sociallssighat could be achieved, should these values
be publicly known. Since these values are not known, noreas firobabilistic distribution, the appeal of a
strategy-proof mechanism will be measured by the minimuthisfratio over all possible value profiles. We
call this ratio asocial surplus indexand we use it to determine a mechanism’s worst-case (uaragteed)
level of social surplus: reaching a levele [0, 1] means that a mechanism realizes at least a propattiain
the maximal social surplus f@averypossible profile of the agents’ values.

We assume that the agents can make monetary payments, dret that they havgquasi-linearutilities.

Our problem is different from those studied in auction tlyeofhere, any monetary payments go to the
auctioneer, who is usually assumed to have no private irdbam. The presence of such “residual claimants”



makes it easy to achieve budget balance. In our problem Jewthe objective is to redistribute as much as
possible of the payments among the agents themselves witlegatively impacting the incentives (agents
may have an incentive to misreport their values to receighdt compensation).

In addition to strategy-proofness, we also impose theviotig natural constraints Tgasibility. no more
thanm items can be allocated, and monetary deficits are not allgixedno external subsidy), Mdividual
rationality: each agent’s total utility is nonnegative, andaBjpnymity the allocation and payment decision
applied to each agent does not depend on her identity. Thatignave are interested in can now be stated
formally:

Find a mechanism that maximizes the worst-case social sslipiex among all those that are
strategy-proof, feasible, individually rational, and angnous.

Recently, two sets of authors (Moulin [78] and Guo/ConitZ&]) solved the above question under the
additional assumption that the items be allocated torthagents who value them most, at each possible
profile of values. Both their solutions (derived indeperibgrinvolved a class of mechanisms called VEG
mechanisms, which has received special attention in theageiz literature because they admit a simple
functional form (cf. Green and Laffont’'s [41] charactetina). Using a VCG mechanism guarantees an
efficient allocation of then items available, but not necessarily a good level of oveféitiency (as measured
for instance by the worst-case social surplus index), kezallocative efficiency may come at the cost of
“burning” quite a bit of money to meet the incentive consitailwhenm > 2). So it may be better, in terms
of overall efficiency, to destroy some items in order to saea@y. Indeed itis. It is not difficult to check that
it is impossible to guarantee a strictly positive ratio gstnVCG mechanism when = n — 1. On the other
hand, applying the best VCG mechanism after destroyingtengould secure a strictly positive ratio.

Still, applying a VCG mechanism after destroying some fixeohber of items is not the best strategy for
optimizing overall efficiency. As a first step towards sotythe general question, we offer a characterization
of all strategy-proof mechanisms in termgiofeshold mechanismge., an agent receives an item if and only
if her reported value is larger than a threshold vahat may depend on other agents’ repottalthough we
don't believe that this result has been stated explicitlpapers discussing the very same model as ours, itis
reminiscent of previous characterizations of VCG mechmasiésee, e.g., Green and Laffont [41]) and other
strategy-proof mechanisms in related models ([40]).

Though helpful in understanding the question, this charaition result does not immediately allow
us to solve it, because the feasibility and individual nadility constraints are nontrivial. The allocation
function of the VCG mechanism is constant once the agenhisésare ordered decreasingly (the agents with
the m highest values receive the items). In that context Guo andt@¥ [49] and Moulin [78] manage to
find the optimal payment function. The allocation functidrttte more general mechanisms that we study
is not constant making the search for the optimal mechanisne wifficult. We haven’t found yet a way of
solving the general question. But we have managed to igesgcific classes of threshold and compensation

2\/CG stands for Vickrey, Clarke, and Groves, who indepergefetfined and studied some of these mechanisms in various ¢entex

3This is a key distinction between our work and [50], wheretmiying the same number of items regardless of reported valass w
considered.



functions that allow us to partition the set of value profile® regions for which the resulting constrained
optimization problem is linear in values. We then solve ttitsproblem numerically.

Our approach is designed to achieve the right balance bettraetability, and showing that one can ob-
tain a significant improvement of overall efficiency if oneedaot rely on the technical convenience of VCG
mechanisms. Perhaps most striking is the case wheten — 1. As already pointed out, VCG mechanisms
cannot guarantee any strictly positive ratio in this casertHer, applying the best VCG mechanism after
destroying a fixed number of items does not guarantee a eajer tharl /2 (see numerical computations in
Guo and Conitzer [50]). Our method of “contingent destiuctiwill identify a mechanism that guarantees a
ratiol — ﬁ which rapidly approachesasn increases.

We conclude this introduction by discussing some relateddiure. Enhancing VCG mechanisms with
payment redistribution has been studied in various settilgiley [8] proposes a way to redistribute some
of the VCG tax in a public good domain. Cavallo [22] design®distribution mechanism for single-item
allocation problems, and provides a characterizationdi§teabution mechanisms for more general allocation
problems. As already mentioned, Guo and Conitzer [49] andlM$78] independently discover the optimal
VCG redistribution mechanism for the allocation domaindgd here. In [51], Guo and Conitzer derive
a linear redistribution VCG mechanism to maximize the eigetsocial surplus when the distribution of
agents’ values is known. Porter et al. [91] study the probdémillocating undesirable goods (e.g., tasks) to
agents in a fair manner.

Most related to our work is the work of Guo and Conitzer [50farng from the same observation
as ours that applying a VCG mechanism after destroying a fixedber of items may increase the worst-
case social surplus index, they study mechanisms whereutider of items destroyed may be a random
variable. Introducing lotteries implies that one must tadte account the agents’ attitude towards risk. Guo
and Conitzer’s analysis requires the agents to be risk aleutfso, the feasibility and individual rationality
constraints hold only in expectation. Perhaps most impttathe lottery that determines how many items
to destroy does not vary with the players’ reports. The keigimt we offer in the present work is that one can
improve upon the optimal VCG redistribution mechanism withusing lotteries, if one applieontingent
destructiorrules. If one is willing to use lotteries, then it may be ofirdst to combine the insights from our
two papers, making Guo and Conitzer’'s random variableswithyreported values.

Other directions have also been followed when allowingdttekies. Faltings [34], for instance, proposes
a mechanism that picks an agent at random, and makes hincipeerg of the VCG payments. The mecha-
nism, which applies to domains more general than our allmeatomain, achieves budget balance. However,
if one applies this mechanism to our allocation domain, @es $hat the resulting allocation is not efficient
(unless the chosen recipient happens to value the itemhasghose who are allocated an item).

This chapter unfolds as follows. Section 2.2 formally stdkee problem we are studying. We characterize
strategy-proof mechanisms for the allocation domain inie@.3. A computational method of searching
for an optimal mechanism in a restricted setting is propaseékction 2.4. Numerical results in this setting
are presented in Section 2.5.



2.2 Definitions

An allocation problemis a triple (n, m,v), wheren is the number of agentsp < n is the number of
(identical) items available to allocate, and= R’ represents the agents’ satisfaction from consuming one
item (agents do not care for consuming multiple units). Wariet attention to value profiles such that

vy > vy > ... > v, > 0. This is without loss of generality since our problem ineshonly anonymous
mechanisms. Monetary compensations are possible, artiestire quasi-linear. The space of possible
values is theV = {v € R} | v; > v > ... > v, > 0}. An allocationis a pair(a,t) € {0,1}" x R",
wherea; = 1 if and only if agenti gets one item, ant] represents the amount of money that ageeteives
(this number can be negative, of course, in which case ageats that amount). Hence, the total utility of
agenti when implementing the allocatidi, t) is a;v; + t;, if her value for the item i®;. A mechanisnis

a pair of functionsf : R — {0,1}™ andt : R — R™. Thus, it determines an allocation for each possible
report from the agents regarding their value for the itene Féctorv_; € R"~! denotes values of the agents
other than agent and the vectow can be written agv;,v_;). We focus on mechanisms that satisfy the
following constraints:

e Feasibility: no more thanm items should be allocated, and the sum of payments to thésagleould
be less than or equal to zero, for all value vector other words,

> filv)<mand» t(v) <0 VeV
=1 =1

e Strategy-proofnesdt is a dominant strategy for each agent to report her vaiughfully. Formally,
Yo € V,i,v;

fi(viv_i)vi + ti(vi,v_3) > fi(vj, v_s)vi + t;(vj, v_;)

¢ Individual Rationality Itis in each agent’s interest to participate in the meckanfor all value vectors
v, i.e.

fi(l})’Uz' + tl(v) 2 0 Vv S V,Z

We now define the index that we will use to measure the oveffadiency of a mechanisnif, ) that is
implemented truthfully (an equivalent index was used in [#8 50]). If the true value vector is then the
(utilitarian) surplus realized by the mechanism is equa¥}0 , [v; f;(v) + t;(v)]. This absolute number is
less interesting than knowing how far it is from the firstd®aution, i.e. the maximal surplus one could
achieve if the agents’ values were known. In order to havendex that is unit-free (i.e. homogenous
of degree zero), it is natural to consider a ratio. Finaligcs the agents’ values are not known, nor their
probabilistic distribution, it is natural to consider thenst-case index. To summarize, the index that we will
use to measure the performance of a mechaffsm) that is truthfully implemented is given by the following

number:

min Yo [fi(v)vi 4 ti(v)]

n )
veV MaXge F(m) Zi:l Qa;V;
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where F(m) = {a € {0,1}"Y." ,a; < m}. Finding a mechanism whose indexdsmeans that a
proportiona: of the maximal total surplus is achievaddependentiyf what the true values are. Following
the convention; > vo > ... > v, > 0, the denominator becom&s’” | v; and we write the index as

min S L fi(w)vi + t3(v)]

veV Z:il V;

The formal content of the question stated in the Introductian thus be summarized by the following

optimization problem:

max min 2izlfi (ZL)UZ +4i(v)] (2.1)
(f.t) veV Ei:l V;
d fivy<m YoeV (2.2)
i=1
D ti(v) <0 YweV (2.3)
i=1
fi(viv_i)vi + ti(vi,v_3) > fi(vj, v_)vi + t; (v, v—;) Vv € V,i,0; (2.4)
fi(v)vi + t,;(’U) >0 YveV,i (25)

2.3 A Characterization of Strategy-Proofness: the Threshold Mecha-
nisms

The allocation domain places strong restrictions on valunetions of the agents. Specifically, an agent’s
value is zero in all outcomes where the agent is not allocatedem and the private valug > 0 in all
outcomes where the agent is allocated an item. We use thigties on the values to characterize strategy-
proof mechanisms in the following propositién.

Proposition 1 An allocation mechanisrtyf, ¢) is strategy-proof if and only if it is a “threshold mechanism
meaning that, for each= 1, ..., n, there exist a threshold function : R”,~' — R U {cc} and a compen-
sation functiorr; : R”,~' — R such that

fi(v) =0 andti(v)

Ci(U,Z‘) if v < Ti(U,i)7

{ Fi(0) = 1andt;(v) = ci(vos) — 7(vs) 0 v > a(v_s)

or

ci(v,i) — ’7'1'(’071') if v > ’Ti('U,i)

fz(’l)) =1 andti(v)
fi(v) =0 andti(v) = Ci(U,i) if v; < Ti(U,i).

4We thank Yves Sprumont for pointing out this simple result to us
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Remark The threshold mechanisms are easy to interpret. Each aayss & personalized price (the thresh-
old) that is determined by the reports of the other agents.dglts the good if and only if her reported value
is (strictly) larger than this price, and must pay it in exepe. The collected money can be redistributed to
some extent to the agents via the compensation function VO mechanisms form a special case, where
i’s threshold is then'" largest component af ;.

Proof The sufficient condition is straightforward to check. So wevide an argument only for the necessary
part. Fixi and the reports_, from the other agents. Strategy-proofness implies that

fi(v) = fi(vz{av—i) = ti(v) = ti(vz{’v—i)v (2.6)

for all v;,v}. Itis easy to writgf, t) as a threshold mechanismjif(v) = 0, for all v;, or f;(v) = 1, for all
v;. Suppose thus that there existsv; such thatf;(v) = 1 and f; (v}, v_;) = 0. For any such pair, strategy-
proofness implies that; + ¢;(v) > t;(v},v_;) > v, + t;(v). Hencev; > v.. The space of agent’s values
v; € R, can be partitioned in two intervals based on the mappingheef; (v;,v_;) = 0 or f;(v;,v—_;) = 1:
there exists a threshold, denotedv_; ), such thatf;(v) = 1 if and only if v; > 7(v_;) (or fi(v) = 1if
and only ifv; > 7(v_;)). Given (2.6), lett!(v_;) (resp. t?(v_;)) be the payment made bywhen she
receives (resp. does not receive) the item. Strategy-pessfimplies that(v_;) + €+t (v_;) > t9(v_;) >
7(v_;) — €+ t} (v_;), for eache > 0. Making e tend to zero, we conclude thdt(v_;) = t?(v_;) — 7(v_;),
and the result follows by taking=1t?. i

If we add anonymity to strategy-proofness in Propositioth&,mechanism will change only in dropping
indexes: from 7 andc. For notational convenience from now on we will restrict afiention to generic
profilesv where all components are distinct. This restriction isddtrced without loss of generality as we
can extend the mechanism to all value profiles (includingorsavith equal components) by using uniform
lotterie to break ties, as is usually done in papers on auctions.

This characterization of strategy-proofness is remimiso€other well-known results for VCG and other
more general strategy-proof mechanisms (see [77, 73])s@trsimilar to Proposition 1 appears in [40] in a
slightly different context.

We restrict our attention to the first class of mechanismatitied in Proposition 1 (the one with, >
7;(v_;)) and restate the constrained optimization problem (21}(using the threshold characterization:

The first constraint is the feasibility constraint with respto the items being allocated, while the second
constraint is the feasibility constraint with respect tonayp (the sum of all compensations or rebates should
be no more than the sum of the money collected from the ageatgét an item). The third constraint is the
individual rationality constraint (remember that an agewtlue must be larger than the threshold when she
gets an item, and so the IR constraint is trivially satisfiadhfer as well).

5Suppose for instance that agérshould receive an item, and that more tharother agents have the same valug.a&nonymity
would then come in conflict with feasibility. A uniform lottemwill then be used to determine which subset of agents wilbiker
the item, among all those that have the same value. Even so, yhegeats react to risk is irrelevant because all the outcoriibg o
lottery are equivalent in terms of utility. Specifically, tlodtery is between receiving the item worth at the pricep; and receiving
compensatior; such that; = v; — p;.
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For the allocation problem with, items andn agents
1. Chooseé: andp to select a threshold function satisfying Assumption 1

2. For each such threshold functiog),
(a) find the optimal compensation functiog, that satisfies Assumption 2

3. Choose the mechanism,, ci;) that obtains the highest percentage of the optimal utility

Figure 2.2: Algorithm for finding an approximate solutiortbh@ mechanism design problem

° iG{(p+1)...m}

if v > k’l}p: fi =1
av—; if kvp > vy

t; = —max(kvy, Um11) +
bv_; otherwise

) av_; if kv, > vpa1
otherwise: f; =0, t; = ’ p= T
bv_; otherwise

av—; if kv, > vy,

0i€{(m+1)...n}: fi=0t=
bv_; otherwise

By the definition of the threshold functian= max(kv” ;, v™,), there aren — p + 1 possible allocations
(the firstp agents get the items, the first+- 1 agents get the items, ..., the first agents get the items)
determined by the position dfv, amonguv, ... v,,. The compensation functianis resolved to one of the
two linear functions(av_; or bv_;) when the position okv, relative tov,, andv,,41 and the position of
kvp41 relative tov,,; are determined. Each region below is defined to have a cdmsiarber of allocated

items and a linear compensation function (i.e., resolvestterav_; or bv_;).

Vie{p...m}, j € {max(p+1,j)...m}
Vig={wveViu>...2v,>...>2v; > kv, >vj41 >
2V 2 kUpp 1 U1 > 2 U > > Uy )

Vie{p...m}
Vimii={veViyi>...>v, > ... >v; > kvp, > vj41 >
o2 U > > 0y AND w1 > kupy }

Vm+1,m+1 ==
{veV|vy >...> v, AND vy,+1 > kv, AND vy 1 > kvpya}

The collection of regions above partitions the spaee V| vy > vy > ... > v, > 0}. We group constraints
by the regions and state the optimization problem in Figuse [Qotice that on each region the constraints are
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of the formdv > 0 for somed € R™, which means that they are satisfied\at(V\ > 0) as soon as they are
satisfied ab. Hence we can assume without loss of generality that 1 and focus on polytopes of vectors
(va,...,v,) € R*~! characterized byn + 2) inequalities:

v; > kvp

kvp > vjt

v 2 kvpia

k’Up+1 2 Vjr4+1

Up—1 = Up

vy >0

Extreme points of these polytopes have the propertysthatl of these inequalities are binding. It is
easy to check that this is possible only is the variablgs. . , v, take the values, k, k2,0. Therefore all
of the extreme points are of the fort, ..., 1,k, ...,k k%... k%, 0...,0). Making sure the constraints
hold on all such vectors guarantees that the constraintsdwelrywhere orv; ;. Now the linear program in
Figure 2.3 can be stated with a finite number of constraints.

Example As an example consider the allocation problem with: 3, m = 2 and the threshold function with
k= .5,p= 1. 7 = max(.50v!,,v?,). The threshold function for ageittis max(.5vq,v3) < v;. So agent
1 is always allocated an item. The threshold for ageistmax(.5v1, v3). Agent2 is allocated an item only
whenvy > .5v;. Agent3 is never allocated an item as the threshold for agésinax(.5v1, v2) > vs.

The compensation function is linear when in addition to thecation the position of5v; and.5v,
relative tovs is determined. Taking; = 1 we can represent this on a 2-dimensional graph (Figure 2.4).
The space is divided into 5 regions, with each region havitigesar compensation function and a fixed
allocation. To make sure the constraints hold for{alle V| v; > vy > v3}, we just need to enforce each
region’s constraints on its extreme points. For example etktreme points of the right bottom region after

addingv; = 1 as the first component are (1,.5,0), (1,.5,.25), (1,1,15),,0).

2.5 Results

We find mechanisms for different values mfand m using the computational approach described in Fig-
ure 2.2. The class of threshold functions we consider isngiwe all pairs(k, p) wherek takes values in
{0,.025,.05,...,.975} andpin {1,2,...,m — 1}. We used CPLEX 11.2.0 as a linear program solver.
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max r
a,b€R"—1 rcR

vie{p...m}, j' E{max(p+1 Jj)..m}, v eV

J

Zvi—zp:kvpﬂ Z kvp—i—z c(v—s;a,b) >r2vz
i=1

i=1 i=p+1

ch i;5a,b) <Zkvp+1+ Z kvp
=1

i=p+1

3

(U i;a7b) ZO Vi
Vi€ {p...m}, Vv € ij+1

i:vi—zp:va Z kvp—i—z c(v—s;a,b) >r2v1

i1=p+1

Z c(v—s;a,b) <va+1+ Z kvp
=1

i=p+1
c(v_s;a,b) >0 Vi
Yv € Vm+1 m4+1

m m

qu va+1+z c(v—s;a,b) >TZ’U7
ln m

Z c(v—s;a,b) < vaH

i=1 =1

c(v_i;a,b) >0 Vi

Figure 2.3: Linear program with constraints grouped byargl/; ;.

Figure 2.5 illustrates the results we generate for eacimgeif n, m, andp. The value for the parameter
k is varied along the horizontal axis. For each value:pthe corresponding threshold functionzis=

max (kv ., v™,), and we can solve the linear program in Figure 2.3 to find aimgptompensation function

ckp. The ratio for each mechanisfmy,, cxp ) is plotted for the correspondirigvalue. We refer to the resulting
graph as th@erformance curveWe scan the values @ffor the one that has the highest ratio. In Figure 2.5,
the best ratio is fok = .20. Notice that the shape of the curve suggests that thereysooel peak. We try
other values ot around.175 to find the peak at = % In all of our results we noticed that the performance
curve as a function df is single-peaked.

The threshold function witlk = 0 corresponds to the efficient allocation function and thelmmasm we
find for k = 0 is the best VCG mechanism. The ratio of the best VCG mechaappears at = 0 and as
argued before is zero when=m + 1.

For any fixed values of andm we found that a mechanism withset tom — 1 achieves the highest ratio.
This setting ofp means that at most one item is destroyed. This result is stemsiwith the one obtained
by Guo and Conitzer [50] for randomized VCG mechanisms. Timelthat the best mechanism randomizes
between destroying one item and not destroying any items.pBinformance curves for different valuegof
are shown in Figure 2.6. Notice that the highest ratio isiobthon the graph fop = m — 1 =8 (k = .1).
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Figure 2.4:(v; = 1) Regions where the number of allocated items remains cdrstahthe compensation
function is linear for 3 agents and 2 items. Each region isledwith the coefficients used in the compen-
sation function for each agent, e.g. (b,a,a) means thatampensation functions for agents 1,2, and 3 are
bv_1, av_s, andav_3 respectively. One item is allocated to the left of the veltime vy, = k and two items

to the right.
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Figure 2.7: Performance of the mechanisms as a functioreafdimber of items.

The mechanisms we find provide the most improvement whenutmbar of items is close to the number
of agents. In the extreme case wher= m + 1 our mechanism achieves the rati§ of— ﬁ while the
VCG mechanisms have the ratio @f Our ratio becomes closer to the VCG ratio as the number ofsite
becomes smaller and approximately around= 3 the ratios and the mechanisms coincide. Figure 2.7
shows this trend fot0 agents and varying number of items.

In our threshold algorithm the paramegeis set tom — 1 allocating at leastn — 1 items. Also plotted
are the ratios achieved by the best VCG mechanism as weleastib achieved by the mechanism that first
destroys a fixed number of items and then applies an optim#& Wf@chanism (see deterministic burning
mechanism in [50]). All mechanisms coincide when the nunabé&ems is4 or fewer.

We now illustrate the kind of mechanisms we find. Recall tlabfam where six roommates (i.e., agents)
need to distribute five seats in the car (i.e., items). Foagents and five items our mechanism is given by
the following parametersk = %, p = 4, a = (0,0,0,0,0), b = (0,0,0,—%,1). Under the mechanism,
the first 4 roommates always go and each of them [%aags Allocation and payment for agents 5 and 6 is
determined as follows:

o if vy > %114

— roommate 5 goes and paﬁm

— roommate 6 does not go and géts — ém)
o if ug < %1)4

— roommate 5 does not go and gets

— roommate 6 does not go and géts

81t is not difficult to check that this ratio is achieved by tliéwing mechanism that meets the requirements of strategyfpess,
feasibility and anonymityr(v_;) = max(2+™;"*,v™,) and the coefficients = (0,...,0) andb = (0,...,—1,1)

n =i
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2.6 An Upper Bound

In previous sections, we described a computational apprimdinding the best mechanism from the class
of mechanisms satisfying certain simplifying assumptiomshe payment and threshold functions. A natural
question to ask is how much worse are the mechanisms we findarechto an optimal mechanism that is
not restricted by any assumptions. Although, we do not krfzevratio of the optimal mechanism, we can
find an upper bound on the ratio.

Recall the problem of finding the best mechanism in Figure ZHe problem is difficult because opti-
mization is over arbitrary functions and there is an infimitenber of constraints: the constraints must hold
for eachv € V. Consider enforcing the constraints only on a finite subgoints V' c V. The ratio
achieved by an optimal solution to the problem with only asailof constraints enforced is at least as high as
the ratio achieved by an optimal solution when all constsagme enforced, thus providing an upper bound.

Checking constraints on a finite set of value profilésnvolves a finite the set of compensations and
thresholds. For example, #f = {v*,v'} with v* = (z*,y*, 2*) andv’ = (z/, 4/, 2'), then we only need to
know the values of andr at (y*, 2*), (z*, z*), (z*,y*), (v, 2'), (¢, 2’), and(z’, y’). An upper bound can
be found by solving the optimization problem where valuethefthreshold and compensation functions are
given by the variables,_, andc,_, for all relevantv_;.

We cannot solve the problem even with a finite humber of caimgs because some of the constraints
are nonlinear. To see why this is the case, consider an eranitil 3 agents. The value of the variablg
determines whether or not the last term is present in thédiéigsconstraint for the value profiléz, y, z)

Cyz + Cpz + Coy — Tyz — TIZl{yZ‘Fa:z} <0

However, if the allocation is determined for all value predib € V, then the optimization problem is
linear and can be solved using linear programming. For m&athe feasibility constraint for the profile
(z,y, z) is linear when agents 1 and 2 are allocated

Cyz + Caz + Cwy - Tyz — Tz S 0

There are multiple threshold values that support a givestation. While choosing an allocation does not
determine the values of the threshold variables, it doeseplastrictions on the values the thresholds can
take. For instance, allocating to agents 1 and 2 when valube @gents aréz, y, z) means that the values
of agents 1 and 2 are above the corresponding thresholdduatue of agent 3 is below:

T2 Ty,

Y 2 Trz

2 < Tay
Before we proceed, we assume that the mechanisms we cossitildly a natural property: the ratio
achieved by a mechanism does not depend on units in whidty isilmeasured. For example, the ratio
remains the same when we change the units from dollars todsoum other words, the ratio must be

homogeneous of degree 0. This is achieved when the threashdldompensation functions are homogenous
of degree 1.
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Figure 2.8: Upper Bounds

In the next section we derive an upper bound for the simplasitrivial problem: the problem with three
agents and two items.

2.6.1 An Upper Bound for Three Agents and Two ltems

In a problem with two items, either one or two items must becaited for any profile of values to achieve
a non-zero ratio. First, we characterize how the ratio iscéfd if one item is allocated when the profile of
values is(1, k, z). The maximum social surplus af+ k is achieved when agents 1 and 2 are allocated and
no money is burnt. If only one item is allocated, the highesia surplus is 1. It is achieved when the item
is allocated to agent 1 and no money is burnt. The correspgnuircentage of the social surplus achieved
is Hik Since the percentage is at mq{ﬁ for the profile we considered, the (worst-case) ratio is also
mostp%k. In other words,lﬁ is an upper bound on the ratio when one item is allocated fadw@eprofile
(1, k,-). A graph of the upper bound as a function of the value of thersgtagent appears in Figure 2.8(a).
The value of the upper bound at= £ is .75; i.e., the ratio is at most .75 if one item is allocated for any
value profile(1, §,2) s.t. # < . The value of the upper bound at= 1 is .5; i.e., the ratio is at most .5
if one item is allocated for any value profi(é, 1, z) s.t. z < 1. Allocating one item when the value of the
second agent is abov?results in an upper bound bela®s. Therefore, a mechanism that achieves a ratio
above.75 must allocate two items whenever the value of the secondtagjeboves. More generally, if a
mechanism achieves the ratio abq\}&, it must allocate two items for all value profiles with > k. Next,
we compute an upper bound on the ratio that can be achievedtwidtems are allocated for all such value
profiles.
Knowing the number of items allocated does not tell us whiphras get the items. It seems natural that
the agents with highest values should be allocated. It isdddhe case for the problem with three agents and
two items as we show in the Appendix. Therefore, in the cassidered here, the allocation is determined

for all value profiles withwy > k. As we argued earlier, the optimization problem posed inE@.1 can be
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viewed as a linear program when the allocation is determioedll value profiles. To make the number of
variable and constraints finite, we restrict attention taaeisubset of value profiles for which two items are
allocated. In particular we pick the profiles where the valfieach agent is, k, or 0; i.e., we only consider
the value profileg1,1,1), (1,1,%), (1,1,0), (1,%, k), and(1,%,0). Note that(1,0,0) is not included as
vy = 0 < k and, therefore, only one item is allocated. The optimizapooblem in Figure 2.1 becomes a
linear problem with the variables, 1%, 710, Tkk» Tk0s €11, C1k» C10+ Ckk» Cko- Ve SOlve the linear program
for each value of and plot the resulting upper bound in Figure 2.8(b).

The value of the upper bound at= £ is .75 telling us that the ratio is upper bounded b if we
allocated two itemdor all profiles withv, > % But we also know that, if one item is allocatéat any of
those profiles the ratio is below5. Therefore, no matter how we allocate the items, the higlagist we can
hope for is.75. In the next section, we find a mechanism that achieves thés ra

2.7 Optimal Solution for Three Agents and Two Items

In this section, we describe a mechanism with the ratid7dof The ratio is the same as the upper bound
meaning that the mechanism is optimal and the upper boumghis Exact details of our search for the best
mechanism may not be very interesting, so instead we pravidgh level description of how the mechanism
was discovered.

The search for a better mechanism was guided by upper bowngisutations. First, we calculated an
upper bound for mechanisms that use a threshold functidsfysag Assumption 1 but make no assumptions
on the compensation function. The values of the compensatidables in the upper bound computation
helped us understand how to relax Assumption 2 until the mthieved coincided with the upper bound.
This required going from 2 sets of linear coefficients alldig Assumption 2 to 3 sets.

Making further progress involved relaxing the assumptibawd the threshold function. An illustration
of the threshold function satisfying Assumption 1 may bephélhere. A threshold function satisfying
Assumption 1 defines allocation regions along a vertical $itv, = &k as shown in Figure 2.9(a). We noticed
that allocating two items for the value profilg, &, 0) and keeping other allocation decisions consistent with
the threshold function resulted in the upper bound’6f The observation helped us find a threshold function
that supports the upper bound.@5. Allocation regions for the new threshold are shown in FéegRro(b).
Notice that two items are allocated far, &, 0).

A threshold function similar to the one illustrated in Figi.9(b) and a payment function given by 3 sets
of linear coefficients constitute a mechanism that achiéwvesatio of .75. Formally, optimal threshold and
compensation functions are given by

2,2 1 2

3502, if gv-, >0,
) — 10,,1 11,2 1.1 2 1,1
c(v—i) = ¢ ol + &2, if Sul, > 02, > dol,

4,1 20,,2 i
350-; + 5502,  otherwise
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(a) Threshold satisfying Assumption 1. (b) Threshold needed to achieve the upper boundf

Figure 2.9:(v; = 1) Allocation Regions

In fact, there are multiple optimal threshold and compeéasdtinctions. The ones we presented here were
chosen based on the simplicity of the coefficients.

The regions where compensation is linear and allocatiomésifare shown in Figure 2.10. There are 16
regions, 11 more than in Figure 2.4.

2.8 Conclusion

We developed a practical methodology that improves upowiquie contributions which were restricting
attention to VCG mechanisms for technical convenience. idtid by our characterization of strategy-
proofness in terms of threshold and compensation func{geesProposition 1), we imposed some restrictions
on those functions which guarantee that the optimizati@mblem can be solved via linear programming
techniques. The key observation for this simplificatiomattinear inequalities hold at all points in a polytope
if and only if they hold at its extreme points. Though it is pide that more intricate mechanisms would
achieve an even greater social surplus, we observed thappupach already significantly improves upon the
previous VCG analysis. The reason is that the combinati@iocative efficiency, a characteristic feature of
VCG mechanisms, and strategy-proofness may come at thefctistrning” a lot of money. This insight is
likely to prove helpful in other contexts as well.

The most striking illustration of the benefits of our appioae our problem is the allocation af—1 items
amongn agents. No redistribution of VCG payments is possible in ¢hae, and for some value profiles the
amount of VCG payments is as high as the sum ofithel highest values. We find that destroying one item
for some profiles of values significantly reduces the amo@ipagments. For example, the mechanism that
destroys one item if thén — 1) highest value is less thah of the (n — 2)™ highest value guarantees that
the amount of payment is less thgf?_—n of the sum ofn — 1 highest values.

Finding the solution to the general optimization probleni)2emains an important open question. Tak-
ing a step in that direction, we found an optimal solutiontfer problem with three agents and two items. This
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Figure 2.10:(v; = 1) Regions where the number of allocated items remains cdrestaithe compensation
function is linear for three agents and two items. Each reggdabeled with the coefficients used in the
compensation function for each agent, e.g. (b,a,c) meanhshté compensation functions for agents 1,2, and
3 arebv_q, av_s, andcv_3 respectively. One item is allocated to the left of the dadmedand two items to
the right.

was made possible by developing a technique for upper bogride ratio of the best possible mechanism.

In the future, we plan to investigate more general allocasiettings characterized by allocation of non-
identical items, agents desiring more than one item, ageititautilities that depend on whether other agents
receive the items (externalities), and common-value nzodel
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2.10 Appendix

Lemma 1 In a mechanism that achieves a non-zero ratio in a problerh &igentsf;(v) = 1 implies that
fj(v) =1forall j < iand forallv.

Proof There are three possible ways to allocate an item to ageithout allocating an item to agejjit< i:
allocate to agent 2 while not allocating to agent 1, allotategent 3 while not allocating to agent 1, allocate
to agent 3 while not allocating to agent 2.

We will use the fact that in a mechanism that achieves a nomragio and is allocation feasibiéx, z) =
x. Suppose(x, z) # x and consider the value profile, z, z). If 7(x,z) > z, no items are allocated and
the ratio is zero. Ifr(z, x) < z, three items are allocated and the mechanism is allocatfeasible.

Case 1: Le{z,y, z) denote the value profile where agent 2 is allocated but agenhdt. A threshold
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supporting this allocation must satisfy:
T(y,2) >x >y >7(x,2)

Consider the value profiley, y, z). Agents 1 and 2 are not allocated becaugg z) > = > y. Agent 3 is
not allocated becausdy, y) = y > z. The ratio of the mechanism is zero.

Case 2: Le{z,y, z) denote the value profile where agent 3 is allocated but agenhdt. A threshold
supporting this allocation must satisfy:

T(y,2) >x >y >z>71(x,y)

As in case 1, consider the value profjlg v, z). Agents 1 and 2 are not allocated becatgg z) > x > y.
Agent 3 is not allocated becausgy, y) = y > 2. The ratio of the mechanism is zero.

Case 3: Le{z,y, z) denote the value profile where agent 3 is allocated but agenb@t. A threshold
supporting this allocation must satisfy:

T(z,2) >y >2z>7(x,y)

Consider the value profiler, y,y). Agents 1 is allocated becauséy,y) = y < x. Agents 2 and 3 are
allocated becausg(z,y) < z < y. The mechanism allocated 3 items and is therefore allataifeasible.

We showed that fon = 3 a mechanism that allocates to agétut does not allocate to agept< i
either achieves zero ratio or is allocation infeasible. réfare any allocation feasible mechanism achieving
non-zero ratio for = 3 must allocate to agerjt< i if agents is allocated.



Chapter 3

Using Simultaneous Best Response to

Find Symmetric Bayes-Nash Equilibria

in Auctions?

Finding Nash and Bayes-Nash equilibria in games is a hardogmoboth analytically and com-

putationally. We restrict our attention to symmetric Baydzsh equilibria in auctions and pro-
pose a computational method that takes advantage of the siygnaf equilibria and structure of

auction games. The method is iterated best-response whplayars move simultaneously. We
present experimental results for single unit first- and sdqarice auctions with discrete values
and bids. The case of discrete bids and values has not bekstudkéed before.

3.1 Introduction

Bayes-Nash equilibria (BNE) have been derived analytiaatly for the simplest auction settings [64]. Such
settings include single-item first- and second-price anstivith continuous distributions of bidders’ vallfes.
However, very little research has been devoted to auctidtisdiscrete bids and values. There is a general
game solver Gambit (http://gambit.sourceforge.net) Wiscthe state-of-the-art solver for finite normal and
extensive form games. Reeves etal [92, 93] report that GAMBIonly capable of solving relatively small
games (e.g., finding BNE in the first-price sealed bid auatiah 9 types and 9 values take an hour).

We propose a fast iterated best-response algorithm thes tedvantage of

e structure of payoffs in first and second-price auctions

e the symmetry of equilibria

1Based on [79].
2Some literature refers to values as types or signals.
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Experimental results in this chapter are for single aucsiettings and symmetrically distributed bidders’
values. In the future, we plan to search for equilibria in $le&ings with multiple one-shot auctions where
bidders have combinatorial valuations.

3.1.1 Symmetric Pure Strategy BNE

BNE can be interpreted as NE of the game where player’s actionstrategies [85]. For example, consider
an auction with 2 symmetric bidders, the set of valles- {0, 2}, and the set of bid® = {1,2}. We can
represent the Bayesian game in the normal form where sigategpresent actions, i.e., an action is a vector
of bids for each value:

l11]21]12]22]
11 *
2.1 *
12 *
2.2 *

Nash equilibria of the normal form representation of the game the BNE of the corresponding Bayesian
game.

Symmetric pure strategies correpond to cells along theodi@gmarked with '*'. Thus, an exhaustive
search for a pure strategy symmetric BNE would check eadb aeing the diagonal. The number of sym-
metric pure strategy profiles is the same as the number afrectf a player in the normal form game - the
number of bids raised to the number of valiB$"'|. Note that the number of symmetric strategies does not
depend on the number of players.

We can search the space of symmetric strategies sgimgtaneoudest response: starting from any cell
in the payoff matrix, we calculate the best response of agplapd let all players choose the best-response
strategy. Because all players select the same best-respwagegy, the payoff is on the diagonal.

3.2 Existence

The seminal paper by Nash [80] proves that fisigenmetriogames have aymmetriamixed strategy equi-
libria. However, pure strategy symmetric (or non-symnegtequilibrium does not have to exist. At this
stage, we focus on the games where we can find a pure-strategyesric equilibria or show that one does
not exist. When it exists, symmetric pure strategy equilitoriis an appealing solution concept from the
implementation point of view.

3.3 Model

We focus on a single object independent private-value motleére aren risk neutral bidders with quasi-
linear utility functions. Each bidder’s value of the objésta random variable distributed according to the
same discrete probability distribution functighnwith supportl’. The distributionf is common knowledge.
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All bidders have the same finite set of biBsresulting in the total number of distinct pure strategiesattp
|B|IVI. Utility w,(s;v;) of bidderi is

Vi — ¢ if  s;(v;) > maxs;(v;)
J#i
1 .
(v; — %‘)m it si(v;) = rglaf s;(v;)

whereg; is the bid in the first-price auction and the second highesirbihe second-price auction. In words,
the utility of a bidder is her value minus the price when thider submits the highest bid. When the bidder
ties with #ties other bidders, the winner is chosen unifgratlrandom from the highest bidders.

3.4 Utility and BNE in Auctions

The strategy profile* = (s7, ..., s!) is a BNE if for each biddei and for each of’s valuesv;, b; = s} (v;)
solves
li%aé Z‘:/ wi(s7(v1), .o, biy ooy st (vn); i) f(uy) (3.1)
v—;€V_y

One key observation is that, in the absence offitkse only information relevant to a bidder’s utility in
first and second-price auctions is the maximum bid of therdifuzlers.

u;i(8i(vi), s—i(v—i);vi) = ui(si(vs), max sj(v—i);vi)

We will refer to the maximum bid of the other bidders as thegriThe price distributiog can be derived
from the distribution of the other bidders’ values.

VpeB; g(p) = > fi(v=s) (3.2)
v €V_i| max;; % (v;)=p
The probabilityg(p) that the price i® is the sum of the probabilities of all combinations of valoéte
other bidders that result in the maximum bid equaptdRewriting Equation 3.1 with the price distribution
we get

max > ui(bi,p;i)g(p) (3.3)
pEB;
The strategies™ = (s7, ..., s);) are a BNE if for each bidderand for each of’s valuesv;, b; = s} (v;)

solves Equation 3.3. Note thafp) in Equation 3.3 is determined by the strategies of the otluztes.

Given g, Equation 3.3 is more compact than Equation 3.1. The suromati Equation 3.1 hag;" !
terms. The summation in Equation 3.3 has at ni$sterms. This difference becomes important when there
are more than 2 bidders. We will show that in the symmetrie gasan be calculated much faster than in
Equation 3.2.

3We address the issue of ties in Section 3.7
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3.5 Iterated Best Response

Strategy profiles = (sq, ..., s, ) Is @a symmetric BNE if for alf, s; is the best response to the price distribution
g resulting fromn — 1 bidders playing the same strategy We search for such profile via an iterated
simultaneous best-response procedure starting from gsatia distribution of prices.

e initialize g
e repeat untils are a symmetric equilibrium

— for everyv; € V;

* bidder; finds the bids; (v;) that is the best responsedd
— h is the frequency distribution of bids
— H is the corresponding cumulative distribution

—g(p)=H""'(p)-H" '(p—-1)

The strategies = (s1,...,s,) are a symmetric BNE i§; is a best response to the price distribution
resulting fromn — 1 bidders playings;. We check this condition at the start of the loop.

In each iteration we calculate biddés best response; to the price distributiory. The best response is
calculated for each valug € V;. At the end of an iteratiory is set to the price distribution resulting from
n — 1 bidders playings;. This price distribution is calculated using the cumulattlistribution 4 of bids
submitted by biddei. The cumulative distribution of the maximum of- 1 bids distributed according t&
is H"~1. For integer pricep the probability functiony(p) can be calculated fromfl: g(p) = H" (p) —

H" 1 (p—1).

3.6 Experiments

We test the procedure in first- and second-price auctions ngk-neutral bidders. The number of bidders
ranges between 2 and 11. Bidders have integer values utyfdistributed betweef andk. The parameter
k ranges fronR to 50. Given a valuev and a price distribution, an optimal bid is calculated by panng
profits from bidding each of the 4+ 1 bids0,1,...,v. If the bid is equal to the price, we u§4§ as an
approximation of the probability that the bidder wins thetian® The bidder pays his bid in the first-price
auction and the price in the second-price auction. We tigdways of initializing the price distribution: to
zero and to the value distribution.

4If multiple bids are best responses, we sgfv;) to the mixed strategy of submitting any of the best-responds With equal
probability.
5The probability is exact only when there are two bidder. ®ecB.7 describes how the probabilities can be calculateatéx
However, at the time of running the experiments, we u%;emb an approximation. We re-ran some of the experiments witecorr
probabilities and confirmed that the results reported hdtésid.
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3.6.1 Second-Price Auctions

The second-price auction has a known dominant strategyddirg the true value. The iterative procedure
converges to the dominant strategy aftéerations when the price distribution is initialized taa@and after
1 iteration when the price distribution is initialized teettialue distribution.

3.6.2 First-Price Auctions

The procedure converges to an equilibrium in most of our exEts with varying number of bidders and
initial price distributions for values of below 9. It takes under 8 iterations (usually 1 iteration) to reach
convergence when the price distribution is initializedhe value distribution. It takes under 27 iterations
(5 iterations on average) to reach convergence when the gdistribution is initialized to zero. Table 3.1
illustrates the steps of the iterative procedure in theianatith 2 biddersk = 4, and initial belief that the
price is zero. Convergence is reached after 3 iterations.

[ priceivalue] 0 | 1 [ 2 [ 3 | 4 |
price distr 1.0 0 0 0 0
BR strategy|| 0,1,2,3,4| 1,2,3,4| 1,2,3,4| 1,23,4| 1,2,3,4
price distr 0.04 0.24 0.24 0.24 0.24

BR strategy 0 1 2 3 4
price distr 0.2 0.2 0.2 0.2 0.2
BR strategy 0 1 2 3 4
price distr 0.2 0.2 0.2 0.2 0.2
BR strategy 0 1 2 3 4

Table 3.1: Sample Run of Iterated Myopic Best Response.cépdlistr” is the probability distribution of
prices resulting from the opponent playing the best-resp@BR) strategy to the price distribution from the
previous iteration.

Bidding “~1 of the value is a BNE of a first-price auction when biddersuesl are identically distributed
according to a continuous uniform distribution [64]. Notmtisingly, the equilibrium strategies we find are
similar to the equilibrium strategies for the continuousecaExamples of equilibria are in Table 3.2. The
continuous counterparts for these discrete strategiete &iel 2 and 1 of the value respectively.

k | # bidders| equilibrium strategy
8 11 0:0,1:0,2:1,3:2,4:3,5:4,6:5,7:6,8]7
7 2 0:0,1:0,2:1,3:1,4:2,5:2,6:3,7:3

Table 3.2: Equilibria in First-Price Auctions. 3:1, 4:2denotes the equilibrium strategy of bidding 1 when
the value is 3 and bidding 2 when the value is 4.

In the cases when myopic best response does not convergetuiibrium, it converges to a cycle.
Surprisingly, when the price distribution was initializedvalue distribution, the procedure converged to
an equilibrium for any odd value @f.
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3.7 Ties

Here we address the issue of ties, which was ignored whenidiéhsd only the bid and the price affect one’s
utility.

L

n—1

Pr(tie and win = E 1
m

N——

m=1

(”m 1) B (b)) H™ ™ (b; — 1) (3.4)

The first term is the probability of winning with tied witw bidders. The second term is the number of
ways to choosen bidders to tie with. The last term is the probability of a tighwexactlym bidders. This
computation takes — 1 steps assuming that all the terms inside the summation anpwted once per
iteration of best response. The computation of ties has pesfiously done in [26].

3.8 Related Work
The related work pertains to symmetric risk-neutral bidderd the independent private value model.

3.8.1 Analytical Results

Existence results on equilibria are summarized in the tdbéferences and comments appear below.

DBDV | DBCV | CBDV | CB CV
FP ™ P M P
SP| M P D D

Table 3.3: Equilibria in Auctions: M - symmetric mixed, P -nsgnetric pure, D - dominant; DB - discrete
bids, DV - discrete values, CB - continuous bids, CV - contimsivalues

Dominant Strategy Solvable Second Price (SP) with continuous bids and continuous sdll#6] and SP
with continuous bids and discrete values.

Symmetric Pure Strategy Equilibrium  First Price (FP) with continuous bids and continuous vaj6és

Evenly Spaced Discrete Bids FP ( [26]) and SP with continuous values [112].

Note that there is no dominant strategy equilibrium in SFhwitntinuous values. We can illustrate this
with an example showing that for some value there is no bitithdominating all the other bids. Suppose
there are 2 bidders, the possible bids are 0 and 1, and thesvate uniformly distributed between 0 and 1.
A bidder with the value close to one (say, value is .9) pref@tding 1 if the expected bid of the other bidder
is close to zero, but he prefers bidding 0 when the expectkdftihe other bidder is above .9.

Arbitrary Discrete Bids  SP with continuous values [74].
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Symmetric Mixed Strategy Equilibrium FP with continuous bids and discrete values [37]. FP and SP
with discrete bids and discrete values (nhormal form game).

3.8.2 Computational Results

Reeves and Wellman [92] describe a procedure for computsg-iesponse strategies and finding Bayes-
Nash equilibrium for two-player infinite games with typesdn from a piecewise-uniform distribution.
Sureka and Wurman [99] use iterated tabu best responserthhgeaNE in normal form games. Their work
is not restricted to symmetric equilibria and considerslEmaormal form games.

3.9 Conclusion and Future Work

While the problem of finding equilibria in general games appe®t to be amenable to a single computa-
tional solution, auctions impose a specific structure orpthyoffs of the participants, making the search for
equilibria more manageable. The results in this chapteraher preliminary but they demonstrate that a
computational approach such as the one investigated hengroaide insights into understanding equilibria
in auctions. An example of a question that can be answerdd thit help of the simulations is whether
the strategies that are part of the cycle contain suppor foixed strategy equilibrium. The answer to the
guestion is no as we computationally found a counter-exampflmore general investigation of what can
be learned from cycles is a direction for future work. A stastic stability analysis might prove fruitful.
Also, it would be interesting to consider multiple one-ssiotultaneous auctions and bidders with combina-
torial valuations. Procedures with better convergenceegas than best-response dynamics should also be
considered. Some of these directions have recently bedoreggn [39].



Chapter 4

Bidding in Keyword Auctions!

We model budget-constrained keyword bidding in sponsoezdich auctions as stochastic
multiple-choice knapsack proble(8-MCKP) and propose a new algorithm to solve S-MCKP
and the corresponding bidding optimization problem. Ogpathm selects items online based
on athreshold function which can be built/updated usintphisal data. Our algorithm achieved
about 99% performance compared to the offline optimum whehieapto a real bidding dataset.
With synthetic dataset aridl item sets, its performance ratio against the offline optinoaom-
verges to one empirically with increasing number of periods

4.1 Introduction

Sponsored search is an effective way of monetizing seatehti#s where advertisers pay to place their ads
on search results pages for specific user keyword queriesg ds automated auction mechanism, search
engine companies alleviate themselves from the burdeniahgrand placing ads and shift the burden to
advertisers. On the advertisers side, large companiesl spilions of dollars each year to bid on thousands
of keywords, and it is important for them to automate androjzg the bidding process to achieve the best
return on investment (ROI). In this work we focus on the bidimjzation problem for an advertiser with
budget constraints. Formally, we try to address the folhgmproblem: for each keyword and each time
period, how much should the advertiser bid (i.e., which fi@sito obtain), so as to maximize ROI of the ads
given a fixed budget and a fixed time horizon?

For a given keyword, there are multiple slots in the searstltge page that the auctioneer needs to allocate
to different ads from different advertisers taking into @aat the advertisers’ bidding price, ad quality, and
other factors. There are different ad ranking and pricifgestes most of which are variations raihk-by-
price andpay-per-click[31, 102, 66], where the advertiser in théh position pays the bid of th@ + 1)-th
advertiser whenever its ad is clicked by a user. No mattett varking and pricing scheme the auctioneer
deploys, for a given keyword, an advertiser can bid appabgly to get its ad placed in any ad position. For

1This work was done at HP Labs. Published as [114].

32



33

each ad slot, the advertiser incursast (the fee that the auctioneer charges for each user clickjreba
revenugthe expected value-per-click), angbefit (the difference between revenue and cost). Naturally, we
can model each ad position as an item with associated weigst)(@nd value (either revenue or profit). The
advertiser (or the agent acting on behalf of the advertrszs)a budget constraint, and it naturally corresponds
to the knapsack capacity. Furthermore, one policy mostenextrs enforce is that each advertiser can ave
most onead appear on each keyword results page. This corresponisttattmost one item from each item
set can be taken in the Multiple-Choice Knapsack ProblemKM); a well-known variation of the classic
Knapsack Problem (KP). Therefore we can model the budgetticined bidding problem as a MCKP.

Compared to traditional offline setting of knapsack proldekeyword bidding is by nature online and
stochastic. As any keyword auction is open to all adverisgth a positive budget, advertisers can join/leave
the auction at any time and change their bids arbitrarilyddBrs often exhibit strategic bidding behaviors
(e.g., overbidding [30], vindictive bidding[113]) whichake the market more dynamic. Furthermore, spon-
sored search is driven by user queries/clicks. Even thougmimber of user queries/clicks is statistically
stable over long time horizon, periodical spikes/dropscaremon and quite unpredictable. All these factors
contribute to the online and stochastic nature of the ugitherbidding problem and this motivates us to work
on the stochastic and online version of MCKP.

4.1.1 Our Contributions

In this work we model the budget constrained bidding probienkeyword auctions as the online multiple-
choice knapsack problem, design efficient algorithms fddGKP and translate it back to solve the budget-
constrained bidding problem. Our algorithms are simplsy ¢aimplement, and achieve a performance ratio
consistently over 90% with both synthetic and real biddiatad

Even though the Online 0/1 Knapsack Problem is a well-stugi®blem in Operations Research and
Online Algorithms, we are aware of no prior work on S-MCKP. &ylizing previous work on stochastic
Online-KP, we design a simple algorithm for S-MCKP with merhance ratio approaching one empirically
while the number of time periods goes to infinity.

Our algorithms for keyword bidding as well as S-MCKP assunpui item sets are independent and
identically distributed (iid), however our algorithms dotrrequire any knowledge of the distribution. Our
algorithms are based on maintaining a threshold functiod,the threshold function can be built in advance
using historical training dataset, or can be built from sdraand updated overtime during the execution of
the algorithm. The machine learning capability improvestifdding performance and makes our algorithm
more attractive to field deployment.

The rest of the chapter is organized as follows. In Secti@nme briefly discuss related work. In Sec-
tion 4.3, we introduce terminology related to online knaggsaroblems and describe Lueker’s algorithm for
the stochastic online knapsack problem. In Section 4.4, egeribe our algorithm for S-MCKP and prove
some properties of the algorithm. Section 4.5 is dedicatethadeling the bidding optimization problem
as S-MCKP, and Section 4.6 is devoted to experimental etiratuaf our algorithms for S-MCKP and the
keyword bidding problem. We conclude in Section 4.7.
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4.2 Related Work

Keyword Auctions and Bidding Optimization. Over the past few years, keyword auctions have attracted
a lot of attention both from the auctioneer’s perspectid ([L02, 3, 66]) and the advertiser's perspective
([30, 6, 100, 113]). For revenue maximization for the austier with budget-constrained bidders, there are a
few papers with various complexities to model keywordstssland clicks ([16, 1, 75, 18, 2]).

For bidding optimization for the advertiser, Kitts and LaBt [61] describe various bidding heuristics.
Borgs et al. [15] propose a bidding strategy which over tirgaatizes the ROI over all keywords. Rus-
mevichientong and Williamson [95] discuss how to learn tA&R€ for various keywords over time and select
keywords accordingly. Most recently, Feldman et al. [3&p#&d variants of the bidding optimization prob-
lem where the objective is to maximize the number of clickishywossibly complicated interactions among
many keywords, and Cary et al. [21] analyzed properties eédy bidding strategies.

Chakrabarty et al. [23] modeled the budget-constrainedibidoptimization problem as Online-MCKP
and designed competitive algorithms for Online-MCKP andl@ated the algorithms using both synthetic
and real datasets. Their algorithms depend on some inpataaers and thus a good bidding performance
depends on either knowing these parameters or tuning thenogately. They emphasize the worst-case
performance guarantee while this work focuses on the agerage performance with stochastic input. In
addition, the performance of their algorithm on the samé bihling data is between 90%-95%, however
ours is around 99%.

Knapsack Problems and Online Algorithms. Variants of knapsack problems were studied extensively
in Combinatorial Optimization and Operations Research.arcomprehensive exposition of this topic, see
the textbook by Psinger et al. [59]. Online knapsack proklemare first studied by Marchetti-Spaccamela
and Vercellis [72] and showed that in the general case, tdsts no online algorithm achieving any non-
trivial competitive ratio. Many special cases of the probleave been studied afterwards, among them the
stochastic online knapsack problem [71, 86, 63], and thimeplartially fractional knapsack problems [83].
Among all this work, Lueker [71] designed a simple threshioéded online algorithm for the classic
0/1 knapsack problem, assuming that the weight and valud @éms are iid. Under the iid assumption
and perfect knowledge of the distribution, Lueker’s altfori achieves anptimal performance ratio of —
O(loglogn/logn) against the offline optimum. Instead of assuming that thastare iid, Chakrabarty et
al. [23] assumes that all items have their value/weighbnapiper bounded by and lower bounded by, for
two positive constants, L. Assuming further that all items are small compared to ttepkack capacity, they
designed both deterministic and randomized thresholddagerithms for the online 0/1 knapsack problem
achieving an (optimal) competitive rafiog(U/L) + 1. They also extend the algorithm to the multiple-choice
setting and obtains a competitive ratiolog(U/L) + 2.

4.3 Onlike Knapsack Problems and Lueker’s Algorithm

In this section we introduce the Online Knapsack Problemli(@fKP) and describe Lueker’s algorithm to
solve stochastic Online-KP.
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The 0/1 Knapsack Problem (KP) is as follows: given a set ofigt€(w;, v;) | 1 <1 < n} and a knapsack
capacityC', select a subset of items to maximize the total value of sedeitems while the total weight is
bounded byC. Throughout the chapter, for each iteémwe call w; its weight v; its valug and the ratio
between value and weight iefficiency(e; = v;/w;). The Online Knapsack Problem (Online-KP) is the
same as the 0/1 KP except that items arrive online one at a #iheach time period, item+ arrives, and
the algorithm has to decide whether to select iten not. The Stochastic Online-KP is the same as Online-
KP with an extra assumption that the (weight, value) pairadheitem is randomly drawn from the same
joint distribution. Naturally, we assume that the knapseagacity is proportional to the number of items
(C = ©(n)), and all items are small compared to the overall knapsagaaity (w; = O(1) andv; = O(1),

Y t).

Lueker’s Algorithm [71] for the Stochastic Online-KP is ledson a threshold function that is generated
using the distribution of items. All items are assumed toitde Only items with efficiency at least the
threshold efficiencgre included in the solution. The algorithm for Online-KRrig-igure 4.1.

Algorithm ALG-Lueker-OKP
Input: items(w;,vy) fort =1,...,n;
knapsack capacitg'; threshold functiory
Output: items to take
1. foreachitem from1ton
if e; > g(L) andw; < C

/ n—t+1
take itemt
C:=C—w

2. return items taken

Figure 4.1: Lueker’s Algorithm for Online-KP.

The Threshold Function. The main part of the algorithm is the threshold functjomhich maps the average
remaining capacity per time period to an efficiency valusadedthreshold efficiencyThe threshold effi-
ciency is such that the expected weight of the remainingdtenth efficiency at least the threshold efficiency
is equal to the remaining capacity:

Cc = Ewiﬂ)z‘ [Zwl 1{;’]1126*}‘| = ZEwi’Ui |:U)Z 1{%2€*}:|
i=1 =1

The second equality above uses the linearity of expectafiorte all items are iid, thus

C = ZEwi,’Uz‘ |:’LUZ 1{“712(,*}} =n Ew,v [’LU 1{]%2?*}:|
i=1 ’

slQ

= Eup [wlgzze]
Let
fle) = Buy [w 1{gze}} ; (4.1)

then the threshold function is= f~!, the inverse off. f maps the efficiency to the expected item weight
among items with efficiency at leastwhile ¢ maps the average capacity per item to the efficiency.
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4.4  Approximation Algorithms for S-MCKP

In this section we describe our algorithm for S-MCKP. Befaeintroduce the algorithm, we first define the
problem briefly. The Multiple-Choice Knapsack Problem isaegralization of the 0/1 KP: Given a collection
ofitem sets{V; | t = 1,...,n} whereN; = {(w;, vy | 1 < i < n.} for eacht and a knapsack capacity,
select at most one item from each item set to maximize theuvahae of selected items while the total weight
of selected items is bounded l6y. The Online MCKP is the online version of MCKP where item 8&t
arrives at time and the algorithm needs to select at most one item f\gmStochastic MCKP is the same
as Online MCKP with an extra assumption that all item setdidmiandom variables. Naturally we assume
C =0(n),wy; =0(1),vy; = O(1) Y t,i.

Our algorithm for the S-MCKP is based on Lueker's Algorithon Stochastic Online-KP (described in
Section 4.3) and an approximation for MCKP [59]. We first dimcthe approximation for MCKP (Sec-
tion 4.4.1), then an approximation for the threshold fume{{Section 4.4.2), and finally the overall algorithm
(Section 4.4.3).

4.4.1 Converting Item Sets to Incremental Items

Approximation for MCKP modifies the items from each item setisat taking multiple items is equivalent to
taking one original item ([59], p.320). An iteiris dominatedby another iteny if w; < w; andv; < v;. An
item is LP-dominatediy items; andk if 7 is dominated by a convex combinationjoandk. Equivalently,

if w; <w; <wyandv; < v; < v, theni is LP-dominated by, k if

Ve — U; > ’Uifvj

wp —w; W —wj
The algorithm to remove all dominated and LP-dominatedstand generate incremental items is described
in Figure 4.2. The algorithm consists of two steps, firstiagritems in increasing weight order, then remov-
ing dominated and LP-dominated items repeatedly. The sestmp clearly takes linear time, thus the total
running time is dominated by the first step of sorting, thf logn) time.
Once all dominated and LP-dominated items are removed,&nédining items are sorted in increasing
weight order, then for three adjacent iteins 1, 4,4 + 1, we have

vV — Vi1 U; _ Vit1 — Vit1 _
—_— = — = € = — = €i41-
W; — Wi;—1 wj Wi41 — Wy Wi41

Thus the efficiency of incremental items are monotone deargae, > e, > ... > €,. Taking incremental
items1,...,: from the set) is equivalent to taking itemfrom the sefN;.

4.4.2 Approximating the threshold function

To compute an approximate solution for S-MCKP, we first coneach item set into a set of incremental
items, and try to apply Lueker’s Algorithm for Online-KP tioelse incremental items. Lueker’s algorithm
requires requires as an input the threshold function, wisiciot available to us. In this section we discuss
how to compute an approximate threshold function using $aitgm sets, and how to update the threshold
function over time.
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Algorithm ALG-Gen-Incr-ltems
Input: an item seN; = {(wy,v;) [i=1,...,n:}
Output: incremental items
1. sortitems according to increasing weights
2. I**remove dominated and LP-dominated items **/
let @ be a queue with initially one elemef, 0)
for i from 1 ton,
push element into the queue
(¢ always denote the last element@f
if Wy = Wy—1
remove fromQ) either itemf or ¢ — 1
with smaller value
while £ > 2 and === < ==
remove iten? — 1 from @
3. I** create incremental items from items dp**/
let {(w;,v;) | 1 <4 < £} denote the items i)
W, = Wi, U1 = U1
Wy = Wi — Wi—1,V; = V; —Vi—1, V2 <3</
4. return{(w;,v;) |1 <i < (}

Figure 4.2: Algorithm to generate incremental items fronitam set

Generating threshold function from a sample. Given a set of training item sets, we can transform them
into a collection of incremental items. The distributionieéremental items may not be known or have a
closed-form representation, however we can approximétevé have a reasonably large sample size.

Given a sample set of: incremental items, we can approximate the threshold fanagiven by Eq. 4.1
with the average over all the sample points. Formally, welssy to approximatef where

- 1 &

fle) = — ;w Liei>e) (4.2)
Assuming that the incremental items are sorted in decrgasiter of efficiency, theW e € (e;41, es], f(e) is
equal tow; = (w1 +...+w;)/m. Thereforef is a piecewise constant function, and it can be represested a
a sorted list of pairg(e;, w;) | 1 < i < m} with {e;} monotone decreasing ad;} monotone increasing.
The threshold function can be computed using the algorithFigure 4.3.
Update Threshold Function Online. We can update the threshold function as we are presentechaxith
sets of incremental items. It is convenient to representhtteshold function by a collection of efficiencies
e1 > eg > ... > ¢ sorted in decreasing order and a collection of correspgndiightsw; < we < ... <
wy, In increasing order where; = f(e;). Initially the collections can be empty in which case thegold
function is generated using the first item set. See the akgoiin Figure 4.4.



Algorithm ALG-Gen-Threshold

Input: set of incremental itemSw;,v;) | j =1,...,m}

Output: threshold functiorf

1. sortitems in decreasing order of efficiency.
Ietej = vj/wj,Vj, thene; > es > ... > e,

2. fle) ="t
3. fle) :f(ei_1)+%, V2<i<m
4, returnf

Figure 4.3: Algorithm for generating the threshold funntio

Algorithm ALG-Update-Threshold
Input:  threshold functiorf = {(e;, w;) |1 <i < k},
a set of incremental itemgw;, ;) | 1 < j < m}
Output: updated
1. /**normalize weights **/
Wy =Wjm  1<j<m
2. [** update weights **/
w,;:wi+zéj>eiu~)j 1§’LSI€
3. I**create a list of sortede, w) pairs **/
for j from1tom
if there is no pair inf with efficiencyé; = o, /w;
1= argmaxi{ei > éJ}
add(é;, w; + w,) to the list of new pairs
4. linearly merge the new list anflto get the
updatedf

Figure 4.4: Algorithm for updating the threshold function.
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4.4.3 An Approximation Algorithm for S-MCKP

We are now ready to describe our algorithm for S-MCKP. Fohdtam set arriving online, we use ALG-
Gen-Incr-Items given in Figure 4.2 to generate incremetaabs for the item set and use the approximate
threshold function to select incremental items for the entrtime period.  Since we described how to
generate the approximate threshold function and updateSection 4.4.2, we are now ready to describe the
whole algorithm.

Algorithm ALG-S-MCKP
Input: itemselN, fort=1,...,n;
knapsack capacity’;
(optional) training item sets
Output: items to take
1. (optional) /** generate threshold functigifrom
training items sets **/
create incremental items from training item sets
using ALG-Gen-Incr-Items
r is the average number of incremental items per set
generate f using ALG-Gen-Threshold with these
incremental items as input
2. fortfromlton
create incremental items from item $ét
usin ALG-Gen-Incr-ltems
(optional step)
updatef (using ALG-Update-Threshold) and
e= fﬁl(ﬁ)
[** r(n —t+ 1) is the expected number of
remaining incremental items **/
select incremental items with efficiency at least
w, v are the total weight and value of selected
incremental items
if w<C
take item(w, 7).
C:=C-w

Figure 4.5: Algorithm for S-MCKP.

The algorithm for S-MCKP is in Figure 4.5. It consists of twases, where the first is optional, and
it depends on whether training item sets are available. f®@sécond phase, the algorithm decides whether
or not to take an item at time perigdusing the threshold function, and updates the thresholdtifum if
necessary.

4.5 Keyword Bidding as S-MCKP

Sponsored search auctions are used by search engine cespasell ad positions to advertisers on search
results page, where popular query terms are treated as tkdgiv An auction is set up for each keyword
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where advertisers submit bids and compete for differentasitipns. The auction mechanism determines
how to rank and price ads, using factors like the biddinggzi@nd ad qualities, or even budgets of different
advertisers. Among many variations of ad ranking and pgisichemes, most are basedrank-by-priceand
pay-per-click In this mechanism, assuming that bidding prices are santelécreasing orden{ > by >

... > b,), bidderi obtains positiori, and is charged a fgg = b;..; whenever a user clicks on its &No
matter what ranking and pricing scheme the auctioneer geplor a fixed avertiser and a fixed keyword, the
advertiser can obtain any position with an appropriateibgigrice. For each ad slot, the advertiser incurs a
cost(the fee that the auctioneer charges for each user clickdirsbarevenugthe expected value-per-click),
and aprofit (the difference between revenue and cost). Naturally, wenwadel each ad position as an item
with associated weight (cost) and value (either revenueditp Without loss of generality, we focus on
profit.

A typical advertiser has a budget for some time horizon (eajly, weekly, quaterly or annually) and
wants to purchase a certain set of keywords to maximizetis ROI. The profit of the advertiser is equal to
the total amount of expected revenue from search marketingsthe total amount of marketing cost. We
can discretize the time horizon into small time periods asglime that the bidding prices of all advertisers
do not change over each small time period. Formally, we cagieinthie bidding optimization problem as a
multiple-choice knapsack problem as follows. Given migtikeywordsk € K, multiple time periods when
the advertiser places bidsc {1, ..., T}, and multiple positions € {1,..., S}, the item setV} consists of
items (wF,, vF,) for all ad positions s. Formally?, andvf, are defined as follows:

wis = prat(s)XE(), (4.3)
or, (VE —pF)aP(s)X*(t), Vs, t k.

Here V* denote the expected value-per-click for keywétdX *(¢) denote the number of user queries for
keywordk at time periodt, anda”(s) denote the click-through rate (CTR) of positierfthe ratio between
total user clicks on the ad atth slot and the total number of impressiong}, = bﬁsﬂ, i.e. the cost-per-
click is equal to the next highest bid. Since most auctiomieaforce a policy that each advertiser can have
at most onead appear on each keyword results page, this corresponkattattmost one item can be taken
from /. If we treat eachV} as an item set, then this consists of an instance of MCKP wtherknapsack
capacityC' is equal to the advertiser’s total buddget

4.6 Experimental Results

We run two sets of experiments. The first set evaluates tHerpsnce of the algorithm ALG-S-MCKP
on synthetic datasets when items are generated from vgpiobsbility distributions. The second set of
experiments uses a real dataset we manually collected fienfnow defunct) Yahoo!/Overture view bids
webpage.

2For the popular rank-by-revenue scheme, the charge aftheosition isp; 1 times a coefficient which is related to the quality
scores of ads at bothand: + 1. We can easily incorporate this case into our considerafton simplicity, we assume all ads are
equally good for this work.
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4.6.1 Experiments With Known Distributions

In this set of experiments, we generate items with weightsvatues drawn independently from one of the
following distributions: Uniform with support between 1cah0, Normal with mean 10, and Exponential with
mean 10. The normal distribution was truncated at zero tadavegative weights and values. The number
of items per set received each time period is 5. We expreskutiget (capacity) as a fraction of the mean
weight of an item times the total number of time periods, (&= X\ x n x mearfw), wheren is the total
number of time periods, meén) is the mean of the weight of a random item. For example, epis 5.5
when item weights are uniformly distributed between 1 andA 8= 5.5 x A x n. The value of\ indicates
whether the budget is large compared to the expected owgratiding if you pick an item randomly from
each set. We tested the algorithms on various problem icessawith various budget levels and report the
following A values in our experiments: 0.05, 0.2, 0.5, 0.9, 1.1.

We evaluate the performance of the algorithm based on tleeahthe value obtained by the algorithm
and an upper bound on the optimal value of the solution to MCKIR upper bound of the MCKP can be
calculated by solving the fractional version of the MCKP asatibed in section 4.4.1.

We test two versions of the algorithm. The first one uses thesttold function generated based on
80 sampled item sets and does not update the thresholddancthe other version does not generate the
threshold function beforehand but uses the items receigeld #me period to generate/update the threshold
function. We refer to the first version as offline-traininglan the second one as online-training. The results
are in Figure 4.6. Each data point on the graphs is the averfad® runs on random problem instances.

Graphs for the algorithm with offline-training are on thetlehd graphs for the algorithm with online-
training are on the right. For both versions of the algorittime performance is almost always within 10% of
the optimal when the number of periods is 20 or higher andaggtres the optimal as the number of periods
increases. The algorithm with online-training performgsecthan the algorithm with offline-training when
the number of periods is small. During the first few periods tiireshold function of the online algorithm
is very unreliable (based on very few samples) and the dewsnade during early periods are prone to
mistakes. These mistakes are especially costly when thgebiglsmall because taking a wrong item may
exhaust a significant part of the budget. However as the nuwibgeriods increases the performance of
the online-training algorithm comes close to that of offltr&ining. The results are similar across different
distributions.

4.6.2 Experiments With Real Bidding Data

For these experiments we use a keyword bidding dataset thatnvanually collected by Chakrabaey
al. [23] from the Overture view bids website over the period obtweeks. The bids are for the single
keyword “auto insurance.” There are totally 1842 distinotet periods. For each time period, the data
contains the bidding prices for all top-40 positions. Edotetperiod is about one minute. The data do not
contain any information about the number of clicks.

For one experiment, following [23], we assume thdt) = 1 — s/40 is the CTR of positions and
X (t) = 1 over all time periods. We use the algorithm that trains @nliithout any pre-training. Each time
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Figure 4.6: Performance of ALG-S-MCKP with various itemtdsutions

period, the current set of bids is converted into the setevh# as described in Eq. (4.3), for three distinct
valuesV = 8,10, 12. The algorithm’s solution is within 99% of the offline optimfor all three values of’.
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Note that the algorithm performs better than the one desaiiin [23], which achieves a ratio between 90%-
95%. Even though both algorithms are based on using someokiefficiency threshold for item selection,
there is an important distinction: our algorithm'’s bids eémrelatively constant over time close to the value
which is optimal in expectation, while the algorithm fronB]2ids higher at the beginning and gradually
reduces its bid, and at some time it starts to increase itsdgdin based on a sniping heuristic.

For another experiment, we use an exponential function tdeithe CTR each periodsi(s) = 0.9°,
while the number of clicks isY(t) = 1 as in the first experiment. The expected value-per-clickhia t
experiment is set to the single vall'e = 12. The performance of the algorithm is shown in Figure 4.7.
The algorithm finds a solution that is within 6% of the optirfal all budget levels and number of periods.
Unlike the experiments with known distribution, the rasaiot monotonically increasing with the number of
periods. Increased number of periods does not result inawaigr performance because the prices in the data
set are not identically distributed each time period.

For instance, the ratio fox = 1.1 drops from .97 to .95 when the number of periods increasas 160
to 320. We plot prices of the slots that are targeted by therékgn during the first 320 periods to explain
why this happens. Figure 4.8(a) shows that prices for slbt&7lare constant during the first 140 periods.
Around period 140, prices for slots 11-16 increase and dtayhigher level for most of the periods through
320. Intuitively, it is optimal to target a higher slot in @rdto get more clicks before period 140, i.e., when
the prices are lower. We plot optimal bids and algorithm&stin Figure 4.8(b) to illustrate this.

1,
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20.20
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Figure 4.7: Performance of ALG-S-MCKP on keyword biddingedset with 1842 periods, exponential CTR,
and fixed number of clickX (¢) = 1.

As expected, most optimal bids are higher during the firstdettibds in order to buy a lot of clicks when
they are cheap. Optimal bids win slot 11 for $5.7 for the fi@ periods and are lowered to $3.5 to win slot
17 in periods 100-300. In contrast, the algorithm has no vi&pnowing that the prices are going to increase,
and its bid ($3.5 to win slot 16) during the first 200 periodatithe level that is optimal assuming the prices
will remain the same as in the first 140 periods. After perid@,lthe algorithm starts seeing higher prices
and spending less as its bid of $3.5 results in position 1fé&us16 (i.e., fewer clicks). At period 200, the
algorithm has seen enough periods with higher prices andmdearspent enough to decide to raise its bids.
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Figure 4.8: Keyword bidding data set with 320 periods andegptial CTR.

Unfortunately, clicks are more expensive then and the dhgorperforms worse than the optimal. However

the algorithm’s performance is still around 95% of the otim

The final experiment is a variant of experiment 2 where thelrenof clicks each time period is uniformly

distributed between 1 and 20. The results are in Figure 48.allded randomness from the number of clicks
makes the threshold function less reliable when it is baseféw samples. This results in mistakes in early
periods which are relatively more costly when the total namiif periods is small. This is evidenced in a
relatively bad performance when the number of periods isntD29. However additional uncertainty about
the number of clicks does not prevent the algorithm fromquraimg well on problems with more periods.
The algorithm is within 7% of the optimal when the number ofipe is 40 or more.
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Figure 4.9: Performance of ALG-S-MCKP on keyword biddingedset with 1842 periods, exponential CTR,

and random number of clicks.
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4.7 Conclusion

We propose an algorithm for S-MCKP that combines an appration to MCKP with an algorithm for
Online-KP. Our algorithm is based on the idea that MCKP cacdmerted to KP, which can then be solved
using the well-known greedy KP approximation, and the $mfuio KP can be mapped back to the solution to
MCKP. Our main contribution is the algorithm that accomipdis this for the online version of MCKP. At the
heart of the algorithm is the threshold function for KP whiitters out the items of insufficient efficiency. We
adapt the process of computing the threshold function tmttiee setting where no information about the
items needs to be available a priori. Instead, the thredhalttion is updated online. We apply the algorithm
to problem instances generated with different distrimgiand to a real data set. In all of our experiments the
performance is within 10% of the offline optimum, and it aaroes the offline optimum when the number
of periods is sufficiently large.

For future work, one direction is to model trends in data eigy. The current algorithm assumes that
there are no trends in data, as items are identically diggtbacross time periods. However it works rela-
tively well in the presence of trends because the threshwidtion is updated over time. Another direction
that we are currently pursuing function over time. Anothieection that we are currently pursuing is build-
ing/deploying a keyword bidding agent based on the aboverighgn. Yet another direction is to prove
theoretical guarantees about the performance of the S-M&lg#ithm with general assumptions on the
distribution of items.



Chapter 5

Production Scheduling in TAC SCM!

5.1 Introduction

For many years, researchers in artificial intelligence gretations research have studied difficult problems in
combinatorial optimization such as supply chain managénvehicle routing, and airline crew scheduling.
The majority of this research has focused on solving detastic problems; however, in many applications
there is inherent uncertainty that is not captured by datestic models. Moreover, in many optimization
settings, stochastic information about the shape of thedls readily available in the form of probabilistic
models built from historical data. Recently, computatiaral technological advances have made it feasible
to reason about this stochasticity.

In general, two strategies are adopted when dealing witkertaiaty in combinatorial optimization. The
first strategy treats problems in an online fashion: alpori are forced to make decisions in the face of
incomplete information and accommodate new informatioly as it becomes available. Such algorithms
typically fall into two categories. The first category indes simple, greedy heuristics for handling new
information as it unfolds. The second category includesréttgms for finding optimal solutions given what is
known; then, as new information becomes available, theisolsiare re-optimized with the new information,
respecting any unalterable prior decisions.

The second strategy for dealing with uncertainty in comtainal optimization focuses on determining
ahead of time a solution that is optimal in the expected seBteehastic programming is one example of this
strategy [14]. At a high level, stochastic programming édeis problems in two stages. Decisions must be
made in the first stage before pertinent information abogistrond stage is revealed, but the objectives in
the second stage are dependent on the first stage decisivas. SBochastic information available about the
second stage outcomes, the goal is to find the first stagei@exihat maximize the profits of the first stage
plus the expected profits of the second stage.

One computational bottleneck to solving stochastic pnogras the calculation of expected profits in the
second stage. This calculation typically involves enuniegaall possible outcomes of the second stage (also

1Based on [28].
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known asscenario}. In many problems there are combinatorially many scesaritaking it prohibitively
expensive to calculate the expected profits of the secoige.stane common means of approximating this
calculation is the so-callegikpected value meth¢ti4].

Unfortunately, the expected value method ignores largéqrar of the given stochastic information. It
has been shown that using additional stochastic informatam improve the quality of solutions in dynamic
vehicle routing [12, 13], packet scheduling [24], and elewdispatching [81]. In these sample applications,
stochastic information is exploited in widely different yg however, the unifying theme seen throughout
this research is that there are considerable advantagaking taccount of stochastic information.

Shapiroget al.[4, 62, 97] recently proposed an alternative approximatehnique calle®ample Average
Approximation(SAA), which reduces the number of scenarios. They suggesgonly a subset of the
scenarios, randomly sampled according to the scenaridhbdisbn, to represent the full scenario space. An
important theoretical justification for this method is thatthe sample size increases, the solution converges
to an optimal solution in the expected sense. Indeed, theecgance rate is exponentially fast.

In this paper, we combine these two strategies to handlingrtainty: we use techniques for finding
optimal solutions in the expected sense to solve combiahfroblems in an online setting.he problem we
address is the scheduling component of the Trading Agentp@ttion in Supply Chain Management (TAC
SCM) problem a classic combinatorial optimization probleith uncertainty (seemw. si cs. se/t ac/).

We formulate this problem as a stochastic program and we Ageis an online setting to find today’s
optimal schedule, given predictive information about thieife. This optimization procedure forms the heart
of BOTTICELLI, one of the finalists in the TAC SCM 2003 competition.

We describe two sets of experiments, using either one or tays df information about the future. In
our two day experiments (using one day of information abloattiture), we show that SAA outperforms the
expected value methpdhich solves a deterministic variant of the problem assgnaill stochastic inputs
have deterministic values equal to their expected valuesut three day experiments (using two days of
information about the future), we show that SAA with lookadeoutperforms greedy SAA. Our approach
generalizes tdV days of lookahead, and since our problem setting is one @i®@optimization, the benefits
of two day lookahead accrue rapidly. It remains to show thatapproach improves the performance of
agents in TAC SCM.

5.2 TAC SCM

In recent years, the amount of time available for making demimanagerial decisions in commercial settings
has decreased dramatically [70]. Assuming this trend naes, it will become increasingly more important
to develop tools that automate the decision making proc&€. SCM is a simulated market economy in
which software agents tackle complex optimization protdémdynamic supply chain management.

In TAC SCM, six software agents compete in a simulated saaftarmarket economy, specifically the
personal computer (PC) manufacturing sector. Each aganheaufacture 16 different types of computers,
characterized by differerstock keeping unitéSKUs). Building each SKU requires a different combination
of components, of which there are 10 different types. Thesgonents are acquired from a common pool of
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suppliers at costs that vary as a function of demand. Aftsgrably, each agent can sell its PCs to a common
pool of customers by underbidding the other agents. Thetagea ranked based on their profits over 220
days, each of which lasts 15 seconds.

The TAC SCM simulation proceeds as follows: Each day, custsmsend a set akquests for quotes
(RFQs) to the agents. Each RFQ contains a SKU, a quantitye dale, a penalty rate, and a reserve price—
the highest price the customer is willing to pay. Each agents an offer to each customer for each RFQ,
representing the price at which it is willing to satisfy tiREQ? After the customer receives all its offers, it
selects the agent with the lowest-priced offer and awaraisaent with amrder. Either: the winning agent
delivers the entire order by its due date, in which case itid g full; it delivers the entire order within five
days of its due date, in which case it is paid the amount offies tess a penalty based on the number of late
days; or, it cannot deliver the entire order within five dafgodue date, in which case the order is canceled,
no revenues are accrued, and the maximum penalty is incurred

In the meantime, the agents themselves are sending RFQpitiess, requesting a specific quantity of
a component to arrive on a particular day. The suppliersorespo these requests the next day with either
partial or full offers, indicating the price per unit at whithe RFQ can be satisfied. If an agent receives a
partial offer, the supplier cannot deliver the requesteahtjty of the component on the day on which it was
requested, but it can deliver a lesser quantity on that dalf.offers either have a delivery date on the day
requested, or a delivery date later than the one requentadthich case they are often accompanied by partial
offers. Among these offers, an agent can choose to acceptsatane, in which case agent and supplier enter
into a contract agreeing that the agent will be charged ®ictimponents upon their arrival.

At the end of each day, each agent converts components adduim suppliers into SKUs according
to a production schedule it generates for its finite-capasibgle-machine factory. In addition, it reports a
delivery schedule assigning the SKUs in its inventory td@uer orders.

Each simulated day represents a decision cycle for an agyeimg which time the agents must solve the
following four problems: bidding, scheduling, procurereand allocation.

Thebiddingproblem determines the offer price for each RFQ.

Theschedulingproblem determines the production schedule for each day.

Theprocuremenproblem determines which components to buy from suppliers.

Theallocationproblem matches SKUs in inventory to orders.

These four problems are highly interconnected. Indeed,péimal solution to the scheduling problem
yields an optimal solution to the procurement and allocatimblems, since revenue maximization and cost
minimization, which guide scheduling decisions, depenti@m inventory is allocated to orders and on what
supplies are procured. Moreover, an optimal solution tdttding problem yields an optimal solution to the
scheduling problem, since bidding decisions depend on faaetwring capacity constraints: too few winning
bids lead to missed revenue opportunities, while too mamying bids lead to late penalties.

All of these problems involve decisions that must be madayasdith only stochastic information about
tomorrow. TAC SCM agents face combinatorial, online optimizationbpgms with inherent uncertainty.

2An agent may select to not send an offer for an RFQ, but thist#algnt to issuing an offer price above the reserve price.
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Due to an artifact in the design of TAC SCM 2003—namely, nélgleggcomponent prices on day 1, which
led to the placement of essentially infinite orders on day séipplies to be delivered throughout the game—
our agent, BTTICELLI, focused on solving only three of these four problems: ligdischeduling, and
allocation. Here, we present our solution to the schedytingl allocation) problem.

To solve the scheduling problem, an agent must choose adethat accounts for outstanding orders,
possible orders (among the existing RFQs), future RFQstanding component orders, future component
costs, and current component and SKU inventory. Which ondérsnaterialize among the existing RFQs,
the shape of future RFQs, possible supplier defaults onandsg component orders, and future component
costs are all stochastic elements of the scheduling probléra remainder of this paper is concerned with
solving simplified yet representative formulations of thifieduling problem.

5.3 Simple Scheduling

Thesimple schedulingroblem is defined as follows3ivena set of orders, characterized by SKU, quantity,
due date, penalty, and price; initial component inventargrocurement schedule for components on each
day; initial product inventory; one machine of finite capgcthe number of production cycles required to
produce each product; and product specifications, nameilghvdomponents comprise which produdtsd

a production schedule that optimizes profit, or revenuedests. This problem is dubbeimple(relative to

the TAC SCM scheduling problem), since revenues and costdederministic.

5.3.1 Integer Linear Programming Solution

In this section, we present an integer linear programmibB)kolution to the simple scheduling problem.

Constants and Variables

Let O denote the set of orders. Each order O is characterized by the following information: Skdy} price

P, quantityq;, due datel;, penaltyp;, and reserve price;. Let D denote the maximum due date among all
orders andF denote the maximum acceptable overdue date.! kabhge over days,2,...,D + F = N.
Now, p;; is the penalty incurred if orderis filled on dayl. For notational simplicity, we let;; represent the
profit for filling orderi on dayl. The constant; is formally defined as follows:

pi  1<d;
il = pi—pa  di<l<di+FE
—Pi(d;+E) l>d;+ E

Let a;, denote the quantity of componehin initial inventory andb; denote the quantity of SKY in initial
inventory. According to the procurement scheduleg)gtdenote the quantity of componénto be delivered
on day!. Let C denote the capacity of the machine in terms of productiotesyand letc; denote the
number of production cycles required to manufacture KW component is part of SKUj, thene;;, = 1;
otherwiseg;;, = 0. Similarly, if order: is for SKU j, thenf;; = 1; otherwise,f;; = 0.

In addition to these constants, our solution relies on tHeviing variables:
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e 2; € {0,1}, which indicates whether or not ordérs filled on dayl. (For notational simplicity, we
allow an order to be filled on days > d; + E; however, conceptually, orders filled on d&y+ F + 1
are in fact unfilled orders and are treated as such in the faratian.)?

e y;; € Z4, which denotes the amount of SKlscheduled for production on day

Objective Function and Constraints

The simple scheduling problem can be stated as follows:

d;+E+1
max Z Z ZilTil (5.1)
i€cO =1
subject to:
d;+E+1
Z za=1, Vi (5.2)
Z Z%Zzl<b +Zyjl,
{i | fij=1} 1=1
Vine{l,...,N},L = mln(n d; + F) (5.3)
Z Zyﬂ < a/ﬁ'Z%l
{5 | eje=1} I=1
Vk,ne{l,...,N} (5.4)
S eyn<c, W (5.5)
J
Zil € {07 ].}, Vi, (5.6)
Yji € Z+7 v]al (57)
e Equation 5.1is the objective function, namely to maximize profits, whire quantltyzd B

indicates whether or not ordeéis filled on day!.

e Equation 5.2 states that an order must be filled exactly once. (Every asdgther filled on some day
I <d; + E,oritisfilled on dayd; + F + 1, meaning it is not filled.)

e Equation 5.3 states that the total quantity of SKluassociated with all orders filled by daydoes not
exceed the total inventory produced by day 1 plus any initial inventory of SKUj.

e Equation 5.4 expresses the resource constraints on components: Thejtataity of componenk
used through day must not exceed the total quantity of componkmirdered by day: — 1 from all
suppliers plus any initial inventory of componént

e Equation 5.5enforces the capacity constraint: The total number of prodo cycles used to produce
all SKU types on day must not exceed the machine’s daily capacity

3We introduce these variables for ease of exposition of tife bt in our implementation;g, y 41 =1 — ( f;J{E zil).
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5.4 Probabilistic Scheduling

The simple scheduling problem is extended tar@babilistic scheduling problem with an additional input.
We add a set of RFQs, characterized like orders, but with aitiadal parametery; that representss
likelihood of becoming an order. (For orderse O, a; = 1.) Implicitly, this formulation of the problem
assumes that all likelihoods are independent. In protstigicheduling, the objective is to find a production
schedule that maximizespectegrofit. The following stochastic program (SP) achieves tigctive.

5.4.1 Stochastic Programming Solution

Given a set of orders, and a set of RRQdayonly a fraction of which will be realizetbmorrow we seek
to produce an “optimal” set of SKUsdays.t.tomorrows profits will be maximized. More specifically, we
seek to produce some set of SKUs, trading off production af¢hSKUs that can be used to fill the most
profitable RFQs with those that can be used to fill those RF&tsatte most likely to become orders.

Letw; € {0,1} indicate whether or not ordéris filled on day1,* and letv; € Z, denotes the amount
of SKU j scheduled for production on ddy Let 2,, denote the set of RFQs that are realized intith
scenario §,,). Now letz;;,,, € {0, 1} indicate whether or not ordérc O or RFQi € Q,, is filled on dayl
in scenarian, and lety;;,, € Z, denote the amount of SKlscheduled for production on déayn scenario

m.
d;+E+1
max Z w;mi + Z P(om) Z Z Zilm Tl (5.8)
i€O m i€0U,, 1=2
subject to:
w; + Z Zilm = 1, Vm,i eOU Qm (59)
1=2
Stage 1:
Z giw; < by, Vj (5.10)
{i| fi;=1}
> wvi<ap Vk (5.11)
{] ‘ eyk:l}
Z Cj'Uj S C (512)
J
w; € {0,1}, Vi (5.13)
v; € Zy, Vj (5.14)

4Note: w; = 0 for all RFQs:.
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Stage 2:

L n—1
Z i <w7, + Z%m) <bj+u+ Z Yjtm,

{i| fiy=1} 1=2 1=2

Vj,m,n € {2,...,N},L =min(n,d; + E) (5.15)

n n—1

Z <Uj + Z%m) < a + Z Allm (5.16)
{5 ] eje=1} 1=2 =1

Vk,m,n € {2,...,N}
> ¢iyiim <C, Vm,l€{2,...,N} (5.17)

J

Zilm € {07 1}7 VZ7 l7 m (518)
Yjlm € Z+7 vja lam (519)

e Equation 5.8is the objective function, namely to maximize profits, whtkltezquantitnyjE+1 Zilm

indicates whether or not ordérs filled on day! in scenarid,,, .

e Equation 5.9 states that orders and RFQs must be filled exactly once. ticpiar, an order can be
filled on day 1, or it can be filled at some later date in the saéesaAn RFQ can only be filled at some
later date in the scenarios.

e Equations 5.10, 5.11, and 5.1pertain to thew; andv; variables: i.e., production and the allocation
of inventory to orders on day 1. The total quantity of SK@llocated to orders on day 1 cannot exceed
the initial inventory of SKUj. The total quantity of componettused in production on day 1 cannot
exceed the initial inventory of componéntThe total number of production cycles used to produce all
SKU types on day 1 must not exceed the machine’s daily capacit

The final set of constraints pertains to production and tleeation of inventory to orders and RFQs on
days2,..., N in the various scenarios.

e Equation 5.15expresses the resource constraints on inventory. In allasioes, the total quantity of
SKU j associated with all orders filled by day(either on day 1 or on some later date in the scenarios)
cannot exceed the total inventory produced by day 1 plus and the initial inventory.

e Equation 5.16 expresses the resource constraints on components. Ireatusas, the total quantity
of componentk used through day cannot exceed the total quantity of componemprocured by day
n — 1 and any initial inventory.

e Equation 5.17enforces the capacity constraint. In all scenarios, tred tatmber of production cycles
used to produce all SKU types on dagannot exceed the machine’s daily capacity

Lastly, let us the compute the probabilities of the variocensrioss,,. Viewing o, as a bit vector,
omi € {0,1} indicates whether or not RFQis realized in scenarie:. Now, the probability of thenth
scenario is given by:

P(om) = [[ ey (1 — a;)' o (5.20)
i
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5.5 Approximation Algorithms

Algorithm Output

Expected-Value (EV) ILP with expected profits and quantities
Expected-Profit (EP) ILP with expected profits
Expected-Quantity (EQ) ILP with expected quantities
SAA-Greedy (SAAG) SP using only current RFQs
SAA-Average (SAAA) SP using average future RFQs
SAA-Sampling (SAAS) SP using sampled future RFQs
Not-in-time Production (NTP) ILP ignoring RFQs

Table 5.1: Approximation Algorithms

Table 5.1 summarizes the seven ILPs that are featured in>q@arienents. All ILPs were solved using
CPLEX version 7.5, terminating with the first feasible smot The first three algorithms approximate the
SP solution by solving variants of the simple schedulingofgm. Theexpected-valualgorithm solves the
simple scheduling problem using expected profits and eggdegtiantities. Expected profits are computed
by multiplying 7;; by «; in Equation 5.2. Expected quantities are computed by multiplyipgoy «; in
Equation 5.3. Thexpected-profifrespectivelyexpected-quantijyalgorithm solves the simple scheduling
problem using only expected profits (respectively, quesjt

The next three algorithms approximate the SP solution usargple average approximatiai$AA),
whereby they sample a subset of the scenario space accaaitgydistribution, and optimize only with
respect to those sampleSAA-greedpamples scenarios only consisting of one day’s worth ofeh&&Qs.
This algorithm makes no attempt to reason about future RFS2g\-averagesamples scenarios consisting
of N days’ worth of RFQs, assuming that all future RFQs look likeaserage RFQSAA-samplingamples
scenarios consisting df days’ worth of RFQs; but, SAA-sampling generates sampleréuURFQs from an
RFQ distribution, rather than assume that all future RFQK like an average RF©.

Finally, not-in-time production ignores stochastic information entirely. I[lyoachedules orders—i.e.,
RFQs that have been realized. As its name suggests, thisgstrean often lead to late penalties, since
production does not begin until one day after RFQs are redeiv

5.6 Empirical Results

The experiments we performed modeled the scheduling profdeed by an agent competing in the TAC
SCM game, and similar problems faced by dynamic supply cimgnagement systems. These experiments
tested two hypotheses: (i) algorithms that utilize morelsastic information outperform those that do not;
and (ii) algorithms that look ahead into the future outperfgreedy algorithms.

SRecall thai; = 1 for all ordersi.
6All of our SAA algorithms sample@0 scenarios, since larger sample sizes showed no significeantage.
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(a) Ranges of Distributions (b) Description of Metrics
Parameter | Range Metric | Description
SKU [1, 16] P mean profit per order
Price [$1600, $2300] C % cycles used to fill orders
Quantity [1, 20] P/C mean profit per cycle
Penalty [5%, 15%] of Price| | EVPI | expected value of perfect informatign
Probability | [0, 1] VSI value of stochastic information

Table 5.2: Distribution Ranges and Metric Descriptions

Each N day trial of our experiments proceeded as follows. On eaghttie algorithms received ran-
domly generated RFQs drawn from a distribution similar &t tf the TAC SCM game specification. Specif-
ically, 200 RFQs were generated at random, with parametefarmly distributed in the ranges shown in
Table 5.1(a). Unlike in TAC SCM, (i) each RFQ was assignedepnobability of becoming an order, and
(ii) each RFQ was due on the dagmediatelyafter it was issued. Given a set of outstanding orders and new
RFQs, the algorithms generated schedules and producettanye(Note: Based on the above distributions,
100 RFQs were expected to be converted to orders each dage &ch RFQ takes an average of 55 pro-
duction cycles, the production of all orders requires mbaatthe 2000 cycle capacity granted—the numbers
55 and 2000 are based on the TAC SCM game specification.) THelag after some more of the RFQs
became orders, the algorithms allocated (i.e., delivgreatjuct inventory resulting from production on pre-
vious days to current orders. Each order that was filled giklsome revenue, orders filled after their due
dates also yielded revenue but incurred a penalty, andothat were not filled at all incurred the maximum
penalty of 5 times the RFQ’s daily penalty value.

In our experiments, we made the following simplifying asgtions: no initial orders, no initial product
inventory, and infinite component inventory. The third siifigation, as alluded to earlier, is an artifact of
the TAC SCM game design in 2003. These first two simplificativere designed to isolate the effects being
tested by avoiding unnecessary complexity.

5.6.1 Metrics

Table 5.1(b) describes the metrics computed during eaghtlt were used to evaluate the approximation
algorithms. The first metric, mean profit per order, was thimgary measure of an algorithm’s performance.
Secondly, the percentage of cycles used to fill orders, &teicthat percentage of the 2000 available cycles
which were used by an algorithm to produce PCs that werelicaodd. Perhaps more informatively, the next
metric, profit per cycle, measures how well the algorithmediimore profitable, rather than less profitable,
orders.

The expected value of perfect informatias calculated by subtracting the mean profit an algorithm
achieved from the maximum possible, which it could have aakd had it had perfect foresight: i.e., if it
knew exactly which RFQs would become orders. The maximursiplesmean profit was calculated using
the ILP described in Section 5.3 after the fact. T&ie of stochastic informatiois the difference between
an algorithm’s mean profit and that of the Expected Valueritlyn. This metric describes how much an



55

algorithm gained or lost by utilizing stochastic infornmatibeyond simple expected values.

Algorithm P C P/C EVPI VSI
SAA-Greedy $1,207 || 95.7% | $63.59 | 78,550 | 48,105
Expected Profit $448 93.9% | $24.40 | 154,450| -27,800
Expected Quantity| $-1,251 | 81.5% | $-77.71| 324,390| -197,740
Expected Value $726 90.8% | $47.65 | 126,650| O

Table 5.3: Two Day Experiments: Metric Values

Algorithm P C P/C EVPI VSI

SAA-Greedy $1,567 || 98.6% | $79.5 87,350 34,310
SAA-Sample $1,620 || 98.1% | $82.6 76,810 44,848
SAA-Average $1,635 || 98.1% | $83.4 73,670 47,990

Expected Profit $1,294 || 98.7% | $65.69 | 142,000 | -20,200
Expected Quantity| $593 95.8% | $31.34 | 282,100 | -160,300
Expected Value $1,395 || 96.8% | $72.34 | 121,800 | O
Not-In-Time $-4,557 || 49.3% | $-462.53| 1,312,100| -1,190,400

Table 5.4: Three Day Experiments: Metric Values

5.6.2 Two Day Experiments

In the two day experiments, algorithms received one set @&&nd scheduled one day of production. The
resulting product inventory was allocated to orders on tye2l Any orders that were not filled incurred the
maximum late penalty.

These experiments tested the ability of the algorithms bedule production relying on only stochastic
information. After day 1, there was no opportunity for protian; thus, there was no opportunity to satisfy
any orders that could not be filled from day 1’s production.

The metric values described in Table 5.1(b) for the two dgeements are shown in Table 5.3. In addi-
tion, the 95% confidence intervals of each algorithm’s meafitgare shown in Figure 5.1(d)Since SAAA
and SAAS are identical to SAAG when there is only one day oflpation; these lookahead algorithms
were excluded from the two day experiments. The NTP algorittoes not have a chance to schedule any
production at all in these experiments, and was also exdlude

In the two day experiments, SAAG outperformed the otherritlyms under all metrics. Figure 5.1(a)
shows with 95% confidence that SAAG was significantly betigeims of mean profit. In second place (in
terms of mean profit) was the EV algorithm. Despite sellivgeiecycles, the EV algorithm outperformed the
EP algorithm in terms of mean profit. These results suggestiie EV algorithm was filling fewer orders,
but choosing some of the more profitable ones (as evidencélebly/C values). The EP algorithm uses a
more risky technique when scheduling production, sinctténapts to fill every RFQ in its entirety. When it
chose to fill an RFQ with a large expected profit and the RFQ dichecome an order, at best the products

"These confidence were intervals calculated using the aptgercentile-method (see, for example, [32])
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that were made could be given to other less profitable RFQs EVhalgorithm subverts this problem by only
producing RFQs in proportion to their likelihood of becogian order. EQ performed relatively poorly on
all computed metrics because it was scheduling produatiih €xpected quantities of what were sometimes
unlikely realizations.

By design, SAAG uses more stochastic information than therailgorithms; therefore, the results from
these experiments confirm our hypothesis that using mochastic information leads to better performance.

5.6.3 Three Day Experiments

In the three day experiments, algorithms received two deii~Q)s and scheduled two days of production.
The optimal solution to this scheduling problem in the expesense is described by the stochastic program
in Section 5.4.1, when the set of scenarios includes all auettibns of realizations over both days of RFQs.

More specifically, the three day experiments proceededlas/& The first set of RFQs, all of which were
due on day 2, was received on day 1. The algorithms then sldtedroduction and built up their product
inventory. On day 2, a subset of day 1's RFQs was selected@bnato become orders. In addition, a second
set of RFQs was received, all of which were due on day 3. Therigthgns again scheduled production and
built up their product inventory. In addition, any orderseden day 2 that could be filled were shipped, and
revenues were recorded. On day 3, a subset of day 2's RFQseleasesl at random to become orders. At
this point, any outstanding orders due on day 2 that couldlbd fivere shipped, and revenues were recorded,
less late penalties; any orders due on day 3 that could biedifvere shipped, and revenues were recorded,;
and, penalties were recorded for any unfilled orders.

$1 1207 $1,635

L $726 $1,620 T

$448 T -l-
I T J-
$1,567
-$1,251

SAAG EP EQ EV SAAG SAAS SAAA
(a) Two Day Experiments (b) Three Day Experiments

Figure 5.1: Mean Profits with 95% Confidence Intervals

The purpose of these experiments was (i) to show that usirrg stochastic information is at least as
useful across multiple days as it was in the 2 day experingmt, (ii) to test the ability of the algorithms
that made use of stochastic information to plan for the fugliven stochastic knowledge about the shape of
future RFQs. To an extent, these experiments also testedbility of the algorithms to recover from possible
misuse of stochastic information in the two day experimdnis$, such affects would be better uncovered by
multiple day experiments.
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As shown in Table 5.6.1, the stochastic programs outpeddrall of the other schedulers in all but one
calculated metric. Once again, these results confirm ouothysis that using more stochastic information
leads to better performance. All other results are condistéh results from the two day experiments.

Figure 5.1(b) shows that the stochastic algorithms thgtoelforecasts about future RFQs outperformed
SAAG. Unlike the greedy algorithm, the algorithms with latlead use stochastic information about fu-
ture RFQs to make scheduling decisions. These experimenfsroed our second hypothesis: using more
stochastic information about the future also leads to bp#gformance.

The improvement seen was the result of day 1's with low-prREQs. The greedy algorithm was forced
to cope with these poor RFQs because it did not utilize anghststic information about the future. On the
other hand, the algorithms with lookahead chose to schemtolduction that filled predicted future RFQs
with higher prices, rather than waste production cycles BQ&with low prices. SAAS and SAAA perform
comparably in these experiments (see Figure 5.1(b)) becdheRFQs sampled by SAAS were drawn from a
uniform distribution, and thus tended to reflect mean RFQgersa non-uniform distribution, we conjecture
that the sampling algorithm would make better use of std@hagormation about future RFQs than an
algorithm that relies on only the mean.

This paper only considers experiments of 2 and 3 days iniduaralin future work, we plan to assess the
performance of these algorithms over many days, such aggiwlt 220 days of the TAC SCM game.

5.7 Conclusion

The research problems in the Trading Agent Competitiondyguieally approached using clever heuristics
and optimization techniques. With a few notable exceptjd@s 98], these methods have tended to ignore
some of the information that characterizes the uncertaintlye problems. This paper suggests that it is pos-
sible to substantially improve the performance of algonishby incorporating stochastic information about
the future. More importantly, this paper shows that the iseemethodology for including stochastic infor-
mation is an important indicator of an algorithm’s performe. Indeed, the scheduling decisions determined
by a stochastic programming approach that aims to charaetalt of the uncertainly outperforms methods
that make no use or partial use of uncertainty.

Research on dynamic supply chain management can proceauimtaer of future directions. By itself,
the probabilistic scheduling approach makes worthwhit#siens given a fixed distribution for future RFQs.
However, in the bidding problem, there is an opportunity lterahe distributions of the RFQs that could
become orders, namely by raising or lowering bids. ITBICELLI, the probabilistic scheduling algorithm
serves as a critical component for evaluating various bigldirategies. The algorithms presented here rely
heavily on stochastic programming to handle uncertainbyyéver, there are other techniques, such as con-
sensus [12] and POMDPs [57], for coping with uncertaintyiclwimay prove useful when the full TAC SCM
problem (including procurement) is considered.



Chapter 6

ILP Bidding in TAC SCM 1

The chapter describes the architecture of Brown Univeéssiégent, BOTTICELLI, a finalist in
the 2003 Trading Agent Competition in Supply Chain ManaganieAC SCM). In TAC SCM,

a simulated computer manufacturing scenariofBICELLI competes with other agents to win
customer orders and negotiates with suppliers to proceredmponents necessary to complete
its orders.

In this chapter, two subproblems that dictate®ICELLI’S behavior are formalized: bidding and

scheduling. Mathematical programming approaches areeabipl attempt to solve these prob-

lems optimally. In addition, greedy methods that yield usapproximations are described. Test
results compare the performance and computational effigiehthese alternative techniques.

6.1 Introduction

A supply chain is a network of autonomous entities, or agesnigaged irprocurementof raw materials,
manufacturing—converting raw materials into finished products—aligtribution of finished products. The
Trading Agent Competition in Supply Chain Management (TATM is a simulated computer manufactur-
ing scenario in which software agents tackle complex problen supply chain management. This chapter
describes the structure of Brown University’s ageBICELLI, a finalist in TAC SCM 2003.

TAC SCM agents face uncertainty about the future, but thestmmake decisions before the uncertainty is
resolved: e.g., agents must procure raw materials and metoué finished products before customer orders
arrive. BOoTTICELLI handles the uncertainty in manufacturing and distributisimg stochastic programming
techniques (see Benisehal.[11]). Here, we focus on our approach to thiddingproblem: find an optimal
set of bids to place on customer RFQs, balancing the tratbebffeen maximizing profits—by placing high
bids—and maximizing the likelihood of winning multiple caster orders—by placing low bids.

This chapter is organized as follows. In Section 6.2, we giveverview of TAC SCM. Next we describe

1Published as [10].
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the architecture of our agentBTICELLI. This architecture emphasizes three problems—biddingluyaro
tion scheduling, and delivery scheduling. Section 6.4 dless a heuristic approach to these problems: greedy
scheduling and bidding via hill-climbing. Section 6.5 distaolutions that approximate optimal stochastic
programming solutions. Section 6.6 presents experimessalts.

6.2 TAC SCM

In TAC SCM, six software agents compete in a simulated sexftarmarket economy, specifically the per-
sonal computer (PC) manufacturing sector. Each agent canfacture 16 different types of computers,
characterized by differerstock keeping unitéSKUs). Building each SKU requires a different combination
of components, of which there are 10 different types. Thesgonents are acquired from a common pool of
suppliers at costs that vary as a function of demand. Aftegrably, each agent can sell its PCs to a common
pool of customers by underbidding the other agents. Thetagea ranked based on their profits over 220
days, each of which lasts 15 seconds.

Each day in the TAC SCM simulation customers send a segapfests for quoteRFQs) to the agents.
Each RFQ contains a SKU, a quantity, a due date, a penaltyaatiea reserve price—the highest price the
customer is willing to pay. Each agent send#fer to each customer for each RFQ, representing the price
at which it is willing to satisfy that RFQ. After the custonrerceives all its offers, it selects the agent with the
lowest-priced offer and awards that agent withoader. Either: the winning agent delivers the entire order
by its due date, in which case it is paid in full; it delivergténtire order within five days of its due date,
in which case it is paid the amount of its offer less a penadtyeldl on the number of late days; or, it cannot
deliver the entire order within five days of its due date, ifchircase the order is canceled, no revenues are
accrued, and the maximum penalty is incurred.

Meanwhile, the agents themselves are sending RFQs to stgpplequesting a specific quantity of a
component to arrive on a particular day. The suppliers medpo these requests the next day with either
partial or full offers, indicating the price per unit at whithe RFQ can be satisfied. If an agent receives a
partial offer, the supplier cannot deliver the requesteahtjty of the component on the day on which it was
requested, but it can deliver a lesser quantity on that dall.offers either have a delivery date on the day
requested, or a delivery date later than the one requentedthich case they are often accompanied by partial
offers. Among these offers, an agent can choose to acceptsttane, in which case agent and supplier enter
into a contract agreeing that the agent will be charged #®ictimponents upon their arrival.

At the end of each day, each agent converts the componestgiitad from suppliers into SKUs accord-
ing to a production schedule it generates for its factorgldo reports a delivery schedule assigning the SKUs
in its inventory to customer orders.

6.3 Agent Architecture

Each simulated TAC day represents a decision cycle for antagering which time the agents must solve
four problems: procurement, bidding, production schedyliand delivery scheduling. Th@ocurement
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TAC SCM Decision Problem
Objective:
Maximize Expected Profits
Inputs:
Product Pricing Model
Component Cost Model
Set of Supplier Offers
Set of Customer RFQs
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory
Outputs:
Procurement Schedule: set of Supplier RFQs and Orders
Bidding Policy: map from Customer RFQs to Prices
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 6.1: TAC SCM Decision Problem

problem involves communicating with suppliers via RFQs] aelecting supplier offers to accept among
those which are received in response to these RFQs.bitlikng problem is to decide how to assign offer
prices to each customer RFQ. Theduction schedulingroblem is to decide how many of each SKU to
assemble each day. Thlelivery schedulingproblem is to decide which orders to ship to which customers,
using product inventory. The objective in all of these peshs is to maximize&xpectedgrofits, given some
probabilistic model that captures the uncertainty in thenga A high-level description of the TAC SCM
decision problem is presented in Figure 6.1.

An artifact in the design of TAC SCM 2003 (namely, negligilslemponent prices on day 1), resulted
in us placing little emphasis oprocurement Rather, we focused on the development of solutions to the
bidding, schedulinganddeliveryproblems. High-level descriptions of the three problengsgawven in Fig-
ures 6.4, 6.6, and 6.7. These three problems are highlycorteected. Indeed, an optimal solution to the
production scheduling problem yields an optimal solutiortite delivery scheduling problem, since ulti-
mately revenues depend on which orders are successfulledl to their respective customers. Moreover,
an optimal solution to the bidding problem yields an optirealution to both scheduling problems, since
bidding decisions depend on manufacturing and distributamstraints: too few winning bids lead to missed
revenue opportunities; too many winning bids lead to lateajiees.

The architecture of BTTICELLI was designed with these relationships in mind, and thus ithdirig
module envelops the scheduling module, which in turn empgetbe delivery module as shown in Figure 6.2.
Once a bidding policy is determined by the bidding module gtheduling module finds a production sched-
ule, and the delivery module ships products to customers.

The flow of information through the agent is as follows: Eaely the modeling module receives infor-
mation about other agents’ actions on the previous day dsaseéhformation about the offers the bidding
module submitted and the orders that resulted from thogefi he modeling module uses this information
to update its models and passes an updated model to the dpichdidule. The bidding module uses the new
model to produce an offer for each of the day’s RFQs. The gqifimes are determined with the aid of the
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Figure 6.2: Botticelli: A Modular Design

scheduling module. When invoked, the scheduling modulaesiom the procurement module the quantity
of each component that is expected to be in inventory on articpkar day. It then determines how to allocate
machine cycles to make products for existing orders andylikeure orders. The scheduling module relies
on the delivery module to determine how to allocate prodmegmtory to existing orders and likely future
orders. After the bidding, scheduling, and delivery moddiealize their decisions, the procurement module
sends to suppliers RFQs for additional components and ®ldesed on the current offers.

6.4 Bidding: A Hill-Climbing Approach

In the preliminary rounds, 8T1TICELLI relied on a hill-climbing bidder, which successively adfusid prices
according to the results of a scheduler. At a high-level kikieler is initialized with some set of bid prices;
given these prices, a production and delivery schedulengoated; and, based on the results of the scheduler,
bid prices are tweaked. The goal of this hill-climbing altfum is to fill our production schedule, which we
assume is positively correlated with maximizing expectedfifs. TacTex utilizes a similar solution to the
bidding problem [87].

In a preprocessing step, we schedule only orders, no offesdong as all orders can be scheduled for
delivery, we proceed with the hill-climbing bidder.

It is crucial to our approach that the scheduler make useepthbabilities of winning each offer: the
scheduler must schedule offers base@x»pected quantities

We initialize bids to prices at which, according to our pngimodel, we will win every RFQ with cer-
tainty. At these initial prices, if the scheduler cannot fiely order and RFQ into the schedule, then those
RFQs which are not deemed profitable enough to include indhedsile at their current prices form a natural
set of RFQs for which to raise prices. Indeed, we increaspribes of these RFQs, thereby decreasing their
winning probabilities. In the next iteration, the scheduréhich schedules according to expected quantities,
may be able to schedule these RFQs for production. Pricememeased (i.e., probabilities are decreased)
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until all RFQs can be scheduled. This process is guaranteednverge, since the winning probability of
RFQs above their reserve prices is zero, yielding a correfipg expected quantity of zero.

6.4.1 Scheduling: A Greedy Approach

Our greedy scheduler is passed both orders and offers, vtlsohts as follows:
e Orders are placed before offers, since offers might not be won.

— Orders are sorted by ascending due date, then by descending penalty.

— Offers are sorted by descending profit per cyglg/¢;, wherej = f,), then by ascending due date, and
lastly by descending penalty.

Note that offers are not sorted by probability. We experitaémwith this ordering, but profitability proved to
be more important than probability.

Let o be the current order or offer and Igbe o's SKU. The greedy scheduler addresses the orders and
offers in sorted order as follows:

1. Schedule backwards froo’s due date. That is, start by scheduling as much as possible of/Siithe day is
due. If more needs to be scheduled, then schedule as much as posshleh successively earlier day until either
no more is needed or the current day is reached.

2. If more of SKUj still needs to be produced, allocate as much as possible from prodantany.

3. If still more of SKUj is needed, schedule forwards frare due date until either all of orderis scheduled or the
cancellation date is reached.

4. If the cancellation date is reached, then cancel all scheduled piadot SKU j for o.

Note that ifo’s due date is the current day, then there is no time to prodogenore of SKUj. In this case,
the greedy scheduler begins at step 2.

6.5 Bidding: A Mathematical Programming Approach

We now formulate mathematical programs to solve the dsfligeheduling, production scheduling, and bid-
ding problems. Our proposed solution to the bidding probielies on a solution to the production scheduling
problem. Similarly, our proposed solution to the productswheduling problem relies on a solution to the
delivery scheduling problem. In our exposition, we distiisty betweersimpleoptimization problems, in
which there is no uncertainty, astbchasticoptimization problems. We present optimal solutions tosine
ple subproblems before describing our approximate saigtto the stochastic optimization problems. All
solutions are described in terms of the variables, corstant abbreviations listed in Figure 6.3.

6.5.1 Simple Scheduling

In simple scheduling, there is no uncertainty because #rereo customer RFQs. The sole purpose of simple
scheduling is to fill standing customer orders.



Variables
x,  bidding policy: bid price for RFQ
y;1  production schedule: quantity of SKJ
scheduled for production on day
zy  delivery schedule:
1 if order is delivered on day; 0 otherwise
z,;  delivery schedule:
1if RFQ ¢ is delivered on day; 0 otherwise

Constants in the Objective Functions
R number of RFQs
O  number of orders
D latest due date among all orders
E  number of days before a late order is canceled
¢;  Qquantity of order
d;  due date of order
p;  revenue for delivering ordeéron or befored; + E
pi penalty incurred if ordef is delivered on day
g,  quantity of RFQ.
d,  due date of RFQ
P, penalty incurred if RFQ is delivered on day

Abbreviations in the Objective Functions
il revenue earned by delivering ordesn day!

prp— qipi 1 <d;
L qipi — Pil di<l<d;+ F

m;;(p)  revenue earned by delivering RE@n day!

at pricep
! !
! _ q.p l S dL
mu(p) *{ ap—py, d <I<d +E
G 1 if order is not delivered at allf) otherwise
Gi=1— Z Zil
=1
¢ 1if RFQ ¢ is not deljyergd at all) otherwise

(Z =1- Z le
1=2

Additional Constants in the Constraints
ar ~ components of typé in initial inventory

akr,  components of typé delivered on day + 1

b; number of PCs of SKY in initial inventory

Cj cycles expended to produce one PC of SKU

e;r  11if SKU j contains component type 0 otherwise
fi;  liforderiis for SKU typej; 0 otherwise

fl;  1if RFQis for SKU typej; 0 otherwise

Cq  number of cycles on day

Probabilistic Pricing Model
P.(p) probability of winning RFQ at pricep

Figure 6.3: Mathematical Programming Variables, Constand Abbreviations
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Simple Delivery Scheduling

Delivery Scheduling
Inputs:
Production Schedule
Set of Customer Orders
Product Inventory
Output:
Delivery Schedule: map from SKUs to Customer Orders

Figure 6.4: Simple Delivery Scheduling
The (simple) delivery scheduling problem is one of alloegtSKUs in product inventory to customer

orders, given &D + E)-day production schedule (see Figure 6.4). The followirigger program solves the
delivery scheduling problem. (Notgyj; is constant in this formulation.)

] d;+E
m?XZ |:< Z Zil7Tu> - Cipi(d7v+E):| (61)
=1

i=1

subject to:
zq € {0,1}, Vil (6.2)
d;+E
> <1, Vi (6.3)
=1

t t—1
Z Z qizuﬁbj+2yjz, Vi,t=1,....,.D+FE

=1 {i | f;;=1} =1

The objective (Equation 6.1) is to maximize revenue and mie penalties; but, no order can be deliv-
ered more than once (Equation 6.3); and, the total quarft®KaJ) j associated with orders delivered by day
t cannot exceed the total inventory of SKroduced by day— 1 plus any initial inventory (Equation 6.4).

Simple Production Scheduling

Simple Production Scheduling
Inputs:
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory
Outputs:
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 6.5: Simple Production Scheduling

The simple production scheduling problem is one of allogatycles to SKUs, given a set of customer
orders, initial component and product inventory, arida+ E)-day procurement schedule (see Figure 6.5).
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The following integer program solves the simple producgoheduling problem.

o d;+E
Hylaxz [( Z Zz'ﬂﬂ'l) - Cipi(di+E):| (6.5)
® =1

i=1

subject to Constraints 6.2, 6.3, 6.4, and the following:

Yj1 € L>o, V7,1 (6.6)
t t—1

Z Z yj < ag + Zakl VEk,t (67)
1=1 {j | ejp=1} 1=1

> cyu <G, I (6.8)
J

As in delivery scheduling, the objective (Equation 6.5)dgrtaximize revenue and minimize penalties;
and, all of the delivery scheduling constraints still apply addition, Equation 6.7 expresses the resource
constraint on components: The total quantity of comportensed through day cannot exceed the total
guantity of componenk delivered by day — 1 plus any initial inventory of componerit Equation 6.8
enforces the capacity constraint: The total number of prtidn cycles used to produce all SKU types on
day! cannot exceed the machine’s capacity on day

6.5.2 Stochastic Scheduling and Bidding

Allowing for customer RFQs as well as standing customer mradgroduces uncertainty into the scheduling
problems. This uncertainty also arises in the bidding mahwhere its exact nature depends on bids.

To handle this uncertainty, the scheduling problem can badtated as a stochastic program (see Benisch
et. al. [11]). In solving this stochastic program, we show that tample average approximation method
(SAA) [62] outperforms the expected value method [14] ors fioblem. Nonetheless, we relied on the
expected value method in our implementation afBICELLI-2003 because it readily applies to the bidding
problem, whereas SAA does not.

Expected Production Scheduling

In the production scheduling problem, the objective is tocalte cycles to SKUs not only to fill existing
customer orders, but in addition to fill offers—customer REQsipped with bid prices—which may or may
not become orders. We model this uncertainty by associatiolgabilities with offers: offers with low bid
prices are assigned high probabilities, whereas offetts gh bid prices are assigned low probabilities.

The following integer program approximates the producsiomeduling problem. (Notez, is constant in
this formulation.)

+

d;+E
;nzai( Z |:< Z me) - Cipi(d,i+E)
=1
R d,+E
PIRACHRE I DA ACHE e A (6.9)
1=2

=1
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Production Scheduling
Additional Inputs:
Bidding Policy
Product Pricing Model
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory
Outputs:
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 6.6: Production Scheduling

subject to Constraints 6.2, 6.3, 6.6, 6.7, 6.8, and the following:

2, €40,1}, Vil (6.10)
d/+E
o<l W (6.11)
=2

t t
Z Z qizi + Z Z P (z.)q,20 <
I=1{i| fi;=1} =2 {u| f;=1}
t—1
bj+ >y, Vit (6.12)

=1

The objective function (Equation 6.9) maximizes profitsnfrorders andexpectedprofits from RFQs.
Equation 6.11 states that no RFQ can be delivered more tham dfquation 6.12, which considers RFQs
as well as orders, replaces Equation 6.4. Note the usxméctedquantity P,(z,)q, regarding RFQs in
Equation 6.12.

Bidding

Bidding
Inputs:
Product Pricing Model
Set of Customer RFQs
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory
Outputs:
Bidding Policy: map from Customer RFQs to Prices
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 6.7: Bidding
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The objective in the bidding problem is to find an optimal biddpolicy. We solve this problem by ex-
tending the solution to the production scheduling problaseol on the expected value method. In production
scheduling, all RFQs are equipped with bid prices, whichcarestants. In the bidding problem, the prices at
which to offer to fill RFQs are variables. Once prices becomgables rather than constants, the objective
function is no longer linear. (In fact, in our formulatiohis not even quadratic.) Thus, in our implementation
we discretize prices to recover a linear formulation:

M number of prices
tm, price of RFQu with indexm

2m 1if RFQ ¢ is delivered on day at price indexed byn;
0 otherwise

Now the following integer program approximates the biddangblem.

+

O d;+E
max [( Z zmm) — CiPi(d; +E)

i=1

M R d’+E
>N Popme) [( > 2l (e ) _Czpi(di+E)] (6.13)

subject to Constraints 6.2, 6.3, 6.6, 6.7, 6.8, and the following:

Zim €{0,1}, Vi, I,m (6.14)
M d,+E
>N s <l W (6.15)
m=1 [=2

t Mot
Z Z gizi + Z Z Z Po(201m)q, 211 <

=1 {i | fi;=1} m=11=2 {, | f/,=1}
t—1

b+ >y, Vit (6.16)

=1

6.6 Experiments

In this section we report on experiments designed to contbarperformance of three bidding algorithms,
one based on our mathematical programming solution, ohelimibing bidder, and one blend of the two.

6.6.1 Heuristics

To bid optimally in TAC SCM, an agent would have to optimizalwiespect to (i) each of the other agent’s
individual strategies; and (ii) all possible future scéosyrweighted by their likelihoods. Agent modeling
is not feasible in TAC, since the behavior of individual atgeis observed only by the server. Thus, we
collapse all agents’ behaviors into one model (see Sectdid)6 Furthermore, since it would be intractable
to consider all possible futures, we rely on an heuristi¢ #tands in the place of simulating the future—
specifically, future orders (see Section 6.6.1).
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Figure 6.8: Price vs. Probability for a SKU. Diamonds arexgatints from offers sent during the pastays.
Squares are data points from the previous day’s minimum andmum prices.

Modeling

The modeling module predicts the relationship between ith@tice of an offer and the probability of win-
ning that offer. There are several sources of informaticailable for modeling this relationship. In our
implementation, we utilize two: the first is a report provddey the server each day with the maximum and
minimum closing prices for each SKU on the previous day; #eoad is BYXTTICELLI'S past offer prices and
the orders that resulted. Our modeling module is concerngdvath price and probability relationships for
each SKU, rather than for each RFQ, since maximum and miniprices are SKU-specific.

For each SKU, the modeler plots the minimum and maximum pficen the previous day at probabilities
1 andO0, respectively. Intuitively, low prices are likely to be wiimg prices, while high prices are likely to
be losing prices. In addition, for each of the previdudays, BOTTICELLI's average offer prices are plotted
against the ratio of the number of offers won to the numbeffiei® issued. In total, our modeling module
is provided withd + 2 points, which it fits using a least-squares linear regressidis linearcdf (price vs.
probability graph) is adopted as the model that is input éoltidding module. (See Figure 6.8.)

By experimentation, we found the value®fo be a good choice faf. This value allowed BTTICELLI
to be responsive enough to the changes in price that oftemmgmamied another agent receiving a shipment
of supplies, but prevented any drastic overreactions. \[erixented with using additional information to
create more stable models, such as providing weights fortpdiased on the number of offers they repre-
sented, and maintaining the average ofdhgrevious days’ minimum and maximum prices. These methods,
however, did not respond well to price jumps that were tylpi€she 2003 TAC SCM competition.

The Triangle Method

In scheduling for multiple days of production,0BTICELLI'S scheduling module relies on the following
heuristic: do not use all cycles on all days, but rather sawdyztion cycles on future days for future RFQs
(see Figure 6.9). This heuristic is motivated by two assionpt First, higher revenues can be earned by
winning the same quantity of RFQs over multiple days, rathan winning a large quantity of RFQs on one
day, since, according to our model, an agent can only wingelguantity on one day by bidding low prices.
Second, the “character” RFQs of tomorrow will not differ mificantly from the RFQs of today, since all
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Figure 6.9: On dayi, only Cy = % cycles are made available to the scheduler. Cycles outs@e t
triangle are reserved for future order3.is the number of days of production in the scheddlas the daily
production capacity.

RFQs are drawn from a uniform distribution. In particularture RFQs will not be significantly better or
worse than today’s RFQs in terms of quantity, due date, &thoWever, a change in thmumberof RFQs is
predictec? BOTTICELLI saves more (less) cycles if the number of RFQs is predictatttease (decrease),
since prices tend to increase (decrease) accordingly.

6.6.2 Experimental Setup

Our experiments consisted of 20 day trials, which proceadddllows: On each day, the algorithms received
a randomly generated set of RFQs drawn from a distributimnlai to that of the TAC SCM game specifica-
tion. Specifically, 300 RFQs were generated at random, vathmpeters uniformly distributed in the ranges
shown in Table 6.1. Given these RFQs, the algorithms pratladgidding policy as well as production and
delivery schedules fab = 10 days. Based on its bid prices and the corresponding pratiadilan algorithm
won orders for some of the RFQs. The algorithms were theroressple for producing and delivering the
products for these RFQs before their due dates or they waradiped according to the rate specified in the
RFQ. The tests continued in this fashion #6rdays; this number was long enough to allow the algorithms to
distinguish themselves, but short enough to allow sevenadired iterations.

In order to mitigate any start effects in our experiments,algorithms were initialized with the same set
of 150 customer orders (thus, the first day looked like aleotays). We made the simplifying assumption
that all algorithms had an infinite component inventory,aihias alluded to earlier, is an artifact of the TAC
SCM game design in 2003. Finally, to isolate the effects efliluding algorithms, we relied on models that
could perfectly predict the likelihood of winning any RFQeatty price.
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Parameter, Range

Price [$1600, $2300]
Quantity | [1, 20]
SKU [1, 16]

Penalty [5%, 15%] of Price

Table 6.1:Uniform Distribution Ranges

Profits Deliveries| Price | Penalty
HG | $7,781,100, 6,847 | $1,193| $505,610
HE | $8,019,600 7,286 | $1,095| $285,950
EB | $9,600,900, 7,860 | $1,222| $113,660

Table 6.2:Experimental Results

6.6.3 Experimental Results

The algorithms included in our experiments were the hitilabing bidder with a greedy production scheduler
(HG), the hill-climbing bidder with an expected productischeduler (HE), and the expected bidder (EB),
which used its own schedule for production. Both of the tlilthbing bidders utilized a greedy scheduler to
evaluate candidate bidding policies, as such policiesecttulbe evaluated hundreds of times. (The greedy
scheduler completed in .01 seconds, on average, whereasgheted production scheduler completed in 1
second.) However, we allowed one of the hill-climbing biddk® utilize an expected scheduler for production
scheduling only. Our hypothesis was that the expected bidile built in scheduling and delivery modules
would out perform all of the others, as it would be capableafqming a more global optimization while
solving the bidding problem.

Relevant statistics of th&0 trials are given in Table 6.2. The mean profits of each allgoribver20 days
with 95% confidence intervals are shown in Table 6.3. Thesatevalidated our hypothesis. The expected
bidder outperformed both instances of the the hill-clingbbidders in every category in Table 6.2. The
95% confidence intervals shown in Table 6.3 reveal that tfierdince in profits is statistically significant.
The addition of the expected scheduling algorithm to thedhinbing bidder helped it to achieve fewer
penalties by improving the production scheduling solwgjdmowever, the lack of a global bidding strategy
still crippled its abilities. It seems that the expecteddeidproduced results that were close to optimal, since
its total penalty was relatively small and it managed toizdilits factory at nearly full capacity each day
without wasting many finished products.

6.7 Conclusion

Following Kiekintveld [60], we identify three key issues supply chain management that are modeled in
TAC SCM: (i) uncertaintyabout the future; (iikstrategic behaviommong the entities; and (iijynamism

2BOTTICELLI predicts the level of demand using a particle filter. Detdilhis approach are beyond the scope of this chapter.
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Low High

HG | $7,756k| $7,804k
HE | $7,988k| $8,050k
EB | $9,585k| $9,617k

Table 6.3:Mean Profits—95% Confidence Intervals

i.e., the temporal nature of the chainoBrICELLI adequately handles uncertainty (in the bidding problem),
but makes simplifying assumptions to handle the strategit dynamic components of the game. Rather
than model each competing agent’s strategic behavioriohailly, we collapse all agents’ behaviors into one
model, and optimize with respect to this model. In esseneajse decision-theoretic optimization techniques
to approximate solutions to game-theoretic problems. Byoaptimization models and techniques (e.g.
MDPs) might be applicable in TAC SCM, but to optimize with pest to all possible future scenarios is
clearly intractable. Instead, we rely on an heuristic wétbaltriangle methodby which we save production
cycles on future days for future RFQs, particularly if pe@e predicted to increase. In future versions of
BOTTICELLI, we plan to build more powerful models of the agents’ stiategvironment, and to incorporate
more sophisticated methods of dynamic optimization, paldrly in the procurement problem.



Chapter 7

Greedy Bidding in TAC SCM1

We present a fast and effective bidding strategy for the ifitadhgent Competition in Supply
Chain Management (TAC SCM). In TAC SCM, manufacturers casape procure computer
parts from suppliers (the procurement problem), and thkassembled computers to customers
in reverse auctions (the bidding problem). This chapteoigerned only with bidding, in which
an agent must decide how many computers to sell and at whatspio sell them. We propose
a greedy solution, Marginal Bidding, inspired by the Equigiaal Principle, which states that
revenue is maximized among possible uses of a resource Wherturn on the last unit of the
resource is the same across all areas of use. We show exptaiip¢hat certain variations of
Marginal Bidding can compute bids faster than our ILP solutivhich enables Marginal Bidders
to consider future demand as well as current demand, anctlsaiieve greater revenues when
knowledge of the future is valuable.

7.1 Introduction

A supply chain is a network of autonomous entities engagpdicurement of raw materials, manufacturing—
converting raw materials into finished products—and distidn of finished products. The Trading Agent
Competition in Supply Chain Management (TAC SCM) is a siradecomputer manufacturing scenario in
which software agents operate a dynamic supply chain [5].

In this chapter, we study the TAC SCM bidding problem, whéeedoal is to choose prices at which to
offer to sell computers to customers today, balancing thaenff between maximizing revenue per order—
by placing high bids—and maximizing the quantity of custoreters won—»by placing low bids, within
the constraints of current and future component availtgtaind production capacity. Ideally, these decisions
should be made taking into account future demand: in a buketé@ may be advantageous to reserve today’s
production capacity for future, more profitable demand; lmear market it may be preferable to bid more
aggressively early on, claiming a larger share of curremate to be fulfilled with products manufactured

1Based on [48].
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in the future.

To model these tradeoffs, we formulate bidding in TAC SCM mgVaday recursive, stochastic, integer
linear program (ILP). The mathematical program is recerdiecause the agent faces the same decision
variables day after day, namely the prices at which to setuiteent bids so as to maximize the sum of its
current revenue and its expected future revenue. It is adichin part because of the inherent uncertainty
in future demand. However, we also use stochasticity to iibéegame-theoretic dynamics of bidding in a
reverse auction, thereby reducing what is truly a gamerétiegproblem to a decision-theoretic one. This is
an important simplifying assumption that permeates outystu

A tractable approximation of-day bidding, calledexpected biddingwas considered in Benisot
al. [10]. We revisit this problem here, and show that it reducea generalization of the classic knapsack
problem, the so-calledonlinear knapsack probleNLK). Then, inspired by the Equimarginal Principle—
which states that revenue is maximized among possible disesesource when the return on the last unit of
the resource is the same across all areas of use—we proposedy golution to the expected bidding prob-
lem, which we call Marginal Bidding. We advocate for MardiBdding in this chapter because it scales
linearly with the number of days, and can hence more eashye sm N-day extension of expected bidding
than traditional ILP solutions.

To analyze the performance of various heuristics desigoe@4C SCM, we built a simulator that gener-
ates decision-theoretic simplifications of the game-tbgoproblems TAC SCM agents face, such as bidding.
Using our simulator, we compared the performance of sevarants of Marginal Bidding with an ILP so-
lution. We show that certain variations of Marginal Biddicgn compute bids faster than our ILP solution;
hence, incorporating a Marginal Bidder into a TAC SCM agentild allow for more time to be spent on other
decision problems (e.g., procurement). Moreover, thiedpp enables Marginal Bidders to reason about fu-
ture demand as well as current demand, and hence achievergmanues when knowledge of the future
is valuable. While the gains to be realized by reasoning afudute demand in TAC SCM appear modest,
we demonstrate that more substantial gains can be realimel more volatile or seasonal conditions that
generate more extreme market swings.

This chapter is organized as follows. We begin by descritheg=quimarginal Principle of marginal util-
ity theory, originally posited by Gossen in the mid 1800’s Wéte that this principle can be applied to solve
the nonlinear knapsack problem. Then, we present a dizatigtn technique coupled with a greedy algo-
rithm, which we prove approximately solve the NLK. (Techalig, we prove that our approach yields a Fully
Polynomial Time Approximation Scheme—a FPTAS—for the NLKeXy we formalize TAC SCM bidding
as anN-day recursive stochastic program, and argue that expbideihg, al-day deterministic approxi-
mation, can be reduced to solving an instance of the NLK. Thenpresent Marginal Bidding, a heuristic
for solving anN-day extension of expected bidding that incorporates theeaientioned discretization tech-
nique and greedy approach to solving the NLK. Finally, we pare experimentally the performance of two
heuristics, Marginal Bidding and an ILP, in simulationsloé fTAC SCM bidding problem.
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7.2 The Equimarginal Principle

The Prussian economist H. H. Gossen is credited with obsgtwo fundamental laws of utility. The first is
the Equimarginal Principle:

If a man is free to choose among several pleasures but hasmetd afford them all to their
full extent, then in order to maximize the sum of his pleasure must engage in them all to at
least some extent before enjoying the largest one fullyhabthe amount of each pleasure is the
same at the moment when it is stopped; and this however giff¢he absolute magnitude of the
various pleasures may be.

The Equimarginal Principle applies to problems in whichaitiéd resource (in the above quote, time, but
later, means) is to be distributed among a set of indeperpessible uses. Such problems are ubiquitous.
Two problems commonly cited in economics textbooks inclualeonsumer allocating her (fixed) income
among different commodities to maximize her utility; andrenfdeciding how to proportion its (finite) labor
and capital to maximize its profits.

The second of Gossen’s laws is the Law of Diminishing MargiReturns:

The amount of any pleasure is steadily decreasing as wencentintil at last saturation is
reached.

A key assumption underlying both of Gossen’s laws is that @arenot enjoy all pleasures indefinitely
because a pleasure is not free—rather, it comes at some exgadsed, when Gossen writes the “amount
of pleasure” he means the additional value that derives &ojoying a bit more of the pleasure at a bit more
expense. In modern terms, this quantity—the ratio of a plegsmarginal value to its marginal cost—can
be construed amarginal return

Assuming diminishing marginal returns, it is easy to seg ith@n optimal solution to such a resource
allocation problem, marginal returns are eqtidhdeed, if the marginal returns were unequal, a better allo-
cation could be achieved by redistributing a unit of the vese from the use with a lower marginal return to
the use with a higher marginal return. Gossen’s claim isdds$ous: that equal marginal returns imply an
optimal solution. For a proof, see Mas-Coletlal.[73] (Theorem M.K.3 on page 961), for example.

7.2.1 The Nonlinear Knapsack Problem

The problem domains in which the Equimarginal Principlelisphave the flavor of thienapsack problem

In this problem, we are given a setwftems, each with a valug and a weightv;, together with a knapsack
of finite capacityC' > 0. Our objective is to pack a variety of items in the knapsaahgbat the sum of the
values of the items packed is maximized, but their total Wedpes not exceed the capacity of the knapsack.
Formally,

max Z Vg (71)
LlyeeeyTm i1

2For ease of exposition, we assume that in an optimal solutismicily positive amount of the resource is allocated to aszh i.e.,
there exists an interior solution.
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st. Y wi; <C (7.2)
=1

In the continuous version of the problem, ths are in the rangp), 1]; in the 0/1 version (which is NP-hard),
they are in the sef0, 1}. In either case, the;s are bounded; otherwise, the problems would be unbounded.

In the aforementioned sample economics problems, theidedasced is one of choosing not only the
best uses for the resource (i.e., which items to pack), ugttantityz; > 0 of the resource to allocate to
each use, where, in general, the value of a use can depensl qumittity. This final consideration creates a
knapsack problem with a potentially nonlinear objectivediion: i.e., anonlinear knapsack proble(iNLK)
problem (see, for example, Hochbaum [54]). Specifically,

max Zfz(xl) (7.3)
)
st. Y gi(z:)<B and Vi z; >0 (7.4)

i=1

In NLKs, the f;s are value functions; thgs are cost functions; and the knapsack’s capaciig typically
re-interpreted as a budgBt

In a typical instance of the NLK, the;s are unbounded above, tlfgs are real-valued, concave, and
nondecreasing, and thgs are real-valued, convex, and nondecreasing. Concavitywégity) of the value
(cost) function implies the derivative of the value (costhdtion, i.e., marginal value (marginal cost), is
nonincreasing (nondecreasing). When we divide noninargasiarginal values by nondecreasing marginal
costs, the result is “diminishing marginal returns.” Henbg the Equimarginal Principle, total value is
maximized in a NLK when marginal returns are equated acrbssaas of use: i.e.,

CH@) R )
g1 (x1) 9i(;) 9n ()
The NLK can be solved exactly in polynomial time whgis quadratic ang is linear (see, for example,
Tarasovet al.[76]). The approach we take in this chapter can be appliecdmenerally; in particular, it can

be used for arbitrary nondecreasing concave value and xa@ogt functions.

7.2.2 A Discretization Technique

In this section, we propose a strategy for approximatingsibiation to the NLK. This strategy involves
discretizing the problem, and reformulating it as a verycigde0/1 (linear) knapsack problem that can be
solved greedily. In the next section, we prove that, withrfiaed finer discretization, (the value of) an
optimal solution to our discrete problem becomes a bettdrtaatter approximation of (the value of) an
optimal solution to the original NLK.

Consider a nonlinear knapsack problem with fhesatisfying the typical assumptions, ap@;) = c;x;
for¢;,x; € R, foralli = 1,...,n. We discretize this problem by assuming the limited resewan be
allocated to each use i € N equal parts, so that the size of eaclk is- % By spending: on usei, the
incremental quantity, = Ci of 7 is consumed. We refer tg as the unit size of usg k as the unit cost, and
K as the discretization factor.
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Suppose we have consumed the quantjty- s; of usei. Consuming an additional unit of sizgyields
the following, which we callnit marginal return

[::—ﬁ fi()dt _ fi(wi) = fi(zi — 84) _ Ji(zs) — fi(zi — s4) _ filzq) — fi(zs — s4)
f:*% gi@)ydt  gi(xi) — gi(zi — s4) CiSi k

vi(z;) = (7.6)

Observe that our assumptions grensure that unit marginal returns are nonincreasing, ikstrharginal
returns themselves.

Now, for usei andj = 1,..., K, letv;; = v;(js;) be the value of thgth unit of use;, and letw;; = k
be the cost of this unit. We rewrite the objective functiorif&and the constraint (7.2) to pose a 0/1 (linear)
knapsack problem:

max 17 Tq7 7.7
nax )iyt 2.7
ij
j

Here,z;; € {0,1},foralli =1,...,nandj =1,..., K.

Constraint 7.8 ensures that the budfeis not exceeded. Since weights are constant and equéathds
constraint can be restated as foIIovE;ij z;; < K. Hence, our problem is in fact a very special 0/1 (linear)
knapsack problem that can be solved greedily by consumiitg ofithe various uses in sorted order by value,
from highest to lowest, until the budget is exhausted, bngpkes by including theith unit of use: before
thej + 1st.

Further, a near-optimal solution to the (original) contine NLK can be constructed from an optimal
solution to our discrete problem, precisely because owedyraolution to the latter never includes tfta
unit without first including thej — 1st. In Section 7.2.3 below, we derive a bound on the qualithisf
greedy solution as an approximate solution to the contislK, but first we demonstrate the use of our
discretization technique by example.

Example Suppose Alice is shopping at a bulk food store and has $8 twdspeoats and granola. Oats cost
$2 per pound (i.eg,(z,) = 2z,). Granola costs $6 per pound (i.g,(z,) = 6z,). Alice’s value functions
for oats and granola aig () = 20z, — 2z and fy(z,) = 24z, — 3z, respectively. The optimal quantities
that Alice should buy can be calculated analytically. Sheutthspend $,4 on oats and % on granola. This
solution has total value 49.71.

Suppose this bulk food store does not accept denominatssdtian $2. In other words, Alice must pay
with $2 bills. Alice now faces a discretized knapsack problef the form just described, with® = 4 (the

discretization factor) ané = % = $2 (the unit cost). A unit of oats is of size, = W;ﬁ%d: 1 pound,
and a unit of granola is of sizg = %;ﬁ%d: + of a pound.

Alice’s marginal returns for all units are listed in Tablel.7 Because her unit marginal returns are de-
creasing, Alice can find an optimal solution to this disaedi problem by allocating her money in a greedy
manner to uses in this decreasing order. In this situatidioeAhould allocate her four $2 bills as follows:
spend her first $6 on oats, spend her last $2 on granola.
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Oats Granola
UC || Ibs | Value umv UMR Ibs Value umv UMR
k To | fo(®o) | fol®o) = fo(o — 50) | vo(wo) Ly fo(@g) | fo(xg) = fo(®g — Sq) | vg(@g)
2 1 18 18 9 0.333 7.67 7.67 3.83
2 2 32 14 7 0.667 | 14.67 7 35
2 3 42 10 5 1 21 6.33 3.16
2 4 48 6 3 1.333 | 26.67 5.67 2.83

Table 7.1: Oats and Granola at a bulk food store. UC standsibcost, UMV for unit marginal value, and
UMR for unit marginal return.

Note that this optimal solution to the discretized problemearly an optimal solution to the correspond-
ing continuous problem: its value 4 + 7.67 = 49.67. In this situation, as in most real-life problems, the
resource has to be allocated in discrete amounts (e.g.,abiae dr one cent). If the store accepts half dollars,
then Alice should spend $6.50 on oats and $1.50 on granoliehwields total value~ 49.69; if the store
accepts quarters, then Alice should spend $6.25 on oats hiiél $n granola, which yields total value
49.71. The value of the latter solution is within one centtirmal. We formalize this intuition presently.

7.2.3 Main Theorem

Given an instance of a NLK, l&? PT.,,,(B) denote the value of an optimal solution to this problem, giae
budget ofB; and letO PTy;s(B, K) denote the value of an optimal solution to the correspondisgetized
problem with discretization factdk. We prove tha® PT,;(B, K) approximates the value 61 PT,,,,(B).

Specifically,O PT,;s(B, K) is within a factor ofl — e of OPT,,,,(B).

Theorem 1 Assuming thef;s are concave and nondecreasing, the are convex and nondecreasing, and

the f/s andg;s are continuous,

OPszs(B) > OPTcon(BvK) (

2n
1-— =
K

)

A proof of this theorem appears in the appendix. The intoitar the proof is as follows. We introduce an
intermediate solution that optimally solves a continuoli&Nvith a slightly different budgeB’. The crucial
property of this intermediate solution is that it has a vallueT.,, (B’) that is close to botld PTy;s(B, K)
andOPT,,,(B). A bound on the distance betweénPTy;,(B, K) andOPT,,,(B) is then obtained by
adding the distance betwe&hPT};;(B, K) and OPT,,,(B’) to the distance betweed PT,,,(B’) and

OPToon(B).

A maximization problem admits a Fully Polynomial Time Apgimation Scheme if for any > 0 there
exists an algorithm whose run time is polynomial in the ingiae and% that finds a solution whose value is
within a factor of1 — ¢ of the optimal. Our theorem implies that the NLK admits a FBWithe = 27” and
running timeO(1nlogn). The algorithm is shown in Figure 7.1. The first loop runs ingiO(n) and the

€

second in timeD (K logn); hence the entire algorithm runs in tif¥n + K logn) =

O(inlogn).

O(n + 22 logn)
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Inputs:
discretization facto#’
value functionsf;
cost functionsy;
Outputs:
a vectorq of quantities consumed, one per use

1. for each use

(a) initializeq; =0

(b) inserti with priority v;(s;) = % into a priority queue)

2. fort=1t10 K

(a) pop off of @ a usej with the highest priority
(b) incremeny; by s;

_ filgi+si)—fi(a5)

(c) insertj into Q with priority v;(g; + s;) = P TRy e

3. returng

Figure 7.1: A FPTAS for NLK. The algorithm runs in tin@(%nlog n).

In the next section, we define a tractable approximationeT&C SCM bidding problem called expected
bidding. We note that this problem reduces to a NLK problettinwyj linear and thef;s satisfying the usual
assumptions. Hence, our discretization technique, fatbly an application of the greedy algorithm, can be
used to compute an approximate solution to this problem.

7.3 Bidding in TAC SCM

In TAC SCM, six software agents compete in a simulated sexftarmarket economy, specifically the per-
sonal computer (PC) manufacturing sector. Each agent canfacture 16 different products, characterized
by differentstock keeping unittsSKUs). Building each SKU requires a different combinatidicomponents,

of which there are 10 different types. These components@yeit@d from a common pool of suppliers at
costs that vary as a function of demand. At the end of eachedaiy agent converts a subset of its components
into SKUs according to a production schedule that it geesrr its factory, within a maximum capacity of
2000 cycles. It also reports a delivery schedule assigtagKUs in its inventory to outstanding customer
orders.

The next day, the agents compete in first-price reverseansgctd sell their finished products to customers:
i.e., an agent secures an orderundebidding the other agents. More specifically, each day th&oousrs
sendrequests for quoteRFQs) to the agents. Each RFQ contains a SKU, a quantitye alaie, a penalty
rate, and a reserve price—the highest price the customerlingMio pay. Each agent sends affer in
response to each RFQ, representing the price at which itlisgvio satisfy that RFQ. After each customer
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Figure 7.2: (a) Sample price-probability model. (b) Sanglee-quantity model.

receives all its offers, it selects the agent with the lowsited offer and awards that agent with analer.
After 220 simulated days of procurement, production, @glivand bidding each of which lasts a total of 15
seconds, the agents are ranked based on their profits.

Assuming a suitable model of market dynamics—in particulae, current and future prices at which
components can be bought and finished products sold—a TAC Sfe¥t daces three core decision prob-
lems [10]: procurementf components from supplierbiddingon customer requests for quotes (RFQs), and
schedulingof factory production and deliveries. In this chapter, weu® on the bidding problem, which
subsumes the scheduling problem. A study of how our methxigsm@ to procurement remains for future
work. Before detailing our approach to bidding in TAC SCM, discuss the model of market dynamics on
which our formulation of this decision problem is based.

7.3.1 Price-Probability Models

In a marketplace with indistinguishable products, a séltging to adjust its market share can do so only by
changing its price. Such a seller is likely to gather relévastorical data for use in predicting the market
shares that correspond to various price settings. FollpBenischet al.[10], we assume that this prediction
task has already been completed, and the agent is alreadyedadvith aprice-probabilitymodel that reports
the probability of winning an order for each possible bid amrent and future RFQs.

Rather than specifying a price-probability model for eamtividual RFQ, we partition the set of RFQs
according to their defining characteristics so that we caaiola richer set of price-probability models (we
are assuming that models built using more data can make roouesde predictions). In TAC SCM, a natural
partitioning of the set of RFQs is by SKU type and due date. &ferto each element of such a partition as
amarket segment

Figure 7.2(a) depicts the price-probability model defingdHis equation:

2200 — =

1400 < z < 22 7.
200 00 < z < 2200 (7.9)

p(z)

This model asserts that a bid of 2200 has no chance of winiiing the reserve price above which there
is no demand), whereas a bid of 1400 is guaranteed to win tfieiprice below which there is no supply).
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In between, at a price of 1800, say, a bid wins with probabi60. Price-probability models need not be
linear, but can incorporate whatever techniques necessanodel the likelihood of a bid price being the
lowest offered in a market segment.

7.3.2 The Expected Bidding Problem

The N-day stochastic bidding problem is formulated as a recersigchastic program in Appendix 7.8.1. A
tractable approximation aof-day stochastic bidding, callezkpected biddingwas considered in Benisat
al. [10]. In the expected bidding problem, it is assumed thatlaht has probability of winning an order
for quantityg wins a partial order for quantityq with probability 1. In this deterministic setup, a set ofbid
on|R| RFQs results in exactly one set of (partial) orders, inst#ad”®!, as in Equation 7.16.

Collapsing the stochastic content of a price-probabilitydel into deterministic statistics in the form of
partial orders is achieved by scaling the model by the denautide corresponding market segment. We
call the ensuing modelsrice-quantitymodels. Recall the price-probability model depicted inuFgg7.2(a).
Assume this market segment consists of 80 RFQs of 5 SKUs 486H5KUs in total. Since a price of 1800
wins with probability 0.50, at this same price, an agent cgreet to win 200 SKUs worth of demand (see
Figure 7.2 (b)).

The objective in expected bidding is to find a set of hidne per market segmeiitthat maximizes
expected revenue, subject to the constraint that expeobedgtion does not exceed available capacity, given,
(i) for each market segment, a price-quantity mddék;) that maps bid prices into quantities—i.e., expected
market share; (ii) the total available production capa€lfyand (iii) the number of cycles; € N required to
produce one unit of.

Expected bidding can be stated formally as a mathematiogram:

o 2 M) (7.10
n

st Y eihi(n)<C (7.11)
=1

wherex; € R is the bid price in market segmehntObserve that this problem is an instance of the NLK with
fi = hi(x;) z; andg; = c¢; hi(z;).

Assumingh is invertible, so that the price-quantity model is a 1 to 1 piag between bid prices and
expected market shares, selecting a bid is equivalentdots®gj a quantity. In this case, by renaming variables
(in particular, lettingz} = h;(x;)), we can solve the expected bidding problem as follows:

1. Inverth.

2. Solve this mathematical program:

max xhht (2h) (7.12)

st. Y erj<C (7.13)
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wherez; € R is the desired share of market segment
3. Bidh™! (2).

Hence, we have reduced the expected bidding problem tongpan instance of the NLK in which uses
are market segments, the knapsack’s capacity (or the Quidgisie factory’s capacity, the value functions
fi(x}) = o} bt (1), and the cost functiong () = ¢;«}. Assuming thef;s are concave and nondecreasing,
the results we derived in Section 7.2 are directly applieabi particular, our Theorem 1 bounds the quality
of a solution to Equations 7.12 and 7.13; since the value df susolution is equal to value of a solution

to Equations 7.10 and 7.11, Theorem 1 similarly bounds tladitgof a solution to expected bidding. An
example of this reduction follows.

Example Consider an instance of the expected bidding problem inlwhie= 5 cycles and
2200 — x;
hiz;) = % 1400 < z; < 2200 (7.14)
for some market segmentWe invert this price-quantity model, which yields the &mlling “quantity-price”
model:

hit(xh) =2200 — 22, 0 <l <400 (7.15)

(Note thatf; (%) =z} h; ! (2}) = o} (2200 — 22) is concave and nondecreasing on the intebval =/ <
400; hence, our results from Section 7.2 apply.)

Next, we apply the discretization technique to market segméf the factory capacity” = 4000 cycles
and the discretization factdt = 10, then the unit cost = 400 cycles and the unit sizg = %U:
80 SKUs. By querying the quantity-price model in increment8@fSKUs, we can generate a list of prices at
various incremental quantities. Each revenue is then tyat of a price and a corresponding quantity. Unit
marginal revenues are the incremental differences in teveorresponding to the incremental quantities.

Finally, unit marginal returns are unit marginal revenue#éd by unit costs.

Unit Cost | Quantity Price Revenue| Unit Marginal Revenuel Unit Marginal Return
k z hit(z) | filzh) filxy) — filx] — s4) vi(x})
400 80 2040 163200 163200 408
400 160 1880 300800 137600 344
400 240 1720 412800 112000 280
400 320 1560 499200 86400 216
400 400 1400 560000 60800 152

Table 7.2: Unit Marginal Returns on Market Segmént

The complete list of unit marginal returns in this examplghswn Table 7.2. These unit marginal returns
could have been computed directly using Equation 7.6. Famgke, the marginal return on the second unit
in market segmentis:

fi(285) — fi(ss) _ hi'(2si)2s; —h; ' (si)si _ h; ' (160)160 — h; ' (80) 80
9i(2si) — gi(si) k - (5)(80)

Vi2 =

= 344
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Based on the unit cost and the quantity-price modé[l(xl-), we can create such a list of unit marginal
returns in each market segménAfter doing so for all market segments (i.e., after disaiatj the problem),
we compute a greedy solution to the ensuing discrete problgeninput the output of this solution, namely
a vector of quantities’, to the quantity-price model to obtain a vector of bids, vahi& our solution to the
expected bidding problem.

7.3.3 Marginal Bidding in TAC SCM

There is one important aspect of the TAC SCM bidding probleat we have not thoroughly emphasized,
namely that the bidding problem spans multiple days. Ingbddion, we describe how we extend our solution
to the 1-day expected bidding problem to the multi-day s@ttiWe call the resulting heuristidarginal
Bidding One of the strengths of a greedy approach to bidding in TAM$Cthat it is natural, and hence
easily extensible.

The extension of a greedy solution from the 1-day to a mutiqroblem requires an additional parame-
ter. The number of days in the multi-day problem may be togddor even a greedy bidder to reason about
within the available time frame. We define the biddeviadow sizédV to be the number of days of demand
and production considered when making decisions. For elegapvindow size of 17 means that the bidder
can schedule production on 17 days, namely today and on d&fdays. In doing so it considers the current
set of RFQs as well as an anticipated set of RFQs for 16 futays.drhese RFQs are partitioned into market
segments by SKU and due date.

When the window sizéV is large, a large value ok can increase the Marginal Bidder’s run time to
an unacceptable level. On the other hand, a small valug @fan result in a unit size; so large that
it hinders the algorithm’s ability to make short-term déms at a fine enough granularity. Since we are
interested in invoking the Marginal Bidder with large windasizes, we implicitly varyK across market
segments (although the theorem presented in Section B.28ly applicable wherk is constant across
market segments). More specifically, the Marginal Biddepdhkes as input a unit sizg for each market
segment, with eachs; proportional to the size afs range of due dates.

A detailed description of the Marginal Bidder appears iruFgg7.3. At a high level, first it greedily fulfills
outstanding orders in nonincreasing order of revenue paecrgecond it greedily schedules production of
units of the various market segments in nonincreasing arflenit marginal returns; third it bids the price
associated with the quantity of demand met in each marketeey Note that bids on all RFQs in a single
market segment are equal.

For simplicity, the algorithm we present does not considengonent constraints, but it can easily be
extended to do so. The Marginal Bidder would have to take @stiourrent component inventory and antic-
ipated daily component arrivals, and could only schedulesdar production when sufficiently many com-
ponents were predicted to be on hand. After scheduling, dhegponding components would be removed
from inventory by decrementing the daily component inventtackwards from the production date.

SNote that in our implementation we do not explicitly creatéslief all unit marginal returns. Since unit marginal returns ar
nonincreasing, we need only identify the next highest unitgnal return in each market segment. See Figure 7.3 for detail
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Inputs:

a window sizelV/

the factory production capacity

M market segments, each oneharacterized by:
a product, a quantity, a range of due dates, a unitsize
an invertible price-quantity modé};(z'), the number of cycles;
required to manufacture 1 @6 product, and a “successfully-
scheduled-quantity; initialized to 0

a set of outstanding orders

product inventory

1. sort outstanding orders in nonincreasing order by rex@eu cycle
2. for each outstanding order (traversing the list of ordesorted order)

(a) use product inventory to fulfill as much of the order assijuie
(b) schedule the rest of the order for production as soon ssilgle within the scheduling windoW

(c) if the order still cannot be satisfied entirely, undo thventory and production schedule changes
made in the last two steps

3. setj to be the market segment with the highest unit marginal nefiue. ,

j = argmax (vi(q; + 5;))
filai +si) — fi(%‘))
= argmax
gi (gi(Qi + s:i) — 9i(qi)
) Y Y N — b~ (.
—  argmax <(Q1 +si)hy (@i + si) — aib (%))
i CiSi

4. whilev; >0

(a) take up tos; units of the product associated wittirom product inventory

(b) schedule the remaining units for production as late asipte but before the median due date
associated with and within the scheduling windoW

(c) if s; units cannot be supplied, then sgfg; + s;) = —1 and undo the inventory and production
schedule changes made in the last two steps

(d) otherwise, ifs; units can be supplied, incremepjtby s;
(e) setj to be the market segment with the highest unit marginal metur

5. for each market segment

(a) bid the price at which the agent expects to win the quaittguccessfully scheduled: i.e., bid
hi Hq)

Outputs:A bid for each market segment, and hence for all the RFQs tmpdse that market segment. Note
that bids on all RFQs in a single market segment are equal.

Figure 7.3: Marginal Bidding Algorithm
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Scheduling To schedule outstanding orders and incremental quantitiesrket segments for production,
there are two natural approaches. First, we can schedus®on as possihleneaning that production is
scheduled forwards from the current day. Because the MarBidder schedules greedily, using this method,
the most profitable products are produced on the currentastayless profitable products are scheduled for
production on subsequent days.

An alternative approach is to schedule for productgnate as possiblevhich means that production
for an order or an incremental quantity of a market segmestheduled backwards from its due date. While
this approach allows for production decisions to be postdamtil more of the uncertainty in the market is
resolved, it also allows for empty or near-empty productionedules on the current day, which can be risky.
In particular, if demand or prices unexpectedly incredse Marginal Bidder may wish it had more finished
goods on hand.

The Marginal Bidder uses both of these approaches, scingdaolitstanding orders as soon as possible
because of the penalties incurred for defaulting, and sdhmegincremental quantities of market segments as
late as possible in order to allow for greater flexibility iilthng decisions.

While the Marginal Bidding algorithm is easy to understand iamplement, it behooves us to demonstrate
that its performance is acceptable, particularly with readegments and hence units of varying sizes, which
renders our theory inapplicable. This is the subject of #meaining sections of this chapter.

7.4 Experimental Results

In this section, we report on experiments designed to coenber performance of four bidding algorithms
with varying abilities to reason about the future, an ILPdindj heuristic (see Benisadt al.[10]) and three
variations on the Marginal Bidding heuristic developedhistchapter. We expect the Marginal Bidders to
compute bids faster than the ILP, and we expect this speethtieethem to consider larger windows into the
future, which should lead to higher revenues than the ILReusdme market conditions (and never lead to
lower revenues). We test these conjectures on instanc@sbETM bidding in a simulator we built that tests
individual agents in isolation by generating decisionetietic simplifications of the game-theoretic problems
TAC SCM agents face.

7.4.1 Test Suite

We tested an integer linear programming solution with a 1 wadow (ILP), meaning it did not reason
about any future demand beyond the current RFQs and ouiistpartiers arriving each day. We compared
this ILP with three variations of the marginal bidder: a niaad bidder with a 17-daywindow (MB-17), a
marginal bidder with a full-game window (MB-Full), and a rgaral bidder with a hybridization of the two
that considers the full game window, but does so at a coaraeutgrity as it reasons further into the future
in order to keep its run time in check (MB-Coarse).

4We chose 17 as the default window size because it is the Igsirdwhich a current RFQ with the latest possible due date ean b
filled in TAC SCM.
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The 17 Day (MB-17) and full-game (MB-Full) bidders partitidemand (i.e., the set of current and future
RFQs) into market segments by SKU type and due date, andzéefa unit in each market segment is 1
product. The hybrid full-game bidder (MB-Coarse) also diés demand up by SKU type and due date. For
the first 17 days, it considers each due date separately,dyant the initial 17 days it divides demand
into increasingly larger chunks, whose due-date ranges byopowers of1.8.°> For the coarse bidder, each
market segment’s unit size is 1 product multiplied by the hanof days in that segment.

Since each TAC SCM day is 15 seconds, and a bidding policyésabmany decisions an agent must
make each day, it may not be wise for an agent to allot too méds daily run time to bidding alone. We
thus study a likely TAC SCM situation in which the bidder islyogiven 5 seconds to formulate its daily
bidding policy. The full-game Marginal Bidder often recgsrmore than 5 seconds per day to compute its
policy, soitis not a feasible TAC SCM bidder, but we inclutliaithis discussion for benchmarking purposes.

In order to reach a reasonable solution within the allotteg&onds, the ILP dynamically calculates an
appropriate degree of discretization using a formula thegt mmpirically determined to minimize the ILP’s
distance from optimality within a 5 second window. The egurafor the number of price points is 2300/(#
of RFQs + # of Orders). An ILP with a run time of up to 15 secondd additional price points was also
tested, but did not yield significant gaifs.

7.4.2 Experimental Design

Recall that in TAC SCM each agent submits its bids to a revaustion, so that an RFQ is awarded to the
agent that bids the lowest price below the reserve pricendJsiir simulator, we tested our bidding algorithms
in isolation, not against other bidding agents, as wouldchleecase in a true reverse-auction setting. The sim-
ulator simply awarded contracts by transforming each affer an order with a certain probability, namely
that which is associated with the bid price under the pricgsability model for the relevant market seg-
ment. Hence, we simulated the stochastic bidding problé&hmguegh our heuristic solutions are approximate
solutions to the expected bidding problem.

In our experiments, agents were endowed with perfect priedigtion: i.e., the various price-probability
models (one per market segment per simulation day) wereadhmatween the agent and the simulator. Re-
garding demand, the number of customer RFQs of each SKU tyymelsled to arrive each day was broadcast
before the simulations began. Then, on each simulationtdeyagents received a set of current RFQs whose
guantities and due dates were sampled from the distritaibotiined in the TAC SCM game specifications,
and they assumed that the quantity and due date associdleeheh of the future RFQs were the means of the
same distributioné.Reserve prices were also known to the agents; they werdibtiltthe price-probability
models.

SFor example, SKUs due on days 18-19 are grouped together(2)8as are SKUs due on days 20-2282 ~ 3), and days 23-28
(1.8 ~ 6), and so on.

8An ILP with a 2-day window was also tested, as was one with ddy’window and constrained capacity (2000 cycles on day 1 and
2000 cycles on days 2 through 17). Again, these variantsatigiald significant gains.

"The reason for drawing a distinction between the qualitthefgredictions of the number of RFQs of each SKU type and their a
tributes is: the former is somewhat predictable in TAC SCM-s-dépendent on history (see, for example, Kiekintelal. [60])—
while the latter is not.
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x 10 Constant Market Conditions for TAC SCM Average Daily Bidding Times
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Figure 7.4: (a) Revenue from deliveries under constant etanditions. (b) Average daily bidder times in
high demand conditions. Low demand bidder times were simila

We tested our bidders by running 25 simulations of 100 dayeganmder three families of market con-
ditions: (i) constant: i.e., conditions on one day are réiflecof the conditions on the next; (ii) gradually
changing conditions; and (iii) sudden shifts, includingrn@dad or price shocks. Under the non-constant
conditions we examine situations of rising demand and prdling demand and price conditions are not
presented, but produce similar results.

For simplicity, in these simulations we assume infinitelynjmaomponents. Introduction of component
constraints does not appear to significantly alter theivelgierformance of our bidders.

7.4.3 Constant Conditions

In our first set of market conditions, we compare the biddedeun constant demand and price. Presented
here are steady conditions of high demand, defined as 20 REIG@W type per day, which is the maximum
possible according to the TAC SCM game specification, anddemand, defined as 5 RFQs per SKU type
per day, the lowest possible. Prices in this experimentaps@nge linearly from 50% to 125% of the SKU
base price.

Under such conditions, we should expect to see no partiadhzaintage to planning for the future, since
an optimal solution to the entire game can be contructed bgatenating a sequence of optimal solutions,
one per day, computed for each day in isolation. Indeed ringef revenue, all the bidders are competitive
with one another under these conditions (see Figure 7.4a}e however that MB-17 and MB-Coarse arrive
at their solutions an order of magnitude faster than the ILEhe MB-Full bidding algorithms (see Figure
7.4(b)).

7.4.4 Shifting Conditions

More interestingly, market conditions can change over these of a TAC SCM game, either steadily as in
a market adjustment or suddenly as in a demand or price stieadur next experimental setup, demand is
initialized to 5 RFQs per SKU per day, and prices range ligdesm 50% to 75% of the SKU base price. We
then considered shifts to 20 RFQs per SKU per day and prioggng from 100% to 125% of the base prices
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x 10 Feasible Price and Demand Changes for TAC SCM Average Daily Bidding Times
8

- | = P
16 [ MB-17 o mB-17
[ MB—Ful T Mocomse
14 [ IMB-Coarse 20

$ in Millions

10F

Time Required in Seconds

o)

Price Rise Price Spike  Demand Rise Demand Spike
Market Conditions

Figure 7.5: (a) Revenue from deliveries under feasible SCafket conditions. (b) Average daily bidder
times in Price Rise conditions. Other market conditionsdiadlar run times.

by day 50. These shifts are representative of the magnitucteaages an agent might observe while playing a
typical TAC SCM game. These changing market conditions wested both as steady linear accumulations
from day 1 to day 100 and as abrupt surges on day 50. In our-ghiféing simulations demand is held
constant; in our demand-shifting simulations price is legdstant.

As expected, those bidders with more extensive knowledgieedfuture (MB-Full, MB-Coarse) are able
to exploit the mid-game surges by dedicating productiomftoday to future demand when conditions are
more favorable. Bidders with a shorter window (ILP, MB-17& ainable to plan far enough ahead to take
advantage of the upcoming shifts, and hence accumulateslessue over the course of the game. In addition
to the additional revenue gained by exploiting its knowkeadd the future, the MB-Coarse bidder continues
to run in substantially less time than the ILP. See Figure 7.5

The advantages of a larger window are more pronounced uhdse tmarket conditions in which the
shift in demand or price comes as a sudden spike rather thars@ady rise. When demand or prices rise
gradually, even an agent with a small window is aware thabtoow’s market conditions are slightly more
profitable than today’s, and can reserve some inventoryuirré sales. However, when demand or price
spikes suddenly, an agent is not aware of more desirableefatarket conditions until the spike falls within
its window.

Because one of our simplifying assumptions for these sitianis is that agents have perfect models of
future demand and price, it is encouraging that MB-Coarsfopas just as well as MB-Full. Their similar
performance suggests that the benefits of looking into thedumay still be realized by agents with more
realistic but less accurate models.

7.45 Extreme Conditions

Within the context of TAC SCM, the previous experimentalpatharacterizes shifts from one extreme set of
realistic conditions to another, and the gains resultingrfknowledge of the future are modest. However, it
is easy to envision markets that are more naturally volatilere subject to large seasonal trends in demand.
The greater the extent to which market conditions vary actiose, the greater the opportunity for bidders
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x 10 Price and Demand Changes for Other Domains Average Daily Bidding Times
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Figure 7.6: (a) Revenue from deliveries in extreme marketltmns. (b) Average daily bidder times in Price
Rise conditions. Other market conditions had similar romes.

able to consider a larger window into the future to earn grartofits. In order to demonstrate this effect, we
present a second set of simulations assuming shifting medkelitions, but the shifts are of greater magni-
tudes. In particular, demand surges from 5 to 40 RFQs per SXUday, and price rises froffi0%, 75%)] to
[200%, 250%)] of the base prices, again as both an interpolated steadgnitsas an overnight jump.

With no significant changes in run time (compare Figuresj.&(d 7.6(b)), the marginal bidders are able
to exploit the extreme changes in market conditions, anditiqular the bidders with larger windows (MB-
Full and MB-Coarse) are able to earn even greater profitsKigege 7.6(a)). Also of interest is the relative
impact of demand changes versus price changes. We obsergeegpmnounced impact when considering
knowledge of the future under price-changing conditiomgvim reasons.

First, because of capacity constraints, an agent can onbuge a limited quantity of each product on
each day. Hence, an increase in demand does not necessamiiate into an increase in the number of
finished products. So even if a demand shift results in highiees, revenues need not increase substantially,
particulary in comparison to the revenue increase assatiaith a price increase (see Figure 7.7(a)). If
the magnitude of the price shifts in our experiments wereced, or if production capacity were increased,
stockpiling products until a demand shift could be as wohthevas stockpiling products until a price shift.

The second factor that mitigates the advantage of knowlefiigpe future in conditions of shifting demand
is the relatively flat slopes of our quantity-price curvestiMatter slopes, the difference in revenue between
prices on the initial curve and prices on the curve after aadehshift is small (Figure 7.7(b)). Thus it matters
less if the agent stockpiles products for the future, andiin it matters less if the agent has any knowledge
of the future. If the quantity-price curves had steeperestonowledge of the future in conditions of shifting
demand would likely prove more valuable than our curreneeixpents suggest.

7.5 Related Work

The NLK problem, also known as the Nonlinear Resource Atioogroblem, is well-studied. The interested
reader is referred to Patrikson [89] for a recent surveychlincludes a number of algorithms that solve
various formulations of the NLK. One feature of the approdehcribed here is that we construct a solution
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Figure 7.7: (a) Sample quantity-price models before anft,sdfter a price shift, and after a demand shift.
To illustrate the constraining effects of production capaelso shown is a sample daily producible quantity.
In our experiments, price shifting conditions result iniég revenues than demand shifting conditions, and
thus knowledge of a future price shift is more valuable thaowedge of a future demand shift. (b) For
guantity-price models with flat slopes, predicting futuesrméind is not very important.

incrementally; this makes it easy to check if the solutioma@s feasible under more general conditions:

e.g., when not only capacity but also scheduling or compooenstraints are present. Also, unlike other

techniques (e.g., Bretthaur and Shetty [17]), our algoritfoes not rely on value or cost functions being

differentiable or having closed-form representationthalgh our theoretical results do not hold under these
more general assumptions).

Most closely related to our work is the work of Hochbaum [5d].her study of the NLK, she employs
a discretization technique that generalizes the one predérere. Correspondingly, the discretized problem
we construct is a special case of le@mple allocation problemin our problem, all variables are binary
rather than non-negative and integer-valued. Like us, sives her discrete problem greedily, and, invoking
work in a related paper [55], she connects this greedy soluiack to an optimal solution to the original
(continuous) NLK. Her results apply in the special case ificiitheg;s are linear. Our main theorem applies
more generally; in particular, thgs may be convex.

Benischet al. [9] reduce a probabilistic pricing problem (akin teday expected bidding) to the NLK,
and present ae-optimal solution to this problem assuming diminishing giaal returns. Although they
demonstrate that their algorithm can be efficient in practicey provide no theoretical guarantees on its run
time. Also, their algorithm is not incremental, so it is netmediately obvious how to extend it to apply to
problems with additional constraints.

The TacTex team developed a greedy bidding agent for TAC SIohMyahe lines of the Marginal Bidder
presented here, with a few subtle distinctions [88]. Tad$eritialized to bid reserve prices on each RFQ,
and then it iteratively reduces its bids according to a sieleenechanism until production capacity is reached
or profits are no longer increasing. The selection mechanéies on a heuristic that determines whether
the most limiting resource is production capacity (in whietse it selects by profit per cycle) or component
availability (in which case it selects by change-in-ProfihAnge-in-Probability). No theoretical guarantees
validating their approach are discussed.

Finally, researchers at the Cork Constraint Computatianté&emplemented an ILP approach to bidding
in a constraint-based TAC SCM agent, Foreseer [19]. Nokarttie expected bidder posited in Benigth
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al. [10], Foreseer uses profit as the objective function, bidgsrias the decision variables, and constraints
based on factory capacity, component availability, andmasprices.

7.6 Summary and Future Work

In this chapter, we described a technique for solving the Ndyikconverting it into a (discrete) simple allo-
cation problem that can be solved greedily. Our theoretiesllilts establish that the greedy solution to the
resulting simple allocation problem is a FPTAS for the NLKth®ugh more complicated algorithms with
better run times are known, our simple incremental soluéifiords us extra flexibility. In particular, the
greedy algorithm extends easily into the Marginal Biddiegtistic, which solves an extended version of the
NLK with natural scheduling and component constraints.

Our ultimate goal is to develop a scalable bidding algorithat can be extended into a procurer capable
of reasoning about long-term future demand. Because thetitBiders each RFQ as a separate decision
variable, its complexity grows rapidly as a function of thenmber of RFQs. By reasoning about SKUs in
collective market segments, the Marginal Bidders avoisl tbimplexity and appear to be more readily exten-
sible to the procurement problem. However, it remains tods:svhether our Marginal Bidding approach
can be extended to handle interdependent uses, whererdgvesources to one use can affect the marginal
return of another. Interdependencies arise naturally @cymement because components are shared among
SKU types.

Despite the game-theoretic nature of bidding in TAC SCM, foaeus here was simply on a decision-
theoretic (stochastic) optimization problem, not on gahmemretic equilibrium calculations. The enormity of
the decision space in TAC SCM renders game-theoretic gicad@alysis intractable with current technology.
It remains to be seen whether an effective game-theorefibaph can be developed to exploit strategic
opportunities in the TAC SCM game. In the near future, we ptatest the robustness of our algorithms
to imperfect modeling of future prices and demand. Doing sald lead to progress in addressing the
challenging game-theoretic issues that arise in enviromsné&ke TAC SCM that are inhabited by multiple
artificially intelligent agents.
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7.8 Appendix

7.8.1 The Stochastic Bidding Problem

The bidding problem posed here is intended to model the hipplioblem that agents face in TAC SCM. For
simplicity, we assume all due dates are set past the end ghitine, making penalties irrelevant. Also, as we
are concerned only with bidding and not with procuremenhis thapter, all components are assumed to be
infinitely available at no cost.

Agents are assumed to have perfect price prediction, th#théy know the probability of winning an
order as a function of any bid they submit. We encode thisrin&tion in price-probability models. They
are also assumed to have access to an accurate stochasticafibe number and variety of RFQs that will
arrive on each future day of the game.

A decision-theoretic version of the TAC SCM bidding problamder the aforementioned assumptions,
can be formulated naturally as a recursive stochastic progiWe have not seen this program appear else-
where in the literature (except in Odeanal. [84]), so we present it here, using the notation explained in
Figure 7.8.

Variables
xr >0 bidding policy: bid price for RFQ
y; >0 production schedule: quantity of SKjJ

z; € {0,1} delivery schedule:
1 if order is delivered;0 otherwise

Indexes
t day index

7 SKU index

Functions . o o
p(r,z») probability of winning RFQ- with bid x,.

Constants
a; number of units of SKU delivered

b; number of units of SKY in inventory

Cj cycles expended to produce one unit of SKU
dij 1 if orderq is for SKU j; 0 otherwise

m(t) revenue (minus penalty) for delivering ordesn dayt
zero ift is past order’s due date

quantity of order

total number of days

daily production capacity in cycles

set of outstanding orders

set of (today’s) orders

set of (today’s) RFQs

set of tomorrow’s RFQs

history of RFQs received until now

=

<

TRIOOQ

Figure 7.8: Notation for Recursive Stochastic Program

The recursive function takes five inputs: today’s produgeirtory, today’s outstanding orders, today’s
RFQs, the history of RFQs received on previous days, and/tdate. The objective is to choose bids on
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today’s RFQs and to decide upon today’s production and @gligchedules in such a way as to maximize
today’s revenue plus expected future revenue.

Bids on dayt are placed on RFQs received that day. The set of REQsceived on day+ 1 is a random
variable that is independent of any decisions but dependseohistory of past RFQs received.

The bids placed on daydetermine the likelihoods of receiving various sets of sden dayt + 1. Each
set of new orders is calledscenario Each scenari@) is weighted by probabilityPr(Q) as determined by
the given price-probability model. SpecificalBr(Q) equals the product of the probabilities of winning all
RFQs that are part @) and the probabilities of not winning RFQs that are not pat¢Equation 7.17).

Delivery and production scheduling decisions today affetat will remain in product inventory tomor-
row. Indeed, tomorrow’s product inventory equals todayt@doict inventoryb minus any product inventory
depleted by today’s deliveriesplus any additional inventory produced today

Each day capacity and allocation constraints are enforEgdation 7.18 ensures that there are enough
products in inventory for today’s delivery schedule. Eipaf.19 ensures that today’s production schedule
does not consume more cycles than the daily capacity.

The base case (Equation 7.20) of the recursion pertainsetéatit day. Orders can be scheduled for
delivery but there is no production or bidding.

if 0 <t<N,
F(b,O,R,h,t) = max » _ zm;(t)+
s icO
> PrQErp[F(b—a+y,0UQ R, hUR,t+1)] (7.16)
Qe2lRl
subject to:
Pr(Q) = [] p(r,z.) [T (1 = p(r,2,)) (7.17)
reQ r¢Q
aj = Z ziqi Yj; a<b (7.18)
i\iGO,dij:I
Dy <C (7.19)
J
if t = N,
F(b,O,R,h,t) = max Y _ zmi(t) (7.20)
€O

7.8.2 Proof of the Main Theorem

The term "unit” is used throughout the chapter to refer to dhsount of uses; that can be obtained by
spending additionat dollars. With a linear, the units; remained constant regardless of how many units
have been consumed before. With a conyemnit prices increase with consumption and therefodollars
buy less. So the unit; depends on how much has been bought before; i.e., it is aidmngt(x;) returning
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additional amount of useobtained from increasing the spending fropc;) — & to g;(x;):

si(z:) = g, (9(2)) — g7 "(g(ai) — k) = 2 — g, (9(2;) — k)

whereg; ! (m) is the amount of useobtained by spending 8.
In light of a changing unit;, unit marginal returns may be better be calkletharginal returns:

e v;(x;) - marginal return from spending additioriabfter spending/(xz;) — k on usei.

In this appendix, we prove our main theorem. The proof refieghe following observation relating
marginal ands-marginal returns:
Observation 1. For all uses on which more thaik is spend in the optimal solution (i.e:; > g;l(k))),

vi(zi) < pi(zs — si(zq)) (7.21)
vi(:) = pai(@s) (7.22)
Proof For each use,
i F1 (D)L e Flt)dt
oy = dieaie SO SR IR A0
fml—s mt)gl‘(t)dt fgpL—sl(ml)gl(t)dt
< lefsl(g; (I‘Z ( ))dt > f:;b:—sl(x )fll(xl)dt
B frl_g (2 )gz(l’z si(zi))dt B ff;_g (a )gz(xl)dt
_ Fllws = si@) [T, o) 1t _ Fla) [ oy Lt
gi(x; — si(xs)) f;";si(zl) 1dt gi(x;) f;ilsi(xi) 1dt
_ filwi = silw) _ filw)
9i(wi — si(xi)) 9i(xi)
= pi(wi — si(z;)) = pi(wi)

These inequalities follow from the fact thAtis nonincreasing angl is nondecreasing.

Recall our main theorem:

Main Theorem. Assuming thef;s are concave and nondecreasing, the are convex and nondecreasing,
and thef/s andg;s are continuous,

OPTyiy(B) = OPTopn(B, K) (1 _ 2}’;)

Proof Let x denote an optimal solution to the discrete problem. Supplusdudget is not exhausted in
solutionz. This can only happen when marginal returns of all units #ratnot in the solution are zero

8|f less thank is spent on usé thens; (z;) is the amount of useobtain from spending: s;(z;) = si(gfl(k)) = g[l(k) Vi |
-1



94

(marginal returns cannot be negative becafisare assumed to be nondecreasiog)t; +s;(x;)) =0 Vi.
However by the definition of unit marginal returng(z; + s;(z;)) = 0 only if f/(x;) = 0, which implies
that u;(z;) = 0. Since marginal returns are zero in the solution to the disgproblem, taking additional
amounts of any use does not increase the value. Therefovalthee of solution: is the same as the value of
the optimal solution to the continuous problem, and therracholds. In the remainder of the proof we will
focus on the case when the budget is exhausted in the optitodilosn to the discrete problem.

Letj = argmin,v;(x;) denote the use with the smallest marginal return on its laist The greediness
of the optimal algorithm implies that the marginal returreofy unit that is included in the solution is higher
than the marginal return of any unit that is not in the solutim particular,

Define the set of usd$ = {i|z; > 0} that are part of the solution to the discrete problem. We fixstis
on these uses. Equation 7.21 and the definition pield Vi € U: p;(z; — si(x;)) > vi(z;) > vj(zy);
combining Equations 7.23 and 7.22 yields;(z;) > v;(x; + si(z;)) > pi(x; + si(z;)). Now, by the
continuity of f/, for eachi € U there existy; € [x; — si(x;), z; + s:(x;)] such thaty, (y;) = v;(z;), so
marginal returns can be equated at the valle;).

The uses ¢ U that are not part of the optimal solution; (= 0) to the discrete problem, may still be in
the solution to the continuous problem. This is the case whé) > v;(z;). Combining Equations 7.23

and 7.22 yields
vi(x;) 2> vi(x; + si(x3)) = vi(si(xi)) > pi(si(x;)) (7.24)

By the continuity off/, for all : ¢ U with ;(0) > v;(x;) there existy; € [0, s;(z;)] such thatu, (y;) =
vj(z;), so these marginal returns can also be equated at the walug .

Let B’ denote the budget that is spent when marginal returns asgestjaty; (z;), and lety denote a
corresponding solution. By the Equimarginal PrincipJés an optimal solution to the continuous problem
with budgetB’.

Case 1 If B’ < B, then the budgeB in the continuous problem is not exhausted at the ppiot equal
marginal returns. Hencey's total value need not exceedPT,,,(B). To upper bound the value of the
continuous solution, we add igs total value an overestimate of the amount of additionaler¢hat could be
accrued by spending the remaining buddet- B’.

To exhaust this budget, at most one additional unit of eacll goust be acquired because: (i) the budget
is exhausted in the solutianto the discrete problem, and (ii) in the worst cgse= z; — s;(x;). Since each
unit costsk, the unspent budget is at most. Additional spending on any use yields a maximum marginal
return of; (y;) = v;(z;), since marginal returns are nonincreasing. Thereforedipg an extra amount of
nk yields at moskkv;(z;) of extra value.

OPT.on(B) <Y filys) +nkvj(wy) <> fulwi + silwi)) + nkv;(x;)

i=1 i=1
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We apply Lemma 2 to get

OPT,n(B) < OPTy4(B, K) (1 i 2}?)

Case 2 If B’ > B, theny’s total value, namely_""_, f:(y;), is an immediate upper bound 6n°T,, (B).
Hence,

n

OPTcon(B) S Z fz(yz) (725)
i=1

< > filw + si(xs) + nkv () (7.26)
i=1

< OPTus(B,K) (1 + 2;) (7.27)

The last inequality follows from Lemma 2.
To complete the proof, rewrite

2
OPT,on(B) < OPTy.(B, K) (1 + ")

K
as
1
OPTdis(BaK) > OPTCO?L(B)izn (728)
1+ 22

2n
= OPT.,(B)[1-—& 7.29
B (1- %) (7.29
> OPT..n(B) (1—21?) (7.30)

QED

Lemma 2 Let z denote an optimal solution to the discrete problem with idg Assuming thef;s are
concave and nondecreasing, s are convex and nondecreasing, and fieandg;s are continuous,

n

2n
;fi(xi + si(z:)) + nkvj(x;) < OPTys(B, K) (1 4 K)

wherej is a use whose marginal return on its last unit included:iis minimal.

Proof First, observe that

n

S (filwi + si(@i) — filwi) = kviwi + si(2:)) <Y kwj(x;) = nkv;(x;)
=1

i=1 i=1
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Hence,

n

Z fi(zi + si(w:)) + nkv;(z;)

= D (filw) + [filwi + si(w) — filw)]) + nkvj(a;)

i=1
= OPTys(B,K)+ Z (filzi + si(z4)) — fi(wi)) + nkv;(z;)
i=1
§ OPTdiS(B7 K) + 27’Lkl/j((L'j)

) | 2nkv;(x;)
= OPTys(B,K) (1 t OPTys(B,K)

As f;s are increasing we can always exhaust the budget withotgalEng the value. Therefore, assume
without loss of generality that the budget is exhausted in@imal solution to the discrete problem: i.e., all
K units are consumed. Sineg(x;) is the lowest unit marginal return among tReunits in such a solution,
each unit contributes at ledst; («;) of extravalug since (unit) marginal return equals (unit) marginal value
divided by (unit) marginal cost. Henc®,PTy;s(B, K) > Kkv;(x;), from which it follows that:

n

< OPTy;.(B,K) (1 b (7.32)
= OPT4;s(B,K) (1 + 2}7{1) (7.33)

In the above derivation, we ignored the possibility thgt: ;) may be zero. However, the weak inequliaty
in Equation 7.31 holds with an equality whey(z;) = 0 satisfying the lemmaQED



Chapter 8

Bidding in Simultaneous Auctionst

We study a suite of heuristics that were designed for biddirthe simultaneous auctions that
characterize the Trading Agent Competition (TAC) Traveht&a At a high-level, the design of
many successful TAC agents can be summarized agri¢i¢ prediction build a model of the
auctions’ clearing prices, and (ibptimization solve for an (approximately) optimal set of bids,
given this model. We focus on the optimization piece of tt@sign.

Analytically, we address the (decision-theoretic) detarstic bidding problem. We derive the
class of bidding heuristics that solves this problem opllyndn particular, we prove that the
marginal-value-based bidding heuristic implemente&dryBot—2000—one of the top-scoring
agents in TAC 2000—is an instance of this class. Moreover,deatify the special set of cir-
cumstances in which bidding marginal values themselvelsisaptimal.

Experimentally, we embed these heuristics in TAC Travehégiand evaluate their success in the
game-theoretic bidding problem that characterizes TA@dlrauctions. We find thakoxyBot—
2000’s bidding heuristic dominates the others in our test\8e conclude thaRoxyBot—2000'’s
bidding heuristic is effective in that it performs well in @alsion-theoretic setting assuming
perfect price prediction and a game-theoretic setting e/peice predictions are imperfect.

8.1 Introduction

Simultaneous auctiong/hich arise naturally on websites suchedmy . comandanmazon. com are forums

on which to trade many goods simultaneously. Such auctioesept a challenge to bidders, particularly
when complementary and substitutable goods are on sale pl€orantary goods are goods whose values
are superadditivei.e., for goodsz andy, v(z) + v(y) < v(xy). For example, a flash, a tripod, and a case
complement a camera, since an agent does not desire any fafrther if she does not acquire the latter.

Substitutable goods are goods whose values are subaddiéveor goodsr andy, v(z) + v(y) > v(zy).

For example, a Canon and an Olympus are substitutes, siragean desires one or the other, but not both.

1Joint work with Amy Greenwald and Seong Jae Lee.
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In contrast tocombinatorial auctionsin which bids may be placed for combinations of goods (e.g.,
“camera and flash for $295”), in simultaneous auctions, rs¢@dids are placed for each individual good.
In combinatorial auctions, the NP-hard problem of choosisgt of winning bids that maximizes revenue—
the so-called winner determination problem—falls in thedsaof the auctioneer. In simultaneous auctions,
however, the complexity burden falls upon the bidders.

In this chapter, we study heuristics that were designed iddibg in the simultaneous auctions that
characterize the Trading Agent Competition (TAC) Traveh@g109]. A TAC Travel agent is a simulated
travel agent whose task is to organize itineraries for agafuclients to travel to and from TACTown and
Boston. The agent’s objective is to procure travel goodsdatisfy its clients’ preferences as inexpensively
as possible. Travel goods are sold in simultaneous auctsrsllows:

o flights are sold by the “TAC seller” in dynamic posted-prigi@nvironments; no resale is permitted

e hotel reservations are sold by the “TAC seller” in multiuascending call markets; specifically, 16
hotel reservations are sold in each hotel auction at the highest price; no resale is permitted

e agents trade tickets to entertainment events among theessel continuous double auctions

Flights and hotel reservations are complementary goodghtdliare not useful to a client without the com-
plementary hotel reservations; nor are hotel reservatieaful to a client without the complementary flights.
Tickets to entertainment events, e.g., the Boston Red SdsttenBoston Symphony Orchestra, are substi-
tutable. Similarly, travel packages themselves are dulbs$i e.g., arriving on Monday and departing on
Tuesday vs. arriving on Monday and departing on Friday.

At a high-level, the design of many successful TAC agentsgkample, Walverine [25RoxyBot [46],
andATTac [98]) can be summarized as:

1. predict build a model of the auctions’ clearing prices
2. optimize solve for an (approximately) optimal set of bids, giverstinodel

This chapter is devoted to the study of the optimization gieftthis design, which we model as the problem
of bidding in “pseudo-auctions.” We define a pseudo-auda®an idealized auction setting in which (i) there
is only one bidder, and (ii) prices are specified by an exogemeodel, that is, a model in which the bidder’s
price predictions are independent of its bidding stratégiyen such a model, the bidder faces thdding
problem:what is its utility-maximizing set of bids?

In the present chapter, we assume the agent buitiitexrministicmodel of the auctions’ prices: that is,
there is no noise in the agent’s price predictions; ratlsgpiiedictions are point estimates. This assumption
gives rise to thaleterministichidding problem. In our analysis, we focus on the deterrim&gecond-price
bidding problem, in which the payment rule is: “pay the pogelil price.” This problem is an abstraction of
the problem of bidding in TAC Travel auctions, in which—undgpropriate assumptions—agents can be
viewed as price-takers.

Analytically, we study a set of heuristics in the context ¢§imgle-unit) decision-theoretic bidding prob-
lem. Specifically, we derive the class of bidding heuristieet solves the deterministic second-price bidding
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problem optimally. We also prove that the marginal-valasdial bidding heuristic implemented Roxy-
Bot—2000 [46], andRoxyBot—2000", a slight variant oRoxyBot—2000, are both instances of this class. The
classic marginal value bidding heuristic itself, howeVails to solve this problem optimally in general, as
noted in [45]. Nonetheless, we identify the special set @fushstances in which bidding marginal values is
optimal.

Experimentally, we embed these heuristics in TAC Travehégyand evaluate their success in the (multi-
unit) game-theoretic bidding problem that characteriz&6 Travel flight and hotel auctioris We find that
RoxyBot—2000's bidding heuristic dominates the others in our test 8ased on both our analytical and
experimental results, we conclude tiRaixyBot—2000’s bidding heuristic is effective in that it performsiiv
in a decision-theoretic setting when prices are given—edgintly, under the assumption of perfect price
prediction—and it performs well in a game-theoretic settifigere price predictions are imperfect.

It is not our contention that solutions to the decision-tie¢io bidding problem are generally applicable as
solutions to the game-theoretic bidding problem—the cabtratween the conclusions of our analytical and
experimental studies rule out this possibifityVe do believe, however, that the study of a related decision-
theoretic bidding problem can inform the design of artiflgiantelligent agents that face a game-theoretic
bidding problem.

8.2 Bidding in Simultaneous Pseudo-Auctions

In this chapter, we study a suite of heuristics for biddingimultaneous auctions for complementary and
substitutable goods. We develop these heuristics in theexbaof an optimization problem faced by an agent
that is bidding in simultaneous “pseudo-auctions.”

There are two defining features of pseudo-auctions: (ietlieionly one bidder, and (ii) the auction’s
prices are specified (i.e., predicted) by an exogenous mdual is, a model in which the bidder’s price
predictions are independent of its bidding strategy.

The winner determination rule in a pseudo-auction is: “wjrbixlding at least the predicted price.” In a
first-price pseudo-auction the payment rule is “pay the wigtid price,” whereas in a second-price pseudo-
auction the payment rule is “pay the predicted price.”

Implicit in our definitions of the first-price and secondgaribidding problems is the assumption that
these problems characterize the optimization problemdfégean agent bidding in first- and second-price
“sealed-bid” pseudo-auctions.

Given an instance of a bidding problempalding heuristicsearches for a suitablec R¥X, that is, a
function from a set of good¥ to bidsb(z) € R (equivalently* a bid vector).

The extension of a real-valued functign X — R on goods to a real-valued functign: 2X — R on
bundles (i.e., sets of goods) is calléwear if and only if G(Y) = > .y q(z) forall Y C X.

2To reduce variance, we disregard entertainment ticketsriexperiments.
3RoxyBot-2000 is optimal in our analytic framework, but is suboptimal in oupesimental framework.
4If Z is finite,RZ = {f : Z — R} is isomorphic taR|Z!.



100

Pseudo-Auction Winner Determination Rule Given a set of goodX and a pricing functionp : X — R,
W(X,p,b) C X is the set of goods the agent wins by bidding R*: i.e.,

x € W(X,p,b) ifand only if b(z) > p(x) (8.1)

Definition Given a set of good¥’, a valuation function : 2X — R, a distributionf over pricing functions
p: X — R, and a payment rulg, the (simultaneoud)idding probleris defined as follows:

SIM(X, v, f) = max By s [v(W(X,p,b)) — G(W(X,p,b))]

The payment rule i§ = b in thefirst-price bidding problenandg = j in the second-price bidding problem
The deterministic bidding problem is the special case obibding problem in which prices are certain.

Definition Given a set of goodX’, a valuation function : 2% — R, and a pricing functiop : X — R, the
deterministic bidding problens defined as follows:

We refer to the deterministic first- and second-price biggiroblems adstDETand2ndDETrespectively.

Since prices are fully specified in the deterministic biddproblem, the key decision an agent faces is
which goods to buy. But the problem of deciding which good®uy is “the acquisition problem” [44].
Indeed, the deterministic bidding problem reduces to tlygia@tion problem.

Definition Given a set of good¥(, a valuation function; : 2X — R, and a pricing functiory : 2% — R,
theacquisition problenis defined as follows:

ACQ(X,v,q) = max (v(Y) —q(Y)) (8.2)

Theorem 2 Given a set of good’, a valuation function : 2% — R, and a pricing functiorp : X — R,
the following bidding heuristic, which returr$ € R¥, solves 2ndDE{X, v, p) optimally:

1. select an optimal acquisitioA* € arg ACQ(X, v, D)

2. bid

b*(l,)e{ p(a).00)  ifzea ©:3)
(—oo,p(x)) otherwise

In particular, first solving for an optimal acquisitiof and then bidding(x) on all goodsx € A*
and bidding—oo otherwise is an optimal heuristic in the deterministic sekprice bidding problem. This
heuristic is also optimal in the deterministic first-priddding problem.
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8.3 An Analysis of Marginal Values

In the preceding section, we derived an optimal class ofibgltheuristics for the deterministic bidding
problem. If an agent is clairvoyant—i.e., if it can predicg tuctions’ clearing prices perfectly—then it can
bid using any heuristic in this class, whenever the acqaisjtroblem is computationally feasible. The TAC
Travel acquisition problem, for one, is NP-hard [44]. Eveorenegregious, typical agents are not clairvoyant.
Hence, it may be reasonable for agents to employ alternlaitiléng heuristics.

In this section, we broaden our study of bidding heuristicgestigating two classic strategies: bidding
independent and marginal values. We illustrate the pedona of these heuristics (and some of the complex-
ity of bidding in simultaneous auctions on complementany smbstitutable goods) on a series of numerical
examples. Also in this section, an analysis of marginaleslkeads to a “characterization theorem,” which
completely characterizes the relationship between makgalues and prices, assuming linear prices.

8.3.1 Bidding Independent and Marginal Values

Perhaps the most straightforward bidding heuristic is iéarlV, for independent values: For each good in
each auction, bid its independent value. Unfortunatelyh Wweuristic IV, an agent can fail to win goods it
wishes it had won, when goods are complements, and can sbatenning goods it wishes it had not won,
when goods are substitutes.

Definition Given a set of goodX and a valuation function : 2X — R, theindependent valuef a good
x € X isgiven by:i(x) = v({z}).

Example Suppose an agent values a camera and flash together at 50@|leg either good alone at 1.
Also, suppose these two goods are sold separately in twdtaimeous auctions, and the clearing prices are
200 for the camera and 100 for the flash. If the agent were tohliglits independent values (1), it would
lose both goods, obtaining utility of O rather tha®0 — 200 — 100 = 200. This outcome is undesirable: the
agent fails to win goods it wishes it had won.

Example Now suppose an agent values a Canon AE—1 at 300 and a Canont 280,abut values both
cameras together at only 400. Also, suppose these two godsld separately in two simultaneous auctions,
and the clearing prices are 275 for the AE-1 and 175 for the Afthe agent were to bid its independent
values, it would win both goods, obtaining utility ®80 — 450 = —50. This outcome is also undesirable: the
agent wins goods it wishes it had not won.

A natural alternative to Heuristic IV is Heuristic MV, for mginal value: For each good, bid itsarginal
value. Unfortunately, even with heuristic MV, an agent can succeed at winning goods it wishes it had not
won—in particular, when goods are substitutes—although anag&ht never fails to win goods it wishes it
had won (see Theorem 3).

Definition Given a set of goodX, a valuation function) : 2% — R, and a pricing functiory : 2%X — R.
Themarginal valueu(z) = p(x, X, v, q) of goodz € X is defined as follows:

pl) = | max (oY U{zh) = (V)] = max (oY)~ a(Y)]
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Intuitively, the marginal value af is simply the difference between the value of an optimal &itijon when
x costs 0, and the value of an optimal acquisition wherostsoco.

Example Consider once again the setup of Example 8.3.1. Given betltdmera and flash together, the
agent’s value is 500; but either one of these componentouiitihe other is valued at only 1. If the clearing

prices of the camera and flash are 200 and 100, respectiwelybidding according to M\{(500 — 100) —

(0 — 0) = 400 on the camera an@®00 — 200) — (0 — 0) = 300 on the flash, the agent wins both goods, as
desired.

Example Consider once again the setup of Example 8.3.1, where an egjees a Canon AE-1 at 300 and
a Canon A-1 at 200, and both cameras together at 400. If tadraeprices of the camera and flash are 275
and 175, respectively, then bidding according to M300 — 0) — (200 — 175) = 275 on the camera and
(200 — 0) — (300 — 275) = 175 on the flash, the agent wins both goods. As in Example 8.34dlistimot the
desired outcome: the agent wins goods it wishes it had not won

Example 8.3.1 shows that, for complementary goods, the MWfisiic can be an effective means of
solving the deterministic bidding problem, in spite of thelldocumentedexposureproblem. An agent
suffers from its exposure if it bids more on a good than itepehdent value of that good [67, 90]. As noted
here, an agent can also suffer from another kind of exposusdnich it bids more on a set of goods than its
combinatorial value of that set of goods. Indeed, in Exar8pdel, which concerns substitutable goods, the
MV heuristic suffers from its exposure.

Although the marginal value bidding heuristic does not sdlve deterministic second-price bidding
problem optimally in general, in what follows, we derive thgecial set of circumstances in which bid-
ding marginal values is optimal. Our derivation followsrfrd’heorem 2 and an immediate corollary of the
following “characterization theorem.”

8.3.2 Characterization Theorem

Throughout this section, we assume we are given a set of gipdsvaluation function : 2¥ — R, and

a pricing functionp : X — R. Our main theorem, which generalizes [43], completely abi@rizes the
relationship between marginal values and prices, assulimegr prices. In words, this theorem states the
following: if = is contained in an optimal acquisition, then eitlkés contained in all optimal acquisitions, in
which case its marginal value is strictly greater than itsgrorz is not contained in all optimal acquisitions,
in which case its marginal value is exactly equal to its pf&e in Example 8.3.1); otherwise, qifis not
contained in any optimal acquisition, then its marginalesks strictly less than its price.

Theorem 3 Assume prices are linear. H7,..., A% C X are all the optimal solutions to the acquisition
problem ACQX, v, p), then for all goods: € X,

1. p(z) > p(z)ifand only ifz € O}, A}

2. p(z) =p(z)ifand only ifz € |J;_, Af butx ¢ N, Af
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3. u(z) < p(z)ifand only ifz & |J;_, A}
Our proof of Theorem 3 relies on the following observation:

Observation 1 Assume prices are linear. The following equalities are egjeint: for allz € X,

pu(x) = p(x)
iff Yrg?()im[v(}/ U{z}) —p(Y)] - Yngl??iz[v(Y) —p(Y)] = p(=)

m;gngYu{u)_ﬁom»un]:;gKJMY)—ﬂYH

The same holds when the equal signs are replaced by (weakat) stequality signs.

Proof of Theorem 3 [Claim 1]: The proof follows immediately from Obs. 1 and the followiragitology:
an arbitrary good: € X is included in all optimal acquisitions if and only if the ual of an optimal acquisi-
tion with z necessarily included is strictly greater than the valuenodptimal aquisition withe necessarily
excluded: i.e.,
Y —p(Y Y)—-p(Y
Yrggg{x[v( U{z}) —p(Y U{a})] > Yrg)agz[v( ) = (Y)]
iff 2e()A;

i=1

Proof of Theorem 3 [Claim 2]: For allY C X, define the utilityu(Y) = v(Y) — (Y).
[=] By assumptionu(x) = p(x). Hence, by Obs. 14; U {«} and A, have the same utility, where

A € argyrggfm[v(YU{x})—ﬁ(YU{x})] (8.4)
Ay € argyrggt(fx[v(Y)—ﬁ(Y)} (8.5)

Note thatr € A; U {z} butz ¢ A,. An optimal acquisition either containsor it does not. Hence, one of
Ay U {z} or A, must be optimal, but since they have the same utility, botthein are optimal. We have
constructed an optimal acquisition withand an optimal acquisition without Therefore;: € | J;_; A} but
z ¢ ey A7
[<=] By assumptiony: € [Ji_, A} butz ¢ (;_; A}. Hence, there existd} # A% such thatr € A}
butz ¢ A%. Now
7€ A7 = u(A]) = max [o(Y U {a}) = (Y U {x})]

v A= (A7) = max [o(¥) (V)]

u(Af) = u(AD) iff

Y%%[U(Y U{z}) —p(Y U{a})] = Yrgnggw[vm = p(Y)]

This last equation is equivalent tdx) = p(z) by Obs. 1. L]
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When the optimal acquisition is unique, the marginal valua gbod is strictly greater than its price if
and only if the good is in the optimal acquisition; otherwidee marginal value of the good is strictly less
than its price. This corollary of Theorem 3 is immediate.

Corollary 1 Assume prices are linear. #* C X is theuniquesolution to the acquisition problem ACJ, v, p),
then

1. pu(z) > p(z) ifand only ifz € A*, and
2. p(x) < p(z) ifand only ifx & A*.

Finally, we characterize the relationship betwedn, A*) and u(x, X), that is, the marginal utility of
a goodz relative to an optimal acquisitiod* vs. the marginal utility of a good relative to the set of all
goodsX. Intuitively, the marginal value of a good that is in an omlracquisition cannot decrease if the set
of available goods is restricted to include precisely thedsoin that acquistion. Analogously, the marginal
value of a good that is not in an optimal acquisition cannotease if the set of available goods is restricted
to include precisely the goods in that acquistion.

Proposition 2 If A* C X is an optimal solution to the acquisition problem ACQ v, q), then
o u(z,A*) > pu(z, X), forall z € A*, and
o pu(z,A*) < p(z,X), forall x & A* (i.e.,z € X \ A%),

whereq : 2% — R is an arbitrary pricing function.

8.4 A Test Suite of Bidding Heuristics

We now articulate the inner workings of four select biddiryihistics. StraightMV is an implementation of
the marginal value bidding heuristiecondBot generalizes the class of bidding heuristics that solved¢he
terministic second-price bidding problem optimaystBot, a bidding heuristic that solves the deterministic
first-price bidding problem optimallyRoxyBot—2000, and a slight variankoxyBot—2000', are all instances
of SecondBot.

We argue thaFirstBot, RoxyBot—2000, andRoxyBot—2000 all solve the deterministic second-price bid-
ding problem optimally, assuming linear prices. We alsalggth thatStraightMV is optimal whenever the
solution to the acquisition problem is unique, again, assgrprices are linear.

Also in this section, we work through an example of the deieistic second-price bidding problem, and
compare the performance of these four heuristics on thisl@mowithout assuming clairvoyaneethat is,
the agents optimize with respect to imperfect price préatist

StraightMV is an implementation of the classic marginal value biddiegrfstic. It bids the marginal value of
each good in each auction, given as input predictions of tiséians’ clearing pricesStraightMV calculates
| X'| marginal values; hence, it solv@gX | acquisition problems.
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Theorem 4 Bidding marginal values is optimal in the deterministic@ed-price bidding problem whenever
the solution to the acquisition problem is unique, assurpinces are linear.

Proof The proof follows immediately from Theorem 2 and Corollary 1

Example A (TAC) travel agent is deciding what to bid on hotels for enli for whom it has already pur-
chased flights. The client’s willingness to pay for travetkeges including the good and bad hotel, respec-
tively, are 1055 and 1000. Flights alone are worthless talipat.

Suppose the agent predicts the clearing price of the goa twobe 80 and the clearing price of the bad
hotel to be 30, while in reality, the clearing price of the damd bad hotels are uniformly distributed in the
rangeq70, 90] and|[20, 40], respectively.

Given its predictions, the marginal value of the good hatéld55 — 0) — (1000 — 30) = 85, while the
marginal value of the bad hotel ($000 — 0) — (1055 — 80) = 25. StraightMV bids precisely these marginal
values: 85 on the good hotel and 25 on the bad hotel.

By bidding marginal values, 8traightMV agent is likely to win either too many substitutes or too few
complements. The probability of winning the good hoteggs% = 0.75, while the probability of winning
the bad hotel i£2=20 = 0.25. Consequently, the probability of winning too many sulstis (both hotels)

40—20
is (.75)(.25) = .1875, as is the probability of winning too few complements (neithotel).

WhereasStraightMV can win too many substitutes assuming either perfect orifegton price predic-
tion, none of the following three heuristics ever wins toonspnaubstitutes. Moreover, whereg@gaightMV
can win too few complements assuming imperfect price ptiedicin turn, each of the next three heuristics
wins more and more complements.

SecondBot SecondBot first solves for an optimal acquisitioA* € arg ACQ(X, v, p), and then bids on the
goods inA* according to some functiop We study three instances 8écondBot, corresponding to three
choices of the bid functiop(z) = g(z, X, v, p, A*%).

e FirstBot: g = p
e RoxyBot—2000:g = h whereh(x) = pu(z, X,v,p), forz € X
e RoxyBot—2000": g = h* whereh*(z) = p(z, A*,v,p), forz € X

Note the distinction betweeRoxyBot—2000 ancRoxyBot—2000 ; the former calculates marginal values with
respect to the set of goods, whereas the latter calculates marginal values with résjeethe optimal
acquisitionA*.

These three instances &écondBot place progressively higher and higher bids:

e FirstBot bidsp(x) on all goodsr € A*
e RoxyBot—2000 bidsu(z, X, v, p) > p(x) on all goodst € A* (by Theorem 3)

e RoxyBot—2000 bids u(z, A*,v,p) > u(x, X, v, p) on all goodse € A* (by Proposition 2)
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FirstBot solves only 1 acquisition problem. In the worst case (wHén= X), these versions d2oxyBot
calculate X | marginal values, solving| X | + 1 acquisition problems in total. In practice (e.g., in TACVigh
games), however, they calculate far fewer marginal valogsStraightMV.

Theorem 5 FirstBot, RoxyBot—2000, andRoxyBot—2000 are optimal bidding heuristics in the deterministic
second-price bidding problem, assuming prices are linear.

Proof The proof follows immediately from Theorem 2, Theorem 3, Bndposition 2.

Example SinceSecondBot bids only on the goods in a single acquisition, it cannot wimrany substitutes,
but still it may win too few complements. Continuing Examgld, the values of the travel packages with
the good and bad hotels are@55 — 80 = 975 and1000 — 30 = 970, respectively. Hence, the travel package
with the good hotel is the unique optimal acquisition.

FirstBot bids the predicted price (80) on the good hotel and nothinthemad hotel, which yields a 50%
chance of winning too few complements (i.e., losing bottel®tRoxyBot—2000 bids its marginal value (85)
on the good hotel and nothing on the bad hotel, which yields% 2hance of winning too few complements.

RoxyBot—2000 assumes the bad hotel is not available. Under this assumjtie marginal value of the
good hotel is1055 — 0 = 1055. This is the only bidRoxyBot—2000 submits. Sincd 055 > 90, the upper
bound on the clearing price of the good hotadxyBot—2000° wins neither too many substitutes nor too few
complements in this example.

8.5 Bidding in TAC Travel Auctions

Having conducted an analytic study of the deterministiceédeprice bidding problem, and, in doing so,
having developed a test suite of bidding heuristics, we nescdbe an experimental study in which we em-
bedded these heuristics in TAC Travel agents and played T&ZeTgames. There are three key differences
between our analytical and experimental setups:

¢ the former is decision-theoretic, while the latter is gatimesretic

e the former is a single-unit second-price design, while #ieel is ak-unit kth price design (NB: if
k =1, the latter is a first-price design rather than a seconce mlésign)

¢ in the former, prices are given, which amounts to an asswmpfi perfect price prediction by an agent;
in the latter, an agent’s price predictions are imperfect

Still, we conducted these experiments to shed some lighteafficacy of our test suite of bidding heuristics,
which are optimal or near-optimal in a decision-theoretmiyem, in a related game-theoretic bidding prob-
lem. It is not our contention, however, that solutions to aeislen-theoretic bidding problem are generally
applicable as solutions to a game-theoretic bidding proble
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8.5.1 Experimental Setup

In our experiments, we embedded in TAC Travel agents oustets of bidding heuristics, generalized to bid
marginal values in multi-unit auctions. These agents playgmerous TAC Travel games, bidding only in
flight and hotel auctions. We disregarded entertainmekétiauctions to reduce the variance in the agents’
scores. This feature of our experimental design was impiéadeby modifying the TAC-2004 Classic Java
Server [33].

Recall that there are two key architectural components & TAavel agents, price prediction and op-
timization. In our experimental design, we vary the optiatian component of the agents, but we fix the
price prediction component. Thatbnnement process is a method of computing competitivéiladgum
prices in a market [107]. All the agents in our experimengedjmt the hotel auctions’ clearing prices via the
tatonnement process, just as it was implemented in Walve2D@S3 [25].

8.5.2 Experimental Results

In this section, we report the results of two experiments witr test suite of bidding heuristics in TAC Travel
games. For both experiments, we report the average scaredday each agent, along with the corresponding
average utilities and costs. In addition, we report theltesid paired:-tests, in which we consider pairings
of the agents’ scores, utilities, and costs. In our statitests, the null hypothesis is: “there is no difference
between the means.”

4 Agent Experiment In our first set of experimental games (224 of them), we pittezlcopies of each of
our four bidding agentsSfraightMV, RoxyBot—2000,RoxyBot—2000 , andFirstBot) against one another. The
agents’ average scores, utilities, and costs in these garaeshown in Table 8.1. ScorewisgxyBot—2000
ever so slightly outperformrRoxyBot—2000°, who outperformsStraightMV, who substantially outperforms
FirstBot. The difference in the mean scores earnedRbyyBot—2000 andRoxyBot—2000 is statistically
insignificant, but all other differences are statisticallgnificant. It is interesting to note th&traightMV
obtains a higher utility on average than either variarR@fyBot (~40), but it does so at a substantially higher
cost (105—-110)straightMV bids on all goods, not only the goods in a single optimal agitjan. “You've got

to be in it to win it.” These differences are statisticallgrsificant. Finally,FirstBot is unsuccessful because it
places too many losing bids, evidenced by its unusually lost.c

Rank | Agent Avg Score | Avg Utility | Avg Cost
1 RoxyBot—2000 2738.275 | 8271.348 | 5533.074

2 RoxyBot-2000* | 2731.678 | 8270.230 | 5538.552
3 StraightMV 2667.645| 8310.908 | 5643.263
4 FirstBot 1998.806 | 7476.808 | 5478.002

Table 8.1: 4 Agent Experiment: Average Scores, Utilities] €osts (448 Observations).

2 Agent Experiment In our second set of experimental games (205 of them), weddittur copies oRoxy-
Bot—2000 androxyBot—2000 against one another. The results of these games are dejpidiaile 8.2. This
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time, whenRoxyBot—2000 outperform&oxyBot—2000, the differences between the mean scores, utilities,
and costs are statistically significant (all thgegalues are less than 0.001).

This outcome can be explained as follows. Embedded in Ro#yBot—2000 andRoxyBot—2000 are
optimal bidding heuristics for the deterministic secomibgbidding problem. The TAC Travel hotel bidding
problem is not a second-price auction, however; it is nohee+ 1st-pricek-unit auction. On the contrary,
it is a kth-price k-unit auction. As such, it mimics a first-price auction, iniefhbidders are not price-
takers. Rather, a winning bidder pays what it bids, and thuedentivized to shade its bids downwards.
But RoxyBot—2000 shades its bidapward$ In doing so, it wins more goods thaoxyBot—2000, so that it
obtains a higher utility thaRoxyBot—2000 (103.184), but this increase in utility is achieved atibstantially
higher cost (341.821).

This 2 agent experiment serves to highlight one of the kdgidihces between decision-theoretic bidding
in pseudo-auctions and game-theoretic bidding in aucti®esyBot—2000 is an optimal bidding heuristic
in the former, but it is suboptimal in the latter. We conclildat RoxyBot—2000 is the dominant TAC Travel
agent in our test suite.

Rank Agent Avg Score | Avg Utility | Avg Cost
1 RoxyBot-2000 2298.145 | 8137.993 | 5839.848
2 RoxyBot—2000* | 2059.508 | 8241.177 | 6181.669

Table 8.2: 2 Agent Experiment: Average Scores, Utilities] €osts (820 Observations).

8.6 Conclusion

Based on both our analytical and experimental results, welade thaRoxyBot—2000’s bidding heuristic is
effective in that it performs well in a decision-theoretatting when prices are given—equivalently, under
the assumption of perfect price prediction—and it perfornedl \wm a game-theoretic setting where price
predictions are imperfect. However, this bidding heuwsistihich operates on (deterministic) price point
estimates, does not explicitly plan for uncertainty in theteon dynamics. A heuristic that would be superior
in this respect would optimize with respect to noisy (i.¢ochastic) models of estimated clearing prices.
Indeed, embedded RoxyBot—2006, the top-scoring agent in TAC—2006, is such a biddngiktic.



Chapter 9

Bidding in TAC Travel 1

In this chapter, we describe our entrant in the travel divisif the 2006 Trading Agent Compe-
tition (TAC). At a high level, the design of many successfulamomous trading agents can be
summarized as follows: (i) price prediction: build a modehwarket prices; and (ii) optimiza-
tion: solve for an approximately optimal set of bids, givhistmodel. To predict, we simulate
simultaneous ascending auction3o optimize, we apply theample average approximation
method. abbreviated SAA; hence the title of this paper. @enadominated the preliminary
and seeding rounds of TAC Travel in 2006, and emerged as dbampthe finals in a photo
finish.

9.1 Introduction

The annual Trading Agent Competition (TAC) challengesiitsants to design and build autonomous bidding
agents capable of effective trading in an online traglbpping game. The first TAC, held in Boston in 2000,
attracted 16 entrants from six countries in North Ameriaardpe, and Asia. Excitement generated from this
event led to refinement of the game rules, and continuatioegflar tournaments with increasing levels of
competition over the next six years. Year-by-year, engramproved their designs, developing new ideas and
building on previously successful techniques. Since TA@gption, the lead author has entered successive
modifications of her autonomous trading age®bxyBot. This chapter reports oRoxyBot-06, the latest
incarnation and the top scorer in the TAC-06 tournament.

The key feature captured by the TAC travel game is that gocelhighly interdependent (e.g., flights
and hotels must be coordinated), yet the markets for thesgsgaperate independently. A second important
feature of TAC is that agents trade via three different kiaflmarket mechanisms, each of which presents
distinct challenges. Flights are traded in a posted-pnisgr@nment, where a designated party sets a price
that the other parties must “take or leave.” Hotels are ttadsimultaneous ascending auctions, like the FCC

1Joint work with Amy Greenwald and Seong Jae Lee.

2At present, there are two divisions of TAC: Travel and Supphain Management. This chapter is concerned only with thador
for a description of the latter, see Arunachalam and Sadelr{shis chapter, when we say TAC, we mean TAC Travel.

109
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spectrum auctions. Entertainment tickets are traded itiraaous double auctions, like the New York Stock
Exchange. In grappling with all three mechanisms while troieing their agent strategies, participants are
confronted by a number of interesting problems.

The success of an autonomous trading agent, particulaiy dgents, often hinges upon two key mod-
ules: (i) price prediction in which the agent builds a model of market prices; andfimization in which
the agent solves for an approximately optimal set of bidgemgithis model. For example, at the core of
RoxyBot's 2000 architecture [46] was @eterministicoptimization problem, namely how to bid given price
predictions in the form of point estimates. In spite of itteefiveness in the TAC-00 tournament, a weakness
of the 2000 design was th&bxyBot could not explicitly reason about variance within prices.the years
since 2000, we recast the key challenges faced by TAC agsrssvaral differenstochasticbidding prob-
lems (see, for example, Greenwald and Boyan [45]), whosgisnk exploit price predictions in the form
of distributions. In spite of our perseveran@axyBot fared unimpressively in tournament conditions year
after year. .. until 2006. Half a decade in the laboratorynspearching for bidding heuristics that can exploit
stochastic information at reasonable computational esgénally bore fruit, aRoxyBot emerged victorious
in TAC-06. In a nutshell, the secret BbxyBot-06’s success is: (hotel) price prediction by simulating simul
taneous ascending auctions, and optimization based oathgls average approximation method. Details of
this approach are the subject of the present article.

Overview This chapter is organized as follows. Starting in Sectidy %ve summarize the TAC mar-
ket game. Next, in Section 9.3, we present a high-level vie®axyBot’s 2006 architecture. This design
is grounded in two key assumptions: fixed other-agent bensnand market information encapsulated by
prices. In Section 9.4, we descriBexyBot’'s optimization technique, the sample average approxonati
method. We argue that it is optimal in pseudo-auctions, atratt model of auctions characterized by the
aforementioned assumptions. Implementation details elegyated to Appendix 9.10. In Section 9.5, we
describeRoxyBot's price prediction techniques for flights, hotels, and gatement, in turn. Our hotel price
prediction method is perhaps of greatest interest. FoligWl/elimanet al.[25], we take as our hotel price
predictions approximate competitive equilibrium pric€ly, instead of computing those prices by running
the itonnement process, we simulate simultaneous ascenditigreas We show that the latter computation
is faster, and does not sacrifice accuracy. In Section 9.6jetal the results of the TAC-06 tournament,
reporting statistics that shed light on the bidding stri@egf the participating agents. Finally, in Section 9.7,
we evaluate the collective behavior of the autonomous agerihe TAC finals since 2002. We find that the
accuracy of competitive equilibrium calculations has edrirom year to year and is highly dependent on
the particular agent pool. Still, generally speaking, thkective is moving toward competitive equilibrium
behavior.

9.2 TAC Market Game: A Brief Summary

In this section, we briefly summarize the TAC game. For moteitdeseéht t p: / / www. si cs. se/tac/.
Eight agents play the TAC game. Each is a simulated traveitageose task is to organize itineraries for
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its clients to travel to and from “TACTown” during a five day(fr night) period. In the time allotted (nine

minutes), each agent’s objective is to procure travel g@asdmexpensively as possible, trading off against

the fact that those goods are ultimately compiled into fdadrips that satisfy its client preferences to the

greatest extent possible. The agents know the preferefitesiioown eight clients only, not the other 56.
Travel goods are sold in simultaneous auctions as follows:

¢ Flight tickets are sold by “TACAIr” in dynamic posted-pni@ environments. There are flights both to
and from TACTown on each applicable day. No resale of fligtketis by agents is permitted.

Flight price quotes are broadcast by the TAC server evergéennds.

e Hotel reservations are sold by the “TAC seller” in multi-uascending call markets. Specifically, 16
hotel reservations are sold in each hotel auction to the dBesit bidders at the 16 highest price.
There are two hotels: a good one and a bad one. No resale bféstevations by agents is permitted.
Nor is bid withdrawal allowed.

More specifically, the eight hotel auctions clear on the n@mith exactly one auction closing at each
of minutes one through eight. (The precise auction to clesddsen at random, with all open auctions
equally likely to be selected.) For the auction that closies, TAC server broadcasts the final closing
price, and informs each agent of its winnings. For the othtéres TAC server reports the current ask
price, and informs each agent of its “hypothetical quantibn” (HQW).

e Agents are allocated an initial endowment of entertainrtiekets, which they trade among themselves
in continuous double auctions (CDAS). There are three &itenent events scheduled each day.

Although the event auctions clear continuously, price gsi@ire broadcast only every 30 seconds.

One of the primary challenges posed by TAC is to design arld butonomous agents that bid effectively
on interdependent (i.e., complementary or substitutajuels that are sold in separate markets. Flight tickets
and hotel reservations are complementary because flightsauseful to a client without the corresponding
hotel reservations, nor vice versa. Tickets to entertaimraeents (e.g., the Boston Red Sox and the Boston
Symphony Orchestra) are substitutable because a clienbtattend multiple events simultaneously.

9.3 RoxyBot-06's Architecture: A High-Level View

In our approach to the problem of bidding on interdependentg in the separate TAC markets, we adopt
some simplifying assumptions. Rather than tackle the gdmmeretic problem of characterizing strategic
equilibria, we focus on a single agent’s (decision-thecygiroblem of optimizing its own bidding behavior,
assuming the other agents’ strategies are fixed. In additierassume that the environment can be modeled
in terms of the agent’s predictions about market clearifgegr These prices serve to summarize the relevant
information hidden in other agents’ bidding strategieseSéhtwo assumptions—fixed other-agent behaviors
and market information encapsulated by prices—support thadutar design oRoxyBot-06 and many other
successful TAC agents, which consists of two key stagepri@i§ prediction; and (ii) optimization.
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REPEAT

{start bid interval

=

0. Download current prices and winnings from serve

1. predict build stochastic models
a. flights Bayesian updating/learning
b. hotels simultaneous ascending auctions
c. entertainmentsample historical data

2. optimize sample average approximation

3. Upload current bids to server
(three separate threads)

{end bid interva}
UNTIL game over

Table 9.1: A high-level view oRoxyBot-06's architecture.

The optimization problem faced by TAC agents is a dynamictbatincorporates aspects of sequentiality
as well as simultaneity in auctions. The markets operatalsameously, but in addition, prices are discovered
incrementally over time. In principle, a clairvoyant agettine with knowledge of future clearing prices—
could justifiably employ an open-loop strategy: it couldveothe TAC optimization problem once at the
start of the game and place all its bids accordingly, nevesnsidering those decisions. A more practical
alternative (and the usual approach taken in $AG to incorporate into an agent’s architecture a closeg,lo
or bidding cycle enabling the agent to condition its behavior on the evotutif prices. As price information
is revealed, the agent improves its price predictions, angtimizes its bidding decisions, repeatedly.

One distinguishing feature ¢foxyBot-06 is that it builds stochastic models of market clearing wice
rather than predicting clearing prices as point estima@isen its stochastic price predictions, stochastic
optimization lies at the heart &oxyBot-06. Assuming time is discretized into stages, or bid interndising
each iteration of its bidding cycl®oxyBot-06 faces am-stage stochastic optimization problem, wheris
the number of stages remaining in the game. The key inputiscofitimization problem is a sequence of
n — 1 stochastic models of future prices (current prices are knpaach one a joint probability distribution
over all goods conditioned on past prices. The solution igdptimization problem, and the output of each
iteration of the bidding cycle, is a vector of bids, one peodjor auction).

Table 9.1 presents a high-level viewRbxyBot-06's architecture, emphasizing its bidding cycle. At the
start of each bid interval, current prices and winnings aerdoaded from the TAC server. Next, the key
prediction and optimization routines are run. In the preéditmodule, stochastic models of flight, hotel, and
entertainment prices are built. In the optimization mogdbids are constructed as an approximate solution
to ann-stage stochastic optimization problem. Prior to the enéawfh bid interval, the agents’ bids are
uploaded to the TAC server using three separate threadbe(flight thread bids on a flight only if its price
is near its predicted minimum; (ii) the hotel thread bids germ hotels only if it is moments before the end
of a minute; and (iii) the entertainment thread places bitmédiately.

3An exception idivingagents [36], the winner of TAC 2001.
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We discuss the details &oxyBot-06’s optimization module first, and its price prediction moglakcond.

9.4 Optimization

We characteriz®oxyBot-06's optimization routine as (i) stochastic, (ii) global, afii¢ dynamic. It takes as
input stochastic price predictions; it simultaneouslysidars flight, hotel, and entertainment bids in unison;
and it simultaneously reasons about bids to be placed industlent and future stages of the game.

9.4.1 TAC Market Mechanisms

Before discussing the specificsRbxyBot-06’s approach to optimizing its bids, we discuss some of thegiss
that can impact bidding decisions in each of the three TACkstarbased on their respective mechanisms.

Flights Recall that flights are sold by TACAIr in dynamic posted-prigcenvironments. The hallmark of

a posted-price mechanism is that a designated party setseatpat the other parties can “take or leave.”
However, posted-price markets may differ regarding limitsquantity, the manner or frequency by which
prices change, or other features. In the case of TAC flighketar TACAIr posts sell prices for an effectively
unlimited quantity of flights to and from TACTown on each dagd TAC agents can purchase any number
of flights by submitting bids at or above those prices. TAQ4pdates prices every ten seconds according to
a known stochastic process (see Section 9.5.1). This mdwesboth revealed and hidden state, but is not
affected in any way by the TAC agents’ actions (i.e., flightghases).

The fundamental issue regarding TAC flight decisions is amomone: balancing concern about future
price increases with the benefit of delaying commitmentaweeton particular days. If flight prices were non-
increasing, agents would simply delay their flight purclsasetil the end of the game, when all uncertainty
about hotel markets (i.e., what reservations each ageotips) has been resolved. By committing to a flight
any earlier, an agent risks finding that its choice was suimatbased on subsequent shifts in hotel prices or
availability. An extreme (but not unusual) instance of tiig& is that it may end up wasting the flight entirely,
if it cannot obtain hotel rooms to compile a feasible trip ba torresponding days. The dynamic aspect of
RoxyBot-06's optimization module allows the agent to seemlessly neadmut these tradeoffs.

Hotels In a simultaneous ascending aucti¢8imAA) [27], goods are sold to agents through an array of
ascending auctions, one for each good. The auctions prammeslirrently, and bidding is organized in
rounds. At any given time, the price quote is defined to be thledst bid received thus far, or zero if there
are no bids as of yet. The ask price is the price quote plus d fir@ement. To be admissible, a new bid
must beat the quote by offering at least the ask price. If ati@ureceives multiple admissible bids in a
given round, it admits the highest (breaking ties arbilyariAn auction is quiescent when a round passes
with no new admissible bids. When all are simultaneouslyspgat, the auctions close and their respective
goods are allotted as per the last admitted bids.

The TAC hotel auctions run simultaneously, but differ frdm aibstract SImAA mechanism in two basic
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ways. First, each TAC hotel auction is multi-unit: the topidders are allocated theunits, and the clear-
ing price is the lowest winning bid. Second, rather than wattl all auctions are quiescent, one randomly
selected auction closes each minute. In this respect TA€ hattions represent a hybrid between simulta-
neous and sequential auctions. Still, TAC hotel auctionsZimAAs share many of the same characteristics.
Most importantly, because no good in a SImAA is committedl afitare, an agent’s bidding strategy in one
auction cannot be contingent on the outcome in another. |&iyian agent bidding for a set of hotels on
contiguous days runs the risk that it will win some but notalels it desires.

Entertainment Most TAC designers treat entertainment trading as a tagkloasely coupled to flight and
hotel bidding. The markets are clearly interdependenthas/élue of an entertainment ticket depends on
what other tickets the agent holds, as well as the possileltpackages it can assemble for its clients. The
relationship is relatively weak, however, since entertent merely provides bonus utility; it does not affect
trip feasibility like flights and hotels. Often a ticket nated for one client can be given to another, or sold to
another agent. Entertainment markets are open throughewame, and are not subject to time-dependent
price movements or rigid clearing schedules like the otharkets. NonethelesRoxyBot-06 makes its
entertainment-bidding decisions in conjunction with iiigHt and hotel-bidding decisions, all within its global
optimization module. The effectiveness of this approactoied in Section 9.6.

9.4.2 Abstract Auction Model

Recall that our treatment of bidding is decision-theoretither than game-theoretic. In particular, we focus
on a single agent'’s problem of optimizing its own bidding #éhr, assuming the other agents’ strategies are
fixed. In keeping with our basic agent architecture, we rssume that the environment can be modeled in
terms of the agent’s predictions about market clearingegri®Ve introduce the terpseudo-auctioto refer to

a market mechanism defined by these two assumptions—fixedagleat behaviors and market information
encapsulated by prices. The optimization problem Hwed/Bot solves is one of bidding in pseudo-auctions,
not (true) auctions. In this section, we formally develofs tabstract auction model and relate it to TAC
auctions; in the next, we define and propose heuristics t@s@rious pseudo-auction bidding problems.

Basic Formalism

In this section, we formalize the basic concepts neededecigely formulate bidding under uncertainty as
an optimization problem, including: packages—sets of gppdssibly multiple units of each; a function that
describes how much the agent values each package; priceliteta structures in which to store the prices
of each unit of each good; and bids—pairs of vectors corregipgrio buy and sell offers.

Packages Let G denote an ordered set nfdistinct goods and leV € N™ represent the multiset of these
goods in the marketplace, witN, denoting the number of units of each gogd= G. A packageM is a
collection of goods, that is, a “submultiset” 6f. We write M C N wheneverM, < N, forall g € G.

It is instructive to interpret this notation in the TAC domaiTlhe flights, hotel rooms, and entertainment
events up for auction in TAC comprise an ordered set of 2&disgoods. In principle, the multiset of goods
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in the TAC marketplace is:

N™C = (c0,...,00,16,...,16,8,...,8) € N®
—— ——— —
8 flights 8 hotels 12 events

In practice, however, since each agent works to satisfy théegences of only eight clients, it suffices to
consider the multiset of goods:

NTAC® — (8...,8,8,...,8,8,...,8) C NAC
~——

—— ——
8flights 8hotels 12 events

A trip corresponds to a package, specifically samie_ N A8 that satisfies the TAC feasibility constraints.
Given A, B C N, we rely on the following basic operations: for ale G,

(A® B)g = Ay + By
(AeB)g= Ay — By

For example, iz = {a, 8,7} andN = (1,2, 3),thend = (0,1,2) C N andB = (1,1,1) C N. Moreover,
(A®B)o=1,(A®B)g=2,and(A® B), =3;and(Ac B), = -1, (AeB)g =0,and(Ae B), = 1.

Value Let A denote the set of all submultisets & i.e., packages comprised of the goodshin We
denotev : A/ — R a function that describes the value the bidding agent at&ibto each viable package.

In TAC, each agent’s objective is to compile packages#io+ 8 individual clients. As such, the agent’s
value function takes special form. Each clieris characterized by its own value function: N' — R, and
the agent’s value for a collection of packages is the sunsdflients’ respective values for those packages:
given a vector of package® = (X1,..., Xm),

v(X) =) ve(Xe). (9.1)

Pricelines A buyer pricelinefor goodg is a vectorg, € ng, where thekth componentp,, stores the
marginal costto the agent of acquiring thieth unit of goodg. For example, if an agent currently holds four
units of a goody, and if four additional units of are available at costs of $25, $40, $65, and $100, then the
corresponding buyer priceline (a vector of length 8) is gibg p; = (0, 0,0, 0,25, 40, 65, 100). The leading
zeros indicate that the four goods the agent holds may beuli@ctj at no cost. We assume buyer pricelines
are nondecreasing. Given a set of buyer pricelifes {p;, | g € G}, we define costs additively, that is, the
costof the goods in multiseY” C N is given by:

Yg
Vg, Cost(Y,P) = > pg,
k=1
Cos(Y,P) = Y Cos}(Y,P). (9.2)
geG

A seller pricelinefor goodg is a vectorr, Rf". Much like a buyer priceline, theth component of
a seller priceline fog stores themarginal revenudhat an agent could earn from th¢h unit it sells. For
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example, if the market demands four units of ggpdvhich can be sold at prices of $20, $15, $10, and
$5, then the corresponding seller priceline is givertpy= (20, 15,10, 5,0,0,0,0). Analogously to buyer
pricelines, the tail of zero revenues indicates that thekatatemands only four of those units. We assume
seller pricelines are nonincreasing. Given a set of setieelinesIl = {7, | ¢ € G}, we define revenue
additively, that is, theevenueassociated with multisét C N is given by:

Zg

Vg, Revenug(ZI) = > my, (9.3)
k=1

RevenuéZ,1I) = Y Revenug(Z,II). (9.4)
geqG

If a priceline is constant, we say that prices lamear. We refer to the constant value agrt price With
linear prices, the cost of acquirirkgunits of goody is k times the unit price of goog.

Bids An agent submits a bigh expressing offers to buy or sell various units of the goodthi mar-
ketplace. We divide3 into two componentig, @), where for each good the bid consists of &uy offer
by = (bgi,---,bgn,), and asell offer @, = (ag1,...,a,n,). The bid pricebyx € Ry (resp.age € Ry)
represents an offer to buy (sell) thkth unit of goody at that price.

By definition, the agent cannot buy (sell) théh unit unless it also buys (sells) units..., k — 1. To
accommodate this fact, we impose the following constrdduly offers must be nonincreasing i and sell
offers nondecreasing. In addition, an agent may not offeetba good for less than the price at which it is
willing to buy that good: i.e.p,1 < a41. Otherwise, it would simultaneously buy and sell ggodNVe refer
to these restrictions d@8d monotonicityconstraints.

Pseudo-Auction Rules

Equipped with this formalism, we can specify the rules tleegn pseudo-auctions. As in a true auction, the
outcome of a pseudo-auction dictates the quantity of eaold gmexchange, and at what prices, conditional
on the agent’s bid. The quantity issue is resolved byimmer determination rulevhereas the price issue is
resolved by thgpayment rule

Pseudo-Auction Winner Determination Rule Given buyer and seller pricelineé8 andIl, and bidg =
(b, @), the agent buys the multiset of goods BdyP) and sells the multiset of goods Sl IT), where

Buy, (8, P) = max k such thabg; > py
Sell, (3, 1) = max k such thatagy, < g

Note that the monotonicity restrictions on bids ensuretti@ggent’s offer is better than or equal to the price
for every unit it exchanges, and that the agent does not gimedusly buy and sell any good.

There are at least two alternative payment rules an agentffacay In afirst-price pseudo-auctigrthe
agent pays its bid price (for buy offers, or is paid its bidcprfor sell offers) for each good it wins. In a
second-price pseudo-auctiothe agent pays (or is paid) the prevailing prices, as spécify the realized



117

buyer and seller pricelines. This terminology derives bglagy from the standard first- and second-price
sealed bid auctions [64, 106]. In these mechanisms, thebidgter for a single item pays its bid (the first
price), or the highest losing bid (the second price), rethpelg. The salient property is that in first-price
pseudo-auctions, the price is set by the bid of the winnegradms in second-price pseudo-auctions an agent’s
bid price determines whether or not it wins but not the prigeys.

In this paper, we focus on the second-price model. That idyasic problem definitions presume second-
price auctions; however, our bidding heuristics are nddtadl to this case. As in true auctions, adopting the
second-price model in pseudo-auctions simplifies the proldbr the bidder. It also provides a reasonable
approximation to the situation faced by TAC agents, as we aigue:

¢ In TAC entertainment auctions, agents submit bids (i.e¢,and sell offers) of the form specified above.
If we interpret an agent’s buyer and seller pricelines astieent order book (not including the agent’s
own hid), then the agent’'s immediate winnings are as deterdidy the winner determination rule, and
payments are according to the second-price rule (i.e.,riherdook prices prevail).

¢ In TAC hotel auctions, only buy bids are allowed. Assuming®again an order book that reflects all
outstanding bids other than the agent’s own, an accurater lpriceline would indicate that the agent
can wink units of a good if it pays—foall k£ units—a price just above thg7 — k)th existing (other-
agent) offer. The actual price it pays will be that of the 1Biphest unit offer (including its own offer).
Since the agent’s own bid may affect the pridijs situation lies between the first- and second-price
characterizations of pseudo-auctions described above.

e In TAC flight auctions, agents may buy any number of units atgbsted price. The situation at any
given time is modeled exactly by the second-price pseudticauabstraction.

9.4.3 Bidding Problems and Heuristics

We are now ready to discuss the optimization module repbadetbloyed byRoxyBot-06 within its bidding
cycle to construct its bids. The key bidding decisions afeatwgoods to bid on, at what price, and when?

Technically,RoxyBot-06 faces am-stage stochastic optimization problem. It solves thibfam by col-
lapsing those: stages into only two relevant stages, “current” and “futurecessitating only one stochastic
pricing model (current prices are known). This approackésonable in TAC, and other similar combinations
of one-shot and continuously-clearing simultaneous ananvironments, as we now explain.

Since hotel auctions close in a random, unspecified oRleyBot-06, like most TAC agents, operates
under the assumption that all hotel auctions close at theoétite current stage. Hence, the only pressing
decisions regarding hotels are: what goods to bid on now twtia price? There is no need to consider the
timing of bid placement. Accordingly, there is only one miafehotel prices.

In contrast, since flight and entertainment auctions cleaticuously, a trading agent should reason about
the relevant tradeoffs in timing its placement of bids orsthgoods. Still, under the assumption that hotel

41t can do so in two ways. First, the agent may submit the 16thdsigunit offer, in which case it sets the price. Second, vihen
bids for multiple units, the number it wins determines the psetting unit, thus affecting the price for all winning wnitNote that this
second effect would be present even if the auction cleartéedt7th-highest price.
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auctions close at the end of the current stage, it sufficegrisider only one stochastic pricing model. Why?
Because in future stages hotel prices, and hence winning&nawn, so the only remaining decisions are
what flight and entertainment tickets to buy. But a reasanalent will time its bids in these markets to
capitalize on the “best” prices. (The best prices are thémarfor buying and the maxima for selling.)
Hence, it suffices for an agent’s model of the future to predidy the best good prices, conditioned on
current prices, of course. No further information is neaegs

Having established that it suffices fRbxyBot-06 to pose and solve a two-stage, rather tham-atage,
stochastic optimization problem, we now proceed to abdyraefine a series of such problems designed
to capture the essence of bidding under uncertainty in TRE€Hybrid markets that incorporate aspects of
simultaneous and sequential, one-shot and continuolesdyhag, auctions. Also in this section, we discuss
heuristic solutions to this bidding problem: specificallye expected value metho&\M), an approach
that collapses stochastic information, and sample avespgeoximation $AA), an approach that exploits
stochastic information and characterizasyBot-06. The implementation details &AA as it applies in the
TAC domain are relegated to Appendix 9.10.

Problem Statements

The problem of bidding under uncertainty can be formulated awo-stage stochastic program with integer
recourse (see Birge and Louveaux [14] for an introductiostbzhastic programming). In the first stage,
when current prices are known, but future prices are unicertéds are selected. In the second stage, all
uncertainty is resolved, and additional goods are tradethgps at undesirable prices. The objective in a
stochastic program is to assign values to the first-stagablas (the bids) that maximize the sum of the first-
stage objectives and the expected value of the ensuingtivej@t the second-stage. It is in the second stage
that the bidder hagcourse and since it makes integer-valued decisions in that sthgé{dder decides what
goods to buy and sell at known prices), the bidding probleam&swith integer recourse.

In this section, we formulate a series of bidding problemsaasstage stochastic programs with integer
recourse, each one tailored to a different type of auctiooh@aeism, illustrating a different type of bidding
decision. The mechanisms we study, inspired by TAC, arestio¢-and continuously-clearing variants of
second-price pseudo-auctions. In the former, bids canlmfylaced in the first stage; in the latter, decisions
are made in both the first and second stages. Ultimately, wiice all decision problems into one grand
bidding under uncertainty problem.

In our formal problem statements, we rely on the followingation:

e Variables:

— Q' is a multiset of goods to buy now
— Q% is a multiset of goods to buy later
— R'is a multiset of goods to sell now

— R? is a multiset of goods to sell later

e Constants:
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— Plis a set of current buyer pricelines
— PZis a set of future buyer pricelines
— II' is a set of current seller pricelines

— II? is a set of future seller pricelines

Note thatP! andII! are always known, whered® andII? are uncertain in the first stage but their uncertainty
is resolved in the second stage.

Flight Bidding Problem An agent’s task in bidding in flight auctions is to decide hoammflights to buy
now at current prices and later at the lowest future pricesngknown) current prices and a stochastic model
of future prices. Although in TAC all units of each flight st the same price at any one time, we state the
flight bidding problem more generally: we allow for diffetaarices for different units of the same flight.

Continuously-Clearing, Buying Given a set of current buyer pricelings and a probability distributiorf
over future buyer pricelineB?,

FLT(f) = max Epa~s | max v(Q' ® Q%) — (Cos(Q', P') + CostQ' & Q*, P?) — Cos(Q', P?))
(9.5)

Note that there are two cost terms referring to future piniesl (Cost:, P2)). The first of these terms adds the
total cost of the goods bought in the first and second stagessd@cond term subtracts the cost of the goods
bought in just the first stage. This construction ensures iffen agent buy% units of a good now, any later
purchases of that good incur the charges of uftits 1, k + 2, ...) in the good’s future priceline.

Entertainment Bidding Problem Abstractly, the entertainmemiuyingproblem is the same as the flight
bidding problem. An agent must decide how many entertainriekets to buy now at current prices and
later at the lowest future prices. The entertainnsa@iling problem is the opposite of this buying problem.
An agent must decide how many tickets to sell now at currdonéprand later at the highest future prices.

Continuously-Clearing, Buying and Selling Given a set of current buyer and seller pricelig&sII)! and
a probability distributionf over future buyer and seller pricelinéB, 11)?,

_ , 1.2 1 p2
ENT(f) = o X Epmyz~r QQ%%é(ZnU((Q Q%) o (R &R

— (Cos{Q", P') + Cos{Q" @ Q*, P?) — CostQ', P?))
+ (Revenu¢R',I1") + RevenuéR' & R* 1) — Revenu¢R',11%))] (9.6)

subjecttoQ! 2 R andQ! © Q% D R! @ R?, for all (P, 11)2.

The constraints ensure that an agent does not sell moredfigitey good than it buys.
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Hotel Bidding Problem Hotel auctions close at fixed times, but in an unknown ordeend¢, during
each iteration of an agent’s bidding cycle, one-shot anstapproximate these auctions well. Unlike in the
continuous setup, where decisions are made in both the ficsssecond stages, in the one-shot setup, bids
can only be placed in the first stage; in the second stagejngsmare determined and evaluated.

One-Shot, Buying Given a probability distributiorf over future buyer priceline®?,

HOT(f) = 532?5}(@ Epe~ s [v(Buy(3', P?)) — Cos(Buy(3', P?), P?)] (9.7)

Hotel Bidding Problem, with Selling Although it is not possible for agents to sell TAC hotel aoos, one
could imagine an analogous auction setup in which it wersiptesto sell goods as well as buy them.

One-Shot, Buying and SellingGiven a probability distributionf over future buyer and seller pricelines
(P,11)?%,

max Epmz~ys [v(Buy(3", P?) © Sell(3',11*)) — Cos(Buy(3", P*), P*) + RevenuéSell(3",I1*), I1*)]

B1=(b,d)
(9.8)
subject to Buyst, P?) > Sell(3t, 112), for all (P, IT)2.

Bidding Problem Finally, we present (a slight generalization of) the TACdimd) problem by combining
the four previous stochastic optimization problems inte.ofhis abstract problem models bidding to buy
and sell goods both via continuously-clearing and one-skcond-price pseudo-auctions, as follows:

Bidding Under Uncertainty Given a set of current buyer and seller pricelii@311)! and a probability
distribution f over future buyer and seller pricelinéB, I1)?,

BID(f) =
1 2 1 2 1 2 1 2
o, Bg?;a)]]‘l(p,n)%f oax, v((@ Q)6 (R o k%) @ Buy(s, P) © Sel(5", PT))

- (COS(Q17P1) + COS(Ql S) Q27 P2) - COS(le P2> + COS(BUy(ﬁla P2)7 PQ))
+ (RevenuéR',IT") + RevenuéR' & R* II*) — RevenuéR', I1*) + RevenuéSell(3', I1°), 11%)) |
(9.9)

subjectto@Q' O R and@Q' © Q% D R' @ R? and Buy3', P?) > Sell(5!,112), for all (P, II)?.

Once again, this bidding problem is (i) stochastic: it takesnput a stochastic model of future prices;
(i) global: it seemlessly integrates flight, hotel, andegtginment bidding decisions; and (iii) dynamic: it
facilitates simultaneous reasoning about current anddugtages of the game.

Next, we describe various heuristic approaches to solviedifig under uncertainty.
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Heuristic Solutions

The expected value methdd a standard way of approximating the solution to a stoahagttimization
problem. First, the given distribution is collapsed intoa@np estimate (e.g., the mean); then, a solution to
the corresponding deterministic optimization problem uspot as an approximate solution to the original
stochastic optimization problem. This approach is infetmthe sample average approximationethod,
another means of approximating the solution to a stochagtitnization problem, which proceeds in two
steps, as follows: (i) generate a set of sample scenaridgjiasolve an approximation of the problem that
incorporates only the sample scenarios.

Using the theory of large deviations, Ahmed and Shapiro §#dlgish the following: a$ — oo, the
probability that an optimal solution to the sample avergg@aximation of a stochastic program with integer
recourse is an optimal solution to the original stochaspitnaization problem approaches 1 exponentially
fast. Given hard time and space constraints, however, ibigvays possible to sample sufficiently many
scenarios to infer any reasonable guarantees about thigyepial solution to a sample average approximation.
Hence, we propose a modifi&hA heuristic, in whichSAA is fed some tailor-made “important” scenarios,
and we apply this idea to the bidding problem.

The bids thaBAA places are prices that appear in one of its scenarios. Thearereason fo8AA to bid
higher on any good than its highest sampled price, becadsknii the highest price is enough to win the
good in all scenarios. (Similarly, there is also no reasarsfA to bid lower on any good than its lowest
sampled price; instead, it suffices to bid zero.) Heseey cannot win a good if the prices of that good in all
of its scenarios are lower than the clearing price. How jikelthis possibility?

Each draw from the distribution has an equal chance of bé&iedighest-priced, assuming there are no
ties. The probability that all of the sampled scenario @riaee lower than the clearing pricelig(S + 1),
whereS' is the number of scenarios. In particular, the probabiligt anSAA agent withd9 scenarios bidding
in TAC Travel has a chance to win &hotels (i.e., the probability that the price in at least ohiéssscenarios
is higher than the clearing price) is or{y — ﬁ)s = 0.98% ~ 0.85.

To remedy this situation, we designed and implemented anaof SAA. The SAA* heuristic is a close
cousin ofSAA, the only difference arising in their respective scenagis sWhereaSAA samplesS scenarios,
SAA* samples onlys' — [N| scenarios, whergV| = 3 N,. SAA* creates an additionalV| scenarios as
follows: for each unit: of each goody € G, it sets the price of théth unit of goodg to the upper limit of
its range of possible prices and, after conditioning onphise setting, it sets the prices of the other goods to
their mean values. Th&AA* bidding heuristic characteriz&oxyBot-06.

What is unique about our agent’s approach is that since 208 RbxyBot has determined its bids
by optimizing with respect to aetof scenarios. To our knowledge no other agents optimize reispect
to multiple scenarios simultaneousIRTTAC-01 [98], the top-scoring agent in 2003, considered multiple
scenarios, but computed bids independently for each amdatveraged those bids.
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9.4.4 Summary

In this section, we developed a series of bidding problemd,heeuristics solutions to those problems, that
capture the essence of bidding in the one-shot and contityralearing auctions that characterize TAC. To
some extent at least, our approach to bidding has been tedidly the success &oxyBot-06 in TAC-06.

Our presentation was deliberately abstract, though, so sisggest that our problems and their solutions are
applicable well beyond the realm of TAC: e.qg., to biddingifderdependent goods in separate eBay auctions.
It remains to validate our approach in other application dims

9.5 Price Prediction

Next, we describe howoxyBot-06 builds its stochastic models of flight, hotel, and eventggidEach model

is a discrete probability distribution, represented bytaétscenarios.” Each scenario is a vector of “future”
prices—prices at which goods can be bought and sold aftentinent stage. For flights, the price prediction
model is not stochastic: the future buy price is simRbxyBot-06’s prediction of the expected minimum
price during the current stage. For hotels, the future bigeprare predicted by Monte Carlo simulations of
simultaneous ascending auctions to approximate comyegtjuilibrium prices. There are no current buy
prices for hotels. For entertainmeRipxyBot-06 predicts future buy and sell prices based on historical. data
Details of these price prediction methods are the focusisfstction.

9.5.1 Flights

Efforts to deliberate about flight purchasing start with emstianding the TAC model of flight price evolution.

TAC Flight Prices’ Stochastic Process

Flight prices follow a biased random walk. They are initiai uniformly in the rangé250, 400], and con-
strained to remain in the range50, 800]. At the start of each TAC game instance, a boursh the final
perturbation value is selected for each flight. These boarglaot revealed to the agents. What is revealed to
the agents is a sequence of random flight prices. Every temdecTACAIr perturbs the price of each flight
by a random value that depends on the hidden parameted the current timeas follows: given constants
¢,d € RandT > 0, each (intermediate) bound on the perturbation value isealifunction of:

z(t,z) =c+ %(z ) (9.10)
The perturbation value at tintas drawn uniformly from one of the following ranges (see Aiglam 1):
o Ul—c,z(t,2)],if z(t,z) >0
o Ul—c,+d, if z(t,z) =0

o Ulx(t,z),+c], if x(t,z) <0
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Observe that the expected perturbation value in each casmdy the average of the corresponding
upper and lower bounds. In particular,

e if z(t, z) > ¢, then the expected perturbation is positive;
o if 2(¢,2) € (0,¢), then the expected perturbation is negative;
o if 2(t,2) € (—c¢,0), then the expected perturbation is positive;
e otherwise, ifz(¢, 2) € {—c,0, ¢}, then the expected perturbation is zero.
Moreover, using Equation 9.10, we can compute the expe&xdrpation value conditioned an
e if z €0, ], thenz(¢, 2) € [0, ¢], so prices are expected not to increase;

o if z € [¢,c+ d], thenx(t, z) € [c, c + d], SO prices are expected not to decrease;

cT

c—z

e if z € [—¢,0], thenx(t, z) € [—c¢, c], SO prices are expected not to increase whie
cT
c—z"

and they are

expected not to decrease while-

Based on the above discussion, we note the following: for '$Asarameter settings, nameaty= 10,
d = 30, andT" = 540, with z uniformly distributed in the range-c, d], given no further information about
flight prices are expected to increase (i.e., the expectedrpation is positive). Conditioned an however,
flight prices may increasa decrease (i.e., the expected perturbation can be posithegative). To facilitate
their flight deliberations, one of the tasks faced by TAC agénto model the probability distributioR; [z]
associated with at timet for use in predicting current and future flight prices.

An Application of Bayesian Updating

A model of a probability distribution can be built using Baian updating. Although the value of the hidden
parameter: is never revealed to the agents, the agents do observe fligesghat depend on this value
throughout the game. Before making any observations, @agunis uniformly distributed (as it is in TAC),

it is equally likely to be anywhere ifu, b]: i.e., P[z] = ;1-. Given a sequence of observations. . . , y;,
the probability distributiorP[z | 1, . .., y:] can be updated using Bayes’ rule. Specifically,

Ply1, ...,y | 2] P[2]

Plz|y1,..., ) = T Pl oo | 7Pl 47 (9.12)
where

t
P[y17"'7yt|z] = Hp[yi|y17"'7yi—17z] (912)

i=1

t
= [Pl |2 (9.13)

i=1

Equation 9.13 follows from the fact that future observadiane independent of past observations; observa-
tions depend only on the hidden parameter
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Algorithm 1 getRangé, z)
computez(t, z) {Equation 9.10
if z(t,z) > 0then

a=—c¢ b= [zt z2)]
elseifz(t, z) < 0then
a=|z(t,z)];b=+c
else
a=—c b=++c
end if
return [a, b] {range

Algorithm 2 Flight Predictiortt, y;+1, P;)
forall z € Rdo
[a,b] = getRangé, z)
if yt11 € [a,b] then

Qit1[2] = (ﬁ) P2
else
Qu1[z] =0
end if
end for{update probabilities
forall z € Rdo

Pt+1 [Z] - S g:r:[[zz’]] dz’

end for{normalize probabilities
return P;;, {probabilities

An implementation oRoxyBot-06's Bayesian updating procedure is described in Algorithnbtting
Polz] = Plz] andQy41z] = Plyesa | 2] P[2],

Qi11[2]

Pii[z] = fz’ Qt+1[2/] dz

(9.14)
Note thatP;1[z] = Plz | y1,-- -, Yt+1]-

RoxyBot-06's Flight Prices Prediction Method

Given a probability distributior;[z], to predict a flight priceRoxyBot could simulate a random walk from
timet + 1,...,¢ and select the minimum price (see Algorithm 3). In practicayever, onlyRoxyBot-06's
hotel and event price predictions are stochastic; its fiiglte predictions are point estimates (i.e., constant
across scenarios). For each flight and for each possible eébhe hidden parameteyRoxyBot-06 simulates

an “expected” random walk (see Algorithm 4), selects theimim price, and then outputs as its prediction
the expectation of these minima, averaging according.fe]. Alternative scenario generation procedures
are also possible. In Algorithm 3, an agent could calculapeeted perturbations instead of sampling; or, in
Algorithm 4, an agent could sample instead of calculatingeeted perturbations. Our choice of flight price
prediction method was guided by time constraints.
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Algorithm 3 SampleMinimum_Price(t, ¢, p;, Pi11)
min[z] = 400
samplez ~ P;y1]z]
forr=t+1,...,t' do
[a,b] = getRangér, z)
sampleA ~ Ula, b] {perturbation
pr = pr—1 + A {perturb pricé
pr = max(150, min(800, p;))
if pr < min[z] then
min[z] = p,
end if
end for{random walk
return min

Algorithm 4 ExpectedMinimum_Priceg(t, ', ps, Piy1)
forall z € Rdo
min[z] = +o0
forr=t+1,...,¢ do
[a, b] = getRangér, z)
A = 252 {expected perturbatign
pr = pr—1 + A {perturb pricé
pr = max(150, min(800, p,))
if p, < min[z] then
min(z] = p,
end if
end for
end for
return [ P,y 1[z] min(z] dz

9.5.2 Hotels

RoxyBot-06's approach to hotel price prediction is inspired Wslverine’s [25], in which the &tonnement
method [107] is used to approximate competitive equiliori(CE) prices. In a competitive market where
each individual’s effect on prices is negligible, equilibn prices are prices at which supply equals demand,
assuming all producers are profit-maximizing and all corexgrare utility-maximizing.

Formally, letp’ denote a vector of prices. {f(p) denotes the cumulative supply of all producers, and if
Z(p) denotes the cumulative demand of all consumers, #High= Z(p) — ¥(p) denotes the excess demand
in the market. Thedtonnement process adjusts the price vector at iteratignl, given the price vector at
iterationn and a sequencgy,, } of adjustment ratesy, 11 = p,, + anZ(Pn).

In the TAC game contextatonnement is not guaranteed to converghalverine attempts to force con-
vergence by lettingy, — 0. We fix o, = i and instead force convergence by modifying the adjustment
process to simulatsimultaneous ascending auctiof®mAA) [27]. In SimAAs prices increase as long as
there is excess demand but they can never decrgase:= p,, + a,, max{Z(p,), 0}.

In TAC, cumulative supply is fixed. Hence, the key to compgigrcess demand is to compute cumulative
demand. Each TAC agent knows the preferences of its owntsglibat must estimate the demand of the



126

others.Walverine computes a single hotel price prediction (a point estimaysjonsidering its own clients’
demands together with those of 56 “expected” clients. Bidfle utility of an expected client is an average
across travel dates and hotel types augmented with fixedt@nt@ent bonuses that favor longer trips (see
Wellmanet al. [25] for details). In contrasiRRoxyBot-06 builds a stochastic model of hotel prices consisting
of S scenarios by considering its own clients’ demands togetliter S random samples of 56 clients. A
(random or expected) client's demand is simply the quamtftgach good in its optimal package, given
current prices. The cumulative demand is the sum total afligiht’s individual demands.

In Figure 9.1, we present two scatter plots that depict ttedityuof various hotel price predictions at the
beginning of the TAC 2002 final games. All price predictiome avaluated using two metrics: Euclidean
distance and the “expected value of perfect prediction”®BY. Euclidean distance is a measure of the dif-
ference between two vectors, in this case the actual and-¢lakicped prices. The value of perfect prediction
(VPP) for a client is the difference between its surplusygadf its preferred package less price) based on
actual and predicted prices. EVPP is the VPP averaged owelistribution of client preferencés.

On the left, we plot the predictions generated using the Cthaaks: ftonnement and SimAA, both with
a = 2—14; expected, random, and exact. The “exact” predictions angpeited with knowledge of the actual
clients’ in the games, not just the client distribution; bethey serve as a lower bound on the performance of
these techniques on this data set. Under both metrics, abdtio expected and random, SimAA outperforms
tatonnement. The right plot juxtaposesxyBot-06's predictions (SimAA random) and the TAC 2002 agents’
predictions® Note that SimAA expected at (198,37) performs as well as Wate at (197,39).

We interpret each prediction generated using randomly Eatrglients as a sample scenario, so that a
set of such scenarios represents draws from a probabibtyilalition over CE prices. The corresponding
vector of predicted prices that is evaluated is actuallyaberage of multiple (40) such predictions; that is,
we evaluate an estimate of the mean of this probabilityidigiion. The predictions generated using sets of
random clients are not as good as the predictions with ezgegdtents (see Figure 9.1 left), although with
more than 40 sets of random clients, the results might ingrd&till, the predictions with random clients
compriseRoxyBot-06’s stochastic model of hotel prices, which is key to its bidpstrategy. Moreover, using
random clients helpRoxyBot-06 make better interim predictions later in the game as we axplext.

The graphs depicted in Figure 9.1 pertain to hotel priceiptiethis made at the beginning of the game,
when all hotel auctions are open. In those CE computationsegare initialized to 0. As hotel auctions
close,RoxyBot-06 updates the predicted prices of the hotel auctions thatireopen. We experimented with
two ways of constructing interim price predictions. Thetfissto intialize and lower bound the prices in the
hotel markets at their closing (for closed auctions) orentrask (for open auctions) prices while computing
competitive equilibrium price$.The second differs in its treatment of closed auctions: weikite a process
of distributing the goods in the closed auctions to the tievho want them most, and then exclude the closed
markets (i.e., fix prices at) from further computations of competitive equilibrium qes.

5See Wellmaret al.[108] for details.
6with the exception of th&®oxyBot-06 data point, this plot was produced by téalverine team [108].

At first blush, it may seem more sensiblefiothese prices at their closing prices. But if some hotel ctpgirice were artificially
low, and if that price could not increase, then the pricesiefrtotels complementing the hotel in question would be aslfichigh.
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Figure 9.1: EVPP and Euclidean Distance for the CE priceiptied methods @tonnement and SimAA with
a = i; expected, random, and exact) and the TAC 2002 agents’qtieus in the 2002 finals (60 games).
The plot on the left shows that SImAA's predictions are bretitan itonnement’s and that expected’s are
better than random’sRoxyBot-06's method of hotel price prediction (SimAA, Random) is phattagain on
the right. Note the differences in scales between the twis plo
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Figure 9.2: EVPP and Euclidean Distance in TAC 2006 finals (f@nes) of the CE price prediction methods
with and without distribution as the game progresses. Digion improves prediction quality.

Regarding the second method—the distribution method—waerdé&te how to distribute goods by com-
puting competitive equilibrium prices! As explained in Alithm 5, all the hotels (in both open and closed
auctions) are distributed randomclients by determining who is willing to pay the competiteguilibrium
prices for what. It is not clear how to distribute goods toented clients.

Figure 9.2, which depicts prediction quality over time,whdhat the prediction methods enhanced with
distribution are better than the predictions obtained byatgenitializing the prices of closed hotel auctions at
their closing prices. Hotels that close early tend to selldss than hotels that close late; hence, the prediction
quality of any method that makes decent initial predictisrisound to deteriorate if those predictions remain
relatively constant throughout the game.

Returning to Figure 9.1, SimAA outperform&ténnement as a means of hotel price prediction with both
expected and random clients on the TAC 2002 finals data setmiins to show that this performance gain
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Algorithm 5 Distribute

1: for all hotel auctions: do

2:  initialize price to 0

3: initialize supply to 16

4. end for
5: compute competitive equilibrium pricédatonnement or SimAA
6: for all closed hotel auctions do
7
8
9

distribute units of: to those who demand them at the computed competitive equitibprices
distribute any leftover units df uniformly at random
. end for

does not come at the expense of increased computationebkeffodeed, it does not; see Table 9.2.

Table 9.2 shows the runtimes of the CE prediction methodsAah2002 (60 games) and TAC 2006 (165
games) finals data set at minute 0. Here, we see that SimAAniesalfive times faster thadtonnement
with expected clients, and almost ten times faster with camdlients. Tatonnement is not guaranteed to
converge, and in general, it does not. Instead, #tennement procedure usually runs for the maximum
number of iterations (fixed at 10,000, in our implementgtion

Moving to minutes 1-7 on the TAC 2006 finals data set, SImAA wrenthan five times faster with
expected clients and more than ten times faster with randiemts. Note that CE prices are bounded below
by current ask prices; over time, those prices tend to iserdaading to faster and faster runtimes. Extending
the sampling methods to incorporate distribution, runsimieuble. This factor of two slowdown is acceptable
for SimAA but not for &tonnement, since the former runs ten times as fast as tae lat

Exp Tat | Exp SimAA || Sam Tat | Sam SimAA || Dist Tat | Dist SImAA
2002, minute O 2213 507 1345 157 — —
2006, minute 0 2252 508 1105 130 1111 128
2006, average 1-}| 2248 347 1138 97 2249 212

Table 9.2: Runtimes for the CE price prediction methods, ilfiseconds. Experiments were run on AMD
Athlon(tm) 64 bit 3806- dual core processors with 2M of RAM. The machines were noicdéed.

The simulation methods discussed in this section—a@nhement process and simultaneous ascending
auctions—were employed to predict hotel prices only. (In siorulations, flight prices are fixed at their
expected minima, and entertainment prices are fixed at 8@Jimciple, competitive equilibrium (CE) prices
could serve as predictions in all TAC markets. However, Ciggsrare unlikely to be good predictors of
flight prices, since flight prices are determined exogenowith regard to entertainment tickets, CE prices
might have predictive power; however, incorporating eaiament tickets into thedtonnement and SimAA
calculations would have been expensive. (In our simulatifwlowing Wellmanet al. [108], client utilities
are simply augmented with fixed entertainment bonusesdhat fonger trips.) Nonetheless, in future work,
it could be of interest to evaluate the success of these ateiemethods in predicting CDA clearing prices.

Finally, we note that we refer to our methods of computingessademand as “client-based” because we
compute the demands of each client on an individual basisomtrast, one could employ an “agent-based”
method, whereby the demands of agents, not clients, woutdlsalated. Determining an agent’s demands
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involves solving so-calledompletion a deterministic (prices are known) optimization probldriha heart of
RoxyBot-00’s architecture [46]. As TAC completion is NP-hard, the agemsed method of predicting hotel
prices is too expensive to be includedioxyBot-06’s inner loop. In designin@oxyBot-06, we reasoned that
an architecture based on a stochastic pricing model gertetaing the client-based method and randomly
sampled clients would outperform one based on a point esipricing model generated using the agent-
based method and some form of expected clients, but we didenidy this conjecture empirically.

9.5.3 Entertainment

During each bid intervalRoxyBot-06 predicts current and future buy and sell prices for ticketalt enter-
tainment events. These price predictions are optimighie:agent assumes it can buy (or sell) goods at the
least (or most) expensive prices that it expects to see eédifier end of the game. More specifically, each
current price prediction is the best predicted price dutiregcurrent bid interval.

RoxyBot-06's estimates of entertainment ticket prices are based d¢orital data from the past 40 games.
To generate a scenario, a sample game is drawn at randomHi®motlection, and the sequences of enter-
tainment bid, ask, and transaction prices are extracteegen&uch a history, for each auctianlet trade;
denote the price at which the last trade before timransacted,; this value is initialized to 200 for buying and
0 for selling. In addition, lebid,; denote the bid price at timg and letask,; denote the ask price at time

RoxyBot-06 predicts the future buy price in auctiarafter timet as follows:

future_buy,, = min min{trades;, askq;} (9.15)
i=t+1,...,T
In words, the future buy price at each time- ¢t + 1, ..., T is the minimum of the ask price after timeand

the most recent trade price. The future buy price at tinsethe minimum across the future buy prices at all
later times. The future sell price after timés predicted analogously:

future_sell ,, = i:tIJIrliiX Tmax{tmdeai, bid g} (9.16)

,,,,,

9.6 TAC 2006 Competition Results

To further establish the efficacy BoxyBot’s strategy, we include the results of the TAC 2006 tournamen

9.6.1 Summary

Table 9.3 lists the agents entered in TAC-06 and Table 9.4manmes the outcomd&oxyBot dominated the
seeding round, which consisted of 960 games. The finals deetpi65 games over three days, with the 80
games on the last day weighted 1.5 times as much as the 85havérst two days. In spite of its glowing
performance in the preliminary (qualifying and seeding)nds, on the first day of the finalRpxyBot fin-
ished third, behindiertacor andWalverine—the top scorers in 2005. As it happeRexyBot's optimization
routine, which was designed for stochastic hotel and aitertent price predictions, was accidentally fed
deterministic predictions (i.e., point price estimate®) éntertainment. Moreover, these predictions were
fixed, rather than adapted based on recent game history.
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On days 2 and 3RoxyBot ran properly, basing its bidding in all auctions on stocigaistformation.
Moreover, the agent was upgraded after day 1 to bid on flighttgust once, but twice, during each minute.
This enabled the agent to delay its bidding somewhat at theoérm game for flights whose prices are
decreasing. No doubt this minor modification enabiestyBot to emerge victorious in 2006, edging out
Walverine by a whisker, below the integer precision reported in Tablle Ihe actual margin was 0.22—a
mere 22 parts in 400,000. Adjusting for control variates] [Sdreads the top two finishers a bit furtfer.
Accounting forRoxyBot’s difficulties on day 1 of the finals, the difference betwelea bidding capabilities
of the first and second place agents is perhaps not as closseasrnis.

[ Agent | Affiliation | Reference |
006 Swedish Inst Comp Sci| [7]
kin_agent U Macau
L-Agent Carnegie Mellon U [96]
Mertacor Aristotle U Thessaloniki| [101, 58]
RoxyBot Brown U [43, 45, 46, 68]
UTTA U Tehran
Walverine U Michigan [25, 111]
WhiteDolphin | U Southampton [52, 103]

Table 9.3: TAC-06 participants.

[ Agent | Seeding| Finals| Adjustment Factof]
RoxyBot 4148 4032 -5
Walverine 3992 4032 =17
WhiteDolphin 3901 3936 -2
006 3882 3902 27
Mertacor 3509 3880 -16
L-Agent 3284 3860 7
kin_agent 3897 3725 0
UTTA 1726 2680 -14

Table 9.4: TAC-06 scores, seeding and final rounds, withsatjant factors based on control variates.

9.6.2 Details

Finally, we detail the results of the last day of the TAC-0&GEn(80 games). We omit the first two days
because agents can vary across days, but cannot vary wittésumably, the entries on the last day are the
teams’ preferred versions of the agents. Mean scoregiagijland costs are plotted in Figure 9.3 and detailed
statistics are tabulated in Table 9.5.

There is no single metric such as low hotel or flight costsithagsponsible foRoxyBot's success. Rather
its success derives from the right balance of contradigjosis. In particularRoxyBot incurs high hotel and

8Kevin Lochner computed these adjustment factors using theaetbscribed in Wellmaet al.[110], Chapter 8.
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mid-range flight costs while achieving mid-range trip pgnaind high event profit. (An agent suffers trip
penalties to the extent that it assings its clients packdgasliffer from their preferred.)
We compareRoxyBot with two closest rivalswalverine andwhiteDolphin.

Comparing towvalverine first, Walverine bids lower prices (by 55) on fewer hotels (49 less), yet winsen

(0.8) and wastes less (0.42). It would appear tialterine’s hotel bidding strategy outperfornfoxyBot's,
except thaRoxyBot earns a higher hotel bonus (15 morBhxyBot also gains an advantage by spending 40
less on flights and earning 24 more in total entertainmerfitpro

Score (thousands)

A very different competition takes place betweRoxyBot and WhiteDolphin. WhiteDolphin bids lower
prices (120 less) on more hotels (by 52) tHRoxyBot. RoxyBot spends much more (220) on hotels than
WhiteDolphin but makes up for it by earning a higher hotel bonus (by 96) alogvar trip penalty (by 153).

It seems thatvhiteDolphin’s strategy is to minimize costs even if that means sacrificitility.

»
o

Rox Wal Whi SIC Mer L-A kin UTT
# of Hotel Bids 130 81 182 33 94 58 15 24
Average of Hotel Bids|| 170 115 50 513 147 88 356 498
# of Hotels Won 1599 | 16.79 | 23.21 || 13.68 | 18.44 | 14.89 | 15.05 | 9.39
Hotel Costs 1102 | 1065 | 882 1031 | 902 987 | 1185 | 786
# of Unused Hotels 224 | 1.82 | 9.48 049 | 486 | 1.89 | 0.00 | 0.48
Hotel Bonus 613 598 517 617 590 592 601 424
Trip Penalty 296 281 449 340 380 388 145 213
Flight Costs 4615 | 4655 | 4592 || 4729 | 4834 | 4525 | 4867 | 3199
Event Profits 110 26 6 -6 123 -93 -162 -4
Event Bonus 1470 | 1530 | 1529 || 1498 | 1369 | 1399 | 1619 | 996
Total Event Profits 1580 | 1556 | 1535 || 1492 | 1492 | 1306 | 1457 | 992
Average Utility 9787 | 9847 | 9597 || 9775 | 9579 | 9604 | 10075 | 6607
Average Cost 5608 | 5693 | 5468 || 5765 | 5628 | 5605 | 6213 | 3989
Average Score 4179 | 4154 | 4130 || 4010 | 3951 | 3999 | 3862 | 2618

Table 9.5: 2006 Finals, Last day. Tabulated Statistics.
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Figure 9.3: 2006 Finals, Last day. Mean scores, utilitiad, @sts, and 95% confidence interavals.
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9.7 Collective Behavior

The hotel price prediction techniques described in Sedié?2 are designed to compute (or at least ap-
proximate) competitive equilibrium prices without full Gwledge of the client population. In this section,
we assume this knowledge and view the output of itertnement and SimAA calculations not as predic-
tions but as ground truth. We compare the actual prices ifinhégames to this ground truth in respective
years since 2002 to determine whether TAC market pricesmeleeCE prices. What we find is depicted in
Figure 9.4. Because of the nature of our methods, theselaatms pertain to hotel prices only.

The results are highly correlated on both metrics (Euchdaiatance and EVPP). We observe that the
accuracy of CE price calculations has varied from year ta.y2803 was the year in which TAC Supply
Chain Management (SCM) was introduced. Many participaiMsrbd their attention away from Travel
towards SCM that year, perhaps leading to degraded perfmenia Travel. Things seem to improve in 2004
and 2005. We cannot explain the setback in 2006, except liygnthtat performance is highly dependent on
the particular agent pool, and in 2006 there were fewer agarthat pool.

260

45
" tatonnement, exact tatonnement, exact
SIMAA, exact - SIMAA, expact -

240 |
220 |
200 |
180

160 -

Euclidean Distance

140

Expected Value of Perfect Prediction

120

100 . . . 20 . . .
2002 2003 2004 2005 2006 2002 2003 2004 2005 2006
Year Year

Figure 9.4: A comparison of the actual (hotel) prices to thgpot of competitive equilibrium price calcu-
lations in the final games since 2002. The label “exact” medum$ knowledge of the client population.

9.8 Conclusion

The foremost aim of trading agent research is to develop pbitgchniques for effective design and analysis
of trading agents. Contributions to trading agent desigfuite the invention of trading strategies, together
with models and algorithms for realizing their computateomd methods to measure and evaluate the per-
formance of agents characterized by those strategies.aRbses seek both specific solutions to particular
trading problems and general principles to guide the dgvetnt of trading agents across market scenarios.
This chapter purports to contribute to this research agevdadescribed the design and implementation of
RoxyBot-06, an able trading agent as demonstrated by its performanio&Gr06.
Although automated trading in electronic markets has nofufly taken hold, the trend is well underway.

Through TAC, the trading agent community is demonstrativggotential for autonomous bidders to make



133

pivotal trading decisions in a most effective way. Such &geffer the potential to accelerate the automation
of trading more broadly, and thus shape the future of comenerc
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9.10 TAC Bidding Problem: SAA

The problem of bidding in the simultaneous auctions thatattarize TAC can be formulated as a two-stage
stochastic program. In this appendix, we present the imphgation details of the integer linear program
(ILP) encoded irRoxyBot-06 that approximates an optimal solution to this stochastgmm?

We formulate this ILP assuming current prices are known, famare prices are uncertain in the first
stage but revealed in the second stage. Note that wheneees prre known, it suffices for an agent to make
decisions about the quantity of each good to buy, rather #teut bid amounts, since choosing to bid an
amount that is greater than or equal to the price of a gooduivalgnt to a decision to buy that good.

Unlike in the main body of the chapter, this ILP formulatiohbidding in TAC assumes linear prices.
Table 9.6 lists the price constants and decision varialblesdch auction type. For hotels, the only decisions
pertain to buy offers; for flights, the agent decides how makets to buy now and how many to buy later;
for entertainment events, the agent chooses sell quarditievell as buy quantities.

Hotels | Price | Variable (bid)
bid now | YV, Dapg

Flights and Eventg Price | Variable (qty)
buy now M, Lha
buy later Vas Vas

Events | Price | Variable (qty)
sellnow | AN, Ve
sell later| Z,, Cas

Table 9.6: Auction types and associated price constantslecidion variables.

9.10.1 Index Sets

a € A indexes the set of goods, or auctions.

ay € Ay indexes the set of flight auctions.

9The precise formulation dRoxyBot-06's bidding ILP appears in Leet al.[68]. The formulation here is slightly simplified, but
we expect it would perform comparably in TAC. The key diffezes are in flight and entertainment bidding.
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apn € Ay, indexes the set of hotel auctions.

a. € A, indexes the set of event auctions.
c € C indexes the set of clients.
p € P indexes the set of prices.

q € @ indexes the set of quantities
(i.e., the units of each good in each auction).

s € S indexes the set of scenarios.

t € T indexes the set of trips.

9.10.2 Constants

G.¢ indicates the quantity of goadrequired to complete trip
M, indicates the current buy price of, ac.

N, indicates the current sell price of.

Vs indicates the future buy price af, an, a. in scenarios.
Z, indicates the future sell price af in scenarics.

'H, indicates the hypothetical quantity won of haigl

O, indicates the quantity of goadthe agent owns.

U, indicates client’s value for tript.

9.10.3 Decision Variables

I’ = {~.s¢} is a set of boolean variables indicating whether or not thes allocated tript in scenario

S.

® = {¢qpq} is a set of boolean variables indicating whether to bid psica thegth unit of ay,.

M = {p.} is a set of integer variables indicating how many units gfa. to buy now.

N = {v,} is a set of integer variables indicating how many unitsofo sell now.

Y = {v,s} is a set of integer variables indicating how many units pfa. to buy later in scenarie.

Z = {(,s} is a set of integer variables indicating how many unitsofo sell later in scenarie.
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9.10.4 Objective Function

flight cost

trip value hotel cost

current future

—_——— A N
_— S\IIJZ%]%(YZ Z Zuctﬁ)/cts - Z Ma;u’a + yaSUaS - Z yas¢apq + (917)
T s | er

Ay Ap,Q,p>Vas

event revenue event cost

current Sfuture current Sfuture

—~ = =
Z Nal/a + ZasCas - Maﬂa - yasvas

A€

9.10.5 Constraints

Y Vet <1 VeeCses (9.18)
T

allocation own buy

/\ /_/A
D YestGat < Oa + (fa + vas) Va € Af,s€S (9.19)

C,T

allocation own buy
—N—
— —
> YestGat < O+ > bupg VYaEAns€ES (9.20)
or Q,p>Vas

allocation own buy sell

~~ —_—— —
Z'chtgat S Oa + /fva + Vas - Vg + Cas
c,T

Va € Ae,s € S (9.21)
> apg > Ha Va€ Ay (9.22)
P,Q

Z¢apq <1 VaeApqe@ (9.23)
P

Equation (9.18) limits each client to one trip in each sciEna@Equation (9.19) prevents the agent from
allocating flights that it does not own or buy. Equation (9.@fevents the agent from allocating hotels that
it does not own or buy. Equation (9.21) prevents the agent fatbocating event tickets that it does not own
or buy and not sell. Equation (9.22) ensures the agent bidst teast HQW units in each hotel auction.
Equation (9.23) prevents the agent from placing more thabory offer per unit in each hotel auction.

An agent might also be constrained not to place sell offermore units of each good than it owns, and/or
not to place buy (sell) offers for more units of each good tenmarket supplies (demands).

Note that there is no need to explicitly enforce the bid monimity constraints in this ILP formulation:

e “Buy offers must be nonincreasing in k, and sell offers namdasing.”
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The ILP does not need this constraint because prices armaddo be linear. In effect, the only
decisions the ILP makes are how many units of each good torbitHence, the bids (10, 15, 20) and
(20, 15, 10) are equivalent.

e “An agent may not offer to sell for less than the price it isling to buy.”

The ILP would not choose to place both a buy offer and a sedrafh a good if the buy price of
that good exceeds the sell price, because that would befitapte.



Chapter 10

Robustness to Imperfect Predictions

We undertake an experimental study of heuristics desigoethé Travel division of the Trad-
ing Agent Competition. Our primary goal is to analyze thef@@nance of the sample average
approximation (SAA) heuristic, which is approximately iopal in the decision-theoretic (DT)
setting, in this game-theoretic (GT) setting. To this end, as@nduct experiments in four set-
tings, three DT and one GT. The relevant distinction betwtbenDT and the GT settings is:
in the DT settings, agents’ strategies do not affect theidigion of prices. Because of this
distinction, the DT experiments are easier to analyze tharXT experiments. Moreover, set-
tings with normally distributed prices, and controlleds®iare easier to analyze than those with
competitive equilibrium prices. In the studied domain,lgsia of the DT settings with possibly
noisy normally distributed prices informs our analysis lod richer DT and GT settings with
competitive equilibrium prices. In future work, we plan tvéstigate whether this experimental
methodology—namely, transferring knowledge gained in a Bffirgy with noisy signals to a
GT setting—can be applied to analyze heuristics for playihgiocomplex games.

10.1 Introduction

In the design of autonomous trading agents that buy and sellgin electronic markets, a variety of in-
teresting computational questions arise. One of the mostaimental is to determine how to bid on goods
being auctioned off in separate markets when the agentisitiahs for those goods are highly interdependent
(i.e., complementary or substitutable). The Trading Adeonpetition (TAC) Travel division was designed
as a testbed in which to compare and contrast various agpsdo this problem [109]. We partake in an
empirical investigation of heuristics designed for bidgin the simultaneous auctions that characterize TAC
in a simplified TAC-like setting.

At a high-level, the design of many successful TAC agentsgfample, Walverine [25RoxyBot (Green-
wald and Boyan 2004 & 2005) ar&i'Tac [98]) can be summarized as: Stepgdredict i.e., build a model

1Published as [47].
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of the auctions’ clearing prices; Step@dtimize i.e., solve for an (approximately) optimal set of bids,ayiv
this model. This chapter is devoted to the study of biddihgt is, the optimization piece of this design. We
assume that agents are given price predictions in the foarbtefck box from which they can sample a vector
of predicted prices; such samples are caliednarios Because finding an optimal solution to the bidding
problem is not generally tractable, our study centers at@ureries oheuristicsthat construct bids based
on approximations or simplifications. We subject these istos to experimental trials within a simplified
version of the TAC domain that we find more amenable to expartal study than the full-blown TAC Travel
game.

10.2 TAC Travel Game

In this section, we briefly summarize the TAC game. For motaitde seéht t p: / / www. si cs. se/tac/.

A TAC Travel agent is a simulated travel agent whose task gdanize itineraries for a group of clients
to travel to and from TACTown. The agent’s objective is toqune “desirable” travel goods as inexpensively
as possible. An agent desires goods (i.e., it earns utditypfocuring them) to the extent that they comprise
itineraries that satisfy its clients’ preferences.

Travel goods are sold in simultaneous auctions:

e Flights are sold by the “TAC seller” in dynamic posted-pricing environmextsresale is permitted.

e Hotel reservations are also sold by the “TAC seller,” in multi-unit ascendall markets. Specifically, 16 hotel
reservations are sold in each hotel auction at thé béghest price. No resale is permitted.

e Agents trade tickets to entertainment events among themselves in contduauhis auctions.

Flights and hotel reservations are complementary goodshtélido not garner utility without complemen-
tary hotel reservations; nor do hotel reservations gartiktyuvithout complementary flights. Tickets to
entertainment events, e.g., the Boston Red Sox and theB8gtaphony Orchestra, are substitutable.

Clients have preferred departure and arrival dates, andaltyas subtracted from the agent’s utility for
allocating packages that do not match clients’ prefereegastly. For example, a penalty of 200 (100 per
day) is incurred when a client who wants to depart Monday arideson Tuesday is assigned a package with
a Monday departure and a Thursday arrival. Clients also hat& preferences, for the two type of hotels,
“good” and “bad.” A client’s preference for staying at theoglorather than the bad hotel is described by a
hotel bonusutility the agent accumulates when the client’s assigreatkage includes the good hotel.

10.3 Bidding Heuristics

Our test suite consists of six marginal-utility-based and sample average approximation heuristics. We
present a brief description of these heuristics here. désted readers are referred to [110] for more detailed
explanations.
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10.3.1 Marginal-Utility-Based Heuristics

In a second-price auction for a single good, it is optimaldaragent to simply bid its independent value
on that good [106]. In simultaneous auctions for multipleds however, bidding is not so straightforward
because it is unclear how to assign independent valuesdaalependent goods. Perfectly complementary
goods (e.g., an inflight and outflight for a particular cljeate worthless in isolation, and perfectly substi-
tutable goods (e.g., rooms in different hotels for the saleatcon the same day) provide added value only
in isolation. Still, an agent might be tempted to bid on easbdyits marginal utility (MU), that is, the in-
cremental value of obtaining that good relative to the @biten of goods it already owns or can buy. Many
reasonable bidding heuristics (e.g., [45], [46], [98])drmorate some form of marginal utility bidding.

Definition Given a set of good’, a valuation function : 2¥ — R, and bundle priceg : 2¥ — R. The
marginal utility u(z, ¢) of goodx € X is defined as:

w(x) = Ygrr;ggm}[v(Y U{z}) —q(Y)] - an)lgém}[v(Y) —q(Y)]

Consistent with TAC Travel, we assume additive prices: ihah the above equation, the bundle pricing
functionq returns the sum of the predicted prices of the goods.in

Our heuristics actually sample a set of scenarios, not desimgtor of predicted prices. We consider two
classes of marginal utility heuristics based on how theyanade of the information in the scenarios.

Bidding Heuristics that Collapse Available Distributional Information

The following heuristics collapse all scenarios into a kEngector of predicted prices, namely the average
scenario, and then calculate the marginal utility of eaabdgassuming the other goods can be purchased at
the average prices.

StraightMU bids the marginal utility of each good.

TargetMU bids marginal utilities only on the goods in a target set afdg The target set is one that an agent
would optimally purchase at the average prices.

TargetMU* is similar toTargetMU, but calculates marginal utilities assuming only goodsiftbe target set
are available. This results in higher bids.

Bidding Heuristics that Exploit Available Distributional Information

The heuristics discussed thus far collapse the distribatimformation contained in the sample set of sce-
narios down to a point estimate, thereby operating on apmations of the expected clearing prices. The
heuristics described next more fully exploit any availattilributional information; they seek bids that are
effective across multiple scenarios, not in just the avesagenario.
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AverageMU calculates the marginal utilities of all goods, once penac®, and then bids thaverageMU
of each good in each auction.

BidEvaluator evaluatess candidate bidding policies on a fixed setiéfsample scenarios. The policy that
earns the highest total score is selected.

BidEvaluator generates its candidates by making successive calls ttathetMU heuristic, each time
sending it a different scenario to use as its predicted grice

BidEvaluator* is identical toBidEvaluator, except that its candidate bidding policies are generatazhlling
TargetMU* instead ofTargetMU.

10.3.2 Sample Average Approximation

The problem of bidding under uncertainty—how to bid given strithutional model of predicted prices—is
a stochastic optimization problem. The objective is to &dbéds that maximize the expected value of the
difference between the value of the goods the agent winstendast of those goods. Formally,

Stochastic Bidding Problem Given a set of goods(, a (combinatorial) valuation function : 2X — R,
and a distributiory over clearing pricep € R¥, thestochastic bidding probleris defined as:

ma B, [o(Win(3,p)) — 5(Win(3.p)) (10

Here,z € Win(3, p) if and only if b(z) > p(z), andp : 2X — R is theadditiveextension ofp € R¥, that
is, the real-valued function on bundles defined as follgw3:) = > . p(z), forallY C X.

Sample average approximatigBAA) is a standard way of approximating the solution to alséstic
optimization problem, like bidding under uncertainty. Tilea behind SAA is simple: (i) generate a set of
sample scenarios, and (ii) solve an approximation of thblpro that incorporates only the sample scenarios.

Technically, the TAC Travel bidding problem, in which theadjs to maximize the difference between the
value of allocating travel packages to clients and the aufstse goods procured to create those packages, is
a stochastic program with integer recourse [68]. Usinghketty of large deviations, Ahmed and Shapiro [4]
establish the following: the probability that an optimalwimn to the sample average approximation of a
stochastic program with integer recourse is in fact an cgitisolution to the original stochastic program
approaches 1 exponentially fast as the number of scenéiries co. Given time and space constraints,
however, it is not always possible to sample sufficiently ynsgenarios to make any reasonable guarantees
about the quality of a solution to the sample average appration.

Our default implementation of SAA which we calhABottom always bids one of the sampled prices.
However, given a set of scenarios, SAA is indifferent betwb@ding the highest sampled price or any
amount above that price: in any case SAA believes it will wirall scenarios. Consequently, we do not
know exactly how much SAA is willing to pay when it bids the hagst sampled price. In the settings with
imperfect price prediction or when SAA is given too few sa@rs it may be desirable to bid above the
highest sampled price to increase the chances of winning thireason, we introduce a modified SAA
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heuristic—SAATop—in which bids equal to the highest sampled price are repladtthe “maximum” bid.
In general, this bid is the most the agent is willing to pay.our domain, this maximum is the sum of the
utility bonus (300; see Footnote 3) and, for good hotels|dtgest hotel bonus among the agent’s clients’.

10.4 Experiments in TAC Travel-like Auctions

We consider four experimental settings: normally distiéouprices in two decision-theoretic settings, one
with perfect and another with imperfect prediction; and petitive equilibrium (CE) prices in a decision-
theoretic setting with perfect prediction and a game-tagosetting with typically imperfect prediction.

Our experiments were conducted in a TAC Travel-like seftingwhich nearly all the standard rules
apply? Most notably, we simplified the dynamics of the game. In TA@hlls and entertainment tickets are
available continuously at time-varying prices, and hoteltepns close one at a time, providing opportunities
for agents to revise their bids on other hotels. In this wark focus on one-shot auctions. More specifically,
we assume all hotels close after one round of bidding.

To reduce variance, we eliminated entertainment tradiry samplified flight trading by fixing flight

prices at zerd:*
We built a simulator of the TAC server, which can easily bétad to simulate numerous experimental

designs. Our simulator is available for downloadhtit p: / / www. si cs. se/ t ac/ showagent s. php.
Each trial in an experiment (i.e., each simulation run) pested in five steps:

1. The agents predict hotel clearing prices in the formagharios samples from the predicted distribu-

tion of clearing prices.

e In the settings where prices are normally distributed, ttenarios were sampled from given
distributions of predicted prices.

¢ In the settings characterized by competitive equilibriungs, scenarios were generated by sim-
ulating simultaneous ascending auctions, as describedaeptial.[68].

2. The agents construct bids using price information coethin the scenarios and submit them.

3. The simulator determines hotel clearing prices, andthiatsare equal to or above those clearing prices

are deemed winning bids.

¢ In the decision-theoretisettings, the clearing prices were sampled from giveniligions of

clearing prices.

2For a detailed description of the TAC Travel rules, viitt p: / / ww. si cs. se/ t ac.

3Since we fixed flight prices at zero (instead of roughly 700réamd trip tickets), we adjusted the utility bonus for consting a
valid travel package down from 1000 to 300. That way, our satoih scores fall in the same range as real game scores.

4Initially, we ran experiments with flight prices fixed at 350hieh is the value close to the average flight price in the TAGV&t

game. However the resulting one-shot setting was not integess flight tickets represented a very high sunk cost amddminant
hotel bidding strategy was to bid very high on the hotels waild complement the flights in completing travel packages.
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Experimental Design
Normally-Distributed Price§ Perfect Prediction | DT
Normally-Distributed Priceg Imperfect Prediction| DT
CE Prices Perfect Prediction | DT
CE Prices Imperfect Prediction| GT

Table 10.1: Price predictions were either normally distiéiol or competitive equilibrium prices. Moreover,
they were sometimes perfect and sometimes imperfect. Tiithe four experimental setups were decision-
theoretic (DT); only the fourth was game-theoretic (GT).

¢ In the game-theoretisetting, each hotels’ clearing price was set to the 16thdsghid on that
hotel.

4. Agents pay clearing prices for the hotels they win. Theythe hotels and free flight tickets to create
packages for their clients, based on which they earn thesponding utilities.

5. Each agent’s final score is the difference between ityusihd its cost.

The first two steps in the above sequence correspond to thepoa and optimization steps typical of
autonomous bidding agents. To carry out step 2, the agemibgmeuristics from a test suite that includes
the eight bidding heuristics detailed in [110], and sumaediabove.

Regarding price prediction in step 1, hotel price prediitioere perfectin our first and third experimental
setups and imperfect in our second and fourth. In the first tvatel prices were predicted to be normally
distributed; in the second two, hotel prices were preditiidie competitive equilibrium prices. Our first three
experimental setups were decision-theoretic; the foueth game-theoretic. In the second setup, we simply
tweaked the normal distribution of predicted prices to gateea similar, but distinct, normal distribution of
clearing prices. In the fourth setup, the game-theoretiingg clearing prices were dictated by the outcome
of 16th price auctions. Our experimental design is sumradriz Table 10.1. All setups, with all settings of
the parametersy o, and), were run for 1000 trials.

10.4.1 Heuristic Parameter Settings

The parameter settings we chose for the heuristics are showable 10.2. Breaking down a TAC agent’s
work into two key steps—price prediction and optimization-e-ttolumn labeled SG lists the scenario gen-
eration (i.e., CE price prediction) times; the column laioeBC lists the bid construction (i.e., optimization)
times. The rightmost column lists total runtimes. The goathoosing these parameter settings was to
roughly equalize total runtimes across agents in TAC games.

All experiments were run on AMD Athlon(tm) 64 bit 38@0dual core processors with 2GB of RAM. All
times are reported in seconds, averaged over 1000 gamesaddieénes were not dedicated, which explains
why generating 50 scenarios could take anywhere from 8.74ceé&conds, on average. Presumably, all the
heuristics (but most notablyverageMU, the variants oBidEvaluator, and theSAA heuristics) could benefit
from higher settings of their parameters.
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Agent E| S| K| SG| BC | Total
T™MU - |50 | —1]94] 10| 104
TMU* - |50| -1 90] 11 | 101
BE 15| — | 25} 70| 53 | 123
BE* 15| — | 25| 7.0| 47 | 11.7
AMU - |15 — || 23] 10.2| 125
SMU - |50 | - 87| 15| 10.2
SAABottom | — | 50| — || 8.8| 1.7 | 10.5
SAATop — |50 -] 9.0] 16 | 10.6

Table 10.2: Parameter SettingB.is the number of evaluations, is the number of scenarios, afdis the
number of candidate bidding policies.

We optimized the heuristics that bid only on the goods in getlaset to bicbo on all flights in that set;
they do not bother to calculate the marginal utilities ofitidesired flights> This helps explain why the bid
construction phase withiargetMU and TargetMU* is so fast. StraightMU, and hencé\verageMU, are also
optimized to stop computing marginal utilities once a geadarginal utility hits zero.

10.4.2 Multiunit Marginal Utility

TAC Travel auctions are multi-unit auctions. For biddingnmilti-unit auctions, we extend the definition of
marginal utility, originally defined for a single copy of dagood, to handle multiple copies of the same good.
The marginal utility of the first copy of a good is calculatesiaming that no other copies of the good can be
had; the marginal utility of the second copy of a good is dalmd assuming that the first copy is on hand but
that no other copies can be had; and so on.

We assume the set of goodscontains/ goods, withK; copies of each gootl < j < J.

Definition Given a set of good(, a valuation function : 2% — R, and a pricing functiory : 2X — R.
Themarginal utility p«(z;, X, v, ¢) of the kth copy of good; is given by:

max v(Y U{xj1,...,x; —q(Y)] —
pe (U )~ a)

max v(Y U{x1,...,x56-1}1) —q(Y
YQX\{IJ_I,M’%_K]‘}[ ( {zj jk—11) — q( )l

In words, the marginal utility of théth copy of goodj is simply the difference between the value of an
optimal set of goods to buy, assuming, . .., z;; cost 0 andr; 41, ..., x;n COstoo, and the value of an
optimal set of goods to buy, assuming, ..., 2; 1 cost 0 ands;, . .., x;n COStoo.

Our agent implementations of the marginal-utility-basgdrdas employ this definition.

5Note that we ran many more experiments than those reported hergarticular, flight prices were not always zero (e.g., see
Footnote 4). Indeed, in many cases it was sensible for theugheuristics to make informed decisions about how to bid ghtfli
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10.5 Decision-Theoretic Experiments with Perfect DistributionalPre-
diction

Our first experimental setup is decision-theoretic, witltgs determined exogenously. Each agent is en-
dowed with perfect distributional information, so thatdnstructs its bids based on samples drawn from the
true price distribution. Under these conditions, it is kmothiat the SAA-based heuristics bid optimally in
the limit asS — oo [4]. The purpose of conducting experiments in this settirag wvofold: (i) to evalu-
ate the performance of the SAA-based heuristics with oniyefynmany scenarios; and (ii) to evaluate the
performance of the MU-based heuristics relative to thahef$AA-based heuristics. We find that both the
SAA-based heuristics and certain variants of the MU-basedistics (primarily,TargetMU* andBidEvalua-

tor*) perform well assuming low variance, but that the SAA-bdsedristics andwerageMU outperform all

the other heuristics assuming high variance.
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Figure 10.1: Mean Scores. Decision-theoretic setting péttiect distributional prediction.

10.5.1 Setup

Hotel prices were drawn from normal distributions with m&am = (150, 150, 150, 150, 250, 250, 250, 250)
constant across experiments and standard deviatian$0, 20, 40, 60, 80, 100} varying across experiments.

10.5.2 Results

Figure 10.1 depicts the mean scores earned by each agechiexgaeriment: i.e., for each settingaf

The SAA-based agents perform better than most of the agen&ri@nce increases. They gain an advan-
tage by submitting low bids on more goods than necessaryattampt to win only the goods that are cheap.
We refer to this strategy dsedging We see that the SAA agents employ hedging because the nwifrtids

8In this, and all, hotel price vectors, the first four numbefsréo the price of the bad hotel on days 1 through 4, respslgtiand
the second four numbers refer to the price of the good hotebga #l through 4, respectively.
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they place increases, their average bids decrease, andrtiteen of hotels they win remains constant as the
variance increases. The number of low-priced hotels isa®avith the variance making hedging especially
effective when variance is high.

Recall that target biddergqrgetMU, TargetMU*, BidEvaluator, andBidEvaluator*) bid only on goods in
their target set, i.e. they do not hedge. Consequentlyndpib win one of the requisite hotels results in not
being able to complete a package (most packages are forighestays as extending the stay for an extra day
is likely to be more expensive than incurring the penaltydeviating from client’s preferencesjargetMuU
andBidEvaluator win fewer and fewer hotels as the variance increases, anteremplete fewer and fewer
packages. At the same time the average cost of hotels thegaetieases. The agents’ scores have a slight
upward trend as the benefit from lower cost outweighs theffoss completing fewer packages.

BidEvaluator bids on more hotels tharargetMU when variance is 100. Recall thgitIEvaluator chooses
the best of K bidding policies. Bidding policies that bid on more hoteter® higher because they hedge,
implicitly. For example, a policy that bids to reserve twaglnis for a client may earn a higher score than
a policy that bids to reserve one night as the reservatiomwfornights can be used to create two separate
one-night packages if some of the other bids fail.

TargetMU* andBidEvaluator*, the main rivals of the SAA-based agents, do not perform inéliis setting.
Just likeTargetMU andBidEvaluator, TargetMU* andBidEvaluator* bid only on target goods. When variance is
low (o = 20), bidding high on target good is a good strategy as evidehg@drgetMU*'s andBidEvaluator*’s
good performance. As variance increases the agents faiinas@me of the target goods. In fact when
variance is 100TargetMU* submits 5.8 bids but wins only 4.8 whiBdEvaluator* submits 7.4 bids and wins
only 5.2. The average cost of hotels tlatgetMU* andBidEvaluator* do win is 50% higher than the prices
the SAA-based agents pay per hotel.

InterestinglyAverageMU’s strategy happens to be very close to hedging when variamigh. StraightMU
submits a lot of bids too but unlikaverageMU does not perform well StraightMU’s bids are higher than
AverageMU’s resulting in more purchased hotels and higher averagel bost. The increase in cost that
StraightMU incurs compared t@wverageMU is not compensated by the increase in utility that extralkote
bring.

In conclusion, the SAA-based agents an@rageMU with their hedging strategy outperform the other
agents when variance is high.

10.6 Decision-Theoretic Experiments with Imperfect Distributonal Pre-
diction

In our second decision-theoretic experimental setup, geats construct their bids based on samples drawn
from a normal distribution that resembles, but is distioif, the true distribution. Our intent here is to
evaluate the agents’ behavior in a controlled setting witherfect predictions, in order to inform our analysis
of their behavior in the game-theoretic setting, where iptamhs are again imperfect. We find thaAATop
performs worse thamargetMU*, andBidEvaluator* at low variance, but outperforms most of the other agents
at high variance.
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10.6.1 Setup

In these experiments, tipeedictedprice distributions were normal with mean valyes (150, 150, 150, 150,
250, 250, 250, 250), whereas ttiearingprice distributions were normal with mean valyes A. That s, the
mean of each predicted distribution differed byrom the true mean. For example, far= —40, predicted
prices were sampled from normal distributions with (150, 150, 150, 150, 250, 250, 250, 250), and clearing
prices were sampled from normal distributions wjth= (110, 110, 110, 110, 210, 210, 210, 210). Hence,
negative values of\ implied “overprediction.” Similarly, positive values of implied “underprediction.”
The )\ parameter varied as followsy € {—40,—-30,—20, —10,0, 10, 20, 30,40}. We chose as standard
deviations of the distributions a low setting £ 20) and a high settings( = 80).

In the low (and similarly in the high) deviation experimeitg strategies of the agents did not change
with A because the agent received the same predictions for allvafi. Experiments in this setting evaluate
the strategies from the perfect prediction setting with= 20 ando = 80 under different distributions of
clearing prices as controlled by the values\of

10.6.2 Results

Low Variance: ¢ = 20 The results assuming low variance are shown in Figure 10.2(a

Recall from the perfect prediction experiments that thategry of bidding high on the goods from a target
set is as good as hedging when variance is low. In partictdagetMU* andBidEvaluator* perform as well
as the SAA-based agents. We will see that hedging is not a gatkgy in the low-variance setting with
imperfect prediction while bidding high on the goods in a&rset works fairly well.

In an attempt to hedge, the SAA-based agents submit twiceaag bids agargetMU, TargetMU*, BidE-
valuator, andBidEvaluator*. The strategy of the SAA-based agents is to bid low hopingitoapproximately
half the bids. Because predictions are not perfect, the $Aged agents win too many hotels when prices
are lower than expected and too few hotels when prices ahehtgan expected. Not surprising8AATop,
which bids higher than its counterpart, performs worse ¥auBottom when prices are lower than expected
and better thasAABottom when the opposite it true.

When there is a high degree of overprediction and varianaanis(e.g., whem\ = —40 ando = 20),
clearing prices are very likely to be below predicted pricgisceTargetMU always bids at least the predicted
price, it is likely to win all the hotels it expects to win inigfsetting, and hence performs well. Consequently,
TargetMU*, BidEvaluator, andBidEvaluator* all perform well. In contrast, when prices are often lowearth
expectedAverageMU andStraightMU win too many goods and thus incur high unnecessary costs.

As )\ increases from-40 to —10, AverageMU and StraightMU win fewer unnecessary hotels, which
improves their scores. But ondereaches 0, they fail to win enough hotels, and their utdiiecrease as
increases td0. TargetMU andBidEvaluator encounter the same difficulty.

TargetMU* andBidEvaluator* bid higher tharTargetMU andBidEvaluator; hence, underprediction affects
the former pair less than the latter pair.

To summarize, in the low-variance settilgrgetMU*'s and BidEvaluator*’s strategy of bidding high on
a target set of goods is more robust to imperfect predictibas the strategy of the SAA-based agents that
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involves some hedging.

High Variance: o = 80 The results assuming high variance are shown in Figure d)0.2(

As we observed in the experiments with perfect predictichagr- 80, hedging allowed the SAA-based
agents to dominate. We are going to see that hedging is igéfdat the high-variance setting even when
predictions are not perfect.

The SAA-based agents submit over four times as many bidargstMU, TargetMU*, BidEvaluator, and
BidEvaluator*. In contrast to the setting with low variance, high overjcgdn (A = —40) does not cause the
SAA-based agents to overspend on hotels. In the high-vaiaetting the SAA-based agents’ bids are 40%
lower than in the low-variance setting & 20) and only one-third of the bids are winning bids.

Similarly, the SAA-based agents perform much better in igh hinderpredictionX = 40) setting when
variance is high than when variance is low. In the high-varéasetting with underprediction the SAA-based
agents win at least as many hotels as the high bid@ingetMU* and BidEvaluator* agents. Although the
SAA-based agents bid half the price tifatgetMU* and BidEvaluator* bid, a much higher number of bids
that the SAA-based agents submit combined with high vaei@esults in a similar number of winning bids.

Performance of the other agents is similar to their perfocean the setting with perfect prediction.
TargetMU, TargetMU*, BidEvaluator, andBidEvaluator* do not hedge and perform poorly in under and over
prediction settings. Target bidders often fail to win sorfithe target hotels even in the overprediction setting.
AverageMU submits a lot of low bids resulting in a well-hedged strategg the scores that are as high as
SAA's for some values ok. As before StraightMU wins too many hotels.

In contrast to the setting with low variance and imperfeedictions, the SAA-based agents’ hedging
strategy works well when there is high variance.
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Figure 10.2: Mean Scores. Imperfect prediction.
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10.7 Experiments with Competitive Equilibrium Prices

In contrast with our first two experimental settings, in whihbe hotel clearing prices and their corresponding
predictions are exogenously determined and hence independ any game specifics, in our second two
experimental settings, both hotel clearing prices andiptieds are determined endogenously (i.e., based
on features of each game instance). Specifically, followiaiverine [25], hotel clearing prices and their
corresponding predictions are taken to be approximatepetitive equilibriun{CE) prices. CE prices are
prices at which supply equals demand when all market ppatitts act as price-taking profit maximizers [73].
CE prices need not exist, and likely do not in many of the gastiedied here. Still, we approximate CE prices
as follows: in a market inhabited by its own eight clients aight randomly sampled clients per competitor,
each agent generates a scenario by simulating simultarssmesiding auctions (i.e., increasing prices by
some small increment until supply exceeds demand; seetLale[68] for details); the resulting prices form

a scenario.

10.7.1 Setup

In this context, where hotel price predictions are (rouyblympetitive equilibrium prices, we designed two
sets of experiments: one decision-theoretic and one ghewdtic. In the former, hotel clearing prices are
also the outcome of a simulation of simultaneous ascendiotjans, but depend on the actual clients in each
game, not some random sampling like the agents’ predicti¢®@sir simulator is more informed than the
individual agents.) In the latter, hotel clearing prices determined by the bids the agents submit. Asin TAC
Travel, the clearing price is the 16th highest bid (or zdrfeviver than 16 bids are submitted). Note that hotel
clearing prices and their respective predictions are rigpendent of one another in these experiments.

In these experiments games are played with a random numizayeoits drawn from a binomial distri-
bution withn = 32 andp = 0.5, with the requisite number of agents sampled uniformly wihlacement
from the set of eight possible agent types. The agents fingpleathe number of competitors from the bino-
mial distribution, and then generate scenarios assumagampled number of competitors, resampling that
number to generate each new scenario.

10.7.2 Decision-Theoretic Experiments

Marginal frequency distributions of CE prices in these @kpents have means (109, 126, 126, 107, 212,
227, 227, 210) and standard deviations (47, 37, 37, 46, 5044149). Standard deviation in this setting is
close to 40 making this setting similar to the one with pdrfeediction andr = 40. The mean hotel prices
are approximately 20% lower in this CE setting but we do ngteex the difference in mean hotel prices to
have a strong effect on the ranking of the agents and attribetdifferences in relative results to the different
structure of prices: unlike the setting with normally distited prices, CE prices are not independent.
SAATop, SAABottom, TargetMU*, and BidEvaluator* are among the best agents in this CE setting (see
Figure 10.3). HoweveStraightMU and especiallyaverageMU perform poorly.AverageMU and StraightMU
submit more bids and win more hotels than the other agentsammot create as many packages as the top-
scoring agents. This is because (i) CE prices of substieiginds are similar, and (ii) marginal utilities of
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substitutable goods are similar. As a resaiterageMU and StraightMU bid almost the same amount on all
substitutable goods and either win or lose all of them.

SAA-based agents employ some hedging but do not perfornifiseymtly better than the non-hedging
heuristicsTargetMU* andBidEvaluator*.
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Figure 10.3: Mean scores and confidence intervals. Decthieoretic setting with CE price prediction.

10.7.3 Game-Theoretic Experiments

The predicted prices are the same as in the decision-tieesgieriments with CE prices and 32 agents:
means (109, 126, 126, 107, 212, 227, 227, 210) and standwiatides (47, 37, 37, 46, 50, 41, 41, 49).
Marginal frequency distributions of clearing prices haveams (91, 98, 100, 91, 198, 186, 187, 197) and
standard deviations (41, 33, 32, 40, 50, 56, 54, 50). L1-nmirthe difference between mean price vectors
is 197. Predicted prices are slightly higher (by about 2@ntthe clearing prices. This is similar to the
decision-theoretic setting with overprediction£ —20) and medium deviation (between 20 and 80).

Indeed, we find that the results in this setting (see Figuré)lre similar to the results in the decision-
theoretic setting with imperfect prediction and high vade: A = —20 ando = 80 (see the ranking of
agents for\ = —20 in Figure 10.2(b)). The ranking of nGBAA agents is almost the same in both settings.
A notable exception isverageMU, which performs much worse in the game-theoretic settin¢hi® reasons
described aboveSAATop and SAABottom are the best agents in this setting, wihABottom performing
slightly better.

10.8 Summary and Discussion of Experimental Results

In our experiments, we evaluated the performance of vatdding heuristics in simultaneous auctions.
Based on our findings, we summarize the performance of thesties analyzed as follows:

e SAATop and SAABottom perform well in all settings except for the setting with imfeet prediction
and low variance SAATop and SAABottom are especially effective in high-variance settings beeaus
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Figure 10.4: Mean scores and confidence intervals. Ganmeetie setting with CE price prediction.

they are able to take advantage of hedging opportunities.

e TargetMU andBidEvaluator are competitive only in the settings with low variance arghhoverpredic-
tion. BidEvaluator outperformsTargetMU in high-variance settings.

e TargetMU* andBidEvaluator* perform well in the settings with low variance.
e AverageMU performs well in the settings with independent prices.

e StraightMU performs worse than the other heuristics.

We can also make the following observations about the vaiidding behaviors:

e SAABottom, SAATop, andAMU place low bids on many goods, intending to win whatever sgltheap
prices. These heuristics incur high penalties for not artig their clients’ precise preferences.

e TargetMU, TargetMU*, BidEvaluator, andBidEvaluator* place higher bids but on fewer goods, namely
those for which their clients have clear preferences. Theseistics incur lower penalties, but risk
alienating some clients, by not allocating them any traeekages at all.

The performance o08AA is known to approach optimality as the number of scenariggcgtheso
in decision-theoretic settings. We investigated the Viigbdf two SAA heuristics with only finitely-many
scenarios in both decision-theoretic and game-theorettings. Our first and third experimental settings
(with normally distributed and competitive equilibriumiges, assuming perfect price prediction) established
the viability of these heuristics in decision-theoretittisgs with only finitely-many scenarios. Our fourth
experimental setting established the viability of thesgriséics (again, with only finitely-many scenarios, but
in addition) in a rich game-theoretic setting.

“No penalty is incurred when a client is not allocated any pgekat all. (Of course, no utility is awarded either.)
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10.9 Related Work

The test suite considered here is far from exhaustive. tngétion, we mention several heuristics that were
not included in our study—some TAC-specific; some more géreaad the reasons for their exclusion.

The creators of théTTac agent [98] propose usingverageMU for TAC hotel bidding. ATTac also em-
ploys distributional information about hotel prices to efetine the benefit of postponing flight purchases
until hotel prices are known; this additional functionglivhile certainly of interest, is not applicable to the
one-shot auction setting studied here.

WhiteBear's [104] TAC hotel bids are computed by taking a weighted agerof the current price and the
marginal utility of each hotel. The particular weights, aliniwere fine-tuned based on historical competition
data, varied with time. In a one-shot settighiteBear’s strategy essentially reducesTargetMU: it is too
risky to bid anything lower.

SouthamptonTAC [53] andMertacor [101] focus on hotel price prediction, and do not thorouginplyze
bidding. SouthamptonTAC uses fuzzy reasoning to predict how hotel prices changagltine game.

Unlike the heuristics studied in this chaptéralverine’s [25] bidding strategy incorporates some game-
theoretic reasoning. Specificallyyalverine analytically calculates the distribution of marginal iigls of
the other agents’ clients and bids a best-response to tighdition. The authors implicitly assume that the
other agents bid marginal utilities (i.e., act decisioaettetically) and only their agent bids a best-response
(i.e., acts game-theoretically). We learned from the staghprted in this paper th&AA can be a successful
bidding heuristic in certain markets. Followifgalverine’s line of thought, we can imagine bidding a best-
response to a distribution &AA bids. However, if this bidding strategy were successfulyweeld have to
assume that other agents would act game-theoretically istina is, they would also play a best-response
to a distribution ofSAA bids. We may then seek a fixed point of this process. This lfnequiry could be
fascinating, but any approach based on this insightaiferine’s warrants a detailed study of its own.

Aside from TAC Travel there is a rich literature on biddingather settings. We reference a few papers
here, highlighting some of the settings that have beenetiudife are not aware of any papers that address the
problem of bidding in multiple one-shot auctions for botlhmmementary and substitutable goods. Geraing
al. ([38]) describes a strategy for bidding in simultaneous-sinet second-price auctions selling perfect
substitutes. Byde, Priest, & Jennings ([20]) consider theision-theoretic problem of bidding in multiple
auctions with overlapping closing times. Their model tseglt goods as indistinguishable (i.e., winning any
n goods results in utility(n)). Krishna & Rosenthal ([65]) characterize a symmetric Blgaum for the case
of one-shot simultaneous auctions with indistinguishabl@plementary goods (i.e(n) > nv(1)).

10.10 Conclusion

The primary purpose of this work was to show that using as ndigthibutional information as possible is an

effective approach to bidding in TAC Travel-like one-shishgltaneous auctions. Most TAC Travel agents
used point price predictions or employed little distrilbatkl information about prices in constructing their
bids. Some of the difficulties with using distributional geipredictions include the inaccuracy of and the
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high computational cost of optimizing with respect to digitional predictions. We showed experimentally
that theSAA heuristic, which uses more distributional informationrthihe other heuristics in our test suite,
is one of the best heuristics in the GT setting.

The underlying research question motivating this line gliny was: how can we facilitate the search for

heuristics that perform well against a variety of competiggnts in complex games? Analyzing the perfor-
mance of an individual agent in a game-theoretic settingmspdicated because each agent’s performance is
affected by the strategies of the others, and can vary dieaiigitwith the mix of participants. Others tack-
ling this problem in the TAC Travel domain have employed mairect game-theoretic analysis techniques
based on equilibrium computations (e.g., Vetsikasl. [105] and Jordan, Kiekintveld, & Wellman [56]).
In contrast, we first used systematic decision-theoretatyais to help us understand some of the intrinsic
properties of our bidding heuristics, before attempting game-theoretic analysis. We found that certain
properties of the heuristics that may have been hard toifgentgame-theoretic settings, such as how they
perform in conditions of over- vs. under-prediction, cadrbver from our DT to our GT settings.

In summary, the methodology advocated in this chapter falyaing game-theoretic heuristics is this:
first, evaluate the heuristic in DT settings with perfect angerfect predictions; and second, measure the
accuracy of the agent’s predictions in GT experiments aedhes corresponding DT analysis to inform the
analysis of the GT results. It remains to test this methaglolo other complex games, such as TAC SCM [5].
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We include game statistics collected from our experimentis @E prices to illustrate the type of data we
used in our analyses. Statistics for other settings anddudata can be found in Lee ([69]).
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Agent SAAT | SAAB | TMU | TMU* BE BE* AMU | SMU
Score 863 | 859 742 | 847 | 799 | 850 | 488 | 499
Utility 1935 | 1838 | 1420 | 1811 | 1619 | 1830 | 1805 | 1902
Cost 1071 | 979 677 | 964 | 819 | 980 | 1316 | 1402
Penalty 383 | 348 251 | 309 | 237 | 331 | 229 | 234
# of Clients without a Package 1.60 | 2.01 | 340 | 220 | 289 | 2.09 | 248 | 2.28
# of Hotel Bids 11.0 | 10.7 | 6.3 6.3 5.8 6.8 | 422 | 355
Average Hotel Bid 270 187 187 | 292 | 233 | 280 | 106 | 125
Total Hotel Bonus 400 | 389 292 | 383 | 324 | 390 | 378 | 422
# of Hotels Won 6.7 6.2 4.6 5.8 5.1 5.9 9.3 9.6
# of Unused Hotels 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.3
Average Hotel Cost 159.6| 159.0 | 147.4| 166.5| 160.5| 166.0| 140.9| 145.6
Decision-theoretic setting

Agent SAAT | SAAB | TMU | TMU* BE BE* AMU | SMU
Score 981 999 899 | 954 | 938 | 948 | 652 | 617
Utility 2057 | 2007 | 1708 | 1885 | 1796 | 1904 | 2386 | 2397
Cost 1075 | 1007 | 808 | 931 | 857 | 955 | 1734 | 1779
Penalty 437 | 418 287 | 345 | 272 | 375 | 338 | 358
# of Clients without a Package 1.13 | 1.33 | 253 | 1.90 | 234 | 1.75 | 0.64 | 0.60
# of Hotel Bids 10.8 | 10.7 | 6.3 6.3 5.9 6.8 | 421 | 355
Average Hotel Bid 274 188 187 | 292 | 234 | 281 | 106 | 125
Total Hotel Bonus 435 | 426 354 | 400 | 371 | 404 | 518 | 536
# of Hotels Won 7.6 7.1 55 6.1 5.7 6.3 125 | 125
# of Unused Hotels 0.0 0.0 0.0 0.0 0.0 0.0 1.9 1.8
Average Hotel Cost 142.4| 142.4 | 147.8| 152.6 | 151.5| 152.8 | 138.3| 142.8

Game-theoretic setting

Table 10.3: Game statistics for experiments with CE prices
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