
Abstract of “Beyond keywords: finding information more accurately and easily using natural lan-

guage” by Matthew Lease, Ph.D., Brown University, May 2010.

Information retrieval (IR) has become a ubiquitous technology for quickly and easily finding in-

formation on a given topic amidst the wealth of digital content available today. This dissertation

addresses search for written and spoken natural language documents, including news articles, Web

pages, and spoken interviews. Effective model estimation is identified as a key problem, and several

novel estimation techniques are presented and shown to significantly enhance search accuracy.

While search is typically performed via a few carefully chosen keywords, formulating effective

keyword queries is often unintuitive and iterative, particularly when seeking complex information.

As an alternative to keyword search, this dissertation investigates search using “natural” queries,

such as questions or sentences a person might naturally articulate in communicating their infor-

mation need to another person. By moving toward supporting natural queries, the communication

burden is shifted from user query formulation to system interpretation of natural language. The

challenge in enacting such a shift is enabling automatic IR systems to more effectively cope with

natural language. To this end, several new estimation techniques for modeling natural queries are

described. In comparison to a maximum likelihood baseline, 15-20% relative improvement in mean-

average precision (MAP) is demonstrated without use of query expansion.

When an IR system discovers or is provided one or more feedback documents exemplifying a

user’s information need, there is further opportunity to improve search accuracy by exploiting doc-

ument contents for query expansion. However, since documents typically discuss multiple topics

varying in importance and relevance to any information need, the system must again be able to

effectively interpret verbose natural language. Consequently, an estimation method for leveraging

such documents is presented and shown to yield state-of-the-art search accuracy. Depending on the

base model employed, 15-85% relative MAP improvement is achieved.

When modeling higher-order lexical features or searching smaller document collections like cul-

tural history archives, sparsity become particularly problematic for estimation. To cope with such

sparsity, additional estimation methods are described which yield 5-20% relative improvement in

MAP accuracy across varying conditions of query verbosity.
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Çetintemel has provided me with another great example of how to be an outstanding faculty member:

teacher, advisor, friend, and generous benefactor (providing partial funding for me to attend my first

conference while at Brown though the work was not affiliated with his own). Chad Jenkins, Shriram

Krishnamurthi, and Meinolf Sellmann have also been friends and advisors over the years, and I had

many interesting conversations with John Hughes. Technical staff did a fantastic job keeping the

department up and running as well as being incredibly friendly and courteous, no many how many

times user error was to blame: Jeff Coady, Mark Dietrich, John Bazik, Dorina Moulton, Phirum

Peang, Max Silvas, and Kathy Kirman. Administrative staff were also incredible helpful and friendly:

Lori Agresti, Katrina Avery, Lauren Clarke, Fran Palazzo, Suzi Howe, Jane McIlmail, and Dawn

Reed. Special thanks go to Genie deGouveia, who always had a positive attitude and smile and laugh

to share. I have known many great students in the Computer Science department who have positively

impacted my time at Brown: Glencora Borradaile, Radu Jianu, Casey Marks, Victor Naroditskiy,

Stefan Roth, and Frank Wood, to name a few. Extra thanks go to those truly dedicated friends who

showed up on moving day: Casey, Engin, and Micha. Belinda and Claudia gave good advice and

encouragement, and I was fortunate to have made some fantastic and dear friends who could really

be counted on: Ines, Jean, Rita, Cecile, Zach, John, Elena, Marc-Andre, Robin, and Sabrina. Dan,

Evan, and Will were fantastic flatmates and friends, and we had many memorable adventures with

v



the Plantations troop: Allison and Allison, Jen, Marian, Rebecca, and Shoshi. Thanks go as well

to some fabulous visiting students who brought Europe to Brown: Jerome, Delphina, and Doreen.

I also had an incredible time discovering the sport of recreational and competitive cycling thanks

to Casey, Radu (and the nation of Romania), Jean, Giulia, Graeme, Kate, Graham, and others in

the Brown Cycling Club and Refunds Now team. You each get ten Belgian points. Leslie, Mark,

Jonathan, Allie, and Jose were great friends in the water, on the bike, and in the bagel shop. Lilly

was a tremendous inspiration.

Doug Oard and Jimmy Lin were incredibly generous with their time and energy in offering feed-

back on my dissertation research, job search, and career going forward. Miles Efron also helped me

with my job search, and Jian-Yun Nie has been very supportive and another source of inspiration.

I would also like to thank faculty, staff, and students from four other universities where I made

extended visits during my graduate studies. From the Signal, Speech and Language Interpretation

(SSLI) Lab at the University of Washington, I would like to thank Mari Ostendorf for hosting me,

as well as Jeremy G. Kahn and Dustin Hillard. Thanks to Mary Harper, I had the chance to par-

ticipate in the summer workshop at Johns Hopkins University’s Center for Language and Speech

Processing (CLSP). Besides Mary, I benefited from working with, learning from, and/or getting to

know Fred Jelinek, Sanjeev Khudanpur, Owen Rambow, Nizar Habash, Mona Diab, Roger Levy,

Bonny Dorr, Yang Liu, Matt Snover, and Dan Melamed. At the Institute of Formal and Applied
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Chapter 1

Introduction

1.1 Motivation

Our information age has seen new, disruptive technological advances dramatically break down tra-

ditional barriers to communication, capture, and storage of information, with the effect that modern

society has begun amassing vast stores of information at a tremendous rate in comparison to pre-

vious generations. As a natural consequence of such changes, computer and information sciences

have emerged as key disciplines in organizing our vast and ever-growing collection of knowledge and

enabling society’s efficient operation and continuing progress.

Before us are a wide variety of challenges to and opportunities for improving support for in-

formation creation, storage, transmission, interpretation, access, use, enhancement, preservation,

etc. This dissertation investigates one aspect of this broad picture: information retrieval (IR), i.e.

enabling people to easily and accurately find and obtain existing information. Thanks to the Web

revolution, the last decade has seen IR quickly enter into mainstream use as an essential and ubiqui-

tous presence in our daily lives: we characterize the information to seek out in a repository such as

the Web, and an automated system sifts through the repository to find the information that appears

most relevant to our request. Given only the user’s query and the collection of archived knowledge,

retrieval accuracy ultimately depends on how well a system is able to interpret and match these two

forms of information. When both consist entirely in natural (i.e. human) language content, retrieval

accuracy becomes a question of system sophistication and accuracy in interpreting natural language.

This dissertation investigates estimation techniques for IR systems in order to improve their

ability to interpret natural language and accurately retrieve desired information. In particular, we

address search for natural language documents, such as news articles and Web pages, and present

new estimation strategies that improve upon state-of-the-art document retrieval accuracy. A major

contribution of this work is improved support for “natural” (a.k.a. verbose or long) queries in

which the information being sought is described as if being explained to another person. While

search using a few carefully selected keywords remains the dominant paradigm today, formulating

1
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effective keyword queries is often unintuitive and iterative, particularly as information needs become

more complex. In contrast, natural language provides the foundation of human communication and

thereby supports easy, intuitive expression of arbitrarily complicated information needs. However,

shifting the communication burden from user query formulation to system query interpretation is

challenging in practice because current retrieval models perform poorly on verbose queries: a short

keyword query typically yields greater retrieval accuracy despite being less informative. To overcome

this deficiency, new estimation techniques are applied to specifically improve support for such queries.

We also investigate techniques for relevance and pseudo-relevance feedback (§2.5) in which the

system is provided or finds (respectively) one or more documents exemplifying the information need.

In this situation, there is further opportunity to improve retrieval accuracy by exploiting document

contents. However, since documents typically discuss a variety of topics varying in importance and

relevance to any particular information need, the system must again be able to effectively cope with

verbose natural language evidence. Any uncertainty as to the relevance of example documents must

also be managed. Consequently, accurate model estimation is once again paramount to achieving

accurate retrieval. To meet this challenge, a new estimation strategy for leveraging such documents

is presented and shown to perform as well or better than existing IR systems.

A final topic we investigate is spoken document search, specifically search for interviews from

a cultural heritage archive which contain spontaneous speech. One of the challenges with this

document collection is its small size, which leads to sparse statistics. This problem is exacerbated

by modeling higher-order lexical features than simple unigram statistics. To address these challenges,

we present a novel smoothing technique for bigram estimation and a method for leveraging external

corpora for more robust estimation. Evaluation shows strong performance here as well.

1.2 Thesis Statement

This dissertation investigates the following thesis:

Document retrieval accuracy can be significantly improved by better parameterizing ex-

isting retrieval models for “natural” queries and document feedback. Existing models

can also be progressively augmented with additional features to enable incremental de-

velopment and evaluation of richer query and document representations.

1.3 Contributions

Presented work supporting the thesis statement includes:

• Estimation methodology for natural queries (Ch. 3, Ch. 4, and Ch. 7)

• Estimation methodology for document feedback (Ch. 6)

• A learning framework for arbitrary feature-based parametric retrieval models (Ch. 3)
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While the features developed and evaluated in Ch. 3 for query representation extend beyond simple

word frequency statistics, the primary contribution made with regard to features stems from the

learning framework’s support for arbitrary features (in either the secondary feature set or the retrieval

model itself) rather than for any specific features developed.

Contributions of the dissertation work are presented below under the categories of conceptual,

methodological, and empirical. Contributions are first briefly listed with references to the corre-

sponding section(s) describing the work. Following this, supporting details and background infor-

mation are mentioned as the case merits.

1.3.1 Ideas

Conceptual contributions of the work include:

1. a feature-based interpretation of classic stochastic term-based search models

2. addressing estimation as a key challenge limiting search accuracy with natural queries

With regard to (1), explicitly distinguishing between the feature space employed and how feature

weights are estimated enables us to separately examine and evaluate the contribution from each.

How expressive is the feature space in its capacity to represent important differences between relevant

and non-relevant documents? How challenging an estimation task does this feature space require,

and how effective is the estimation technique employed? What new light do these questions shed on

the relationship between different term-based search models and their particular strengths?

One fruit of adopting this perspective is recognizing that document-likelihood (§2.4.2) and query-

likelihood (§2.4.3) are actually rank-equivalent models under equal parameterization (§4.4). This

complements prior theoretical analysis which showed that while both approaches do model document

relevance, query-likelihood may be more effective in practice due to addressing a simpler estimation

problem (§2.4.3, [Lafferty and Zhai, 2003]).

Distinguishing features from estimation in term-based models also suggests the possibility of

replacing one while preserving the other; we need not throw out the baby with the bath water. In

particular, we might consider how the various estimation techniques being developed for supervised

learning of feature-based learning to rank (LTR) models might be applied instead toward better

estimating term-based models. Furthermore, it suggests an opportunity to empirically compare

term-based and more general feature-based models on an equally-sound estimation footing to better

understand the relative contributions being made by advances in feature development vs. estimation.

As for (2), the 2003 RIA Workshop (§2.7.2) presented a valuable taxonomy of errors over natural

queries [Buckley and Harman, 2004]. Inspecting the distribution of errors across the taxonomy

they developed suggested an even simpler bottom line than the taxonomy: failing to emphasize the

“right” terms was the main problem across models, affecting approximately two-thirds of the queries

they considered. In short, better term-weight estimation was needed. In a completely separate line

of work, query-likelihood was theoretically shown to perform implicit maximum-likelihood (ML)

estimation of term-weights in inferring the latent query unigram [Lafferty and Zhai, 2001]. The



4

connection between these lines of work lies in recognizing that ML estimates all query tokens as being

equally important to the underlying information need, and while such an assumption is a reasonable

approximation with keyword search, it is significantly at odds with the highly varying importance

of terms in natural queries. It was therefore clear why standard query-likelihood tended to achieve

less accurate search with natural queries relative to keyword queries: poor estimation. Moreover,

theoretical [Zhai and Lafferty, 2004] and empirical [Fang et al., 2004] work demonstrating the close

connection between query-likelihood and other term-based approaches [Buckley and Harman, 2004]

suggested the problem was not limited to query-likelihood alone. While it has long been argued

that assumptions like bag-of-words limit our ability to effectively model natural language, even the

model of term interaction in Metzler and Croft’s MRF approach (§2.6) embodied the same limiting

ML assumption as the standard unigram by treating all observations as equally important (§4.2).

Consequently, we saw an opportunity to improve search accuracy with these models by focusing on

how to better estimate them.

1.3.2 Methods

Methodological contributions include:

1. a novel supervised learning framework for estimating any parametric retrieval model (Ch. 3)

2. supervised estimation of unigram query-likelihood search (Ch. 3)

3. supervised (Ch. 4) and feedback-based (Ch. 6) unigram estimation in the MRF model (§2.6)

4. blending explicit and pseudo-relevance feedback (PRF) (§2.5) with MRF modeling (Ch. 6)

5. Dirichlet-smoothed bigram modeling and “collection expansion” (Ch. 7)

Regarding (1), the learning framework exhibits several useful properties described in §3.4. Concrete

application of these general ideas with regard to supervised unigram estimation is described for both

query-likelihood in Ch. 3 (2) and the MRF model in Ch. 4 (3). We also show in Ch. 6 how MRF

unigram estimation may be performed via feedback documents in the case of relevance feedback, as

well as how such estimation can be further coupled with PRF estimation (4).

As for (5), a novel method for Dirichlet-smoothed bigram estimation and better estimating broad

collection statistics is presented in Ch. 7. While this work is certainly not the first to suggest bigram

modeling for IR (cf. [Song and Croft, 1999]), the formulation presented is the first we are aware of

for combining bigram modeling with Dirichlet-smoothing. Similarly, while there has been previous

work in expanding documents with similar ones found in external sources [Singhal and Pereira,

1999], there has been little work expanding collection-wide statistics via external corpora. One

notable exception was work in topic detection and tracking, which leveraged external corpora to

gain more robust statistics when only few documents had been seen [Allan et al., 1998].
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1.3.3 Results

Empirical contributions include:

1. Improved search accuracy for news articles and Web pages using natural queries with unigram

query-likelihood; oracle results show potential for greater accuracy (Ch. 3)

2. Improved search accuracy for news articles and Web pages using natural queries with MRF

modeling; PRF yields further gains, and oracle results show additional potential (Ch. 4)

3. State-of-the-art search accuracy for Web pages given examples of known relevant pages by

combining relevance and pseudo-relevance feedback with MRF modeling (Ch. 6)

4. Competitive search accuracy for spoken interviews using short, medium, and long queries with

bigram query-likelihood (Ch. 7)

1.4 Information Retrieval Today

This section presents a brief and highly selective summary of IR today in order to establish current

practice; more thorough introductions to IR are available elsewhere for the interested reader [Singhal,

2001, Zhai, 2007, Manning et al., 2008]. We begin by introducing the predominant approach to IR

today, bag-of-words modeling, as well as reasons for its success. While surprisingly effective in

practice, we illustrate the success of bag-of-words comes at the cost of model bias favoring succinct,

keyword queries over more descriptive explanations of information needs. Next, we consider how the

past decade’s prevalence of end-user search engines built on this model may have significantly shaped

how people have come to use and think about search today. In particular, we suggest widespread

visibility of this particular search paradigm has led to an undesirable, perpetuating cycle between

search engines and users: the latter write short keyword queries to fit the idiosyncratic behavior

of search engines, and search engine behavior is optimized for such queries because that is what

users tend to write, ad infinitum. Given this strong momentum in favor of keyword search, it is

particularly telling to see that people nonetheless write descriptive, natural language queries when

explaining information needs on Web Q&A sites like Wondir and Yahoo Answers. In fact, the

growing traffic on these sites suggests that not only are people willing to write detailed queries in

order to have their information needs satisfied, but also that Q&A sites have identified a legitimate

market demand which existing search engines are failing to adequately address.

1.4.1 Bag-of-Words Modeling

Given that effectiveness of automated IR ultimately depends on depth of language understanding, it

is remarkable how bag-of-words modeling has remained the predominant search paradigm into the

present day. Be it vector similarity [Singhal et al., 1996], the probabilistic approach [Sparck Jones

et al., 2000], or (typical) query-likelihood (§2.4.3), each adopts bags-of-words representation, employs
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similar TF-IDF statistics [Zhai and Lafferty, 2004], and performs comparably in practice [Fang et al.,

2004]. Under these models, archived documents (i.e. the granularity of information being sought)

and user queries are represented by simple relative frequency statistics over the words; inter-word

relationships are completely ignored. Despite its clearly limited capacity for modeling rich meaning,

bag-of-words modeling has proven to be quite successful nonetheless. In order to understand this

paradigm better, it is useful to examine its behavior and limitations. The most obvious and off-

cited criticism of bag-of-words is its complete disregard of modeling any form of interaction between

terms: each word is considered in isolation when assessing the relevance of a given document to

the query. Another simplifying modeling assumption is the standard models make no provision

beyond relative frequency for inferring relative importance of query terms. The combined effect

of these modeling assumptions has yielded IR systems biased toward succinct, keyword queries:

additional terms introduced will tend to represent weaker correlations individually with the user’s

core information need. This means that despite being more informative to a human reader of

the underlying information need, verbose queries tend to achieve lower search accuracy in practice

than keyword queries [Zhai and Lafferty, 2002, Smucker and Allan, 2006, Kumaran and Allan,

2007, Bendersky and Croft, 2008]. It is important to recognize this system preference for succinct,

keyword queries represents a significant departure from the form of language used by people to

naturally communicate: whereas people intuitively employ more detailed descriptions to convey

greater information, a user attempting to similarly provide a more informative request to his search

engine today is likely to be rewarded by lower retrieval accuracy!

Fortunately, people are remarkably adept at recognizing the limitations of technology (if not the

reasons for it) and adapting their behavior to accommodate it. In response to the system behavior

described above, users have learned the importance of formulating their (potentially complex) infor-

mation needs as keyword queries. While effective in the short term, this state of affairs is undesirable

in several respects. First, keywords provide only limited capacity for expressiveness in comparison

to unconstrained natural language, meaning it may not even be possible to express some information

needs as effective keyword queries. Second, formulating an information need as an effective keyword

query can be a challenging translation problem for users1 . Third, keywords provide minimal context

for query interpretation (i.e. inferring the information need underlying an observed query), reducing

our potential to improve upon search engine accuracy both today and in the long-term. Finally, this

dynamic between users and retrieval engines has produced an unfortunate perpetuating cycle: users

write short keyword queries to fit this idiosyncratic system behavior, and IR research focuses on

such queries because that is what users tend to write. Continuing this downward spiral, since suc-

cinct keyword queries provide minimal context for richer modeling, attempts at more sophisticated

automatic language understanding rarely demonstrate benefit over bag-of-words. This, in turn, is

often taken as further evidence that bag-of-words is a sufficiently accurate model of language use.

It is true that many attempts at more sophisticated modeling of keyword queries have failed

1While necessity and practice in recent years have honed users’ skills in formulating keyword queries, this might
not constitute the best example of laudable progress; it is a strange twist on life imitating art when people alter
their natural use of language to suit a poor approximation of it, thereby “improving” model accuracy.
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to demonstrate significantly improved retrieval accuracy relative to the additional computational

burden they pose. In fact, despite the attention directed toward language understanding since the

very beginnings of artificial intelligence (AI) as a field, deep understanding of language has remained

rather elusive. When Karen Sparck Jones and several others independently wrote a collection of

papers a decade ago reflecting on the observed and potential contribution of natural language pro-

cessing (NLP) to IR [Hui, 1998, Lewis and Sparck Jones, 1996, Smeaton, 1999, Sparck Jones, 1997],

their bleak observation might be best summed up in Smeaton’s remark that “the impact of NLP on

information retrieval tasks has largely been one of promise rather than substance” [Smeaton, 1999].

Nevertheless, it must be recognized that NLP has made significant strides, particularly over the past

decade, in developing more effective and sophisticated models for other tasks, and the statistical

revolution that swept through NLP over the past decade has yielded robust methodology for model

estimation, inference, and evaluation. Moreover, by focusing IR efforts toward natural language

queries rather than keywords, we remove the historical handicap on NLP and create an opportunity

to exploit its potential more fully. Paraphrasing van Rijsbergen [Van Rijsbergen, 1979], the time

appears ripe in light of these changes for another attempt at moving beyond bag-of-words toward

richer language understanding for IR.

1.4.2 The Words out of the Bag: Q&A

While people generally think of search today in terms of keyword Web search, verbose Q&A search

is also a significant and growing portion of today’s search landscape. On Q&A sites, users post

questions to be answered by other members of the user community (i.e. Q&A can be thought of as

human-powered search). Assuming people would rather have their questions answered immediately

then have to wait for others to respond, it is worth considering why people choose to use Q&A sites

instead of more conventional automatic search. One possible explanation is that the information

being sought simply does not exist on the web, in which case we might interpret these sites as

providing access to an additional knowledge base. However, given the Web’s existing vastness and

enormous growth rate, this explanation seems less satisfying than it might have 10 years ago. Another

argument against this explanation is that simple inspection shows some of these questions are in

fact answerable via automatic search. For example, “Is [sic] there any other picture editing sites

other than picnik and blingee???”2. Desire for social interaction might be another cause at work.

But a more compelling explanation for use of Q&A over traditional search is difficulty with keyword

query formulation: the user may have tried to use automatic search and failed to find an effective

keyword query, or they may have not tried at all due to its expected difficulty or their preference for

natural communication. Of course, as information needs become more complex, formulating queries

in terms of keywords becomes increasingly difficult. For example, consider this brief excerpt from

another user posting: “I’m pretty sure I am, or well WAS pregnant. [...] There are a lot od [sic]

aspects to this question that I am going to lay out, [...]”3. In short, it appears Q&A sites address

2Posted on wondir.com, October 7, 2008

3Ibid.
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a growing market need for better support of complex queries and ease of use. Furthermore, we see

users willingly write detailed, informative queries when they believe such detail will enable them to

obtain more satisfactory responses to their information needs.

It is certainly true that at one end of the spectrum, some information needs can be easily

and naturally expressed in one or two keywords (e.g. a navigational query to locate a company’s

website), and query logs show (via minimal number of clicks and lack of query reformulation) that

users leverage such keyword queries quite effectively in practice. We might assume keyword query

formulation is not a heavy burden upon users in such cases of simple information needs. But it is also

clear that there is another end of the spectrum, as we see with Q&A search. Recall earlier discussion

regarding how users have adapted their use of search engines in response to their experience with

what sort of queries yield successful searches (§1.4.1). This is characteristic of a more general

language use phenomena in which speakers adapt their language for their intended recipient, are

as verbose as needed to obtain the information being sought, and naturally express more complex

information needs through more detailed, verbose descriptions. Generally speaking, describing more

complex things requires more complex descriptions (e.g. think of information theory). Similarly,

the extremes of navigational and Q&A search are not completely disconnected but represent two

waypoints in a continuous spectrum of natural communication. People naturally expect to trade-

off verbosity with effectiveness in conveying their intended meaning, and so it is problematic when

search technologies operate according to a fundamentally different model of language use. It would be

desirable if instead search engine interaction could become more consistent with human interaction

to support more usable, intuitive formulation of queries.



Chapter 2

Background

2.1 Defining Relevance

The goal of Information Retrieval (IR) is to return information the user considers relevant to their

request. Given the central role the notion of relevance plays in IR, it is worth saying something

about what we mean by relevance. For the most part, we will follow the traditional practice of

assuming relevance constitutes a binary measure over queries and documents: a document either

contains some information relevant to a given query or it does not. While this simple distinction

fails to model gradation in relatedness, it has nonetheless served for decades as a useful annotation

standard supporting quantitative training and evaluation of retrieval systems, and it continues to

provide a valuable foundation for developing new methodology.

2.2 Retrieval Scenarios

Ad hoc retrieval. In this task, the system is given a user “query” expressing an “information

need” and a collection of documents in which to search for that information. We will assume with

ad hoc retrieval that the system must infer the information need entirely on the basis of the query1.

The output of search is a list of documents, ranked in order of (estimated) decreasing relevance,

which the user may then peruse, use to refine his search, etc. Assuming the availability of a set of

“canned” queries and corresponding human relevance assessments over the collection, the accuracy

of a given system can be empirically evaluated and its strategies refined.

Relevance feedback. With relevance feedback (RF), the system is provided examples of rel-

evant documents for a given query and must rank relevance of additional documents on the same

query; for example, a user may indicate several documents relevant to his query in hopes of improving

1Today we are seeing increasing interest in user profiling via query logs and other means in order to better model a
user’s general and recent interests and thereby come by additional context for helping interpret and disambiguate
new queries from the user. Similar prior context for query interpretation can be obtained via observing activities
of others searchers to detect general trends, etc.

9
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system accuracy in retrieving further documents. Our discussion of RF will assume a non-interactive

setting in which example documents are provided up front along with the initial query2. RF is usu-

ally considered less typical than ad hoc retrieval since explicit feedback requires extra effort from

the user in identifying relevant documents in addition to formulating a query. However, similar

strategies like leveraging implicit relevance feedback garnered from query logs [Joachims, 2002] and

pseudo-relevance feedback (PRF) [Lavrenko and Croft, 2001] are quite popular today with ad hoc

retrieval. In §2.5, we further discuss the RF task and its methodology along with PRF.

Filtering. While we do not work on filtering in this dissertation, we mention it here for complete-

ness and its close historical relation to ad hoc retrieval and RF. Filtering is an “online” classification

task: documents are presented to the system in isolation to be classified as relevant or not to one or

more standing queries (e.g. sorting incoming emails or news documents into different topical fold-

ers). Because documents are presented in isolation, the system must make an independent decision

for each without considering it in the context of a collection other than those documents seen so

far. As with RF, filtering has often been defined historically to assume the availability of example

relevant documents alongside queries.

2.3 Controlled-vocabularies and stoplists

The question of whether to index all terms found in collection documents or only a subset has been

a topic of interest for decades in the IR community. Reducing the size of the indexing vocabulary

obviously has beneficial consequences for a system’s storage requirements and its efficiency, and such

reduction has been shown empirically often to have little cost or even benefit to overall retrieval

accuracy across a variety of IR systems. Traditionally such vocabulary reduction is achieved by

creating a simple, static list of terms to include (i.e. “a controlled-vocabulary”) or exclude (i.e. a

“stoplist” of “stopwords”).

These two approaches can often be further distinguished via their treatment of open-class syntac-

tic categories likes nouns and verbs: controlled-vocabularies devote significant attention to selection

of open-class vocabulary while stoplists tend to be fairly conservative with regard to filtering out

open-class terms. Partially this distinction is simply an inherent effect of selecting rather that ex-

cluding terms since open-classes are by definition far larger and harder to enumerate, as well as

naturally changing across time, domains, and communities. The distinction between open-class and

closed-class terms is of particular interest because open-class terms are generally viewed as more

semantic or content-bearing and so more important for search. Of course closed-class terms also play

an important role in conveying meaning. For example, the use of “very” in a hypothetical query

“very hot days” could indicate user interest in more extreme or unusual weather than if the query

were merely “hot days”.

A limitation of employing a simple list of terms to include or exclude is that many terms are

2An alternative interactive setting could have a user incrementally indicate example documents in the course of
inspecting returned results and iteratively refining his query, etc.
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polysemous and have both open and closed-class senses. For example, “can” is both an auxiliary

verb and a noun. There is also nothing preventing closed-class terms from being used as names (i.e.

proper nouns), and the typical IR practice of case-folding to disregard differences in capitalization

conflates these orthographically distinct cases in the indexing vocabulary. For example, “a” can be

used a determiner or name of a vitamin (e.g. “Vitamin A”), “may” is both an auxiliary verb and

name of a month or a person, etc. Note in a language like German where all nouns are capitalized,

case-folding would impact cases like “can” as well.

An input query term is defined to be “out-of-vocabulary” (OOV) whenever either the term

occurred in no document or the term did occur in some document but was excluded from indexing.

Such OOV terms are typically simply ignored in query processing (as opposed to trying to map the

OOV term to some indexed term via linguistic analysis, such as by orthographic or morphological

similarity, or via an external resource beyond the index). Consequently, use of vocabulary reduction

has the obvious drawback that some information will almost always be more easily or intuitively

described using terms excluded from the index, making search for that information more difficult. If

all query terms are OOV and therefore ignored, search must necessarily fail, and so more aggressive

vocabulary reduction makes IR systems less robust, particularly when input queries are short.

Historically, use of controlled vocabularies was motivated both by storage and efficiency limi-

tations of early IR systems as well as reflecting an influence from library science in which manual

indexing had played a crucial role in taxonomically organizing knowledge sources to support struc-

tured and efficient access. However, as IR systems matured in ranking sophistication and indexing

all terms became practical even for large text sources, empirical studies began to show that systems

indexing all open-class terms were generally just as effective as those employing controlled vocab-

ularies as well as enabling more flexible access. Consequently, use of controlled vocabularies has

largely receded from common use in today’s IR systems.

However, use of stoplists has remained quite popular into the present day, at least in academic

research, though of course exceptions exist (cf. [Fang et al., 2004, Mei et al., 2007, Zhai and Lafferty,

2002]). As an illustrative example of stopping, consider the 418 term stoplist employed by the

INQUERY system [Allan et al., 2000] that was carefully developed over the course of participating

in multiple TREC evaluations. In the following query (TREC topic 705’s description), words

appearing in INQUERY’s stoplist are marked by underlining: Identify any efforts, proposed or

undertaken, by world governments to seek reduction of Iraq’s foreign debt. While terms stopped in

this example are all from closed-class categories, the INQUERY stoplist also includes a variety open-

class terms such as nowadays, seeing, slept, smoke, spat, . . . . As mentioned earlier, use of stopping

can be quite detrimental in some cases. For example, in the query “smoke signals”, “smoke” plays a

critical role in conveying the query’s meaning, yet it is removed by INQUERY’s stop list. Retrieval

fails entirely for TREC keyword queries “who and whom” (topic 531) and “May Day” (topic 803)

in which all query terms appear in the stop list.

So while use of stoplists offers storage and efficiency savings, there is no free lunch. For every

word in natural language (that could potentially be stopped), one can imagine a query for which
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that word would play an important role in conveying the query’s intended information need. In

other words, use of stopping inherently reduces system robustness, and so stoplist use represents

an implicit tradeoff between robustness and other aspects of system behavior being optimized. As

such, it is important to recognize cases of this tradeoff at work whenever stopping is employed.

2.4 Modeling Paradigms

2.4.1 Vector Similarity

A classic and still competitive bag-of-words approach to IR is the vector space model. In this

approach, the query and documents are represented as vectors over the collection vocabulary and

documents are ranked on the basis of vector similarity [Singhal et al., 1996, Singhal, 2001]. Several

key statistics are utilized in this model: term frequency (TF), inverse document frequency (IDF),

and length normalization. TF is a measure of term salience: the more often a query term occurs in

a document, the more information the document is assumed to contain related to that term. Since

terms will tend to occur more frequently in longer documents regardless of topic, document length

normalization is usually applied to remove this bias: relative term frequencies are used in place of

absolute counts. IDF measures term importance: a query term occurring rarely in the collection

is assumed to be more useful in discriminating between documents than a determiner like “the”

which likely occurs in every document. In addition to TF and IDF statistics, document length

has also been heavily exploited to improve retrieval accuracy. For example, pivoted document

length normalization applies variable (non-Euclidean) normalization to correct for observed error

between estimated relevance under standard normalization and actual relevance values observed on

development data [Singhal et al., 1996].

2.4.2 Document-Likelihood

Like the vector-similarity approach, document-likelihood (also known as Okapi or “the probabilistic

approach”)3 represents another bag-of-words approach with a long and influential history of strong

empirical performance. Much of the derivation presented below follows an earlier presentation [Laf-

ferty and Zhai, 2003]. Document-likelihood ranking is based on Robertson’s famous probability

ranking principle (PRP), which showed that optimal system behavior under several evaluation met-

rics such as expected average precision could be achieved by ranking documents according to the

probability of their belonging to the relevant class [Robertson, 1977]. Assuming queries and docu-

ments are represented by random variables Q and D respectively, with a binary random variable R

indicating relevance r or non-relevance r̄, Robertson argued for ranking documents by their posterior

probability of relevance P (R = r|Q,D). Note that if our goal were to classify documents as relevant

3While not the earliest probabilistic model for IR [Maron and Kuhns, 1960], Okapi came to be known as the
probabilistic approach due to its influential impact and to distinguish it from (non-probabilistic) vector similarity.
We adopt “document-likelihood” from [Lafferty and Zhai, 2003] to emphasize the close relationship between this
approach and query-likelihood (§2.4.3).
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or non-relevant, as done in filtering (§2.2), rather than rank them, this posterior would also define

the Bayes optimal decision criterion (i.e. would choose class assignments to minimize the probability

of error).

Next, it can be seen that ranking documents by P (R = r|Q,D) is equivalent to ranking them by

the likelihood ratio between the competing hypotheses of relevance and non-relevance:

p(r|Q,D)
rank
=

p(r|Q,D)

p(r̄|Q,D)
(2.4.1)

where
rank
= denotes rank-equivalence. To see this, consider generic probabilities p and 1 − p and

consider the interval [0, 1] over which they are defined. The two functions are strictly increasing and

decreasing, respectively, and therefore their ratio p
1−p

will also be strictly increasing. Since p and
p

1−p
are both strictly increasing over the same interval, they are therefore rank-equivalent.

Rather than estimate relevance directly, as done with learning to rank [Joachims et al., 2007],

the probabilistic approach instead adopts a generative approach via application of Bayes’ Rule:

p(r|Q,D)

p(r̄|Q,D)
=
p(Q,D|r)p(r)

p(Q,D|r̄)p(r̄)
(2.4.2)

Note that ranking by the ratio conveniently avoids computation of the marginal P (Q,D).

The key step in the next portion of the derivation is that the posterior joint probability P (Q,D|r)

is factored by generating first the query Q and then the document D conditioned on the query. The

last step of proportionality is justified by p(R,Q) being constant for all documents with regard to

the same query.

p(r|Q,D)

p(r̄|Q,D)
=

p(D|Q, r)p(Q|r)p(r)

p(D|Q, r̄)p(Q|r̄)p(r̄)

=
p(D|Q, r)p(r, Q)

p(D|Q, r̄)p(r̄, Q)

∝
p(D|Q, r)

p(D|Q, r̄)
(2.4.3)

Equation (2.4.3) shows how the document-likelihood model gets its name: given a query, the dis-

tributions p(D|Q, r) and p(D|Q, r̄) characterize the space of documents likely to be relevant and

non-relevant.

Next, the bag-of-words assumption is adopted to actually generate the documents:

p(D|Q,R) =
∏

w∈D

p(w|Q,R)

for both R = r and R = r̄.

Finally, note the above model requires us to know whether or not D is relevant to Q in order to

estimate the distributions p(D|Q,R). Given examples of documents relevant and not-relevant to Q,

the corresponding unigram distributions p(w|Q, r) and p(w|Q, r̄) above can be estimated and used

to compute a document’s likelihood under each of the competing relevance hypotheses, r and r̄, in

order to rank documents. However, while the model appears well-suited to the task of relevance
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feedback, it is unclear how to proceed with estimation in the case of ad hoc retrieval (§2.2). While

we could estimate P (w|Q,R) from the query by maximum likelihood (ML), this would be error-

prone since a typical succinct query provides little context for estimating unigram parameters over

the entire vocabulary. Instead, p(w|Q, r̄) is often estimated by assuming all documents are non-

relevant [Lafferty and Zhai, 2003] and p(w|Q, r) is usually assumed to be uniform (i.e. parameters

are constant). Letting k denote this constant and C denote the collection of documents, these

assumptions yield:

p(r|Q,D)

p(r̄|Q,D)
∝

p(D|Q, r)

p(D|Q, r̄)

≡
k

p(D|Q,C)

rank
= −p(D|Q,C) (2.4.4)

From which documents can then be ranked for ad hoc retrieval.

The well-established probabilistic model Okapi BM25 operates within the framework laid out

above and has been carefully refined over many years of participation in TREC evaluations [Sparck

Jones et al., 2000, Fang et al., 2004]. In addition to leveraging basic TF-IDF statistics in estimating

the above probability distributions, BM25’s probability model also incorporates average document

length, provides several free parameters for tuning on development data, and facilitates query term

weighting, which has been shown to be useful with longer queries.

2.4.3 Query-Likelihood

A decade ago, Ponte and Croft proposed a new paradigm for IR based on language modeling [Ponte

and Croft, 1998]. In this paradigm, one assumes a latent language model (LM) underlies each ob-

served document and infers the relevance of each document by the posterior probability of observing

the query as a random sample generated by each document’s underlying LM. As this description

suggests, the original derivation of the language modeling approach forwent the explicit notion of

relevance on which the document-likelihood approach (§2.4.2) was derived , instead modeling a con-

nection between observed queries and latent document models. We will refer to this approach as

“query-likelihood” rather than “language modeling” to make explicit that the approach is query-

generative and to show its close relationship with document-likelihood. The key challenges in this

approach are hypothesizing the form of the underlying source models and finding an effective esti-

mation procedure given the brevity of observed evidence. A strength of the approach lies in the pre-

existing theoretical foundation for general language modeling and set of proven estimation techniques

developed by earlier work in speech recognition (and more recently, machine translation). Query-

likelihood has been shown to have a strong theoretical connection to classic TF-IDF statistics [Zhai

and Lafferty, 2004] and perform comparably to both vector space (§2.4.1) and document-likelihood

§2.4.2 approaches in practice [Fang et al., 2004].
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Relevance-agnostic Derivation

The LM approach defines a query-generating process; since queries are traditionally rather brief in

comparison to documents, generating queries rather than documents provides a firmer foothold for

statistical estimation. Since the goal is to rank documents for a given query, Bayes’ rule is invoked

to indirectly model document likelihood via a direct model of query likelihood. If we (1) assume all

documents are equally likely to be relevant a priori and (2) ignore the prior over queries P (Q) which

is constant when ranking document relevance to Q, the LM approach can be expressed succinctly

as:

p(D|Q) =
p(Q|D)p(D)

p(Q)
=
p(Q|D)

p(Q)

rank
= p(Q|D) (2.4.5)

As in the case of the probabilistic method above, the bag-of-words assumption is usually adopted to

generate the query from a unigram model:

p(Q|D) =
∏

w∈Q

p(w|D) (2.4.6)

In other words, we compute query likelihood by the product of individual term probabilities under

the document LM P (·|D).

Relevance-based Derivation

It was subsequently shown that the language modeling approach could be derived from the same

explicit notion of relevance on which the probabilistic approach was based [Lafferty and Zhai, 2003],

establishing an important connection by showing both approaches can be interpreted within the same

probabilistic framework and merely represent differences between their independence assumptions

and estimation procedures. The connection also has useful implications for relevance modeling

under the language modeling paradigm. Our presentation below follows one given earlier [Lafferty

and Zhai, 2003].

Beginning with Equation (2.4.2) in log form, we follow the same series of steps as used in deriving

Equation (2.4.3) except the posterior joint probability P (Q,D|r) is factored in the opposite order

by generating first the document D and then the query Q:

log
p(r|Q,D)

p(r̄|Q,D)
= log

p(Q,D|r)p(r)

p(Q,D|r̄)p(r̄)

= log
p(Q|D, r)p(D|r)p(r)

p(Q|D, r̄)p(D|r̄)p(r̄)

= log
p(Q|D, r)p(r|D)

p(Q|D, r̄)p(r̄|D)

= log
p(Q|D, r)

p(Q|D, r̄)
+ log

p(r|D)

p(r̄|D)

Where the final term indicates a query-independent document prior of relevance. Next, recall the

semantics of non-relevance: R = r̄ indicates D is not related to Q with respect to the latent

information need underlying Q. Given this, let us make an assumption that Q and D are completely
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independent when R = r̄. The idea here is that since we know D and Q are at least unrelated

with respect to this information need, we take a leap of faith that they are sufficiently unrelated in

general that modeling them as being completely independent will be a reasonable approximation.

This assumption reduces p(Q|D, r̄) to p(Q|r̄), which for a given fixed Q is constant across documents

being ranked and so can be ignored.

log
p(r|Q,D)

p(r̄|Q,D)
= log

p(Q|D, r)

p(Q|r̄)
+ log

p(r|D)

p(r̄|D)

rank
= log p(Q|D, r) + log

p(r|D)

p(r̄|D)
(2.4.7)

Next, consider an additional assumption that D and R are also independent; this assumption em-

bodies the idea that documents and users’ information needs arise independently of one another.

Ignoring a notion of shared latent topics underlying documents and queries, this assumption models

a generative process in which documents are written without foresight of future information needs

and users’ information needs arise due to external factors rather than based on the set of available

documents. Adopting this assumption, the document prior above no longer depends on D and so

becomes a constant factor with regard to ranking and can be therefore ignored:

log
p(r|Q,D)

p(r̄|Q,D)

rank
= log p(Q|D, r) + log

p(r|D)

p(r̄|D)

= log p(Q|D, r) + log
p(r)

p(r̄)

∝ log p(Q|D, r) (2.4.8)

Whereas we saw earlier that the probabilistic approach can be understood as a document-generating

or document-likelihood model; Equation (2.4.8) shows the language modeling approach instead gen-

erates queries, defining a query-likelihood model. Said another way, the language modeling approach

characterizes the space of possible queries for which a given document is likely to be relevant. As

in Equation (2.4.6), we can once again assume the queries generated from a bag-of-words unigram

model:

p(Q|D, r) =
∏

w∈Q

p(w|D, r) (2.4.9)

Finally, note this relevance-based derivation of the language modeling approach leaves it with

the same dilemma faced by the probabilistic approach: we must know whether or not D is relevant

to Q in order to estimate the unigram model underlying Q. As with the probabilistic approach, and

additional simplifying assumption must be made: we assume that queries do not arise from user

information needs but simply as random samples from documents, i.e. that Q depends only on D

and not R. As a consequence, p(Q|D, r) is further reduced to p(Q|D), connecting the relevance-

based derivation to the original language model formulation presented in Equation (2.4.5). However,

there is an important distinction to note here in comparing the probabilistic and language modeling

approaches. In the case of the former, examples of known relevant documents for Q enable us

to better estimate the likelihood of observing a given document under the competing hypotheses of
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relevance and non-relevance and so better rank documents for Q. Here, however, this is not the case:

as a query-generating model, knowingD is relevant to Q enables us to better model queries to which

D would be relevant but does not improve our ability (at least directly) to rank other documents

for Q. Another way to see this is that since the language modeling approach involves estimating a

different query-likelihood model conditioned on each document, any relevance information provided

regarding a particular document only improves our ability to better estimate the document-specific

model to which the relevance example directly pertains.

Comparison to Document Likelihood

The last point above highlights that important differences exist between document-likelihood and

query-likelihood approaches that bear consideration in comparing the merits of each:

• in the absence of relevance feedback, query-likelihood provides a better statistical foothold for

estimation since documents tend to be significantly longer than queries

• given relevance feedback for a query Q, document-likelihood provides a direct means for im-

proved model estimation and thereby better ranking document relevance to Q

• whereas query-generation requires comparing the likelihood of the same, fixed-length query

under different document models, document-generation requires length-normalization since

longer documents are necessarily less probable

• query-generation is less sensitive to error introduced by strong independence assumptions like

bag-of-words since queries are shorter than documents

• the document prior in query-generation (Equation 2.4.7) provides an opportunity to model

document aspects such as length and hyperlink structure indicative of a document’s prior

probability of relevance across queries [Richardson et al., 2006]

Smoothed Document Unigram Estimation

In query-likelihood, how do we estimate the latent document unigram P (·|D) we postulate as under-

lying each observed document in the collection? One option is maximum-likelihood (ML). Assuming

vocabulary size V , word wi occurring in D with frequency fwi
, and P (·|D) being parameterized by

Θ, we could seek the particular Θ̂ maximizing D’s likelihood

P (D|Θ) =

V∏

i=1

θi
fwi (2.4.10)

which would be the assignment to Θ respecting the empirical frequencies f . However, such use of

ML is problematic in that a single unobserved query term would completely nullify query likelihood,

making the entire framework exceedingly fragile. The problem here is that in observing only a small

sample (i.e. a brief document) from an underlying distribution, effects of chance variation will be

prominent and distort sample statistics away from those governing the generating distribution.
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Instead one commonly employs smoothing to discount the probability mass assigned to observed

terms and reserve some probability mass for all unseen terms. The most common practice is to

estimate the document model as a mixture between ML estimates from the observed document and

the collection of all documents:

p(Q|D,C) =
∏

w∈Q

λ p(w|D) + (1 − λ)p(w|C) (2.4.11)

A principled way to accomplish this is via maximum a posteriori4 estimation in the Bayesian

framework by treating collection statistics as a prior over the document unigrams. A priori, we

might reasonably assume P (·|D) should resemble the collection’s average document model P (·|C).

This, in turn, could be estimated via ML by summing statistics across all documents, which would

provide sufficient evidence for a much more robust estimate.

Such prior knowledge can be elegantly incorporated into a language model via the Dirichlet

distribution, specified by hyper-parameters α > 0 and defining a distribution over multinomial

parameterizations P (Θ;α) [MacKay and Peto, 1995]. For the unigram model defined above, the

corresponding Dirichlet prior would be defined as

P (Θ;α)
.
= Dir(α) =

1

Z(α)

V∏

i=1

θi
αi−1 (2.4.12)

where Z(α) denotes normalization. This prior is particularly convenient for maximum a posteriori

estimation because its distribution is conjugate to the multinomial, meaning the posterior will also

be Dirichlet. Hence, combining likelihood (2.4.10) and prior (2.4.12):

P (Θ|D;α) ∝ P (Θ;α)P (D|Θ) ∝

V∏

i=1

θi
αi−1

V∏

i=1

θ
fwi

i =

V∏

i=1

θ
fwi

+αi−1
i (2.4.13)

A true Bayesian would next compute the predictive distribution over Θ, but we will instead assume

a peaked posterior and find the single most-likely Θ̂ to explain our data via the maximum approx-

imation. Comparing our likelihood and posterior equations (2.4.10) and (2.4.13), we can see that

maximizing the posterior is quite similar to maximizing the likelihood, only the data now consists

of both the empirical evidence and “pseudo” α observations. In other words, the posterior maxi-

mum is simply the combined relative frequency of the observed and pseudo data. Finally, letting

α− 1 = µP (·|C) for µ >= 0, we see our empirical document statistics are smoothed with µ pseudo-

counts drawn from our average document model P (·|C) to yield IR’s canonical Dirichlet-smoothed

unigram model [Zhai and Lafferty, 2004]:

P (w|D,C) =
fw + µP (w|C)

|D| + µ
(2.4.14)

where |D| indicates D’s length and the µ hyper-parameter expresses strength of the prior in smooth-

ing. Correspondence with Equation 2.4.11 is shown by expressing λ as a function of µ and |D|.

λ =
|D|

|D|+ µ
(2.4.15)

4While the acronym MAP is often used in this context with the statistical Bayesian literature, we use MAP
exclusively in referring to the “mean-average precision” metric.
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The intuitive attractiveness of this smoothing strategy lies in the fact that as document length

increases, providing more evidence for the ML estimate, the impact of the prior model will corre-

spondingly diminish. Despite the elegance of this Bayesian intuition, however, subsequent work has

indicated the real practical benefit of Dirichlet smoothing arises not from better estimation, but

rather from Dirichlet smoothing’s implicit incorporation of length-normalization to bias retrieval

in favor of longer documents [Smucker and Allan, 2005]. It may also suggest why more rigorous

Bayesian estimation of the predictive distribution failed to improve retrieval accuracy vs. use of the

simpler point estimation [Zaragoza et al., 2003]. Consequently, the continuing popularity of Dirichlet

smoothing might be interpreted as a reflection of its simplicity in incorporating length-normalization

into smoothing as well as its consistently strong empirical performance.

Equivalence with KL-divergence Ranking

Given an input query Q = q1 . . . qm, query-likelihood infers D’s relevance to Q as the probability of

observing Q as a random sample drawn from ΘD . If we assume bag-of-words modeling, ΘD specifies

a unigram distribution {θD
w1
. . . θD

wN
} over the document collection vocabulary V = {w1 . . . wN}.

Letting fQ
w denote the frequency of word w in Q, query likelihood can be expressed in log form as:

log p(Q|ΘD) =

m∑

i=1

log θD
qi

=
∑

w∈V

fQ
w log θD

w = fQ · log θD (2.4.16)

While this formulation is completely valid, it is somewhat cumbersome to work with in that the

relative importance of query terms can only be expressed via their relative frequency in the query

string, meaning long, complex query strings would be required to express any fine-grained distinctions

in term importance. Fortunately, we may arrive at an equivalent, more expressive generalization by

revising our formulation to explicitly model the user’s information need [Lafferty and Zhai, 2001].

Specifically, we assume the observed Q is merely representative of a latent query model parameterized

by ΘQ = {θQ
w1
. . . θQ

wV
}, consistent with the intuitive notion that the underlying information need

might be verbalized in other ways besides Q. We can re-express query likelihood in terms of ΘQ’s

maximum-likelihood (ML) estimate Θ̂Q = 1
m
fQ as:

log p(Q|ΘD) = fQ · log θD = m Θ̂Q · log θD rank
= −D(Θ̂Q||ΘD) (2.4.17)

This derivation shows that inferring document relevance on the basis of Q’s likelihood given ΘD has

an alternative explanation of ranking on the basis of minimal KL-divergence between ΘQ and ΘD

assuming ΘQ is estimated by ML. This insight is useful because it transforms the task of optimal

query formulation into one of optimal query model estimation, suggesting how search accuracy could

be improved via more effective estimation of ΘQ.

2.5 Relevance & Pseudo-relevance Feedback

Input queries are non-optimal; information is often lost as a user formulates his information need

into a concrete query for input to the system (e.g. due to brevity, ambiguity, miscommunication,
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. . . ). Consequently, there is often a paraphrase mismatch in how a query and its relevant documents

refer to the same information. However, if we had some additional source of knowledge regarding

the information need in addition to the query, we could exploit that as well to better infer what

information the user desires.

Relevance feedback (RF) refers to a retrieval scenario in which the system is provided not only

with the query, but also with examples of relevant (and possibly non-relevant) documents (§2.2).

This allows document contents to be leveraged alongside the query in inferring the user’s information

need. For example, a user may explicitly indicate several documents relevant to his query in hopes of

raising the system’s search accuracy in finding additional relevant documents. The system, in turn,

might harvest terms from those documents and use them to augment the input query. In general,

our use of “relevance feedback” will refer to both this task and the methodology for using feedback

documents in conjunction with the query.

Pseudo-relevance feedback (PRF), also known as “blind feedback”, simulates the RF scenario

without having known relevant documents [Sparck Jones et al., 2000, Lavrenko and Croft, 2001].

Instead, the system assumes documents it ranks highly (i.e. predicts to be relevant) are indeed

relevant and uses them as examples to improve and expand its interpretation of the original query.

As such, PRF can be considered as a form of self-training or bootstrapping, and as with any such

technique, it is important to model and propagate system uncertainty to achieve effective perfor-

mance. With PRF in particular, we must carefully balance additional information from uncertain

feedback against our limited but certain input query. While information from feedback documents

can be incredibly effective in better inferring the latent information need, use of feedback can also

result in harmful “concept drift” away from the true subject of interest. For example, term-based

methods intending to reinforce key query terms and add related terms can also accidentally pull-in

unrelated terms or lose emphasis on the most important terms. Consequently, feedback has been

often seen to boost recall at some cost to precision. PRF effectiveness is clearly influenced by how

accurately the system identifies documents to use for feedback and estimates their probability of

relevance. While PRF can be iterated, multiple iterations usually hurt performance and so a single

PRF iteration is most typical.

2.5.1 Relevance Feedback

Given a query, query-likelihood retrieval (Equation 2.4.17) infers relevance on the basis of similarity

between (our estimates of) query and document models, ΘQ and ΘD. While discussion thus far

has focused on document ranking for a given query, let us now consider the other direction of query

formulation. Given a set of relevant documents R that match a user’s information need, the optimal

query model ΘQ
? under Equation 2.4.17 will exhibit greater similarity to R’s latent document models

∀D∈RΘD than those of other documents. This suggests that given partial knowledge of R in the

form of |F| feedback documents where F ⊆ R, ΘQ might be estimated on the basis of similarity to

F . For example, a simple idea would be to estimate ΘQ as the average document model over the



21

set of positive (i.e. relevant) feedback documents:

Θ̂F =
1

|F|

∑

D∈F

ΘD (2.5.1)

While the classic Rocchio method [Rocchio et al., 1971] also incorporates negative feedback (γ term):

~qr = α ~q0 + β
1

Nr

Nr∑

i

~di − γ
1

Nr̄

Nr̄∑

i

~di (2.5.2)

negative feedback has typically been found to be far less useful than positive feedback. Since retrieval

time is typically proportional to the number of terms used, a common efficiency heuristic is to

approximate ΘF by its kF most likely terms and re-normalize5.

Although the approach in Equation 2.5.1 does provide broader lexical coverage of R than available

in the original query string, it suffers from a different problem. Whereas Q tends to closely focus

on the core information need, the average feedback document model may diverge from it since

documents in F likely discuss many topics. Rocchio’s α ~q0 mixing term helps prevent such drift.

The same technique can be applied with query-likelihood by inferring ΘQ on the basis of both the

original query and the feedback documents in the form of a linear mixture:

ΘQ′

= (1 − λF )ΘQ + λF ΘF (2.5.3)

Despite the simplicity of this approach, recent studies have shown it achieves accuracy comparable

to more sophisticated strategies [Balog et al., 2008, Yi and Allan, 2008].

Combining equations (2.4.16), (2.4.17), and (2.5.3), we see that unigram feedback can be equiv-

alently interpreted as a mixture of query models under the unigram ranking 2.4.16 or as a mixture

of ranking functions:

P (Q|D)
rank
= logΘD · ΘQ′

= logΘD · [(1 − λF )ΘQ + λF ΘF ]

= (1 − λF )[ logΘD · ΘQ] + λF [ logΘD · ΘF ]

rank
= (1 − λF )D(ΘQ||ΘD) + λF D(ΘF ||ΘD)

However, as one moves away from unigram modeling to another retrieval model like the MRF (§2.6),

we will see that this dual interpretation is no longer applicable.

2.5.2 Pseudo-relevance Feedback

PRF [Lavrenko and Croft, 2001] is quite similar to RF except that now we must factor in our

uncertainty regarding each feedback document’s relevance to the query. While our original setup in

Equation 2.5.1 made a simplifying assumption that all feedback documents were equally relevant,

5Since Equation 2.4.17 is a linear model, ranking is invariant under any scaling of the weight vector and so
normalization does not affect ranking. However, if we wish to later use ΘF in some mixture model, choice of kF

will have a side-effect on mixture weight unless normalization is performed.
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this estimate can be improved by accounting for varying degree of relevance across the feedback set.

The straightforward way to accomplish this is to generalize from the simple average of Equation 2.5.1

to instead compute an expectation respecting some arbitrary estimate p(D|Q) of feedback document

relevance with respect to the query Q:

ΘP = ED∼p(D|Q)[Θ
D] =

∑

D∈C

p(D|Q) ΘD (2.5.4)

where C denotes the document collection.

As with RF, a common efficiency heuristic is to approximate ΘP by its kP most likely terms and

re-normalize. The original estimate of ΘQ is also typically mixed with the ΘP , similar to what was

done with explicit feedback (Equation 2.5.3).

2.6 The Markov Random Field Model

Metzler and Croft’s Markov random field (MRF) approach models a joint distribution PΛ(Q,D) over

queries Q and documents D [Metzler and Croft, 2005]. It is constructed from a graph G consisting

of a document node and nodes for each query term. Nodes in the graph represent random variables

and edges define the independence semantics between the variables. In particular, a random variable

in the graph is independent of its non-neighbors given observed values for its neighbors. Therefore,

different edge configurations impose different independence assumptions. The joint distribution over

the random variables in G is defined by:

PΛ(Q,D) =
1

ZΛ

∏

c∈C(G)

ψ(c; Λ) (2.6.1)

where C(G) is the set of cliques in G, each ψ(·; Λ) is a non-negative potential function over clique

configurations parameterized by Λ, and ZΛ =
∑

Q,D

∏
c∈C(G) ψ(c; Λ) computes the partition func-

tion. For document ranking, we can skip the expensive computation of ZΛ and simply score each

document D by its unnormalized joint probability with Q under the MRF. If we define our potential

functions as ψ(c; Λ) = exp[λcf(c)], where f(c) is some real-valued feature function over clique values

and λc is that feature function’s assigned weight, we can compute the posterior PΛ(D|Q) as

PΛ(D|Q) =
PΛ(Q,D)

PΛ(Q)

rank
=

∑

c∈C(G)

log ψ(c; Λ) =
∑

c∈C(G)

λcf(c) (2.6.2)

The graph G can be constructed in various ways depending on various possible assumptions

regarding independence between terms. In the case of full independence, query term nodes share

an edge with the document only. With sequential dependence, adjacent terms in the query share

an additional edge in G. Finally, assuming full dependence constructs an edge between each pair

of query term nodes. The choice of graph structure determines the set of cliques present in G and

thereby the set of features used in ranking.
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2.6.1 The Features

All of the potential functions used in the MRF can be expressed in the following generic form:

log ψi(c; Λ) = λifi(c) = λilog

[
(1 − αD

i )
Si(c)

|D|
+ αD

i

Si(c)

|C|

]
(2.6.3)

where Si(c) denotes a given statistic computed for the given clique c, |D| and |C| indicate respective

token counts of the document and entire collection (statistics other than term frequency are only

approximately normalized), and αD
i = µi

µi+|D| , where µi denotes a smoothing hyper-parameter spe-

cific to the potential function ψi(c; Λ) [Zhai and Lafferty, 2004]. Note that use of term frequency as

the statistic Si computes the standard Dirichlet-smoothed unigram (2.4.14).

Potential functions are primarily distinguished by the particular statistic Si they employ. As

mentioned earlier (§1.1), the MRF model exploits three classes of lexical features: individual terms,

contiguous phrases, and proximity. Each of these corresponds to a distinct statistic Si: term fre-

quency, phrase frequency (i.e. “ordered” Indri #1 operator), and frequency of a set of terms within

some parameter N -sized window (i.e. “unordered” Indri #uwN operator). The latter two multi-term

statistics’ corresponding potential functions are applicable when some form of dependency is as-

sumed between query terms in the graph structure. In particular, the phrasal potential function is

only applied to cliques connecting contiguous query terms, whereas the proximity potential function

is applied to all multi-term cliques, contiguous and non-contiguous alike. This means each pair

of contiguous query terms generates a clique c whose potential function is defined by the product

ψo(c)ψu(c) of ordered and unordered potential functions.

Using these three classes of potential functions, the MRF can be expressed as a three component

mixture model computed over term, phrase, and proximity feature classes:

∑

c∈C(G)

λcf(c) =
∑

c∈T

λT fT (c) +
∑

c∈O

λOfO(c) +
∑

c∈O∪U

λUfU (c) (2.6.4)

Each class effectively computes its own ranking function which is then mixed with that of the other

classes. Ch. 4 shows how assumptions underlying estimation of each class can be relaxed to improve

search accuracy.

2.6.2 Pseudo-relevance Feedback

Recall our basic PRF equation (2.5.4) computing an expectation over documents. Whereas we were

able to skip normalization in (2.6.2) since we were only using the model for ranking, to compute the

PRF expectation we need a normalized probability distribution. However, we need not compute the

full partition function to normalize PΛ(Q,D) over the entire document collection unless we want to

use the entire collection for feedback. Besides the large computational cost this would incur, there

is diminishing return and increasing harm from query drift as we start sifting through lower ranks.

Instead, we can simply normalize with respect to the set of PRF documents P only:

PN
Λ (D|Q) =

PΛ(Q,D)∑
D∈P PΛ(Q,D)

(2.6.5)
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Collection Avg. Term Count Std. Deviation
CACM 10.80 6.43
CISI 28.29 19.49
CRAN 9.17 3.19
INSPEC 15.63 8.66
MED 10.10 6.03
NPL 7.16 2.36

Table 2.1: Query length statistics for several classic document collections [Salton and Buckley, 1987].
NPL queries were considered “very short” while CISI and INSPEC queries were considered “long”.

The expected PRF document model can then be computed by (2.5.4) as with unigram PRF.

While PRF could potentially be used to better estimate all three classes of MRF features, pre-

vious work has shown little benefit from applying this technique to estimation of adjacency and

proximity classes (fO and fU , respectively) [Metzler and Croft, 2007a]. We are not aware of any

work attempting to better estimate these classes via explicit RF either.

2.7 Verbose Queries

This section provides a brief and highly selective history of search using verbose queries. We begin

by discussing data-specific issues: the evolving notion of queries over time, different taxonomies em-

ployed, characteristic statistics, associated document collections, etc. Following this, we summarize

previous work: methods and corresponding results obtained.

2.7.1 Data

Life Before TREC (1992)

As an ultra-brief snapshot of queries used prior to TREC, query length statistics for several pre-

TREC (and pre-Web) datasets given in [Salton and Buckley, 1987] are summarized in Table 2.1.

Relative to the sort of terse, keyword queries more typical of Web search today [Broder, 2002], queries

used with these collections were generally much longer. While the NPL queries (and documents)

were relatively short in comparison to the other collections, the authors suggest this may be due to

indexing vocabulary in NPL being carefully selected rather than all terms having been indexed6 . An

interesting parallel to consider is the effects of index term selection vs. user selection of (keyword)

query terms, as both tend to lead to shorter queries with different distributional properties than one

typically finds in more natural language. We discuss this issue further in §2.7.2.

6Only the numerical query and document vectors were publicly available; original texts were not [Salton and
Buckley, 1987].
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TREC Topic 331

title World Bank Criticism

description What criticisms have been made of World Bank policies, activities

or personnel?

narrative This query is looking for any instances where the World Bank has been ac-
cused of things like not being responsive to the unique problems of individual
countries, of being too strict in its policies, of pursuing agendas that are bi-
ased because of their benefits to western countries, of being no longer useful or
practical, of its personnel being difficult to work with, etc.

Table 2.2: An example TREC topic.

TREC Year Topics Min Max Mean
1 1992 51-100 5 41 17.9
2 1993 101-150 6 41 18.7
3 1994 151-200 9 42 22.3
4 1995 201-250 8 33 16.3
5 1996 251-300 6 40 15.7
6 1997 301-350 5 62 20.4
7 1998 351-400 5 34 14.3
8 1999 401-450 5 32 13.8

Table 2.3: Statistics for length in tokens of the description field of TREC 1-8 topics.

The Text Retrieval Conference (TREC)

Since 1992, significant cross-system evaluation has been performed at annual Text Retrieval Con-

ference (TREC) evaluations7. As part of these evaluations, the National Institute of Standards

(NIST) has been heavily involved in defining query topics for search and performing relevance an-

notations in the Cranfield tradition so that systems could be quantitatively evaluated. TREC has

had an incredibly influential impact on the field of IR in general, and this section focuses on the

evolving notion of topics and queries across TREC campaigns. Material presented in this section

brings together information dispersed across the annual TREC overview reports available online;

more specific citations are given where appropriate.

Original ad hoc topics from TREC 1-2 consisted of four fields providing reflecting differences

in length, verbosity, detail, format, etc.: title, description, narrative, and concepts. The

concepts field was dropped after TREC-2 but has still influenced derivative work (cf. [Zhai and

Lafferty, 2004, Fang et al., 2004, Mei et al., 2007]). TREC-3 fields were generally shorter in com-

parison to previous years, but participants still felt they were too long compared with “what users

normally submit to operational retrieval systems”. Consequently, TREC-4 defined the topic simply

by a one sentence description of the information need. However, the omission of a narrative field

7http://trec.nist.gov
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Collection Documents Unique Terms Tokens Topic IDs
Robust04 528, 155 643, 239 276, 914, 688 301-450, 601-700
W10g 1, 692, 096 5, 368, 332 1, 066, 462, 974 451-550
GOV2 25, 205, 179 39, 294, 014 27, 047, 041, 080 701-850

Table 2.4: Example TREC Collections and associated Topic IDs. Topics 672 and 703 have no
relevant documents and therefore do not impact evaluation.

for guiding assessment and interpretation of topics was seen as a significant loss. Consequently, the

three-field title, description, and narrative format was restored in TREC-5 and has continued

since. An example topic, 331, is shown in Table 2.2.

In terms of analyzing search accuracy as a function of topic field(s) used, little distinction was

made in TREC 1-3. As mentioned above, TREC-4 topics consisted of a description-like field

only. Over the next several years, a four-way taxonomy of queries emerged in analyzing the effect

of different query types on search accuracy [Sparck Jones, 1999]:

1. very short: title field (TREC-6)

2. short: description field (TREC-5)

3. medium: title and description concatenated (TREC-7)

4. long: title, description, and narrative concatenated (TREC-5)

Nevertheless, TREC-8 referred to title and description concatenated as “short”, so it seems the

notion of query categories remained somewhat fluid.

With topics 301-450 (TREC 6-8), the title field was specifically designed to allow experiments

with very short queries consisting of at most three words. The description field was intended

to be a one sentence version of the query, as in TREC-4, but in practice this field may consist of

multiple sentences (e.g. topics 342-347). An important change with TREC-7 topics was that the

description field was intentionally written to use all terms found in the title field to avoid

confounding effects of verbosity with missing terms. While this also largely holds for TREC-8

topics (except 413), subsequent topics developed often do not use all title field vocabulary in the

description field, complicating comparison between exclusive use of either field.

With regard to document collections, TREC 6-8 all used the same collection, later re-used in the

TREC 2003-04 Robust tracks. An additional 100 topics, 601-700, were also created for the 2003-04

Robust tracks. We refer to this collection and the 250 topics as Robust04 (Table 2.4).

The same topic formulation process was also used to create topics 701-850 for the Terabyte track

(TREC 2004-2006) using the GOV2 collection (Table 2.4). This document collection corresponds to

a crawl of the .gov portion of the Web conducted early in 2004, and topics were intended to reflect

informational Web queries (as opposed to navigational or transactional [Broder, 2002]).

Topics 451-550 (TREC 9-10, 2000-2001) were created for the Web track’s W10g collection (Ta-

ble 2.4) via a different process than the other topics discussed thus far. Participants wanted topics to
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strongly resemble queries typically employed in Web search. Rather than having assessors formulate

the ideas for topics, NIST instead obtained a log of real queries submitted to commercial search

engines (Excite queries from Dec 20, 1999 for TREC-9, and from MSNSearch in TREC-10). Query

strings selected from these logs were then used verbatim to create the title fields of the new topics.

NIST assessors retrofitted description and narrative fields around their interpretation of intent

underlying these queries, resolving any ambiguity. Spelling was left uncorrected in topics 451-500

but was corrected for topics 501-550. No attempt was made to correct grammar of the title queries,

though other topic fields were intended to reflect grammatical (American) English.

Queries Based on TREC Topics

Zhai and Lafferty [Zhai and Lafferty, 2004] differentiated two types of queries, “title” and “long”,

in order to study the impact of different smoothing strategies for different types of queries. Their

definition of these two categories was equivalent to the TREC-6 categories of “very short” and “long”,

using the title field and the title, description, and narrative concatenated, respectively.

Unfortunately, they subsequently realized a confounding factor in this division: long queries were

both longer and reflected a different distribution of common vs. topical vocabulary. Consequently,

they further refined their distinction among queries to four categories in follow-on work [Zhai and

Lafferty, 2002]. Once more TREC data was used in experiments, but their four-way taxonomy was

different than that used in TREC-7:

1. short keyword (sk): title field

2. short verbose (sv): description field

3. long keyword (lk): concept field found in early TREC topics

4. long verbose (lv): title, description, and narrative concatenated (earlier “long” category)

While short and long keyword queries both consisted of only strong content terms, short and long

verbose queries reflected a term distribution more characteristic of natural language. Thus distinc-

tions between query verbosity vs. length were teased apart. In addition to enabling the particular

study in [Zhai and Lafferty, 2002], this query taxonomy has continued to prove useful to Zhai and

his students in analyzing the behavior of various retrieval methods (cf. [Fang et al., 2004, Mei et al.,

2007]).

2.7.2 Previous Work

This section briefly reviews methods and results of previous work for search using verbose queries.

Salton and Buckley, 1987 [Salton and Buckley, 1987]

In work preceding the TREC program, Salton and Buckley provided insights, experimental results

on several document collections (Table 2.1), and recommendations for query term weighting as a

function of query length. Several combinable document and query term weighting strategies were
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described which they identified via a pair of triples of the form ddd·qqq. The first triple characterized

document term weighting, and the latter, that of the query. Each triple expressed options for term

frequency (TF), inverse document frequency (IDF), and length normalization (LN), respectively:

1. TF: binary weight (b), normal TF (t), normalized TF (n)

2. IDF: none (x), normal (f), and probabilistic (p)

3. LN: absent (x) or present as cosine (c)

For weighting query terms, all choices for LN are rank-equivalent and simply scale document scores.

Simple boolean weighting (is the term present or absent regardless of frequency) is achieved by bxx

while txx weights terms by simple relative frequency (equivalent to language modeling §2.4.3 term-

wise query-generation or maximum-likelihood estimation of ΘQ). Either choice is equivalent if all

query terms occur exactly once.

Two methods were seen to generally perform best and consistently with one another across

document collections (except for NPL): “fully weighted” tfc·nfx and “probabilistic weight” nxx·bpx.

It is interesting to note that the former applies IDF (f) weighting to query terms as well as document

terms, effectively squaring IDF; the authors noted this “enhanced query weighting” was particularly

effective. With the NPL’s very short queries and their minimal length deviation (as well as its

short documents), however, boolean (b) weighting of query terms was seen to be most effective. In

contrast, non-boolean weighting of query terms was seen to be essential with the long queries of

CISI and INSPEC. Given the similar effect of controlled vocabularies (§2.3) and keyword search in

tending to yield shorter, more carefully chosen terms, experience here with weighting query terms in

NPL vs. other document collections may also inform term weighting for keyword vs. verbose queries.

The authors concluded with several general recommendations for weighting query terms. Re-

garding TF, “for short query vectors, each term is important; enhanced query term weights (n) are

thus preferred... long query vectors require a greater discrimination among query terms based on

term occurrence frequencies (t)... .” As for IDF, they reported the most effective methods used IDF

weighting (f).

TREC

As in the previous section on TREC data (§2.7.1), material presented in this section brings together

information dispersed across the annual TREC and task-specific overview reports available online

from NIST8; more specific citations are given as needed.

Search based on the description field only of topics was evaluated in TREC 5-6 the Robust

track (2003-2005), and effectively in TREC 4 where the entire topic was description-like. The

more common trend at TREC has been to differentiate between different levels of query verbosity

by concatenating shorter fields with longer ones (e.g. title, title + description, and title +

description + narrative). While this certainly does test a different verbosity condition, the usage

model seems somewhat odd: while we might imagine a user requesting information via a natural

8http://trec.nist.gov
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language question or sentence, corresponding to the description-field, it seems much less likely they

would simultaneously express their query at multiple levels of detail, e.g. title + description. This

is of further importance because these two conditions, description vs. description + title be-

have rather differently: the latter benefits from having keywords from the title emphasized through

repetition and so solves a less difficult and interesting problem in trying to effectively cope with ver-

bose natural language.

Difference in performance between title only and description only fields was observed and

much discussed in TREC-6, but discussion largely centered around important terms from a topic’s

title field missing from its description field, causing a confounding effect between verbosity

and important terms being missing. While topics were largely fixed for TREC 7-8 to ensure all

title field terms also appeared in the description field, there appears to have been relatively

little re-examination of the difference in performance between alternate use of each field now that

the confounding effect had been removed. It may be that query expansion techniques had become

sufficiently effective to largely close the gap between title vs. description runs [Sparck Jones,

2000]; this needs to be further investigated.

A list of strong performing systems in TREC 5-8 which ranked documents using only the

description field of topics can be found in [Sparck Jones, 1999, 2000] (along with the approxi-

mate precision-at-30 search accuracy each achieved). It should also be noted that actual document

ranking of participating systems over all TREC evaluations can also be officially obtained from

NIST, allowing more thorough analysis and comparison between various systems that have been

employed.

As in TREC 5-7, Robust 2003-2004 tracks again required participants to rank documents using on

the description field of topics. TREC 6-8 topics were also reused. A goal of the task was to inves-

tigate system performance on difficult topics, and while the problem of TREC-6 description fields

missing important terms was already known, no mention is made of it in the respective track

overviews. However, per-topic median average precision scores graphed in the 2003 track overview

suggest the difficult TREC-6 topics used did not perform worse on average than those from TREC

7-8. The most meaningful comparison can likely be made to each year’s blind evaluation topics:

601-650 for Robust 2003, and 651-700 for Robust 2004. In addition, a particular set of 50 hard

topics evaluated each year are identified in the 2003 track overview; results here are something of

an upper-bound since systems could tune on this set of topics during development. Finally, the

Robust04 track also evaluated over all 250 topics (Table 2.4), mixing the 50 blind topics with the

200 known topics. Testing conditions aside, results on this complete set of topics can be directly

compared to other results on the Robust04 collection presented in this work as well as that of cited

previous work.

While there was also a Robust track in 2005 that required participants to submit both title and

description-field submissions, search was performed on the AQUAINT document collection rather

the Robust04 collection. The track overview for this year presents one of the more interesting

discussions of comparative search accuracy with title vs. description-fields. In particular, while
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description queries were seen to perform significantly worse, analysis showed this to be a flaw in

how NIST performed its pooled assessments. Given the much larger collection size, there were many

more relevant documents for each topic yet pool sizes did not grow proportionately. The title field-

only runs effectively found enough relevant documents to fill up the pools such that relatively fewer

documents found by description field runs to be assessed, thus biasing the evaluation. As such,

future use of this track’s assessments was advised against without additional assessment to correct

for this bias. Consequently, we do not evaluate on this collection. The track overview also remarked

that “...title-only runs are more effective than description-only runs for the AQUAINT collection,

while the opposite is true for the [TREC 6-8/Robust04] collection”. At present we are unaware of

the particular analysis or evidence providing the basis for that comment; comparative results shown

in the Robust04 track overview suggest comparable accuracy of strong-performing systems (using

query expansion) for title only and description only runs.

In terms of comparing search accuracy for difficult topics considered in the Robust tracks, com-

parison here is somewhat more involved. Mean-average precision (MAP) is easily compared: it was

reported by track and is computed by trec_eval9 for evaluating new systems. However, a poorly

performing topic would have to change dramatically to impact MAP, and so it is not ideal for this

sort of evaluation. Robust tracks instead reported two non-standard metrics: % of topics for which

precision-at-10 is zero and area under the MAP curve for the worst quarter topics. These two metrics

were superseded by geometric MAP (gMAP), described in the Robust 2004 track overview but not

reported for participating systems. Although gMAP was integrated into trec_eval for Robust05,

the other metrics were abandoned. While the metrics are not difficult to implement, a special evalu-

ation script for computing them is also publicly available10 and ensures consistency with how official

results were computed. The track overviews also report these metrics were less stable than gMAP for

the same number of topics. To compare accuracy on the basis of gMAP, official document rankings

for the two tracks must be obtained from NIST since gMAP was not reported.

The Web track which used the W10g corpus (TREC-9, TREC 2001) and performed blind evalua-

tion on topics 451-550 (Table 2.4) focused on title field only runs and report only those in the track

overview. Again, one needs to obtain official rankings from NIST or read through the individual

participant papers or results in the appendix of each year’s proceedings to obtain additional detail

regarding other topic fields used and resulting accuracies achieved.

TREC Terabyte tracks used the GOV2 corpus (TREC 2004-06) and performed blind evaluation

on topics 701-850 in groups of 50 over the three years the track was run. As with the earlier Web

track, participation in automatic search required title field only runs, and track overview papers

summarize those results. As an exception the 2004 Terabyte track overview lists submitted runs,

showing only one team submitted description field only runs that year. As with the Web track,

further investigation is needed to determine what use of the description was made other years and

the resulting effectiveness.

9http://trec.nist.gov/trec_eval

10http://trec.nist.gov/data/robust/robust2004_eval.pl
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The Query track (TREC 7-9) produced 2000 variant queries for TREC-1 topics (51-100) in order

to study the effect of query formulation upon retrieval accuracy. By generating many queries for the

same topic, the hope was to better understand the nature of topic difficulty by disentangling how an

information need is expressed vs. what the information need is. Two primary types of queries were

generated: “(very) short” queries of 2-4 words and “sentence” queries of 1-2 sentences (a third type

we will not discuss created queries without reference to the original topics, which led to topic drift).

The TREC-8 track overview noted that short queries performed noticeably better than sentence

queries. A confounding factor, however, was that almost all the sentence queries were generated

by students whereas half the short queries were generated by experts. Re-examination without this

confounding factor was recommended but was not further discussed.

The TREC 2005 Question Answering (QA) track included a document ranking task to investigate

whether some document retrieval techniques are better than others in support of QA. In other words,

documents were ranked in response to question-type queries, and systems searched for answers using

these ranked documents (although some QA system architectures did not produce an explicit list

of document rankings as an initial step). Only a weak correlation was found between document

retrieval accuracy and system ability to answer factoid-type questions (i.e. questions like “Who

shot Abraham Lincoln?” seeking a simple fact in response). Beyond enabling the specific study

performed in the track, the pool of document rankings produced was intended to serve subsequent

research by the community in the interaction between IR and QA accuracies.

The 2003 Reliable Information Access (RIA) Workshop [Buckley and Harman, 2004]

The six-week RIA Workshop investigated contributions from retrieval system variability factors and

topic variability factors in order to better understand overall variability in search accuracy. As part

of this workshop, massive failure analysis was performed using document rankings generated by six

different retrieval systems. In particular, the workshop was very interested in the intersection of IR

and QA: initial search for documents in response to question-type queries, and the value of IR as a

backup option in case focused retrieval [Kamps et al., 2008] should fail. Consequently, the workshop

studied rankings with verbose queries for a 45 topic subset of TREC 6-8 (topics 301-450); 26 of

these topics overlapped the set of “hard” topics evaluated in 2003-2004 Robust tracks. It should be

noted that the description fields were not used verbatim, but rather a standard set of patterns was

defined to be filtered out of all queries (i.e. phrasal stopping); the idea was to filter out highly stylized

language such as “a relevant document must identify...” which users would be unlikely to employ

in formulating queries. In total, 28 people from 12 organizations were involved in the effort, and

from 11-40 person-hours was spent analyzing each topic. In addition to findings summarized in the

workshop report, a website was also developed to provide access to the detailed topic-specific analysis

performed11. Another product of the workshop Chris Buckley’s ten-way taxonomy of queries which

distinguished between the anticipated sophistication in natural language understanding that would

be needed to improve performance on a given query were its category in the taxonomy known. For at

11http://ir.nist.gov/ria
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least half the categories, current technology was seen to be sufficient to significantly improve results.

This recognition, along with further analysis of this taxonomy mentioned in §1.3.1, inspired our

work that better term weighting could significantly improve search accuracy with verbose queries.

Question Answering (QA)

As suggested in the previous two sections, there is a close connection between IR and QA; natural

language questions represent one form in which queries may be expressed, focused retrieval [Kamps

et al., 2008] ranging from a paragraph to a few words can allow users to find the desired information

more quickly than returning an entire document, and IR techniques are often employed as part of QA

systems. The relationship between IR and QA was studied at a SIGIR workshop in 2004 [Gaizauskas

et al., 2004], the TREC 2005 QA track contained a specific document ranking task (§6.2), and Lin

presents an interesting look at the interaction for more complex relationship questions rather than

factoid questions [Lin, 2006]. Lin reports that for factoid questions, existing work on question

analysis has investigated strategies for identifying important query terms, which is another way to

say term weighting strategies for question-type queries. Consequently, we are interested in further

exploring this line of research to see if its findings can generally applied to improving document

ranking for verbose queries.

Two-Stage Smoothing [Zhai and Lafferty, 2002, 2004]

Earlier we discussed Zhai and Lafferty’s evolving query taxonomy (§2.7.1). In this section we discuss

their findings and methodology they developed.

In their initial study, Zhai and Lafferty observed strong interactions between the type of smooth-

ing employed and type of queries used for retrieval [Zhai and Lafferty, 2004]. Unfortunately, it was

unclear from their initial study whether the high sensitivity observed on longer queries was the result

of those queries’ more frequent use of common terms or simply their length. In follow-on work [Zhai

and Lafferty, 2002], they posited it was the former, and to test this hypothesis, they defined four

types of queries mentioned earlier. It is worthy of mention that no stopwords were removed in their

study, simplifying analysis of their methods and results. They found that the two types of keyword

queries behaved similarly with respect to smoothing, as did the two types of verbose queries. In par-

ticular, they observed that it was the verbose queries that were much more sensitive to smoothing,

supporting their hypothesis that verbosity rather than length was the source of smoothing sensitivity

observed in their earlier work. They also observed a consistent order of performance among the four

types of queries, with the description queries always under-performing the title queries.

Zhai and Lafferty’s analysis of this effect was that smoothing plays two distinct roles in query-

likelihood retrieval: to better estimate document models and to “explain away” common and non-

discriminative words in the query so that document ranking would be primarily a function of topical

terms rather than terms arising from (verbose) natural language. To model this effect, they proposed

a generation process where by query terms arise from a mixture of two multinomials: the topical
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document model ΘD and a query background model P (·|U):

p(Q = qi:m|ΘD, λ,U) =

m∏

i=1

(1 − λ)p(qi|Θ
D) + λp(qi|U) (2.7.1)

They adopt the ML collection unigram ΘC for p(·|U) and estimate ΘD by Dirichlet smoothing.

Moreover, they achieve a parameter-free model in the following way. First, we assume each document

D arises from a mixture between a latent document unigram ΘD and a prior unigram, with the

mixture parameter set by Dirichlet hyper-parameter µ. Next, we can compute the likelihood of

the observed collection C under the assumption that these latent unigrams correspond exactly to

observed relative frequency statistics (i.e. ML) for D and C:

log p(C|µ) =
∑

d∈C

p(d|C, µ)

=
∑

d∈C

∑

w∈V

c(w, d) log p(w|d, C, µ)

=
∑

d∈C

∑

w∈V

c(w, d) log

(
c(w, d) + µ p(w|C)

|d|+ µ

)
(2.7.2)

Zhai and Lafferty set µ by maximizing a “leave-one-out” variant of this likelihood:

log p−1(C|µ) =
∑

d∈C

∑

w∈V

c(w, d) log p−1(w|d, C, µ)

=
∑

d∈C

∑

w∈V

c(w, d) log

(
c(w, d) − 1 + µ p(w|C)

|d| − 1 + µ

)
(2.7.3)

Next, expectation maximization (EM) is run to learn a λ for each query which maximizes its likeli-

hood given the Dirichlet-smoothed document unigrams and the value of µ learned above.

Query Reduction [Kumaran and Allan, 2007, 2008, Kumaran and Carvalho, 2009]

While query expansion methods try to improve search accuracy via augmenting a user’s query with

additional terms, Kumaran et al. have explored methods of “query reduction” for removing terms

from the input query, rewriting a verbose query as a smaller subset of the original terms to effectively

transform it into a keyword query. The idea of query reduction is to remove terms from the input

query that risk obscuring the core information need. As such, query reduction can be seen as a

generalized form of stopword removal (§2.3) that dynamically chooses terms to stop.

Query reduction can also be viewed as a restricted form of term weight estimation in which

terms are assigned binary weights: terms assigned zero weight are effectively stopped, and remaining

terms are assigned equal weight, matching the uniform distribution of weights estimated by standard

maximum-likelihood (ML) estimation (§2.4.3). Why remove terms when they can be more flexibly

weighted? If we want to leverage user interaction, query reduction suggests a fairly simple and

intuitive model of interaction [Kumaran and Allan, 2007, 2008]. While one could envisage a user

interface allowing users to assign weights to terms12, choosing between alternative query candidates

12http://searchcloud.net
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with varying term weights could be cognitively more challenging than simply choosing between

subsets of terms.

While large search accuracy gains were originally shown via user interaction, recently an effective

fully-automated system been demonstrated [Kumaran and Carvalho, 2009]. Evaluation on verbose

queries is performed on a subset of topics with TREC 1-3 documents (topics 51-200) and Robust04

(Table 2.4). Improvements over baseline Dirichlet smoothing (§2.4.3) are shown, but comparison

with other systems is complicated by the unique subset of topics used in evaluation. Although the

set of topics used was not reported, it likely can be obtained directly from the authors to allow such

direct comparison.

Key Concepts [Bendersky and Croft, 2008]

Key Concepts posits a core concept at the heart of each verbose query and tries to automatically

detect it. In particular, an automatic chunker is run on each query to identify all base noun phrases

(NPs). NPs are then manually annotated to identify a single key concept for each query. A supervised

classifier is trained using various features to predict which detected NP in each verbose query is the

key concept. Analysis found that most verbose queries considered could be faithfully represented by

one or two such NPs, and evaluation showed the classifier is often quite effective in finding them.

Following this, the classifier was applied to weight terms as follows. Each detected NP is weighted

by classifier confidence that it is the given query’s key concept. Next, these NP weights are prop-

agated to weight individual terms: all terms in a given NP are given an equal portion of the NP’s

total predicted weight. Because the model weights NPs only, query terms outside of NPs would re-

ceive zero weight without smoothing, potentially reducing model robustness. To address this, ΘQ is

instead estimated as a two-component mixture model combining the model’s predicted term weights

with the uniform maximum-likelihood (ML) estimate (§2.4.3). A single mixture weight determined

by cross-validated tuning is used across collections and topics. Document ranking accuracy was eval-

uated using the collections and topics shown in Table 2.4. Effectiveness of Key Concepts’ method

of term weighting is compared to that of other methods in the following section. Further discussion

of the Key Concepts approach to term weighting is presented in §3.4.

Comparison of Previous Work

Table 2.5 summarizes search accuracies for verbose queries achieved by existing methods. Some

results are copied from published work [Zhai and Lafferty, 2002, Mei et al., 2007] and TREC pro-

ceedings while others we directly evaluated ourselves [Metzler and Croft, 2005, Smucker and Allan,

2006, Bendersky and Croft, 2008]. Results with verbose queries were first reported for Dirichlet

smoothing in [Zhai and Lafferty, 2002] and for the MRF model in [Metzler, 2007, Bendersky and

Croft, 2008]. Indri queries produced by Key Concepts (§2.7.2) were provided to us by the authors.

Smucker and Allan’s model incorporates an inverse collection frequency (ICF) factor to capture and

IDF-like effect in weighting query terms [Smucker and Allan, 2006].
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Results with verbose queries on TREC-4 topics reported in [Gao et al., 2004, Na et al., 2008]

are not shown. In a non-TREC publication [Fan et al., 2004], Fan et al. describe evaluation of

verbose queries per their participation in the Robust03 track (i.e. their “VTDokrcgpa5” submission).

Hoenkamp et al. [Hoenkamp et al., 2009] describe the “epi-HAL” technique based on query expansion

using the Hyperspace Analog to Language (HAL) and evaluate verbose queries for TREC-2 topics

on the AP88-89 document collection and for Robust04 topics and documents. We compare to their

latter results in §5.2.

Table 2.6 compares search accuracy of verbose queries of published methods vs. official results of

the Robust track at TREC 2004. One of the top performing systems, pircRB04d4 employed phrases,

PRF [Lavrenko and Croft, 2001], and query expansion via the Web [Kwok et al., 2005]. Such Web

expansion was highlighted in the track overview as a key component in the track’s competitive

systems, and such Web expansion is typically not employed in published IR work. It is interesting

to note, however, that even without Web expansion the model was quite strong (and in many cases

actually better performing without the Web expansion). As such, it seems that inclusion of query

expansion via the Web does not by itself explain the relative strength of this system vs. other

published results.

Official TREC results for verbose queries typically exceed search accuracies reported in other

published research. Regarding the one exception shown here, INQ602, while it was the strongest

description field-only run the given year, it was generally not competitive with other participating

groups, as seen by the wide disparity vs. the pir9At0 title field results that same year. The

apparent superiority of competitive TREC systems is due in large part to their almost always

applying query-expansion techniques like pseudo-relevance feedback (PRF, §2.5.2) while published

research often does not. Because expansion techniques can typically be applied atop any non-

feedback method, published research often decouples these two problems to separately investigate

non-feedback methods vs. expansion techniques. To further generalize this point, published research

often investigates particular aspects or subtasks of retrieval, comparing to other work studying the

same given subtask, while TREC evaluations emphasize overall system accuracy. An interesting

recent study comparing results of TREC evaluations over time (across TREC topic fields) provides

a critical examination of the field’s quantitative progress over the past fifteen years [Armstrong et al.,

2009]. Its presentation also compared published results vs. those reported in TREC evaluations.
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TREC-7 TREC-8
System Year P@5 MAP P@5 MAP

title only

TREC
Okapi ok7as (TREC-7) 1998 53.20 26.14
Queens pir9At0 (TREC-8) 1999 51.60 30.63

description only

TREC
NEC nectitechdes (TREC-7) 1998 58.40 25.84
UMass INQ602 (TREC-8) 1999 49.60 24.92

No PRF

Dirichlet Smoothing (§2.4.3) 2001 46.80 17.96 44.80 23.26
Two-Stage Smoothing (§2.7.2) 2002 41.60 18.10 48.40 23.10
MRF (§2.6) 2005 48.40 18.95 46.80 23.71
Collection-ICF [Smucker and Allan] 2006 50.40 20.11 46.00 24.77
Term Dependent Smoothing [Mei et al.] 2007 44.00 19.60 47.60 24.60
Key Concepts (§2.7.2) 2008 48.00 20.21 46.00 23.64

With PRF
Dirichlet Smoothing (§2.4.3) 2001 46.80 23.12 52.00 27.11
MRF (§2.6) 2005 50.80 23.85 53.20 28.34
Collection-ICF [Smucker and Allan] 2006 49.20 24.79 50.80 28.09
Key Concepts (§2.7.2) 2008 48.80 24.41 50.80 27.28

Table 2.5: Search accuracy in mean-average precision (MAP) and precision of top 5 ranks (P@5)
for verbose queries (description field) on the Robust04 collection (Table 2.4) using topics from
TREC-7 (351-400) and TREC-8 (401-450). While the competitive TREC systems employed query
expansion techniques, the “without PRF” systems did not. To give a general sense for this difference,
we produced results with PRF [Lavrenko and Croft, 2001] for several methods using Indri [Strohman
et al., 2004] parameters shown in Table 2.6. While one of the parameters was tuned for the MRF,
all of the methods stand to benefit from better tuning. Nonetheless, results clearly show that all
benefit substantially from PRF in terms of resultant MAP accuracy. Official TREC results reflect
blind evaluation; other testing conditions vary. Statistical significance is not reported.
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Old Topic Set New Topic Set Hard Topic Set Combined Topic Set
ID MAP P10 %no area MAP P10 %no area MAP P10 %no area MAP P10 %no area

t .317 .505 5 .033 .401 .545 6 .089 .183 .374 12 .016 .333 .513 5 .038

d1 .3503 4 .0638 .1182 14 .0063 .2342 9 .0121

d2 .4044 4 .0839 .1524 30 .0049 .2784 17 .0125

d3 .315 .507 8 .023 .407 .547 2 .074 .162 .382 12 .013 .334 .515 7 .028

Without PRF

1 .2318 .4025 11.5 .0098 .2993 .4673 4.1 .0426 .0988 .2560 20.0 .0054 .2451 .4153 10.0 .0118

2 .2413 .4200 10.5 .0122 .3180 .4735 4.1 .0540 .1096 .2920 14.0 .0064 .2564 .4305 9.2 .0149

3 .2482 .4085 13.5 .0084 .3058 .4653 4.1 .0378 .1092 .2700 20.0 .0055 .2595 .4197 11.6 .0101

4 .2456 .4015 13.5 .0078 .3141 .4776 4.1 .0360 .1057 .2440 22.0 .0022 .2591 .4165 11.6 .0100

With PRF [Lavrenko and Croft, 2001]

1 .2660 .4315 16.5 .0065 .3770 .4939 6.1 .0678 .1157 .2820 26.0 .0019 .2879 .4438 14.5 .0089

2 .2792 .4485 16.5 .0072 .3897 .5082 6.1 .0786 .1309 .3060 24.0 .0024 .3009 .4602 14.5 .0104

3 .2799 .4380 15.5 .0069 .3725 .5000 8.2 .0567 .1240 .2860 24.0 .0039 .2981 .4502 14.1 .0088

4 .2749 .4240 17.0 .0046 .3694 .4857 12.2 .0344 .1145 .2620 30.0 .0011 .2935 .4361 16.1 .0060

Best TREC Robust04 title (t) and description (d3) runs
t. pircRB04t3
d1. pirc model without PRF or web expansion [Kwok et al., 2005]
d2. pirc model with PRF but without web expansion [Kwok et al., 2005]
d3. pirc model with PRF and web expansion (official pircRB04d4 submission)

Other Methods
1. Dirichlet Smoothing [Lafferty and Zhai, 2001]
2. MRF (§2.6)
3. Collection-ICF [Smucker and Allan, 2006]
4. Key Concepts (§2.7.2)

PRF [Lavrenko and Croft, 2001] results were generated with the following Indri [Strohman
et al., 2004] settings:

1. fbDocs = 10 (fixed)
2. fbTerms = 50 (fixed)
3. fbMu = 0 (default)
4. fbOrigWeight = 0.4 (tuned for MRF on topics 301-450)

Table 2.6: Comparison of published work vs. official results of the TREC 2004 Robust track (refer
to Table 3 in the 2004 track overview). Evaluation is performed on the Robust04 document collec-
tion (Table 2.4) using four topic sets defined by the track: “old” (301-450, 601-650), “new” (651-
700), “hard” (50 topics from 301-450 identified in the Robust03 track overview), and “combined”
(all 250 topics). Note that new topics reflect blind evaluation while other topics do not. Besides
usual metrics of mean-average precision (MAP) and precision-at-10 (P10), two non-standard met-
rics are reported which focus on difficult topics: “%no”, referring to the percent of topics for which
P10 = 0, and “area”, referring to area under the MAP curve for the worst quarter topics. The
latter two metrics were computed via a publicly available NIST script used in the original tracks:
http://trec.nist.gov/data/robust/robust2004_eval.pl.



Chapter 3

Supervised Model Estimation with

Regression Rank

This chapter presents a new supervised learning framework called “Regression Rank” for predicting

effective term weights on novel queries given examples of past queries and their relevant documents.

Term weights are generated by a feature-based model leveraging various statistics, and feature

weights are learned from past queries via regression. We evaluate our approach with retrieval exper-

iments on TREC description queries, which typically perform less accurately than title queries

due to poor estimation of term weights. Experiments on three TREC collections show both improved

search accuracy and significant potential for additional improvement.

3.1 Introduction

Classic approaches to IR have achieved broad success by exploiting highly-discriminating terms to

model the relationship between queries and documents. Be it vector similarity (§2.4.1), document-

likelihood (§2.4.2), or query-likelihood (§2.4.3), each adopts a simple bags-of-words representation,

employs similar TF-IDF statistics [Zhai and Lafferty, 2004], and performs comparably in prac-

tice [Fang et al., 2004]. Despite their success, however, these classic approaches are limited by their

common lack of support for supervised estimation: there is no mechanism by which term weight

estimation can be improved over time. Often there is also no provision for inferring the relative

importance of query terms in context of the specific query. We present an approach for tackling

these related concerns in tandem.

Imagine we know for some past query that a particular word was important (i.e. assigning it high

weight relative to other terms yields effective retrieval for that query). How does this knowledge

inform our ability to weight terms effectively in future queries? The problem is effective term

weighting is very much a context-sensitive issue, making it difficult to generalize anything about

appropriate weighting from one query to the next. As a consequence, recent work in learning to

38
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rank (LTR) [Joachims et al., 2007] has backed off from modeling individual words to instead employ

aggregate measures of lexical compatibility. While using less specific features does enable cross-

query learning, it comes at the cost of sacrificing model power to discriminate between relevant and

non-relevant documents on the basis of individual terms. LTR methods offset this loss in lexical

expressiveness by leveraging additional knowledge sources, but they leave us with the trade-off that

learning can only be achieved by abandoning a hallmark strength of classic IR techniques.

In addition to having consequences for learning, context-sensitivity also limits retrieval effec-

tiveness. For example, far improved retrieval accuracy has been achieved using relevance models

to perform query-specific estimation of term weights [Lavrenko and Croft, 2001, Zhai and Lafferty,

2001]. The problem with addressing context-sensitivity via feedback-based approaches is that (ex-

plicit) relevance feedback requires user interaction, and pseudo-relevance feedback can be unreliable,

depending on retrieval accuracy with the original query. As query length increases, the consequence

of ignoring context also grow more severe. For example, consider TREC topic 331 shown in Table 2.2.

Although the description contains additional informative terms in comparison to the title, these

terms likely represent weaker correlations individually with the user’s core information need. This

means that despite being more informative, system failure to effectively weigh the importance of

query terms yields a weaker understanding of the overall query, lowering retrieval accuracy.

Regression Rank represents a middle way between LTR and classic approaches, intended to

capture the best of each: we can continue to leverage individual terms, learn term weights effectively

from past queries, and incrementally add arbitrary features to smoothly transition toward richer

query and document representations. Given a bag-of-words retrieval model (§3.2.1) and a set of

training queries with relevant documents, we first estimate effective term weights for each query

(§3.2.2). Because term weights do not generalize across queries, secondary features correlated with

term weights are introduced to bridge this gap (§3.2.3). Finally, a regression function is learned on the

basis of these features to predict term weighting for novel queries (§3.2.4). Though our presentation

here restricts attention to lexical features (i.e. bag-of-words representation), our framework is as

extensible as other LTR approaches in allowing arbitrary additional features to be incorporated

into the retrieval model so long as one can correspondingly define secondary features for predicting

retrieval model feature weights.

To evaluate our approach, we conduct retrieval experiments with TREC description queries

on three TREC document collections (§3.3). While description queries present more challenging

estimation requirements than title queries with respect to inferring query term weights, they also

provide us with an opportunity to realize more accurate retrieval. Results show context provided by

description queries enables us to realize more accurate search today and opens the door to largely

untapped potential for additional improvement.

3.2 Method

This section describes Regression Rank’s four components:
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1. A retrieval model (parameterized uniquely for each query)

2. A procedure for estimating retrieval model parameters on a given query

3. A set of secondary features correlated with retrieval model parameters

4. A regression procedure to infer retrieval model parameters from features

3.2.1 The Retrieval Model

While the choice of retrieval model used with Regression Rank is largely unfettered, it must be drawn

from some parametric family for which one can imagine corresponding secondary features correlated

with the retrieval model’s feature weights and generalizing across training examples (i.e. queries). We

restrict work here to bag-of-words retrieval; our goal is to preserve the lexical discriminating power of

classic approaches while augmenting them with two new strengths: the ability to effectively estimate

query term weights given knowledge of past queries, and the ability to incrementally transition

toward richer representations of queries and documents.

Of the three classic approaches, we adopt query likelihood for our retrieval framework. In this

language model (LM) approach, we assume each observed document D is generated by an underlying

LM parameterized by ΘD. In §2.4.3, we showed how query-likelihood can also be interpreted as KL-

divergence based ranking assuming the latent query unigram ΘQ is estimated by maximum-likelihood

(ML). Not only does this insight communicate the importance of effective query model estimation

for achieving accurate search, but it also highlights query likelihood’s implicit ML assumption that

all query tokens are equally important.

In practice, some query terms will almost certainly correlate with the desired relevance distinction

more than others, and this is particularly true with verbose, natural language queries in which many

terms tend to individually represent weaker correlations. Unfortunately, the presence of these weaker

correlations can have the undesirable effect of causing system focus to drift away from the user’s core

information need. Consequently, accurate estimation of ΘQ necessarily plays a more significant role

with verbose than keyword queries. However, complementing this challenge is a new opportunity.

Assuming mass assignment to ΘQ is restricted to terms observed in Q, verbose queries enable greater

modeling power by projecting the discrimination task into a higher dimensional space in which the

presence of additional terms provides greater flexibility for discriminating between relevance and

non-relevance. The key here to both challenge and opportunity is effectively estimating ΘQ.

We estimate ΘD via standard Dirichlet-smoothing (§2.4.3) with a fixed hyper-parameter µ. Con-

sequently, our estimation task is reduced entirely to effectively predicting the latent query unigram

ΘQ for novel input queries.

3.2.2 Estimating the Query Model

A key idea of Regression Rank is that one can generalize from effective query models (§3.2.1) of past

queries to infer strong query models on future queries. To perform this generalization, we must have
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query models to generalize from. This means we require a method for estimating the query model

for each training query given examples of its relevant (and possibly non-relevant) documents.

There is a large body of related previous work to build on in relevance and pseudo-relevance

feedback [Lavrenko and Croft, 2001, Zhai and Lafferty, 2001] as well as LTR [Joachims et al.,

2007], but there are also some significant differences between our task here and that considered

in previous work. Whereas relevance feedback usually assumes a handful of annotated examples,

we can conceivably use every document in the collection for training. Pseudo-relevance feedback is

noisy and depends on the accuracy of the initial retrieval. LTR training methods have directed little

attention toward estimating lexical feature weights on a single query for a very good reason: there

would be little point in the exercise. Since lexical features don’t generalize across queries, we would

simply be memorizing an optimal ranking for one particular query. However, this exercise becomes

important in our framework.

We have adopted the classic strategy of grid search (cf. [Salton and Buckley, 1987]): sampling

retrieval accuracy from a target metric space at regular points corresponding to candidate param-

eterizations. While this method of tuning has a long history in IR, some recent work in learning

to rank has instead explored optimizing other surrogate functions in order to achieve more efficient

training (cf. Joachims et al. [2007]). The tradeoff in doing so, however, is that a given surrogate func-

tion may be poorly correlated with the target metric one is actually interested in, leading to metric

divergence [Metzler and Croft, 2007b]. While grid search scales relatively poorly as the parameter

space increases, it is simple, reasonably efficient with few parameters and/or coarse sampling, and

allows the retrieval metric of interest to be directly optimized. Our particular use of grid search

has involved a couple of noteworthy details. First, grid search requires specifying the granularity

of assignments to sample. We determined this via a reinterpretation of earlier work in query re-

duction [Kumaran and Allan, 2007]. This prior work generated all possible reductions (i.e. term

subsets) of an original description query and then explored alternative methods of reduction selec-

tion. In the spirit of the earlier derivation (§3.2.1) in which query formulation was transformed into

query model estimation, we let query reductions define the set of query models at which to evaluate

retrieval accuracy in the metric space. Considering all reductions provides fairly robust coverage

of the query model’s effective assignment subspace. Because previous work showed most optimal

query reductions contained six or fewer terms [Kumaran and Allan, 2008], we adopted an efficiency

expedient and limited our sampling to query models containing six or fewer non-zero parameters.

The second noteworthy detail concerns how the query model is estimated once samples have

been obtained from the metric space. The easiest solution is to simply pick the query model whose

sample achieved maximum score on the target metric, but this may not be the best strategy in the

context of Regression Rank. Recall our objective in inferring the query model is to enable eventual

regression across queries (§3.2.4). The problem with this easy solution is that subsequent regression

will be based on a single sample that may be drawn from a sharply-peaked local maximum on the

metric surface. This would mean that were we to attempt to recover this parameterization via

regression, small regression errors could yield a significant drop in metric performance. For this
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reason, we instead estimate ΘQ as the expected query model Θ̂Q =
∑

s[ Metric(Θs)Θs], a sum in

which each sample query model Θs is weighted by the retrieval accuracy it achieved. The intuition

here is that this expectation should yield parameter values tending to perform well in general, and

so the parameterization will more likely correspond to a smoother portion of the metric surface.

Additionally, this strategy lends itself more easily to independent estimation of parameters since

the expectation considers assignments to each parameter in a variety of contexts. A final detail is

that since retrieval accuracy differed significantly across queries, the expected query model for each

query was normalized to the interval [0, 1] to provide a more stable basis for regression. Though we

omit details, this yielded a statistically significant improvement on the development set (§3.3).

3.2.3 Secondary Features

Given examples of past queries and corresponding inferred query models, our next task is to identify

secondary features. These features should both correlate with the query model and generalize across

queries so that we may predict appropriate query models on future queries. This section describes

our current feature set; a complete listing appears in Table 3.1. While existing features have proved

effective, their paucity and simplicity can be taken as evidence that exploration of the feature space

is far from complete.

Query model parameters can be understood as expressing relative term importance within the

context of the overall query. As such, it should not be too surprising that the classic statistics

of term frequency (tf ) and document frequency (df ) appear in our feature set (Features 1-12) to

model term ubiquity and specificity, respectively. Since we are interested in relative rather than

absolute term importance, we also computed these statistics in context of the other query terms

(i.e. normalized) as well as in raw form. In addition to these classic statistics, we follow previous

work (§2.7.2) to employ Google 1-gram tf [Brants and Franz, 2006] and residual inverse-df (idf )

statistics (Features 13-14). The massive volume of the former is intended to provide another useful

estimator of term frequency, particularly in the case of small collections, and the latter assumes

important terms can be detected by distributional deviation from Poisson. While Google-based

statistics provide a useful measure of term frequency on the Web, we also found it useful to gather

the above collection-based statistics (i.e. tf, idf, and residual idf ) from Gigaword [Graff et al., 2005]

in addition to the target retrieval collection. This is reflected in Table 3.1’s notating these feature

templates as parameterized by a collection argument C to produce different feature instances for

each collection. Use of out-of-domain data was motivated by previous work’s empirical evidence of

increased correlation between term importance and idf as collection size grows (§2.7.2), as well as

another line of prior work having demonstrated significant retrieval benefit from leveraging external

corpora (§7.2) [Diaz and Metzler, 2006]. A final traditionally-inspired feature, stop(qi) (Feature

15), asks whether or not a given query term appears in the stop list (§3.3). While we do employ

deterministic stopping, we stop before stemming to avoid accidental stemming collisions with the

stop list. Nevertheless, stop words produced by stemming often are in fact unimportant to the query,

and including a feature comparing stemmed words to the stop list proved useful.
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Parameter Description

Q = q1 . . . qm , i Query Q of length m, indexed by i
C, N Collection C containing N documents
n, w Integer scalar & lexical token (parameters)
T Part-of-speech tag-set

Feature Template ID Type Definition

term frequency: tf (C,Q, i)

1 integer tfi: raw frequency of qi in C
2 real tfi/maxm

j tfj

3 real tfi/
∑m

j tfj

4 real log(tfi)
5 real log(tfi/maxm

j tfj)
6 real log(tfi/

∑m
j tfj)

document frequency: df (C,Q, i)

7 integer dfi: # documents in C containing qi

8 real dfi/maxm
j dfj

9 real dfi/
∑m

j dfj

10 real log(dfi)
11 real log(dfi/maxm

j dfj)
12 real log(dfi/

∑m
j dfj)

residual IDF: ridf (C, qi) (§2.7.2) 13 real log(N/dfi) − log(1/1 − eαi) , αi = tfi/N
Google TF: gtf (qi) (§2.7.2) 14 integer raw frequency of qi in Google 1-grams

stopword: stop(qi) 15 boolean is qi a stopword?

qi’s location in Q: loc(i, m, n)
16 boolean does i = n? (query initial)
17 boolean does m− i = n? (query final)

lexical info: context(Q, i, w)
18 boolean does qi−1 = w?
19 boolean does qi+1 = w?
20 boolean is qi trailed by comma?

part-of-speech: pos(qi, T ) 21 boolean is tag(qi) ∈ T

Table 3.1: Secondary features used to predict the query model. We define log(0) ≡ 0 and anything
0

≡
0 to account for out-of-vocabulary query terms. Features are parameterized templates, instantiated
with various settings to yield multiple feature instances.
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Features 16-17 (location) correlate term importance with proximity to the start or end of the

query string (experiments in §3.3 set n = 5 as the window size), and we found it beneficial to instan-

tiate this feature for both the user’s original query and its normalized version used in retrieval (i.e.

after stopword removal, converting hyphenated compounds into separate terms, etc.). Features 18-

20 (context) correlate term importance with presence of certain surrounding terms or punctuation.

All possible terms were considered during feature collection, but few actually survived to instantia-

tion due to feature pruning (see below). Feature 21 asks whether a given term’s part-of-speech is a

member of a given tag-set, correlating tag-sets with term importance1.

Because a given statistic will be more reliably estimated under more frequent observation, we

employed feature pruning to discard any instantiated feature that was not observed at least a pa-

rameter η times in the training data; we set η = 12 based on development set tuning (§3.3). As

mentioned earlier, this significantly reduced the number of lexical features and generally helped filter

out chance correlations from sparse features. Non-sparse features like tf which occur for every term

were unaffected by pruning. Following previous work [Joachims et al., 2007], feature values were

normalized to the interval [0, 1].

Finally, the astute reader may have noticed our use of df rather than the more usual idf features

and wonder if this was motivated. Consequently, we close this section with a quick note regarding

df vs. idf = N/df features in a linear regression model with bias term b (§3.2.4). Since N is constant,

use of IDF simply varies feature j’s bias contribution bj and the sign of the learned weight λj:

λj log(N/df) = λj log(N) − λjlog(df) = bj − λj log(df). If all queries were of fixed length, bias

contributions from all query terms could be equivalently folded into the model bias term, but varying

query length requires an additional length feature in conjunction with df to achieve strict equivalence

with idf. In practice, we saw little difference either way and our choice of df was arbitrary.

3.2.4 Inferring the Query Model via Regression

Given examples of target term weights paired with corresponding secondary features, our next task is

to predict the query model based on the features. Since the output of our learner will be continuous

values, our task is one of regression, and we follow a standard approach to accomplish it. That said,

we will briefly motivate the approach taken and its merits in the context of our task.

Let N denote the number of query terms across the entire training set, Y = {y1 . . . yN} the

target term weights, and X = {X1 . . .XN} the feature vectors. Next, let d denote the number of

features (i.e. dimensionality of our feature space) and Xi = {x0
i , x

1
i . . . x

d
i } denote the ith feature

vector with x0
j = 1 by definition for all j. Also, let W = {w0w1 . . .wd} denote the weight vector (w0

is the bias term). To define a learning objective, let L(y, ŷ) = (y − ŷ)2 define the loss function to

minimize given a given target value y and our prediction for it f(X,W ) = ŷ (standard assumption of

squared loss here assesses positive and negative errors equivalently). Assuming X and Y are drawn

1While the only part-of-speech distinction currently employed is distinguishing nouns and verbs from other cat-
egories, we actually fully parse the original query strings with a treebank parser [McClosky et al., 2006] once
sentence boundaries have been detected [Reynar and Ratnaparkhi, 1997]. While tags might be more easily ob-
tained without parsing, our use of parsing is intended to support future work exploring syntactic features.
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from the joint distribution p(X, y), our goal is to minimize risk (i.e. expected loss, c.f. [Lafferty and

Zhai, 2001]): E(X,y)vp[L(f(X,W ), y)]. Lacking oracle knowledge of p(X, y), we approximate risk

with the empirical loss
∑N

i L(f(Xi ,W ), Yi) =
∑N

i (yi −
∑d

j=1 wjx
d
i )

2 = (Y −XW )T (Y −XW ) and

seek an optimal weight vector W ∗ minimizing this quantity. Conveniently, this sum of least squares

optimization problem has a closed form solution: W ∗ = (XT X)−1XTY .

However, W ∗ above corresponds to the setting of W maximizing the likelihood of Y assuming

it is generated by adding Gaussian noise to f(X,W ). Recalling our earlier discussion regarding

maximum likelihood (ML) estimation of the query model(§3.2.2), we saw that ML’s accuracy suffers

from its estimate being uninformed by prior knowledge. Here we see another aspect of this same

problem: ML acts as a what-you-see-is-all-there-is estimator, assuming any observational knowledge

provided is complete. In particular, it suffers from over-fitting, assigning probability mass to weight

features which may be demonstrating only chance rather than true correlation. To rectify this,

one often regularizes the optimization by penalizing larger weight vectors in the loss function. For

example, we could revise our empirical loss formulation as
∑N

i L(f(Xi,W ), Yi) = (Y −XW )T (Y −

XW ) + βWTW where β defines a controllable regularization parameter. This regularization of the

ML solution is known as ridge (or L2) regression and also has a convenient closed-form solution:

W ∗ = (βI + XTX)−1XTY where I denotes the identity matrix. Another alternative, lasso (L1)

regression, penalizes the absolute value of W is instead of its square. While lasso regression does

not have a closed-form solution, many techniques exist for computing it, and its stiffer penalization

of W can lead to sparser assignments with fewer spurious features.

In empirical trials comparing the three techniques described above, (ML, L1, and L2 regression)

with respect to squared loss on the development set (§3.3), L2 consistently performed best, with

manual sweep of β finding an optimal setting at β = 1. Consequently, we adopt this approach in

our retrieval experiments. We also evaluated logistic regression, which would be more principled to

employ here since the output ΘQ really ought to be constrained to being a probability distribution,

but we saw little empirical difference in practice (recall the model is invariant to parameter scal-

ing). Other regression variants were also evaluated but not found to be sufficiently remarkable in

comparison to merit discussion.

3.3 Evaluation

This section evaluates effectiveness of Regression Rank on three TREC collections of varying size

and content (Table 2.4). All model development was performed on the Robust04 collection using

149 topics (301-450 except 342 due to its excessive length); remaining topics (including 342) and

collections were reserved for blind evaluation. Final results (Table 3.2) use all available data.

Keyword and description queries were taken from topic title and desc fields, respectively2 .

Model training used 5-fold cross-validation, and retrieval was performed using Indri [Strohman

2While TREC evaluations often use title and desc fields concatenated as an evaluation condition, the resultant
queries do not read naturally and artificially reinforce key terms through repetition. In contrast, the desc field
alone provides a more realistic example of an information need expressed in natural language.
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et al., 2004]. Primary evaluation metrics were mean-average precision (MAP) and top-5 preci-

sion (P@5), as reported by trec_eval 8.13. Results are marked as significant† (p < 0.05), highly

significant‡(p < 0.01), or neither according a non-parametric randomization test computed by In-

dri’s ireval [Smucker et al., 2007]. Experimental conditions were designed to match previous work

(§2.7.2) for comparison. Queries were stopped at query time using the same 418 word INQUERY

stop list [Allan et al., 2000] and then similarly Porter stemmed [Porter]. The same Dirichlet param-

eter µ = 1500 (§3.2.1) was used.

We begin by presenting development set (Table 2.4) results. As a baseline, we evaluate the

standard practice of inferring the query model by maximum-likelihood (ML), i.e. assigning uniform

weight to each token observed in the query. Under this baseline, keyword queries achieve 2.83%‡

higher MAP (absolute) than description queries. Since additional terms introduced by description

queries tend to individually represent weaker correlations with the desired distinction between rel-

evant and non-relevant documents, intuitively these terms should be assigned lower weight in the

inferred query model. The baseline fails to do this, however, and retrieval accuracy falls as a result.

In contrast, using Regression Rank with description queries improves accuracy 4.17%‡ over baseline

description results and 1.34% over baseline keyword results.

Using TREC topics to compare accuracy achieved with keywords and description queries, ana-

lyzing the effect of query verbosity is occasionally complicated by important keyword terms missing

from the descriptions. In these cases, keyword queries may benefit from being more informative

in addition to being tightly focused. To control for this, we identified 122 development set topics

for which all keywords were contained in the descriptions and evaluated performance on this topic

subset. Baseline keyword accuracy improvement over description accuracy was reduced to 2.31%†

(absolute). Further, Regression Rank achieved 4.54%‡ over baseline description and 2.23%‡ over

baseline keyword results. Figure 3.1 shows change in retrieval accuracy over all development set

topics as a function of query length. Broad improvement is seen both in terms of number of queries

improved and change in MAP at each length.

Recall the first step in our framework is to estimate importance of terms in each training query

given that query’s relevant documents, and recall that we accomplish this by sampling retrieval

accuracy achieved under different candidate query models (§3.2.2). Given that subsequent regression

is based on the estimated query models, intuition suggests more accurate estimation should yield

more accurate retrieval following regression. To test this, we tried restricting sampling to queries

of 15 words or less, reducing the total number of samples from 502K to 104K. When performing

regression based on this reduced sample set, retrieval accuracy fell 1.07%‡ (absolute). While these

results are certainly sensitive to the sampling procedure used, it nonetheless seems clear that strong

estimation of training query models has an important effect on downstream retrieval accuracy. This

further suggests additional gains might be realized by implementing a more effective estimation

procedure or simply increasing the number of samples taken.

Our main results (Table 3.2) use all queries for all three TREC collections (Table 2.4). In addition

3http://trec.nist.gov/trec_eval
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Figure 3.1: Analysis of development set results shows retrieval accuracy improvement as a function
of query length. Bars show the number of queries for each query length and the ratio of them that
were improved. MAP improvement achieved at each length is marked by ’+’.

Results

Robust04 W10g GOV2
Query Model P@5 ∆ MAP ∆ P@5 ∆ MAP ∆ P@5 ∆ MAP ∆

Title ML 47.55 24.97 31.80 19.61 55.97 29.81

Desc.

ML 47.31 - 24.29 - 40.00 - 18.49 - 51.81 - 25.42 -

RRank 51.97‡‡ 4.66 27.09‡‡ 2.80 41.40‡ 1.40 22.15†‡ 3.66 53.96 2.15 27.42‡ 2.00

*REG 60.16 12.85 32.01 7.72 46.60 6.60 27.95 9.46 62.60 9.79 33.43 8.01
*RED 35.07 10.78 31.75 13.26 36.03 10.61

Key Concepts (§2.7.2) [Bendersky and Croft, 2008]

Robust04 W10g GOV2
Query Model P@5 ∆ MAP ∆ P@5 ∆ MAP ∆ P@5 ∆ MAP ∆
Title ML 47.80 25.28 30.73 19.31 56.75 29.67

Desc.
ML 47.26 - 24.50 - 39.20 - 18.62 - 52.62 - 25.27 -
�SDep 49.11 1.85 25.69 1.19 39.80 0.60 19.28 0.66 56.88 4.26 27.53 2.26
KCon 48.54 1.28 26.20 1.70 40.40 1.20 20.46 1.84 56.77 4.15 27.27 2.00

Table 3.2: Retrieval results comparing methods for term weight estimation using all queries and
collections (Table 2.4). A baseline maximum-likelihood (ML) technique is compared to Regression
Rank (RRank) and the Key Concepts (KCon) model (§2.7.2). Primary comparisons are shaded.
Results from a non-unigram dependency model (�SDep) reported previously [Bendersky and Croft,
2008] are also shown. Since our baseline results differ slightly with those reported earlier [Bendersky
and Croft, 2008], we present both sets of baselines to show each work’s improvement ∆ relative to
its own baseline. Oracle runs show retrieval accuracy under conditions of perfect regression (*REG)
and perfect reduction (*RED). Scoret

d superscript and subscript annotations indicate significance
with regard to title and description baselines.



48

to the ML baseline defined earlier, we also compared to Bendersky and Croft’s Key Concepts model

(§2.7.2). Regression Rank achieved highly significant MAP improvement over baseline description

accuracy for all collections. Compared to baseline keyword accuracy, MAP improvement was highly

significant for Robust04 and significant for W10g; both Regression Rank and Key Concepts failed

to improve over baseline keyword accuracy. Regression Rank also achieved 1.1% and 1.82% absolute

MAP improvement over Key Concepts for Robust04 and W10g, with equal performance achieved

on GOV24.

Another baseline strategy one might consider for verbose queries is to simply ignore all terms

but the nouns. In other words, automatically part-of-speech tag input queries and employ a stoplist

filtering out non-noun categories (rather than the more usual practice of stopping specific terms).

We did not evaluate this baseline, but Bendersky has reported it achieves poor accuracy in practice

due to the importance of non-nouns in some queries5. This approach would also suffer from the

same problems with robustness as typical term-based stopping (§8.1).

We also report retrieval accuracy under two oracle conditions: perfect regression and perfect

reduction. Perfect regression indicates retrieval accuracy that would be achieved if we could perfectly

recover the expected query models estimated by sampling (§3.2.2). This provides an indication of

how well secondary features and regression are working, how well our regression strategy can work

across collections, and the potential for future improvement by improving features and regression.

Perfect reduction results are higher and indicate accuracy achieved by the best query reduction

found for each query during sampling. This result shows that even if perfect regression were achieved

under current conditions, significant further improvement would still be possible if we could perform

accurate regression on the basis of optimal reductions instead of expected query models. However,

this would present a further challenge to regression since expected query models are more stable

against regression error (§3.2.2).

3.4 Discussion

While Key Concepts (§2.7.2) presents a similar learning strategy, several important differences dif-

ferentiate the two approaches. With Key Concepts, learning is applied only for predicting noun

phrase (NP) weights. This means all terms within a noun phrase are assigned the same weight from

the learning component (i.e. tied parameters), and mixture with the ML estimate is required to

weight all other terms. In contrast, Regression Rank’s learning predicts all term weights without

any parameter tying.

Another notable difference is in terms of the form of supervision employed. Key Concepts

learns from NP annotations whereas Regression Rank uses document relevance annotations. The

advantage of the former approach is that the annotation task is likely simpler and therefore cheaper if

one wanted to pay for additional annotations in order to further improve learner accuracy. However,

4Statistical significance was not measured here due to lack of access to Key Concepts rankings at the time.

5Personal communication
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since document relevance annotations are widely produced to facilitate system evaluation already,

we can exploit these annotations serendipitously for supervised learning on today’s and tomorrow’s

document collections at no cost. Even better, document relevance-based learning is directly amenable

to estimation via click-through data [Joachims, 2002] rather than being constrained by manual

annotation. Instead, lifetime model learning is possible by harnessing the ever-growing logs of

search engine use and letting click redundancy compensate for uncertainty of relevance.

An additional benefit of Regression Rank’s learning strategy is that it directly maximizes the

target metric of interest (§3.2.2). In contrast, Key Concepts learning is indirect, trusting classifier

confidence in reproducing human intuition of key NPs will translate to improved retrieval accuracy.

Other important related work to mention includes term-specific smoothing [Mei et al., 2007]

and probabilistic indexing [Fuhr and Buckley, 1991]. The former method also attempts to unlock

the expressiveness of term-based models via better estimation, but it tackles a much more difficult

estimation problem by trying to directly learn one parameter per term. We simplify this problem

by estimating a much smaller secondary feature space, and this further lets us predict context-

dependent parameters for terms. Probabilistic indexing also applied supervised learning but carried

it out for documents rather than the query, used a much smaller feature space, and was evaluated

on a relatively small datasets by today’s standards.

Overall, we believe the Regression Rank learning framework exhibits several useful properties:

• two-layer hierarchical modeling: We model each problem instance via instance-specific

“primary” features, then generate primary features via “secondary” features generalizing across

problem instances. In short, we exploit a level of indirection in modeling the problem.

• metric and model independence: Since the framework can maximize an arbitrary target

metric atop any parametric model, it can be broadly applied as a general learning procedure.

• separation of concerns: Since estimation is performed atop an arbitrary parametric model,

we can preserve wholesale existing methodology and engineering effort for achieving efficient,

scalable search. Research on both fronts can proceed in parallel with minimal interaction.

• incremental extensibility: Independence of model and estimation mean we can explore

incremental additions to the feature space without needing to revise the learning procedure.

• context-dependent modeling: We can learn context-dependent weights over context-independent

search model features by capturing context in secondary features rather than the search model.

This yields a novel approach for achieving query-dependent feature or model combination [Geng

et al., 2008].

3.5 Future Work

The estimation approach we adopted directly maximized target metric retrieval accuracy in order to

avoid divergence between optimization and evaluation goals (§3.2.2). However, it should be noted
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that an alternative form of metric divergence still exists in our method via our use of regression

(§3.2.4). This is seen by observing that our regression procedure minimizes squared loss of data fit

rather than maximizing our target IR metric. A possible strategy for ameliorating this effect would

be to perform regression based on all parameterizations evaluated during grid search rather than just

the expectation computed over those samples (§3.2.2). In other words, whereas current regression

training for each term targets a single scalar yi weight given the term’s feature representation Xi,

instead we would have a target vector of weights −→yi and the corresponding metric accuracy each

achieved −→ai . Such weighted regression is easily performed using Matlab’s “lscov” method or a

similar utility. The intuition here is that rather that perform inference off a single point estimate

(i.e. the expectation), we would likely be better served to propagate uncertainty regarding optimal

parameterization to the regression module so that it can be taken into account there. Of course

this would still rest on an approximation since the metric accuracy for each instance is not purely a

function of the individual term and its weight, but rather a joint score over for the query as a whole,

and it may be that a particularly high scoring joint parameterization is sensitive to settings of all

parameters. However, performing weighted regression across all (weight,accuracy) pairs for a given

term should amortize such effects as accomplished explicitly by our original use of the expectation.

3.6 Conclusion

This chapter introduced a supervised learning framework called “Regression Rank” for predicting

effective term weights on novel queries given examples of past queries and their relevant docu-

ments. Term weights were generated by a feature-based model leveraging various statistics, and

feature weights are learned from past queries via regression. We evaluated our approach with re-

trieval experiments on TREC description queries, which typically perform less accurately than

title queries due to poor estimation of term weights. Experiments on three TREC collections

showed both improved search accuracy and significant potential for additional improvement.

In Ch. 4, we describe how Regression Rank can be applied to achieve more effective Markov

Random Field modeling (§2.6), and Ch. 5 shows how the feature spaced employed here (§3.2.3)

can be greatly simplified while still maintaining equivalent retrieval accuracy. Subsequent chapters

do not apply Regression Rank but explore related issues: coping with verbosity of documents for

effective relevance and pseudo-relevance feedback (Ch. 6), and improving estimation with sparse

document collections (Ch. 7).



Chapter 4

Better Markov Random Field

modeling

The previous chapter introduced Regression Rank, a supervised learning framework for retrieval

model estimation, and showed how it could be used to improve term-based retrieval accuracy for

verbose queries. In this chapter, we study the combined effect of applying our more effective term-

based model in conjunction with modeling term adjacency and proximity features. In particular,

we use Regression Rank to better estimate the unigram component of Metzler and Croft’s Markov

random field (MRF) model [Metzler and Croft, 2005] (§2.6). While the original MRF formulation

includes a parameter for each of its three feature classes (i.e. terms, adjacency, and proximity),

parameters within each class are set via a uniform weighting scheme adopted from the standard

unigram. We hypothesize greater MRF retrieval accuracy can be achieved by better estimating these

within-class parameters, and we empirically test this hypothesis using the same document collections

and verbose queries reported on in the previous chapter. Results show improved estimation of

MRF’s unigram component consistently out-performs both the MRF’s baseline performance and

our supervised unigram results from the previous chapter. We further study the interaction of

these approaches with pseudo-relevance feedback [Lavrenko and Croft, 2001]. Finally, we present

additional results demonstrating the potential benefit to be realized by better estimating MRF term

interaction parameters.

4.1 Introduction

Classic term-based approaches rank documents using a linear model computed over a feature space

of lexical terms (often coupled with a document-specific prior) [Ponte and Croft, 1998, Singhal et al.,

1996, Sparck Jones et al., 2000]. This simple feature set is remarkably expressive: a vast number

of rankings are possible given different settings of the individual term weights. In contrast to this

modeling expressiveness however, successful strategies for estimating term weights have relatively
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limited (though many variations have been explored over the years, often in an ad hoc fashion). Lack

of statistical learning means estimation accuracy cannot automatically improve as more observational

evidence becomes available. Recent work in supervised estimation of these models, such as described

in the previous chapter, has sought to remedy this deficit.

Of course, language conveys far more information than simple term-based models are able to

capture, and an important goal for long-term research is to develop richer models of language. A

recent contribution in this direction was the development of a Markov random field (MRF) approach

in which a standard unigram model is supplemented by two additional classes of lexical features:

contiguous phrases and proximity (§2.6). While this approach was certainly not the first to use

phrases or proximity (cf. [Brin and Page, 1998, Clarke et al., 2000, Gao et al., 2004, Mishne and

de Rijke, 2005] inter alia), it incorporates them via a simple, principled framework that is efficient to

compute and has been shown to consistently out-perform the standard unigram model across a range

of TREC document collections [Bendersky and Croft, 2008, Metzler and Croft, 2005]. An important

detail of the approach, however, is that although the weights for each feature class are learned

from data, feature weights within each class are in fact estimated by the same uniform assumption

as the standard unigram. This means that MRF estimation is similarly limited in modeling the

varying importance of query terms. Recognizing this limitation, however, also reveals a potential

opportunity to improve MRF accuracy by employing a similar supervised approach for parameter

estimation as has already been successfully applied to unigram modeling (Ch. 3).

In this chapter, we show this strategy is indeed viable: retrieval accuracy of the MRF model

can be significantly increased by applying supervised learning. We evaluate retrieval for verbose

queries in particular in order to improve document retrieval underlying question answering and other

focused retrieval tasks [Kamps et al., 2008]. Our main results show that in comparison to using either

the original MRF approach (§2.6) or a supervised unigram model (Ch. 3), integrating supervised

unigram model estimation into the MRF yields significantly improved retrieval accuracy for verbose

queries across three TREC document collections (§4.3.2). Additional experiments performed show

the strength of our improved MRF under blind-feedback as well (§4.3.3). Finally, we evaluate model

performance under optimal weighting of phrase and proximity features to demonstrate how their

more accurate estimation also significantly improves retrieval (§4.3.4). This last experiment shows

3% absolute improvement over the baseline model can be achieved by assigning all phrasal and

proximity weight to a single key dependency. In total, our results provide strong evidence that

more accurate estimation of feature weights within each lexical class can significantly impact MRF

model effectiveness. Results also motivate additional work exploring supervised estimation of feature

weights for phrasal and proximity features alongside those of individual terms.

4.2 Method

§2.6 summarized Metzler and Croft’s Markov Random Field model for retrieval (§2.6) and showed

that its term-based feature class computes the standard Dirichlet-unigram. This means that the
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feature class embodies the same implicit ML assumption that was shown earlier to underly the

unigram model (§2.4.3). Moreover, since all three of the MRF’s feature classes can be expressed

in the same generic form, phrasal and proximity classes also make the same ML assumption. In

other words, all observed feature instances for each class are assumed to be equally important in

estimating the form of the latent information need corresponding to each class. Another way to say

this is that all features within the same feature class are weighted by the same tied parameter λi.

This reflects a choice of potential functions used rather than a general limitation of MRF modeling.

We can generalize the model by instead assuming a unique potential function ψc
i (c) for each clique

rather than having a single function ψi(c) for each feature class: ψi(c) = λi

∑
c∈i ψ

c
i (c) =

∑
c∈i λ

c
if

c
i .

The class-wide weighting parameter λi is preserved here simply for convenience. This generalized

model is equivalent to the original under the condition that all clique-specific potential functions

ψc
i (c) within the same feature class adopt the same statistic Si and use the same tied parameter

λc
i = 1

|c∈i| . We argue for breaking this parameter tying and applying supervised learning to estimate

a unique weight for each clique to better model context-sensitivity.

Estimation with Regression Rank

We have just discussed how the MRF term component computes the standard Dirichlet-smoothed

unigram. Consequently, ΘQ is implicitly estimated by ML in the MRF as well to yield a uniform

distribution over Q’s terms. For example, we saw above that each clique is implicitly assigned

uniform weight 1
|c∈i|

. This is problematic for verbose queries in which many terms appearing in the

query are not strongly related to the core information need and should be assigned lower weight to

improve retrieval effectiveness [Bendersky and Croft, 2008, Kumaran and Allan, 2007]. A similarly

striking effect for dependencies is observed in §4.3.4.

Fortunately, we saw in Ch. 3 that ΘQ could be more accurately estimated by applying supervised

learning. Instead of applying the MRF’s default ML estimation of ΘQ, we instead use Regression

Rank. We adopt the generalized MRF having a distinct ψc
T (c) for each clique; the same term

frequency statistic is used across terms but the parameter λc
i is not tied. We then use our supervised

estimate of ΘQ to set λc
i values. This yields a more effective term component in the MRF with the

potential of improving the overall MRF ensemble’s retrieval accuracy. We evaluate this in §3.3.

While we do not apply supervised estimation of phrasal fO and proximal fU feature weights

here, results in §4.3.4 motivate future work in this direction. This might be achieved, for example,

by applying Regression Rank to predict MRF rather than unigram parameters and extending its

secondary feature set accordingly. In §4.4, we further discuss how the MRF model can be generalized

beyond ways in which it has been historically used, as well as how better estimation of its parameters

can enable us to take greater advantage of its full modeling power.
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4.3 Evaluation

This section presents empirical results measuring the impact of better MRF model estimation on

document retrieval accuracy. Retrieval experiments are conducted using the same three TREC

document collections as in Ch. 3 (Table 2.4). In order to improve document retrieval for verbose

queries like those found in question answering and other focused retrieval tasks [Kamps et al.,

2008], evaluation primarily addresses use of TREC description queries (also as in Ch. 3). We use

the sequential dependence MRF in our work since the full dependence MRF’s combinatorial feature

growth renders it intractable for use with verbose queries. An interesting topic for future work will

be performing feature selection over all dependencies, sequential and non-sequential alike (§4.4).

As in Ch. 3, documents are ranked using Indri [Strohman et al., 2004], with rankings scored using

trec_eval 8.11. Mean-average precision (MAP) serves as the primary metric, and results are marked

as significant† (p < 0.05), highly significant‡(p < 0.01), or neither according a non-parametric

randomization test computed by Indri’s ireval [Smucker et al., 2007]. Experimental conditions

reproduce those of previous work [Bendersky and Croft, 2008] and Ch. 3 for fair comparison. Queries

were stopped at query time using the same 418 word INQUERY stop list [Allan et al., 2000] and

then Porter stemmed [Porter]. The same Dirichlet hyper-parameter µT = 1500 was used for term

features as well as Indri default values for µO and µU phrasal and proximity hyper-parameters. A

window size of 8 tokens was used with the proximity feature.

4.3.1 Estimating MRF Component Weights

Recall that the MRF model uses three classes of lexical potential functions: individual terms ψT (c),

contiguous phrases ψO(c), and proximity ψU (c) (§2.6). These potential functions are parameterized

by λT , λO, and λU weights specifying the relative importance of each lexical class in the overall

MRF ensemble. In the original work (§2.6), grid search was used estimate class weights using title

queries over several document collections. Results showed an 85-10-5 mixing ratio (i.e. λT = 0.85,

λO = 0.10, and λU = 0.05) generally performed well across collections.

We begin our evaluation by testing the optimality of these recommended λT , λO, and λU settings

for verbose queries since earlier work applied the MRF’s 85-10-5 mixing ratio to them without testing

it (§2.7.2, Ch. 3). In comparison to title queries, verbose queries also exhibit more frequent syntactic

relations between adjacent terms, and semantically-related terms often occur farther apart. Further-

more, the greater effectiveness of the supervised unigram in comparison to the maximum-likelihood

(ML) unigram model used in the original MRF experiments suggested the unigram component here

might merit additional weight in the mixture.

Consequently, we performed our own grid search over possible mixture ratios using development

topics (§4.3.3). Despite any premonitions to the contrary, the 85-10-5 mixing ratio achieves MAP

performance remarkably close to optimal: 24.79 vs. 24.93 for Robust04, 23.18 vs. 23.35 for W10g,

and 26.68 vs. 27.01 for GOV2 (significance not reported). We therefore adopt the 85-10-5 ratio in

1http://trec.nist.gov/trec_eval
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Query Model Robust04 W10g GOV2
Title Base unigram 25.32 19.49 29.61

Desc.

Base unigram 24.51 18.61 25.22
MRF (§2.6) 25.64 19.14 27.40
Key Concepts (§2.7.2) 25.91 20.40 27.44
Regression Rank (Ch. 3) 27.33 22.01 27.35

MRF + Regression Rank 28.48 ‡
‡ 23.05 ‡

† 29.51 ‡
‡

Table 4.1: Main results compare MAP retrieval accuracy of baseline MRF [Bendersky and Croft,
2008] and Regression Rank (Ch. 3) models vs. their combination. Scorem

r superscripts and subscripts
indicate statistical significance of the combined model vs. the MRF (m) and Regression Rank (r)
baselines. Key Concepts (§2.7.2) and canonical unigram accuracy are also reported.

Query Model Robust04 W10g GOV2
Title Base Unigram 48.11 31.20 56.24

Desc.

Base Unigram 47.63 39.20 52.21
MRF (§2.6) 49.32 38.80 56.38
Key Concepts (§2.7.2) 47.55 41.40 57.05
Regression Rank (Ch. 3) 52.05 40.60 54.50

MRF + Regression Rank 54.30 ‡
‡ 42.00 †

† 57.18

Table 4.2: Precision at top 5 ranks corresponding to same retrieval experiments as in Table 4.1.

our subsequent experiments for convenient comparison to previous work.

4.3.2 Estimating Term Feature Weights

This section presents our main results (Table 4.1) evaluating retrieval accuracy of the original

MRF (§2.6), Regression Rank unigram (Ch. 3), and our combined model. Following previous work,

Regression Rank was trained on each collection using 5-fold cross-validation. However, since the

model was developed using only Robust04 (topics 301-450), further improvement of its performance

and that of our combined model may also be possible for W10g and GOV2 collections via collection-

specific model tuning.

Baseline performance of a standard unigram estimated by ML for both title and description

queries shows that title queries consistently perform better than their description counterparts under

ML estimation. While description queries are more informative to a human reader, additional terms

introduced relative to title queries tend to individually correlate more weakly with the query’s

underlying core information need. Consequently, these terms should generally be assigned lower

weight in estimation. ML’s assumption that all observed query terms are equally important fails

to do this, and retrieval accuracy suffers. The supervised estimation of Key Concepts (§2.7.2) and

Regression Rank (Ch. 3) models addresses this limitation and is able to improve unigram retrieval

accuracy as a result.

Our combined MRF model further exploits this better unigram estimation by leveraging it in
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Robust04 W10g GOV2
Model Test All Test All Test All
MRF (§2.6) 38.92 30.09 19.99 20.02 32.37 30.26
Regression Rank (Ch. 3) 37.03 30.52 21.77 22.48 30.36 28.96

MRF + Regression Rank 39.13‡ 31.82‡‡ 23.19†† 23.05‡ 32.91‡ 31.20‡

Table 4.3: MAP accuracy achieved by MRF (§2.6), Regression Rank (Ch. 3), and combined models
for test and all topics using pseudo-relevance feedback. Statistical significance is reported as in
Table 4.1.

conjunction with phrasal and proximity features. Across the three collections (Robust04, W10g,

and GOV2), the combined model achieves absolute MAP improvements of 2.84% ‡ (p < 0.0001),

3.91% ‡ (p = 0.0003), and 2.11% ‡ (p = 0.0003) respectively vs. the original MRF. The number

of queries improved, hurt or unchanged for each collection respectively are 166/83/0, 67/31/2,

and 96/52/1. In comparison to the Regression Rank supervised unigram (Ch. 3), absolute MAP

improvements of 1.15% ‡ (p < 0.0001), 1.04% † (p = 0.0282), and 2.16% ‡ (p < 0.0001) are achieved.

In this case, number of queries improved, hurt or unchanged are 151/96/2, 50/48/2, and 82/66/1.

Precision at early ranks also shows signs of improvement. For the top-5 retrieved documents, the

combined model achieves absolute improvements of 4.98% ‡ (p = 0.0001), 3.20% † (p = 0.0329), and

0.80% respectively vs. the original MRF for Robust04, W10g, and GOV2, respectively. The number

of queries improved, hurt or unchanged for each collection are 73/37/139, 32/17/51, and 36/38/85.

In comparison to the Regression Rank supervised unigram (Ch. 3), absolute precision improvements

of 2.25% ‡ (p= 0.0042), 1.40%, and 2.68% are achieved. Here, the number of queries improved, hurt

or unchanged are 52/29/168, 22/16/62, and 35/24/90.

4.3.3 Pseudo-relevance Feedback

This section reports retrieval accuracy of the original MRF model (§2.6), Regression Rank (Ch. 3),

and our combined model under pseudo-relevance feedback (PRF) (§2.5.2, §2.6.2). PRF was per-

formed using Indri [Strohman et al., 2004], which implements a variation on Lavrenko’s relevance

models [Lavrenko and Croft, 2001]. Only unigram feature weights are re-estimated via PRF since

previous work saw little benefit from PRF for re-estimating dependency feature weights [Metzler

and Croft, 2007a]. Ten feedback documents were used, with estimated feedback document models

truncated to the most probable 50 terms per document. The feedback model mixture weight was

tuned on development topics: 301-450 for Robust04, 451-500 for W10g, and 701-750 for GOV2. This

resulted in feedback model weights of 0.6, 0.1, and 0.3 for the three collections. Primary evaluation

was performed on the remaining topics. Results appear in Table 4.3. Accuracy on all topics is also

shown and allows comparison to earlier non-PRF results (Table 4.1). Earlier Tables 2.5 and 2.6

show accuracy of the MRF run on Robust04 topic subsets.

For test set topics across the three collections, MAP accuracy of the combined model was im-

proved by 2.10% ‡ (p = 0.0001), 1.42% † (p = 0.0338), and 2.55% ‡ (p = 0.0001) absolute vs.
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Regression Rank. The number of queries improved, hurt, or unchanged for each collection were

64/33/2, 24/26/0, and 58/41/1. In comparison to the baseline MRF model, MAP increased by

0.21%, 3.20% † (p = 0.0252), and 0.54%, with the number of queries improved, hurt, or unchanged

being 44/55/1, 30/20/0, and 49/50/1. As for comparative precision at early ranks, we briefly sum-

marize results. For the top-5 retrieved documents, differences are not significant with respect to

the base MRF, but the combined model does achieve significantly better precision than Regression

Rank across all collections (highly significant for Robust04).

Over all topics, the combined model is also seen to consistently perform best. While highly

significant MAP improvement is achieved over both MRF (∆ = 1.73%, p = 0.0012) and Regression

Rank (∆ = 1.30, p < .0000) for Robust04, we see an alternation of highly significant improvement

over MRF for W10g (∆ = 3.03, p = 0.0013) and over Regression Rank for GOV2 (∆ = 2.24, p =

0.0001) due to Regression Rank performing better for W10g while the base MRF model performs

better for GOV2. Lacking a means of predicting which base model will perform better for which

collection under PRF, the combined model is attractive in providing insulation from this alternation,

performing at least as well as the stronger base model in either case. When both base models do

perform well (e.g. Robust04), the combined model is seen to out-perform both of them.

4.3.4 Phrasal and Proximity Feature Weights

Thus far, results have addressed the impact of better estimating MRF term weights. We now report

the impact of better estimating MRF phrasal and proximity parameters.

Previous work generating all possible term subsets of verbose queries found retrieval accuracy

could often be far improved by reducing queries to six or fewer terms (§2.7.2). This inspired us

to try a similar experiment for phrasal and proximity features (i.e. sequential dependencies). We

evaluated dependency reductions of the base MRF model in which the default set of all sequential

dependencies was similarly reduced to a subset of at most six dependencies. This is equivalent to

performing a grid search exploring possible binary assignments to these parameters (cf. [Salton and

Buckley, 1987]). Other standard settings of the base MRF were kept fixed: 85-15-5 component

weights along with the ML unigram weighting scheme.

Results in Table 4.4 show retrieval accuracy on Robust04 using a set of development topics

(301-450). Statistical significance is not reported but can be safely assumed for the magnitude of

improvements we discuss. The most striking observation is that inclusion of only the single most-

helpful dependency improves MAP accuracy almost 3% absolute vs. the baseline model’s default

inclusion of all dependencies (i.e. ML estimation of dependency parameters). Furthermore, we

see that adding a second best dependency provides no additional benefit, and that use of any

greater fixed-sized subset of dependencies only serves to hurt performance vs. use of the single

best dependency. Previous work modeling individual terms has similarly found that emphasizing

one or two key terms in verbose queries also has the most significant impact on unigram retrieval

accuracy [Bendersky and Croft, 2008]. It would be interesting to measure the degree to which key

terms predicted in that work overlap with key dependencies found here. Results also show that if
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Dependencies MAP P@5
all (baseline) 21.10 43.84
1-best 24.02 50.27
2-best 24.05 51.37
3-best 23.67 51.10
4-best 23.11 49.18
5-best 22.73 48.49
6-best 22.27 47.12

oracle 25.49 55.07

Table 4.4: MAP retrieval accuracy of MRF model (§2.6) under varying parameterization of phrasal
and proximity features. The Robust04 collection was used with 146 description queries of length
20 or less (topics 301-450). Parameterizations were restricted to binary assignments of pair-wise
sequential dependencies. Statistical significance is not shown.

it were possible to simply identify the group of six most helpful dependencies without regard to

their respective ordering, improvement of 1% could still be achieved vs. the baseline. Finally, we see

upper-bound improvement of about 4% could be achieved by picking the optimal number of best

dependencies to use for each query.

Several details merit further optimism regarding the retrieval benefit of better estimating phrasal

and proximity parameters. The grid search we performed considered only sequential dependen-

cies; feature selection or weighting over the full cross-product of query dependencies (i.e. the full-

dependency model) can only improve upon these results. Similarly, our grid search was restricted

to binary assignments of parameters; more flexible weighting might also yield greater improvement.

We also assumed fixed MRF component weights and ML estimation of phrasal and proximity pa-

rameters; additional relaxation of these assumptions may increase accuracy further. Previous work

on sentence retrieval has also shown statistics regarding co-occurrence and syntactic relationships

can be usefully exploited to better estimate these parameters in practice [Cai et al., 2007].

4.3.5 Modeling Phrases vs. Proximity

This section describes a final simple experiment studying the effect of modeling ordered phrases

vs. proximity. While previous work has shown these two distinct types of features provide comple-

mentary benefit to retrieval accuracy, we show here that at least in the case of modeling pair-wise

sequential dependencies, nearly identical performance can be achieved across collections by model-

ing proximity only. Specifically, we replace the ordered #1 Indri operator with the unordered #uw2

proximal operator and leave other model settings unchanged. Results are shown in Table 4.5.

While proximity is still being matched at two different window sizes, results suggest the ordering-

restriction is unnecessary under settings in which the MRF model is typically used in practice.

Earlier work on biterm modeling similarly showed small differences in accuracy when employing

ordering-restricted and ordering-ambivalent models [Srikanth and Srihari, 2002]. This raises several

interesting questions. Do phrasal vs. proximity features really provide distinct value, or are we merely
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Feature Used Robust04 W10g GOV2
ordered #1 25.64 19.14 27.40
unordered #uw2 25.61 18.95 27.20

Table 4.5: MAP retrieval accuracy of the sequential-dependency MRF (§2.6) on verbose queries
using all topics. The standard MRF feature testing ordering of query term dependencies (#1) is seen
to have negligible impact vs. order-ambivalent matching (#uw2). Usual 85-15-5 component weights,
unigram weighting, proximal #uw8 features, and ML estimation of phrasal and proximal parameters
is used.

observing a graduated effect of proximity at different window sizes? Important named-entities and

collocations being matched may simply occur rarely enough in reversed order that the unordered

feature approximates the ordered feature with reasonable accuracy. Would modeling a broader range

of window sizes simultaneously be useful with smaller window size suggesting stronger dependencies?

Will the utility of distinctly modeling phrases vs. proximity become more clearly marked as we more

fully estimate the MRF model, using longer and non-sequential dependencies and abandoning ML

estimation of feature weights? We plan to investigate these and related issues in future work.

4.4 Discussion

We began this chapter by emphasizing the distinction between model and estimation in evaluating a

document ranking method’s effectiveness. Lexical retrieval models are actually remarkably expres-

sive but have typically not been estimated to their full potential. While recent work in learning to

rank [Joachims et al., 2007] has demonstrated a variety of new and effective retrieval models, the

more sophisticated estimation techniques and additional features that typically go into these new

models can alternatively be employed to better estimate existing lexical models and function as a

layer atop classic search engines (Ch. 3) [Bendersky and Croft, 2008, Kumaran and Allan, 2007,

2008].

Consider the model and estimation method underlying classic language modeling [Ponte and

Croft, 1998] and probabilistic approaches [Sparck Jones et al., 2000]. Both can be viewed as con-

strained log-linear models adopting a specific feature set and restrictions on parameters. Unigram

modeling can be viewed as a log-linear model in which the set of permissible parameterizations Λ

is restricted to the probability distribution ΘQ and the feature set F consists solely of the (log)

document model ΘD:

log p(Q|D) ∝ ΘQ · ΘD = Λ · F

Building on the derivation in [Lafferty and Zhai, 2003], we can similarly express the probabilistic

approach as:

log
p(D|Q, r)

p(D|Q, r̄)
= |D|ΘD · log

p(w|Q, r)

p(w|Q, r̄)
= F · Λ

another constrained log-linear model where r and r̄ denote relevant and non-relevant term distribu-

tions and Λ is estimated differently in the two cases. Historically it has been a point of contention
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which of these two models should be preferred [Lavrenko, 2004, Nallapati, 2006]. However, if we

accept Lavrenko’s argument for dropping |D| feature scaling on the grounds that concatenating a

document with itself ought not to double its relevance score [Lavrenko, 2004], both models utilize

nearly identical features, differing by only a log factor, and are in fact rank-equivalent under equal

parameterization. In short, we see the two approaches are constrained not by their models but by

their fixed estimation strategies. Less constrained estimation would unlock greater modeling power.

We view the MRF approach (§2.6) as a general linear model which is more expressive than the

ways it which has typically been used. We have discussed at length how the MRF has historically

assumed one weight parameter per feature class: λT , λU , and λO . While parameter tying within

each feature class certainly simplifies estimation, modeling power is reduced, and we have seen

how breaking this parameter tying indeed has a positive effect on retrieval accuracy. The MRF

variants for full independence, sequential dependence, and full dependence similarly provide a means

of enforcing constraints on model sparsity to simplify estimation, but they represent only three fixed

options out of an infinite space of possible continuous parameterizations. While it is impractical

to model an exponential number of features at retrieval time, off-line methods for feature selection

and estimation can be explored and subsequently applied to dynamically select and weight the most

important features at run-time. Adopting the general linear model perspective of the model has

the further benefit of enabling us to exploit the large body of existing techniques for maximizing

such models, including recent work specifically targeting maximization of ranking metrics [Joachims

et al., 2007].

4.5 Conclusion

This chapter addressed generalization and better estimation of Metzler and Croft’s Markov random

field (MRF) (§2.6) approach to document retrieval. While the original MRF method estimated a

parameter for each feature class from data, we showed how parameters within each class were implic-

itly estimated using the same maximum-likelihood assumption employed with the standard unigram.

Because this scheme does not model context-sensitivity, its use particularly limits retrieval accuracy

with verbose queries in which many terms appearing in the query are not strongly related to the core

information need and so ought to be assigned lower weight. By employing supervised estimation

instead, however, we showed this deficit could be remedied. Retrieval experiments conducted with

verbose queries on three TREC document collections showed our better-estimated MRF consistently

out-performs both the baseline MRF and the supervised unigram model. Additional experiments

using blind-feedback and evaluation with optimal weighting demonstrate both the immediate value

and further potential of performing more accurate MRF model estimation.



Chapter 5

Simpler Unigram Estimation for

Verbose Queries

Previous work in IR based on vector similarity has shown the importance of applying inverse doc-

ument frequency (IDF) in weighting both document and query terms [Salton and Buckley, 1987];

we also found document frequency useful to include in Regression Rank secondary features (§3.2.3).

While it has been shown that smoothed estimation in language modeling implicitly captures an

IDF-like effect via inverse collection frequency (ICF) [Zhai and Lafferty, 2004], such smoothed esti-

mation is typically employed only on the document side (to infer the latent document model ΘD).

In contrast, the latent information need ΘQ underlying the query Q is usually estimated without

any provision for capturing IDF-like term importance. However, explicit use of ICF in estimating

ΘQ has been shown to yield better search accuracy in practice than achieved with simple maximum-

likelihood (ML) estimation [Smucker and Allan, 2006]. In this chapter, we describe a simple method

for estimating ΘQ which leverages both IDF and ICF in combination and which consistently achieves

better search accuracy than ICF (and ML). Moreover, we show this simple model achieves compa-

rable search accuracy to more sophisticated learning-based methods like Regression Rank (Ch. 3).

A fundamental principle of the language modeling approach is that more accurate estimation of

ΘQ and ΘD should lead to improved search accuracy. While our simple method of estimation follows

the same as ad hoc approach as the original ICF technique, we discuss how it can be considered

a stepping stone toward more principled estimation based on logistic regression. The promise of

such an extensible regression-based approach is more accurate inference of ΘQ by being able to

integrate other forms of statistical evidence beyond IDF. While our current model’s combination

of ICF and IDF remains incredibly naive, in comparison to Regression Rank it is far simpler, and

as we shall show, no less effective for searching with verbose queries. Consequently, we suggest

new techniques for supporting verbose queries also be compared against this baseline in addition to

maximum-likelihood (ML) or ICF to provide more rigorous empirical evaluation.

A related question left unanswered by previous chapters is how keyword and verbose queries

61
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should be supported in tandem? If we assume a user interface like today’s ubiquitous search box in

which users can submit arbitrary natural language queries, it is important that the system be able

to effectively cope with both keyword and verbose input1. While one might sidestep this problem

by changing the user interface to stipulate use of verbose queries, let us assume for now that we do

not wish to be so dependent on the user interface. In this scenario, do we advocate using a single

model for both short and verbose queries, or would it be more effective to distinguish between the

two types of queries and use a different model in each case?

Previous work has shown ICF weighting performs comparably to ML for short queries [Smucker

and Allan, 2006]. With Key Concepts (§2.7.2), simple analysis shows its method for term weighting

effectively reverts to ML for most keyword queries. In particular, if a query consists entirely of a

single noun phrase or contains no noun phrase at all, conditions which cover most keyword queries

by definition, there is no noun phrase to be emphasized over other query terms and all terms are

assigned uniform weight in ΘQ. In this chapter, we evaluate both Regression Rank and Gigaword

weighting for keyword search and show both methods perform comparably or nearly comparably to

ML. In sum, this indicates that even if we could perfectly distinguish between the two types of input

queries and apply the best method in each case, doing so would yield minimal benefit over simply

using one of the above verbose query methods for both types of queries. Consequently, we advocate

the simpler single-model approach.

The next section describes our simple linear function for combining IDF and ICF to estimate ΘQ.

Following this (§5.2), we evaluate the method on both verbose and keyword queries and compare

to previously discussed methods. We then present discussion (§5.3) of further questions and issues

raised by our findings and elaborate further on issues mentioned above. Our conclusion summarizes

the chapter and its contributions.

5.1 Method

Following our initial work on Regression Rank, we conducted leave-one-out analysis of features

using development topics for the same three document collections (Table 2.4) on which the model

was originally evaluated. While we had incrementally added and evaluated features during model

development, we did not test whether the final feature space could be trimmed back down to achieve

a more parsimonious model. Leave-one-out analysis showed that it could in fact be tremendously

simplified and still achieve comparable accuracy. Results of this analysis are summarized in Table 5.1.

A lesson learned from this experience was the value of performing such analysis early to accurately

gauge feature importance, and we elaborate on this point in later discussion (§5.3). In this section,

we define the simplified model. Evaluation in §5.2 will compare it empirically to the original version.

As shown in Table 5.1, estimating ΘQ on the basis of Gigaword [Graff et al., 2005] ICF and

IDF values alone performs comparably to use of the full feature set (§3.2.3). While we would have

1While the space of possible user queries is clearly richer than the simple keyword/verbose distinction being made
here, we view our two-way taxonomy a starting point for subsequent extension to other query categories of interest.
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Features MAP
Baseline ML 19.67
Non-CF/DF 21.37
Robust04 CF/DF 22.65
Robust04 CF/DF + Non-CF/DF 22.87
Gigaword CF/DF 23.44
Robust04 & Gigaword CF/DF 23.66
All 23.80

Table 5.1: Leave-one-out analysis of Regression Rank features as a function of mean-average precision
(MAP) achieved on Robust04 using development topics (Table 2.4). Statistical significance is not
reported, but CF/DF features are seen to clearly absorb initial improvement shown from non-CF/DF
features. Experimental setup follows that used in §3.3.

hoped to have identified additional useful evidence for estimating ΘQ, it appears what we did learn

at minimum was the utility of modeling both IDF and ICF. Note that we will use DF/CF instead

of IDF/ICF somewhat arbitrarily since the distinction between them is absorbed once we tune λ3:

ln(tf) + ln(
N

df
) = ln(tf) − ln(df) + ln(N) = λ1 ln(tf) + λ2 ln(df) + λ3

where N is number of documents in the collection and we use tf + 1 and df + 1 to avoid infinities

with out-of-vocabulary query terms). As before (§3.2.2), we do not bother normalizing our estimate

of ΘQ to get a proper probability distribution since document ranking is invariant to scaling of ΘQ.

In addition to achieving equally effective ranking using only these two features, we also observed

Regression Rank learned similar weights across document collections for these two features and the

bias parameter. This similarity suggested a single setting might work well across all three document

collections. To test this, we performed a sweep of around 300 parameterizations in the proximity

of these settings and evaluated accuracy on each collection (still using development topics). For

both Robust04 and GOV2 document collections (Table 2.4), maximal MAP search accuracy was

obtained with parameterization λ1:3 = {0.45,−0.52, 1.0}. In the case of W10g, this parameterization

achieved 0.9% worse MAP (absolute) than the best parameterization evaluated, but this difference

was not statistically significant. Consequently, we accepted the above configuration as a strong

single parameterization for all three document collections. Since the parameter optimization above

was limited to the approximately 300 settings considered, better parameterizations certainly may

exist. However, evaluation below shows this parameterization achieves search accuracy comparable

to what Regression Rank achieved with unconstrained estimation on its entire original feature set.

5.2 Evaluation

This section compares search accuracy achieved by simple CF and DF-based estimation of ΘQ vs.

that of ML, Key Concepts (§2.7.2), and Regression Rank (Ch. 3). As in Ch. 4, we also evaluate

integration of unigram estimation techniques with Markov Random Field (MRF) modeling (§2.6)
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and use of pseudo-relevance feedback (PRF) [Lavrenko and Croft, 2001]. To address the one vs.

two model question for supporting keyword and verbose queries in tandem, search accuracy with

keyword queries is also reported.

Six variant CF/DF methods are evaluated, all of which estimate ΘQ (unnormalized) as a linear

function of CF and DF statistics: ΘQ = λ1 ln(tf) + λ2 ln(df) + λ3. Methods differ by which corpus

statistics are drawn from and how the statistics are weighted via λ1:3:

• IDF methods set λ1:3 = {0,−1, ln(N)}, where N is number of documents in the given docu-

ment collection, to compute standard IDF weighting of lnN
df

.

• Inverse CF (ICF) methods set λ1:3 = {−1, 0, ln(T )}, where T is total number of tokens in the

given document collection, to weight query terms by ln T
cf

[Smucker and Allan, 2006].

• “CF+DF” methods use λ1:3 = {0.45,−0.52, 1.0} as discussed in the preceding section.

Statistics are alternately collected from the given document collection used for retrieval or from

the Gigaword corpus [Graff et al., 2005]. With “CF+DF”, the same parameterization tuned for

Gigaword is used unchanged for collection-specific CF+DF weighting. Additional improvement

from the collection-specific approach may be possible by performing collection-specific tuning.

Evaluation is conducted using the same document collections and topics as in previous chapters

(Table 2.4). As before, we use the description field of topics as verbose queries and the title field

as keyword queries, with † and ‡ marking significance (p < 0.05) and high significance (p < 0.01)

respectively according to a randomization test [Smucker et al., 2007].

5.2.1 Verbose queries

Table 5.2 presents search accuracy results for verbose queries without use of feedback, complementing

earlier results presented in Tables 4.1 and 4.2. The first row reports the original ML baseline used in

both Ch. 3 and Ch. 4. Below this, we see that while Gigaword-IDF/ICF do not consistently improve

over the ML baseline, Collection-IDF/ICF do show consistent improvement. Below this, earlier

Key Concepts and Regression Rank results are repeated from earlier. Note that in comparison to

Collection-IDF, Key Concepts shows no improvement and Regression Rank shows improvement for

Robust04 only. Collection CF+DF shows improvement for Robust04 and W10g but performance

declines for GOV2, perhaps due to mismatch between the Gigaword-based parameterization and

the much larger size of this corpus. In contrast, Gigaword CF+DF shows consistent improvement

across all three document collections with respect to both Collection IDF and Collection CF+DF.

Consequently, we suggest new techniques for supporting verbose queries also be compared against

this baseline in addition to maximum-likelihood (ML) or ICF to provide more rigorous empirical

evaluation.

Next we see the results of Metzler and Croft’s MRF model using sequential dependency (§2.6),

which shows no significant improvement over collection IDF weighting across document collections.

The row below this repeats earlier results from Ch. 4 for using Regression Rank to estimate the
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Robust04 W10g GOV2
Model ΘQ Estimation P@5 MAP P@5 MAP P@5 MAP

Unigram

Maximum Likelihood 47.64 24.51 39.20 18.61 52.21 25.22
Gigaword-ICF 47.71 25.43‡ 40.00 19.55 55.70‡ 26.50‡

Gigaword-IDF 47.23 25.24 39.00 20.57 56.51† 26.32
Collection-ICF 48.19 25.95‡ 40.40 20.25‡ 56.38‡ 26.90‡

Collection-IDF 48.76 25.83‡ 40.00 21.73‡ 57.05‡ 26.71‡

Key Concepts 47.55 25.91 41.40 20.40 57.05 27.44
Regression Rank 52.05‡ 27.33‡ 40.60 22.01 54.50 27.35
Collection CF+DF 50.52‡ 26.98‡ 40.00 20.82‡ 54.77 25.65
Gigaword CF+DF 51.33‡ 27.39‡ ‡ 41.40 21.93‡ † 55.70† 27.90‡ ‡

MRF (§2.6)
Maximum Likelihood 49.32 25.64 38.80 19.14 56.38 27.40
Regression Rank 54.30 † 28.48‡ ‡ 42.00 23.05‡ † 57.18 29.51‡ ‡

Gigaword CF+DF 52.85‡ † 28.31‡ ‡ 40.60 22.89‡ † 58.39 29.92‡ ‡

Table 5.2: Search accuracy in mean-average precision (MAP) and precision of top 5 ranks (P@5) for
verbose queries (description field) using all topics and collections from Table 2.4. Results com-
plement earlier Tables 4.1 and 4.2. Unigram results: For all three collections, while Gigaword-IDF
and Gigaword-ICF do not consistently improve over the ML baseline, Collection-IDF and Collection-
ICF [Smucker and Allan, 2006] do show consistent improvement. Subsequent methods are then com-
pared against Collection-IDF: Key Concepts (§2.7.2), Regression Rank (Ch. 3), Collection CF+DF,
and Gigaword CF+IDF. Key Concepts shows no significant improvement. Regression Rank im-
proves for Robust04 only. Collection CF+DF improves for Robust04 and W10g MAP but declines
for GOV2. Gigaword CF+DF shows consistent improvement across collections. Subscript† indi-
cates statistical significance of Gigaword CF+DF accuracy over Collection CF+DF. MRF results:
We start with the standard sequential dependency MRF model (with its default ML unigram es-
timation) (§2.6). In comparison to Collection-IDF, the MRF shows no statistical improvement.
Regression Rank and Gigaword CF+IDF unigram estimation are alternately integrated into the
MRF model. Superscript† and subscript† here indicate statistical significance of the combined model
vs. the baseline MRF and the given unigram method, respectively. In both cases the combination
improves significantly over either component used individually.
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Robust04 W10g GOV2
Model Test All Test All Test All
Key Concepts (§2.7.2) 29.35
epi-HAL [Hoenkamp et al., 2009] 31.0
Markov Random Field (§2.6) 38.92 30.09 19.99 20.02 32.37 30.26
Regression Rank 37.03 30.52 21.77 22.48 30.36 28.96
MRF + Regression Rank 39.13‡ 31.82‡ ‡ 23.19† † 23.05‡ 32.91‡ 31.20‡
Gigaword CF+DF 38.65 30.85 22.00 22.56 31.67 29.77
MRF + Gigaword CF+DF 39.33 31.67‡ ‡ 23.64‡ ‡ 23.41‡ † 33.92† ‡ 31.84‡ ‡

Table 5.3: Search accuracy in mean-average precision (MAP) with pseudo-relevance feedback
(PRF) [Lavrenko and Croft, 2001] for verbose queries (description field) over all collections and on
test vs. all topics from Table 2.4. Results complement those presented earlier in Table 4.3. Scorem

u

superscripts and subscripts are used here to indicate statistical significance of each combined model
vs. its individual components: the MRF (m) and the unigram (u). Results show that Gigaword
CF+DF performs comparably to Regression Rank both in isolation and in combination with the
MRF model. We also compare to results for epi-HAL [Hoenkamp et al., 2009], a technique based
on query expansion using the Hyperspace Analog to Language (HAL); its results are reported for
Robust04 only. Results for Key Concepts with PRF were generated using non-PRF Indri [Strohman
et al., 2004] queries provided by its authors, then applying the same PRF parameterization used
with Regression Rank and the MRF; further improvement with Key Concepts can be expected by
tuning PRF parameters for it. Statistical significance comparisons with Key Concepts and epi-HAL
are not reported.

MRF’s unigram component1. At bottom, we similarly use the Gigaword CF+DF model to estimate

MRF unigram weights, and just as we saw in isolation, in combination with the MRF model the

Gigaword weighting scheme performs comparably to Regression Rank once more. To summarize

improvement without PRF in comparison to the ML baseline, Gigaword CF+DF estimation with

the MRF model achieves relative MAP improvements of ca. 15-20% (15.5% for Robust04, 23.0% for

W10g, and 18.6% for GOV2, comparing top and bottom rows of Table 5.2).

Table 5.3 presents search accuracy results for verbose queries using PRF. These results comple-

ment earlier results from Table 4.3. As in §4.3.3, PRF is used only to better estimate the unigram

component of the MRF model. The first three rows copy results shown in the earlier table. Row

4 presents accuracy of Gigaword CF+DF weighting with PRF and shows accuracy strictly greater

than Regression Rank with PRF in all cases (significance not evaluated). Similarly, row 5 presents

results of using Gigaword CF+DF to estimate MRF unigram weights and then applying PRF.

Finally, we describe an additional experiment using a variant form of Key Concepts (§2.7.2).

Recall Key Concepts estimates term weights as a mixture between predicted concept weights and

the ML estimate of term weights. Given the relative strength of Gigaword CF+DF vs. ML, we

tried replacing Key Concepts’ ML component with Gigaword CF+DF instead. We then re-tuned

the mixture weights for the two components. On Robust04 with development topics, this yielded

no MAP improvement over using Gigaword CF+DF alone. Given this negative result, we did not

proceed to further test the idea on other document collections. Our conclusion from this experiment

is that Key Concepts’ method of predicting term weights (in addition to Regression Rank’s) is
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TREC-7 TREC-8
System Year P@5 MAP P@5 MAP

title only

TREC
Okapi ok7as (TREC-7) 1998 53.20 26.14
Queens pir9At0 (TREC-8) 1999 51.60 30.63

description only

TREC
NEC nectitechdes (TREC-7) 1998 58.40 25.84
UMass INQ602 (TREC-8) 1999 49.60 24.92

No PRF

Dirichlet Smoothing (§2.4.3) 2001 46.80 17.96 44.80 23.26
Two-Stage Smoothing (§2.7.2) 2002 41.60 18.10 48.40 23.10
MRF (§2.6) 2005 48.40 18.95 46.80 23.71
Collection-ICF [Smucker and Allan] 2006 50.40 20.11 46.00 24.77
Term Dependent Smoothing [Mei et al.] 2007 44.00 19.60 47.60 24.60
Key Concepts (§2.7.2) 2008 48.00 20.21 46.00 23.64
Regression Rank 2009 55.20 21.96 50.40 26.47
Gigaword CF+DF 54.00 21.74 46.80 26.19
MRF + Regression Rank 2009 58.40 22.89 58.40 27.14
MRF + Gigaword CF+DF 54.80 22.36 50.40 26.46

With PRF

Dirichlet Smoothing (§2.4.3) 2001 46.80 23.12 52.00 27.11
MRF (§2.6) 2005 50.80 23.85 53.20 28.34
Collection-ICF [Smucker and Allan] 2006 49.20 24.79 50.80 28.09
Key Concepts (§2.7.2) 2008 48.80 24.41 50.80 27.28
Regression Rank 2009 55.60 25.66 54.80 29.25
MRF + Regression Rank 2009 57.20 26.28 56.80 29.93
MRF + Gigaword CF+DF 56.40 26.25 55.20 29.78

Table 5.4: Search accuracy in mean-average precision (MAP) and precision of top 5 ranks (P@5)
for verbose queries (description field) on the Robust04 collection (Table 2.4) using topics from
TREC-7 (351-400) and TREC-8 (401-450). Note that Regression Rank and Gigaword CF+DF were
tuned on a superset of these topics (351-450) whereas official TREC results reflect blind evaluation.
Statistical significance is not reported. Results here extend earlier Table 2.5.

not learning useful information beyond the CF and DF statistics being leveraged here. This is

also consistent with an earlier experiment not reported in which a similar combination between

Regression Rank and Key Concepts yielded no improvement over the individual models.

Tables 5.4 and 5.5 provide additional comparison between Regression Rank and Gigaword CF+DF

methods, as well as comparison to previous work. Overall, results presented in this section paint a

convincing argument that the simple Gigaword CF+DF approach achieves comparable search accu-

racy on verbose queries as Key Concepts or Regression Rank, at least with regard to the original

setup proposed for each of those methods. We consider further ramifications of these results for

those methods in the discussion section (§5.3).



68

Old Topic Set New Topic Set Hard Topic Set Combined Topic Set
ID MAP P10 %no area MAP P10 %no area MAP P10 %no area MAP P10 %no area

t .317 .505 5 .033 .401 .545 6 .089 .183 .374 12 .016 .333 .513 5 .038

d .315 .507 8 .023 .407 .547 2 .074 .162 .382 12 .013 .334 .515 7 .028

Without PRF

1 .2318 .4025 11.5 .0098 .2993 .4673 4.1 .0426 .0988 .2560 20.0 .0054 .2451 .4153 10.0 .0118

2 .2413 .4200 10.5 .0122 .3180 .4735 4.1 .0540 .1096 .2920 14.0 .0064 .2564 .4305 9.2 .0149

3 .2482 .4085 13.5 .0084 .3058 .4653 4.1 .0378 .1092 .2700 20.0 .0055 .2595 .4197 11.6 .0101

4 .2456 .4015 13.5 .0078 .3141 .4776 4.1 .0360 .1057 .2440 22.0 .0022 .2591 .4165 11.6 .0100

5 .2629 .4370 9.0 .0134 .3158 .4735 8.2 .0347 .1278 .3040 16.0 .0080 .2733 .4442 8.8 .0151

6 .2627 .4370 10.0 .0121 .3196 .4898 4.1 .0393 .1205 .2760 16.0 .0066 .2739 .4474 8.8 .0141

7 .2737 .4565 7.5 .0158 .3302 .4959 6.1 .0408 .1337 .3140 12.0 .0092 .2848 .4643 7.2 .0182

8 .2709 .4565 8.0 .0146 .3330 .5041 4.1 .0434 .1263 .3060 12.0 .0077 .2831 .4659 7.2 .0169

With PRF [Lavrenko and Croft, 2001]

1 .2660 .4315 16.5 .0065 .3770 .4939 6.1 .0678 .1157 .2820 26.0 .0019 .2879 .4438 14.5 .0089

2 .2792 .4485 16.5 .0072 .3897 .5082 6.1 .0786 .1309 .3060 24.0 .0024 .3009 .4602 14.5 .0104

3 .2799 .4380 15.5 .0069 .3725 .5000 8.2 .0567 .1240 .2860 24.0 .0039 .2981 .4502 14.1 .0088

4 .2749 .4240 17.0 .0046 .3694 .4857 12.2 .0344 .1145 .2620 30.0 .0011 .2935 .4361 16.1 .0060

5 .2907 .4670 12.0 .0100 .3645 .5061 10.2 .0398 .1300 .3140 16.0 .0067 .3052 .4747 11.6 .0118

6 .2904 .4585 14.0 .0091 .3820 .5204 8.2 .0550 .1230 .2760 22.0 .0035 .3084 .4707 12.9 .0115

7 .3029 .4915 10.0 .0125 .3809 .5061 8.2 .0446 .1386 .3440 12.0 .0076 .3182 .4944 9.6 .0150

8 .2994 .4760 11.5 .0120 .3873 .5020 6.1 .0563 .1314 .3160 22.0 .0053 .3167 .4811 10.4 .0152

Best TREC Robust04 title (t) and description (d) runs
t. pircRB04t3
d. pircRB04d4

Other Methods
1. Dirichlet Smoothing [Lafferty and Zhai, 2001]
2. MRF (§2.6)
3. Collection-ICF [Smucker and Allan, 2006]
4. Key Concepts (§2.7.2)
5. Regression Rank (Ch. 3)
6. Gigaword CF+DF
7. MRF + Regression Rank
8. MRF + Gigaword CF+DF

PRF [Lavrenko and Croft, 2001] results were generated with the following Indri [Strohman et al.,
2004] settings:

1. fbDocs = 10 (fixed)
2. fbTerms = 50 (fixed)
3. fbMu = 0 (default)
4. fbOrigWeight = 0.4 (tuned for MRF on topics 301-450)

Table 5.5: Comparison of methods on the TREC 2004 Robust track (see earlier Table 2.6). Evalua-
tion is performed on the Robust04 document collection (Table 2.4) using four topic sets defined by the
track: “old” (301-450, 601-650), “new” (651-700), “hard” (50 topics from 301-450 identified in the
Robust03 track overview), and “combined” (all 250 topics). Note that new topics reflect blind evalua-
tion while other topics do not. Besides usual metrics of mean-average precision (MAP) and precision-
at-10 (P10), two non-standard metrics are reported which focus on difficult topics: “%no”, referring
to the percent of topics for which P10 = 0, and “area”, referring to area under the MAP curve for
the worst quarter topics. The latter two metrics were computed via a publicly available NIST script
used in the original tracks: http://trec.nist.gov/data/robust/robust2004_eval.pl.
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ML Regression Rank Oracle
Query Length Query Count P@5 MAP P@5 MAP P@5 MAP
1 1 60.00 22.32 - - - -
2 32 52.12 28.96 53.75 28.70 56.88 30.39
3 42 60.48 31.05 61.43 31.43 64.76 35.80
4 21 59.05 31.79 56.19 31.44 72.38 41.00
5 2 40.00 16.31 50.00 16.42 40.00 21.92
all 98 57.35 30.14 57.55 30.14 63.27 34.73

Table 5.6: P@5 and MAP search accuracy for 98 keyword queries (title field) on the GOV2
collection, broken down by query length. By definition, single-term queries assign all probability
mass in ΘQ to the term and so achieve identical ranking under all estimation methods. Statistical
significance is not reported, but ML and Regression Rank are clearly seen to perform comparably.

Robust04 W10g GOV2
ΘQ Estimation P@5 MAP P@5 MAP P@5 MAP
Maximum Likelihood 48.11 25.32 32.16 19.49 56.62 29.61
Gigaword CF+DF 48.67 25.57 32.80 19.94 54.63 28.68†

Table 5.7: Search accuracy in mean-average precision (MAP) and precision of top 5 ranks (P@5) for
keyword queries (title field) using all topics and collections from Table 2.4. The only statistically
significant difference between ML vs. Gigaword CF+DF is observed for GOV2 MAP (p = 0.0256).

5.2.2 Keyword Queries

As mentioned in the introduction, a question left unanswered in previous chapters was whether the

same method of estimating ΘQ should be used for both keyword and verbose queries. Assuming the

search engine’s interface allows users free expression in formulating their queries, the engine must

support a variety of input queries. With regard to the ML baseline, we have suggested earlier that

ML makes more sense for keyword than verbose queries because keywords tend to be more carefully

selected and thereby more uniformly important than are terms in verbose queries. While one could

imagine that keyword queries also stand to benefit from better weighting, differences would likely

be more subtle as a consequence of this fact. Moreover, by virtue of being shorter, keyword queries

employ a smaller vocabulary (i.e. feature space) providing a corresponding smaller potential for

improvement. Can our methods for supporting verbose queries improve upon ML weighting with

keyword queries, or at least match it, or do they under-perform ML in this case?

Previous work has already shown ICF weighting achieves comparable accuracy as ML for title

queries [Smucker and Allan, 2006], and our analysis in the introduction shows clearly how the Key

Concepts (§2.7.2) method of term weighting effectively reverts to ML with title queries. Conse-

quently, we focus here on evaluating accuracy of Regression Rank (Ch. 3) and Gigaword CF+DF

weighting methods.

Table 5.6 reports P@5 and MAP search accuracy on the GOV2 collection for 98 title queries (a

subset of topics 701-850 excluding official topics used in the TREC 2008 Relevance Feedback track;

see §6.2.3 for additional details). Regression Rank is compared to the ML baseline and to “oracle”
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1/0 weighting of query terms (i.e. as reported earlier for verbose queries in Table 3.2). Results show

that about 4.5% absolute MAP improvement is possible under oracle weighting, roughly half of that

seen earlier with verbose queries. In terms of accuracy achievable in practice, we see that Regression

Rank breaks even with respect to the ML baseline, showing it could be used as a single model for

both keyword and verbose queries, at least for GOV2.

Table 5.7 compares ML and Gigaword-based estimation of ΘQ for keyword queries on all three

document collections and topics, reporting P@5 and MAP search accuracy. While Regression Rank

was seen to show no difference vs. ML in Table 5.6, here we do see Gigaword CF+DF showing a

statistically significant decrease vs. ML on MAP accuracy for the GOV2 collection (0.93% abso-

lute, p = 0.0256). Nonetheless, given the relatively small size of this difference, it seems safe to

regard these methods for verbose queries also as largely comparable to ML for keyword queries.

Consequently, we believe it is reasonable to use a single one for both verbose and keyword queries.

Of course it is still possible that another distinction between query types could motivate use of

multiple estimation strategies. For example, Figure 3.1 showed that like any technique, Regression

Rank performed worse on some verbose queries than the ML baseline, and likely a per-query analysis

of keyword queries would show something similar. If we could somehow effectively distinguish not

between our current categories of keywords vs. verbose queries, but instead between queries where

one estimation technique does better than the other, then by definition we could improve overall

search accuracy. The challenge, of course, would be recognizing what distinguishes these two classes,

implementing an accurate classifier to make this distinction in practice, and verifying this trend

generalized beyond the queries considered here. We leave such an investigation to future work.

5.3 Discussion

IDF weighting has a long history and has significantly influenced all of the major retrieval paradigms

[Jones, 2004]. With vector similarity, for example, it has been seen that the best weighting scheme

incorporates an IDF weighting factor for both document and query terms [Salton and Buckley, 1987],

but more convincing theoretical justification for why IDF should be applied on both document

and query side (i.e. effectively squared) has been needed. Fortunately, theoretical justification

for smoothed estimation (i.e. frequentist regularization or Bayesian modeling of priors) is well-

established in statistics for accurately inferring a latent distribution given finite observable evidence.

This is significant because Zhai and Lafferty showed typical smoothing of the document unigram ΘD

via collection statistics implicitly applies ICF weighting with its IDF-like effect [Zhai and Lafferty,

2004]. This suggested we might interpret IDF’s effectiveness as arising from similar benefit as

smoothed estimation, and that further benefit may be achievable in principled fashion by focusing

effort on better estimation of ΘD and ΘQ.

While such smoothed estimation is routinely employed for estimating the document unigram ΘD,

ML estimation of the query unigram ΘQ is still typical and thus misses out on the IDF-like weighting

of query terms seen to be effective with vector similarity. While various forms of query expansion
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and rewriting are commonly employed, they do not address this missing IDF effect. Moreover, we

cannot simply estimate ΘQ like ΘD to achieve the same implicit ICF weighting effect in a principled

manner. While ICF estimation does directly capture this missing IDF effect and has been shown to

be empirically effective [Smucker and Allan, 2006], it lacks theoretical justification. Achieving this

ICF effect in a theoretically-driven manner remains an open problem.

In this work we have directly evaluated explicit use of DF in combination with CF for language

modeling and shown that this combination improves over use of IDF/ICF alone. Thus our work

complements the previous work on ICF weighting [Smucker and Allan, 2006]. While simply plugging

CF and DF into a linear function is an admittedly ad hoc way to go about estimation, a minor

change to the function to perform logistic regression would put us on well-trodden ground for using

arbitrary statistics to model an observed probability distribution. While this still would not provide

a generative story for the distribution, it does let us apply rich estimation methodology in modeling

it. This was the intuition underlying Regression Rank and allowed us to explore a variety of features

in addition to CF and DF for modeling ΘQ. As discussed above, what we are really not after is a way

of modeling IDF, but rather accurate estimation of ΘQ which IDF weighting merely approximates.

Our evaluation considered four variant CF/DF methods: Collection-IDF, Collection CF+DF,

Gigaword-IDF, and Gigaword CF+DF. While Collection-IDF was seen to outperform Gigaword-

IDF, Gigaword CF+IDF outperformed Collection CF+DF. How might this effect be explained? We

typically expect to see collection-specific statistics be more informative and larger corpora provide

more reliable statistics (Gigaword has 1.8B tokens; see Table 2.4 for collection statistics). One might

also expect web statistics to be more noisy than those gathered from newswire content. While

Gigaword and Robust04 are both newswire content and Gigaword is far larger, we nonetheless

saw that Robust04 IDF statistics were more useful than Gigaword IDF statistics for Robust04

retrieval. So it would appear that having collection-specific statistics is most significant, except

we then observe Gigaword CF+DF outperform Collection CF+DF. Our explanation at present is

that Collection CF+DF should perform better but does not due to lack of collection-specific tuning.

The drop in accuracy on GOV2 is particularly disturbing and seems the strongest indicator of this

given the difference in collection size vs. Gigaword. This issue needs to be further investigated.

To the extent Gigaword CF+DF weighting is more effective than collection-specific weighting, we

would like to further see whether additional improvement is possible by using larger corpora, or in

the other direction, if accuracy falls when using less robust statistics from smaller sample of the

corpus. We would also like to try leveraging Gigaword or other external corpora in conjunction with

collection-specific statistics. We have tried something similar elsewhere with some success (Ch. 7).

What do the results presented here imply for the supervision-based approaches described earlier?

In terms of practical effectiveness today, the methods described in this chapter are simpler, more

efficient, and equally accurate, and so clearly preferable. However, thinking beyond today to the

IR systems of tomorrow, we still believe the future lies in exploring richer features beyond CF and

DF. Learning-based frameworks provide us with an excellent vehicle for conducting such research by

facilitating a division of concerns between feature design and estimation. Key Concepts (§2.7.2) and
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Regression Rank both providing extensible frameworks for exploring new features, and both stand

to benefit as more effective estimation techniques are developed. Moreover, as query logs continue to

provide an ever-growing source of implicit relevance judgments, there is a tremendous opportunity

for learning-based models to exploit such logs for lifetime learning, allowing search accuracy to

continually improve without additional human effort as more training data becomes available.

A final lesson of this chapter was seeing that feature weights learned during estimation only

coarsely indicate the relative importance of model features, especially when using a non-sparse prior

like L2 (§3.2.4). In comparison, leave-one-out experiments provide a far more accurate indication

of relative feature importance. Hence we advocate performing such leave-one-out experiments for

analyzing the relative contribution of features rather than inspecting learned feature weights.

5.4 Conclusion

We have shown that estimating ΘQ using a simple combination of CF and DF statistics consis-

tently achieves better search accuracy than both ICF [Smucker and Allan, 2006] and ML baselines.

Moreover, this simple scheme achieves accuracy comparable or better to more sophisticated learning-

based approaches (Ch. 3, [Bendersky and Croft, 2008]). Consequently, we suggest new techniques

for supporting verbose queries be compared against this method in addition to maximum-likelihood

(ML) to provide a more rigorous empirical evaluation.

Search accuracy was also evaluated for keyword queries. We saw Regression Rank matched search

accuracy of ML for GOV2, while Gigaword CF+DF achieved roughly comparable performance to ML

across document collections (with slightly lower MAP on GOV2). Given this, along with previous

ICF results [Smucker and Allan, 2006] and our analysis of Key Concepts’ behavior on keyword

queries, it seems reasonable to use existing models for verbose queries to support keyword search

as well. This provides a simple means of achieving strong performance on both without having to

distinguish between query types.

Our closing discussion highlighted several points. While IDF weighting been known to be use-

ful for weighting both queries and documents, language modeling approaches have typically only

captured this effect on the document side, which has reduced effectiveness with verbose queries.

ICF weighting [Smucker and Allan, 2006] provided an effective but ad hoc way to perform IDF-like

weighting on the query side, and our combination of CF and DF represents a more effective extension

to this ad hoc technique. As shown by earlier oracle experiments (Ch. 3), more effective estimation

techniques have the potential to improve search accuracy significantly beyond today’s accuracy lev-

els. While the linear functions used here are ad hoc, they are not far from more principled methods

for logistic regression which allow arbitrary evidence to be used in modeling an observed probabil-

ity distribution. This is the spirit of what Regression Rank intended to capture via its secondary

features (§3.2.3), the potential still worth chasing after even if the initial attempt showed only the

importance of modeling CF in combination with DF. Consequently, we still believe learning-based
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approaches present the most promising direction for future research. Such frameworks enable explo-

ration of novel features beyond CF and DF, richer retrieval models than simple bag-of-words, and

stand to empirically benefit as better estimation techniques are developed and more training data

becomes available.



Chapter 6

Integrating Relevance &

Pseudo-relevance Feedback

Previous chapters have focused on the distinction between short and verbose queries, suggesting

that while verbose queries often better characterize the information being sought, models must

accurately infer the relative importance of the various details present to effectively incorporate

supporting details without losing sight of the core request. In this chapter, we turn our attention to

another form of useful verbosity in characterizing information needs: feedback documents. When

a system knows or believes it has identified one or more documents exemplifying the information

being sought, once more there is a tremendous opportunity to better model the information need

if the system can effectively distinguish between relevant and non-relevant information contained in

those example documents. As with longer queries, however, feedback documents are verbose, and

not all the information expressed in them is equally important or relevant to a given information

need. Consequently, we see once more that effective estimation is paramount.

While we have focused primarily on ad hoc retrieval (§2.2) in earlier chapters, we now turn our

attention primarily to the RF task. Basic methodology of relevance and pseudo-relevance feedback

was introduced earlier (§2.5). In this chapter, we first elaborate on the close relationship between

verbose queries and use of feedback documents in terms of enlarging the feature space of terms for

which we have observational evidence supporting estimation. Following this, we describe in §6.2 an

estimation strategy which combines RF, PRF, and Markov Random Field (MRF) modeling.

6.1 Relationship with Verbose Queries

Just as longer queries tend to be more informative in describing information needs than keyword

queries, feedback documents provide additional context for interpreting the user’s information need.

Recognition of this close connection motivates our work with feedback documents, and we proceed

now to describe this connection slightly more formally.
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IR models have traditionally distinguished between relevant and non-relevant documents on the

basis of words, meaning their feature space is defined by the vocabulary employed. Let V denote

a random variable over possible vocabularies. Maximally V = vC , where C is the collection of

documents to be ranked and vC denotes all terms occurring in the collection1. Assuming documents

are ranked by simple query-likelihood (§2.4.3), we have V = vQ, i.e. we assign non-zero weights

only to terms observed in the query Q. Note that this vocabulary restriction is purely an estimation

issue; while the retrieval model itself is well-defined over the entire vocabulary vC , lacking prior

knowledge our observation of Q provides our only basis for estimating term weights2. By this same

token, however, longer queries will tend to introduce new terms and thereby enable us to leverage a

larger vocabulary in ranking. Relevance feedback provides an even better foothold for estimation,

expanding the vocabulary to include related terms found in feedback documents in addition to

the query. Finally, applying pseudo-relevance feedback with collection documents can potentially

expand the vocabulary up to the maximum vC . To summarize, both verbose queries and feedback

documents are seen to provide the same basic advantage over short queries: they enable more

fine-grained discrimination between documents by enlarging the representational feature space (for

which we have observational evidence) via additional terms. What sets them apart is predominantly

a question of scale since relevance feedback provides evidence for estimating more terms.

6.2 Integrating RF and PRF with MRF modeling

As a means of effectively performing such estimation, we describe in this section an approach com-

bining relevance feedback, pseudo-relevance feedback, and Markov random field modeling of term

interaction. Overall effectiveness of our combined model and the relative contribution from each

component is evaluated on the GOV2 webpage collection. Given 0-5 feedback documents, we find

each component contributes unique value to the overall ensemble, achieving significant improvement

individually and in combination. Comparative evaluation in the 2008 TREC Relevance Feedback

track further shows our complete system typically performs as well or better than peer systems.

6.2.1 Introduction

We present here a strategy for effectively leveraging varying amounts of explicit feedback (docu-

ments): none (a.k.a. ad hoc retrieval), one, a few, or many. This is combined with use of PRF

to automatically induce additional feedback documents to further expand the query [Lavrenko and

Croft, 2001, Zhai and Lafferty, 2001]. Although PRF has been primarily investigated with ad hoc

retrieval, it has the potential for great effectiveness in the RF setting as well since explicit feedback

improves system ranking for automatically identifying related documents. Alongside PRF, we also

1We assume out-of-vocabulary (OOV) query terms not found in any document are ignored in retrieval.

2Given some prior distribution over terms, e.g. from collection statistics or earlier queries, smoothing to terms
unseen in the query is certainly possible. However, since query processing time is directly proportional to query
length, benefits of such broad smoothing must be balanced against processing time.
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investigate the benefit of modeling term interactions in the RF scenario. Specifically, we adopt Met-

zler and Croft’s Markov random field (MRF) modeling of sequential dependencies between terms

(§2.6).

We evaluate the benefit from applying each of these techniques individually and in combination.

Given 0-5 feedback documents, we find each component contributes unique value to the overall en-

semble, achieving significant improvement individually and in combination. Additional experiments

using RF in absence of MRF or PRF yield results consistent with community wisdom that a little

feedback can make a big difference. Finally, we describe comparative evaluation of our complete

system in the 2008 TREC Relevance Feedback track.

6.2.2 Method

This section describes our overall approach. Our approach is based in the query-likelihood paradigm

for information retrieval (§2.4.3), and we adopt the aforementioned MRF model (§2.6) in particular

to capture interactions between pairs of adjacent query terms. As in Ch. 4, we replace the MRF’s

default maximum-likelihood estimation of the unigram with a more effective strategy. Whereas

we employed supervised unigram estimation in that case, here we employed relevance and pseudo-

relevance feedback.

Given an input query Q and feedback documents F , our approach may be summarized as follows:

1. A unigram document model ΘD is estimated for each document D ∈ F via Dirichlet smoothing

(§2.4.3)

2. A unigram query model ΘQ is estimated from Q via maximum-likelihood3 (Equation 2.4.17).

3. A unigram RF model ΘF is estimated as the average document model over the set of positive

(i.e. relevant) feedback documents (Equation 2.5.1)

4. An improved unigram query model ΘQ′

is produced by linearly mixing ΘQ and ΘF models

(Equation 2.5.3)

5. ΘQ′

is used as the unigram component fT in the MRF model to yield P ′
Λ(D|Q) (Equation 6.2.1)

6. A unigram pseudo-relevance model ΘP is estimated based on P ′
Λ(D|Q) (Equation 2.5.4)

7. The PRF unigram likelihood ΘP · ΘD is linearly mixed with the P ′
Λ(D|Q) MRF model (Equa-

tion 6.2.2)

Note that unigram likelihood (Equation 2.4.17) can be equivalently formulated as an MRF in

which λT = 1 and λO = λU = 0. This means an improved unigram model ΘQ′

(e.g. better estimated

via feedback) can be used in place of the MRF’s standard fT unigram model:

P ′
Λ(D,Q) ∝ λT [ΘQ′

· logΘD] + λOfO + λUfU (6.2.1)

3Since we are operating on keyword rather than verbose queries, we do not apply Regression Rank or Gigaword-
based estimation of query terms since results presented earlier found limited benefit from doing so (§5.2.2).
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When using PRF in conjunction with the MRF model, we must specify how ΘP is mixed with

original model: query model mixing (i.e. in the fT component) or ranking function mixing. We adopt

Indri’s formulation [Metzler et al., 2006] incorporating PRF at the level of the ranking function:

P ′′
Λ(D|Q) = λP [ logΘP· ΘD] + (1−λP )P ′

Λ(D|Q) (6.2.2)

using P ′
Λ(D|Q) as defined in Equation 6.2.1. Note PRF is limited here to unigram modeling; we

do not estimate dependency statistics from PRF for revising fO and fU components since previous

work has shown little benefit from doing so [Metzler and Croft, 2007a].

6.2.3 Evaluation

This section describes evaluation performed in developing and testing our model. Table 6.1 provides

a complete listing of all model parameters and identifies which remain fixed in our experiments. We

follow previous work in setting MRF proximity parameters for window size wproximity and Dirichlet

smoothing µ proximity.

Track Protocol and Metrics

Model evaluation was performed as part of our participation in the 2008 TREC Relevance Feedback

Track. A goal of the track was to establish strong baselines for current RF techniques under varying

amounts of explicit feedback:

A: no feedback (i.e. ad hoc retrieval)

B: 1 relevant document

C: 3 relevant and 3 non-relevant documents

D: 10 judged documents

E: large amounts of feedback (40-800 documents)

Each feedback set was included as a subset of its larger successors. Retrieval experiments were

conducted on the GOV2 webpage collection (25,205,179 documents) with 264 title-field queries

drawn from topics of 2004-2006 Terabyte tracks (TREC topics 701-850) and the 2007 Million Query

track (50 and 214 topics, respectively). Documents chosen for feedback achieved the highest median

retrieval ranks in the earlier track from which the topic was drawn using the best run submitted by

participating groups. All odd-numbered and some even-number Terabyte topics were excluded from

the test set and so available for model development; evaluation on test topics was blind. Top-2500

document rankings were submitted for official runs though reported results include top-1000 ranked

documents only.

Cumulative metric performance across topics is generally computed by a simple (arithmetic)

average over per-query metric performance. The one exception, geometric-mean average precision

(gMAP), adopts the geometric mean instead in order to focus metric attention on difficult topics.
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Component Parameter Value
Unigram µ 1700

Relevance Feedback
λF varied
kF varied

MRF

λT varied
λO varied
λU 1−λT −λO

w proximity 8
µ proximity 4000

Pseudo-rel Feedback
λP varied
kP 50
|P| 10

Table 6.1: Parameters of our combined model.

Primary metrics used were (arithmetic) mean-average precision (MAP) and top-10 precision (P@10),

as reported by trec_eval 8.14. Besides gMAP, we also report R-Precision (rprec): precision after

R documents retrieved, where R is the number of relevant documents for each topic. Results

are marked as significant† (p < 0.05), highly significant‡(p < 0.01), or neither according a non-

parametric randomization test computed by Indri’s ireval [Smucker et al., 2007].

Experimental Setup

Indri [Strohman et al., 2004] formed the basis of our retrieval model. Since Indri does not provide a

facility for performing RF, however, we estimated the feedback model ΘF externally. Queries were

stopped at query time using a 418 word INQUERY stop list [Allan et al., 2000] and then Porter

stemmed5. Recall that term pair features fO and fU from the dependency model (Equation 2.6.4)

correspond to co-occurrence statistics tracking pairs of words occurring consecutively or within some

proximity of one another. It is worth noting that Indri replaces stopwords with out-of-vocabulary

tokens and so use of stopwords does not affect distance between terms in computed co-occurrence

statistics.

For model development, track protocol did not specify which documents to use for feedback

with non-test topics. While it would have been ideal to choose documents achieving high rank

under ad hoc retrieval, mirroring testing conditions, we simply took feedback documents for each

topic according to their order in the collection assessments. Initially we tried evaluating cross-

validated performance over different choices of feedback documents, but we ended up abandoning

this practice due to time constraints. Since our RF method made no use of negative-feedback, our

choice of feedback involved only relevant documents. For condition D, we always used 5 relevant

documents rather than vary the number per topic as in testing conditions. Finally, with condition E

we simply used all relevant documents under an assumption that once so many feedback documents

4http://trec.nist.gov/trec_eval

5http://www.tartarus.org/martin/PorterStemmer
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Model A B C D
Unigram 29.18 ‡30.84 †31.94 ‡33.49
PRF 32.50‡ 32.47 ‡34.32‡
MRF 32.04‡ 32.55† ‡34.61‡ ‡35.62‡
MRF+PRF 35.28‡ 34.78‡ 35.37† ‡36.66‡

Table 6.2: (Mean) average precision achieved by different model configurations on development
topics. Parameterization is consistent with Table 6.3 except kF = 150 is used with all feedback
runs. Statistical significance is reported by prefix † and ‡ comparing against cell to left (i.e. less
feedback), while suffix compares PRF & Unigram, MRF & Unigram, and MRF+PRF & MRF.

were available, the exact number would make little difference. We did not test this assumption,

however, and so it bears some scrutiny in future work.

Tuning was performed with feedback documents included in the evaluation in accordance with

a reading of track protocol which later proved to be mistaken. This led to selection of parameter

settings which likely overfit feedback. Despite the non-optimality of this tuning process, our devel-

opment set results presented below do properly exclude feedback documents and so support useful

analysis. Of the 98 topics originally used in tuning, we discard three which have fewer than five non-

feedback relevant documents, leaving 95 for evaluation. Since condition E tuning used all relevant

documents as feedback, its performance can only be evaluated with feedback documents included.

Consequently, this condition is largely omitted in our discussion of development set results.

Results on Development Topics

Parameter values were tuned on development topics via grid search (cf. [Salton and Buckley, 1987]),

resulting in the values listed in Table 6.3. Results in Table 6.2 compare baseline unigram MAP

with that achieved using PRF, MRF, and MRF+PRF combined. While results generally show im-

provement with increasing feedback, the more interesting observation is seeing how the techniques

contribute and interact with one another in comparison to the baseline and across feedback con-

ditions. With the sole exception of PRF in condition C, we see PRF and MRF modeling each

yield significant improvement over the baseline across feedback conditions with MRF seen to be

the stronger of the two. Furthermore, the MRF+PRF combination achieves additional significant

improvement over MRF modeling alone. With condition E (not shown), neither PRF or the MRF

model improved over the baseline. However, this result is inconclusive since condition E development

set results could not be evaluated without retrieved feedback documents.

We submitted nine runs for official evaluation: five unigram runs with no PRF (conditions A-E)

and four MRF+PRF runs (conditions A-D). No MRF+PRF run was submitted for condition E since

we did not observe improvement from either technique on this condition while tuning. Evaluation

of these runs on development topics is shown in Table 6.4. Results show fairly steady improvement

for unigram runs but a more complicated picture for MRF+PRF runs. While gMAP, rprec, and

P@10 steadily improve with increasing feedback, map is flat for A-C. However, both map and P@10
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Model Run kF λF λT λO λP

Unigram

A2 - - - - -
B2 250 0.3 - - -
C2 150 0.45 - - -
D2 150 0.45 - - -
E1 250 0.8 - - -

MRF+PRF

A1 - - 0.8 0.1 0.5
B1 150 0.3 0.8 0.1 0.75
C1 150 0.45 0.9 0.05 0.85
D1 150 0.45 0.9 0.05 0.85

Table 6.3: Parameterization of submitted runs. MRF+PRF values are identical for C and D condi-
tions.

Model Run MAP gMAP rprec P@10

Unigram

A2 29.18 21.65 35.27 54.32
B2 ‡30.84 24.22 36.52 †57.89
C2 †31.94 26.27 38.14 57.37
D2 ‡33.49 27.89 39.15 ‡62.42

MRF+PRF

A1 35.28‡ 26.42 38.62 60.53‡
B1 34.78‡ 28.33 39.50 61.68†
C1 35.37‡ 29.88 40.15 61.89†
D1 †36.66‡ 31.42 40.88 †64.95

Table 6.4: Unigram and MRF+PRF results on development topics. Statistical significance is re-
ported for map and P@10 (only) by prefix † and ‡ comparing against cell above (i.e. less feedback)
while suffix compares Unigram vs. MRF+PRF runs using comparable feedback.

show significant improvement for condition D.

Results on Test Topics

Official test set results of our nine submitted runs are presented in Table 6.5. MAP, gMAP, rprec,

and P@10 metrics are computed on top-1000 retrieved documents with relevance determined by NIST

pooling assessment of 31 Terabyte track topics. The pool consisted of the top-10 ranked documents

from each run submitted by a participant. MTC corresponds to Carterette et al.’s Minimal Test

Collections evaluation algorithm [Carterette et al., 2006] and statAP comes from Aslam and Pavlu’s

statistical MAP method [Aslam et al., 2006]; both algorithms were used in the TREC Million-query

Track. Million-query track runs also contributed to the pools.

Unigram results demonstrate a steady improvement in retrieval accuracy across all but gMAP

metrics with growing amounts of feedback. The largest MAP improvement is seen moving to con-

dition E’s large amount of feedback (4.11% absolute over condition D). A slightly smaller MAP

improvement is seen as we go from ad hoc retrieval (condition A) to condition B’s having a single

relevant document: 3.66% (absolute). Similar trending is observed with high-rank P@10 retrieval:

11.61% and 5.49%, respectively (absolute). Regarding gMAP, it would seem topic drift caused by
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Model Run MAP gMAP rprec P@10 MTC statAP

Unigram

A2 13.43 4.05 16.48 24.19 4.90 22.91
B2 ‡17.09 6.99 21.09 †29.68 6.22 29.07
C2 ‡19.50 8.66 22.66 32.58 7.03 32.27
D2 20.64 9.29 23.67 †36.45 7.06 32.16
E1 †24.75 14.85 27.35 ‡48.06 7.32 35.00

MRF+PRF

A1 21.46‡ 11.43 25.15 32.90 5.64 27.99
B1 20.96 11.63 23.56 33.87 6.04 29.59
C1 †22.96† 13.68 25.75 37.74 7.01 33.87
D1 †24.29† 14.93 27.42 40.65 7.03 32.16

Table 6.5: Official results of our runs on test topics. Run name indicates feedback condition and
run ID. Runs are divided between unigram results (no PRF) and results using both sequential
dependency (§2.6) and PRF. Statistical significance is reported for map and P@10 (only) following
the same conventions used in Table 6.4. While the general ranking is consistent between MAP and
statAP, note that the former is based on shallow pooling; see track overview for details [Buckley and
Robertson, 2009].

MAP P@10
System A-E B-E A-E B-E

Brown 22.89 23.23 38.64 40.08
uogRF09 22.08 22.68 38.64 38.87
UAmsR08PD 19.22 20.09 35.17† 36.78†
UIUC 18.55† 20.09† 32.52† 35.41‡
FubRF08 17.85† 19.58† 32.26† 35.48‡

Table 6.6: Relative performance achieved by five of the top systems participating in the track,
as measured by simply averaging official test topic MAP and P@10 accuracies across the various
feedback conditions. As mentioned in Table 6.5, note reported MAP scores are based on shallow
pooling. Column “A-E” averages over all conditions, while “B-E” compares feedback conditions
only (no ad hoc “A”). Statistical significance measured by a two-tailed paired t-test is reported for
low significance† (p < .05) and high significance‡ (p < .01). Refer to track overview [Buckley and
Robertson, 2009] and official track results for more detailed comparison.
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feedback is seen to hurt performance, though this loss diminishes as greater feedback reduces drift.

However, note a very different trend is observed on development topics (Table 6.4). It may be

this difference in trends is simply a byproduct of differences between how feedback documents were

selected for development and test sets. On the other hand, since official evaluation only included

top-10 ranked documents in pooling, assessment may have been biased in favor of easier topics for

which many relevant documents would be seen early in the ranked list. Finally, since we use identical

system configurations for conditions C and D (which provide comparable feedback), we expected

their results should be quite similar, and MTC and statAP metrics bear this out.

MRF+PRF results are less clear in that condition B results decline in comparison to ad hoc

retrieval under MAP and rprec metrics while improving under all other metrics. This drop is likely

due to overfitting. Otherwise similar trends are observed: we see improvement with increasing

feedback. C and D conditions again appear roughly comparable, with D generally performing

slightly better except in the case of statAP. Overall, we see that depending on the base model used,

ca. 15-85% relative improvement in MAP accuracy is achieved via document feedback (84.3% for

the unigram, 13.2% for the MRF+PRF, comparing top and bottom rows for each in Table 6.5).

Table 6.6 shows the relative strength of our overall system in comparison to four other competitive

submissions to the 2008 TREC Relevance Feedback track. Performance is summarized by simply

averaging official MAP and P@10 accuracies across the various feedback conditions. Results shown

our system typically performed as well or better than peer systems. The track overview [Buckley

and Robertson, 2009] and official track results provide more thorough details for comparison.

6.3 Conclusion

Verbose queries and feedback documents both offer an opportunity to better infer a query’s latent

information need in comparison to short queries if we can effectively infer the relative importance

and salience of additional terms. Both enlarge the representational feature space of terms for dis-

tinguishing between relevant and non-relevant documents and provide observational evidence for

estimating term importance over this enlarged vocabulary. As such, we saw estimation is again a

key issue as in earlier chapters.

As a specific contribution, we described an effective strategy for combining relevance feedback,

pseudo-relevance feedback, and Markov random field modeling techniques for document retrieval.

Using a large web collection, we evaluated an overall combination strategy while assessing the con-

tribution from each component in presence of the others. Given 0-5 feedback documents, we found

each component contributed unique value to the overall ensemble, achieving significant improvement

individually and in combination.

Comparative evaluation in the 2008 TREC Relevance Feedback track further showed our system

typically performed as well or better than peer systems. Use of proximity (e.g. features in our MRF

model) and/or PRF was generally seen to help in combination with RF across participating systems

that employed one or the other. Use of negative feedback (e.g. via Rocchio) generally provided
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little benefit. Interestingly, all of the competitive participants’ systems displayed some form on non-

monotonicity in accuracy with increasing feedback. While we identified problems with overfitting in

our system, as discussed earlier, it remains to be seen this is explanation is sufficient in general.

While our approach to RF here was limited to unigram feedback, an interesting topic for future

work will be exploring term dependency selection from feedback documents for incorporation into

fO and fU MRF components (Equation 2.6.4). Previous work has shown little benefit from PRF

dependency modeling [Metzler and Croft, 2007a], but RF dependency modeling may prove to be

more helpful. We would also like to explore use of RF in conjunction with supervised unigram

modeling such as described in Ch. 3.

Another interesting direction to explore would be applying the Gigaword-based weighting strat-

egy presented in Ch. 5 with the expanded queries created by feedback. Because such queries are far

longer than the typical question and sentence verbose queries considered in Chapters 3-5, maximum-

likelihood / relative frequency-based estimation has more robust statistics to work with and so may

prove less problematic than with the more natural verbose queries considered earlier. Nonetheless,

it would be interesting to test this hypothesis experimentally.



Chapter 7

Dirichlet-smoothed Bigram

Modeling and Collection Expansion

While previous chapters have described estimation methods for better retrieving text documents,

this chapter investigates better estimation methods in the context of retrieving spontaneous speech

documents. As in Ch. 5, we evaluate system accuracy for both keyword and more verbose queries1.

As with the earlier text retrieval experiments, we find here that retrieval accuracy of spontaneous

speech documents can also be significantly improved by better estimation, and we investigate bigram

modeling [Song and Croft, 1999] as an incremental improvement over the traditional bag-of-words

representation considered in Ch. 3 and an alternative to Markov Random Field modeling (Chapters

4 and 5).

In particular, this chapter describes two simple but effective smoothing techniques for the stan-

dard language model (LM) approach to information retrieval. First, we extend the popular uni-

gram Dirichlet smoothing technique (§2.4.3) to bigram modeling. Second, we propose a method of

collection expansion for more robust estimation of the LM prior, particularly intended for sparse

collections. Retrieval experiments on the MALACH archive [Oard et al., 2004] of automatically

transcribed and manually summarized spontaneous speech interviews demonstrates strong overall

system performance and the relative contribution of our extensions.

7.1 Introduction

In the language model (LM) paradigm for information retrieval (IR), a document’s relevance is

estimated as the probability of observing the query string as a random sample from the document’s

underlying LM (§2.4.3). The standard unigram LM approach has been shown to have a strong

theoretical connection [Zhai and Lafferty, 2004] to classic TF-IDF statistics and comparable empirical

1In this chapter we consider verbose queries as the concatenation of title anddescription fields; evaluation of
description field queries alone remains for future work.

84
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performance [Fang et al., 2004] to other state-of-the-art approaches like vector similarity (§2.4.1) and

the “probabilistic” approach (§2.4.2). This chapter presents two modest smoothing-based extensions

in the LM paradigm.

Whereas the unigram model and other standard approaches to retrieval typically assume bag-of-

words independence between terms, modeling even a simple notion of term dependency represents

a useful step toward richer modeling of queries and documents. Previous work in bigram modeling

provided a valuable first step in this direction within the LM paradigm and demonstrated its empir-

ical merit [Song and Croft, 1999]. Subsequent to this, Dirichlet smoothing with unigram models was

found to elegantly and effectively capture the intuition that longer documents should require less

smoothing since they provide more support for the maximum-likelihood (ML) estimate [Zhai and

Lafferty, 2004]. While one would expect bigram models could similarly benefit, we have not seen a

Dirichlet-smoothed bigram model described or evaluated in the IR literature. Consequently, we de-

scribe such a model here and report on its effectiveness. As with the earlier bigram formulation [Song

and Croft, 1999], our approach easily generalizes to higher-order mixtures.

The second extension we describe addresses smoothing at the collection-level. As suggested

above, smoothing plays an important role in inferring accurate document LMs, and it can be ac-

complished in a principled manner via maximum a posteriori estimation using a prior model. For

IR, the prior is typically estimated from collection statistics, but just as estimating a robust doc-

ument model is often challenging due to document sparsity, estimating the prior from a small (i.e.

sparse) collection can be equally problematic. To address this, we propose estimating the prior

from an “expanded” version of the collection containing additional statistics drawn from external

corpora. This idea closely parallels previous work expanding documents with similar ones found

in external sources [Singhal and Pereira, 1999]. Previous work in topic detection and tracking has

also leveraged external corpora to gain more robust statistics when only few documents have been

seen [Allan et al., 1998]. Here, collection-wide statistics are expanded via external corpora to enable

more robust estimation of the LM prior. We show simple collection expansion via broad, external

corpora significantly improves retrieval accuracy.

We evaluated our model and extensions via retrieval experiments on the MALACH archive of

automatically transcribed and manually summarized spontaneous speech interviews [Oard et al.,

2004]. These experiments were conducted as part of the Cross-Language Speech Retrieval track’s

shared task [Pecina et al., 2008] at the 2007 Cross Language Evaluation Forum. Results show the

overall competitive performance of our system as well as the relative contribution of our extensions.

The remainder of the chapter is presented as follows: methodology is discussed in §7.2, relevant

details of the MALACH collection and pre-processing are described in §7.3, evaluation procedure

and results are presented in §7.4, and §6.3 summarizes and describes future work.
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7.2 Method

7.2.1 Dirichlet-smoothed Bigram Modeling

We adopt the Dirichlet-smoothed unigram formulation presented earlier (§2.4.3) and seek to extend

this formulation to bigram modeling. To accomplish this, we similarly smooth the empirical bigram

estimate with hyper-parameter µ1 pseudo-counts distributed fractionally according to the collection

prior bigram model, P (wi|wi−1, C):

P (wi|wi−1, D, C) =
fwi−1,wi

+ µ1P (wi|wi−1, C)

fwi−1
+ µ1

(7.2.1)

Unigram and bigram models can then be easily mixed by treating our smoothed unigram distribution

P (w|D,C) as an additional prior on the bigram model and adding in µ2 pseudo-counts drawn from

it:

P (wi|wi−1, D, C) =
fwi−1,wi

+ µ1P (wi|wi−1, C) + µ2P (w|D,C)

fwi−1
+ µ1 + µ2

(7.2.2)

Whereas earlier work inferred the hyper-parameters α in Equation 2.4.13 from data in order to

realize a coupled prior tying unigram and bigram models [MacKay and Peto, 1995], our formulation

can be viewed as a less sophisticated alternative that reduces α to three hyper-parameters, µ, µ1,

and µ2, to be tuned on development data.

7.2.2 Collection Expansion

The second extension we describe addresses more robust estimation of the LM prior by performing

smoothing at the collection-level. As discussed above, ML estimation of document LMs is hurt by

document sparsity, and hence maximum a posteriori estimation is commonly employed instead using

an informative prior induced from the collection. The effectiveness of this strategy, however, relies

on accurate estimation of the prior, which can be challenging for small (i.e. sparse) collections.

To address this, we propose estimating the prior from an “expanded” version of the collection

containing additional data drawn from external corpora. This approach parallels traditional work

in document expansion in which collection documents are expanded with external, related docu-

ments [Singhal and Pereira, 1999]. In both cases, the underlying idea of expansion being employed

is characteristic of a broad finding in the learning community that having additional similar data

enables more robust estimation. In our case of collection expansion, we hope to compensate for

collection sparsity by drawing upon “similar” data from external corpora.

For this work, we simply leveraged two broad English newspaper corpora: the Wall Street Journal

(WSJ) and the North American News Corpus (NANC) [Graff, 1995]. Specifically, we expanded

the collection as a linear mixture with 40K sentences (830K words) from WSJ (as found in the

Penn Treebank [M. Marcus et al., 1993]) and 450K sentences (9.5M words) from NANC, with

tunable hyper-parameters specifying integer mixing ratios between corpora. The particular corpora

and mixing scheme used could likely be improved by a more sophisticated strategy. For example,

results in §7.4 show significant improvement for modeling manually-written summaries but not for
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automatic transcriptions, likely due to mismatch between the external corpora and the automatic

transcriptions. Bigram statistics in expansion corpora were not collected across sentence boundaries,

which were manually annotated in WSJ and automatically detected in NANC [McClosky et al., 2006].

7.3 Data

This section describes the retrieval collection used and pre-processing performed. A more complete

description of the collection can be found elsewhere [Oard et al., 2004, 2006, Pecina et al., 2008].

Data used came from the Survivors of the Shoah Visual History Foundation (VHF) archive of

interviews with Holocaust survivors, rescuers, and witnesses. A subset of this archive was manually

and automatically processed by VHF and members of the MALACH initiative (Multilingual Access

to Large Spoken Archives) in order to improve access to this archive and other such collections

of spontaneous speech content. As part of this effort, interviews were manually segmented and

summarized, as well as automatically transcribed (several variant transcriptions were produced).

Manual transcription was limited and not provided for interviews included in the retrieval collection.

Each interview segment was also manually assigned a set of keywords according to a careful ontology

developed by VHF, and two versions of automatically detected keywords were also provided. Topics

used for retrieval were based on actual information requests received by VHF from interested parties

and were expressed in typical TREC-style with increasingly detailed title, description, and narrative

fields [Oard et al., 2004].

In terms of pre-processing, sentence boundaries were automatically detected to collect more accu-

rate bigram statistics. Boundaries for manual summaries were detected using a standard tool [Reynar

and Ratnaparkhi, 1997] and interview segment keyword phrases were each treated as separate sen-

tences. We noted the presence of multiple contiguous spaces in automatic transcriptions appeared

to correlate with sentence-like units (SUs) [LDC, 2004] and so segmented sentences based on them2.

Use of automatic SU-boundary detection is left for future work [Roark et al., 2006].

7.4 Evaluation

This section describes system evaluation, including experimental framework, parameter settings,

and results. Retrieval experiments were performed as part of the 2007 Cross Language Evaluation

Forum’s Cross-Language Speech Retrieval (CL-SR) task [Pecina et al., 2008].

We used 25 topics for development and 33 for final testing (the 2005 and 2006 CL-SR evaluation

sets, respectively; the 2006 test set was re-used for the 2007 evaluation). For the “manual” retrieval

condition, segments consisted of manual summaries and keywords. For the “automatic” condition,

we used the ASR2006B transcripts and both versions of automatic keywords. Following previous

work [Zhai and Lafferty, 2004], the unigram Dirichlet smoothing parameter µ was fixed at 2000 for

2Collection documentation does not discuss this.
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Collection Queries Dev CL-SR’05 Test CL-SR’06 CL-SR’07

Manual TDN .3829 - .2870 .2902 .2847
TD .3443 .3129 .2366+ .2710 .2761+
T .3161 - .2348 .2489 -

Auto TDN .1623 .2176 .0910 .0768 -
TD .1397 .1653 .0785- .0754 .0855-

Table 7.1: Mean-average precision retrieval accuracy of submitted runs. CL-SR columns indicate
representative strong results achieved in that year’s track on the same query set [Oard et al., 2006,
Pecina et al., 2008]. Runs marked with +/- were reported in the 2007 track report to represent
statistical significance and non-significance, respectively.

Model T TD TDN
Unigram baseline .2605 .2722 .2810

Dirichlet bigram .2545 (-2.3%) .2852 (4.8%) .2967 (5.6%)
Collection Expansion .2716 (4.3%) .3021 (11.0%) .3236 (15.2%)
Combination .2721 (4.5%) .3091 (13.6%) .3369 (19.9%)

Table 7.2: Relative improvement in mean-average precision on the development set over the unigram
baseline model for Dirichlet-smoothed bigram modeling and collection expansions, alone and in
combination (manual condition, no pseudo-relevance feedback).

both manual and automatic conditions. Best performance was usually observed with µ1 set to 1,

while optimal µ2 settings varied.

A limited pseudo-relevance feedback (PRF) scheme was also employed. As in standard practice,

documents were ranked by the model according to the original query, with the most likely documents

taken to comprise its feedback set (the number of feedback documents used varied). The query

was then reformulated by adding the 50 most frequent bigrams from each feedback document. A

tuning parameter specified a multiplier for the original query counts to provide a means of weighting

the original query relative to the feedback set. This scheme likely could be improved by separate

treatment for unigram feedback and weighting feedback documents by document likelihood under

the original query.

Results in Table 7.1 show performance of our five official runs on development and test sets3;

queries used were: title-only (T), title and description (TD), and title, description, and narrative

(TDN). Representative strong results achieved in 2007’s and previous years’ CL-SR tracks [Oard

et al., 2006, Pecina et al., 2008] are also shown, though it should be noted that our results on the

development set correspond to tuning on those queries whereas the CL-SR’05 official results do not.

Retrieval accuracy was measured using mean-average precision reported by trec_eval version 8.14.

3Following submission of official runs, we found a bug affecting our parsing of the narrative field of three test
queries. Table 7.1 show system performance with the bug fixed. Without the fix, Manual-TDN on the test set was
.2577 and Auto-TDN was .0831.

4http://trec.nist.gov/trec_eval
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Table 7.2 shows the impact of our extensions compared to the baseline Dirichlet-smoothed uni-

gram retrieval model for the no-PRF “manual” condition. Of the two extensions, collection expansion

is seen to have greater effect, with the combination yielding the best result. The effect of the exten-

sions with the “automatic” condition was marginal (the best absolute improvement seen was 0.3%

achieved by the bigram model). With collection expansion, we suspect this is due to the mismatch

between the collection’s spontaneous speech and the text corpora used for expansion (§7.2), and we

plan to investigate use of better matched corpora in future work. As for the bigram model, auto-

matic transcription noise is more problematic than with unigrams since recognition error further

impacts prediction of subsequent terms. One strategy for addressing this would be to work off the

recognition lattice instead of the one-best transcription. Another challenge to the bigram model is

the presence of disfluency in spontaneous speech, which disrupts bigram statistics. Automatic detec-

tion and deletion of disfluency could help address this and thereby also render the spoken document

more amenable to smoothing via external text corpora [Lease et al., 2006].

For manual retrieval with PRF, the combination of extensions was used in selecting the set of

documents for feedback. For PRF runs using this feedback set, the extensions were seen to pro-

vide minimal further benefit, with PRF tuning parameters dominating the variance in performance

observed. Since PRF produces a query more tailored to collection statistics, expanded collection

statistics may be less useful in PRF settings.

7.5 Conclusion

This chapter presented two smoothing-based extensions to the standard language model approach to

information retrieval: Dirichlet-smoothed bigram modeling and collection expansion. While we are

certainly not the first to suggest bigram modeling for IR (cf. [Song and Croft, 1999]), the formulation

we describe is the first we know which combines bigram modeling with Dirichlet-smoothing and

demonstrates its effectiveness. Similarly, while there has been previous work in expanding documents

with similar ones found in external sources [Singhal and Pereira, 1999], we are not familiar with any

previous work in expanding collection-wide statistics via external corpora to enable more robust

estimation of the language modeling prior. Results of this latter technique showed clear benefit and

suggest its general applicability whenever collections are small, such as with personal or community

archives rather than massive Web-scale or corporate collections.



Chapter 8

Future Work

There is always more to do, and this dissertation is no exception to the rule. While we have

provided some insights and effective strategies for better modeling natural language in the context

of IR (particularly with regard to improving support for verbose queries), many interesting and

important questions and issues remain open for further consideration and exploration. As such, this

chapter highlights and discusses a few of these topics.

8.1 Abandoning stoplists

The idea of not indexing certain terms via stoplists was introduced in §2.3, and we applied such

stopping in all of the presented experiments. However, as mentioned in §2.3, we would like to reiterate

that stopping should be applied with caution due to its negative impact on system robustness.

Whenever one makes any such a priori bet that some particular input will never be observed or be

important, Murphy’s Law tells us we will almost certainly lose this bet. There is always some query

for which every term is important, and stopping will reduce system accuracy on these queries. As

a simple example, one might want to find a particular quotation or song lyric using or named by

a stopword. We should not ignore a class of legitimate user queries just because we do not have

TREC queries exemplifying the phenomenon. As web search has become ubiquitous and search

engines collect long logs of input queries, we have increasingly realized the tremendous variety of

queries and “long tail” of queries which individually occur infrequently but as a class constitute an

important portion of web search traffic to support. In light of such increased awareness, as well as

other issues we mention below, we recommend the IR community should discontinue use of stoplists.

Some already have (cf. [Fang et al., 2004, Mei et al., 2007, Zhai and Lafferty, 2002]). We expand on

this argument below as well as its impact on future research both generally and in the specific case

of this dissertation.

When we first began our research looking at verbose queries and studying how query verbosity

hurt retrieval accuracy in comparison to keyword search, one of the first things we considered was

the “trivial” solution: we inspected some TREC description queries and the INQUERY stoplist

90
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(§2.3) to see whether and by what degree accuracy might be improved by simply producing a better

stoplist. It quickly because clear, however, that the terms already present in the stoplist would be

problematic for various queries we could imagine, and while we might better optimize the stoplist for

some particular set of verbose queries, adding further terms would only further reduce robustness.

Moreover, it seemed existing terms present in the stoplist might already reflect optimization for some

benchmark set of known queries. To the extent the IR community has been data-limited in terms

of having such benchmark queries for empirical evaluation, systems employing stoplists run the risk

of having overfit benchmark queries. In a more realistic usage scenario with many more varied

queries or searching a particular domain, stoplists tuned on TREC queries would likely require some

form of modification. Popular accuracy metrics favoring average-case performance may also have

underestimated the detrimental effect of stoplists in terms of lowered robustness. With practical use

of a deployed IR system, even rare failures can evoke strong negative reactions from users. While

there has been some attention in recent TREC Robust tracks focusing more on difficult queries,

concern has largely addressed issues other than loss in robustness due to stopping, likely due to the

small set of queries considered. However, one positive advance from the TREC Robust track was

the introduction of evaluating using a geometric rather than arithmetic mean over average precision

(gMAP vs. MAP) to emphasize poorly performing topics (§6.2).

More sophisticated approaches to stopping are certainly conceivable. One could perform case-

folding subsequent to stopping in order to prevent the particular problem mentioned that could

prevent some proper nouns from being indexed. Context could be further used to help disambiguate

different senses of polysemous terms. However, assuming OOV terms are indeed ignored, any such

static, index-time vocabulary reduction will suffer from the same critical flaw of throwing out terms

which will likely be important in some query.

Stopping has other drawbacks as well. While there has been much work on creating sophisticated,

elegant, and effective stochastic models for IR, stopping has persisted as something of a bandaid

or crutch masking certain errors and preventing them from being addressed in a more principled

fashion inside of the system’s core formalism. This makes it harder to understand the behavior and

effectiveness of such a new system without the crutch so that its limitations could be more easily

perceived and directly addressed. Another drawback is that a variety of stoplists have percolated

into common use, and this variety serves to further complicate comparison across systems and adds

another experimental variable that distracts both analysis and production of IR research away from

more critical issues, retarding progress. While we initially adopted Kumaran and Allan’s simple

20-word stoplist (§2.7.2) to compare against their work under the same experimental conditions,

we subsequently shifted to using the INQUERY stoplist to reproduce experimental conditions of

Bendersky and Croft [Bendersky and Croft, 2008] for comparison to their work. INQUERY’s more

aggressive stopping slightly raised accuracy of the baseline IR system though the change was likely

not significant (about 0.5% MAP absolute). But we note again this merely reflected retrieval ac-

curacy on a small query set using metrics focused on average rather than worst case accuracy. It

would have been far better to compare all systems without the crutch.
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To some degree we can see in stopping a microcosm of tradeoffs between rule-based and stochastic

approaches to building intelligent systems. The traditional paradigm of hand-crafting expert systems

dominated research in artificial intelligence prior to its statistical revolution but often required a great

deal of manual effort, did not generalize well, and suffered from poor robustness. Statistical systems

have fared better in these respects, and as an alternative to stopping, recent work has investigated

strategies for dynamically determining the relative importance of query terms as part of the core

model [Bendersky and Croft, 2008, Kumaran and Allan, 2007, 2008] (Ch. 3). While such strategies

do incur the storage and efficiency cost of having to index all document terms and process all query

terms, they generalize the idea of stopping to allow more flexibly and robustly modeling relative

term importance. This means these dynamic strategies have the potential to improve both average

and worst-case IR system accuracy.

In principle, statistical methods for dynamic term weighting or selection should have abandoned

stopping entirely, but in practice they have tended to continue using stopping and presumably

benefited from doing so. This can likely be attributed to some of the issues raised above: tuned

stoplists are both readily available and tend to improve accuracy on existing datasets for standard

evaluation metrics, and their use is widely accepted in peer review and a canonical preprocessing

step in evaluating a new system. It is harder to make the argument against stopping and justify

lower results rather than simply following standard practice. Such criticisms can be fairly leveled at

the empirical evaluations presented in this dissertation, and they are openly acknowledged with the

hope of bringing more awareness and attention to the issue.

With regard to this dissertation, future work should specifically re-run presented experiments

without use of stopping, compare differences, and investigate principled strategies for addressing

any loss in accuracy without resorting to the crutch of stopping. More generally, it would likely be

useful to assemble a set of queries for which traditional stopwords are important, provide relevance

annotations for some document collection, and promote use of gMAP for evaluating performance

on this query set. We would like to see stopping become the exception rather than rule, with

justification expected for its use in the particular circumstances being presented.

8.2 Query Reduction

Earlier we described previous work in query reduction (§2.7.2). In this section we discuss possibilities

for further exploring this approach to supporting verbose queries.

Why remove terms when we can more flexibly weight them? As mentioned earlier, if we want

to leverage user interaction, query reduction suggests a fairly simple and intuitive model of inter-

action [Kumaran and Allan, 2007, 2008]. A different motivation for query reduction would be to

support natural queries via a thin client layer built atop a “black box” search engine, e.g. a client

providing search capabilities using an external vendor’s search engine. For example, Yahoo! enables

external developers to develop custom search solutions for different applications and environments
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by utilizing its BOSS API1 for core search technology. Since this API does not allow term weight-

ing, at least at present, one could instead model a mapping from input natural queries to more

effective reduced queries with the underlying search engine and generate the latter via automation

or interaction. While one could also consider a middle ground between weighting and reduction in

which limited integer term weights were expressed via relative frequency (i.e. repeating terms), the

underlying search engine may perform poorly on such queries with many term repetitions assuming

the engine has been optimized for typical (short) user queries.

While large search accuracy gains have been demonstrated via user interaction [Kumaran and

Allan, 2007, 2008], no effective fully-automated system had been reported until recently [Kumaran

and Carvalho, 2009]. This motivated our initial work with verbose queries: achieving effective fully-

automatic query reduction. We began by reproducing Kumaran and Allan’s results for oracle query

reduction [Kumaran and Allan, 2007] demonstrating the potential of the approach (see below).

Our strategy was to use term weights predicted by Regression Rank (Ch. 3) to rank terms, then

predict the number of terms to keep/discard for each input query. On development topics with

the Robust04 collection (§3.3), we were able to achieve up to 2% MAP improvement absolute over

baseline search accuracy with natural queries and ML estimation by simply picking a fixed length

cutoff for all queries in the range of 3-5 terms. We further saw with either oracle term ranking

and fixed length cutoff or with predicted term ranking and oracle length cutoff, around 5% MAP

improvement was possible. Oracle ranking with oracle length-selection per query could achieve 10%

MAP improvement, the very oracle query reduction results we mentioned above. We also performed

some simple experiments evaluating prediction of reduction length as a simple fraction of original

query length. With the same collection and topics, we found the optimal reduction ratio to be 0.4265

of original query length with fairly small variance, and while this matched the optimal length for 97

of the 149 queries, overall MAP was nevertheless worse vs. using a simple fixed maximum length.

Finally, we also tried applying a simple term weight threshold for choosing terms to keep, but again

the simple fixed maximum length cutoff performed better.

While these pilot experiments showed promise, like others [Cao et al., 2008] we ultimately found

term weighting to be more effective with our system than term selection and so abandoned the

latter. Nevertheless, the original motivations for query reduction rather than term weighting still

apply, and so it seems worthwhile to comment on how this strategy might be further explored. We

discuss ideas below in order of increasing sophistication and computational complexity.

The simplest approach is via traditional stoplists, but as we’ve argued elsewhere (§8.1), this

strategy seems too naive and limiting to be effective. Next, one could consider classifying terms as

to whether or not they should be retained. This is similar to the Key Concepts work (§2.7.2) except

classification would be performed over terms instead of noun phrases, and the classifier would actually

be used for classification instead of term weighting. Also similar is our strategy of independently

predicting term weights and, as mentioned above, using a decision threshold on predicted term

weight to decide which terms to keep. A simple naive Bayes classifier could estimate unigrams for

1http://developer.yahoo.com/search/boss
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the relevant and non-relevant distributions (P (w|R) and P (w|R̄), respectively) and keep only those

terms more probable under the former distribution. The effectiveness of such an approach would

depend on how these distributions were estimated and be limited by the bag-of-words assumption.

More interesting models would consider history or relationships between terms. For example, we

could model a process of sequential term generation conditioned on the set of terms generated thus

far and deciding when to stop generating query terms. We could use features similar to Regression

Rank for capturing the importance of terms, and Regression Rank’s predicted term weights could

themselves be used as well: e.g. predicted weight of possible next terms and their difference vs. that

of the previously generated term, aggregate predicted weights over terms generated thus far (i.e. is

the reduction “good” enough), etc. Simple features like the original query length could be used in

conjunction with more sophisticated query prediction measures [Cronen-Townsend et al., 2002] (i.e.

would adding an additional term disrupt the coherency of the returned document set), etc. Use

of such prediction measures has now been evaluated in [Kumaran and Carvalho, 2009]. The most

complex solution would be to generate all possible reductions and then score them. While there

are an exponential number of such reductions to consider in general, we can reduce complexity by

considering only those reductions to a fixed length, yielding a polynomial number of reductions to

consider. While this last approach would be most general and avoid search errors possible with the

generative model, it is the most computationally complex since all candidate reductions must be

enumerated and scored.
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