
Abstract of “Efficient Cryptography for the Next Generation Secure Cloud” by Alptekin

Küpçü, Ph.D., Brown University, May 2010.

Peer-to-peer (P2P) systems, and client-server type storage and computation outsourc-

ing constitute some of the major applications that the next generation cloud schemes

will address. Since these applications are just emerging, it is the perfect time to

design them with security and privacy in mind. Furthermore, considering the high-

churn characteristics of such systems, the cryptographic protocols employed must be

efficient and scalable. This thesis shows that cryptography can be used to efficiently

and scalably provide security and privacy for the next generation cloud systems.

We start by describing an efficient and scalable fair exchange protocol that can

be used for exchanging files between participants of a P2P file sharing system. In

this system, there are two central authorities that we introduce: the arbiter and

the bank. We then try distributing these entities to reduce trust assumptions and

to improve performance. Our work on distributing the arbiter leads to impossibility

results, whereas our work on distributing the bank leads to a more general cloud

computation result showing how a boss can employ untrusted contractors, and fine

or reward them. We then consider cloud storage scenario, where the client outsources

storage of her files to an untrusted server. We show how the client can challenge the

server to prove that her file is kept intact, even when the files are dynamic. Next,

we provide an agreement protocol for a dynamic message, where two parties agree on

the latest version of a message that changes over time. We then apply this agreement

protocol to the cloud storage setting and show how a judge can arbitrate between

the client and the server officially based on the agreed-upon message and the proof

sent by the server. Lastly, we show that all our solutions are efficient and scalable by

presenting results from the cryptographic library we implemented.

Efficient Cryptography for the Next Generation Secure Cloud

by

Alptekin Küpçü

B.S., Bilkent University, 2004

M.Sc., Brown University, 2007

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2010

c© Copyright 2010 by Alptekin Küpçü

This dissertation by Alptekin Küpçü is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Prof. Anna Lysyanskaya, Advisor

Recommended to the Graduate Council

Date
Prof. Yevgeniy Dodis, Reader

NYU

Date
Prof. John Jannotti, Reader

Date
Prof. Roberto Tamassia, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

I, Alptekin Küpçü, was born in Ankara, Turkey, in 1983. I graduated with a B.S.

degree from Bilkent University Department of Computer Engineering in 2004, with

3rd rank. Then, I continued my studies at the Department of Computer Science at

Brown University. I received my M.Sc. degree in 2007, under Uğur Çetintemel’s

supervision. During my Ph.D., I worked under the supervision of Anna Lysyanskaya,

and worked together with John Jannotti, Roberto Tamassia, and Yevgeniy Dodis.

Throughout my life, I received multiple scholarships, fellowships, and awards. I

am going to mention only some of those here. Due to my success at the university

entrance examination in Turkey (SAT equivalent), I was awarded the “76th year an-

niversary prize” by Türkiye İş Bankası, an award given to the first 76 out of roughly

1.5 million contestants. Later, at the graduate education examination in Turkey

(GRE equivalent), I was ranked 2nd out of roughly 100 thousand attendees. Apart

from awards for my academic success, I was also awarded a 3rd rank prize at a poem

competition in high school.

I am an active person, involved in many organizations ranging from computer sci-

ence related activities to gaming clubs, involving groups of various sizes, ranging from

small groups of friends to the whole graduate student community at the university,

organizing events whose participants were from all over the nation, and sometimes

even internationals coming from abroad.

iv

Acknowledgements

I want to thank my advisor Anna Lysyanskaya, and my committee John Jannotti,

Roberto Tamassia, and Yevgeniy Dodis, for all their help throughout my Ph.D. I also

would like to acknowledge and thank my academic siblings Mira Belenkiy and Melissa

Chase, and all my other collaborators: C. Chris Erway, Charalampos Papamanthou,

Theodora Hinkle, Sarah Meiklejohn, and Eric Rachlin. I further thank all other

Brownie Points project members: Gabriel Bender, Saurya Simha Velagapudi, Jason

Rassi, Paul O’Leary McCann, Diana Kathleen Huang, Joshua Kossoy Fuhrmann,

and Alex Hutter. And I must mention friends and colleagues who helped me with at

least one of my papers: Nevzat Onur Domaniç, İbrahim Eden, Semiha Ece Kamar,

Markulf Kohlweiss, Hatice Şahinoğlu, and Meinolf Sellmann. Finally, I thank my

master’s advisor Uğur Çetintemel for his continued support even after my M.Sc.

studies.

v

Dedication

To my true friends. They know who they are...

vi

Contents

List of Tables xiv

List of Figures xv

1 The Next Generation Secure Cloud 1

1.1 Fairness in the Cloud . 3

1.2 Trust in the Cloud . 4

1.3 Computation in the Cloud . 4

1.4 Storage in the Cloud . 6

1.5 Judging in the Cloud . 6

1.6 Implementing the Cloud . 7

1.7 Organization . 8

2 Networking in the Cloud 10

2.1 Introduction . 10

2.1.1 Previous Work . 12

2.1.2 Contributions . 13

2.2 Notation . 15

2.3 (Optimistic) Fair Exchange . 18

2.4 Barter with Timeouts . 26

vii

2.4.1 BobResolve . 28

2.4.2 AliceResolve . 29

2.4.3 Subprotocols . 30

2.5 Security Analysis . 31

2.5.1 Universal One-Way Hash Functions 35

2.5.2 Privacy Analysis . 37

2.6 Efficient Barter without Timeouts . 37

2.6.1 AliceAbort . 39

2.6.2 Analysis of Barter without Timeouts 40

2.7 Generalized Version . 41

2.8 Efficiency Analysis . 41

2.9 Limitations and Future Work . 45

2.10 Conclusion . 47

3 Trusting the Cloud 49

3.1 Introduction . 49

3.2 Definition of a DAFE Protocol . 52

3.2.1 Sample DAFE Protocols . 58

3.3 Notation . 61

3.3.1 DAFET Protocols (DAFE Protocols with Timeouts) 63

3.4 Framework for Analysis of DAFE Protocols 64

3.4.1 Scenario 1: M can Abort . 65

3.4.2 Scenario 2: Only H can Abort 66

3.4.3 Scenario 3: H can Resolve only after Timeout 66

3.4.4 Scenario 4: M already Resolved 67

3.5 Impossibility Results on DAFE Protocols 68

3.5.1 Protocol 1: Alice and Bob can Abort and Resolve 69

viii

3.5.2 Protocol 2: Only one party can Abort 69

3.6 Relaxing Autonomous Arbiters Assumption 70

3.6.1 Scenario 2 Revisited . 71

3.6.2 Protocol 2 Revisited (More Impossibility Results) 73

3.7 Applying DAFET Framework to Prove Optimality 75

3.8 Discussion: Timeouts and Dynamic Resolution Sets 78

3.9 Conclusion and Future Work . 79

4 Computing in the Cloud 81

4.1 Introduction . 81

4.1.1 Related Work . 83

4.2 Model . 85

4.3 Basic Construction . 86

4.4 Accuracy and Hash Functions . 88

4.5 When to Check an Answer . 91

4.5.1 Double Checking . 92

4.5.2 Hiring Multiple Contractors 92

4.5.3 Hybrid Strategy . 93

4.5.4 Employing Bounties . 94

4.6 Malicious Contractors . 95

4.6.1 Independent Malicious Contractors 96

4.6.2 Colluding Malicious Contractors 97

4.7 Evaluation . 99

4.8 Conclusion and Future Work . 102

5 Storing in the Cloud 104

5.1 Introduction . 104

ix

5.1.1 Contributions . 106

5.1.2 Related Work . 108

5.2 Model . 110

5.3 Rank-based Authenticated Skip Lists 116

5.3.1 Rank-based Queries . 117

5.3.2 Authenticating Ranks . 118

5.3.3 Setup . 120

5.3.4 Queries . 121

5.3.5 Verification . 122

5.3.6 Updates . 124

5.4 DPDP Scheme Construction . 125

5.4.1 Core Construction . 125

5.4.2 Blockless Verification . 128

5.5 Security . 130

5.6 Rank-based RSA Trees . 136

5.7 Extensions and Applications . 138

5.7.1 Variable-sized Blocks . 139

5.7.2 Directory Hierarchies . 140

5.7.3 Version Control . 141

5.8 Performance Evaluation . 143

5.8.1 Communication . 144

5.8.2 Server Computation . 145

5.8.3 Version Control . 146

5.9 Future Work . 148

5.9.1 Other DPDP Constructions 148

5.9.2 On Impossibility of Dynamic Proof of Retrievability Schemes . 149

x

6 Official Arbitration in the Cloud 152

6.1 Introduction . 152

6.1.1 Previous Work . 155

6.1.2 Contributions . 156

6.2 Agreement and Official Arbitration 156

6.3 Efficient Dynamic Agreement and Official Arbitration Protocol 160

6.4 Payment-Extended Dynamic Official Arbitration Protocol 163

6.4.1 Dispute Resolution . 167

6.4.2 Analysis . 169

6.5 Performance Evaluation . 170

7 Practicality of the Cloud 172

7.1 Introduction . 172

7.1.1 Related work . 174

7.1.2 Contributions . 175

7.2 Cryptographic Background . 175

7.3 Implementation of Cashlib . 180

7.3.1 Modifications to Endorsed E-cash 181

7.3.2 Modifications to Buying and Bartering 182

7.3.3 Performance of Primitives . 183

7.3.4 Performance of High Level Protocols 185

7.4 Conclusions and Future Work . 186

8 Conclusion and Future of the Cloud 187

Bibliography 190

A Algorithms Used 205

xi

A.1 Security Parameters . 205

A.2 Assumptions . 206

A.3 Setup . 207

A.4 Commitment Schemes . 211

A.4.1 Fujisaki-Okamoto Commitment Scheme 211

A.4.2 Pedersen Commitment Scheme 213

A.5 Honest-Verifier Zero Knowledge Sigma Proofs 215

A.5.1 Proof of Knowledge of Discrete Logarithm Representation . . 219

A.5.2 Proof of Equality of Discrete Logarithm Representation 223

A.5.3 Proof that a Committed Value x is of the Form x = y ∗ z . . . 227

A.5.4 Proof that a Committed Value x is Non-Negative x ≥ 0 230

A.5.5 Proof that a Committed Value x lies within an Interval [lo, hi] 231

A.6 CL Signatures . 232

A.6.1 Obtaining a Blind CL Signature 234

A.6.2 Proving a CL Signature . 237

A.7 E-cash . 238

A.7.1 Compact E-cash . 238

A.7.2 Endorsed E-cash . 244

A.7.3 E-Cash FAQ . 246

A.8 Verifiable Encryption . 248

A.8.1 Encrypt . 250

A.8.2 Verifiably Encrypt . 251

A.8.3 Decrypt . 254

A.9 Merkle Tree . 255

A.10 Skip List . 258

A.11 ASW Fair Exchange . 258

xii

? Chapters 2 and 3 of this thesis is joint work with Anna Lysyanskaya in papers

[96, 95]. Chapter 4 is joint work with Mira Belenkiy, Melissa Chase, C. Chris

Erway, John Jannotti, and Anna Lysyanskaya in paper [15]. Chapter 5 is joint

work with C. Chris Erway, Charalampos Papamanthou, and Roberto Tamassia in

paper [70]. Chapter 7 is joint work with C. Chris Erway, Theodora Hinkle, Anna

Lysyanskaya, and Sarah Meiklejohn in paper [68]. Lastly, Appendix A includes

contributions by Theodora Hinkle, Anna Lysyanskaya, Sarah Meiklejohn, and

Charalampos Papamanthou.

xiii

List of Tables

5.1 Comparison of PDP schemes. 105

5.2 Sample skip list proof. 120

5.3 Sample skip list update proof. 123

5.4 Asymptotic performance of DPDP operations. 143

5.5 Authenticated CVS server characteristics. 147

5.6 More DPDP schemes. 149

A.1 PoKoDLR protocol security summary. 220

xiv

List of Figures

2.1 Our barter protocol with timeouts. 28

3.1 Semantic view of the state machines of the participants. 52

4.1 Setting outsourcing parameters. 100

4.2 Maximum fraction of incorrect results accepted by the boss. 101

4.3 Maximum amount of extra work done by the boss. 102

5.1 Example of rank-based skip list. 118

5.2 A file system skip list. 141

5.3 A version control file system. 142

5.4 Communication cost of dynamism. 144

5.5 Computation cost of dynamism. 145

6.1 Efficient dynamic agreement and official arbitration protocol. 161

6.2 Payment-extended dynamic official arbitration protocol. 165

7.1 Library performance micro-benchmarks. 183

7.2 Library performance macro-benchmarks. 185

A.1 Sample skip list existence proof. 258

xv

Chapter 1

The Next Generation Secure Cloud

Systems researchers are designing cloud systems addressing various needs including

cloud storage, cloud computation, collaborative systems, and many other peer-to-

peer systems. We have seen many problems with integrating security after the design

(as an example, consider the relative failure of adoption of IPSec on the Internet).

Therefore, security must be included in the initial design of such next generation

systems.

This thesis addresses security of some of the emerging cloud schemes like out-

sourced computation and storage, as well as state-of-the-art peer-to-peer (P2P) sys-

tems like BitTorrent file sharing. It mainly focuses on two different types of cloud

systems. One type is focused on outsourcing some work to a more powerful entity

(e.g., outsourcing storage to Amazon S3), whereas the other type’s focus is outsourcing

to multiple small entities (e.g., outsourcing distribution of files to users of a peer-to-

peer system). In both settings though, the current generation systems provide no

guarantees at the service level. This thesis shows that security guarantees in various

cloud systems can be provided using cryptographic methods without losing efficiency

and scalability. Furthermore, privacy is an important feature for the users, and so

our protocols are designed to respect privacy of the participants.

1

2

Research presented in this thesis is mainly inspired by the Brownie Points project

at Brown University [34]. As a member of this group, I first worked on employing

electronic cash in a P2P file sharing system called BitTorrent [52] to provide account-

ability, fairness, and fault tolerance while preserving privacy [16]. In a BitTorrent

system, peers would like to exchange files among each other. Current BitTorrent

systems fail to provide strong accountability and incentives to share files, and hence

many peers stop uploading as soon as they finish their own downloads.

Our group proposed using electronic cash (e-cash) as a method of solving these

problems. E-cash, introduced by Chaum [50], is an efficient [40, 44] and anonymous

payment system. A user can withdraw from the bank a wallet containing multiple

e-coins. Then, users can exchange those e-coins (e.g., buy items), and they go deposit

to the bank the coins they earned. The basic idea of using e-cash in BitTorrent

involves paying an e-coin to download a block (BitTorrent treats files as composed of

many blocks), and earning an e-coin for uploading a block. Since e-cash is used as

the payment mechanism, peers will preserve their privacy in those transactions.

The transactions between the peers need to be fair, efficient, and scalable, con-

sidering the needs of the high-churn P2P system. There are two basic types of trans-

actions between the peers: Exchanging a file (more precisely, a BitTorrent block)

with an e-coin (buy transaction), or exchanging a block with another block (barter

transaction). Our group presented fair exchange protocols for both transaction types

[16]. Yet, initial implementation results made it clear that those protocols will not be

efficient enough for a high-churn (high-interaction) P2P file sharing application. The

problem is that all previously known fair exchange protocols (including the ones in

[16]) required costly cryptographic primitives for every exchange. Considering that

BitTorrent peers exchange thousands of blocks per file, the overhead becomes very

high.

3

1.1 Fairness in the Cloud

Fair exchange is an everyday problem in which two parties, let us call them Alice

and Bob, would like to exchange some items, and they want to do so fairly: either

both parties obtain each other’s item, or neither does. In addition to fairness, we are

concerned with performance (efficiency and scalability) of the resulting cryptosystem,

since the poor performance of the previous fair exchange protocols is one of the main

reasons they are not widely used today. It has been shown that no fair exchange

can be performed without a trusted third party (the arbiter) [122]: Without loss of

generality, Alice will send the last message. In case she chooses not to, Bob will

be at a disadvantage, unless a third party can provide fairness somehow, based on

messages Alice and Bob have exchanged previously. Yet, with a trusted arbiter,

fairness is trivial: both parties can send their items to the arbiter, and the arbiter

sends Alice’s item to Bob and Bob’s item to Alice. Of course, this puts too much load

on the arbiter, and therefore is impractical. Hence, recent previous work focused on

optimistic fair exchange protocols in which the arbiter gets involved only in case of a

dispute between the two parties [7].

Chapter 2 presents the most efficient barter protocol known [96]. Our first contri-

bution is definitional. Previous work defined fair exchange of signatures. We extended

this definition and formally defined general fair exchange of arbitrary data. As our

second contribution, we came up with protocols that takes optimistic fair exchange

protocols from being only theoretical to being completely practical. The main dif-

ference of our protocol is that the costly step is necessary only once per peer, and

then the two peers can exchange as many blocks as they want using only efficient

cryptography. Considering thousands of blocks being exchanged with only tens of

peers, the improvement is pretty significant. When two parties exchange 2.8GB of

data, previous work requires an additional 250MB of communication and 84 minutes

4

of computation, whereas our protocol’s overhead is about 2MB of communication and

80 seconds of computation, using state-of-the-art building blocks. Our protocols have

more efficiency gains in particular when the same parties keep exchanging multiple

items, even when they do not know how many or which items they will end up ex-

changing ahead of time. This improvement is possible since the protocol assumes that

buying is considered fair in case bartering fails, which perfectly fits our BitTorrent

scenario.

1.2 Trust in the Cloud

As we mentioned above, every fair exchange protocol requires a trusted third party

(called the arbiter) [122]. Every trusted entity is a potential weakness of a system,

and thus in Chapter 3 we considered techniques to relax the trust assumptions by

distributing the job of the trusted arbiter among multiple parties [95]. This can be

done using previous work on Byzantine fault tolerance and secure multi-party com-

putation [81, 22, 24, 47], but these lead to inefficient solutions whose communication

and computation complexity are quadratic in the number of parties used as the dis-

tributed arbiter. Thus, we focused on employing multiple autonomous arbiters who

do not talk to each other. We proved that for a general class of optimistic fair ex-

change protocols, having multiple autonomous arbiters requires trusting all arbiters,

and hence reducing the trust this way is impossible.

1.3 Computation in the Cloud

In a system that involves e-cash, there is a need for a bank to keep account balances,

let users withdraw and deposit coins. With each deposit, the bank needs to verify

the coin to see if it is valid. In a high-churn P2P system as above, the bank may get

5

overloaded, so one needs to lighten the burden of the bank. One way of doing this is

the barter protocol we mentioned above, since no money changes hands if everything

goes well. If peers can barter instead of buying, this is great for the bank. Moreover,

it is also beneficial for the peers since when multiple blocks are exchanged, bartering

is much more efficient than buying. An additional way of lightening the burden of

the bank is to outsource the bank’s job to untrusted contractors. Instead of forcing a

central authority to handle all the work, we can outsource the bank’s coin verification

job to P2P system users to mitigate this bottleneck.

Motivated by outsourcing the bank’s verification job, in Chapter 4 we present a

novel outsourcing mechanism for a boss employing untrusted contractors for computa-

tion [15]. The idea is that the boss rewards the contractors who do their job correctly

and punishes the dishonest ones. He can employ multiple contractors for the same

computation and use their answers to check each other. We split the contractors

into three categories (honest, rational, malicious), and analyzed their incentives in a

game-theoretic setting. Malicious contractors are not rational, but they still need to

keep a non-negative balance between rewards and punishments to remain employed.

Their goal is to maximize the damage to the system by making the boss accept wrong

answers or waste resources on re-doing the computation. Our setting still provides

meaningful correctness and reliability guarantees even when, for example, more than

half of the users are malicious (as opposed to other lines of work such as Byzantine

fault tolerance or secure multi-party computation [81, 22, 24, 47]). We provide the

first and only scheme that has parameterized graceful tolerance against malicious

users.

6

1.4 Storage in the Cloud

Another outsourcing scenario in the cloud involves storage instead of computation.

In such a scenario, a client would like to store her data at an untrusted storage server.

Current systems like Amazon S3 are highly popular, and yet there is no way in the

S3 deployment to prove that Amazon keeps your file intact. Ideally, the server should

be able to present a cryptographic proof to the client.

Previous work in this area showed how the server can prove that the data is kept

intact, but only for archival files (files that do not change) [9, 90, 139]. If a user wants

to modify her file on the server, she needs to download the whole file, modify it, and

put it back on the server as a new file. This obviously puts an impractical load on

both the client and the server.

In Chapter 5, we address this problem by providing the first completely dynamic

solution in which the client can efficiently modify her file in any way she wishes by

downloading and uploading only the portions of the file that are affected [70]. We

also give the first security definition for such a dynamic scenario. We furthermore

extend our basic construction that works on a single file and showed how to construct

provable file systems and versioning systems (e.g., CVS). Our scheme is very efficient

in practice with only about 430KB of communication and about 30ms of computation

overhead for a 1GB file. Previous work on online memory checking suggests that

our scheme is almost asymptotically optimal (with a log log n factor, where n is the

number of blocks in a file), although no full proof is given yet.

1.5 Judging in the Cloud

Unfortunately, such a system is practically useless unless the client or the server can

prove anything to a trusted judge in case of a dispute about the integrity of the

7

file. Previous work on archival storage does not provide public verifiability that can

be used for official purposes; an honest server cannot prove its innocence against a

malicious client’s accusation [9]. Our solution to this problem in the static storage

scenario is to employ fair exchange of signatures on a contract specifying the file and

any public keys involved. The judge then rules based on the contract signed by both

parties and the proof given by the server.

For the dynamic case, a näıve idea would be performing a fair exchange with

each update. Since the file is modified, there needs to be a new contract each time.

Chapter 6 presents a very efficient public verifiability protocol that does not require

a full-fledged fair exchange with each update; it uses only efficient cryptography

(signatures) [71]. Compared to the näıve version (which is the only existing two-party

solution), this protocol requires milliseconds instead of seconds, and bytes instead of

tens of kilobytes, per update. Besides, this public verifiability protocol can be used

by a judge for official arbitration, and can incorporate automatic payments in such

cases, through use of electronic payments like e-cash.

The protocol in Chapter 6 is actually a more general agreement protocol for dy-

namic data. The goal is to make sure two parties agree on the latest version of a

message that keeps changing over time. For our protocol to work, there must be a

means to prove and verify that the message is correctly formed according to some

rules in a contract. In the case of outsourced storage, the message is some metadata

kept at both the client and the server. The server can prove that the metadata is

correct as presented in Chapter 5, and this can be verified by a trusted authority.

1.6 Implementing the Cloud

Implementing cryptographic protocols is a hard task. In general, cryptographic pro-

tocols are fairly complicated in design, and as such their implementation requires

8

great care. Unfortunately, one cannot expect all good cryptographers to be good

programmers, or vice versa. As a result, many useful cryptographic protocols go

unimplemented, despite the fact that they may be efficient enough to be used in

practice.

Throughout this thesis, we provide protocols that are efficient and scalable enough

to be used in real systems. As part of the Brownie Points project, our group is building

a real BitTorrent client, incorporating the cryptographic protocols in this thesis, to

analyze the effects when larger numbers of users are involved [69]. Chapter 7 discusses

our implementation of the protocols described in this thesis.

We have developed a cryptographic language that lets users to easily specify

discrete-logarithm based zero-knowledge proofs that are at the heart of many state-

of-the-art constructions such as blind signatures, e-cash and verifiable encryption (see

Appendix A). Our goal is to make coding cryptographic protocols as easy as describ-

ing a cryptographic protocol on paper. Therefore, our language closely resembles

an academic paper format. We have further developed a cryptographic library that

implements e-cash and verifiable encryption on top of these zero-knowledge proofs,

and fair exchange on top of e-cash and verifiable encryption. This library is already

being used in a P2P file sharing system deployment [34]. As a consequence of the ef-

ficiency of our fair exchange protocols and our usable implementation, our colleagues

at Brown University were able to deploy, for the first time, a peer-to-peer file sharing

system that enjoys fairness, while preserving the privacy of the participants [69].

1.7 Organization

The organization of this thesis follows the organization of the introduction. We

touch many aspects of security in the cloud, including three main resources: network,

computation, and storage. We further analyze trust issues arising in the cloud, provide

9

means to settle disputes, and discuss distributing trusted parties. We also provide

implementation results. Finally, the reader may find the Appendix very handy, since

it is a comprehensive compilation of pseudocodes of state-of-the-art primitives.

Chapter 2

Networking in the Cloud

2.1 Introduction

Fairly exchanging digital content is an everyday problem. A fair exchange scenario

commonly involves Alice and Bob. Alice has something that Bob wants, and Bob

has something that Alice wants. A fair exchange protocol guarantees that at the end

either each of them obtains what (s)he wants, or neither of them does (see [111] for

more details and examples).

In this chapter, we consider a general file exchange (bartering) scenario, inspired

by the BitTorrent [52] peer-to-peer file sharing protocol. Alice has several files (Bit-

Torrent blocks) of interest to Bob, and Bob has several files (blocks) of interest to

Alice. They do not know ahead of time how many or which blocks they will end up

exchanging. They want to perform a fair exchange: Alice should get Bob’s file (block)

if and only if Bob gets Alice’s file (block). In a signature fair exchange [7, 6, 5], there

is a verification mechanism (i.e., the public key) that enables the sender to verifiably

encrypt the signature so that the receiver can check that the encrypted signature veri-

fies. No such efficient verifiable encryption method is currently known for exchanging

files. Therefore, a compensation is required after the fact if one of the parties cheat.

10

11

In our scenario, we are assuming that Alice/Bob will be equally happy to get a pay-

ment in return to her/his file. Thus, exchanging a file with a payment (buying) is

also considered fair, as in some previous works [7, 16, 44, 107, 102].

One of the hardest points in creating a usable optimistic fair exchange protocol

suitable for P2P file sharing applications is that the peers to contact and the content to

exchange are not pre-defined. BitTorrent clients keep connecting to different peers to

obtain different blocks. Fault-tolerance issues, connectivity problems, and availability

of data blocks are all factors affecting from whom which block should be obtained.

Our protocol uniquely addresses these issues by removing the need to know what

content to exchange with whom beforehand.

In a nutshell, in our protocol, Alice sends a verifiable escrow of a payment (e.g.,

e-coin) to Bob first. Then, they exchange encrypted files. Afterward, Alice sends

Bob an escrow of her key with her signature on the escrow. Then, Bob sends Alice

the key to his file. Finally, Alice sends Bob the key to her file. Since Bob has a

verifiable escrow of an e-coin and an escrow of a key before he sends his key to Alice,

he is protected. In the worst case, if Alice does not provide the correct key and the

key escrow contains garbage, Bob can go to the Arbiter and obtain Alice’s payment.

The escrow of the payment cannot contain garbage, because it was formed using a

verifiable escrow. After the exchange of the verifiable escrow, the rest of our protocol

can be repeated as many times as necessary to exchange multiple files (even if the

number and content of the files were not known in advance), unless there is a dispute.

We provide two versions of the protocol: In the first one (the one described briefly

above) only one party provides a verifiable escrow. This version requires the use of

timeouts for dispute resolution purposes. We provide another version that needs both

parties to provide verifiable escrows but requires no timeouts. Both versions are very

efficient since they use only one (resp. two) expensive primitives (verifiable escrow

12

and payment) regardless of the number of files exchanged. We stress the fact that our

timeouts can be very large (e.g., one day or week) to allow for unexpected situations

in which the participants act honestly (e.g., network failure), and thus require very

loose synchronization (e.g., one hour difference), and users can freely participate in

other exchanges without waiting for the timeout.

2.1.1 Previous Work

It is well-known that a fair exchange protocol is impossible without a trusted third

party (TTP) [122] (called the Arbiter) that ensures that Alice cannot take advantage

of Bob, and vice versa. Without loss of generality, Alice will have to send the last

message of the protocol, and we want to protect Bob in case she chooses not to do

so. Without an arbiter, gradual release type of protocols where parties send pieces

to each other in rounds can provide only weaker forms of fairness, and are much less

efficient [23, 30].

Luckily, the impossibility result [122] does not require that the Arbiter be involved

in each transaction, but simply that the Arbiter exists. If Alice and Bob are both well-

behaved, there is no need for the Arbiter to do anything (or even know an exchange

took place). Micali [110], Asokan, Schunter and Waidner [5], and Asokan, Shoup and

Waidner [7, 6] investigated this optimistic fair exchange scenario in which the Arbiter

gets involved only in case of a dispute. Two such protocols [7, 78] were analyzed in

[141] (see also [12]).

Asokan, Shoup and Waidner (ASW) [7] gave the first provably secure and com-

pletely fair optimistic exchange protocol for exchanging digital signatures. Later on,

Belenkiy et al. [16] gave a protocol for buying digital content in exchange for e-cash,

building on top of the ASW protocol. They provided an optimization for the Arbiter

so that, unlike in the ASW protocol, the amount of work that the Arbiter is required

13

to do depends only logarithmically on the size of the file. They also assume there is

an additional TTP (which we call the Tracker) that provides a means of verification

that the file actually contains the right content (e.g., using hashes). Such entities

certifying hashes already exist in current BitTorrent systems [52].

Belenkiy et al. [16] used e-cash (introduced by Chaum [50]), in particular, en-

dorsed e-cash [44] in their constructions. The reason is that other forms of payments

(signatures or electronic checks used in [7, 107]) do not provide any privacy. In our

protocols, any form of payment can be employed, but we will also use endorsed e-cash

in our sample instantiation since it is efficient and anonymous. See Section 2.7 for

more discussion on employing different payment systems.

2.1.2 Contributions

We present the most efficient fair exchange known to us, where the efficiency is com-

parable to a simple unfair exchange if performed multiple times between the same

pair of users, even when peers do not know beforehand which blocks they will end up

exchanging. Using the best previous work (Belenkiy et al. barter protocol [16]), n

pairs of blocks can be exchanged using n transactions, each of which requires a costly

step involving expensive cryptographic primitives (a verifiable escrow and an e-coin).

Our contribution is a very efficient fair exchange protocol using which this can be

done with only one (or two if we do not want to employ timeouts) step in total that

involves the same expensive primitives (verifiable escrow and payment). This is a

property that is unique to our protocol: Instead of employing the costly primitives

for every file or block that is exchanged, we employ them once per peer, even when

peers do not know beforehand which blocks they will end up exchanging. Then,

exchanging multiple files/blocks between peers involves only very efficient cryptog-

raphy (i.e., symmetric- and public-key encryption, and digital signatures). In a real

14

setting where BitTorrent peers exchange thousands of blocks with only tens of peers,

there is one or two orders of magnitude improvement in terms of both computation

and communication (40 seconds vs. 42 minutes computational overhead and 1.6MB

vs. 200MB communication overhead for a 2.8GB file —for detailed numbers, see Sec-

tion 2.8). This means that, with no (i.e., neglectable) efficiency loss, our fair exchange

protocol can be used to exchange files instead of the unfair protocol currently used

by BitTorrent or similar file sharing protocols.

We stress the fact that the timeouts used for dispute resolution purposes in one

of our protocols can be very large (e.g., one day or week) to allow for unexpected

situations in which the participants act honestly (e.g., network failure), and thus

require very loose synchronization (e.g., one hour difference), and users can freely

participate in other exchanges without waiting for the timeout.

We take the idea of using verifiable escrow from ASW [7], and the subprotocols of

Belenkiy et al. [16] that increase the efficiency of the Arbiter (see Section 2.4.3). The

Arbiter does absolutely no work in our protocols, as long as no dispute occurs. Our

protocols can make use of any type of payments, but we will show an instantiation

using e-cash since it also provides privacy. Our performance evaluation numbers

will use endorsed e-cash [44] as the payment mechanism. Note that other (non-

anonymous) forms of payments (e.g., electronic checks [49]) will be more efficient.

Our additional contribution is definitional. We give a general definition of fair ex-

change of digital content (not just digital signatures) provided that it can be verified

using some verification algorithm (defined in Section 2.3). Furthermore, our fairness

definition covers polynomially many exchanges between an honest party and an ad-

versary controlling polynomially-many other participants (see [63] for an example fair

exchange protocol that is fair for a single exchange but stops being fair in a multi-user

setting). We then prove our protocol’s security based on this definition. We sum up

15

the most important properties of our protocols below.

Security of our protocol: Our protocols provably satisfy the following condition

(waiting for at most one timeout period if timeouts are used, or without waiting at

all if no timeouts are used), as long as at least one of the trading parties (Alice and

Bob) is honest:

• Either Alice and Bob both get their corresponding files,

• Or Alice gets Bob’s file and Bob gets Alice’s payment (turns into a buy protocol

in effect),

• Or neither of them gets anything.

Efficiency of our protocol: We have the following properties regarding effi-

ciency:

• An honest user can reuse her e-coin for other exchanges without waiting for the

completion of the protocol.

• The overhead of our costly step – verifiable escrow and e-cash – is constant

O(1), instead of linear O(n) as in previous best results, when n files or blocks

are exchanged.

Already, the Brownie Project [34] is using our protocols in their BitTorrent de-

ployment. We discuss the efficiency of our protocols and our initial implementation

results in Section 2.8. Discussion of limitations and future work can be found in

Section 2.9.

2.2 Notation

Barter is an exchange of two items, which are digital files in our case. We assume

that the reader is familiar with encryption and signature schemes, and hash functions.

16

Further required definitions and notation are given below, although partially, omitting

the details not necessary for understanding the following fair exchange protocols.

An escrow is a ciphertext under the public key of some trusted third party (TTP).

A verifiable escrow [7, 45, 37] means that the recipient can verify that the contents

of the ciphertext satisfy some relation (therefore stating that the ciphertext contains

the expected content). A contract (a.k.a. label, condition, or tag) attached to such a

ciphertext defines the conditions under which the TTP should decrypt and give away

the encrypted secret [143]. The label is public and it is integrated with the ciphertext

in a such way that it cannot be modified. We will use EArb(a; b) to denote an escrow of

the secret a under the Arbiter’s public key, with the contract b. Similarly, VEArb(a; b)

will denote a verifiable escrow.

Any payment protocol that can efficiently be verifiably escrowed and is secure can

be used in our protocols. Furthermore, if privacy is desired, the payments should be

anonymous as in e-cash [50]. We provide an instantiation using endorsed e-cash [44]

(which is an extension of compact e-cash [40]), since it satisfies all these requirements.

Endorsed e-cash splits a coin into an unendorsed coin (denoted coin ′) and endorsement

(denoted end). One can think of coin ′ as an encrypted coin and end as the key. One

can check if the endorsement end in a given verifiable escrow [45] matches the given

unendorsed coin coin ′ (without learning the endorsement end). Furthermore, given

only the unendorsed part coin ′, no other party (except the owner) can come up

with a valid endorsement end . Endorsed e-cash moreover has the ability to catch

double-spenders. Hence, if one uses two different coin ′, end pairs trying to spend

the same coin twice, (s)he will be caught (and, since her identity is revealed, can be

punished). Note that if a party tries to deposit the same coin twice (using the same

coin ′, end pair), the operation can easily be denied by checking against a list of past

transactions. Lastly, only matching coin ′, end pairs can be linked, unendorsed coins

17

and endorsements prepared for different exchanges remain unlinkable.

Wherever used, KP will denote a symmetric key of a party P , generated through

an encryption scheme’s key generation algorithm. We let c = EncK(f) denote that

the ciphertext c is an encryption of the plaintext f under the symmetric key K.

Similarly, f = DecK(c) will denote that the plaintext f is the decryption of the

ciphertext c under the symmetric key K. Our protocol can make use of any secure

symmetric encryption scheme (see the book by Katz and Lindell [93] for definitions

and constructions).

Let pkP and skP denote public and secret keys for a party P . Then signsk(x)

will denote a signature on x under the secret key sk which can be verified using the

corresponding public key pk . Our protocol can make use of any secure public-key

encryption scheme [56, 66] and any secure signature scheme [84].

Furthermore, let Hk be a family of (universal one-way) hash functions [118], where

k is the security parameter, and let hash be a hash function uniformly choosen from

the family Hk of hash functions. Then, hx = hash(x) will denote that hx is the hash

of x under the hash function hash. We now introduce a definition we frequently use

in this chapter.

Definition 2.2.1. We say that a key K decrypts correctly, or is the correct key

with respect to a plaintext hash hf and a ciphertext c, if the plaintext f ′ = DecK(c)

has the property hash(f ′) = hf .

Finally, a negligible probability denotes a probability that is a negligible function

of the security parameter (e.g., the key-length of an encryption scheme). A negligible

function of n is a function which is smaller than any inverse polynomial over n with

n > N for sufficiently large N (e.g., neg(n) = 2−n). A non-negligible probability is a

probability that is not negligible.

18

2.3 (Optimistic) Fair Exchange

In this section we will give a general definition of fair exchange. Unlike in ASW, our

definitions will not be specific to signature exchange, and we will consider polynomially-

many exchanges between an honest user and an adversary controlling polynomially-

many other users. Furthermore, we separate and clearly define the roles of all trusted

parties. While providing models and definitions for a general framework of (opti-

mistic) fair exchange applicable to a broad range of protocols, we will also show its

extensions to our case.

Model: The model is adapted from the ASW definition [7], with clarifications and

generalizations. There are three players; Alice and Bob exchanging two digital items,

and the Arbiter 1 for conflict resolution. All players are assumed to be polynomial time

interactive Turing machines. We make no assumption about the underlying network

capability.2 Any message that does not confirm with the protocol specification will

be discarded by the honest parties. Any input which does not verify according to the

protocol will be resolved as stated by the protocol or the protocol will be aborted

if no resolution is applicable. It is important that the Arbiter resolves conflicts on

the same exchange atomically.3 Thus, it will only interact with either Alice or Bob

at any given time instance, until that interaction ends as specified by the protocol.4

Sensitive communication (e.g., exchange of decryption keys for files or endorsement

of an e-coin) will be carried out over a secure (and possibly authenticated) channel

(e.g., SSL can be used to connect to the Arbiter, a secure key exchange with no public

1One of the TTPs in ASW.
2Clients will have a local message timeout mechanism like the TCP timeout, which is small
(e.g., one minute). The receiver deals with a message timeout exactly as it would deal with a
non-verifying input.

3We present a trade-off between non-atomicity and performance of the Arbiter later on.
4For ease of the Arbiter to find the correct exchange, a random exchange ID can be incorporated
into the messages. Since this is only a minor implementation efficiency issue, we do not want to
complicate our definitions with that.

19

key infrastructure can be used for the communication between Alice and Bob).

For protocols using a timeout5, we assume that the adversary cannot prevent the

honest party from reaching the Arbiter before the timeout. If no timeouts are defined,

we assume the adversary cannot prevent the honest party from reaching the Arbiter

eventually. Hence, the honest party is assumed to be able to reach the Arbiter as

defined by the protocol. Even with timeouts, this is not an unrealistic assumption

since our timeouts can be large (e.g., one day or week).

In our model, we have two additional players, namely the Tracker (also in [7, 16,

52])6 providing verification algorithms, and the Bank dealing with monetary parts of

the system.

Setup Phase: Before the fair exchange protocol is run, we assume there is a

setup phase. In this one-time pre-exchange phase, the Arbiter generates his public-

private key pair (for the (verifiable) escrow schemes) and publishes his public key(s)

so that both Alice and Bob obtain it. Optionally, the Arbiter may learn public keys of

Alice and Bob in the setup phase, but our focus is on the case where the Arbiter does

not need to know anything (and learns almost nothing, see Section 2.5.2) about Alice

or Bob. The adversary cannot interfere with the setup phase.7 In the setup phase, the

Bank and the Tracker also generate their public-private key pairs and publish their

public keys.

Definition 2.3.1. Let SP denote the security parameters of the system (e.g., key

lengths of the primitives used). Let PP denote all the public values in the system,

including SP, public keys of the trusted parties, and possibly some public parameters.

5This is not the message timeout, it is the timeout specified by the protocol, which is generally
much longer (e.g., one day or week).

6ASW has the corresponding TTP in their file exchange scheme. In their signature exchange
protocol, the public key infrastructure providing the public keys can be seen as the Tracker.

7This is the standard trusted setup assumption that says Alice and Bob have the correct public
key of the Arbiter.

20

Let PPGen(SP) be the randomized procedure which generates the public values given

the security parameters. Then, define our PP = (pkarb, pk bank, pk tracker, timeout , SP,

and additional parameters for primitives used).

From now on, we need to talk about multiple exchanges taking place. Alice has

files f
(1)
A , .., f

(n)
A to be exchanged with Bob, and Bob has f

(1)
B , .., f

(n)
B to be exchanged

with Alice (n is a polynomial in SP).8 In general, we can consider these files as some

strings in {0, 1}∗, therefore consider fair exchange of anything that is verifiable. With-

out loss of generality, the Tracker gives Alice a verification algorithm V
f
(i)
B

for each

file f
(i)
B , and Bob a verification algorithm V

f
(i)
A

for each file f
(i)
A before the exchange

takes place.

Assume that the content to be exchanged and associated verification algorithms

are output by a generation algorithm Gen(SP) that takes the security parameters

as input and outputs some content to be exchanged, with associated verification

algorithms, and possibly some public information about the content. This procedure

involves a trusted party H and the Tracker. The parties trust the Tracker in that any

input accepted by that verification algorithm will be the content they want. In other

words, they are going to be happy with any content that verifies under that verification

algorithm. In particular, the content generation process is trusted. The adversary

cannot generate “junk” files and ask the Tracker to create verification algorithms for

them. BitTorrent forum sites and ratings provide a level of defense against this in

practice.

Definition 2.3.2. Content and verification algorithms are secure if ∀ PPT adver-

saries A and ∀ auxiliary inputs z ∈ {0, 1}poly(SP) we have (over the randomness of the

generation algorithms, the adversary, and possibly the verification algorithms)

8Note that Alice or Bob can represent multiple entities controlled by the adversary.

21

Pr[PP ← PPGen(SP); (f
(1)
H ,V

f
(1)
H

, pub
f
(1)
H

, .., f
(n)
H ,V

f
(n)
H

, pub
f
(n)
H

)← Gen(SP);

(f
(1)
A , .., f

(n)
A)← A(V

f
(1)
H

, pub
f
(1)
H

, ..,V
f
(n)
H

, pub
f
(n)
H

,PP , z) :

∃i ∈ [1..n] | (V
f
(i)
H

(f
(i)
H) 6= accept ∨ V

f
(i)
H

(f
(i)
A) = accept)] = neg(SP)

The definition above models the case in which the files to be exchanged cannot

be found by the adversary by some other means9 (and hence exchanging files makes

sense for the adversary), even with the help of associated verification algorithms and

public information10.

To provide evidence on the generality and applicability of our definition, we present

several example verification algorithms for various tasks. For example, a file verifica-

tion can be performed using hashes. So, each verification algorithm V
f
(i)
A

for Alice’s

file f
(i)
A contains the definition of hash function used –hash–11, and the hash value

h
f
(i)
A

= hash(f
(i)
A). The ith verification algorithm computes the hash of the given input

according to the description of the hash function, and accepts it if and only if the

computed hash matches h
f
(i)
A

(see Section 2.5.1 for a security analysis). As another

example, consider the ASW signature exchange protocol, in which each verification

algorithm contains the signature scheme’s description11, the signature public key of

Alice pkA
11, and the message mi to be signed. When it receives a signature as input,

the ith verification accepts the signature if and only if it is a valid signature on message

mi under the public key pkA using the signature scheme. As yet another example, an

e-coin verification algorithm can take a coin to verify, and use the Bank’s public key

while verifying the non-interactive proofs given. Such an algorithm is a part of the

specification of every e-cash scheme (e.g., see [44, 40]). Verifiable encryption schemes

9We assume that the adversary cannot just “guess” an honest participant’s file, in which case
the exchange is trivially unfair.

10For example, if movies are being exchanged, a lot of information is publicly available about such
a movie file, such as actors, length, and release date. But these do not enable people to come
up those movie files.

11possibly different for each verification algorithm

22

(e.g., [45]) and, in general, proof systems also specify a verification algorithm in their

definitions. Such algorithms can be used directly in a fair exchange protocol, satisfy-

ing our definition as long as they are secure according to Definition 2.3.2.

To summarize, in the setup phase, public values are generated using PPGen(SP).

The files and the verification algorithms are generated jointly by the Tracker and some

trusted content generator (e.g., movie distributor) using the Gen(SP) procedure. In

the context of BitTorrent, this means that we trust the content generator about the

content, and the Tracker about the verification algorithms. In practice, BitTorrent

forum sites and ratings on files provide this trust. A “highly rated” BitTorrent user

will be trusted about the content, or alternatively, comments on the forum sites will

warn against bogus content. Besides, even the public information leaked from the

generation procedure does not help the adversary. From now on, we assume the

content and the verification algorithms used are secure and trusted.

Definition 2.3.3. Fair Exchange Protocol: A fair exchange protocol is composed

of three interactive algorithms: Alice running algorithm A, Bob running algorithm

B, and the Arbiter running the trusted algorithm T . The content and verification

algorithms used need to be secure according to Definition 2.3.2. The security of the

exchange is then defined in terms of completeness (when Alice and Bob are both

honest) and fairness (when either Alice or Bob is malicious).

Completeness for a (non-optimistic) fair exchange states that the interactive

run of A, B and T by honest parties results in A getting B’s files and B getting A’s

files (assuming an ideal network):

Pr[(f
(1)
B , .., f

(n)
B)← A(f

(1)
A , .., f

(n)
A ,V

f
(1)
B

, ..,V
f
(n)
B

,PP)

T (skarb)
←→ B(f

(1)
B , .., f

(n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP)→ (f
(1)
A , .., f

(n)
A)] = 1

23

where the notation describes that A, B and T can all communicate (in a three-way

interaction) following the protocol, and at the end A outputs f
(i)
B and B outputs f

(i)
A

for all i : 1..n.

Optimistic Completeness for an optimistic fair exchange states that the in-

teractive run of A and B by honest parties results in A getting f
(i)
B and B getting

f
(i)
A for all i : 1..n (the Arbiter’s algorithm T is not involved, assuming an ideal net-

work). A protocol satisfying optimistic completeness also satisfies completeness. Our

optimistic completeness definition is:

Pr[(f
(1)
B , .., f

(n)
B) ← A(f

(1)
A , .., f

(n)
A ,V

f
(1)
B

, ..,V
f
(n)
B

,PP)

↔ B(f
(1)
B , .., f

(n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP)→ (f
(1)
A , .., f

(n)
A)] = 1

Fairness states that at the end of the protocol, either Alice and Bob both get

content that passes the verification algorithms given to them, or neither Alice nor

Bob gets anything that passes the verification, in each of the n exchanges, even when

one of them is malicious.12 This definition is easy to satisfy using a (non-optimistic)

fair exchange protocol since Alice and Bob can both hand their files to the Arbiter,

and then the Arbiter can send Bob’s files to Alice and Alice’s files to Bob, if they

pass respective verifications. Thus, below, we will define the more interesting case;

fairness for an optimistic fair exchange.

It is important to note that the ASW definition of fairness applies only to a

single exchange, whereas our definition covers polynomially-many exchanges between

an honest party and other players all controlled by the adversary. Even though we

12On the contrary, completeness definition only deals with honest participants.

24

define fairness in a symmetric way, during the security analysis one may need to

consider two cases independently since the protocol can be asymmetric: the case

where Alice is honest but Bob is malicious, and the case where Bob is honest but

Alice is malicious.

Fairness: We have an honest player H , and an adversarial player A. The honest

player runs algorithm A in exchanges where he plays the role of Alice, algorithm B in

exchanges where he plays the role of Bob, and the Arbiter runs the algorithm T , all as

defined by the protocol. H has files f
(1)
H , .., f

(n)
H to be exchanged with the adversary,

and A has f
(1)
A , .., f

(n)
A to be exchanged with H . The adversary is assumed to control

all other players, and hence all interactions of the honest player are with parties

controlled by the adversary, which is the worst possible scenario covering multiple

exchanges.

First there is the trusted setup phase as explained above, getting the security pa-

rameters as input, generating secure content and verification algorithms, along with

some associated public information, and giving the appropriate values to each party.

Since the setup phase is trusted, ∀i : 1..nV
f
(i)
H

,V
f
(i)
A

,PP are trusted. Then parties

proceed with the fairness game explained below, the honest party outputting X and

the adversary outputting Y . At the end of the game, we require the fairness condition

holds on X, Y , the verification algorithms V
f
(1)
H

,V
f
(1)
A

, ..,V
f
(n)
H

,V
f
(n)
A

, and the public

values PP with high probability against all PPT adversaries A, and all polynomially-

long auxiliary inputs.

Pr [Setup; FairnessGame: FairnessCondition] = 1 − neg(SP)

Fairness Game: There are three types of interaction in our fairness game. Type

1 interactions are between H and A. Type 2 interactions are between H and T .

25

Type 3 interactions are between A and T .13 The adversary can arbitrarily interleave

type 1, 2, 3 interactions, but cannot prevent type 2 interactions from happening until

the timeout if timeouts are used, or eventually otherwise. The game ends when the

honest party H produces its final output (including aborts and resolutions) in all the

started protocols. Without loss of generality, in the fairness game we assume both

parties want to exchange different content in different exchanges (∀i 6= j f
(i)
H 6= f

(j)
H

and f
(i)
A 6= f

(j)
A and ∀i, j f

(i)
H 6= f

(j)
A).14

Fairness Condition: Recall that the honest party’s output was X and the ad-

versary’s output was Y at the end of the fairness game. A general fairness condition

would be ∀i : 1..n [∃x ∈ X : V
f
(i)
A

(x) = accept ⇔ ∃y ∈ Y : V
f
(i)
H

(y) = accept] mean-

ing that either H and A both get what they want or both don’t, in each exchange.

Our protocol with payments has a very straightforward generalization of the fair-

ness property. Our fairness condition states that either they both parties get each

other’s file, or one of them gets the other’s file whereas the other gets his payment,

or they both get nothing at each exchange. We believe that a broad range of opti-

mistic fair exchange protocols can adapt the definition above using straightforward

extensions whenever necessary.

Timely Resolution: Lastly, as pointed out by ASW [7], an optimistic fair

exchange protocol must provide timely resolution: Alice and Bob must be able to have

disputes resolved within a finite and limited time. In our protocol without timeouts,

resolution is immediate. In our protocol with timeouts, we guarantee resolution at

the timeout (which is finite and fixed). We furthermore show that timeouts do not

13In the implementation, T may need to have a way to differentiate which one of Alice and Bob
he is talking to, which can easily be done in our protocols without learning who Alice and Bob
are. When necessary, using one-way function values whose pre-image is known by only one of
the parties will suffice.

14If the honest party already has the adversary’s file, the exchange will be trivially fair due to the
completeness property. If the adversary already has the honest party’s file, then there is no hope
for fairness since the adversary can just abort the protocol but he already has the file. Similar
arguments hold for exchanging the same file multiple times.

26

render our system less usable (Alice and Bob can freely participate in other exchanges

without waiting for the timeout), and so in general we can use our more efficient

protocol with timeouts.

We now present two different barter protocols, one that employs timeouts (Section

2.4), and one that does not (Section 2.6). Both of our protocols are O(n) times more

efficient than previous protocols [7, 6, 5, 8, 111, 16, 44], when n files or blocks are

exchanged, and almost as efficient as an unfair exchange, while still being provably

fair.

2.4 Barter with Timeouts

We will show a particular instantiation of our protocol, using endorsed e-cash [44] as

the payment and hashes as the file verification algorithms, and then point out how to

generalize it easily, in Section 2.7. Before the protocol begins, we assume Alice has

withdrawn an e-coin from the Bank. Every time Alice and Bob wants to exchange

two files (every time before step 2 of the protocol below), Alice generates her fresh

key KA and Bob generates his fresh key KB for a symmetric encryption scheme. Alice

and Bob both have their files (fA, fB), have the encrypted versions of their files (cA =

EncKA
(fA), cB = EncKB

(fB)), have the hashes of their files and encryptions (Alice

has hfA = hash(fA), hcA = hash(cA), and Bob has hfB = hash(fB), hcB = hash(cB)).

Besides, the Tracker provides them with the respective verification algorithms: Alice

gets hfB , Bob gets hfA.
15 Everyone uses the same time zone (e.g., GMT), and the

timeout is a globally known parameter16. If anything goes wrong prior to step 5 (no

resolution protocol is applicable), the protocol will be aborted. The protocol proceeds

15We are abusing the notation by using hash values as verification algorithms provided by the
Tracker hoping that the actual verification procedure of hashing the files and comparing the
result with values given by the Tracker is obvious.

16It can easily be a per-exchange parameter known to (or agreed by) both parties.

27

as follows (summarized in Figure 2.1):

1. Alice creates a fresh public-secret key pair pkA, skA for a signature scheme.

Alice sends a fresh unendorsed e-coin coin ′ to Bob, along with a verifiable

escrow v = VEArb(end ; pkA) of the endorsement end , labeled with the signature

scheme’s public key.

2. Alice sends Bob ciphertext cA of her file.17 Bob calculates hcA = hash(cA).
18

3. Bob sends Alice ciphertext cB of his file. Alice calculates hcB = hash(cB).

4. Alice sends Bob an escrow e = EArb(KA; hfA, hfB , hcA, hcB , time) and her sig-

nature s = signskA
(e) on that escrow. The escrow e should encrypt a key and

should be labeled with four hash values hfA, hfB , hcA, hcB , and a time value. If

any of the hash values do not match Bob’s knowledge of those values, or if the

time value is deviated too much from Bob’s knowledge of the time (e.g., almost

one timeout difference), then Bob aborts.19 Moreover, if the signature s on the

escrow e does not verify with the public key pkA sent in step 1 as part of the

verifiable escrow v, Bob aborts the protocol.

5. Bob sends Alice his key KB. Alice checks if the key KB decrypts the cipher-

text cB correctly. If not, Alice does not proceed with the next step, and runs

AliceResolve, although she might have to run it again just after the timeout to

be able to resolve.

6. Alice sends Bob her key KA. Bob checks if the key KA decrypts the ciphertext

17Alice and Bob can use their choice of (symmetric) encryption schemes (not necessarily the same).
This only requires us to add the definition of the encryption scheme used to the messages exchanged.

18These will be Merkle hashes [109] for efficiency reasons, as discussed in Section 2.4.3.
19We do not require tight synchronization. So, for example, the time value can just contain hours,

and not minutes and seconds.

28

Figure 2.1: Our barter protocol with timeouts.

cA correctly. If not, he runs BobResolve; he must do so before the timeout.20

Once step 1 is completed, cheap steps 2-6 can be repeated to exchange more files,

as long as no dispute occurs. Alice and Bob need not know beforehand how many

or which files/blocks to exchange. Whenever they decide to exchange blocks (before

every step 2), it is enough for them to just obtain their hashes from the Tracker.

Actually, in BitTorrent, once you ask for hash of a file, the Tracker provides you with

the hashes of all the blocks in that file already. Thus, connecting the Tracker for each

block is not necessary in real life.

Below we present the resolution protocols in case of a dispute between Alice and

Bob. The Arbiter never gets involved in a transaction unless there is a dispute.

2.4.1 BobResolve

Bob needs to contact the Arbiter before the timeout for resolution (current time <

time in escrow e + timeout), since otherwise the Arbiter is not going to honor his

20Bob can run BobResolve immediately after a message timeout. He need not wait for a long time
for Alice.

29

request. Assuming Bob resolves before the timeout, he provides the Arbiter with the

escrow e and signature s that he received in step 4, and also the verifiable escrow v he

received in step 1 from Alice. The escrow e should be labeled with four hash values

hfA, hfB , hcA, hcB , and a time value. The verifiable escrow v should be labeled with

a public key pkA for a signature scheme. If the labels of the escrows are ill-formed,

the Arbiter will not honor the request. The Arbiter checks the signature s using

the public key in the verifiable escrow v, and if it verifies, he asks Bob to present

his correct key KB that verifies using the VerifyKey protocol in Section 2.4.3 (i.e., it

decrypts a ciphertext with hash hcB to a plaintext with hash hfB). If Bob succeeds

in giving the correct key, the Arbiter stores the key KB, decrypts the escrow e and

hands in the key KA from the escrow to Bob. Bob checks if KA decrypts Alice’s file

fA correctly. If not, he proves this to the Arbiter using the technique in Section 2.4.3

and gets the endorsement end in the verifiable escrow v from the Arbiter.21 Notice

that only Bob may succeed in the BobResolve protocol with the Arbiter because any

other party will fail to provide the correct key matching hashes of Bob’s files (see

Section 2.5.1).

2.4.2 AliceResolve

When Alice contacts the Arbiter for resolution, she asks for Bob’s key KB. If such

a key exists, then the Arbiter sends KB to her.22 KB has already been verified, so

Alice does not need to perform any further action. If such a key does not exist yet,

21The Arbiter can abort this trade forgetting the KB in such a case. This is not necessary
according to our definition (and can even be considered unfair), but it can be used as a way to
punish cheating Alice even more. In the worst case, if non-atomicity of the Arbiter is allowed
for efficiency reasons, Alice can obtain KB before Bob proves KA to be incorrect, effectively
turning our protocol into a buy protocol.

22If the Arbiter is allowed to be non-atomical for efficiency reasons, then he needs to ask Alice
for her key KA, verifying it using the VerifyKey protocol in Section 2.4.3 before giving her KB.
This represents a tradeoff between the atomicity and efficiency of the Arbiter, which can be
resolved arbitrarily, although it can also be used as a tougher punishment for cheaters.

30

Alice should come back after the timeout. If, even after the timeout KB does not

exist, then Alice is assured that it will never exist, and can consider that particular

trade as aborted.

2.4.3 Subprotocols

We use two subprotocols from Belenkiy et al. [16] that make the interaction with the

Arbiter efficient. One protocol is used to prove that a key is not correct, while the

other is used to prove that the key is in fact correct. For efficiency, Merkle hashes

[109] are used in these subprotocols (see Belenkiy et al. [16] for more information on

the protocols and the use of Merkle hashes).

Proving a key is not correct: Showing that a key K does not decrypt a

ciphertext c with hash hc to a plaintext f with hash hf can be done efficiently, as

Belenkiy et al. suggests. Carol, to prove the key is not correct, gives the Arbiter a

part ci of data which does not decrypt correctly. The Arbiter can check if the given

part ci matches the Merkle tree hash of the ciphertext, and DecK(ci) does not match

the hash of the plaintext, using the proof provided by Carol.

Proving a key is correct: Using a challenge-response protocol (Belenkiy et al.

VerifyKey protocol), one can prove that a key is correct. The Arbiter asks for proofs

of the key decrypting correctly on random chunks. If Bob can reply correctly to all

chunks providing valid proofs for Merkle hashes, the the Arbiter accepts Bob’s key.

If Bob corrupts 1/m fraction of the file, and the Arbiter verifies k random parts, then

the Arbiter will catch Bob with a probability of at least 1− (1− 1
m
)k [16].

The security of both algorithms relies on the security of the universal one-way

hash functions as described in Section 2.5.1.

31

Algorithm 2.4.1: VerifyKey from Belenkiy et al. [16]

Arbiter’s Input: Two Merkle hashes hf and hc, key K
Bob’s Input: Ciphertext c = c0..cn, key K
Step 1: Arbiter’s challenge1

The arbiter sends Bob a set of random indices I.2

Step 2: Bob’s response3

Bob replies with ci, cproofi, fproofi for every i ∈ I, where cproofi proves4

that ci is in the Merkle tree corresponding to hc, and fproofi proves that
fi = DecK(ci) is in the Merkle tree corresponding to hf .

Step 3: Verification5

The arbiter accepts the key if Bob responds with valid ci, cproofi, fproofi for6

every i ∈ I, and rejects otherwise.

2.5 Security Analysis

In this section, we assume that we are given a one-way function, a universal one-way

hash function, a chosen plaintext secure encryption scheme, a chosen plaintext secure

verifiable escrow scheme, a chosen ciphertext secure escrow scheme, an unforgeable

signature scheme, and an e-cash scheme which is unforgeable, anonymous and unlink-

able. For precise definitions of security of these primitives, please see the references

[75, 84, 119, 118, 109, 93, 57, 45, 44, 16]. In particular, we can use the instantiation

in Section 2.8.

Theorem 2.5.1. Our efficient barter protocol with timeouts as given in Section 2.4 is

a secure optimistic fair exchange protocol according to Definition 2.3.3 in Section 2.3.

Proof. It is obvious that our protocol satisfies the optimistic completeness (and there-

fore the completeness) property. We prove the fairness of our protocol over the fairness

game defined in Section 2.3. Remember that our fairness condition states that either

both parties obtain the other party’s file, or one party obtains the other party’s file

while the other party obtains the e-coin (effectively turning into a buy protocol), or

no party obtains anything.

An honest party will always use independent keys for each ciphertext (s)he sends.

32

Furthermore, endorsed e-cash [44] forces the users to use independent (coin ′, end)

pairs in different exchanges by using randomness contributed by both parties involved

in the exchange. Our goal is that even if the adversary corrupts all other parties in

the system (except the TTPs), he cannot obtain more than the union of what each of

these individual corrupted parties was supposed to obtain from an honest trade with

the honest user.

Security of the Resolution Protocols:

We first prove the security of our resolution protocols, as long as one of the

participants is honest. Afterward, for the rest of the proofs, we will assume those are

secure and do not worry about them.

Claim 1. If BobResolve and AliceResolve protocols are executed in the ith exchange,

ith exchange will be fair on its own.

Proof. BobResolve: When an honest Bob contacts the Arbiter, he provides the

correct key KB and obtain the decryption of the escrow e from the Arbiter. If this

escrow contained the correct key KA, then we are done. Otherwise, Bob can prove

so (as in Section 2.4.3) and then the Arbiter hands out the endorsement end to Bob.

This endorsement is valid due to the security of the verifiable escrow scheme (it can

be shown by a reduction). Therefore, an honest Bob will obtain either the correct

key or the endorsement of Alice.

If a dishonest Bob contacts the Arbiter, he cannot provide an incorrect key to the

Arbiter and make him accept. This can easily be shown by reduction to the security of

universal one-way hash functions [118] (see Section 2.5.1) or the VerifyKey protocol of

Belenkiy et al. [16] (Section 2.4.3). If dishonest Bob provided the Arbiter his correct

key KB and obtained honest Alice’s correct key KA, the only way he can be unfair

against an honest Alice is to obtain her coin end in addition. But, Bob cannot obtain

33

end because he either has to forge Alice’s signature on another escrow e′ of some junk

key K ′
A which does not decrypt correctly, or he could break our assumption on the

hash functions by providing some ciphertext with description hcA which does not give

a plaintext with description hfA when decrypted using Alice’s key KA in the escrow e.

So, a dishonest Bob cannot obtain the endorsement of an honest Alice. Furthermore,

he can obtain Alice’s correct key KA only if he deposits his correct key KB.

AliceResolve: In this protocol, Alice contacts the Arbiter and asks for Bob’s key.

If Bob deposited his key KB to the Arbiter, then Alice obtains it. From BobResolve,

we know that if a keyKB exists, it is correct. In case Alice was dishonest and obtained

this keyKB from the Arbiter, we know that honest Bob has already received either the

correct key or e-coin of Alice using BobResolve. In case where Alice was honest but

Bob was dishonest, we know he could not obtain both the correct key and endorsement

of Alice.

Hence, we can conclude that the resolution protocols do not help the adversary

to win the game, and so if the adversary wants to be unfair in the ith exchange, he

will not execute a resolution protocol for that exchange. Next we split the analysis

of our main protocol into two cases: the case where the honest party plays the role

of Alice, and the case where he plays the role of Bob.

Case 1: Honest Alice vs dishonest Bob:

Claim 2. Suppose Bob succeeds in obtaining honest Alice’s e-coin with non-negligible

probability. Then we can construct an adversary AC breaking the e-cash scheme with

non-negligible probability by playing the fairness game with Bob.

Proof. AC is given a challenge coin ′ and her goal is to output an endorsement end .

23 She guesses an index i that Bob will succeed in being unfair, and replaces the

23A detailed proof will give AC two oracles, one for coin ′ creation, and one for end creation. Then,

34

coin ′(i) by the given coin ′. Since AC does not know the end (i), she puts garbage into

the verifiable escrow v(i), and sends it to Bob. She fakes the verifiability by using

the simulator for the verifiable escrow [7, 45].24 For all the other interactions, AC

acts exactly as an honest Alice would. Since AC is honest, the verifiable escrow v(i)

will never be decrypted by the Arbiter (shown in Claim 1), and by the security of

verifiable escrow, the adversary cannot obtain the endorsement by decrypting it, nor

can the adversary distinguish it from a verifiable escrow of a valid endorsement (can

be shown by a straightforward reduction to CPA-security of the verifiable escrow

scheme, since the verifiable escrow v will never be decrypted because Alice is honest).

At some point, Bob outputs an endorsement end (j) with non-negligible probability.

The probability that i = j is non-negligible by definition (the total number of barters

n is a polynomial in SP as defined in Section 2.3). If the indices match (i = j), AC

outputs the end (i). Therefore, AC breaks the endorsed e-cash [44] with non-negligible

probability, by endorsing an unendorsed coin coin ′ without the endorsement end .

Claim 3. Suppose Bob, without calling BobResolve, succeeds in obtaining one of

honest Alice’s files f
(j)
A with non-negligible probability before step 6 of jth exchange

for some j (Alice will perform step 6 only if she obtained the correct key K
(j)
B from

Bob). Then we can construct an adversary AE which breaks the encryption scheme

Alice uses with non-negligible probability.

Proof. AE generates her files using the setup phase. Then she guesses an index i

that Bob will succeed in being unfair, and sends two files to the challenger of the

encryption scheme. AE is given back a challenge ciphertext cA and her goal is to

AC will play a CCA-security like game with the e-cash scheme. The challenge coin ′ will be the
one used in the ith exchange, on which AC cannot query the endorsement oracle.

24The verifiable escrow simulator can require simulating the public parameters too, but this is
allowed and is indistinguishable from real public parameters due to the security of the verifiable
escrow scheme.

35

decide which file she sent was encrypted. She replaces the c
(i)
A by cA. For the rest

of the interaction, AE behaves as an honest Alice. AE does not know the key K
(i)
A ,

but she can fake the escrow e(i) by encrypting junk in it. Due to the security of the

escrow scheme, Bob cannot distinguish it from an honest escrow (can be shown by a

straightforward reduction to CCA-security of the escrow scheme). At the end, Bob

returns a plaintext f
(j)
A . If the guessed i was correct (i = j), then AE returns f

(i)
A

and wins with the same probability as Bob does. Since AE interacts with Bob only

polynomially many times, the event i = j has non-negligible probability, and since

Bob has non-negligible probability of obtaining Alice’s file, then AE has non-negligible

probability of breaking the encryption scheme used.

Case 2: Honest Bob vs dishonest Alice:

The argument is symmetric to Claim 3. The symmetric version of AE can easily

be reconstructed as BE in this scenario, indistinguishable from an honest Bob. Hence,

if Alice obtains Bob’s file before step 5, BE breaks Bob’s encryption scheme. After

step 5, Alice already has Bob’s file, and can choose not to send her key in step 6.

But, the security of BobResolve guarantees that Bob can obtain Alice’s key or e-coin

in exchange to his file from the Arbiter (shown in Claim 1).

Combining these results, fairness for the honest party is guaranteed in all the

exchanges, regardless of him playing the role of Alice or Bob.

2.5.1 Universal One-Way Hash Functions

Let Hk be a family of hash functions, where k is the security parameter. We assume

that the following experiment has negligible probability of success for any polynomial-

time adversary A, for sufficiently large k: We have a file f and a hash function hash ←

Hk uniformly chosen from the family. Given that file f and the hash function’s

36

description hash (which effectively also means giving hash(f)) as input, A returns

a c,K pair, where hash(DecK(c)) = hash(f) but DecK(c) 6= f . Remember that A

cannot control the file’s hash, due to the trusted content and verification algorithm

generation process, hence he needs to find a targeted collision.

This requirement is equivalent to the security of Universal One Way Hash Func-

tions (UOWHF) [118]. We first reduce our assumption to the UOWHF assumption.

Specifically, let A be a polynomial-time adversary succeeding in the above attack with

non-negligible probability. We can construct an adversary B which finds a collision

in our UOWHF as follows: When B is given (f, hash), he runs A on (f, hash) to

obtain (c,K). B then checks if DecK(c) = f , in which case it fails. Otherwise, if

DecK(c) 6= f but hash(DecK(c)) = hash(f), then B outputs DecK(c) as the collision.

As easily seen, B has the same success probability as A, and has polynomial runtime

complexity.

The reverse reduction is also possible. Let B succeed in attacking UOWHF

with non-negligible probability. A, when given (f, hash) as the challenge, runs B

on (f, hash) to get c′ with hash(c′) = hash(f) and c′ 6= f . A then picks a random key

K, and returns (c = EncK(c
′), K) as the answer. Obviously, hash(c′ = DecK(c)) =

hash(f) but c′ = DecK(c) 6= f . Hence, our assumption is equivalent to the UOWHF

target collision-resistance assumption.

Our discussion above applies in our trusted content setting, where the content

and verification algorithm generation process is trusted. If we allow the adversary

to generate his own content (thus content generation is not trusted), he can as well

generate bogus content. Yet, if we are in a semi-trusted setting where the adversary

is allowed to generate his own content as long as it is not bogus (e.g., he can generate

a movie file that really is showing the movie), then we need to use collision-resistant

hash functions for security. The reasoning is that the content may be generated after

37

the hash function is chosen by the Tracker. This will not affect the practice, since all

widely-used hash functions are assumed to be collision-resistant.

2.5.2 Privacy Analysis

None of the exchanged material contains information to identify Alice or Bob (not

even Alice’s signature, since it is a temporary -just for the exchange-, not permanent).

Moreover, even an adversary performing multiple exchanges with the same honest

party cannot link those exchanges together using the protocol messages since the

honest party uses fresh keys every time and endorsed e-cash is unlinkable (IP address

linking or similar means might be possible, but our protocol does not create any

additional means of identification and linking). Furthermore, the Arbiter does not

necessarily know who he is talking to, apart from the fact that the resolution is on a

particular exchange (possibly identified by a random exchange ID). The Arbiter may

be able to find out whether he is talking to Alice or Bob, but not who Alice or Bob is.

Anonymous communication techniques such as onion routing [61] can be used when

necessary. Lastly, e-cash [44] is anonymous, and thus even when Bob deposits the

e-coin, no one can know it was Alice’s e-coin (unless she double-spends).

2.6 Efficient Barter without Timeouts

We provide another protocol which does not make use of timeouts. In this case, both

parties give e-coins to each other as a warranty. A similar setup applies here, where

Bob is also required to have withdrawn an e-coin. Furthermore, Bob also generates

a public-private key pair for his signature scheme. Details that were explained in our

previous protocol will be omitted here.

1. a. Alice sends her unendorsed coin coin ′
A, along with the verifiable escrow

38

vA = VEArb(endA; pkA) of the endorsement to Bob.

b. Bob sends his unendorsed coin coin ′
B, along with his verifiable escrow vB =

VEArb(endB; pkB) of his endorsement to Alice.

2. a. Alice sends cA to Bob. Bob computes hcA = hash(cA).

b. Bob sends cB to Alice. Alice computes hcB = hash(cB).

3. a. Alice picks a random value r from the domain of a one-way function g, and

computes g(r). Alice sends her escrow eA = EArb(KA; hfA, hfB , hcA, hcB , g(r))

and her signature sA = signskA
(eA) on her escrow to Bob. Bob aborts the pro-

tocol if the signature sA does not verify under pkA in vA or the hash values do

not match Bob’s knowledge of those values.

b. Bob sends his escrow eB = EArb(KB; hfA, hfB , hcA, hcB , g(r)) and his signa-

ture sB = signskB
(eB) on his escrow to Alice. Alice calls AliceAbort below if

the signature sB does not verify under pkB in vB, or the hash values or g(r) do

not match Alice’s knowledge of those values.

4. a. Alice sends her key KA to Bob.

b. Bob sends his key KB to Alice.

Regarding efficiency, again, step 1 has to be completed only once per peer,

and then multiple files can be exchanged by carrying out steps 2-4 as long as

both parties are honest, amortizing the cost of the coin and verifiable escrow exchange

in step 1.

The escrows in step 3 are a bit different than the previous protocol. First, there is

no time value attached, since no timeouts are used. Furthermore, both escrows need

to contain a value g(r) where g is a one-way function, and only Alice knows r. This

is achieved by requiring Alice to pick a random r in step 3.a, and then put g(r) in

the label of the escrow. After receiving Alice’s escrow eA, Bob also incorporates g(r)

39

into the label of his escrow eB.
25

The new AliceResolve and BobResolve algorithms are both very similar to the

BobResolve in our barter protocol with timeouts (of course, both parties use the

escrows and signatures received from the other party, AliceResolve gets KB by giving

KA, and there are no timeouts), and they should be run if the key Alice or Bob

receives at step 4 is not correct, respectively.

The logic behind getting rid of the timeouts is similar to the idea in ASW [7]. If

Alice wants to abort the protocol (because something was wrong with the message she

received in step 3.b, or she did not receive any response, she can do so by contacting

the Arbiter using the AliceAbort protocol below. She no longer needs to wait until

after the timeout . After receiving (or not receiving) Alice’s message at step 3.a, Bob

can simply abort locally if anything is wrong.

2.6.1 AliceAbort

Alice contacts the Arbiter, handing him her escrow eA, her signature sA on that

escrow, and her verifiable escrow vA that contains the public key pkA for the signature.

The Arbiter checks the signature first. If it verifies, he requires Alice to give a value

r so that g(r) matches the one-way function value in the label of the escrow eA

(therefore Bob cannot succeed in this protocol). Then, the rest proceeds similar to

the AliceResolve in our previous protocol. Alice asks the Arbiter for Bob’s key KB.

If such a key exists (because Bob resolved before Alice aborted), then the Arbiter

sends KB to Alice. KB has already been verified, so Alice does not need to perform

any further action. If such a key does not exist yet though, the Arbiter considers

that particular trade as aborted, and will perform no further resolutions regarding

25This is showing how the Arbiter can distinguish Alice and Bob using one-way functions, as
discussed in previous footnotes. Other possible measures having the same effect can also be
taken.

40

this particular barter.26 (Remember, Alice needed to come back after the timeout in

our previous protocol.)

2.6.2 Analysis of Barter without Timeouts

The advantage of this protocol is that there is no need for timeouts. Alice can safely

abort the protocol (using AliceAbort) without waiting in case Bob tries to cheat in

step 3.b. Bob can simply abort unilaterally if Alice tries to cheat in step 3.a. Since it

is very similar to our protocol with timeouts, we are not presenting a detailed analysis

for this protocol. Alice performs almost exactly the same moves as in our previous

protocol, and hence all the proofs there can be applied here, extendable to both

Alice and Bob, with minor modifications due to minor differences in the resolution

protocols.

Theorem 2.6.1. Our efficient barter protocol without timeouts in Section 2.6 is a

secure optimistic fair exchange protocol due to the Definition 2.3.3 in Section 2.3.

Proof. Omitted due to extreme similarity with the proof of our protocol with time-

outs. The proof of AliceResolve is now the symmetric version of BobResolve before.

The proof of AliceAbort is very similar. Furthermore, the corresponding adversaries

AC , AE , BC , and BE are very straightforward to construct.

The privacy analysis of this protocol is the same as our protocol with timeouts.

Besides, the generalization above also applies to this protocol.

Theorem 2.6.2. Our efficient barter protocol without timeouts preserves the privacy

of the honest participants even when Arbiter resolution is required.

26Similar footnotes as before applies. If, for example, we do not want to rely on the security of
the Belenkiy et al. VerifyKey protocol here, Alice can prove that Bob’s key was incorrect -if that
is the case- and get his e-coin from the Arbiter. If Bob already resolved, he must have taken
Alice’s correct key or e-coin. Hence, the exchange is fair, becoming e-coin to e-coin exchange in
such a case.

41

Proof. Same as the proof for our protocol with timeouts.

2.7 Generalized Version

We have shown an instance of our protocol which uses hashes for verification, and

endorsed e-cash for payment. In general, our protocols can employ any secure

verification algorithm (see Definition 2.3.2) provided by the Tracker, instead of

the hashes. Similarly, our protocols can easily make use of other payment

methods (see [4] for a compilation) or signatures instead of e-cash, but then privacy

of the participants will not be preserved. The modification is straightforward, and

involves just replacing the verifiable escrow of the e-coin with a verifiable escrow of

any other form of payment.

2.8 Efficiency Analysis

The efficiency of Alice’s and Bob’s parts in the protocol can be further improved,

although this would require the Arbiter to perform more work. To improve Alice’s and

Bob’s efficiency, Bob sends the file unencrypted in step 5, instead of separately sending

the ciphertext in step 3 and the key in step 5, thus eliminating step 3 completely (a

similar logic might also apply to steps 2 and 6). But, in that case, the Arbiter needs

to keep the whole file for resolution purposes instead of only a very short key as in

the current case. Since such trusted third parties can become the bottlenecks of the

system, we prefer having the least amount of work to be done by the Arbiter, and let

users perform slightly more work instead. Moreover, if secrecy of the files is desired,

they will be encrypted anyways.

We consider a concrete instantiation of our protocol using endorsed e-cash [44],

Camenisch-Shoup verifiable escrow [45], AES encryption [57], DSS signatures [119],

42

and RSA-OAEP public key encryption for (non-verifiable) escrow [20]. Our protocol

has only neglectable overhead over just doing an unfair exchange. Sending the ci-

phertexts in steps 2 and 3 just corresponds to sending the files in any (even unfair)

exchange.27 The keys sent in steps 5 and 6 are extremely short messages (16 bytes

each for 128-bit AES keys). For a fair exchange, step 4 is still very cheap since the

only primitives used are an ordinary (non-verifiable) escrow (just a public key en-

cryption), and a signature (A DSS signature created using a 1024-bit key is about 40

bytes, while an RSA-OAEP encryption with a 1024-bit key is about 128 bytes).

Assuming IO and CPU can be overlapped, encryption of files will not add any

time. Furthermore, signatures and escrows take only a few milliseconds. The most

time consuming step is sending the blocks themselves, which has to be done in any

case (and encryption does not increase size). The only real overhead is the first step,

where the verifiable escrow (and endorsed e-cash, if used) is costly (see below).

Our protocol, in addition to guaranteeing fair barter efficiently, is optimized for

multi-barter situations. One such situation is a file sharing scenario as in BitTorrent

[52, 16]. The peers Alice and Bob are expected to have a long-term barter relationship.

Hence, step 1 needs to be carried out only once per peer, and remaining

cheap steps 2-6 would be repeated for each block, whereas previous proto-

cols required a costly step like step 1 to be performed for each block. This

greatly amortizes the costly step 1 in our protocol, when multiple blocks (or files) are

exchanged, even when the files/blocks to be exchanged are not pre-defined

(they need to be defined only before each execution of step 2).

To give some numbers, consider an average BitTorrent file of size 2.8GB made

up of about 2, 500 blocks [89]. Using previous optimistic fair exchange protocols,

27We can in general assume that the I/O and CPU can be pipelined so that the encryption will
not add more time to uploading the files.

43

this requires 2, 500 costly steps (one per block). Our C++ implementation using en-

dorsed e-cash [44] and Camenisch-Shoup verifiable escrow [45] takes about 1 seconds

of computation for step 1 (most of which is the verifiable escrow) on an average com-

puter (2GHz). This corresponds to 2500 × 2seconds = 42 minutes of computation

overhead. Considering a BitTorrent client that connects to about 40 peers, using our

protocol, this overhead becomes just 40 seconds, which is neglectable when exchang-

ing such a big amount of data (this cost will be dominated by the file transfer times).

Our network overhead is similarly neglectable (around 40KB per peer, almost all of

which is the one-time cost of step 1, about half of it being endorsed e-cash). This

corresponds to about 2500 × 2 × 40KB = 200 MB total overhead using previous

schemes, and only 40 × 40KB = 1.6 MB total overhead using our scheme (for a

2.8GB file).

As for the Arbiter, he checks a signature, sometimes decrypts a (verifiable) escrow,

and performs the VerifyKey protocol of Belenkiy et al. [16] (see Section 2.4.3). The

signature check and ordinary escrow decryption takes only milliseconds, the verifiable

escrow decryption, when necessary, can take a few hundred milliseconds. The bot-

tleneck is the data that the Arbiter needs to download for the VerifyKey protocol,

which is about 22chunks× 16KB = 352KB [16]. An important point to note is that

the amount of data the Arbiter’s needs to download is independent of the size of the

file that is being exchanged.28

Without considering distributed denial of service (DDoS) attacks, let us provide

some numbers for evaluation. To have an idea, consider a P2P system of 1, 700, 000

users, exchanging 2.8GB files on the average [89]. Exchanging two such files means

exchanging 5.6GB of data. If 1% of all users are malicious, this can correspond to

17, 000 exchanges requiring an arbiter at a given time (where one user is honest and

28Merkle proofs are logarithmic in number of the blocks in the file, but are much smaller in size
than the data blocks themselves in practice.

44

the other is malicious. If both of them are malicious, this number reduces to half of

it). We said, in case of a dispute, a peer should upload 352KB of data to the Arbiter.

Assume that the same upload speed is used when trading files and contacting the

Arbiter. If we assume the worst case scenario where the Arbiter can handle only one

user at a time and every user is active at all times, this requires having 2 arbiters; with

10% malicious user ratio, we need 11 arbiters. Under the very realistic assumption

that an arbiter can handle 25 users at a time (e.g., assuming 25 times as fast download

speed of the Arbiter as the upload speed of the users [53]), we will need 1 arbiter in

this system (even with 10% malicious user ratio).

We believe, in many situations, our more efficient protocol with timeouts will be

sufficiently useful. Yet, to provide options, we chose to present another efficient barter

protocol that does not require the use of timeouts. Our protocol without timeouts

requires two costly operations (step 1) instead of one in our protocol with timeouts.

As in our protocol with timeouts, this cost is independent of the number of files

exchanged, and becomes neglectable when multiple or large files are exchanged. The

cost of step 1 will be doubled for both parties, yet for the rest of the protocol the

cost will stay almost the same. The Arbiter’s cost will be doubled though, due to

the need to perform two costly resolutions (AliceResolve is as costly as BobResolve

now). Nevertheless, using similar numbers as above, if our arbiter can handle 25

users at a time, we still need only 1 arbiter even with 10% malicious user ratio. Some

more efficiency evaluation, limitations and possible solutions are discussed in the next

section.

Finally, note that for both of our protocols, there is no growing history that needs

to be kept. In terms of storage, both parties need to store at most one verifiable

escrow, and the messages and blocks for that exchange. Any messages related to

previously exchanged blocks can be discarded. Thus, during an exchange, the storage

45

overhead of our protocol is less than 1KB.

2.9 Limitations and Future Work

One limitation of our work is the need for the exchanging parties to trust the Arbiter.

Alice trusts the Arbiter not to give away both her e-coin and the key to her file. Even

though giving away the key only makes the exchange unfair, giving away the coin

may result in even an honest Alice becoming a double-spender.29 One possible way to

reduce this need for the trust would be using several arbiters, who do not necessarily

know each other. Alice and Bob can mutually agree on a specific arbiter, the Arbiter,

before the protocol begins. Since, there is no registration with the Arbiter in our

protocol, any arbiter can accomplish the job.

Fortunately, if a proof of dishonesty is requested, neither the Arbiter, nor Bob, nor

anyone else can frame an honest Alice.30 The Arbiter may be asked to prove Alice’s

guilt by presenting a verifiable escrow, a non-verifiable escrow and a signature on it,

along with the proofs that Bob’s key decrypts correctly yet Alice’s key in the (non-

verifiable) escrow does not. Due to the security of these primitives, no one can frame

an honest Alice. Of course, this requires the Arbiter to store all past resolutions,

and Alice’s privacy has already been invaded by the double-spending detection. In

order to prevent a malicious Alice from framing the Arbiter by intentionally double-

spending, we can require either Alice’s or the Arbiter’s signature when a coin is being

deposited. We leave the issue of efficiently reducing the need to trust the Arbiter or

verifying the Arbiter’s behavior without violating Alice’s privacy as a future work.

As for the bottleneck that can be caused by the central Arbiter, Avoine et al. [11]

show how to employ secret sharing techniques [140, 27] to distribute the shares of the

29This does not result in Alice losing money, but losing her anonymity.
30Of course, this requires yet another trusted entity, called the Judge.

46

secrets among arbiters. This will decrease the amount of job each arbiter needs to

perform, yet it will reduce the efficiency of our resolution protocols. It also allows for

dilution of trust. As argued in Section 3, the same techniques can be applied to our

protocol with timeouts. In Chapter 4, we show how to outsource computation, which

can be used as a means to distribute the work of our trusted parties. The Brownie

Project [34] is analyzing this strategy to distribute the arbiter and the bank in their

BitTorrent deployment.

As in many deployments, it is possible to mount a distributed denial of service

(DDoS) attack on the arbiters by continuously performing fake barters and resolving

with an arbiter. We leave the protection against such attacks (by means like blacklist-

ing IP addresses) to system and network security researchers. Alternative strategies

of reducing the arbiters’ load were already discussed above.

Another limitation is that Bob does not need to do any work to be able to send a

response to Alice in our protocol with timeouts, so he can just send junk. Hence, Bob

can mount a distributed denial of service attack against Alice. Yet, he still needs to

upload a large file (and can be required to upload first), wasting considerable amount

of resources (time and bandwidth). Moreover, Alice will not be trading with Bob

once he cheats. We leave the issue of analyzing the extent of such attacks, catching

such an attacker, and proving such an attack occurred as an open problem. This

attack is not possible when our protocol without timeouts is used, since both parties

need to do equal amount of work.

In terms of the storage load associated with the trusted parties, the techniques

from [39] can be applied. Using those techniques, the Bank can have a limited storage,

as opposed to a groving storage. For example, if every e-coin is valid for a limited

but long time (e.g., one month), then the bank needs to keep track of only the

transactions that happened in the past period, instead of all past transactions. Note

47

that the Arbiter also only needs to have a short-term memory of past resolutions.

Lastly, our fairness definition states that a file and a payment can be fairly traded,

as in previous works [7, 16, 44, 107, 102]. The economics of this system, deciding on

how much a file is worth fairly, is outside the scope of this chapter. The participants

can somehow agree on the price before our protocol begins (variable pricing), or

alternatively a system can set the price that will apply to all participants (fixed

pricing). In Belenkiy et al. [16], the authors assume each block in the BitTorrent

system are worth one e-coin. We leave this pricing issue as an interesting application-

dependent open problem.

2.10 Conclusion

There already are many scenarios where peers trade content [52, 89]. These systems

unfortunately rely on the honesty of the peers for providing fairness, partly because of

the high cost incurred by the previous fair exchange protocols [5, 6, 7, 8, 16, 44, 111].

Our protocols uniquely limit the use of the costly primitives (verifiable escrow and

e-cash) to once (or twice) per peer, as opposed to per file/block. We have shown

in Section 2.8 that there are one or two orders of magnitude efficiency gains over

previous protocols. Besides, most of the existing systems already rely on similar

trusted parties [5, 6, 7, 8, 16, 40, 44, 50, 52, 89, 111, 122]. Therefore, for the first time,

by using our protocols, such bartering systems will experience almost no performance

loss, while the benefit of providing fairness guarantees will be very noticeable indeed

(e.g., see [16] for how the use of fair exchange can solve the free-riding problem of

BitTorrent). Already, the Brownie Project [34] is adopting our protocols in their

BitTorrent deployment.

As a guideline, we suggest that systems which expect long-term barter relation-

ships and are not willing to use timeouts use our protocol without timeouts, but

48

systems that will conduct mainly short-term barters and can tolerate timeouts use

our protocol with timeouts.

Chapter 3

Trusting the Cloud

3.1 Introduction

Optimistic fair exchange is a very useful primitive in distributed system design with

many applications including contract signing, electronic commerce, or even peer-to-

peer file sharing [5, 6, 7, 8, 14, 16, 63, 96, 110, 111]. In a fair exchange protocol, Alice

and Bob want to exchange some items, and they want to do so fairly. Fairness intu-

itively refers to Alice getting Bob’s item and Bob getting Alice’s item at the end of the

protocol, or neither of them getting anything, even if one of them maliciously deviates

from the protocol. For technical definitions of optimistic fair exchange protocols, we

refer the reader to Chapter 2.

It has been shown that no general fair exchange protocol can provide complete

fairness without a trusted entity [122], called the arbiter. In an optimistic fair ex-

change protocol, the arbiter is not involved unless there is a dispute between the

participants. But having a single trusted entity is one of the biggest problems that

make the use of such protocols hard in practice. Therefore, the use of multiple arbiters

is generally motivated by reducing the trust put on the arbiter (see Chapter 2).1 A

1It is possible to have multiple arbiters deployed for reducing the load, but if only one of them is

49

50

very natural question is how to achieve fairness in the absence of a single trusted

arbiter; for example, what if we have n arbiters only a fraction of whom we want to

put our trust in? It is clear that this can be achieved using byzantine agreement or

secure multi-party computation techniques [81, 22, 24, 47] with Ω(n2) communica-

tion, but can we do better than that? In particular, can we do anything in a setting

where the arbiters need not communicate with each other to resolve disputes? This

issue is highly relevant especially for peer-to-peer settings in which the arbiters do not

even know each other, and may not have enough resources for complicated schemes.

Furthermore, if the scheme gets more costly, it will be hard to incentivize multiple

arbiters to arbitrate, since they will get overloaded.

Avoine and Vaudenay (AV) [11] address this problem in their paper by using

verifiable secret sharing techniques to employ multiple arbiters in their fair exchange

protocol for a P2P system. In their setting, two peers are performing a fair exchange,

and a number of other peers constitute the arbiters. They provide bounds on the

number of arbiters that should be honest for their protocol to be fair (see Section 3.7).

A crucial point is that the protocol uses global timeout mechanisms, which assumes all

arbiters have access to -loosely- synchronized clocks, and the arbiters are autonomous

(they do not communicate with each other). They leave two important issues as open

questions: (1) Can an optimistic fair exchange protocol without timeouts provide

fairness (since it is hard to achieve synchronization in a P2P setting) when employing

multiple autonomous arbiters? (2) Can any other optimistic fair exchange protocol

with timeouts achieve better bounds on the number of arbiters that need to be honest?

Unfortunately, in this chapter, we answer both of these questions negatively. In-

spired by state-of-the-art optimistic fair exchange protocols with a single arbiter, we

define a general class of optimistic fair exchange protocols with multiple arbiters,

employed per exchange, we do not consider that protocol as having distributed arbiters.

51

called “distributed arbiter fair exchange” (DAFE) protocols. Informally, in a DAFE

protocol, if one of the participants fails to send a correctly formed message, the other

participant must contact some subset of the arbiters and get correctly formed re-

sponses from them in order to make the exchange fair.2 Two main properties of a

DAFE protocol are its abort/resolve semantics and the autonomy of multiple arbiters

used, as discussed in Section 3.2. In a DAFE protocol, the arbiters are autonomous;

they do not talk to each other, but talk only to Alice and Bob. A third property is the

state machine semantics of the participants. We show that this class of protocols cap-

ture currently known state-of-the-art optimistic fair exchange protocols extended to

use multiple distributed arbiters in a very intuitive manner, as shown in Section 3.2.1.

Under this framework, in Section 3.4 we analyze scenarios that can occur during the

execution of instances of optimistic fair exchange protocols, and prove some predi-

cates every such protocol must satisfy to be able to provide semantic fairness, which

is a property that needs to be satisfied by all optimistic fair exchange protocols.

In Section 3.5, we prove that no DAFE protocol can provide fairness meaningfully3,

answering the first open question negatively. In Section 3.6, we prove impossibility

of DAFE protocols using threshold-based mechanisms (any k arbiters are enough for

resolution) even when the autonomous arbiters assumption is relaxed. For protocols

using general set-based mechanisms (any k arbiters will not be enough for resolution,

specific sets of arbiters need to be contacted), we cannot prove impossibility in this

relaxed setting, but we conjecture that such protocols are not possible. However, our

impossibility results can be overcome in the timeout model (where all arbiters have

access to loosely synchronized clocks) and also in case the arbiters can communicate.

We use our framework to analyze the existing AV protocol [11] in this timeout model

2Of course, if no message is sent yet, there is no need to contact arbiters, which is not an
interesting case to analyze anyway.

3We prove that multiple arbiters are no better (or actually worse) than a single arbiter in terms
of trust in the DAFE framework.

52

in Section 3.7, showing how easy it is to apply our framework. We prove that the

bounds on the required number of honest arbiters proven earlier for that protocol are

optimal, and hence answer the second open question also negatively.

These results mean that many optimistic fair exchange protocols that want to

efficiently distribute their arbiters may need to employ synchronized clocks. And

even in this case, they cannot hope to require fewer honest arbiters than the Avoine

and Vaudenay protocol [11]. If they do not want to employ synchronized clocks,

then they may need to employ costly solutions like secure multi-party computation

or Byzantine agreement (or cheaper Byzantine fault-tolerance techniques [1] secure

under weaker adversarial models).

3.2 Definition of a DAFE Protocol

Figure 3.1: Semantic view of

the state machines of the par-

ticipants.

In this section, we define a general optimistic fair

exchange model that fits currently known state-of-

the-art optimistic fair exchange schemes that uses an

arbiter, and has semantics for aborting and resolving

that we define below.

All the participants (Alice, Bob and the arbiters)

are interactive Turing Machines (ITMs)4. Those

ITMs have the following 4 semantic states: Work-

ing , Aborted , Resolved , Dispute (see Figure 3.1).

These semantic states can correspond to multiple

states in the actual ITM definitions of the partici-

pants, but these abstractions will be used to prove

our results.

4The ITMs have access to –possibly synchronized– clocks for timeout mechanisms.

53

The ITM of each participant starts in the Working state. Semantically, Working

state denotes any state that the actual ITM of a participant is in when the protocol is

still taking place. When a participant does not receive the expected correctly formed

message from the other participant, he can possibly abort or decide to contact the

arbiters for resolving or aborting with them, in which case the ITM of that participant

enters its Dispute state. If everything goes well in the protocol execution (all messages

received from the other party are correctly formed), then the ITM of a participant

transitions to the Resolved state directly from the Working state. Otherwise, if the

arbiters needed to be contacted, the ITM first visits the Dispute state, and then

transitions to either Resolved or Aborted state. Arbiters’ Dispute state is dummy,

and hence not needed in our analysis. Furthermore, when in Section 3.6 we relax one

of our assumptions, even Alice and Bob will not have this Dispute state.

When the protocol ends, Alice and Bob are allowed to end only in Aborted or

Resolved states. If Alice or Bob ends at its Resolved state, then, by definition, (s)he

must have obtained the exchange item from the other party. When the protocol ends,

if the ITM of a participant is not in its Resolved state, it is considered to be in its

Aborted state.

Using these semantic definitions, even an adversarial ITM can be considered to

have those 4 states (since it either obtains the other party’s item and hence ends

at its Resolved state, or not therefore ending at its Aborted state). The adversarial

ITM does not necessarily have a Dispute state, but this will not affect any results

presented in this chapter. One can think that the moment the honest party’s ITM

enters its Dispute state, the adversarial ITM also enters its Dispute state.

We will talk about only complete DAFE protocols (remember definition of an op-

timistic fair exchange protocol from Section 2.3): when both participants are honest,

they end at their Resolved states. Since our goal here is to analyze fairness of such

54

protocols, the only interesting case is when we have one honest party denoted H and

one malicious party denoted M . We will not consider cases where both parties are

malicious since there is no honest party to protect.

Definition 3.2.1 (End of the Protocol). We say that the protocol has ended if (1) the

honest party ended up being in her either Resolved or Aborted state, and (2) the ad-

versary produced its final output at its either Resolved or Aborted state after running

at most a polynomial number of steps (polynomial in some security parameter).

Now that we defined our participants carefully, we can state our assumptions on

them and define DAFE protocols.

Distributed Arbiter Fair Exchange (DAFE) protocols: DAFE proto-

cols are optimistic fair exchange protocols that can be characterized with the follow-

ing:

• Exclusive states assumption

• Connection between arbiters’ state and Alice’s and Bob’s

• Autonomous arbiters assumption

Exclusive states assumption: This assumption states that the Resolved and

Aborted states are mutually exclusive. For an arbiter, those states informally mean

whether or not the arbiter helped one of the parties to resolve or abort. We assume

that there is no combination of state transitions that can take an honest arbiter from

the Aborted state to the Resolved state, or vice versa. In most existing protocols, this

corresponds to the fact that the arbiter will not abort with a participant first and

then decide to resolve with him or the other participant, or vice versa. An honest

arbiter can keep executing abort (or resolve) protocols with other participants in the

55

exchange while he is in the Aborted (or Resolved , respectively) state, but can not

switch between states for different participants.

Definition 3.2.2 (Aborting and Resolving with an Arbiter). If a participant interacts

with an arbiter and aborts with him, the arbiter goes to his Aborted state, from where

he will never switch to his Resolved state. Similarly, if a participant resolves with an

arbiter, the arbiter goes to his Resolved state, from where he will never switch to his

Aborted state.5

Definition 3.2.3 (Aborted and Resolved Protocol Instance). A protocol instance is

called aborted if both Alice and Bob ended at their Aborted states, and called resolved

if both Alice and Bob ended at their Resolved states.

Connection between arbiters’ state and Alice’s and Bob’s: A resolu-

tion makes sense if at least one of the parties has not resolved yet. In such a case,

Alice or Bob can end in their Resolved states (unless they already are in their Resolved

states) only if a set of arbiters end in their Resolved states. This set of arbiters can

be different for Alice or Bob. Actually, there can be more than one set of arbiters

that is enough for this resolution. All these will be clear in later sections when we

define those sets of arbiters that will be sufficient for resolution.

Autonomous arbiters assumption: We assume that the honest arbiters’ de-

cisions are made autonomously, without taking into account the decisions of the other

arbiters. Arbiters can arrive at the same decision seeing the same input, but they will

not consider each other’s decision while making their own decisions. In particular,

this means no communication takes place between honest arbiters (malicious arbiters

can do anything they want).

5Due to the exclusive states assumption, these happen only if an arbiter is not already in his
Resolved or Aborted state, respectively.

56

Our goal in this is to distribute the trust efficiently. Without autonomy, byzan-

tine fault tolerance or secure multi-party computation techniques [81, 22, 24, 47] can

be applied, yielding costly solutions (Ω(n2) communication when n arbiters are em-

ployed). Furthermore, autonomy of the arbiters render the deployment of such a real

system practical, since no coordination of the arbiters is necessary.

Yet, a dependence between the arbiters’ decisions can be generated by Alice or

Bob, by contacting the arbiters with some specific order. Therefore, to model the

autonomy, we require the protocol design to direct the honest participants to contact

all the arbiters without any order. More formally, when the ITM of an honest par-

ticipant decides to contact the arbiters for dispute resolution, the participant creates

the message to send to all of the arbiters before receiving any response from any

arbiter. One can model this with the Dispute state in which the message to send to

the arbiters are prepared all at once. We will call this simultaneous (or unordered)

resolve/abort. Note that this only constrains honest Alice or Bob. A malicious party

can introduce dependence between messages to arbiters and responses from other

arbiters. Later in Section 3.6 we will relax this autonomy assumption and discuss

its consequences. We realize that this assumption is not necessary for most of our

results, but helps making the presentation clearer.

All optimistic fair exchange protocols need to satisfy the following semantic fair-

ness property.

Semantic Fairness: The semantic fairness property states that at the end of

the protocol, Alice and Bob both end at the same state (they both end at their

Aborted states, or they both end at their Resolved states). In other words, we need

the protocol instance to be either resolved or aborted as in Definition 3.2.3, for every

possible instance of the protocol.6

6There will not be any cases where the honest party ends at its Resolved state whereas the
malicious party ends at its Aborted state and this affects our results. Therefore, this semantic
fairness definition is enough for our purposes. Furthermore, it is subjective whether or not to

57

Optimistic fair exchange protocols should also satisfy the timely resolution prop-

erty, meaning that the honest party need not wait indefinitely for any message from

any other party. He can have a local timeout mechanism with which he can decide to

proceed without waiting. In particular, he can end his side of the protocol any time

he wants, ending at his Resolved or Aborted state, according to the rules we defined

above. Note that in general providing timely resolution guarantees necessitates mu-

tually exclusive Resolved and Aborted states, and a way for the arbiters to transition

to their Aborted states through interaction with other parties or through the use of

timeouts.

Regular DAFE protocols do not have global timeout mechanisms, and the sets of

arbiters that Alice or Bob can resolve with are well-defined by the protocol, and does

not change once the honest party is in its Dispute state. We will show an extended

version called DAFE with timeouts (DAFET) where the protocols are allowed to use

timeouts. At the timeout specified by the protocol, honest arbiters transition into

their Aborted states. This is done using the (loosely synchronized) clocks of the ITMs.

We call this event “an arbiter timeouts”. We allow the possible sets of arbiters to

resolve with to change at this timeout. This timeout model bypasses the impossibility

results for DAFE protocols. These will be clear later.

We will first provide examples of existing optimistic fair exchange protocols with

intuitive extensions to employ multiple autonomous arbiters and show how they fit

our DAFE classification. Then, after defining some notation, we will analyze different

possible protocol instances under different scenarios, and possible protocol types.

We then show that it is impossible for some common types of DAFE protocols to

provide semantic fairness, thus warning researches not to pursue that direction. We

also analyze some positive results using global timeout mechanisms, and prove the

consider a case where two parties end at different states as fair.

58

optimality of the bounds of the AV protocol, showing the usability of our framework

for easy analysis. We then discuss the role of autonomous arbiters and timeouts in

our results and elaborate on different ideas.

3.2.1 Sample DAFE Protocols

Many currently known optimistic fair exchange protocols can be considered as special

cases of DAFE protocols in which there is only one arbiter. In this section, we also

discuss a way to extend them to employ multiple autonomous arbiters. Unfortunately,

this means, those extended protocols cannot provide fairness, as we will prove later in

this chapter that no DAFE protocol can provide fairness. Precisely, our impossibility

result states that all arbiters need to be trusted in a DAFE protocol, hence they

are not realistic. For the special single-arbiter case, this points out to the trust

assumption on the arbiter.

To the best of our knowledge, all currently known optimistic fair exchange pro-

tocols adhere with our framework. As a representative of optimistic fair exchange

protocols, we will analyze a protocol due to Asokan, Shoup and Waidner (ASW) [7].

They have two versions of their protocol: one version that uses timeout-based aborts

(can be converted to a DAFET protocol, see Section 3.7), and one that does not

employ timeouts (we will discuss now). It is considered one of the state-of-the-art

signature exchange protocols, and is the first completely fair optimistic exchange pro-

tocol. A state-of-the-art optimistic fair exchange protocol for exchanging files was

given in Chapter 2, and all our discussion here applies to that protocol too. The

ASW protocol without timeouts is described in Appendix A.11 for reference.

In terms of the state semantics of the participants, it is clear that the ending

states of the participants can be parsed into Aborted and Resolved states which are

mutually exclusive. Furthermore, honest participants are not allowed to transition

59

between Aborted and Resolved states. In particular, once Alice aborts with the arbiter

taking him to his Aborted state, he will refuse resolving with Bob. Since there is only

one arbiter, it is autonomous. As for the connection between arbiter’s state and

Alice’s and Bob’s, it is clear that in case of a dispute, their state depends on the

arbiter’s.

Now, if we want to extend those protocols to use multiple autonomous arbiters,

one easy way is to employ verifiable secret sharing techniques [11, 128, 77]. The state-

of-the-art optimistic fair exchange protocols employ verifiable escrows [37, 45, 7, 96]

under the (one and only) arbiter’s public key. The intuition behind using verifiable

escrows is that the recipient can verify, without learning the actual content, that the

encrypted content is the content that is promised and the arbiter can decrypt it.

Verifiable secret sharing techniques can be employed to split the promised secret per

arbiter. Each of these secrets will be encrypted under a different arbiter’s public key.

The recipient can still verify those encrypted shares can be decrypted and combined to

obtain the promised secret, thereby effectively achieving the same goal as a verifiable

escrow, but for multiple arbiters. For a detailed explanation of how to use verifiable

secret sharing in distributing the arbiters, we refer the reader to [11].

When we extend the ASW protocol to use multiple autonomous arbiters, instead

of this verifiable escrow, the participants will use verifiable secret sharing techniques

as explained above and in [11]. Regardless of whether threshold- or set-based secret

sharing mechanisms are used, the resolution procedure now requires contacting mul-

tiple arbiters. For example, if the threshold for the secret sharing method used is k,

the resolution will involve contacting at least k arbiters.

In terms of the state semantics of the participants, it is clear that the ending

states of the participants can be parsed into Aborted and Resolved states which are

mutually exclusive. Because we assume the arbiters are contacted simultaneously,

60

the autonomy of the arbiters hold. As for the connection between arbiters’ state

and Alice’s and Bob’s, since resolution needs k shares, and secure secret sharing

and encryption methods are used, a participant can obtain the other participant’s

exchange item if and only if (s)he resolves with at least k arbiters (in case of a dispute).

This relationship makes perfect sense when multiple autonomous arbiters are used,

since the main goal in distributing the arbiter is distributing the trust. Therefore,

the goal is to find some number of honest arbiters each one of which will individually

contribute to dispute resolution between participants by resolving or aborting with

them. When arbitrary sets are used instead of thresholds, it is easy to see all these

arguments will still apply.

The same techniques can be applied to the other state-of-the-art optimistic fair

exchange protocol in Chapter 2 designed to exchange multiple files between partici-

pants. There a verifiable escrow is employed for escrowing the payment (endorsement

of an unendorsed e-coin [44]) sent by the participants. All the arguments for the ASW

protocol also apply to that. Again, verifiable secret sharing techniques as discussed

above will be used instead of the verifiable escrow. The resolution mechanism will

be similar to the ones we described for the extended ASW protocol. As for the state

semantics, a participant goes to her/his Resolved state if (s)he gets other participant’s

file or e-coin, and goes to his/her Aborted state otherwise.

In Section 3.4 we will analyze possible scenarios in an optimistic fair exchange

protocol. The first two scenarios will be applicable to this extended protocol types,

as we show in Section 3.5, where we analyze protocols that have the same structure

as ASW protocol.

61

3.3 Notation

Remember that in a fair exchange scenario, Alice and Bob want to exchange some

items fairly. In case of a dispute, they need to contact the arbiters. They are allowed

to take the following two actions with the arbiters: abort or resolve. As noted in

Definition 3.2.2, aborting with an honest arbiter takes him to his Aborted state,

whereas resolving with him would take him to his Resolved state.7 Remember, those

states are mutually exclusive, and there is no transition between them, direct or

indirect. We assume that the arbiters are autonomous: They do not take into account

other arbiters’ decision while acting. More formally, the honest participant contacts

all arbiters simultaneously (her messages to arbiters do not depend on any response

from any of the arbiters).

Let N denote the set of all arbiters, where there are a total of n of them (|N | = n).

An honest arbiter acts as specified by the protocol. Let F be the set of arbiters who

are friends with a malicious participant. Those arbiters are adversarial.8

Define two sets HR and MR, which are sets of sets. Any set HR ∈ HR is a set

of arbiters that is sufficient for the honest party to resolve (as defined in Section 3.2

during the discussion about the connection between arbiters’ state and Alice’s and

Bob’s). Similarly, any set MR ∈ MR is a set of arbiters that is sufficient for the

malicious party to resolve. Therefore, by definition, in case of a dispute, the honest

party will end at her Resolved state if and only if she resolves with all the arbiters

in any one of the sets in HR (unless she already is in her Resolved state). Similarly,

the malicious party will end at his Resolved state if and only if he resolves with

all the arbiters in any one of the sets in MR (unless he already is in his Resolved

state). For DAFE protocols, these sets are well-defined by the protocol description,

7This happens only if an arbiter is not already in its Resolved or Aborted state, respectively.
8For example, they may appear as aborted to the honest party, but they may still resolve with
the malicious party.

62

and do not change once the honest party enters its Dispute state.

A special case of these sets can be represented as thresholds. Let TH be the

number of arbiters the honest party needs to contact for resolution. Similarly, TM

denotes the number of arbiters the malicious party needs to contact for resolution.

Thus, the set HR is composed of all subsets of N with TH or more arbiters. Similarly,

the setMR is composed of all subsets of N with TM or more arbiters.

Define RH as the set of arbiters the honest party H has already resolved with, and

RM as the set of arbiters the malicious party M has already resolved with. Also define

RA as the set of all arbiters that are available for H for resolution. Initially, when

the dispute resolution begins, we assume that RH = ∅, RM = F , and RA = N − F

(and all arbiters are available for resolution to the malicious party). We furthermore

have the following actions and their effects on these sets:

Action 1 (H resolves with an arbiter X). As a result, RH becomes RH ∪ {X}.

Action 2 (M resolves with an arbiter X). As a result, RM becomes RM ∪ {X}.

Action 3 (H aborts with an arbiter X ∈ RA). As a result, RA becomes RA − {X}.

Action 4 (M aborts with an arbiter X ∈ RA). As a result, RA becomes RA − {X}.

Note that we do not care what these sets actually are, or whether or not one can

find such sets of sets. For our impossibility result, it is enough that conceptually

these sets of sets exist.

As in previous work on optimistic fair exchange [7, 96], we assume that the adver-

sary can re-order messages, delay the honest party’s messages to the arbiters, insert

his own messages, etc. But he cannot delay honest party’s messages indefinitely: the

honest party eventually reaches the arbiters that he wants to contact initially, and

this occurs before the timeout if the protocol uses timeout mechanisms.

63

3.3.1 DAFET Protocols (DAFE Protocols with Timeouts)

In DAFET protocols, we allow for timeouts by giving the arbiters access to loosely

synchronized clocks. Instead of actions 3 and 4 above (honest or malicious party

aborting), the following action is allowed:

Action 5 (An arbiter X ∈ RA − RH − RM times out). As a result, RA becomes

RA − {X}.

Another difference between DAFE and DAFET protocols is the sets HR andMR

being static and dynamic, respectively. DAFE protocols define such sets as static:

the overall set of arbiters that needs to be contacted for resolution does not change

with time once the honest party enters its Dispute state (hence the notation HR and

MR). Consider a DAFE type protocol that employs dynamic sets like this: Bob

can resolve only with arbiters that Alice has already resolved with. We can think

of it as Bob’s set initially being empty, and then getting populated. Unfortunately,

this protocol does not guarantee timely resolution (unless there is a timeout in the

protocol) since Bob may need to wait indefinitely for Alice.

In contrast, we allow DAFET protocols to employ dynamic sets (hence the no-

tation HR(t) andMR(t)). These sets may depend on the timeout and possibly the

parties’ actions in that particular instance of the protocol. Consider the following two

cases as illustrative examples: Some type of protocols allow, let’s say, Alice to resolve

only after a timeout. Some other type of protocols allow Alice to resolve only with an

arbiter that Bob has already resolved with (or vice versa). In analyzing such types of

protocols, we will consider HR(t) andMR(t) as dynamic, letting them change with

those actions. We discuss the relation between the use of timeouts and dynamic sets

in fair exchange protocols more in Section 3.8.

We will consider any action that results in a change in those sets as new time

steps, but there is no need to treat other events as separate time steps since they do

64

not constitute a significant part of the analysis. Therefore, one can think as if any

party can contact any number of arbiters at a given time step t . t = 0 denotes the

time when the dispute resolution begins (the time the honest party enters its Dispute

state, not the time the protocol execution begins).

Lastly, the set of friends of a malicious party can also change with time, if the

adversary is allowed to adaptively corrupt arbiters. In that case, we will use the

notation F (t).

3.4 Framework for Analysis of DAFE Protocols

In this section, we will provide our framework for analyzing DAFE (and DAFET)

protocols. Our framework is composed of different scenarios that can take place during

the execution of an instance of a DAFE protocol. Once we have lemmas related to

those scenarios stating the necessary (not necessarily sufficient) conditions that need

to be satisfied so that the given scenario satisfies the semantic fairness property,

then we can analyze different protocol types in the next section. For example, the

extended ASW protocol discussed in the previous section will be a protocol of type 0

(in Section 3.5) and will employ scenarios 0 and 0 (depending on which one of Alice

and Bob is malicious). Since our results are impossibility or lower bound type of

results, it is enough to analyze necessary (but maybe not sufficient) conditions. In all

our scenarios (except the last one), we assume that neither party is in the Resolved

state yet. We consider dynamic resolution sets for our scenario analysis, since static

sets are a special case of dynamic sets.

65

3.4.1 Scenario 1: M can Abort

In this scenario, we consider a protocol instance where the malicious party has the

ability to abort and resolve. The honest party can abort and resolve too, but the

results still apply even if he is restricted to only resolve action. In this scenario,

actions 1, 2, and 4 in Section 3.3 are possible. Our results in this section will remain

valid regardless of action 3 being possible.

Lemma 3.4.1. Every DAFE protocol instance needs to make sure that there exists a

time t when ∀MR ∈MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any time in the protocol instance ∃MR ∈ MR(t) s.t.

∀HR ∈ HR(t) HR 6⊆ MR − F (t). The malicious party can break fairness as follows:

He aborts with the set of arbiters RA−MR, and resolves with the set of arbiters MR.

Since no HR is now a subset of the available arbiters RA = MR − F (t), the honest

party cannot resolve, while the malicious party already resolved. Thus this protocol

instance is unfair (does not satisfy semantic fairness).

Corollary 3.4.1.1. At any given time t during the protocol instance before the pro-

tocol is resolved for H , we need ∀MR ∈ MR(t) MR 6⊆ F (t) since otherwise we need

∃HR ∈ HR(t) s.t. HR = ∅.

Corollary 3.4.1.2. We need a time t to exist satisfying ∃HR ∈ HR(t) s.t. HR∩F (t) =

∅ since otherwise the lemma cannot be satisfied (H can never resolve).

Corollary 3.4.1.3. Using threshold-based mechanisms, we need that there exists a

time t that satisfies TH ≤ TM − |F (t)|.

Corollary 3.4.1.4. Using threshold-based mechanisms, at any given time t during

the protocol instance before the protocol is resolved for H , we need TM > |F (t)| since

otherwise we need TH ≤ 0.

66

Corollary 3.4.1.5. Using threshold-based mechanisms, we need a time t to exist

satisfying TH ≤ n − |F (t)| since otherwise H can never resolve.

3.4.2 Scenario 2: Only H can Abort

In this scenario, we assume that the malicious party has the ability to resolve only,

whereas the honest party can abort and resolve. In this scenario, actions 1 to 3 in

Section 3.3 are possible (action 4 is not possible).

Lemma 3.4.2. Every DAFE protocol instance needs to make sure that there exists a

time t when ∀MR ∈MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any given time ∃MR ∈MR(t) s.t. ∀HR ∈ HR(t) HR 6⊆

MR − F (t). The malicious party can break fairness as follows: When H wants to

abort the protocol, M lets abort messages to all arbiters in RA −MR to reach their

destination, but intercept the messages to MR − F (t) (F (t) really does not matter

since his friends will help him anyways). He then resolves with MR. Even if H notices

this, he cannot go and resolve since there is no set HR ∈ HR(t) that will allow him

to. Therefore, this protocol instance also does not satisfy semantic fairness.

Note that Lemma 3.4.2 is the same as Lemma 3.4.1, and therefore all the corollaries

apply to this scenario too.

3.4.3 Scenario 3: H can Resolve only after Timeout

In this scenario, aborts can be caused by timeouts only. The malicious party can

resolve before and after the timeout, but the honest party can resolve only after the

timeout. Therefore, actions 2 and 5 are possible, but not 3 and 4. Action 1 is possible

only after the timeout.

67

Lemma 3.4.3. Every DAFET protocol instance needs to make sure there exists a

time t when ∀MR ∈MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any given time ∃MR ∈MR(t) s.t. ∀HR ∈ HR(t) HR 6⊆

MR − F (t). The malicious party can break fairness as follows: M resolves with MR

before the timeout. When the timeout occurs, all arbiters in RA−RH −RM to go to

their Aborted states (RH being the empty set), which means now RA = MR − F (t).

But H cannot resolve with the remaining available arbiters and hence this protocol

instance is not semantically fair.

Note that Lemma 3.4.3 is the same as Lemma 3.4.1, and therefore all the corollaries

apply to this scenario too.

3.4.4 Scenario 4: M already Resolved

All of the scenarios above assumed that both H and M start in their Working states

when they are performing the resolutions. Yet, it might be perfectly possible that

the resolution starts at a point in the protocol where one of the parties has already

resolved (and hence is in its Resolved state). If H has already resolved, then there is

no point to further analyze, since we do not care if the protocol is fair to the malicious

party. But if M has already resolved, then we need the following lemma to hold:

Lemma 3.4.4. Every DAFE protocol instance needs to make sure that there exists a

time t when ∃HR ∈ HR(t) s.t. HR ∩ F (t) = ∅.

Proof. Assume at all times ∀HR ∈ HR(t) HR ∩ F (t) 6= ∅. The malicious party has

already resolved but since all possible ways to resolve for H has to go through one of

the malicious party’s friends, he has no hope of resolving.

This lemma corresponds to corollary 3.4.1.2 and hence corollary 3.4.1.5 also applies

here.

68

3.5 Impossibility Results on DAFE Protocols

The previous section analyzed possible scenarios in DAFE and DAFET protocol in-

stances. In this section, we will analyze DAFE protocol types, using the results from

different scenarios that might come up in instances of such protocols. We will con-

clude that no DAFE protocol can provide fairness under any realistic assumption.

DAFET protocols using dynamic sets are possible indeed, and we analyze an existing

DAFET protocol in Section 3.7.

For every protocol type, we will consider the following two cases: The case where

the honest player plays the role of Alice, and the case where he plays the role of Bob.

We denote the set of sets for Alice to resolve as AR(t); similarly BR(t) is for Bob

to resolve. The difference in types of protocols related to these sets being static or

dynamic will play a big role. For ease of analysis (and since it is enough for the im-

possibility results in this section) we will assume the friend list F (t) of the malicious

party is static (does not change with time).9 Since this is a weaker adversary, our im-

possibility results will also apply when we consider stronger (adaptive) adversaries.10

We will use FA to denote friends of a malicious Alice, and FB to denote friends of a

malicious Bob.

In the DAFE protocol types below, we will consider the sets AR(t) and BR(t)

as static (therefore using the notation AR,BR), which eases the use of the lemmas.

With static sets, we do not need to consider different times in the protocol instance.

A lemma saying there must exist a time t can be simplified by just looking at the

initial sets.

9This corresponds to the familiar “static corruption model” in many other works.
10A more powerful adversary can dynamically corrupt arbiters, having a dynamic set of friends.

69

3.5.1 Protocol 1: Alice and Bob can Abort and Resolve

In this type of protocols, Alice is given the ability to abort and resolve, and Bob is

also given the ability to abort and resolve.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario

1, which means (for the static case) any DAFE protocol needs to have ∀BR ∈ BR

∃AR ∈ AR s.t. AR ⊆ BR − FB .

Case 2: Malicious Alice vs. Honest Bob: This case also falls under Scenario 1,

which means (again for the static case) any DAFE protocol needs to have ∀AR ∈ AR

∃BR ∈ BR s.t. BR ⊆ AR − FA.

These two cases lead to the conclusion that every protocol instance needs two sets

AR ∈ AR and BR ∈ BR s.t. AR = BR ⊆ {trusted arbiters}. These arbiters must be

trusted, and so there is no point in distributing the arbiters. It is even worse: If any

of these arbiters are corrupted, the DAFE protocol fails to be fair. Therefore, no such

realistic DAFE protocol can exist.

When considering threshold-based schemes, this corresponds to the requirement

that TB ≤ TB − FA − FB , which means no party should have any friends for such

a protocol to be fair. If even one arbiter is corrupted, the protocol becomes unfair.

Therefore, no such realistic DAFE protocol can exist. Since set-based mechanisms

cover threshold-based ones, we will not discuss threshold-based schemes separately

again unless necessary. All impossibility results proven for set-based mechanisms

directly apply in the context of threshold-based ones.

3.5.2 Protocol 2: Only one party can Abort

In this type of protocols, Alice is given the ability to abort and resolve, whereas Bob is

given only the ability to resolve. Analysis of protocols that are symmetric to this type

of protocols (where Bob can abort and resolve, and Alice can only resolve) obviously

70

yields to the same conclusions.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 2,

which requires that DAFE protocols need to make sure ∀BR ∈ BR ∃AR ∈ AR s.t.

AR ⊆ BR − FB .

Case 2: Malicious Alice vs. Honest Bob: This case falls under Scenario 1,

which means any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆

AR − FA.

We can conclude as in the previous section (Section 3.5.1) that every protocol

instance needs two sets AR ∈ AR and BR ∈ BR s.t. AR = BR ⊆ {trusted arbiters}.

Again, this means there is no point in distributing the arbiters in terms of trust.

Remember that threshold-based versions have the same impossibility.

Unfortunately, the versions of the state-of-the-art optimistic fair exchange proto-

cols we analyzed in Section 3.2.1 without any timeouts fall under this protocol cat-

egory. Note that, this means, using static resolution sets and autonomous arbiters,

those protocols cannot be extended to use multiple arbiters and remain fair.

3.6 Relaxing Autonomous Arbiters Assumption

In this section, we extend our framework by relaxing the autonomous arbiters assump-

tion to allow for ordered aborts by the honest party and therefore include a broader

range of protocols in our framework. We still assume that the honest arbiters do not

try to communicate, but now the honest parties can contact the arbiters following

some particular order. We immediately notice that the only places where we need

that assumption are Scenario 2 and Protocol 2. Results about all other scenarios

and protocols stay unchanged when we do the relaxation by removing the explicit

Dispute state in the ITM definitions of the honest participants (Alice and Bob), thus

allowing them to contact the arbiters with some specific order. Yet, we still are not

71

considering byzantine fault tolerance or secure multi-party computation techniques.

3.6.1 Scenario 2 Revisited

In Section 3.4.2, we analyzed the scenario in which the malicious party has the abil-

ity to resolve only, whereas the honest party can abort and resolve. We analyzed

that scenario using the autonomous arbiters assumption. Below, we will remove the

requirement that arbiters are contacted simultaneously, and revisit our analysis.

Scenario 2 with Threshold-based Mechanisms

Here, we are limiting our protocol instances to the case where only threshold-based

mechanisms are used.11 This means, the sets HR(t) and MR(t) are of the specific

form we have described before. Remember, the set HR(t) is composed of all subsets

of N with TH or more arbiters. Similarly, the setMR(t) is composed of all subsets

of N with TM or more arbiters. TH and TM are the corresponding thresholds.

Lemma 3.6.1. Every DAFE protocol instance needs to make sure there exists a time

t when TH ≤ TM − |F (t)|.

Proof. Assume otherwise: At all times TH > TM −|F (t)|. Malicious party can break

fairness as follows: When H wants to abort the protocol (as directed by the protocol,

most probably triggered by an incorrect input from the malicious party), M waits

until H aborts with n − TH + 1 arbiters. H can no longer resolve after this point

since there are less than TH arbiters left in the set of available arbiters RA. At this

point, M intercepts any more abort messages from H and resolves with TM − |F (t)|

honest arbiters (as well as |F (t)| friends). Therefore, this protocol instance is unfair

(does not satisfy semantic fairness).

11Section 3.6.1 removes the threshold limitation and allows for any set-based resolution mechanism.

72

Notice that Lemma 3.6.1 is the same as Corollary 3.4.1.3. Therefore, Corollaries

3.4.1.4 and 3.4.1.5 also apply here.

Scenario 2 General Case

Now, we remove all the restrictions we made on our scenario in the previous sub-

scenarios. This means, we allow for any set-based resolution mechanism, and we even

allow the protocol to specify an order of arbiters for aborting, possibly depending

on the execution of the protocol instance. One can think of it as the honest party

aborting with one arbiter at every time step, and reconsidering his decision to abort

each time. Therefore, the arbiters are no longer completely autonomous.

Lemma 3.6.2. Every DAFE protocol instance needs to make sure that at all times t

∀MR ∈ MR(t) MR 6⊆ F (t) (before H has resolved) AND there exists a time t when

∃HR ∈ HR(t) s.t. HR ∩ F (t) = ∅.

Proof. Assume there exists a time when ∃MR ∈ MR(t) MR 6⊆ F (t) (before H has

resolved). Malicious party can break fairness as follows: When H wants to abort the

protocol, M lets him abort with all the arbiters. Then, he goes and resolves with MR,

all members of which are his friends.

Now assume at all times ∀HR ∈ HR(t) HR ∩ F (t) 6= ∅. Malicious party can

break fairness by just resolving with any MR ∈ MR(t). Since all possible ways to

resolve for H has to go through one of the malicious party’s friends, he has no hope

of resolving.

In this general scenario, as in the previous cases, we would like to be able to prove

that any DAFE protocol instance needs to make sure there exists a time t when

∀MR ∈ MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t). Even though this seems a very

plausible and realistic conclusion, several problems arise with its proof.

73

The general idea is to use an adversary very similar to the one in Section 3.4.2.

So, the adversary will let H to abort with any arbiter in RA − MR. Then, if H

wants to abort with an arbiter in MR − F (t), M will intercept and resolve with

MR. The problem is that this works depending on the order of aborts. There might

be a possible protocol construction and order specification that makes sure H can

still resolve once he detects this behavior. We do not know of and could not come

up with such a construction, due mostly to the fact that F (t) is unknown to the

honest party, and hence designing a protocol instance using an order that works

without knowing F (t) seems impossible. Even though the order may work for some

protocol instances, having an order that works with high probability (that works on

all but negligible fraction of protocol instances) does not seem possible. Furthermore,

the moment we allow for more powerful adversaries, since the order of arbiters for

the honest participant to abort is public, the adversary might “bribe” some “key”

arbiters to become his friends and make sure the ordering fails to provide fairness (in

the dynamic/adaptive corruption model). We admit that we have no proof for this

general case with less powerful adversaries, but we conjecture that the same predicate

for scenario 3.4.2 as before will hold.

3.6.2 Protocol 2 Revisited (More Impossibility Results)

In this type of protocols, Alice is given the ability to abort and resolve, whereas Bob is

given only the ability to resolve. Analysis of protocols that are symmetric to this type

of protocols (where Bob can abort and resolve, and Alice can only resolve) obviously

yields to the same conclusions. The predicate for case 1 changes when we relax our

autonomous arbiters assumption. Case 2 stays the same. Remember, the resolution

sets we consider here are static.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario

74

2, which requires special treatment when arbiters are not contacted simultaneously

for aborting. For threshold-based mechanisms, every DAFE protocol needs to have

TA ≤ TB − |FB |. For the most general case of DAFE protocols, we need ∀BR ∈ BR

BR 6⊆ FB AND ∃AR ∈ AR s.t. AR ∩ FB = ∅ (see Lemma 3.6.2 in Section 3.6.1).

Case 2: Malicious Alice vs. Honest Bob: This case falls under Scenario 1,

which means any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆

AR − FA. Remember, Corollary 3.4.1.3 (using threshold-based mechanisms) require

TB ≤ TA − |FA|.

Regarding DAFE protocols using threshold-based arbiter resolution mechanisms,

we can conclude (from the two cases above) that no such meaningful protocol can

exist (TA ≤ TB − |FB | and TB ≤ TA − |FA| gives TA ≤ TA − |FA| − |FB |, which

means all the arbiters need to be trusted). Hence, there is no point in distributing

the arbiters in terms of trust. It is even worse since we need to trust every single

arbiter, and the protocol cannot be fair even if only one arbiter is corrupt.

Regarding general set-based DAFE protocols, we cannot conclude an immediate

impossibility. But following our discussion above, we conjecture that no such useful

protocol can exist.

Unfortunately, as we have shown in Section 3.2.1, the versions of the state-of-

the-art protocols we analyzed in Section 3.2.1 without any timeouts fall under this

protocol category. So the impossibility with threshold-based mechanisms, and our

conjecture apply to very common real cases, even when the arbiters are not contacted

simultaneously by the honest party.

75

3.7 Applying DAFET Framework to Prove Opti-

mality

In this section, we analyze an existing DAFET protocol that uses dynamic resolution

sets: The set of arbiters needed by a party for resolution changes during the course

of the execution of the protocol instance. By adjusting resolution sets reactively, this

protocol can provide semantic fairness.

AV Protocol [11] This protocol is due to Avoine and Vaudenay (AV) [11]. In this

protocol, timeouts are used for aborting (it is a DAFET protocol). It is a three-step

protocol in which Alice starts by sending verifiable secret shares encrypted under each

arbiter’s public key. Then, Bob responds with his secret, and Alice responds with her

secret. To resolve, Bob contacts k arbiters to get the decrypted shares and reconstruct

the secret of Alice (where k is the threshold for the secret sharing scheme). Before

giving the decrypted share, each honest arbiter asks for the secret of Bob.12 Hence,

the set BR(t) contains all subsets of N with k or more arbiters and AR(t) is initially

empty13.

The state semantics obviously coincide with our 3-state definition. The partici-

pants either succeed in obtaining the other party’s exchange item and hence end at

their Resolved state, or they fail to do so and end at their Aborted state. The honest

arbiters will either help both participants, or abort at the timeout and help neither.

Even though in the AV protocol the honest arbiters directly contact Alice when

Bob resolves with them, we can see it as the arbiters storing Bob’s secret, and Alice

contacting them to obtain Bob’s secret later on. Since Alice can only resolve after Bob,

12The user should refer to [11] for any more details.
13It does not contain the empty set, it is empty. This means no set of arbiters is sufficient for
Alice to resolve.

76

and Bob has to resolve before the timeout, it is safe to think of this protocol as letting

Alice to resolve only after the timeout. Unlike the protocols in Section 3.5 which were

proven impossible to be fair, this protocol uses dynamic resolution sets that help

it achieve fairness (we talk about the relationship between timeouts and dynamic

resolution sets in Section 3.8). So, sets HR(t) and MR(t) change according to the

following additional rule regarding the actions (remember the actions in Section 3.3):

Action 6 (Bob resolves with an arbiter X ∈ RA). As a result, the set {X} is added

to the set of sets AR(t).

This rule is there since in the AV protocol, when Bob contacts an honest arbiter,

that arbiter contacts Alice and sends Bob’s whole secret. It guarantees that the

moment a malicious Bob resolves with any honest arbiter, Alice is guaranteed to be

able to resolve. Let us analyze the two cases and see how this protocol satisfies the

lemmas regarding scenarios.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario

3, which means any DAFET protocol needs to make sure there exists a time when

∀BR ∈ BR(t) ∃AR ∈ AR(t) s.t. AR ⊆ BR − FB .

Case 2: Malicious Alice vs. Honest Bob: Depending on at which point of the

protocol the resolution begins, malicious Alice might have already resolved, thus this

case falls under Scenario 4, which requires that there exists a time when ∃BR ∈ BR(t)

s.t. BR ∩ FA = ∅.

Lemma 3.7.1. AV protocol cannot provide semantic fairness unless for all times t

∀BR ∈ BR(t) BR 6⊆ FB AND for some time t ∃BR ∈ BR(t) s.t. BR ∩ FA = ∅.

Proof. It follows directly from the analysis of the cases above using corollary 3.4.1.1

for case 1.

The AV protocol achieves semantic fairness using dynamic sets as follows: The

77

set AR(t) is initially empty. When Bob contacts an arbiter X , action 6 above takes

place, and hence the set {X} is added to the set of sets AR(t) (the threshold for Alice

effectively becomes 1). Therefore, once Bob contacts an honest arbiter (not one of

his friends), then Alice is guaranteed to be able to resolve. This saves an honest Alice

against a malicious Bob (case 1). In case 2, as long as Bob can find a set of honest

arbiters that he can resolve with, he is saved against malicious Alice.

Actually, the AV protocol [11] uses threshold-based mechanisms instead of set-

based ones, therefore we have the following corollary:

Corollary 3.7.1.1. AV protocol cannot provide semantic fairness unless |FB | < TB

AND TB ≤ n − |FA|.

It is important to notice that the AV paper [11] proves essentially the same result:

They prove that the same bound is also sufficient for their protocol. Thus, we have

proven that the bounds proven in that paper are tight and hence the protocol is

optimal in that sense. Furthermore, this result is applicable to all protocols of the

same type; no DAFET protocol of the same type can achieve better bounds. In

particular, the same technique of employing multiple autonomous arbiters can be

used on [7] and our construction in Chapter 2 (as described in Section 3.2.1) to

convert their timeout-based versions to DAFET protocols, and the same lemma will

hold. This shows how our framework can easily be applied to prove optimality of a

protocol and extended to other protocols of the same type.

As the corollary immediately reveals, when using n arbiters, to obtain maximum

tolerance, one should set the threshold for Bob TB = n/2 so that the protocol tolerates

up to n/2−1 friends of each participant. Of course, this greatly reduces the efficiency

of the resolution of the optimistic fair exchange protocol.

Even with such an interesting modification to the protocol, Vaduenay protocol

needs to make the following assumption [11]: The threshold for the secret sharing

78

scheme used for distributing the arbiters must be greater than the number of friends

the malicious party can have. This limits the applicability of the protocol in real

scenarios. If the threshold is set very high to tolerate worse situations, then the

efficiency greatly decreases. Otherwise, if the threshold is low, than the tolerance

against malicious behavior is low.

3.8 Discussion: Timeouts and Dynamic Resolu-

tion Sets

As we have proved in Section 3.5, no realistic DAFE protocol can provide fairness,

whereas Section 3.7 shows an existing DAFET protocol that employs timeouts. There-

fore, we can conclude that timeouts play an important role in optimistic fair exchange

protocols when we would like to employ multiple autonomous arbiters. Even without

completely autonomous arbiters, Section 3.6.2 shows an impossibility of DAFE pro-

tocols using threshold-based mechanisms, and even with set-based mechanisms, it is

not clear how such a DAFE protocol can be constructed.

Timeouts are tied to the use of dynamic sets in general (as we did for DAFET

protocols). When only one party can resolve before the timeout, static resolution sets

lose their meaning since the resolution set for the party who cannot resolve before

the timeout is empty until the timeout. That set gets defined only after the timeout,

which results in that set being dynamic in a very basic sense. The dynamism prevents

the adversary from coming up with a strategy that violates fairness. As shown in

Section 3.7, this helps AV protocol achieve semantic fairness. Of course, a careful

protocol design is still necessary since timeouts and dynamically changing sets by

themselves do not mean that the protocol will be trivially fair. One may further

argue that dynamically changing resolution sets is a more important concept that

79

plays a big role in this (im)possibility result, but it is easy to see that timeouts are

natural mechanisms to achieve this dynamism.

This suggests that even though timeouts may not be a nice feature in terms of

system design, it really helps when the system needs to be extended to use multiple

autonomous arbiters (together with the use of dynamically changing resolution sets).

3.9 Conclusion and Future Work

In this chapter, we presented a framework to analyze DAFE protocols, which are

natural extensions of optimistic fair exchange protocols to make them use multiple

autonomous arbiters (those who do not communicate with each other). Autonomy is

useful for realistic (efficient) protocols, especially in P2P settings. Using the presented

framework, we answered two open questions since [11]. We have proved that DAFE

protocols (optimistic fair exchange protocols that employ multiple autonomous ar-

biters and does not have timeout mechanisms) cannot provide fairness in a realistic

setting. Even when we extended our framework by relaxing the autonomy assumption

about the arbiters, we found out that even broader classes of optimistic fair exchange

protocols fall under our impossibility results. We then switched to the DAFET model

to include timeouts and dynamically changing sets of arbiters to resolve with. We

analyzed one existing DAFET protocol [11] using our framework and proved that the

previous bounds on the required number of honest arbiters are optimal. No DAFET

protocol of the same type can achieve better bounds, since our framework can easily

be used to come up with generalized results. We also showed that timeouts and dy-

namic resolution sets play an important role in the design of such distributed arbiter

fair exchange protocols.

Unfortunately, this means many optimistic fair exchange protocols that want to

efficiently distribute their arbiters may need to employ synchronized clocks. And even

80

in this case, they cannot hope to require fewer honest arbiters than the Avoine and

Vaudenay protocol [11]. If they do not want to employ synchronized clocks, then they

may need to employ costly solutions like secure multi-party computation or Byzantine

agreement.

One may want to settle down for weaker security guarantees against weaker ad-

versaries to achieve cheaper solutions than Byzantine agreement. Using Byzantine

fault tolerance techniques in [1], the arbiters can keep updating some value that is

related to the resolution semantics of the fair exchange. Unfortunately, when aborts

are considered, it is not clear if the same techniques can be applied here. We leave

research in this direction as an open problem.

Finally, our techniques may be applicable to other functionalities that can be

implemented using secure multi-party computation. By designing an appropriate

framework, we may prove more general results about achieving the same functionality

using autonomous multiple parties. We leave such a generalization as an interesting

open problem.

Chapter 4

Computing in the Cloud

4.1 Introduction

Many tasks exhibit an arbitrarily high appetite for computational resources. Dis-

tributed systems that coordinate computational contributions from thousands or

millions of participants have become popular as a way to tackle these challenges.

Examples include systems such as SETI@home [138] and Rosetta@home [133], which

seek to analyze huge amounts of data in the search for extra-terrestrial life and a bet-

ter understanding of protein folding, respectively. In these systems, every additional

computational element added to the system provides greater utility.

This study is motivated by our efforts to build peer-to-peer systems that rely

on cryptographic electronic cash (e-cash) to provide incentives for participation [16].

Such a system would prevent free-riding without sacrificing the privacy of its par-

ticipants. Using results from our implementation in Chapter 7, we realized that the

deposits at the bank can cause a bottleneck. With lots of e-cash transactions go-

ing on in a high-churn peer-to-peer (P2P) environment, the bank can be overloaded.

One way of reducing this load is the barter protocol described in Chapter 2, since no

money changes hands if everything goes well. Another way is to outsource the bank’s

81

82

job to untrusted contractors, possibly the same set of users as the underlying P2P

system.

The naive solution is to simply give each peer a program to run (such as an e-coin

verifier) and the input to this program (an e-coin). The peer would run the program

and report the answer. There are several problems with this approach. First, without

a reward, there is no incentive for participants to do any work. Second, even if the

participants were compensated for their contribution, there is no incentive to perform

the computation faithfully. Peers may report an answer at random or, perhaps, report

an answer that they know a priori to be the most likely output of the computation

(e.g., that most e-coins are valid). Worse, if participants are malicious, they may

choose to behave irrationally in order to force the bank to perform more work or

accept incorrect results.

These problems are not limited to our e-cash application. SETI@home users have

developed their own clients, for both malicious and selfish reasons [114, 127] (see

Section 4.1.1). Multi-player games cannot assume that players will not modify their

clients to give themselves an in-game advantage. In general, this problem lies at the

heart of cloud computing.

Our solution assumes that there is some currency or credit system with which

we can reward or fine contractors depending on their performance. This could be a

reputation or credit system in which good contractors are awarded higher scores, or

an actual currency which can be exchanged for some other services. This allows us

to set incentives such that rational contractors will compute jobs correctly.

In this chapter, we analyze how to the boss can set fines and rewards, and how

often it will have to double-check the contractors’ results in order to enforce the

incentive structure. In Section 4.3, we define a game-theoretic framework to analyze

different scenarios. Section 4.4 shows how to use collision resistant hash functions

83

to increase the probability of getting a correct answer without increasing the fine-to-

reward ratio and the amount of double-checking. In Section 4.5 we examine means

of performing checks on contractors’ answers, and consider outsourcing the same

computation to multiple contractors, double-checking only if they disagree, as a way

to reduce the amount of centralized double-checking. We also look at the effect of

offering a bounty to a user who catches another contractor returning a wrong answer.

Finally, in Section 4.6, we examine how to limit the damage that can be caused by

malicious and colluding contractors, who seek to maximize the amount of centralized

double-checking, or decrease the accuracy of submitted results.

4.1.1 Related Work

Resource-sharing cluster systems such as Spawn [147], Popcorn [132], and Tycoon [98]

focus on the efficient allocation of grid resources by providing auction mechanisms

which award distributed resources to the highest bidder. Auctions provide a way

to stem demand as computation becomes more expensive. However, these systems

typically assume a federated—and friendly—environment where many parties wish

to share a pool of trusted resources. Once awarded, resources are assumed to be

available for use by the winner, without concern for malicious entities.

Our work has more in common with public-resource computing systems such as

Distributed.net [62] and BOINC [29], which parcel and distribute computation to vast

armies of volunteer users. BOINC provides scientific projects such as SETI@Home [138]

and Rosetta@Home [133] with computational resources drawn from the idle CPU cy-

cles of its users’ home PCs, and its projects have attracted millions of participants.

Greater participation is incentivized through a point system that rewards users who

complete more work units with higher status on “leaderboards” published on the web.

BOINC’s credits are not fungible—they are useful only for social status—yet even

84

this incentive has greatly motivated participation, leading some to develop their own

clients in an effort to claim more credit [146, 114]. In one case, a SETI@Home user

developed an “optimized” client which returned outputs irreproducible by the official

client, yet were otherwise indistinguishable. In another case, a patched client was

released that simply performed no computation, returning bogus results [114, 127].

These examples and others provide inspiration for our model, which aims to address

the problem of malicious and “corner-cutting” contractors who seek greater rewards

by deviating from officially-sanctioned methods.

Systems based on Byzantine fault tolerance (BFT) [2] provide safety and liveness

guarantees given a certain tolerable fraction of malicious users; typically at least two-

third of participants must act correctly. The BAR model [100] provides incentive-

compatible BFT primitives to extend these guarantees to both altruistic (i.e., correct)

and rational nodes that may deviate from suggested protocols in pursuit of greater

utility. Like these approaches, we also aim to incentivize rational nodes, but do not

assume a quorum of correct nodes; instead we focus on incentives and probabilistic

guarantees on accuracy that apply for varying fractions of altruistic and malicious

users.

Checking intermediate computations has also been discussed for the problem of

inverting one-way functions, where predefined intermediate steps are checked [85],

and in general by redoing the computation until a randomly chosen intermediate

step [72]. Molnar [114] suggests that contractors be required to provide a hash of

the results of intermediate computations in order to force them to use the official

algorithm. This is very similar to the approach we discuss in Section 4.4. However,

the idea of using hashes was not formalized, and there was no discussion of how to

combine this approach with incentive strategies for rational contractors.

85

4.2 Model

A central authority, the boss, will reward contractors to perform computational tasks,

or jobs, on its behalf. The goal is to reduce the demand on the boss’s own computa-

tional resources. We assume that contractors continually request new job assignments

from the boss, but that they may freely choose when to stop requesting new jobs.

The boss will reward a contractor r for correctly completing a job. If the boss finds

out that the contractor returned an incorrect result, the boss will fine the contractor

f , which is subtracted from the contractor’s accumulated earnings. The boss will

not assign a job to a contractor unless the contractor has enough credit to pay the

potential fine. As a result, we are concerned with reducing the fine-to-reward ratio

(f/r): too high a ratio makes it harder for contractors to participate. As we will later

see, there is a trade-off between the work the boss has to do and the f/r ratio.

Our definition of a job captures any efficiently computable task and its inputs. For

the e-coin verification scenario, the only way the boss can make sure that a contractor

properly verified an e-coin is to reverify it herself. Similarly, for the Folding@home

project, the boss must refold the protein. For jobs in NP, the verification is much

easier. However, the boss can only check an answer if the output of the computation

is deterministic. If the job uses a randomized algorithm, the boss must provide the

contractor with a random tape (i.e., a seed to a pseudo-random number generator).

The results of some jobs may be easier to predict than others. Consider a näıve

decision problem formulation of the SETI@home project, “Is alien life detectable in

this radio telescope data?” Or, for the e-coin verification task, “Do these values repre-

sent a valid e-coin?” A rational contractor may decide to conserve its computational

resources and simply guess the most likely answer (“no” and “yes”, respectively). We

describe a hashing technique to detect incorrect answers, even for such highly skewed

answer distributions.

86

Our payment- and penalty-based incentives assume the presence of an underlying

economic framework in which the boss can enforce fines and rewards. In [16], peers use

e-cash to exchange files; if the bank wishes to outsource tasks, it can easily increase

and deduct account balances directly. BOINC similarly directly rewards users with

credit that raises a user’s ranking on the leadership board. A service provider boss

(e.g., a storage server) might reward contractors by providing them better service

(e.g., more storage), and fine them by reducing the service provided (e.g., limiting

their storage space). Real currencies might also be used if contractors offer the fine

amount as deposit with the boss. Our model assumes only that a boss is able to

withdraw f from and pay r to contractors.

4.3 Basic Construction

Consider a contractor who has just been assigned a job by the boss. He faces two

options: first, he may perform the job honestly, and receive a reward r. If we define

the cost of computing a single job using the algorithm provided by the boss as cost(1),

the expected utility u(1) of an honest contractor is u(1) = r−cost(1). In this case, we

assume that the boss sets r large enough to provide positive utility for the contractor,

or he will refuse the job.

The contractor’s second option is to return an output using an algorithm different

from that specified by the boss. This might be possible, for example, if the contractor

possesses a priori knowledge of the output distribution: it can simply guess the most

likely output. Or, more generally, suppose the contractor has access to an alterna-

tive algorithm which provides a correct output with probability q (e.g., SETI@home

“optimized” client). Here, the contractor may still receive r, but risks being fined f

if the boss discovers he has submitted an incorrect result.

We denote the probability that this lazy contractor will be caught submitting

87

an incorrect result as p. However, we do not assume that the boss will be able to

detect each incorrect result submitted and fine the guilty contractor: since checking

the correctness of a submitted result may unduly waste computational resources.

(We defer discussion of methods for checking results to Section 4.5.) Thus we can

decompose p into two different values: the probability that the contractor’s result is

incorrect, and the probability that the result will be checked, when it is incorrect.

p = Pr[check — incorrect] Pr[incorrect]

We can analyze these two probabilities separately. First, let c be the probability

that a contractor’s result will be checked, conditioned on that contractor returning

an incorrect result: c = Pr[check — incorrect]. The check can be performed by the

boss or by other contractors. This also describes the case when the probability of

a check is independent of the contractor’s answer (e.g., if the boss simply checks a

fraction c of submitted outputs itself).

Next, we return to our definition of q, the probability of the contractor return-

ing the correct answer using an alternate method. Clearly the probability that the

contractor’s answer is incorrect is 1− q. Thus

p = c(1− q)

We also define the cost of the alternate method for obtaining a correct result with

probability q as cost(q). We assume this cost is at most cost(1)—otherwise, the

contractor would simply run the suggested algorithm—and at least 0.

We can now define the expected utility u(q) of a contractor, taking into account

the probability p of being caught and his cost, as

u(q) = r(1− p)− fp− cost(q)

The contractor will receive a reward unless he is caught cheating, in which case he

88

will be fined. Note that when q = 1, the contractor is performing the job correctly,

and thus p = 0 and u(q) = u(1) from our previous definition.

For a rational contractor, selecting a value of q < 1 and earning the expected

utility u(q) may present a lucrative choice, resulting in a potentially incorrect output.

However, the boss can provide incentives to perform jobs correctly by setting f , r,

and c.

Theorem 4.3.1. If the boss sets the fine-to-reward ratio to f/r ≥ (1 − p)/p where

p = c(1 − ε) then a rational contractor will return correct outputs at least ε of the

time.

Proof. To prove this, we need to show that for any q′ < ε, the resulting utility u(q′) <

u(ε). Since we cannot argue about the cost functions of contractors realistically

(contractors may value their resources differently, and it might also depend on the

state of the contractor like his current load), we want to show ∀q′ < ε, u(q′) ≤ 0.

Remember, u(q′) = r(1 − p′) − fp′ − cost(q′), where p′ = c(1 − q′). If we set f/r ≥

1/p− 1 ≥ 1/p′ − 1, then we guarantee that r(1− p′)− fp′ ≤ 0. Thus, given such an

f, r, c, any contractor who is not correct with probability at least ε will have negative

utility. This means any rational contractor will either perform the job with accuracy

at least ε, or will refuse to do the job.

Corollary 4.3.1.1. Any rational contractor will use the least costly algorithm that

provides correct answers with at least ε probability.

4.4 Accuracy and Hash Functions

By setting the fine-to-reward ratio as above, the boss can require rational contractors

to compute jobs correctly above a certain minimum accuracy requirement. Yet, ob-

taining high accuracy might require an infeasibly high fine-to-reward ratio, and for

89

some applications even a small fraction of inaccurate results might be unacceptable.

Our concern is that there might be some alternate algorithm that costs the con-

tractor very little (in terms of computation), and that produces the correct answer

with some fairly high probability ε (e.g., guessing a coin to be valid in the e-cash

verification scenario). To prevent the contractor from using such an algorithm, we

might have to set the fine-to-reward ratio unreasonably high.

Ideally we would like to ensure that the contractor actually runs the algorithm

that we choose. Thus, instead of simply returning an answer, we could ask the

contractor to send us the results of every intermediate computation. If we assume

that the intermediate computations are small enough steps that the only way to get

the correct intermediate result is by actually running the appropriate computation,

then this will be sufficient to convince the boss that the contractor has run the

computation correctly. Finally, to prevent the contractor from having to send a very

large amount of information, we have him use a cryptographic hash function to hash

all of this information into one short string. More formally:

Definition 4.4.1. An algorithm is assumed to be composed of a finite number of

atomic operations. Each atomic operation is assumed to take a state information

and output another state information. The inner state of an algorithm is defined as

the concatenation of all the input/output states of the atomic operations of the algo-

rithm, along with the definition of the algorithm in terms of atomic operations. The

original algorithm for a given job is the one prescribed by the boss to the contractor.

A hash function deterministically maps the inner state of an algorithm to a random

l-bit string. Define negligible probability neg = O(2−l).

We would like to assume that all algorithms which produce the correct result

either have cost cost(1) or negligible success probability. However, there is always a

potential mixed strategy which with some probability runs the original algorithm and

90

with some probability makes a random guess of the inner state. Thus, we make the

following assumption:

Assumption 4.4.1 (Unique Inner State Assumption). (for input distribution

D and negligible neg ′)

Let cost(1) be the cost of the original algorithm. We assume that any algorithm

which has expected cost γcost(1) (given a random input from D) will produce the

correct inner state with probability at most γ + (1− γ)neg ′ (provided 0 ≤ γ ≤ 1).

Then we can say that a similar statement holds even after the application of the

hash function:

Theorem 4.4.1. Let cost(1) be the cost of the original algorithm. Let D, neg ′ < neg

be such that the unique inner state assumption holds. Then under unique inner state

assumption and the random oracle model1, any algorithm which when given a random

input from D has expected cost δcost(1) < cost(1) will produce the correct hash of the

inner state with probability at most δ + (1− δ)neg (provided 0 ≤ δ ≤ 1).

of Theorem 4.4.1. Consider the operation of the algorithm on a particular input.

There are two ways that an algorithm can output the correct hash value. First, the

algorithm might have queried the random oracle (to obtain the hash output) at the

same inner state value as the original algorithm. That means by the unique inner state

assumption that this operation must have cost γcost(1) and succeed with probability

γ + (1− γ)neg ′. Second, the algorithm might have produced the same hash without

querying the random oracle at using the correct inner state. This has only negligible

probability under the random oracle model. We have said that the algorithm has

expected cost δcost(1). That means that it can be taking the first approach (following

the correct probability) on at most δ
γ
fraction of the inputs. Thus, on all other inputs,

1The random oracle model is commonly used in cryptography. It assumes that the hash function
behaves like a truly random function.

91

it has at best neg probability of success. That means that it’s total success probability

can be at most δ
γ
(γ + (1− γ)neg ′) + (1− δ

γ
)neg ≤ δ + (1− δ)neg .

Finally, we conclude that if we set the parameters appropriately, a rational con-

tractor will always use the original algorithm.

Theorem 4.4.2. Suppose that definition 4.4.1 holds for our input distribution. If

f
r
≥ 1

c
, and r > cost(1) and c > neg/(1− neg), then a rational contractor will use the

original algorithm for the job.

Proof. Running the original algorithm results in utility r−cost(1). By theorem 4.4.1,

any other algorithm will either have cost greater than cost(1) (and thus obviously

lower utility), or will have cost δcost(1) < cost(1) and success probability δ+(1−δ)neg.

That means the total utility will be (δ+ (1− δ)neg)r− (1− δ− (1− δ)neg)cf + (1−

δ − (1 − δ)neg)(1 − c)r − δcost(1). If f, r, c satisfy the conditions described in the

theorem, then this utility will always be strictly less than r− cost(1), so the rational

contractor will always run the original algorithm.

Using a hash function with output length 160 bits (e.g., SHA-1), the boss can

easily set f, r, c appropriately so that every rational contractor will use the original

algorithm. For the rest of the chapter, we can then assume p ∼= c.

4.5 When to Check an Answer

In Section 4.3, we analyzed how to set the fine-to-reward ratio f/r in terms of p,

the probability that a contractor will be caught; e.g., by setting f/r = (1− p)/p the

boss can provide incentives to rational contractors. In this section, we will examine

different strategies the boss can use to actually catch the contractors. We will analyze

c = Pr[check |incorrect], the probability that the boss or other contractors will check

92

the answer of a contractor, conditioned on that contractor returning an incorrect

answer.

4.5.1 Double Checking

A simple strategy is for the boss to randomly double-check an answers it gets with

probability t. Here, the boss cannot know whether a job is incorrect until it has

checked it, so c = t. Setting a low value of t allows the boss to reduce the amount of

work needed for double-checking—but since c is inversely proportional to f/r, a high

f/r may present an impractical barrier for contractors seeking jobs.

4.5.2 Hiring Multiple Contractors

The boss can try to minimize the amount of checking he has to do by farming out

the same job to multiple contractors. The boss then double-checks a submitted result

only if the contractors disagree.

The problem is that if all contractors output the same false answer, the boss will

never catch them. In fact, the contractors find themselves in a situation similar to

the the iterated prisoner’s dilemma. The best strategy for all the contractors is to

employ a tit-for-tat mechanism: they should cheat until another contractor performs

the computation honestly [131].

We begin our analysis by assuming that a fraction h of the contractors will always

perform the computation honestly: we call these contractors diligent. Later, we will

show how to do away with this assumption. Suppose the boss chooses m contractors

at random and assigns them the same job. We can describe c as the probability a

contractor will be caught by other contractors if he submits an incorrect answer.

Theorem 4.5.1. Suppose the boss farms out a job to m contractors, each of which

are honest with probability h, then the probability that a cheating contractor will be

93

caught is c = 1− (1− h)m−1.

Proof. A contractor who submits an incorrect result will be caught only if there exists

a diligent contractor in the group working on the same job. The probability that all of

the other m− 1 contractors are non-diligent is L = (1− h)m−1. Thus the probability

that at least one of the other m− 1 contractors is diligent is c = 1− L.

Corollary 4.5.1.1. Suppose the boss farms out a job to m contractors, which are

honest with probability h, then by computing f/r using p ∼= c = 1 − (1 − h)m−1 in

section 4.3, the boss can guarantee that all rational contractors will act honestly all

the time.

This strategy still requires the boss to perform work when the results submitted

by contractors are in disagreement. In a system where all the contractors are rational,

there should be no disagreement at all. But if malicious or colluding contractors are

present, they may try to force the boss to double-check by returning an incorrect

answer. We analyze this behavior in Section 4.6.

4.5.3 Hybrid Strategy

The boss can also pursue a hybrid strategy: he can farm out a job to multiple con-

tractors and randomly double-check some of the answers. Thus even if all contractors

collude to give the same wrong answer, the boss can still catch them.

Theorem 4.5.2. Suppose the boss farms out a job to m contractors, which are honest

with probability h. The boss also randomly double-checks the jobs with probability t

when all the results agree. Then, c = 1− (1− t)(hm + (1− h)m).

Proof. The boss definitely checks the answer if there is at least one diligent and one

cheating contractor in the group. This has probability 1 − hm − (1 − h)m. In any

94

other case (probability hm + (1− h)m), all answers will agree and the boss will check

with probability t. Therefore, we get c = (1− hm − (1− h)m) + (hm + (1− h)m)t =

1− (1− t)(hm + (1− h)m).

4.5.4 Employing Bounties

Now let us discuss how to shed the assumption that there are diligent contractors.

In the iterated prisoner’s dilemma it is assumed that in each round, a contractor

plays against the same group of other contractors. In our scenario, the boss will

randomly choose a new group of contractors for each job. The contractors are really

playing a single round of the prisoner’s dilemma many times with a different group

of contractors. Thus, if we set f/r properly, the dominant strategy will be for the

contractors to act honestly.

Definition 4.5.1 (Nash Equilibrium). A Nash Equilibrium exists if all players choose

a strategy, and no player can improve his utility by changing his strategy.

The table below computes the expected utilities u(1) and u(q) for a contractor

depending on whether the other players all chose to be diligent or lazy. As before, q

refers to the probability that a lazy contractor returns the correct answer. Please see

Section 4.4 for how to use hashing to set q arbitrarily close to 0.

All Diligent u(1) = r − cost(1)
u(q) = rq − f(1− q)− cost(q)

All Lazy u(1) = r − cost(1)
u(q) = r − cost(q)

There are two Nash equilibria: If all other players cheat, a rational player will also

cheat. If at least one player is honest, a rational player must also be honest.

We can break the cheating equilibria by introducing a bounty. If the contractors

95

disagree on the output, the boss will check the computation and award b to all con-

tractors who output the correct answer. Now the expected utility for being diligent

when everyone else chooses to be lazy is u(1) = r − cost(1) + b(1 − q).

Theorem 4.5.3. Suppose the boss asks two contractors to perform a job. Then the

boss must set f/r > 0 and give a bounty of b ≥ r/(1 − q) to honest contractors

whenever they catch a cheating contractor.

Proof. We have that r ≥ cost(1) ≥ cost(q). First, if all other players are diligent then

a contractor is better off also acting honestly as long as

0 ≥ rq − f(1− q)− cost(q) > rq − f(1− q)− r.

As a result, we get f/r > −1. Since it makes no sense to have a negative fine

(paying contractors for wrong answers) and since a negative reward (taking away

money for right answers) discourages participation, we set f/r > 0. Second, if even

one player is lazy, then the contractor has an incentive to be diligent as long as

r − cost(1) + b(1− q) ≥ r − cost(q). The boss needs to set

b ≥
r

1− q
≥

cost(1)− cost(q)

1− q
.

4.6 Malicious Contractors

Malicious (or Byzantine) contractors attack the system: they want to reduce the

accuracy of job results or increase the amount of double-checking the boss must do.

They are irrational, or may pursue a utility function outside our model. Yet, to be

able to stay in the system, they must keep at least a zero balance of utility (if they

cannot afford the fine, they will not be hired by the boss). Malicious contractors

96

may also collude, through centralized control (as in the Sybil attack), via external

communication, and even by sharing resources (the reward r).

4.6.1 Independent Malicious Contractors

Even a malicious contractor must maintain a certain minimum balance in his bank

account. Otherwise, the boss will not ask him to perform jobs. Thus, a malicious con-

tractor intent on submitting as many incorrect results as possible must also compute

jobs correctly some fraction of the time.

Definition 4.6.1. A malicious contractor will return the correct answer x fraction

of the time, and an incorrect answer y fraction of the time; thus x+ y = 1.

We compute the utility of a single malicious contractor as

u(m) = xr + y(1− p)r − ypf,

where x and y are defined above and p is the probability that the contractor will be

caught. We want to know how large a value y can the malicious contractor get away

with while still maintaining a non-negative utility.

Definition 4.6.2. Let d be the deterrent factor, where the boss sets f/r = d/p.

Observe that if d = 1 − p, this corresponds to our basic construction. Larger values

of d indicate that the boss has decided to deter maliciousness by increasing the f/r

ratio without decreasing the checks.

Theorem 4.6.1. The fraction of incorrect results y that a malicious contractor can

return to the boss is less than or equal to 1/(p+ d).

Proof. The malicious contractor needs to have a non-negative balance: 0 ≤ u(m) =

xr + y(1− p)r− ypf . We substitute f = rd/p and x = 1− y in the inequality to get

0 ≤ (1− y)r + y(1− p)r − yrd. We get rid of r, and solve to get y ≤ 1/(p+ d).

97

Corollary 4.6.1.1. Suppose the boss hires only one contractor for each job and sets

f/r = d/p. Then the probability that the boss accepts an incorrect result is g(1 −

p)/(p+ d), where g is the fraction of malicious contractors in the system.

Note that if the boss only randomly double-checks with some fixed probability,

no malicious contractor can cause the boss to perform more work. However, in the

setting where the same job is outsourced to multiple contractors and checked if there

is disagreement, a malicious contractor can force the boss to perform a check by

submitting an incorrect result, hence causing disagreement among the group.

4.6.2 Colluding Malicious Contractors

In our multiple-contractors scenario, the boss assigns each job to a randomly-selected

group of size m, double-checking only when the contractors output different results,

and fining those who submit an incorrect answer. We will examine two types of

attacks by colluding contractors. In the first, the colluding contractors will try to

trick the boss into accepting an incorrect answer. In the second, they will force the

boss to perform extra checking by causing disagreements.

Theorem 4.6.2. If the fraction of colluding contractors in the system is g, the prob-

ability that the boss accepts an incorrect result is at most gm.

Proof. The only way to trick the boss is if all the contractors in the group are colluders.

For a group of size m, the probability that all group members are colluders is gm.

Colluding contractors may wish to force the boss to devote more resources to

performing checks. The colluders can take advantage of the fact that if there is at

least one colluder in the group, then one colluder can submit a wrong answer while

the rest can submit the right answer and collect the reward. As a result, the overall

98

utility of the colluding group can be high enough to allow the group to continue

participating in the system.

Theorem 4.6.3. The amount of work the boss needs to perform due to a group of

maliciously colluding contractors which make up a g fraction of all the contractors is

at most pgm/(p+ d).

The proof of Theorem 4.6.3 requires the following Lemma. We omit the proof of

the Lemma, which follows from the Binomial Theorem and basic algebra.

Lemma 4.6.1. Let P (k,m) =
(

m
k

)

gk(1 − g)m−k be the probability that there are

exactly k colluders in a group of size m. Furthermore, let A =
∑m

k=1 P (k,m), be the

probability that there is at least one colluder in the group. Then, A = 1 − (1 − g)m.

Finally, let B =
∑m

k=1 P (k,m)k. Then, B = gm.

Proof of Theorem 4.6.3. We will first define the total utility of the colluding contrac-

tors. The contractors’ strategy is simple. If there is at least one colluder in the group

chosen by the bank, then one of the colluders will output a wrong answer with prob-

ability y = 1 − x while the rest output the correct answer. Then the total utility of

the colluders for one job will be xkr+y((k−1)r−f) for k colluders (with probability

x = 1 − y, all colluders will get the reward by outputting the correct answer, and

with probability y only one of them will get fined while the rest will be rewarded). If

we sum over the probability that the there are k colluding contractors in a group of

size m, we get the total expected utility of the colluders.

u(c) =
m
∑

k=1

P (k,m)[xkr + y((k − 1)r − f)]

= xrB + yrB − yrA− yArd/p

if we do the substitutions for A,B and f . The colluders want to maximize y while

keeping their total utility positive: u(c) ≥ 0. Then, rearranging the equation above

99

gives us

y ≤
B

A(1 + d/p)
=

pgm

(p+ d)A
.

Next, we note that, a job will provide this group of colluders the ability to cheat in

order to make the boss work more only if there is at least one colluder in that group.

So, A fraction of the jobs will enable the colluders to force the boss for a check.

Therefore, by multiplying y with A, we obtain the fraction of the time colluders can

cause the boss to work, which is at most pgm/(p+ d).

4.7 Evaluation

Throughout the chapter we have presented various methods by which the bank can

tune the fine-to-reward ratio through setting other parameters. In this section, we

show how the boss can select system parameters that balance performance trade-offs

with protection against malicious contractors. We begin with the selection of the

ratio f/r and group size m, depending on the percentage of honest contractors h in

the system. The trade-off between high fine-to-reward ratio (which may present a

barrier to entry for contractors) and large group size (which may unnecessarily waste

effort due to redundant computation) is depicted in Figure 4.1. It can be seen from

the figure that even a group size of 2 is enough to allow a reasonable fine-to-reward

ratio, even in the presence of a very low percentage of honest contractors. Obviously,

the higher the percentage of honest contractors, the smaller the group size required.

In the figure, we assumed that all the other contractors are rational. Assuming

that the boss’s view of the percentage of honest contractors is not higher than that of

the contractors’, the fine-to-reward ratios shown on the figure will provide incentives

for rational contractors to always behave honestly. Next, we analyze the effect of

irrational malicious and colluding contractors on the system when we set the fine-to-

reward ratio so as to incentivize rational contractors.

100

1

2

5

10

20

50

100

F
in

e-
to

-r
ew

a
rd

ra
ti

o
f
/r

F
in

e-
to

-r
ew

a
rd

ra
ti

o
f
/r

2 4 6 8 10 12 14 16 18 20

Size of group mSize of group m

h = 5%
h = 25%
h = 50%
h = 75%

Figure 4.1: Example parameter settings for f/r and m that provide valid incentives
assuming a fraction h of honest users. (Theorem 4.5.1)

Figure 4.2 shows the percentage of bogus results the irrational malicious and

colluding contractors, who are not incentivized by our scheme, can cause the boss

to accept. The boss can adjust the deterrent factor to deter malicious contractors

by increasing the fine-to-reward ratio without decreasing the probability of catching

them. The figure shows the case when the boss employs 2 contractors per job, and

thus represents a worst-case multiple-contractor scenario. When more contractors are

employed, the fraction of bogus results accepted by the boss will be lower, since the

colluders need to control the entire group in order to cheat the boss.

Next, in Figure 4.3, we see the fraction of extra double-checking work the colluding

contractors can force the boss to perform. The figure again uses a group size of 2.

Increasing the group size makes things worse in this case: the reason is that the

colluders can make the boss work only if there is at least one of them in the group the

boss selects. When the group size increases, the chance of that happening increases.

An interesting point to make is that if the boss’s probability of catching the colluders

increases, then he obviously needs to perform more work. Luckily, the fraction of

101

0

0.1

0.2

0.3

F
ra

ct
io

n
o
f
in

co
rr

ec
t

re
su

lt
s

F
ra

ct
io

n
o
f
in

co
rr

ec
t

re
su

lt
s

1 2 3 4 5 6 7 8 9 10

Deterrent factor dDeterrent factor d

g = 75%

g = 50%

g = 25%

Figure 4.2: The maximum fraction of incorrect results that the boss will accept due
to a fraction g of malicious contractors, for different settings of the deterrent factor
d. (Corollary 4.6.1.1)

bogus results that will be accepted is bounded as in Figure 4.2.

Note that the number of honest contractors do not affect the performance of the

system, in terms of both the percentage of bogus results and extra work for the boss,

once the fine-to-reward ratio is set. This is the case because once the ratio is set ac-

cording to the fraction of honest contractors, then every rational contractor will have

incentive to perform the job correctly. If the system is dynamic and the percentage

of honest contractors decrease, the fine-to-reward ratio needs to be readjusted.

Our system can deter maliciousness without very high fine-to-reward ratios or

large group sizes even if there are very few honest contractors in the system. In most

cases (except when there is an extremely low number of honest users, i.e., h = 0.05,

or an extremely high number of malicious users, i.e., g = 0.75), a deterrent factor of

d = 5 and a group size of m = 2 is enough to result in a practical fine-to-reward ratio

(f/r ≤ 25), while guaranteeing at most 10% of bogus results and about 15% more

work in very unrealistic highly adversarial scenarios (75% malicious), or almost no

102

0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
o
f
ex

tr
a

ch
ec

k
in

g
w

o
rk

F
ra

ct
io

n
o
f
ex

tr
a

ch
ec

k
in

g
w

o
rk

1 2 3 4 5 6 7 8 9 10

Deterrent factor dDeterrent factor d

g = 75%

g = 50%

g = 25%

g = 5%

Figure 4.3: The maximum amount of extra double-checking work that a group of
malicious colluders controlling a fraction g of all contractors can force the boss to
perform, for different settings of the deterrent factor d. (Theorem 4.6.3)

bogus results and about 5% more work in more realistic scenarios (5% malicious).

4.8 Conclusion and Future Work

We have presented different techniques that can be applied for incentivizing out-

sourced computation, through redundant computation by the boss or other contrac-

tors. The hashing technique prevents the use of other algorithms than prescribed by

the boss. Then, we showed how to set the fine-to-reward ratio in presence of irrational

honest users (Section 4.5.2), or when the contractors cannot collude in large scale in

the long run (Section 4.5.4). Finally, we have shown that using our techniques, a

reasonable fine-to-reward ratio can incentivize all rational users to behave honestly,

and limit the damage by irrational malicious contractors.

All of these techniques aim to decrease the amount of work our centralized boss

needs to perform. We assumed that this boss can afford to pay all rewards and is

103

capable of fining the contractors: another possibility is that multiple bosses might be

in agreement with an entity of such power. Then, before a job is outsourced, each

contractor might provide an escrow of the fine, so that the boss can claim it if cheating

is detected. Additionally, bosses might provide different incentive structures f/r to

different peers, offering higher prices to those willing to accept larger fines. In such

a decentralized environment, designing a distributed, budget-balanced mechanism

provides a direction for our future work.

The currency used by our system could also serve other purposes, e.g., to buy data

as in the currency-based P2P system of Belenkiy et al. [16]. In future work, we will

study the effects of outsourcing e-coin verification on this system’s virtual economy.

Finally, analyzing possible damage done by the malicious contractors in the bounty

framework is left as future work.

Chapter 5

Storing in the Cloud

5.1 Introduction

In cloud storage systems, where a client outsources the storage of her data to a server,

the server (or peer) that stores the client’s data is not necessarily trusted. Therefore,

users would like to check if their data has been tampered with or deleted. However,

outsourcing storage of very large files (or whole file systems) to remote servers presents

an additional constraint: the client should not download all stored data in order to

validate it since this may be prohibitive in terms of bandwidth and time, especially

if the client performs this check frequently (therefore authenticated data structure

solutions [144] cannot be directly applied in this scenario).

Ateniese et al. [9] have formalized this using a model called provable data posses-

sion (PDP). In this model, data (often represented as a file F) is preprocessed by the

client, and metadata used for verification purposes is produced. The file is then sent

to an untrusted server for storage, and the client may delete the local copy of the

file. The client keeps some (possibly secret) information to check server’s responses

later. The server proves the data has not been tampered with by responding to chal-

lenges sent by the client. The authors present several variations of their scheme under

104

105

different cryptographic assumptions. These schemes provide probabilistic guarantees

of possession, where the client checks a random subset of stored blocks with each

challenge.

Scheme PDP [9] Scalable PDP [10] DPDP I DPDP II

Server computation O(1) O(1) O(log n) O(nε logn)
Client computation O(1) O(1) O(log n) O(log n)
Communication O(1) O(1) O(log n) O(log n)
Model Random Oracle Random Oracle Standard Standard
Append blocks X X* X X

Modify blocks X* X X

Insert blocks X X

Delete blocks X* X X

Prob. of detection 1− (1 − f)C 1− (1 − f)C 1− (1− f)C 1− (1− f)Ω(logn)

Table 5.1: Comparison of PDP schemes: original PDP scheme [9]; Scalable PDP [10];
our scheme based on authenticated skip lists (DPDP I); and our scheme based on
RSA trees (DPDP II). A star (*) indicates that a certain operation can be performed
only a limited (pre-determined) number of times. We denote with n the number
of the blocks of the file, with f the fraction of the corrupted blocks, and with C
being the number of challenged blocks (typically a constant independent of n). In all
constructions, the storage space is O(1) at the client and O(n) at the server.

However, PDP and related schemes [9, 65, 90, 139] apply only to the case of static,

archival storage, i.e., a file that is outsourced and never changes (simultaneously with

our work, Ateniese et al. [10] present a scheme with somewhat limited dynamism,

which is discussed in detail in the related work section). While the static model

fits some application scenarios (e.g., libraries and scientific datasets), it is crucial to

consider the dynamic case, where the client updates the outsourced data—by insert-

ing, modifying, or deleting stored blocks or files—while maintaining data possession

guarantees. Such a dynamic PDP scheme is essential in practical cloud computing

systems for file storage [92, 101], database services [105], and peer-to-peer storage

[94, 115].

In this chapter, we provide a definitional framework and efficient constructions

for dynamic provable data possession (DPDP), which extends the PDP model to

106

support provable updates on the stored data. Given a file F consisting of n blocks,

we define an update as either insertion of a new block (anywhere in the file, not only

append), or modification of an existing block, or deletion of any block. Therefore our

update operation describes the most general form of modifications a client may wish

to perform on a file.

Our DPDP solution is based on a new variant of authenticated dictionaries, where

we use rank information to organize dictionary entries. Thus we are able to support

efficient authenticated operations on files at the block level, such as authenticated

insert and delete. We prove the security of our constructions using standard assump-

tions.

We also show how to extend our construction to support data possession guar-

antees of a hierarchical file system as well as file data itself. To the best of our

knowledge, this is the first construction of a provable storage system that enables

efficient proofs of a whole file system, enabling verification at different levels for dif-

ferent users (e.g., every user can verify her own home directory) and at the same time

not having to download the whole data (as opposed to [87]). Our scheme yields a

provable outsourced versioning system (e.g., CVS), which is evaluated in Section 5.8

by using traces of CVS repositories of three well-known projects.

5.1.1 Contributions

The main contributions of this work are summarized as follows:

1. We introduce a formal framework for dynamic provable data possession (DPDP);

2. We provide the first efficient fully dynamic PDP solution;

3. We present a rank-based authenticated dictionary built over a skip list. This

107

construction yields a DPDP scheme with logarithmic computation and com-

munication and the same detection probability as the original PDP scheme

(DPDP I in Table 5.1);

4. We give an alternative construction (Section 5.6) of a rank-based authenti-

cated dictionary using an RSA tree [126]. This construction results in a DPDP

scheme with improved detection probability but higher server computation (see

DPDP II in Table 5.1);

5. We present practical applications of our DPDP constructions to outsourced file

systems and versioning systems (e.g., CVS, with variable block size support);

(6) We perform an experimental evaluation of our skip list-based scheme.

Now, we outline the performance of our schemes. Denote with n the number

of blocks. The server computation, i.e., the time taken by the server to process an

update or to compute a proof for a block, is O(logn) for DPDP I and O(nε log n) for

DPDP II; the client computation, i.e., the time taken by the client to verify a proof

returned by the server, is O(logn) for both schemes; the communication complexity,

i.e., the size of the proof returned by the server to the client, is O(logn) for both

schemes; the client storage, i.e., the size of the meta-data stored locally by the client,

is O(1) for both schemes; finally, the probability of detection, i.e., the probability of

detecting server misbehavior, is 1 − (1 − f)C for DPDP I and 1 − (1 − f)Ω(logn) for

DPDP II, for fixed logarithmic communication complexity, where f is the ratio of

corrupted blocks and C is a constant, i.e., independent of n.

We observe that for DPDP I, we could use a dynamic Merkle tree (e.g., [99, 116])

instead of a skip list to achieve the same asymptotic performance. We have chosen the

skip list due to its simple implementation and the fact that algorithms for updates in

the two-party model (where clients can access only a logarithmic-sized portion of the

108

data structure) have been previously studied in detail for authenticated skip lists [125]

but not for Merkle trees.

5.1.2 Related Work

The PDP scheme by Ateniese et al. [9] provides an optimal protocol for the static case

that achieves O(1) costs for all the complexity measures listed above. They review

previous work on protocols fitting their model, but find these approaches lacking:

either they require expensive server computation or communication over the entire

file [79, 120], linear storage for the client [137], or do not provide security guarantees

for data possession [136]. Note that using [9] in a dynamic scenario is insecure due to

replay attacks. As observed in [67], in order to avoid replay attacks, an authenticated

tree structure that incurs logarithmic costs must be employed and thus constant costs

are not feasible in a dynamic scenario.

Juels and Kaliski present proofs of retrievability (PORs) [90], focusing on static

archival storage of large files. Their scheme’s effectiveness rests largely on preprocess-

ing steps the client conducts before sending a file F to the server: “sentinel” blocks

are randomly inserted to detect corruption, F is encrypted to hide these sentinels,

and error-correcting codes are used to recover from corruption. As expected, the

error-correcting codes improve the error-resiliency of their system. Unfortunately,

these operations prevent any efficient extension to support updates, beyond simply

replacing F with a new file F ′. Furthermore, the number of queries a client can per-

form is limited, and fixed a priori. Shacham and Waters have an improved version of

this protocol called Compact POR [139], but their solution is also static (see [65] for

a summary of POR schemes and related trade-offs).

In our solution, we regard error-correcting codes or encryption as external to our

system. If the user wants to have more error-resiliency, she can provide us with a file

109

that has error-correcting codes integrated (or an encrypted file if secrecy is desired).

This provides our protocol with the same guarantees as the POR protocols. Since

our construction does not modify the file and assumes no property on it, our system

will work in perfect compliance.

Simultaneously with our work, Ateniese et al. have developed a dynamic PDP

solution called Scalable PDP [10]. Their idea is to come up with all future challenges

during setup and store pre-computed answers as metadata (at the client, or at the

server in an authenticated and encrypted manner). Because of this approach, the

number of updates and challenges a client can perform is limited and fixed a priori.

Similarly, this also means that the probabilistic detection guarantee is fixed during

setup, whereas in our scheme the client can decide on the probabilistic detection

guarantee for each challenge independently and on the fly.

Also, one cannot perform block insertions anywhere (only append-type insertions

are possible). Furthermore, each update requires re-creating all the remaining chal-

lenges, which is problematic for large files. Under these limitations (otherwise the

lower bound of [67] would be violated), they provide a protocol with optimal asymp-

totic complexity O(1) in all complexity measures giving the same probabilistic guar-

antees as our scheme. Lastly, their work is in the random oracle model whereas our

scheme is provably secure in the standard model (see Table 5.1 for full comparison).

As an implementation problem, their dynamic scheme does not use the block

numbers the file system uses, and hence they need a mapping between the block

numbers in the scheme and actual block numbers in the file system if one wants to

implement a file system or a versioning system, as we do, atop their work. This is

due to the fact that during deletion, they keep all the block IDs and treat a block

with a deleted ID as nonexistent. In our scheme using rank-based authenticated skip

lists, this is never a problem, since block IDs are no longer used as search keys in the

110

skip list.

Finally, our work is closely related to memory checking, for which lower bounds

are presented in [67, 117]. Specifically, in [67] it is proved that all non-adaptive

and deterministic checkers have read and write query complexity summing up to

Ω(log n/ log log n) (necessary for sublinear client storage), justifying the O(logn) cost

in our scheme. Note that for schemes based on cryptographic hashing, an Ω(log n)

lower bound on the proof size has been shown [51, 145]. Related bounds for other

primitives have been shown by Blum et al. [28]. Nevertheless, our scheme achieves

optimal client storage by requiring O(1) space.

5.2 Model

We build on the PDP definitions from [9]. We begin by introducing a general DPDP

scheme and then show how the original PDP model is consistent with this definition.

Definition 5.2.1 (DPDP Scheme). In a DPDP scheme, there are two parties. The

client wants to off-load her files to the untrusted server. A complete definition of a

DPDP scheme should describe the following (possibly randomized) efficient procedures:

• KeyGen(1k) → {sk, pk} is a probabilistic algorithm run by the client. It takes as

input a security parameter, and outputs a secret key sk and a public key pk. The

client stores the secret and public keys, and sends the public key to the server;

• PrepareUpdate(sk, pk,F , info,Mc) → {e(F), e(info), e(M)} is an algorithm run by

the client to prepare (a part of) the file for untrusted storage. As input, it takes

secret and public keys, (a part of) the file F with the definition info of the update

to be performed (e.g., full re-write, modify block i, delete block i, add a block after

block i, etc.), and the previous metadata Mc. The output is an “encoded” version

111

of (a part of) the file e(F) (e.g., by adding randomness, adding sentinels, encrypt-

ing for confidentiality, etc.), along with the information e(info) about the update

(changed to fit the encoded version), and the new metadata e(M). The client sends

e(F), e(info), e(M) to the server;

• PerformUpdate(pk,Fi−1,Mi−1, e(F), e(info), e(M)) → {Fi,Mi,M
′
c ,PM ′

c
} is an al-

gorithm run by the server in response to an update request from the client. The

input contains the public key pk, the previous version of the file Fi−1, the meta-

data Mi−1 and the client-provided values e(F), e(info), e(M). Note that the values

e(F), e(info), e(M) are the values produced by PrepareUpdate. The output is the new

version of the file Fi and the metadata Mi, along with the metadata to be sent to

the client M ′
c and its proof PM ′

c
. The server sends M ′

c ,PM ′
c
to the client;

• VerifyUpdate(sk, pk,F , info,Mc,M
′
c ,PM ′

c
) → {accept, reject} is run by the client to

verify the server’s behavior during the update. It takes all inputs of the PrepareUpdate

algorithm,1 plus the M ′
c ,PM ′

c
sent by the server. It outputs acceptance (F can be

deleted in that case) or rejection signals;

• Challenge(sk, pk,Mc)→ {c} is a probabilistic procedure run by the client to create

a challenge for the server. It takes the secret and public keys, along with the latest

client metadata Mc as input, and outputs a challenge c that is then sent to the

server;

• Prove(pk,Fi,Mi, c) → {P} is the procedure run by the server upon receipt of a

challenge from the client. It takes as input the public key, the latest version of the

file and the metadata, and the challenge c. It outputs a proof P that is sent to the

client;

1However, in our model F denotes part of some encoded version of the file and not part of the
actual data (though for generality purposes we do not make it explicit).

112

• Verify(sk, pk,Mc, c, P) → {accept, reject} is the procedure run by the client upon

receipt of the proof P from the server. It takes as input the secret and public keys,

the client metadata Mc, the challenge c, and the proof P sent by the server. An

output of accept ideally means that the server still has the file intact. We will define

the security requirements of a DPDP scheme later.

We assume there is a hidden input and output clientstate in all functions run by

the client, and serverstate in all functions run by the server. Some inputs and outputs

may be empty in some schemes. For example, the PDP scheme of [9] does not store

any metadata at the client side. Also sk, pk can be used for storing multiple files,

possibly on different servers. All these functions can be assumed to take some public

parameters as an extra input if operating in the public parameters model, although

our construction does not require such modifications. Apart from {accept, reject},

algorithm VerifyUpdate can also output a new client metadata Mc. In most scenarios,

this new metadata will be set as Mc = M ′
c .

Retrieval of a (part of a) file is similar to the challenge-response protocol above,

composed of Challenge,Prove,Verify algorithms, except that along with the proof, the

server also sends the requested (part of the) file, and the verification algorithm must

use this (part of the) file in the verification process. These algorithms are outlined

below:

• Retrieve(sk, pk,Mc, info)→ {e(info), c} is a probabilistic procedure run by the client

to request (a part of) the file from the server, along with the associated proof. It

takes the secret and public keys, along with the latest client metadata Mc, and the

information about what to request as input, and outputs the encoded information

and an associated challenge c that is then sent to the server;

• Send(pk,Fi,Mi, e(info), c) → {F
′
e(info), P} is the procedure run by the server upon

receipt of a retrieval request from the client. It takes as input the public key, the

113

latest version of the file and the metadata, the information about requested (parts

of the) file, and the challenge c on the requested blocks. It outputs the requested

(part of the) file along with a proof P that is sent to the client;

• Obtain(sk, pk,Mc, info, c,F
′
e(info), P)→ {Finfo} is the procedure run by the client upon

receipt of the (part of the) file and its associated proof P from the server. It takes

as input the secret and public keys, the client metadata Mc, the request information

info, the challenge c, the (part of the) file F ′
e(info), and the proof P sent by the server.

The client checks if the proof corresponds to the (part of the) file that is received,

and outputs the (decoded) (part of the) file. If the proof does not verify using the

blocks received and the associated challenge, then the client outputs null.

We also note that a PDP scheme is consistent with the DPDP scheme definition,

with algorithms PrepareUpdate, PerformUpdate and VerifyUpdate specifying an update

that is a full re-write (or append).

Definition 5.2.2 (PDP Scheme). A PDP scheme is consistent with the DPDP

scheme definition, with algorithms PrepareUpdate, PerformUpdate and VerifyUpdate

specifying an update that is a full re-write (or append).

As stated above, PDP is a restricted case of DPDP. The PDP scheme of [9]

has the same algorithm definition for key generation, defines a restricted version of

PrepareUpdate that can create the metadata for only one block at a time, and defines

Prove and Verify algorithms similar to our definition. It lacks an explicit definition of

Challenge (though one is very easy to infer). PerformUpdate consists of performing a

full re-write or an append (so that replay attacks can be avoided), and VerifyUpdate

is used accordingly, i.e., it always accepts in case of a full re-write or it is run as in

DPDP in case of an append. It is clear that our definition allows a broad range of

DPDP (and PDP) schemes.

114

We now define the security of a DPDP scheme, inspired by the security definitions

of [9, 65]. Note that the restriction to the PDP scheme gives a security definition for

PDP schemes compatible with the ones in [9, 10].

Definition 5.2.3 (Security of DPDP). We say that a DPDP scheme is secure if for

any probabilistic polynomial time (PPT) adversary who can win the following data

possession game with non-negligible probability, there exists a PPT extractor algorithm

Ext that can extract (at least) the challenged parts of the file with high probability by

resetting and challenging the adversary polynomially many times. We think about the

extractor as composed of the following two parts: Assume the challenger picks random

blocks info that he wants to challenge. Then, ExtChal(pk, sk,Mc, info) → {cinfo} pro-

duces random challenges for those blocks, and ExtBlock(pk, sk,Mc, info, c
i
info

, P i
info

) →

{Finfo} extracts those blocks given polynomially-many such challenges and verifying

proofs.

Data Possession Game: Played between the challenger who plays the role of

the client and the adversary who acts as a server.

1. Keygen: The challenger runs KeyGen(1k)→ {sk, pk} and sends the public key

pk to the adversary;

2. ACF Queries: The adversary is very powerful. The adversary can mount

adaptive chosen file (ACF) queries as follows. The adversary specifies a message

F and the related information info specifying what kind of update to perform

(see Definition 5.2.1) and sends these to the challenger. The challenger runs

PrepareUpdate on these inputs and sends the resulting e(F), e(info), e(M) to the

adversary. Then the adversary replies with M ′
c ,PM ′

c
which are verified by the

challenger using the algorithm VerifyUpdate. The result of the verification is

told to the adversary. The adversary can further request challenges, return

115

proofs, and be told about the verification results. The adversary can repeat the

interaction defined above polynomially-many times;

3. Setup: Finally, the adversary decides on messages F ∗
i and related information

info∗i for all i = 1, . . . , R of adversary’s choice of polynomially-large (in the

security parameter k) R ≥ 1. The ACF interaction is performed again, with the

first info∗1 specifying a full re-write (this corresponds to the first time the client

sends a file to the server). The challenger updates his local metadata only for

the verifying updates (hence, non-verifying updates are considered not to have

taken place—data has not changed);

4. Challenge: Call the final version of the file F , created according to the veri-

fying updates the adversary requested in the previous step. The challenger holds

the latest metadata Mc sent by the adversary and verified as accepting. Now the

challenger picks random blocks info and runs the ExtChal algorithm to create

a challenge that is sent to the adversary. The adversary returns a proof P .

If the output of Verify(sk, pk,Mc, c, P) is accept, then the adversary wins. The

challenger has the ability to reset the adversary to the beginning of the challenge

phase and repeat this step polynomially-many times for the purpose of extrac-

tion. At the end, the challenger provides the ExtBlock algorithm a transcript

of his interaction with the adversary. Overall, if the adversary wins the data

possession game with non-negligible probability, there must exist an extractor

that outputs the challenged blocks with high probability.

Definition 5.2.4 (Alternative Security Definition for DPDP). A DPDP scheme is

secure if for any PPT f -adversary who can win the data possession game with non-

negligible probability on f -fraction of blocks, there exists a PPT f -extractor algorithm

f−Ext that can extract f -fraction of blocks of the file with high probability by resetting

and challenging the adversary polynomially many times.

116

Theorem 5.2.1. Definitions 5.2.3 and 5.2.4 are equivalent.

Proof. The f − Ext employs Ext on subsets of all f -fraction of the blocks each time,

until all those blocks are extracted. If the f -adversary succeeds with non-negligible

probability on those f -fraction of the blocks, then Ext will succeed in extracting

subsets of these. For the other direction, as long as the number of challenged blocks

is less than or equal to f ∗ n, then Ext can employ f − Ext for the purposes of

extraction.

Remark 1. 0 ≤ f ≤ 1.

Remark 2. If f < 1 then the extractor cannot extract the whole file. In this case, the

DPDP scheme should catch the adversary with some probability. This “probability of

detection” will be discussed later.

Note that our definition coincides with extractor definitions in proofs of knowl-

edge. For an adversary that answers a non-negligible fraction of the challenges, a

polynomial-time extractor must exist. Furthermore, this definition can be applied

to the POR case [65, 90, 139], in which by repeating the challenge-response process,

the extractor can extract the whole file with the help of error-correcting codes. The

probability of catching a cheating server is analyzed in Section 5.5.

Finally, if a DPDP scheme is to be truly publicly verifiable, the Verify algorithm

should not make use of the secret key. Since that is the case for our construction (see

Section 5.4), we can derive a public verifiability protocol usable for official arbitration

purposes (see Chapter 6).

5.3 Rank-based Authenticated Skip Lists

In order to implement our first DPDP construction, we use a modified authenticated

skip list data structure [86]. This new data structure, which we call a rank-based

117

authenticated skip list, is based on authenticated skip lists but indexes data in a dif-

ferent way. Note that we could have based the construction on any authenticated

search data structure, e.g., Merkle tree [109] instead. This would perfectly work for

the static case. But in the dynamic case, we would need an authenticated red-black

tree, and unfortunately no algorithms have been previously presented for rebalancing

a Merkle tree while efficiently maintaining and updating authentication information

(except for the three-party model, e.g., [99]). Yet, such algorithms have been exten-

sively studied for the case of the authenticated skip list data structure [125]. Before

presenting the new data structure, we briefly introduce authenticated skip lists.

The authenticated skip list is a skip list [129] (see Figure 5.1) with the difference

that every node v above the bottom level (which has two pointers, namely rgt(v)

and dwn(v)) also stores a label f(v) that is a cryptographic hash and is computed

using some collision-resistant hash function h (e.g., SHA-1 in practice) as a function

of f(rgt(v)) and f(dwn(v)). Using this data structure, one can answer queries like

“does 21 belong to the set represented with this skip list?” and also provide a proof

that the given answer is correct. To be able to verify the proofs to these answers, the

client must always hold the label f(s) of the top leftmost node of the skip list (node

w7 in Figure 5.1). We call f(s) the basis (or root), and it corresponds to the client’s

metadata in our DPDP construction (Mc = f(s)). In our construction, the leaves of

the skip list represent the blocks of the file. When the client asks for a block, the

server needs to send that block, along with a proof that the block is intact.

5.3.1 Rank-based Queries

We can use an authenticated skip list to check the integrity of the file blocks. However,

this data structure does not support efficient verification of the indices of the blocks,

which are used as query and update parameters in our DPDP scenario. The updates

118

v1
v8

0

4

v3v4v5

v7

v6 v9

w 3

w 4

w 5

w 6

w 7

3

12

11 10

5 4

1 1111 1 1 1 11 3 2

5

2 3

2

Figure 5.1: Example of rank-based skip list.

we want to support in our DPDP scenario are insertions of a new block after the i-th

block and deletion or modification of the i-th block (there is no search key in our

case, in contrast to [86], which basically implements an authenticated dictionary). If

we use indices of blocks as search keys in an authenticated dictionary, we have the

following problem. Suppose we have a file consisting of 100 blocks m1, m2, . . . , m100

and we want to insert a block after the 40-th block. This means that the indices

of all the blocks m41, m42, . . . , m100 should be incremented, and therefore an update

becomes extremely inefficient. To overcome this difficulty, we define a new hashing

scheme that takes into account rank information.

5.3.2 Authenticating Ranks

Let F be a file consisting of n blocks m1, m2, . . . , mn. We store at the i-th bottom-

level node of the skip list a representation T (mi) of block mi (we will define T (mi)

later). Block mi will be stored elsewhere by the untrusted server. Each node v of the

skip list stores the number of nodes at the bottom level that can be reached from v.

We call this value the rank of v and denote it with r(v). In Figure 5.1, we show

the ranks of the nodes of a skip list. An insertion, deletion, or modification of a file

block affects only the nodes of the skip list along a search path. We can recompute

bottom-up the ranks of the affected nodes in constant time per node.

119

The top leftmost node of a skip list will be referred to as the start node. For

example, w7 is the start node of the skip list in Figure 5.1. For a node v, denote with

low(v) and high(v) the indices of the leftmost and rightmost nodes at the bottom

level reachable from v, respectively. Clearly, for the start node s of the skip list, we

have r(s) = n, low(s) = 1 and high(s) = n be the nodes that can be reached from

v by following the right or the down pointer respectively. Using the ranks stored at

the nodes, we can reach the i-th node of the bottom level by traversing a path that

begins at the start node, as follows. For the current node v, assume we know low(v)

and high(v). Let w = rgt(v) and z = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v)− r(w) + 1 ,

high(z) = low(v) + r(z)− 1 ,

low(z) = low(v) .

If i ∈ [low(w), high(w)], we follow the right pointer and set v = w, else we follow

the down pointer and set v = z. We continue until we reach the i-th bottom node.

Note that we do not have to store high and low. We compute them on the fly using

the ranks.

In order to authenticate skip lists with ranks, we extend the hashing scheme

defined in [86]. We consider a skip list that stores data items at the bottom-level

nodes. In our application, the node v associated with the i-th block mi stores item

x(v) = T (mi). Let l(v) be the level (height) of node v in the skip list (l(v) = 0 for

the nodes at the bottom level).

Let || denote concatenation. We extend a hash function h to support multiple

120

arguments by defining

h(x1, . . . , xk) = h(h(x1)|| . . . ||h(xk)) .

We are now ready to define our new hashing scheme:

Definition 5.3.1 (Hashing scheme with ranks). Given a collision resistant hash func-

tion h, the label f(v) of a node v of a rank-based authenticated skip list is defined as

follows.

Case 0: v = null

f(v) = 0 ;

Case 1: l(v) > 0

f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0

f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

5.3.3 Setup

Before inserting any block (i.e., if initially the skip list was empty), the basis, i.e.,

the label f(s) of the top leftmost node s of the skip list, can easily be computed by

hashing the sentinel values of the skip list; —the file consists of only two “fictitious”

blocks— block 0 and block +∞.

node v v3 v4 v5 w3 w4 w5 w6 w7

l(v) 0 0 0 2 2 3 3 4
q(v) 0 1 1 1 1 5 1 1
g(v) 0 T (m4) T (m5) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 5.2: Proof for the 5th block of the file F stored in the skip list of Figure 5.1.

121

5.3.4 Queries

Suppose now the file F and a skip list on the file have been stored at the untrusted

server. The client wants to verify the integrity of block i and therefore issues query

atRank(i) to the server. The server executes Algorithm 5.3.1, described below, to

compute T (i) and a proof for T (i) (for convenience we use T (i) to denote T (mi)).

Let vk, . . . , v1 be the path from the start node, vk, to the node associated with

block i, v1. The reverse path v1, . . . , vk is called the verification path of block i. For

each node vj, j = 1, . . . , k, we define boolean d(vj) and values q(vj) and g(vj) as

follows, where we conventionally set r(null) = 0:

d(vj) =















rgt j = 1 or j > 1 and vj−1 = rgt(vj)

dwn j > 1 and vj−1 = dwn(vj)

,

q(vj) =











































r(rgt(vj)) if j = 1

1 if j > 1 and l(vj) = 0

r(dwn(vj)) if j > 1, l(vj) > 0 and d(vj) = rgt

r(rgt(vj)) if j > 1, l(vj) > 0 and d(vj) = dwn

,

g(vj) =











































f(rgt(vj)) if j = 1

x(vj) if j > 1 and l(vj) = 0

f(dwn(vj)) if j > 1, l(vj) > 0 and d(vj) = rgt

f(rgt(vj)) if j > 1, l(vj) > 0 and d(vj) = dwn

.

The proof for block i with data T (i) is the sequence Π(i) = (A(v1), . . . , A(vk))

where A(v) = (l(v), q(v), d(v), g(v)). So the proof consists of tuples associated with

the nodes of the verification path. Boolean d(v) indicates whether the previous node

is to the right or below v. For nodes above the bottom level, q(v) and g(v) are the

122

rank and label of the successor of v that is not on the path. The proof Π(5) for the

skip list of Figure 5.1 is shown in Table 5.2. Due to the properties of skip lists, a

proof has expected size O(logn) with high probability (whp).

Algorithm 5.3.1: (T ,Π) = atRank(i)

1: Let v1, v2, . . . , vk be the verification path for block i;
2: return representation T of block i and proof Π = (A(v1), A(v2), . . . , A(vk)) for T ;

5.3.5 Verification

After receiving from the server the representation T of block i and a proof Π for it,

the client executes Algorithm 3 to verify the proof using the stored metadata Mc.

Algorithm 5.3.2: {accept, reject} = verify(i,Mc,T ,Π)

1: Let Π = (A1, . . . , Ak), where Aj = (lj , qj, dj , gj) for j = 1, . . . , k;
2: λ0 = 0; ρ0 = 1; γ0 = T ; ξ0 = 0;
3: for j = 1, . . . , k do

4: λj = lj ; ρj = ρj−1 + qj; δj = dj ;
5: if δj = rgt then

6: γj = h(λj , ρj , γj−1, gj);
7: ξj = ξj−1;
8: else {δj = dwn}
9: γj = h(λj , ρj , gj , γj−1);

10: ξj = ξj−1 + qj;
11: end if

12: end for

13: if γk 6= Mc then

14: return reject;
15: else if ρk − ξk 6= i then

16: return reject;
17: else {γk = Mc and ρk − ξk = i}
18: return accept;
19: end if

Algorithm 3 iteratively computes tuples (λj , ρj, δj , γj) for each node vj on the

verification path plus a sequence of integers ξj . If the returned block representation

123

T and proof Π are correct, at each iteration of the for-loop, the algorithm computes

the following values associated with a node vj of the verification path:

• integer λj = l(vj), i.e., the level of vj ;

• integer ρj = r(vj), i.e., the rank of vj ;

• boolean δj, which indicates whether the previous node vj−1 is to the right or

below vj ;

• hash value γj = f(vj), i.e., the label of vj ;

• integer ξj, which is equal to the sum of the ranks of all the nodes that are to

the right of the nodes of the path seen so far, but are not on the path.

Lemma 5.3.1. If T is the correct representation of block i and sequence Π of length

k is the correct proof for T , then the following properties hold for the values computed

in iteration k of the for-loop of Algorithm 3:

1. Value ρk is equal to the number of nodes at the bottom level of the skip list, i.e.,

the number n of blocks of the file;

2. Value ξk is equal to n− i; and

3. Value γk is equal to the label of the start node of the skip list.

node v v2 v3 v4 v5 w w3 w4 w5 w6 w7

l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
f(v) T T (m5) T (m4) T (m3) f(v2) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 5.3: The proof Π′(5) as produced by Algorithm 5 for the update “insert a new
block with data T after block 5 at level 1”.

124

5.3.6 Updates

The possible updates in our DPDP scheme are insertions of a new block after a given

block i, deletion of a block i, and modification of a block i.

To perform an update, the client issues first query atRank(i) (for an insertion or

modification) or atRank(i− 1) (for a deletion), which returns the representation T of

block i or i− 1 and its proof Π′. Also, for an insertion, the client decides the height

of the tower of the skip list associated with the new block. Next, the client verifies

proof Π′ and computes what would be the label of the start node of the skip list after

the update, using a variation of the technique of [125]. Finally, the client asks the

server to perform the update on the skip list by sending to the server the parameters

of the update (for an insertion, the parameters include the tower height).

We outline the update algorithm performed by the server (performUpdate) in Algo-

rithm 4, and the update algorithm performed by the client (verUpdate) in Algorithm 5.

Input parameters T ′ and Π′ of verUpdate are provided by the server, as computed by

performUpdate.

Since updates affect only nodes along a verification path, these algorithms run in

expected O(logn) time whp, and the expected size of the proof returned is O(logn)

whp.

To give some intuition of how Algorithm 5 produces proof Π′(i), the reader can

verify that Table 5.3 corresponds to Π′(5), the proof that the client produces from

Table 5.2 in order to verify the update “insert a new block with data T after block

5 at level 1 of the skip list of Figure 5.1”. This update causes the creation of two

new nodes in the skip list, namely the node that holds the data for the 6-th block,

v2, and node w (5-th line of Table 5.3) that needs to be inserted in the skip list

at level 1. Note that f(v2) = h(0||1||T , 0||1||T (data(v1))) is computed as defined in

Definition 5.3.1 and that the ranks along the search path are increased due to the

125

Algorithm 5.3.3: (T ′,Π′) = performUpdate(i,T , upd)

1: if upd is a deletion then

2: set j = i− 1;
3: else {upd is an insertion or modification}
4: set j = i;
5: end if

6: set (T ′,Π′) = atRank(j);
7: if upd is an insertion then

8: insert element T in the skip after the i-th element;
9: else if upd is a modification then

10: replace with T the i-th element of the skip list;
11: else {upd is a deletion}
12: delete the i-th element of the skip list;
13: end if

14: update the labels, levels and ranks of the affected nodes;
15: return (T ′,Π′);

addition of one more block.

5.4 DPDP Scheme Construction

In this section, we present our DPDP I construction. First, we describe our algo-

rithms for the procedures introduced in Definition 5.2.1. Next, we develop compact

representatives for the blocks to improve efficiency (blockless verification). In the

following, n is the current number of blocks of the file. The logarithmic complex-

ity for most of the operations are due to well-known results about authenticated skip

lists [86, 126]. Most of the material of this section also applies to the DPDP II scheme

presented in Section 5.6.

5.4.1 Core Construction

The server maintains the file and the metadata, consisting of an authenticated skip

list with ranks storing the blocks. Thus, in this preliminary construction, we have

T (b) = b for each block b. The client keeps a single hash value, called basis, which is

126

Algorithm 5.3.4:
{accept, reject} = verUpdate(i,Mc,T , upd,T

′,Π′)

1: if upd is a deletion then

2: set j = i− 1;
3: else {upd is an insertion or modification}
4: set j = i;
5: end if

6: if verify(j,Mc,T
′,Π′) = reject then

7: return reject;
8: else {verify(j,Mc,T

′,Π′) = accept}
9: from i, T , T ′, and Π′, compute and store the updated label M ′

c of the start node;
10: return accept;
11: end if

the label of the start node of the skip list. We implement the DPDP algorithms as

follows.

• KeyGen(1k)→ {sk, pk}: Our scheme does not require any keys to be generated. So,

this procedure’s output is empty, and hence none of the other procedures make use

of these keys;

• PrepareUpdate(sk, pk,F , info,Mc) → {e(F), e(info), e(M)}: This is a dummy pro-

cedure that outputs the file F and information info it receives as input. Mc and

e(M) are empty (not used);

• PerformUpdate(pk,Fi−1,Mi−1, e(F), e(info), e(M)) → {Fi,Mi,M
′
c ,PM ′

c
}: Inputs

Fi−1,Mi−1 are the previously stored file and metadata on the server (empty if this is

the first run). e(F), e(info), e(M), which are output by PrepareUpdate, are sent by

the client (e(M) being empty). The procedure updates the file according to e(info),

outputting Fi, runs the skip list update procedure on the previous skip list Mi−1

(or builds the skip list from scratch if this is the first run), outputs the resulting

skip list as Mi, the new basis as M ′
c , and the proof returned by the skip list update

as PM ′
c
. This corresponds to calling Algorithm 4 on inputs a block index j, the

new data T (in case of an insertion or a modification) and the type of the update

127

upd (all this information is included in e(info)). Note that the index j and the

type of the update upd is taken from e(info) and the new data T is e(F). Finally,

Algorithm 4 outputs M ′
c and PM ′

c
= Π(j), which are output by PerformUpdate. The

expected runtime is O(logn) whp;

• VerifyUpdate(sk, pk,F , info,Mc,M
′
c ,PM ′

c
) → {accept, reject}: Client metadata Mc

is the label of the start node of the previous skip list (empty for the first time),

whereas M ′
c is empty. The client runs Algorithm 5 using the index j of the update,

Mc, previous data T , the update type upd, the new data T ′ of the update and the

proof PM ′
c
sent by the server as input (most of the inputs are included in info).

If the procedure accepts, the client sets Mc = M ′
c (new and correct metadata has

been computed). The client may now delete the new block from its local storage.

This procedure is a direct call of Algorithm 5. It runs in expected time O(logn)

whp;

• Challenge(sk, pk,Mc) → {c}: This procedure does not need any input apart from

knowing the number of blocks in the file (n). It might additionally take a parameter

C which is the number of blocks to challenge. The procedure creates C random

block IDs between 1, . . . , n. This set of C random block IDs are sent to the server

and is denoted with c. The runtime is O(C);

• Prove(pk,Fi,Mi, c) → {P}: This procedure uses the last version of the file Fi and

the skip list Mi, and the challenge c sent by the client. It runs the skip list prover

to create a proof on the challenged blocks. Namely, let i1, i2, . . . , iC be the indices

of the challenged blocks. Prove calls Algorithm 5.3.1 C times (with arguments

i1, i2, . . . , iC) and sends back C proofs. All these C proofs form the output P . The

runtime is O(C log n) whp;

• Verify(sk, pk,Mc, c, P)→ {accept, reject}: This function takes the last basis Mc the

128

client has as input, the challenge c sent to the server, and the proof P received

from the server. It then runs Algorithm 3 using as inputs the indices in c, the

metadata Mc, the data T and the proof sent by the server (note that T and the

proof are contained in P). This outputs a new basis. If this basis matches Mc then

the client accepts. Since this is performed for all the indices in c, this procedure

takes O(C log n) expected time whp.

The above construction requires the client to download all the challenged blocks

for the verification. A more efficient method for representing blocks is discussed in

the next section.

5.4.2 Blockless Verification

We can improve the efficiency of the core construction by employing homomorphic

tags, as in [9]. However, the tags described here are simpler and more efficient to

compute. Note that it is possible to use other homomorphic tags like BLS signatures

[31] as in Compact POR [139].

We represent a block b with its tag T (b). Tags are small in size compared to

data blocks, which provides two main advantages. First, the skip list can be kept in

memory. Second, instead of downloading the blocks, the client can just download the

tags. The integrity of the tags themselves is protected by the skip list, while the tags

protect the integrity of the blocks.

In order to use tags, we modify our KeyGen algorithm to output pk = (N, g),

where N = pq is a product of two primes and g is an element of high order in Z
∗
N .

The public key pk is sent to the server; there is no secret key.

The tag T (b) of a block b is defined by

T (b) = gb mod N .

129

The skip list now stores the tags of the blocks at the bottom-level nodes. Therefore,

the proofs provided by the server certify the tags instead of the blocks themselves.

Note that instead of storing the tags explicitly, the server can alternatively compute

them as needed from the public key and the blocks.

The Prove procedure computes a proof for the tags of the challenged blocks mij

(1 ≤ i1, . . . , iC ≤ n denote the challenged indices, where C is the number of challenged

blocks and n is the total number of blocks). The server also sends a combined block

M =
∑C

j=1 ajmij , where aj are random values sent by the client as part of the

challenge. The size of this combined block is roughly the size of a single block. Thus,

we have a much smaller overhead than for sending C blocks. Also, the Verify algorithm

computes the value

T =
C
∏

j=1

T (mij)
aj mod N ,

and accepts if T = gM mod N and the skip list proof verifies.

The Challenge procedure can also be made more efficient by using the ideas in [9].

First, instead of sending random values aj separately, the client can simply send a

random key to a pseudo-random function that will generate those values. Second, a

key to a pseudo-random permutation can be sent to select the indices of the challenged

blocks 1 ≤ ij ≤ n (j = 1, . . . , C). The definitions of these pseudo-random families

can be put into the public key. See [9] for more details on this challenge procedure.

We can now outline our main result (for the proof of security see Section 5.5):

Theorem 5.4.1. Assume the existence of a collision-resistant hash function and

that the factoring assumption holds. The dynamic provable data possession scheme

presented in this section (DPDP I) has the following properties, where n is the current

number of blocks of the file, f is the fraction of tampered blocks, and C = O(1) is the

number of blocks challenged in a query:

1. The scheme is secure according to Definition 5.2.3 based on existence of a

130

collision-resistant hash function and the factoring assumption;

2. The probability of detecting a tampered block is 1− (1− f)C;

3. The expected update time is O(logn) at both the server and the client whp;

4. The expected query time at the server, the expected verification time at the client

and the expected communication complexity are each O(logn) whp;

5. The client space is O(1) and the expected server space is O(n) whp.

Note that the above results hold in expectation and with high probability due to

the properties of skip lists [129].

5.5 Security

In this section we, prove the security of our DPDP scheme. While our proof refers

specifically to the DPDP I scheme, it also applies to the DPDP II scheme discussed

in the next section. Indeed, the only difference between the two schemes is the

authenticated structure used for protecting the integrity of the tags.

We begin with the following lemma, which follows from the two-party authenti-

cated skip list construction (Theorem 1 of [125]) and our discussion in Section 5.3.

Lemma 5.5.1. Assuming the existence of a collision-resistant hash function, the

proofs generated using our rank-based authenticated skip list guarantees the integrity

of its leaves T (mi) with non-negligible probability.

Theorem 5.5.1 (Security of core DPDP protocol). The DPDP protocol without tags

is secure in the standard model according to Definition 5.2.3 and assuming the exis-

tence of a collision-resistant hash function.

131

Proof. As input, the challenger is given a hash function, which he also passes on

to the reductor. The challenger plays the data possession game with the adversary

using this hash function, honestly answering every query of the adversary. As the

only difference from the real game, the challenger provides the reductor the blocks

(together with their ids) whose update proofs have verified, so that the reductor can

keep them in its storage. Note that the extractor does not know the original blocks,

only the reductor does. Also note that the reductor keeps updating the blocks in its

storage when the adversary performs updates. Therefore, the reductor always keeps

the latest version of each block. This difference is invisible to the adversary, and so

he will behave in the same way as he would to an honest challenger. At the end, the

adversary replies to the challenge sent by the challenger. The extractor just outputs

the blocks contained in the proof sent by the adversary. If this proof verifies, and

hence the adversary wins, it must be the case that either all the blocks are intact (and

so the extractor outputs the original blocks) or the reductor breaks collision-resistance

as follows.

The challenger passes all the blocks (together with their ids) in the proof to the

reductor. By Lemma 5.5.1, if we have a skip list proof that verifies, but at least one

block that is different from the original block (thus the extractor failed), the reductor

can output the original block (the –latest verifying version of the– block he stored

that has the same block id) and the block sent in the proof as a collision. Therefore,

if the adversary has a non-negligible probability of winning the data possession game,

the challenger can either extract (using the extractor) or break the collision-resistance

of the hash function (using the reductor) with non-negligible probability.

Next, we analyze our improved DPDP construction that uses tags. We note

that the security of our main scheme relies on neither the RSA assumption nor the

knowledge of exponent assumption as in [9] since our tags are simpler. In this case,

132

we need also the following standard assumption:

Definition 5.5.1 (Factoring assumption). For all PPT adversaries A and large-

enough number N = pq which is a product of two primes p and q, the probability that

A can output p or q given N is negligible in the size of p and q.

Theorem 5.5.2 (Security of DPDP protocol with tags). The DPDP protocol with

tags is secure in the standard model according to Definition 5.2.3, assuming the exis-

tence of a collision-resistant hash function and that the factoring assumption holds.

For the proof, we need the following definitions, facts and lemmas.

Definition 5.5.2. Euler’s φ function for N = pq where p, q are primes is defined as

φ(N) = (p− 1)(q − 1).

Definition 5.5.3. Carmichael λ function for N = pq where p, q are primes is defined

as λ(N) = lcm(p − 1, q − 1) where lcm(x, y) denotes the least common multiple of x

and y.

Fact 1. λ(N) | φ(N).

Lemma 5.5.2 (Miller’s Lemma [112]). Let L be a number divisible by λ(N). Then,

there exists a PPT algorithm that factors N with non-negligible probability, given L

and N .

We can now present the proof of Theorem 5.5.2.

Proof. The challenger is given a hash function, and an integer N = pq but not p or q.

The challenger then samples a high-order element g (a random integer between 1 and

N −1 will have non-negligible probability of being of high order in Z
∗
N , which suffices

for the sake of reduction argument—a tighter analysis can also be performed). He

interacts with the adversary in the data possession game honestly, using the given

hash function, and creates the tags while using N as the modulus and g as the base.

133

As in the previous proof, our challenger will have two sub-entities: An extractor

who extracts the challenged blocks from the adversary’s proof, and a reductor who

breaks the collision-resistance of the hash function or factors N , if the extractor fails

to extract the original blocks. As the only difference from the real game, again, the

challenger provides the reductor the blocks whose update proofs have verified, so that

the reductor can keep them in its storage (and keep updating them). Note that the

extractor does not know the original blocks, only the reductor does. This difference

is invisible to the adversary, and so he will behave in the same manner he would to

an honest challenger. At the end, the adversary replies to the challenge sent by the

challenger.

First, consider the case where only one block is challenged. If the adversary wins,

and thus the proof verifies, then the challenger can either extract the block correctly

(using the extractor), or break the factoring assumption or the collision-resistance of

the hash function (using the reductor), as follows.

Call the block sent in the proof by the adversary x, and the original challenged

block stored at the reductor b. The extractor just outputs x. If the extractor succeeds

in extracting the correct block, then we are done. Now suppose the extractor fails,

which means x 6= b. The challenger provides the reductor with the block x in the

proof, its block id, the hash function, and g,N . Then the reductor retrieves the

original block b from its storage, and checks if gx = gb mod N . If this is the case,

the reductor can break the factoring assumption; otherwise, he breaks the collision-

resistance of the hash function. If gx = gb mod N , this means x = b mod φ(N)

(where φ(N) denotes the order of Z∗
N , which is (p− 1)(q − 1)), which means x− b =

kφ(N) for some integer k 6= 0 (since the extractor failed to extract the original

block). Hence, x − b can be used in Miller’s Lemma [112], which leads to factoring

N . Otherwise gx 6= gb mod N . This means, there are two different tags that can

134

provide a verifying skip list proof. By Lemma 5.5.1, the reductor can break the

collision-resistance of the hash function by outputting (gx mod N) and (gb mod N).

Now consider challenging C blocks. Let i1, i2, . . . , iC be the C challenged indices.

Recall that each block is not sent individually. Instead, the adversary is supposed

to send a linear combination of blocks M =
∑C

j=1 ajmij for random aj sent by the

challenger. We can easily plug in the extractor at the last paragraph of the proof

of Theorem 4.3 in [9]. The idea of the extraction is to reset and challenge with

independent aj and get enough independent linear equations that verifies from the

adversary to solve for each mij (thus, the extractor is just an algebraic linear solver).

In the equation M =
∑C

j=1 ajmij , we have C unknowns. Therefore, we can solve

for individual blocks mij if we get C verifying linearly independent equations on the

same blocks. Therefore, if the adversary can respond to a non-negligible fraction of

challenges, since the extractor needs only polynomially-many equations, by rewind-

ing polynomially-many times, the extractor can extract the original blocks. If the

extractor fails to extract the original blocks, we can employ the reductor as follows.

With each rewind, if the proof given by the adversary verifies, the challenger

passes on the M value and the tags in the proof to the reductor, along with the

challenge. Call each original blocks bij . The reductor first checks to see if there is any

tag mismatch: T (mij) 6= gbij mod N , for some 1 ≤ j ≤ C. If this is the case, the

reductor can output T (mij) and gbij mod N for that particular j as a collision, using

Lemma 5.5.1. If all the tags match the original block, the reductor uses the challenge

and the ids of the challenged blocks to compute linear combination B =
∑C

j=1 ajbij

of the original blocks he stored. Since the proof sent by the adversary verified, we

have T =
∏C

j=1 T (mij)
aj mod N = gM mod N . Since all the tags were matching,

we have T (mij) = gbij mod N for all 1 ≤ j ≤ C. Replacing the tags in the previous

equation, we obtain T = gB mod N . Now, if M 6= B, then it leads to factoring using

135

Miller’s Lemma [112] as before (we have gM = gB mod N with M 6= B). Otherwise,

if M = B for all the rewinds, then the reductor fails, but this means the extractor

was successful.

Therefore, if the adversary can respond to a non-negligible fraction of challenges,

since the extractor needs only polynomially-many equations, by rewinding the adver-

sary polynomially-many times, the challenger can either extract the original blocks

(using the extractor), or break the collision-resistance of the hash function used or

the factoring assumption (using the reductor) with non-negligible probability. This

concludes the proof of Theorem 5.5.2.

Concerning the probability of detection, the client probes C blocks by calling the

Challenge procedure. Clearly, if the server tampers with a block other than those

probed, the server will not be caught. Assume now that the server tampers with t

blocks. If the total number of blocks is n, the probability that at least one of the

probed blocks matches at least one of the tampered blocks is 1− ((n− t)/n)C , since

choosing C of n− t non-tampered blocks has probability ((n− t)/n)C .

As mentioned before, error-correcting codes can be applied external to our system

to further increase the error-resiliency of the file. We do not take into account such

modifications when we consider the probability of detection. Also, depending on its

usage, some DPDP systems can tolerate some errors, e.g., movie files, music files, most

(unofficial) text files, image files, etc. Especially, in a client-server type of usage (as

opposed to a P2P usage), Thus, there are many real scenarios where several flipped

bits will not cause real problems. More importantly, the probability of getting caught

is so high that no respectable DPDP server will take the risks, considering the fact

that we also have a public verifiability protocol that can be used for official arbitration

purposes. Redundant storage techniques can be applied to further increase resiliency.

136

5.6 Rank-based RSA Trees

We now describe how we can use ideas from [126] to implement the DPDP II scheme

(see Table 5.1), which has a higher probability of detection, maintains logarithmic

communication complexity but has increased update time.

In [126], a dynamic authenticated data structure called RSA tree is presented that

achieves constant expected query time (i.e., time to construct the proof), constant

proof size, and O(nε logn) expected amortized update time, for a given 0 < ε < 1. We

can add rank information to the RSA tree by explicitly storing ranks at the internal

nodes. Using this data structure allows the server to answer O(logn) challenges with

O(logn) communication cost since the proof for a block tag has O(1) size.

The reason for sending additional challenges is the fact that the probability p of

detection increases with number C of challenges, since p = 1 − (1 − f)C , where f

is the fraction of tampered blocks. Therefore, by using an RSA tree with ranks to

implement DPDP, we obtain the same complexity measures as DPDP I, except for

the update time, which increases from O(logn) to O(nε log n) (expected amortized),

and achieve an improved probability of detection equal to 1− (1− f)Ω(logn).

We now describe how we can use the tree structure from [126] to support rank

information. In [126], an ε is chosen between 0 and 1 and a tree structure2 is built

that has O(1/ε) levels, each node having degree O(nε). However, there is no notion of

order in [126]. To introduce a notion of order we assume that the elements lie at the

leaves of the tree and we view it as a B-tree with lower bound on the degree t = 3nε/4

and therefore upper bound equal to 2t = 3nε/2, which are both viewed as constants.

Therefore we can use known B-tree algorithms to do the updates with the difference

that we rebuild the tree whenever the number of the blocks of the file increases from

n to 2n or decreases from n to n/4. When we rebuild, we set the new constants for

2The use of such a tree is dictated by the specific cryptographic primitive used.

137

the degree of the tree. By the properties of the B-tree (all leaves lie at the same

level), we can prove that it is not possible to change the number of the levels of the

tree before a new rebuilt takes place. To see that, suppose our file initially consists

of n blocks. Suppose now, for contradiction that the number of the levels of the tree

changes before a new rebuilt takes place. Note that a new rebuilt takes place when

at least 3n/4 operations (insertions/deletions) take place. We distinguish two cases:

1. If the number of the levels of the tree increases, that means that the number b

of the added blocks is at least n1+ε−n. Since there is no rebuilt it should be the

case that b ≤ 3n/4 and therefore that n1+ε−n ≤ 3n/4, which is a contradiction

for large n;

2. If the number of the levels of the tree decreases, that means that the number b

of the deleted blocks is at least n− n1−ε. Since there is no rebuilt it should be

the case that b ≤ 3n/4, and therefore that n − n1−ε ≤ 3n/4, which is again a

contradiction for large n.

Therefore before a big change happens in the tree, we can rebuild (by using the

same ε and by changing the node degree) the tree and amortize. This is important,

because the RSA tree structure works for trees that do not change their depth during

updates, since the constant proof complexity comes from the fact that the depth is not

a function of the elements in the structure (unlike B-trees), but is always maintained

to be a constant.

Using the above provably secure authenticated data structure based on [126] to

secure the tags (where security is based on the strong RSA assumption), we obtain

the following result:

Theorem 5.6.1. Assume the strong RSA assumption and the factoring assump-

tion hold. The dynamic provable data possession scheme presented in this section

138

(DPDP II) has the following properties, where n is the current number of blocks of

the file, f is the fraction of tampered blocks, and ε is a given constant such that

0 < ε < 1:

1. The scheme is secure according to Definition 5.2.3;

2. The probability of detecting a tampered block is 1− (1− f)Ω(logn);

3. The update time is O(nε log n) (expected amortized) at the server and O(1)

(expected) at the client;

4. The expected query time at the server, the expected verification time at the client

and the worst-case communication complexity are each O(logn);

5. The client space is O(1) and the server space is O(n).

Note that sending O(logn) challenges in [9, 10] or DPDP I would increase the

communication complexity from O(1) to O(logn) and from O(logn) to O(log2 n),

respectively.

5.7 Extensions and Applications

Our DPDP scheme supports a variety of distributed data outsourcing applications

where the data is subject to dynamic updates. In this section, we describe exten-

sions of our basic scheme that employ additional layers of rank-based authenticated

dictionaries to store hierarchical, application-specific metadata for use in networked

storage and version control.

In the extensions described below, the use case and storage guarantees are the same

as before: a client would like to store data on an untrusted server, retaining only O(1)

space, with the ability to prove possession and integrity of all application data and

139

metadata. To the best of our knowledge, these are the first efficient constructions for

outsourced storage that provide file system and versioning semantics along with proof

of possession. In Section 5.8, we show that such systems are efficient and practical.

5.7.1 Variable-sized Blocks

Although our scheme enables updates that insert, modify and delete whole blocks

of data without affecting neighboring blocks, some applications or file systems may

more naturally wish to perform updates that do not cleanly map to fixed-size block

boundaries. For example, an update which added or removed a line in a text file would

require modifying each of the blocks in the file after the change, so that data in later

blocks could still be accessed easily by byte offset (by calculating the corresponding

block index). Under such a näıve scheme, whole-block updates are inefficient, since

new tags and proofs must be generated for every block following the updated one.

A more complicated solution based solely on our existing constructions could store

block-to-byte tables in a “special” lookup block.

We now show how we can augment our hashing scheme to support variable-sized

blocks (e.g., when we want to update a byte of a certain block). Recall that our

ranking scheme assigns each internal node u a rank r(u) equivalent to the number

of bottom-level nodes (data blocks) reachable from the subtree rooted at u; these

nodes (blocks) are conventionally assigned a rank equal to 1. We support variable-

sized blocks by defining the rank of a node at the bottom level to be the size of

its associated block (i.e., in bytes). Each internal node, in turn, is assigned a rank

equivalent to the amount of bytes reachable from it. Queries and proofs proceed the

same as before, except that ranks and intervals associated with the search path refer

to byte offsets, not block indices, with updates phrased as, e.g., “insert m bytes at

byte offset i”. Such an update would require changing only the block containing the

140

data at byte index i. Similarly, modifications and deletions affect only those blocks

spanned by the range of bytes specified in the update.

5.7.2 Directory Hierarchies

We can also extend our DPDP scheme for use in storage systems consisting of multiple

files within a directory hierarchy. The key idea is to place the start node of each file’s

rank-based authenticated structure (from our single-file scheme) at the bottom node

of a parent dictionary used to map file names to files. Using key-based authenticated

dictionaries [125], we can chain our proofs and update operations through the entire

directory hierarchy, where each directory is represented as an authenticated dictionary

storing its files and subdirectories. Thus, we can use these authenticated dictionaries

in a nested manner, with the start node of the topmost dictionary representing the

root of the file system (as depicted in Figure 5.2).

This extension provides added flexibility for multi-user environments. Consider a

system administrator who employs an untrusted storage provider. The administra-

tor can keep the authenticated structure’s metadata corresponding to the topmost

directory, and use it to periodically check the integrity of the whole file system. Each

user can keep the label of the start node of the dictionary corresponding to her home

directory, and use it to independently check the integrity of her home file system at

any time, without need for cooperation from the administrator.

Since the start node of the authenticated structure of the directory hierarchy is

the bottom-level node of another authenticated structure at a higher level in the

hierarchy, upper levels of the hierarchy must be updated with each update to the

lower levels. Still, the proof complexity stays relatively low: For example, for the

rank-based authenticated skip list case, if n is the maximum number of leaves in each

skip list and the depth of the directory structure is d, then proofs on the whole file

141

system have expected O(d logn) size and computation time whp.

Figure 5.2: A file system skip list with blocks as leaves, directories and files as roots
of nested skip lists.

5.7.3 Version Control

We can build on our extensions further to efficiently support a versioning system (e.g.,

a CVS repository, or versioning filesystem). The näıve way to achieve a versioning

system is to keep one basis for each version of the file, which requires O(v) client

storage and O(logn) proof complexity, where v is the number of versions of the file.

A better system can be supported by adding another additional layer of key-based

authenticated dictionaries [125], keyed by revision number, between the dictionaries

for each file’s directory and its data, chaining proofs as in previous extensions (See

Figure 5.3 for an illustration). As before, the client needs only to store the topmost

basis; thus we can support a versioning system for a single file with only O(1) storage

at the client and O(logn+ log v) proof complexity, where v is the number of the file

versions. For a versioning system spanning multiple directories, let v be the number

of versions and d be the depth of the directory hierarchy. The proof complexity for

142

Figure 5.3: A version control file system. Notice the additional level of skiplists for
holding versions of a file. To eliminate redundancy at the version level, persistent
authenticated skip lists could be used [3]: the complexity of these proofs will then be
O(logn+ log v + d log f).

the versioning file system has expected size O(d(logn+ log v)).

The server may implement its method of block storage independently from the

dictionary structures used to authenticate data; it does not need to physically du-

plicate each block of data that appears in each new version. However, as described,

this extension requires the addition of a new rank-based dictionary representing file

data for each new revision added (since this dictionary is placed at the leaf of each

file’s version dictionary). In order to be more space-efficient, we could use persis-

tent authenticated dictionaries [3] along with our rank mechanism. These structures

handle updates by adding some new nodes along the update path, while preserving

old internal nodes corresponding to previous versions of the structure, thus avoiding

143

unneeded replication of nodes.

5.8 Performance Evaluation

We evaluate the performance of our DPDP I scheme (Section 5.4.2) in terms of com-

munication and computational overhead, in order to determine the price of dynamism

over static PDP. For ease of comparison, our evaluation uses the same scenario as in

PDP [9], where a server wishes to prove possession of a 1GB file. As observed in [9],

detecting a 1% fraction of incorrect data with 99% confidence requires challenging a

constant number of 460 blocks; we use the same number of challenges for comparison.

Note that even though our scheme requires O(logn) complexity, as seen in Table

5.4, an update requires O(logn) hash computations and only one exponentiation.

Since hash computations are much faster, this results in real world efficiency. Simi-

larly, proof time at the server side is very efficient, while some more work needs to

be done by the client for verification. This is desirable since server will be the party

that has more work load and hence needs to be more efficient. We provide actual

numbers in the following sections.

Update Proof Verification

hash computations log n C log n
multiplications C C − 1
additions C − 1
exponentiations 1 C + 1
skip list lookups C log n

Table 5.4: Operations performed during various DPDP actions. n is the number of
blocks in the file, and C is the number of challenges (a constant like 460).

In terms of storage, the client needs to store the group (modulus and generator),

and the latest skip list root. Using a 1024-bit modulus for the RSA group and 160-bit

SHA-1 for the skip list hashes, the client needs to store less than 1KB of data. The

server, on the other hand, has a trade-off. The server also needs to store the group

144

definition that is less than 1KB. It is possible for the server to recompute everything

each time it is challenged, but this will slow down the computation at the server side.

By storing the tags and the skip list, the server can greatly speed up the computation

by paying a storage cost of n
8
KB for tags and about n

12
KB for the skip list. For a 1GB

file with 65536 blocks, this corresponds to roughly 13MB overhead.

250

500

750

1000

1250

P
ro

o
f
si

ze
(K

B
)

P
ro

o
f
si

ze
(K

B
)

200 400 600 800 1000

Block size (KB)Block size (KB)

DPDP I (99%)
PDP (99%)

Figure 5.4: Communication cost of dynamism (DPDP I vs. PDP [9]): Size of proofs
of possession on a 1GB file, for 99% probability of detecting misbehavior.

5.8.1 Communication

The expected size of proofs of possession for a 1GB file under different block sizes is

illustrated in Figure 5.4. Here, a DPDP proof consists of responses to 460 authenti-

cated skip list queries, combined with a single verification block M = Σaimi, which

grows linearly with the block size. The size of this blockM is the same as that used by

the PDP scheme in [9]3 and is thus represented by the line labeled PDP. The distance

3The authors present multiple versions of their scheme. The version without the knowledge of
exponent assumption and the random oracle actually sends this M ; other versions only compute
it.

145

0

200

400

600
T

im
e

to
co

m
p
u
te

se
rv

er
p
ro

o
f
(m

s)
T

im
e

to
co

m
p
u
te

se
rv

er
p
ro

o
f
(m

s)

2 5 10 20 50 100 200

Block size (KB)Block size (KB)

Proof time: DPDP I (99%)
Proof time: PDP (99%)

Figure 5.5: Computation cost of dynamism (DPDP I vs. PDP [9]): Computation time
required by the server in response to a challenge for a 1GB file, with 99% probability
of detecting misbehavior.

between this line and those for our DPDP I scheme represents our communication

overhead—the price of dynamism—which comes from the skip list query responses

(illustrated in Table 5.2). Each response contains on average 1.5 logn rows, so the

total size decreases exponentially (but slowly) with increasing block size, providing

near-constant overhead except at very small block sizes.

5.8.2 Server Computation

Next, we measure the computational overhead incurred by the server in answering

challenges. Figure 5.5 presents the results of these experiments (averaged from 5

trials), which were performed on an AMD Athlon X2 3800+ system with 2GHz CPU

and 2GB of RAM. As above, we compute the time required by our scheme for a 1GB

file under varying block sizes, providing 99% confidence. As shown, our performance

is dominated by computing M and increases linearly with the block size; note that

146

static PDP [9] must also compute this M in response to the challenge. Thus the

computational price of dynamism—time spent traversing the skip list and building

proofs—while logarithmic in the number of blocks, is extremely low in practice: even

for a 1GB file with a million blocks of size 1KB, computing the proof for 460 challenged

blocks (achieving 99% confidence) requires less than 40ms in total (as small as 13ms

with larger blocks). We found in other experiments that even when the server is

not I/O bound (i.e., when computing M from memory) the computational cost was

nearly the same. Note that any outsourced storage system proving the knowledge of

the challenged blocks must reach those blocks and therefore pay the I/O cost, and

therefore such a small overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that minimizes total communi-

cation cost and computation overhead for a 1GB file: a block size of 16KB is best

for 99% confidence, resulting in a proof size of 415KB, and computational overhead

of 30ms. They also show that the price of dynamism is a small amount of overhead

compared to the existing PDP scheme.

5.8.3 Version Control

Finally, we evaluate an application that suits our scheme’s ability to efficiently handle

and prove updates to versioned, hierarchical resources. Public CVS repositories offer a

useful benchmark to assess the performance of the version control system we describe

in Section 5.7. Using CVS repositories for the Rsync [134], Samba [134] and Tcl [121]

projects, we retrieved the sequence of updates from the RCS source of each file in each

repository’s main branch. RCS updates come in two types: “insert m lines at line

n” or “delete m lines starting at line n”. Note that other partially-dynamic schemes

(i.e., Scalable PDP [10]) cannot handle these types of updates. For this evaluation,

147

we consider a scenario where queries and proofs descend a search path through hierar-

chical authenticated dictionaries corresponding (in order) to the directory structure,

history of versions for each file, and finally to the source-controlled lines of each file.

We use variable-sized data blocks, but for simplicity, assume a näıve scheme where

each line of a file is assigned its own block; a smarter block-allocation scheme that

collects contiguous lines during updates would yield fewer blocks, resulting in less

overhead.

Rsync Samba Tcl

dates of activity 1996-2007 1996-2004 1998-2008
of files 371 1538 1757

of commits 11413 27534 24054
of updates 159027 275254 367105

Total lines 238052 589829 1212729
Total KBytes 8331 KB 18525 KB 44585 KB

Avg. # updates/commit 13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7

Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425 KB 395 KB 426 KB

Proof size per commit 13 KB 9 KB 15 KB

Proof time per commit 1.2ms 0.9ms 1.3ms

Table 5.5: Authenticated CVS server characteristics.

Table 5.5 presents performance characteristics of three public CVS repositories

under our scheme; while we have not implemented an authenticated CVS system,

we report the server overhead required for proofs of possession for each repository.

Here, “commits” refer to individual CVS checkins, each of which establish a new

version, adding a new leaf to the version dictionary for that file; “updates” describe

the number of inserts or deletes required for each commit. Total statistics sum the

number of lines (blocks) and kilobytes required to store all inserted lines across all

versions, even after they have been removed from the file by later deletions.

We use these figures to evaluate the performance of a proof of possession under

148

the DPDP I scheme: as described in Section 5.7, the cost of authenticating differ-

ent versions of files within a directory hierarchy requires time and space complexity

corresponding to the depth of the skip list hierarchy, and the width of each skip list

encountered during the Prove procedure.

As in the previous evaluation, “Proof size, 99%” in Table 5.5 refers to the size of

a response to 460 challenges over an entire repository (all directories, files, and ver-

sions). This figure shows that clients of an untrusted CVS server—even those storing

none of the versioned resources locally—can query the server to prove possession of

the repository using just a small fraction (1% to 5%) of the bandwidth required to

download the entire repository. “Proof size and time per commit” refer to a proof sent

by the server to prove that a single commit (made up of, on average, about a dozen

updates) was performed successfully, representing the typical use case. These commit

proofs are very small (9KB to 15KB) and fast to compute (around 1ms), rendering

them practical even though they are required for each commit. Our experiments show

that our DPDP scheme is efficient and practical for use in distributed applications.

5.9 Future Work

5.9.1 Other DPDP Constructions

Following ideas from [126], we can modify our scheme in Section 5.6 to implement

DPDP III and DPDP IV schemes (see Table 5.6), which are optimized for challenge-

intensive or update-intensive workloads, respectively. Both DPDP III and DPDP IV

schemes will achieve the same probability of detection as our DPDP I scheme. The

reasons they are presented as future work is that we have not analyzed their efficiency

carefully, and hence the following table should be taken only as a good guess of what

will happen if ideas in [126] will be incorporated to our DPDP scheme keeping the

149

same tags and the challenge structure.

Scheme DPDP III DPDP IV

Update time (server) O(nε) O(1)
Challenge time (server) O(1) O(nε)
Client computation O(1) O(1)
Communication O(1) O(1)
Model Standard Standard
Append blocks X X

Modify blocks X X

Insert blocks X X

Delete blocks X X

Prob. of detection 1− (1− f)C 1− (1− f)C

Table 5.6: Two new DPDP schemes that will incorporate tags and proof techniques
described in this chapter, together with ideas from [126]. As before, we denote with
n the number of the blocks of the file, with f the fraction of the corrupted blocks,
and with C being the number of challenged blocks (typically a constant independent
of n). In all constructions, the storage space is O(1) at the client and O(n) at the
server.

5.9.2 On Impossibility of Dynamic Proof of Retrievability

Schemes

Another very important line of future work is to bridge the gap between proof of

retrievability (POR) line of work [90, 139, 65] and the provable data possession (PDP)

line of work [9, 10, 70] (e.g., this chapter). The main difference between the two lines

of work can be summarized as follows: POR employs erasure codes (better than

error-correcting codes) on top of the file, whereas PDP does not. Thus, the resulting

encoded file and block size in POR is bigger, and it is not suitable for efficient

dynamic updates.

Consider a POR scheme that employs a 2-erasure code (e.g., [139]). This means

that the encoded file consists of 2 times the number of blocks in the original file (i.e.,

2 ∗ n) (or each block in the encoded file is 2 times the size of an original block).

150

Thus, retrieving n blocks of the encoded file (or n/2 double-sized encoded blocks)

will provide enough information to reconstruct the whole original file. This can be

generalized to p-erasure codes that requires p ∗ n encoded blocks (or n/2 encoded

blocks that are sized 1 + p times the original blocks) to reconstruct the original file.

Both POR and PDP works as follows: To verify integrity of a file composed of n

blocks, the client challenges the server on C random blocks. If the server has modified

(or deleted) a single block (which is the hardest-to-catch damage the server can do),

the probability that this block is challenged is 1 − ((n− 1)/n)C . Note that catching

the cheating server when a faulty block is challenged has overwhelming probability.

The advantage of using erasure codes in POR is that, even though blocks have larger

size, it is enough to make sure the server has not modified (or deleted) more than

n/2 encoded blocks. As long as the server has modified less than half of the encoded

blocks, the reconstruction procedure will work. Therefore, all we need in a POR

system is the ability to catch a cheating server who has modified more than half of

the blocks. When C blocks are challenged, the probability that no modified block is

challenged becomes more than 1− ((n− n/2)/n)C = 1− (1/2)C = 1−neg(C), which

is an overwhelming probability.

This provides a great opportunity of trading extra storage for better security

guarantees for static files. The problem of POR is with dynamic files. For the erasure

code to work properly in this dynamic setting, modifying a single block must change

many blocks in the encoded file. Note that, when an update request is sent to the

server, the server must be given a list of encoded blocks to update. If the number

of such blocks is small (e.g., logn), then the server can delete those blocks, therefore

effectively discarding the original updated blocks, without having a high probability

of getting caught. If an update requires changing t encoded blocks and the server

deletes those blocks, the probability of catching the server is 1 − ((n− t)/n)C . For

151

t = log n this probability becomes 1 − ((n− logn)/n)C . To be able to obtain a very

high probability, it must be the case that t = Ω(nδ) for some δ > 0, which renders

updates inefficient.

This problem is not directly related to the erasure code itself. The erasure code

might be changing a smaller number of blocks (e.g., logn), but the underlying dynamic

POR (DPOR) scheme might choose to update some nδ blocks to hide this information.

This can be done if the DPOR scheme keeps the blocks encrypted, and randomly picks

some unchanged blocks to re-encrypt and send. Note that the number of randomly-

picked unchanged blocks must also be high in order to hide the actual modified blocks

when multiple updates are performed over time.

In the future, I am planning to formalize this impossibility proof for efficient

DPOR, and provide a construction (most probably based on our DPDP construc-

tion in this chapter, together with erasure code ideas from Compact POR [139]) that

matches this lower bound. The proof and the construction will feature a parametrized

trade-off between update time and detection probability rather than a clear-cut num-

ber.

Chapter 6

Official Arbitration in the Cloud

6.1 Introduction

Consider a case where two parties would like to agree on a message M , and then

present this agreement as evidence to a trusted authority (called the judge) in case

of a dispute. Then, based on messages sent by the parties, the judge can perform an

official arbitration. This happens in the cloud in many cases, when two parties agree

on a contract. For example, consider a storage outsourcing system such as Amazon

S3, Google Documents, or Microsoft Azure. In this scenario, a client outsources

storage of her files to a server, but does not necessarily trust the server. In Chapter

5, we provided means for the client to verify if the server is keeping her data intact

based on some metadata M of the file the client has. Unfortunately, such a system

is practically useless unless the client or the server can prove anything to the judge

in case of a dispute about the data being intact. We call this official arbitration,

which is a very desirable property in real world applications. In the context of official

arbitration, there needs to be an official agreement between the client and the server

on this metadata M that can be presented to the judge.

In the case that the message parties would like to agree on does not change over

152

153

time, the agreement protocol is equivalent to a signature fair exchange protocol (see

Chapter 2 and [7]) on this message. In case of a dispute, those signatures may be

presented to the judge for official arbitration purposes. Note that for a fair exchange to

be meaningful, there must be a verification algorithm that can verify that the message

in the signature is the correct message. This verification algorithm was discussed in

detail in Section 2.3. In the case of outsourced storage, this verification algorithm is

the one normally run by the client as defined in the provable data possession model

[9] in Chapter 5 and [9].

When there is a dispute between the client and the server, the judge rules based

on the contract (signatures of the client and the server on the message), and the proof

send by the server that must be accepted by the verification algorithm associated with

the message in the signatures. If the server corrupts the client’s data in the outsourced

storage scenario, the client needs to be able to prove to the arbiter that the server

corrupted her data. On the other hand, we do not want to enable a malicious client

to be able to frame an honest server.

In general, the hard case is when the message in the contract keeps changing over

time. In this case, we need both a dynamic agreement protocol, and a dynamic official

arbitration protocol. In a dynamic outsourced storage scenario (dynamic provable data

possession –DPDP–) as in Chapter 5, the metadata changes with every update to the

file. We need a solution that includes conflict resolution by a trusted judge with

possible punishments.

In this chapter we start by defining static and dynamic agreement protocols, and

then we define static and dynamic official arbitration protocols. Next, we show how

the agreement protocols can be obtained in a näıve way. Then we show a barebone

version of our dynamic agreement and dynamic official arbitration protocol that is

much more efficient. We then apply this to the dynamic outsourced storage case, and

154

extend our protocol to include electronic payments (e.g., for automated punishments

by the judge).

The main idea behind the agreement protocol is that the client and the server

perform a fair exchange of signatures on some message that enables a verifier to check

the proof sent by the server. Any time the judge needs to verify that the server keeps

the data intact, he is presented by the message signed by both parties. Then, using

this message and the proof sent by the server, he runs the official agreement algorithm

and declares the judgement. This works perfectly for static storage scenarios in which

this fair exchange is performed only once.

For a dynamic protocol, this message may keep changing each time the protocol

is run. Hence, one may need to perform a fair exchange of signatures with each run

of the underlying protocol. Unfortunately, fair exchange is an expensive operation,

due to the fact that all currently known fair exchange protocols require use of an

expensive primitive called verifiable escrow. In our barebone protocol, we show how

to accomplish the fair exchange of the message without using a verifiable escrow in

each exchange. While doing that we make use of the fact that each protocol run can

be associated with a monotonic counter (e.g., update serial number).

Once an efficient barebone version of our protocol is ready, we go further and

show how this can be applied to the dynamic outsourced storage scenario, and how

electronic payments can be incorporated into our official arbitration protocol. We

will show electronic payments in the form of electronic cash (e-cash) [50], but other

forms of payments such as electronic checks [49] can also be easily used.

We use a model where the client pays the server for the storage initially (e.g.,

paying for the space) and then performs unlimited updates. It is very straightforward

to change our scheme to limit the number of updates or time to store the file per

payment: Such a limitation just needs to be included in the contract between the

155

server and the client, and checked by the judge at dispute resolution time.

Finally, we show how these electronic payments can also be used to automate

penalties during dispute resolution. For example, we show how a cheating server

can be automatically punished by the judge using electronic payments in our public

verifiability protocol. These payments can be used through the operation expenses

of the judge.

6.1.1 Previous Work

We are not aware of any general message agreement protocol that is optimized for

dynamic messages (other than the näıve method of performing a fair exchange with

every update). In terms of official arbitration of outsourced storage, [9] and [90]

present public verifiability capability of their outsourced storage protocols for static

files. Unfortunately, their public verifiability protocols cannot be used for official

arbitration purposes, since the client can easily frame the server (by publishing an

incorrect public key).

Recently, Wang et al. [148] came up with a dynamic outsourced storage protocol

which provides public verifiability for official arbitration purposes. Unfortunately,

in their scheme, the trusted authority must be involved in every update, and store

the latest metadata for every client-server contract. In contrast, in our scheme, the

arbiter is involved only when there is a dispute between the client and the server,

and does not need to keep any permanent storage. This is similar to the distinction

between the regular and optimistic fair exchange. If the reader would like, (s)he

can think of our protocols as optimistic dynamic agreement and optimistic dynamic

official arbitration protocols.

156

6.1.2 Contributions

Our contributions are as follows:

• We provide the first dynamic agreement protocol where two parties would like

to agree on the latest version of a message that keeps getting updated and at

least one party can prove that the message is formed correctly (according to

some well-defined rules in a contract).

• We provide the first efficient optimistic method for official arbitration and agree-

ment protocol in a dynamic setting.

• We provide the first efficient optimistic official arbitration protocol for dynamic

provable data possession (DPDP). The efficiency of our protocol renders official

arbitration practical by reducing the computational overhead from 7 hours to

8.35 minutes, and communication overhead from 610 MB to 2 MB for real

workloads. Our protocol’s overhead corresponds to 0.1 KB and 24 ms per up-

date for real CVS repository workloads. Furthermore, the storage requirement

is constant, and is less than 84 bytes at both the client and the server.

6.2 Agreement and Official Arbitration

An agreement protocol involves two parties and a trusted authority called the arbiter.

Note that we will use the judge to denote the authority for official arbitration, and

the arbiter to denote the authority for agreement. We present their functionalities

separately for clarity and separation of duty, but in a real implementation they can

as well be a single entity.

For an agreement protocol to work, the message that is agreed on must be verifiable

as defined in Section 2.3. It is enough if one party can generate a proof that is verified

157

using the verification function associated with the fair exchange protocol. Henceforth,

we will call the party who can generate such a proof the server, and the other party

the client. An agreement protocol for a static message is just a fair exchange protocol.

In an optimistic agreement protocol, just as in an optimistic fair exchange protocol,

the arbiter gets involved only in case of a dispute.

Definition 6.2.1 ((Optimistic) Agreement Protocol). An (optimistic) agreement pro-

tocol for a message M is an (optimistic) fair exchange protocol at the end of which the

client obtains the signature of the server on the message (signS(M)) and the server

obtains the signature of the client on the message (signC(M)), or neither party obtains

anything.

We will not repeat the definition of an (optimistic) fair exchange protocol here,

but instead redirect the reader to Chapter 2. Since fair exchange cannot be performed

without a trusted arbiter [122], agreement protocols will also employ an arbiter.

An agreement protocol for a dynamic message needs to make sure both parties

agree on the latest version of the message. Again, at least one of the parties must be

able to prove that the message is correctly formed based on the rules of an associated

contract (and hence passes the verification check done by the arbiter). This proof

must also prove that this message is the latest version of the message.

Definition 6.2.2 ((Optimistic) Dynamic Agreement Protocol). An (optimistic) dy-

namic agreement protocol for a list of messages Mi is an (optimistic) fair exchange

protocol at the end of which the client obtains the signature of the server on the mes-

sage and the counter (signS(Mi, i)) and the server obtains the signature of the client

on the message and the counter (signC(Mi, i)) at the end of round i, or neither party

obtains anything at that round.

The definition implies that an (optimistic) dynamic agreement protocol can be

158

constructed by performing an (optimistic) fair exchange protocol on signatures on

the ith message and the counter i sequentially.

An official arbitration protocol (e.g., for an outsourced storage system) involves a

client, a server, and a trusted third party called the judge. The distinction between

the client and the server is based on their capability of proving. The server is the

party who can respond to a challenge with a proof. If both parties have this capability,

they can play either role. An official arbitration protocol is secure if it guarantees

with high probability that a cheating server (e.g., who corrupts the client’s data) will

be caught, yet a cheating client cannot frame an honest server.

Definition 6.2.3 (Official Arbitration Protocol). An official arbitration protocol in-

volves a client C, a server S, and a judge J . The judge, upon receipt of signatures

signC(MC) sent by the server and signS(MS) sent by the client, and a proof πM sent

by the server, rules that either the client is cheating, or the server is cheating, or

otherwise.

Definition 6.2.4 (Secure Official Arbitration Protocol). An official arbitration pro-

tocol is secure if the judge rules that the client is cheating if and only if the client is,

and that the server is cheating if and only if the server is. The server is considered

cheating if the proof πM sent by the server does not verify according to the message MS

signed by himself. The client is considered cheating if MS 6= MC while the signatures

are correct, and the proof πM verifies with MS.

An agreement protocol can be used as a backbone to an official arbitration proto-

col. Once the client and the server agree on message M , if there is a dispute between

them, they can go to the judge, and officially resolve their dispute according to the

official arbitration protocol.

Definition 6.2.5 (Dynamic Official Arbitration Protocol). A dynamic official arbi-

tration protocol involves a client C, a server S, and a judge J . The judge, upon receipt

159

of signatures signC(MCi, i) sent by the server and signS(MSi, i) sent by the client (for

some or all i : 1..N), and a proof πi sent by the server (for some or all i : 1..N), rules

that either the client is cheating, or the server is cheating, or otherwise.

Definition 6.2.6 (Secure Dynamic Official Arbitration Protocol). A dynamic official

arbitration protocol is secure if the judge rules that the client is cheating if and only

if the client is, and that the server is cheating if and only if the server is. The server

is considered cheating if the proof(s) πi sent by the server does not verify according to

the messages MSi that are all signed by himself. The client is considered cheating if

∃MSi 6= MCi for some i : 1..N with all verifying signatures, and all proof(s) πi verify

with MSi.

A dynamic agreement protocol is well-suited as a backbone for a dynamic official

arbitration protocol. Once the client and the server agree on the latest version of the

message, possibly together with the help of the arbiter, they can contact the judge in

case of a dispute. In the DPDP scenario, once the client and the server agree on the

metadata regarding the latest version of the file, the judge can challenge the server

for a proof using the underlying DPDP system. Depending on the verification result,

the judge can decide if the server corrupted the client’s data, or if the client is trying

to frame the server, and rule accordingly.

Our official arbitration protocol in this chapter is applicable on top of any DPDP

protocol as long as the client has no secret keys. Below, when we say metadata M ,

we mean all public values required to verify the proof from the server. In particular,

it includes the public key of the client.

160

6.3 Efficient Dynamic Agreement and Official Ar-

bitration Protocol

In this section, we will describe an efficient and scalable dynamic agreement protocol

that accomplishes agreement of any dynamic data that has a verification algorithm

as defined in Section 2.3 optimistically. In particular, we will show that our protocol

can be applied to provide dynamic official arbitration on top of any dynamic provable

data possession (DPDP) protocol that does not have a secret key, where the verifi-

cation algorithm is built upon the challenge-response phase of the underlying DPDP

protocol. The verification follows the Challenge,Prove,Verify protocols (as defined

in Chapter 5), where the Prove protocol is run by the server and Challenge,Verify

protocols are run by the client or the judge/arbiter.

The main idea is to keep a counter at both the client side and the server side, and

increment that counter with every update. Then, use this counter to sign the message

M and exchange signatures. Once there is a dispute between the client and the server,

the arbiter/judge can check the signatures to make sure both parties agree on the

same message, and then perform verification (e.g., check for the proof of possession

of the data).

A näıve way of implementing such a dynamic agreement protocol would be per-

forming an optimistic fair exchange of signatures with every update. This would

definitely result in a complete and secure protocol, but will be an overkill in terms of

performance. Regular fair exchange is a costly primitive, and thus performing it with

every update may cause a performance bottleneck. Below, we present a protocol that

is very efficient since it makes use of only simple digital signatures with every update.

Then, we show possible dispute resolutions of the protocol, and its security.

At the beginning of the protocol, we assume that both parties know the initial

161

message M , and a counter ctr which is set to 0. For the DPDP case, we assume the

client have already uploaded her file to the server. The protocol then begins with an

optimistic fair exchange of signatures, where the client obtains the server’s signature

on the message and counter (M , ctr), and the server obtains the client’s signature on

the counter ctr . Note that the distinction between the server and the client is that

the “server” is the party who can provide a proof that will be verified by the arbiter,

whereas the “client” does not necessarily have that capability. Therefore, it is enough

for the client to just sign the counter ctr , and the message M will be signed only by

the server.

After this initial fair exchange, the client and the server do not need to perform

any more fair exchanges. With each update, both parties increment their counter,

and then the client sends her signature on the updated counter to the server, and

the server responds with his signature on the new message M ′ that resulted after the

update operation (e.g., of the underlying DPDP protocol), and the updated counter.

Note that the server must also prove that the new message M ′ in the signature passes

the verification check. This protocol is depicted on the left side of Figure 6.1.

Figure 6.1: Left side shows our dynamic agreement protocol, in which the part above
the dashed line is the one time setup and the part below it is performed with every
update. Right side shows the arbitration procedure in case of a dispute.

During an update, if the client refuses to send her signature on the updated

counter, the server does not perform the update. If the client sends her signature, but

162

does not receive a response from the server, then she contacts the judge. She presents

the judge the most recent signature she received from the server (signS(M , ctrS)).

The judge then contacts the server, and requests the most recent signature of the

client it has. The server responds with signC(ctrC). The judge decides as follows:

• ctrS > ctrC ⇒ The server is cheating by trying to replay an old signature from

the client. The judge punishes the server in this case.

• ctrC > ctrS + 1 ⇒ The client is cheating by trying to replay an old signature

from the server. The judge punishes the client in this case.

• ctrC = ctrS + 1⇒ There are three possibilities in this case. (1) The server did

not perform the update the client requested. In this case, the arbiter requests

the update on the client’s behalf and sends the updated signature of the server to

the client. Note that the server must prove that the new message in the signature

passes the verification check. If the server refuses to update, then he is punished.

(2) The server performed the update but the signature message got lost in the

network. The arbiter deals with this case the same as the previous case. (3)

Everything went well but the client is trying to overload the judge/arbiter. This

can be limited by making the client pay for such requests after some number of

free resolutions. Normally, a client should stop working with a particular server

if he denies service several times.

• ctrS = ctrC ⇒ The client and the server agree on the latest message M . In this

case, the judge challenges the server and verifies the proof sent by the server in

response to the challenge. If the verification fails (e.g., the judge realizes that

the server corrupted the client’s data), he rules for appropriate punishment.

Theorem 6.3.1. The protocol above is a secure dynamic official arbitration protocol.

163

Proof Sketch. It is obvious that since the client sends her signature first, it is always

the case that ctrC ≥ ctrS. Furthermore, since each update increments the counter,

the most they can differ by is one: ctrC − ctrS ≤ 1. If these two conditions do

not hold, one paty must be cheating and the judge catches in the first two cases

above. The other two cases are already explained in text. Furthermore, when the

judge runs the Challenge,Prove,Verify protocols for verification purposes, due to the

security of the underlying DPDP protocol, our protocol provides secure dynamic

official arbitration.

6.4 Payment-Extended Dynamic Official Arbitra-

tion Protocol

We now extend our barebone protocol to include possible payments. The payments

we consider are of the following types: (1) The client pays the server for service (e.g.,

storage). This payment is done during setup, but it can be repeated after some time

or some number of updates. (2) The server pays the client in case of failure to provide

service (e.g., data corruption). The server may send a warranty check to the client,

who can take the check to the judge and get paid in such a case. (3) The judge/arbiter

gets paid for his work by the cheating party. We are assuming the judge has (official)

authoritative power over both parties.

At first, in our payment protocol (see Figure 6.2), as in many real scenarios,

the server sends a contract to the client. The contract specifies the details of the

agreement between the client and the server, and information about the server such

as his public key pkS. For example, the contract can specify that the server will keep

the client’s files intact, will perform updates as requested by the client, and will not

perform denial of service. If the client is not happy with the contract, she aborts the

164

protocol.

If the client is happy with the contract, she can go ahead and send her file for

storage at the server. The server then computes the message (e.g., DPDP metadata),

and the proof that the initial message is correct (e.g., the metadata corresponds to

the file), together with her signature on the proof. As in our barebone protocol, all

signatures in our payment protocol will also include a counter kept at both parties,

and initialized to 0. Note that in case the message is randomized and cannot be

computer by both parties in the same manner, a pseudorandom seed used by the

randomized algorithm can be included within the signature.

Now, the client picks a random public key pkC for her signature. This ensures

client privacy, since her public keys with every server (or more precisely, with every

contract) will be different, providing unlinkability. She then prepares a verifiable

escrow of her payment v = VEArb(payment ; pkC , pkS, contractP), labeled using the

public key of the client pkC and the server pkS, and the payment contract. The

payment contract specifies the original contract, the message M , the signatures to

be exchanged, the receipt to be given by the server in return for the payment, an

optional warranty clause specifying the verifiable escrow of a warranty check we will

show below, a timeout for the fair exchange, and possibly some additional details. If

there is anything wrong with the verifiable escrow (it does not verify or the label is

incorrect) then the server aborts. Note that if the payment is made using e-cash [50],

then again the anonymity of the client is preserved.

Optionally, the server can provide the client with a warranty check at this point.

If this is desired, the server sends a verifiable escrow of the warranty check w =

VEArb(warranty; pkC , pkS, contractW). The warranty contract in the label describes

that the warranty check should be decrypted if the server fails to observe the obliga-

tions in the contract (e.g., corrupts the client’s data).

165

At this point, if the protocol is not aborted by any party yet, the parties start

exchanging the first signatures of the barebone protocol. Namely, the client sends her

signature on the counter (initialized to 0), and the server responds with her signature

on the message M , and the counter (initialized to 0).

Once the signature exchange is done, the server sends the receipt which includes

the original contract, with terms describing any limits on the number of updates

or time, and the public keys of the server and the client. For a possible dispute

resolution, the receipt is sent to the arbiter by the client. If the receipt is correctly

formed (i.e., the terms were the ones described in the payment contract, the public

keys are the same as the ones agreed beforehand, and the time is current –with loose

synchronization–), then the client sends the payment to the server, ending the setup

phase.

Figure 6.2: Left side above the dashed line is the setup phase of the payment-extended
dynamic official arbitration protocol, whereas below the dashed line shows a regular
update phase. Right side shows dispute resolution by the judge.

Theorem 6.4.1. The payment protocol above is a fair exchange protocol that guaran-

tees with high probability that the server obtains the client’s signature and payment,

and the client obtains the server’s signature and receipt.

166

Proof Sketch. The protocol is very similar to the protocol in Chapter 2 and hence we

are going to just sketch the proof, mentioning the novel parts. As in that protocol, the

verifiable escrow v will be decrypted by the judge/arbiter only if the server provides

all necessary material described in the label. These are the signature of the server

on the message M , and the counter (set to 0), and the receipt as detailed above.

Note that there is no point for the server to contact the arbiter before he obtains the

client’s signature, since the arbiter will not be able to provide it, and then she will

be caught cheating at the first resolution. The server needs to contact the arbiter

before the timeout specified in v to be able to get his payment. After the timeout,

the arbiter will not honor his request. The client can contact the arbiter after the

timeout and obtain the server’s signature, and the receipt.

At the end, the client only needs to keep the message M (e.g., metadata for the

DPDP protocol), the signature signS(M , ctrS), the receipt , and possibly the warranty

w. The server only needs the store the signature signC(ctrC) (and of course the file

F for DPDP). Both parties need to store their counters. Starting at the end of the

payment protocol, any third party can verify the server’s (dis)honesty (but cannot

punish unless he is the trusted judge). Since such a dispute can happen even when

no updates were performed, we provide this protocol before the update protocol.

Now that the initial handshake between the client and the server has been com-

pleted, we need a protocol to deal with further updates on the message (and on the

file). Each party needs to store only the latest signature received from the other party;

no growing history is necessary. Hence, with every update, both parties need to

increment their update counters ctr , exchange signatures and keep only these last

signatures received. As discussed before, using a fair exchange protocol [7, 6, 5] we

can easily achieve this fair exchange of signatures at every update (as long as the

message has an associated verification procedure as defined in Chapter 2). But even

167

the most efficient signature fair exchange protocol due to Asokan, Shoup, and Waid-

ner (ASW) [7] is very inefficient when compared to our new protocol described below

(see Section 6.5).

ASW fair exchange is slow due to the use of verifiable escrows, which can be

tens of kilobytes in size and take seconds to compute. We use this primitive in our

payment protocol, but payment is a one-time operation (or only once in a while if the

contract limits time or number of updates) as opposed to a large number of updates

that will continuously be performed. Our new protocol completely removes the use

of verifiable escrow during updates and uses a very efficient primitive called digital

signature [84]. Hence, public verifiability (even in the presence of updates) comes at

no cost (only about 60 bytes and a few milliseconds more per update using DSS [119],

which is easily dominated by the cost of transferring the updated blocks in DPDP).

In our protocol, with each update command, the counters are incremented. First

the client sends the update command together with her signature signC(ctrC) to the

server. If the signature does not verify, or the update counter ctrC is different than

the one the server expects, the server ignores this message. Otherwise, he performs

the update and computes the new message M ′ and the associated proof π′. The

server then sends π′, signS(π
′, ctrS), signS(M

′, ctrS) to the client. The client checks

the proof, updates the message, and also verifies the signatures. If all the checks

pass the update is complete, otherwise the client contacts the judge for resolution as

shown below.

6.4.1 Dispute Resolution

If the update protocol above fails, the client contacts the judge. The client provides

the receipt as a proof that there is an (storage) agreement between the server and the

client. The receipt also includes public keys of the parties. The client provides the

168

latest signature she has received from the server, namely signS(M , ctrS). In addition,

the client can send the latest message M , and the warranty escrow w.

The judge then contacts the server who provided the receipt, and asks for the

latest signature sent by the client. The server responds with signC(ctrC). Then, the

judge decides as in the barebone protocol. If the server is found cheating, then the

arbiter decrypts w and sends the warranty check to the client.

If the judge suspects that the server corrupted the client’s data, he asks for a proof

(of data possession) from the server. If this proof does not verify, again, the warranty

check will be given to the client. If the proof verifies though, the judge may perform

more checks but after some number of free checks, the judge may ask for payment by

the client.

In case the judge suspects that the server denied performing the update, then the

client provides the judge with the update command she wishes to perform, together

with her signature on the counter for that update, just as in a regular update protocol.

The judge then requests this update on behalf of the client, possibly in disguise. The

server needs to respond properly as in the update protocol. Again, if such a request

between the same two participants (identified by their public keys or the receipt)

has been repeated many times, the judge may choose to charge the participants.

Therefore, a client should stop doing business with a server that fails to comply with

the update protocol several times.

A more general denial of service claim (e.g., the client claims that the server is

not sending over her data) can be handled in a very similar manner, by the judge

obtaining the file from the server and handing it over to the client. Ideally, if the

server cannot distinguish the judge’s request from a regular user’s request, it will be

much easier to prevent denial of service; he should never deny a request in order not

to be penalized. Again, the judge may get paid after some number of resolutions. In

169

general, the judge/arbiter can pay for his costs by getting paid by the cheating party.

One way to ensure that is to get the payment together with the resolution request,

and cash it if a party is found guilty.

6.4.2 Analysis

Theorem 6.4.2. The protocol above is a secure dynamic official arbitration protocol.

Proof. Follows from Theorems 6.3.1 and 6.4.1 since the latter proves that the initial

exchange performed between the client and the server is a fair exchange, and the

former proves that the remaining interactions still provide a secure dynamic official

arbitration protocol.

We now argue that our protocol protects the privacy of the client. In our proto-

cols, there are only two pieces of information that can identify the client: the public

key of the client and the payment. If the client chooses a new public key pkC for each

contract, and if the payments are made using e-cash, none of these can be used to

identify the client. The privacy of the client can be preserved even when the client

contacts the judge using anonymous routing techniques like onion routing [61]. Fur-

thermore, the client can always store encrypted blocks at the untrusted server, hence

keeping even the file itself private. We assume that the message itself is not enough

for identifying the client, since this is definitely the case in DPDP where the message

is the metadata, which is the root of a skip list.

Since in a real scenario we expect servers to be well-known entities, our focus will

be on client anonymity. Note that the server warranty can be made using electronic

checks since we are assuming the server is not anonymous. Yet, the server can still

be somewhat anonymous. Just as in the DPDP protocol the client needs a way to

reach the server, the judge also needs that to request the signature from the server.

170

Thus, our official arbitration protocol with its resolution can be applied on top of any

DPDP protocol, even on top of the peer-to-peer ones.

Lastly, our dynamic official arbitration and dynamic agreement protocol can be

of independent interest in fair multi-exchange scenarios where the next exchange

is defined within the current one (e.g., in our case, the update counter ctr serves

that purpose). Throughout this chapter we presented a concrete example of such a

case based on the DPDP scenario. Yet, our protocols can be applied as a dynamic

agreement protocol for any message that can somehow be verified, and keeps getting

updated. In general, our protocols are applicable on top of any dynamic provable data

structure, including authenticated skip lists [124], authenticated hash tables [48], and

many other authenticated data structures [67].

6.5 Performance Evaluation

As we discussed before, fair exchange of signatures is a costly operation. The cost of

a fair exchange is more than the cost of a verifiable escrow. In our implementation

of the most efficient verifiable escrow known to us [45], each verifiable escrow takes

about 1 second and 25 KB. On the other hand, each DSS signature [119] takes about

1 ms and 40 bytes.

To provide a real usage scenario and numbers, we consider the CVS repositories

depicted in Table 5.5 in Section 5.8.3. Using the näıve method, which is the only

existing method that we can compare our method to, every commit would necessitate

a fair exchange. For roughly 25, 000 commits in Table 5.5, even only the verifiable

escrow part of the cost of the fair exchange will correspond to 7 hours and 610 MB

overhead. The cost of a full fair exchange is much more than that for just verifiable

escrows, but even this cost is extreme. On the other hand, using our scheme, including

the initial fair exchange, providing public verifiability for all 25, 000 commits will

171

require 51 seconds and 2 MB. The improvement from 7 hours to 51 seconds, and

from 610 MB to 2 MB makes our approach the first ever practical, efficient, and

officially usable public verifiability protocol for dynamic provable data possession.

Per update/commit, our overhead is only 0.1 KB and 2 ms.

Note that our protocol requires no growing history. Only a counter and the

latest signature on the last message needs to be kept at each party, and the client

also keeps the previous to last. In any case, the storage overhead for both parties is

less than 84 bytes.

Chapter 7

Practicality of the Cloud

7.1 Introduction

There is often a large gap between protocols that are developed and proposed in

theory and protocols that are actually implemented and used in practice. In general,

cryptographic protocols are fairly complicated in design, and as such their implemen-

tation requires great care. Unfortunately, one cannot expect all good cryptographers

to be good programmers, or vice versa. As a result, many useful cryptographic pro-

tocols go unimplemented, despite the fact that they may be efficient enough to be

used in practice.

We hope to bridge this gap by providing a library, CashLib, that builds upon

our language [68] to implement some state-of-the-art protocols such as electronic

cash (e-cash), blind signatures, verifiable encryption, and fair exchange. Our library

implements many of the protocols required by a cryptosystem built from discrete-

logarithm-based zero-knowledge proofs of knowledge, and provides these primitives

to the programmer as language features and library operations.

The design and implementation of our library were motivated by collaborations

172

173

with systems researchers interested in employing zero-knowledge protocols in high-

throughput applications, such as a peer-to-peer file sharing system [16] in which peers

pay each other to download files (or file blocks). The performance concerns arising

from this work, and the complexity of the protocols required, have motivated our

library’s focus on performance and ease of use for both the cryptographers designing

the protocols and the systems programmers charged with putting them into practice.

Having the fair exchange mechanism described in Chapter 2, and the overall plan

for using it in P2P file sharing [16], our group started implementing its own file

sharing system, backwards compatible with the existing BitTorrent framework. To

this end, we developed a cryptographic library that contains efficient zero-knowledge

proofs, electronic cash, and fair exchange [68]. The pseudocodes for the algorithms

used in our library can be found in Appendix A. To the best of our knowledge, such a

comprehensive and detailed pseudocode compilation on zero-knowledge proofs, blind

signatures, e-cash, verifiable encryption and fair exchange was not done before.

Our group is already using this cryptographic library in our BitTorrent client.

The results of this effort will soon be available [69], proving the real-world usability,

efficiency and scalability of the fair exchange protocols in this thesis. We are con-

stantly working together as a group to ensure the cryptographic protocols we have

are easily usable and that they satisfy the actual needs of our BitTorrent client.

Our goal is to free the programmer from having to worry about the implemen-

tation of cryptographic primitives, efficient mathematical operations, generating and

processing messages, etc. Our library makes performance optimizations based on anal-

ysis of the protocol description itself. As we will show, this provides greater oppor-

tunities for performance improvement than those available to lower-level libraries for

cryptography and multiple-precision arithmetic (Gnu Multi-Precision library).

174

This chapter describes the design and implementation of our library. We also de-

scribe experiences and performance optimization techniques that we undertook while

implementing the library, and provide benchmarks to show the efficiency provided by

our approach and implementation.

7.1.1 Related work

Idemix [88, 35, 26] project, under development at IBM Research, is similar to our work

as it is also focused on the development of a library for blind signatures and zero-

knowledge proofs. Our focus is on performing optimizations, rather than performing

the translation to code. Having a centralized framework that performs execution

enables for optimizations on the system as a whole. Furthermore, while Idemix is

designed mainly for use with anonymous credential systems, to the best of our knowl-

edge, we provide the only existing implementation of e-cash, verifiable encryption,

and optimistic fair exchange.

Another system, FairPlayMP [21], provides a framework for secure multi-party

computation (FairPlay [106] being its two-party version), a cryptographic primitive

that allows multiple parties to jointly compute a function on private inputs while

revealing nothing but the resulting value. Having an implementation of a generic

multi-party computation is certainly a useful tool, but the generic circuit-based tech-

niques used in FairPlayMP can be quite slow. For many applications, there are

specialized schemes that are much more efficient. In contrast, we limit our focus to

discrete-logarithm-based zero-knowledge proofs, allowing us to make use of special-

ized efficient algorithms, as well as optimize our implementation for practical everyday

use.

There are also other special-purpose libraries. The Advanced Crypto Software Col-

lection [25] is a collection of cryptographic libraries that implement some advanced

175

cryptographic primitives such as attribute-based encryption and forward-secure signa-

tures. Many of these libraries use at their core the Pairing-Based Crypto library [104]

which implements arithmetic operations over various types of elliptic curves.

7.1.2 Contributions

We have implemented a cryptographic library, in C++, to provide higher-level cryp-

tographic protocols including blind signatures, e-cash, verifiable encryption, and op-

timistic fair exchange. The library performs optimizations such as pre-computation

of expected exponentiations, preventing redundancy in proofs, and caching. Further

details on optimizations we made on existing protocols are provided in Section 7.3.

We provide some benchmark numbers for our implementations of these primitives

and argue that they are usable in real scenarios.

We plan to make the source code for our library freely available online. We hope

that our efforts will encourage cryptographers and programmers to use (and extend)

our library to implement their protocols. We welcome contribution by our fellow

researchers in this effort.

7.2 Cryptographic Background

We assume the reader is familiar with the basic properties and definitions of hash func-

tions (in particular, universal one-way hash functions [118] and Merkle hashes [109]),

symmetric and asymmetric encryption schemes, digital signature schemes [84], pseudo-

random functions [80], commitment schemes [128, 76, 58], and zero-knowledge proofs

of knowledge [83, 82, 17]. Further necessary cryptographic background to understand

this chapter is given below, and more detailed descriptions of the specific protocols

we use are in Appendix A.

176

Sigma proofs Sigma proofs [59] are three-round honest-verifier zero-knowledge

proofs of knowledge. When used together with the Fiat-Shamir heuristic [74], they

can be used as non-interactive zero-knowledge proofs of knowledge for any verifier,

secure in the random oracle model [19].

We currently support four main types of relations:

• Proving knowledge of the opening of a commitment [135]. We can prove open-

ings of Pedersen or Fujisaki-Okamoto commitments [128, 76, 58], in prime-order

or special RSA groups respectively. In both cases we allow for commitments to

multiple values.

• Proving equality of the openings of different commitment. Given any number of

commitments, containing any number of bases and exponents, we can prove the

equality of any subset of the exponents in the commitments. It is also possible to

prove that different subsets of exponents match within different commitments.

• Proving that a committed value is the product of two other committed val-

ues [58, 32]. As shown in our sample program, we can prove that a value x

contained within a commitment is the product of two other values y, z con-

tained within two other commitments; i.e., x = y · z. As a special case, we can

also prove that x = y2.

• Proving that a committed value is contained within a public range [32, 103].

First, one can prove that a committed value x is non-negative, so x ≥ 0. Then

for a range of the form lo ≤ x < hi , we can see that it suffices to prove that

(x− lo)(hi − x) ≥ 0 to guarantee that x is contained within the range.

Blind signatures Blind signatures, introduced by Chaum [50], enable a signature

issuer to sign a message without knowing the contents of the message. In general,

177

this is done by the signature recipient picking a random value and using it to blind

the message; this blinded value is then sent to the issuer, who signs it to produce a

partial signature. The recipient, upon receipt of this partial signature, un-blinds it

to obtain a signature on the original message.

Some blind signatures, such as the scheme we employ due to Camenisch and

Lysyanskaya (CL) [43], also provide protocols that allow the owner of a signature

to prove that she has a signature on a committed value, while revealing neither the

value nor the signature. A pseudocode of the CL protocols for obtaining and proving

possession of a signature can be found in Appendix A.6.

Electronic cash Electronic cash (e-cash), also introduced by Chaum [50], can be

thought of as the electronic equivalent of cash; i.e., an electronic currency that pre-

serves users’ anonymity, as opposed to electronic checks [49] or credit cards. An

e-cash system provides protocols for a user to withdraw money from the bank and

spend that money, as well as a way for merchants to deposit money with the bank.

We are furthermore interested in offline e-cash systems where the bank need not be

active in every transaction. Such an e-cash system must also provide means to detect

double-spenders; i.e., users who try to spend the same coin twice.

We implement endorsed e-cash [44] (which is an extension of compact e-cash [40]),

because it enables efficient fair exchange. Endorsed e-cash splits a coin into an unen-

dorsed coin (denoted coin ′) and endorsement (denoted end). One can think of coin ′

as an encrypted coin and end as the decryption key. Just as no one can figure out the

key or the message given the ciphertext alone, given only the unendorsed part coin ′,

no other party (except the owner) can come up with a valid endorsement end to ob-

tain the original coin. One coin can correspond to multiple coin ′, end pairs (consider

them as two encryptions using different randomness). Endorsed e-cash has the ability

to catch double-spenders, however, so that if one uses two different coin ′, end pairs to

178

try to spend the same coin twice, she will be caught and her identity will be revealed

(so she can be punished accordingly). Note that if a party tries to deposit the same

coin twice (using the same coin ′, end pair), the operation can easily be denied by

checking against a list of past transactions. Lastly, only matching coin ′, end pairs

can be linked; two separate coins, even from the same user, are always unlinkable.

Because the unendorsed coin does not contain the endorsement (hence the name),

we can see that the user can safely give coin ′ to the merchant without revealing any

private information. The user and the merchant can then engage in a fair exchange

in which the merchant obtains the endorsement end on coin ′ and the user obtains the

item she wanted to buy. During this fair exchange, the user will verifiably encrypt

the endorsement end . In order to check that a coin is valid, a merchant can check

the verifiable escrow against values contained in the unendorsed coin coin ′, as well as

check the validity of coin ′ itself.

During the withdrawal phase of endorsed e-cash, a user contacts the bank. Before

withdrawing, the user will have registered with the bank by storing a commitment.

In order to prove her identity, then, the user will provide a proof that she knows the

opening of the registered commitment.

Once the bank has verified this proof, the user and the bank will run a protocol to

obtain a CL signature (using the pseudocodes in Appendix A.7) on the user’s iden-

tity and two pseudo-random function seeds. These private values and the signature

on them define a wallet that contains W coins (where W is a system-wide public

parameter).

When a user wishes to spend the J-th coin in her wallet, she prepares two se-

rial numbers using the Dodis-Yampolskiy pseudo-random function [64] on the seeds

from the wallet and the index J . She then blinds these serial numbers and uses the

randomness from this process as the endorsement end for the coin. The unendorsed

179

coin coin ′ will include these serial numbers as well as a proof that they are formed

correctly (i.e., using the wallet seeds and the value J), a commitment to the user’s

wallet, a randomized CL signature, a proof that the randomized CL signature is a

valid signature from the bank, and a proof that the coin index is proper, so that

1 ≤ J ≤ W .

Verifiable escrow In the cryptographic context, an escrow can be considered a

ciphertext under the public key of some trusted third party (called here the arbiter).

A verifiable escrow [7, 45, 37] means that the recipient of the escrow can verify that

the contents of the ciphertext satisfy some relation (in particular, the recipient can

be assured that the ciphertext contains the expected content). A label attached to

such a ciphertext defines the conditions under which the arbiter should decrypt and

give away the encrypted secret [143]. The label is public and is integrated with the

ciphertext in such a way that it cannot be modified, thereby guaranteeing the creator

of the escrow that the secret will not be unduly revealed. In the rest of this chapter,

we will use EArb(a; b) to denote an escrow of the secret a under the arbiter’s public

key, using the contract b as a label. Similarly, VEArb(a; b) will denote a verifiable

escrow.

Our implementation of verifiable encryption is based on the construction of Ca-

menisch and Shoup [45], due to its efficiency. The main use of verifiable encryption in

e-cash is to allow a user to verifiably encrypt the opening of a commitment under the

public key of the arbiter. A recipient of such a verifiable escrow can verify that the

encrypted values correspond to the opening of the commitment and can also check

that the label associated with the escrow was formed correctly. More details of the

Camenisch-Shoup verifiable encryption scheme can be found in Appendix A.8.

180

Optimistic fair exchange Fair exchange is a two-party protocol between users;

call them Alice and Bob. In a typical fair exchange, Alice has something that Bob

wants, and Bob has something that Alice wants. A fair exchange protocol guarantees

that at the end either both of them obtain what they want, or neither of them do;

these protocols are necessary for any electronic transaction in which an e-coin is

exchanged with a digital item (file). Unfortunately, it is impossible to achieve fair

exchange protocols without the use of a trusted third party [122] (the arbiter) that

ensures that Alice cannot take advantage of Bob, and vice versa. In optimistic fair

exchange, the TTP gets involved only in the case of a dispute between the two parties.

Descriptions of the fair exchange protocols we implement in our library can be found

in Chapter 2 and [16] (and we have some modifications described in Section 7.3).

7.3 Implementation of Cashlib

Using the primitives described in the previous section, we wrote a cryptographic li-

brary designed for optimistic fair exchange protocols. The library was written in C++

and consists of approximately 17000 lines of code. In the process of implementing

some of the protocols we describe below, we found ways to optimize them for both

efficiency and usability, and so we describe those optimizations as well.

Our framework currently allows for three different types of groups: prime-order

groups, special RSA groups (i.e., groups of order n = pq, where p and q are safe

primes), and Paillier groups [123] (i.e., groups of the form Z∗
n2 , where n = pq). We

consider security levels of 80, 112, and 128 by default, although we also allow for the

security level to be chosen by the user.

181

7.3.1 Modifications to Endorsed E-cash

A description of endorsed e-cash can be found in [44]. The version used in our library,

however, contains a number of optimizations. Just as with real cash, we now allow

for different coin denominations. Each coin denomination corresponds to a different

bank public key, so once the user requests a certain denomination, the wallet is then

signed using the corresponding public key. A coin generated from such a wallet will

only verify when the same public key of the bank is used, and thus the merchant can

check for himself the denomination of the coin.

Similarly, we modified endorsed e-cash to have a wallet size that is per-wallet, in-

stead of being system-wide. This wallet size is signed by the bank during withdrawal,

and presented during spending. To prevent linkability through wallet sizes, we allow

user to pick a wallet size only among a pre-defined set of wallet sizes. With millions

of users at a bank, when each wallet size is used by hundreds of thousands of users,

linkability will not constitute a problem.

We also randomize the user’s spending order rather than having them perform

a range proof that the coin index was contained within the proper range. As the

random spending order does not reveal how many coins are left in the wallet, the user’s

privacy is still protected even though the index is publicly available. Furthermore,

because range proofs are slow and require a fair amount of space (see Figure 7.1 for a

reminder), this optimization resulted in coins that were 17% smaller and 23% faster

to generate and verify.

Finally, endorsed e-cash requires a random value contributed by both the mer-

chant and the user. Since e-coin transactions should be done over a secure channel,

in practice we expect that SSL connections will be used between the user and the

merchant. One useful feature of an SSL connection is that it already provides both

parties with shared randomness, and thus this randomness can be used in our library

182

to eliminate the need for a redundant message.

7.3.2 Modifications to Buying and Bartering

In our library, we implement the two most efficient optimistic fair exchange protocols

known to date. Belenkiy et al. [16] provide a buy protocol for exchanging a coin

with a file, while Chapter 2 provides a barter protocol for exchanging two files or

blocks. The two protocols serve different purposes (buy vs. barter) and so we have

implemented both.

Two of the main usage scenarios of fair exchange protocols are e-commerce and

peer-to-peer file sharing [16]. In e-commerce, one needs to employ a buy protocol to

ensure that both the user and the merchant are protected; the user receives her item

while the merchant receives his payment. In a peer-to-peer file sharing scenario, peers

exchange files or blocks of files. In this setting, it is more beneficial to barter for the

blocks than to buy them one at a time; for an exchange of n blocks, buying all the

blocks requires O(n) verifiable escrow operations (which, as discussed in Section 7.3.3,

are quite costly), whereas bartering for the blocks requires only one such operation,

regardless of the number of blocks exchanged.

Although the solution might seem to be to barter all the time and never buy,

Belenkiy et al. suggest that both protocols are useful in a peer-to-peer file sharing

scenario. Peers who have nothing to offer but would still like to download can offer to

buy the files, while peers who would only like to upload and have no interest in down-

loading can act as the merchant and earn e-cash. Due to the resource considerations

mentioned above, however, bartering should be preferred if possible.

Because peers do not always know beforehand if they want to buy or barter for a

file, we have modified the buy protocol to match up with the barter protocol in the

first two messages. We further modified both protocols to let them exchange multiple

183

Program type
Time (ms)

Size (bytes) Cache size (MB)
Prover Verifier

DLR proof 3.42 1.37 511 0
Multiplication proof 2.66 2.07 848 33.5

Range proof 51.35 25.45 5455 33.5
CL recipient proof 154.09 86.44 19189 134.2
CL issuer proof 8.88 1.95 1097 0

CL possession proof 167.45 89.69 19979 134.2
Verifiable encryption 584.14 153.25 24501 190.2

Coin 176.29 95.04 22526 223.7

Figure 7.1: Time (in milliseconds) and size (in bytes) required for each of our proofs,
averaged over twenty runs. Timings are considered from both the prover and verifier
sides, and are considered with caching for fixed-based exponentiations; the size of the
cache is also measured (in megabytes). The numbers for CL proofs were obtained
using a CL signature on three private values and one public value, and the numbers
for VE were obtained using a verifiable escrow on three values (as would be done in
e-cash).

blocks at once, so that one block of the fair exchange protocol might correspond to

multiple blocks of the underlying file.

We have also implemented the trusted third parties (the bank and the arbiter)

necessary for e-cash and fair exchange, and we provide performance benchmarks for

the bank in Figure 7.2.

7.3.3 Performance of Primitives

Here we give some benchmarks for primitives in our library, both in terms of commu-

nication and computational complexity. These numbers were collected on a MacBook

with a 2.4GHz Intel Core 2 Duo processor and 4GB of RAM running OS X 10.6; we

expect that these numbers will therefore reflect those of an average user.

Looking back at the pseudocodes for our various proofs and seeing which primitives

are involved in each (see Appendix A), the numbers in Figure 7.1 make sense. For

example, the marked difference between the time required to generate a CL issuer

184

proof and a CL possession proof can be attributed to the fact that a CL issuer

proof requires proving only one discrete log relation, while a CL possession proof on

three private values requires three range proofs, in addition to five more discrete log

relations.

Figure 7.1 also shows that verifiable encryption is by far the biggest bottleneck,

requiring three times as much computation time as any other step. As seen in the

program in Appendix A, there is one range proof performed for each value contained

in the verifiable escrow. In order to perform a range proof, the value contained

in the range must be decomposed as a sum of four squares. Because the values

used in our verifiable encryption program are much larger than the ones used in CL

signatures, this decomposition often takes considerably more time (up to 600ms) for

verifiable encryption than it does for CL signatures. Furthermore, since the values

being verifiably encrypted are different each time, caching the decomposition of the

values won’t do us any good.

One final observation on computation time is that the time required to prove pos-

session of a CL signature completely dominates the time required to prove the validity

of a coin, as demonstrated by the fact that the numbers for the two proofs are nearly

identical. This suggests that the only way to get significantly faster numbers for the

coin, as well as for verifiable encryption, would be to come up more efficient techniques

for range proofs (which has in fact been the subject of some recent research [36]).

In terms of proof sizes, the range proofs are quite a lot larger than the proofs for

discrete logarithms or multiplication. This is to be expected, as the translations of

range proofs into their discrete logarithm representation (as shown in Appendix A)

requires 11 discrete log equations, whereas a single DLR proof requires only 1 and a

multiplication proof requires 2.

185

Operation Time (ms) Size (bytes)
Withdraw (user) 192.74 20093
Withdraw (bank) 114.96 1167
Deposit (bank) 95.44 22526

Buying a block (buyer) 778.81 47286
Buying a block (seller) 254.75 203
Barter setup message 709.97 46934

Checking setup message 249.75 n/a
Barter after setup (initiator) 21.54 1280
Barter after setup (responder) 1.22 204

Figure 7.2: Average time required and network overhead, in milliseconds and bytes
respectively, for each stage in our e-cash implementation. The timings were averaged
over twenty runs, and caching and compression optimizations of the library are used.

7.3.4 Performance of High Level Protocols

In Figure 7.2, we can see the computation time and size complexity for the steps de-

scribed above, as well as computation and communication overhead for the withdraw

and deposit protocols involving the bank. The numbers in the table were computed on

the same computer as those in Section 7.3.3, using security parameters that provide

a security level of 80 bits.

If we look back at the results in Figure 7.1, the numbers in Figure 7.2 should

not be surprising. As mentioned before, bartering is quite a lot more efficient than

buying, both in terms of computation and communication overhead. We can see that

the setup message for both buying and bartering takes about 700ms to generate and

approximately 46KB of space. In contrast, the rest of the barter protocol takes very

little time; on the order of milliseconds for both parties (and about 1.5KB of total

overhead). Therefore, bartering really will be more efficient as long as more than one

exchange is expected to take place.

186

7.4 Conclusions and Future Work

Implementing cryptographic systems is a hard task, due in large part to the com-

plexity of the protocols involved. We built a library that provides state-of-the-art

optimistic fair exchange protocols based on electronic cash, based on widely-used

discrete-logarithm-based zero-knowledge proofs of knowledge. Our library is already

in use by our collaborators [34], and soon we are planning to release our library for

use by other researchers.

Finally, in terms of extending the library, in order to improve a bank’s efficiency, it

might also possible to speed up coin verification time by supporting batch verification

techniques [41, 73] for CL signatures; we leave this as one of many interesting open

problems.

In Chapter 4, we proposed a solution in which the bank outsources some of its

computation to untrusted contractors; these contractors can then be rewarded and

fined as necessary. Using this framework, one might outsource the job of coin verifi-

cation, thus taking some of the burden off the bank and allowing the system to scale

more efficiently. Necessary e-cash primitives are already implemented in our library,

and hence realizing this framework might as well be a near-term future work.

Issues of decentralization also arise with the arbiter for fair exchange. In this case,

one might employ secret sharing techniques [140, 27] to distribute the trust placed

on the arbiter (see Chapter 3).

Chapter 8

Conclusion and Future of the

Cloud

We have shown that providing security and privacy in many cloud systems is possible

at virtually no cost: There are very efficient and scalable privacy-preserving crypto-

graphic protocols that provide necessary security features to such systems. Consider-

ing many failed attempts of trying to incorporate security to a system after its design

(e.g., incorporating IPSec to the Internet), the next generation cloud systems must

be designed with security and privacy in mind. And now that we have the enabling

cryptography, I see no reason not to, since security and privacy features benefit both

the user and the service provider (see Brands for a very nice advocacy [33]).

In general, in this thesis we are interested in a broad definition of fairness in

the cloud, as in being fair to users. The goal is to design protocols that ensure this

efficiently through cryptographic means and mechanism design. For example, our fair

exchange protocol for peer-to-peer file sharing ensures that peers are fair to each other

with respect to exchanging data. Our work on outsourced computation discusses how

the boss can fairly reward honest contractors, as well as punish malicious ones limiting

their damage to the system. Our outsourced storage solution makes sure that official

187

188

arbitration between the client and the server is fair in that the client cannot frame

an honest server yet a malicious server will be caught cheating. We also considered

other aspects of fairness such as trust and incentives and how that fits into the secure

cloud paradigm. Finally, we showed how to render all these practical by developing

a cryptographic library and language.

In the future, I am planning to extend my work on this broad definition of fairness

into further areas of the cloud. For example, two-party computation, which is a very

important cloud computing idea, suffers from lack of fairness: ensuring either both

parties obtain the result of the computation or neither does is not a straightforward

task. It requires novel fairness techniques, possibly similar to the fair exchange pro-

tocol we discovered. Furthermore, even when two peers exchange data fairly, they

may end up exchanging data that is not considered fair; this may be due to one peer

having some external knowledge about the system that provides him some advantage

in trading a less valuable data in exchange for a more useful data. For example, in our

peer-to-peer file sharing scenario, this may correspond to one peer trading a common

data item in exchange for a rare one. Oblivious fair exchange techniques may result

in both parties exchanging data that they want, but without low-level control on the

data, possibly ensuring that peers exchange some random data they want from each

other. Novel techniques are required in many cases including oblivious data access or

private information retrieval in the cloud to be fair to the server in terms of efficiency

and to the client in terms of privacy.

Another aspect of this thesis work that I would like to continue in the future is

privacy. Our protocols are designed to respect privacy of the participants. Privacy

is a big concern in the cloud, especially now that all the digital communication can

easily be logged, backed up and mined. For example, even fairness might suffer

in real life if the solution does not respect the privacy of the participants. When

189

the participants and the arbiter are not anonymous, bribery might be a natural

disaster, and trust issues may arise. Receipt-freeness, meaning that a participant

cannot prove his actions or messages, is a useful property in such a setting, just

as in voting protocols. Furthermore, cloud may be utilized as a helper for privacy,

considering techniques such as anonymous routing that anonymizes network packets

sent between parties and joint coin flipping that lets others to contribute randomness.

For a privacy-preserving economy, e-cash offers a good solution. The economics

of solutions using e-cash leads to interesting game-theoretic problems. For example,

when analyzing the problem of bootstrapping new users, Sybil (multi-identity) attacks

become an issue in the peer-to-peer world. Analyzing economies created by the use of

e-cash in peer-to-peer file sharing protocols and outsourcing presents novel challenges.

In our outsourced computation scenario, we assumed the boss can reward or fine the

contractors. Whether or not the boss can keep a balance between fines and rewards is

an open problem. If the boss is the e-cash bank, it is possible to create more money,

but this may lead to devaluation. Future collaborations with economics researchers

would be useful in understanding such effects.

I think any system needs to be analyzed as a whole. This is exactly what I did

during my Ph.D.: coming up with a novel fair exchange protocol, and analyzing how

possible bottlenecks can be avoided by outsourcing or distributing the work of the

centralized, trusted components. In terms of practical use of the solutions, I always

favor seeing them in action. Thus, we built a language that eases implementation

of cryptographic protocols, and a library that is being used by our collaborators

for systems research. In the future, I am planning to continue addressing different

security aspects of the cloud as a whole. Apart from research, my side goal would be

to ensure wide-spread and easy use of cryptography.

Bibliography

[1] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter, and J.J. Wylie.

Fault-scalable byzantine fault-tolerant services. In SOSP, 2005.

[2] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.P. Martin, and C. Porth. Bar

fault tolerance for cooperative services. In ACM SOSP, 2005.

[3] A. Anagnostopoulos, M.T. Goodrich, and R. Tamassia. Persistent Authenti-

cated Dictionaries and Their Applications. ISC, pages 379–393, 2001.

[4] N. Asokan, PA Janson, M. Steiner, and M. Waidner. The state of the art in

electronic payment systems. IEEE Computer, 30(9):28–35, 1997.

[5] Nadarajah Asokan, Matthias Schunter, and Michael Waidner. Optimistic pro-

tocols for fair exchange. In ACM CCS, 1997.

[6] Nadarajah Asokan, Victor Shoup, and Michael Waidner. Optimistic fair ex-

change of digital signatures. In EUROCRYPT, 1998.

[7] Nadarajah Asokan, Victor Shoup, and Michael Waidner. Optimistic fair ex-

change of digital signatures. IEEE Selected Areas in Communications, 18:591–

610, 2000.

[8] Giuseppe Ateniese. Efficient verifiable encryption (and fair exchange) of digital

signatures. In ACM CCS, 1999.

190

191

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kiss-

ner, Zachary Peterson, and Dawn Song. Provable data possession at untrusted

stores. In ACM CCS, 2007.

[10] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik.

Scalable and efficient provable data possession. In SecureComm, 2008.

http://eprint.iacr.org/2008/114.

[11] G. Avoine and S. Vaudenay. Optimistic fair exchange based on publicly verifi-

able secret sharing. ACISP, 2004.

[12] M. Backes, A. Datta, A. Derek, J.C. Mitchell, and M. Turuani. Compositional

analysis of contract-signing protocols. Theoretical Computer Science, 367(1-

2):33–56, 2006.

[13] Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic

framework for the controlled release of certified data. SPW, 2004.

[14] Feng Bao, Robert Deng, and Wenbo Mao. Efficient and practical fair exchange

protocols with off-line TTP. In IEEE Security and Privacy, 1998.

[15] Mira Belenkiy, Melissa Chase, Chris Erway, John Jannotti, Alptekin Küpçü,

and Anna Lysyanskaya. Incentivizing outsourced computation. In NetEcon,

2008. http://www.cs.brown.edu/research/brownie/ioc-netecon08.pdf.

[16] Mira Belenkiy, Melissa Chase, Chris Erway, John Jannotti,

Alptekin Küpçü, Anna Lysyanskaya, and Eric Rachlin. Making

p2p accountable without losing privacy. In ACM WPES, 2007.

http://www.cs.brown.edu/research/brownie/p2p-ecash-wpes07.pdf.

[17] M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO,

1992.

192

[18] M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making uowhfs

practical. In CRYPTO, 1997.

[19] Mihir Bellare and Philip Rogaway. Random oracles are practical: a paradigm

for designing efficient protocols. ACM CCS, pages 62–73, 1993.

[20] Mihir Bellare and Philip Rogaway. Optimal asymmetric encryption. In EURO-

CRYPT, 1994.

[21] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-

party computation. In ACM CCS, 2008.

[22] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure com-

putation. In STOC, pages 52–61, 1993.

[23] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair

protocol for signing contracts. IEEE Transactions on Information Theory,

36(1):40–46, 1990.

[24] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation. In STOC, pages

1–10, 1988.

[25] John Bethencourt and Brent Waters. Advanced crypto software collection.

http://acsc.cs.utexas.edu.

[26] P. Bichsel, C. Binding, J. Camenisch, T. Gross, T. Heydt-Benjamin, D. Sommer,

and G. Zaverucha. Cryptographic protocols of the identity mixer library. IBM

Research Report, 2009.

[27] George Robert Blakley. Safeguarding cryptographic keys. In NCC, 1979.

193

[28] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the

Correctness of Memories. Algorithmica, 12(2):225–244, 1994.

[29] Boinc. http://boinc.berkeley.edu.

[30] D. Boneh and M. Naor. Timed commitments. In CRYPTO, 2000.

[31] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. In ASIACRYPT, 2001.

[32] Fabrice Boudot. Efficient proofs that a committed number lies in an interval.

EUROCRYPT, pages 431–444, 2000.

[33] Stefan Brands. Rethinking public key infrastructures and digital certificates:

building in privacy. MIT Press, 2000.

[34] Brownie points project at brown university.

http://cs.brown.edu/research/brownie.

[35] J. Camenisch and E. Van Herreweghen. Design and implementation

of the idemix anonymous credential system. In ACM CCS, 2002.

http://www.zurich.ibm.com/ jca/papers/camvan02.pdf.

[36] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set

membership and range proofs. In ASIACRYPT, 2008.

[37] Jan Camenisch and Ivan Damgrard. Verifiable encryption, group encryption,

and their applications to group signatures and signature sharing schemes. In

ASIACRYPT, 2000.

[38] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new

theoretical aspects. SCN, 2004.

194

[39] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya,

and Mira Meyerovich. How to win the clonewars: efficient periodic n-times

anonymous authentication. In ACM CCS, 2006.

[40] Jan Camenisch, Susan Hohenberger, and Anna Lysysanskaya. Compact e-cash.

In EUROCRYPT, 2005.

[41] Jan Camenisch, Susan Hohenberger, and Michael Ostergaard Pedersen. Batch

verification of short signatures. In EUROCRYPT, 2007.

[42] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable

anonymous credentials with optional anonymity revocation. EUROCRYPT,

pages 93–118, 2001.

[43] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient pro-

tocols. SCN, 2576:268–289, 2002.

[44] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In

IEEE Security and Privacy, 2007.

[45] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryp-

tion of discrete logarithms. In CRYPTO, 2003.

[46] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-

ogy, revisited. Journal of ACM, 51(4):557–594, 2004.

[47] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with op-

timal resilience. In STOC, pages 42–51, 1993.

[48] Roberto Tamassia Charalampos Papamanthou and Nikos Triandopoulos. Au-

thenticated hash tables. In CCS, 2008.

195

[49] D. Chaum, B. den Boer, E. van Heyst, S. Mjolsnes, and A. Steenbeek. Efficient

offline electronic checks (extended abstract). In EUROCRYPT, 1990.

[50] David Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.

[51] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and

G. Edward Suh. Incremental multiset hash functions and their application to

memory integrity checking. In ASIACRYPT, pages 188–207, 2003.

[52] Bram Cohen. Incentives build robustness in bittorrent. In WEPS, 2003.

[53] Larry Cohen. Testimony of larry cohen, president of communications workers

of america, May 2007.

[54] S. Coull, M. Green, and S. Hohenberger. Controlling access to an oblivious

database using stateful anonymous credentials. In PKC, 2009.

[55] R. Cramer and I. Damgard. Zero-knowledge proofs for finite field arithmetic;

or: Can zero-knowledge be for free? In CRYPTO, 1998.

[56] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. In CRYPTO, 1998.

[57] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES–the Advanced

Encryption Standard. Springer, 2002.

[58] I. Damgard and E. Fujisaki. A statistically-hiding integer commitment scheme

based on groups with hidden order. In ASIACRYPT, 2002.

[59] Ivan Damgard. On sigma protocols. http://www.daimi.au.dk/ ivan/Sigma.pdf.

[60] Ivan Damgard. Efficient concurrent zero-knowledge in the auxiliary string

model. EUROCRYPT, pages 418–430, 2000.

196

[61] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-

generation onion router. In USENIX Security, 2004.

[62] Distributed.net. http://www.distributed.net.

[63] Y. Dodis, P.J. Lee, and D.H. Yum. Optimistic fair exchange in a multi-user

setting. LNCS, 4450:118, 2007.

[64] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs

and keys. In PKC, 2005.

[65] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via

hardness amplification. In TCC, 2009.

[66] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.

SIAM Journal on Computing, 30(2):391–437, April 2000.

[67] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan.

How efficient can memory checking be?, 2009. TCC.

[68] Chris Erway, Theodora Hinkle, Alptekin Küpçü, Anna Lysyanskaya, and Sarah

Meiklejohn. Zkpdl: Enabling efficient implementation of zero-knowledge proofs

and electronic cash. In USENIX Security, 2010.

[69] Chris Erway, Alptekin Küpçü, Sarah Meiklejohn, Theodora Hinkle, John Jan-

notti, and Anna Lysyanskaya. Fairtrader: Fair, fungible file sharing. under

submission, 2009.

[70] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto

Tamassia. Dynamic provable data possession. In ACM CCS, 2009.

http://eprint.iacr.org/2008/432.

197

[71] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto

Tamassia. Publicly verifiable dynamic provable data possession. work in

progress, 2009.

[72] P. Wyckoff F. Monrose and A. Rubin. Distributed execution with remote audit.

In NDSS, 1999.

[73] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Oster-

gaard Pedersen. Practical short signature batch verification. In CT-RSA, 2009.

[74] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to

identification and signature problems. CRYPTO, 86:186–194, 1986.

[75] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. Rsa-oaep is secure under

the rsa assumption. Journal of Cryptology, 17(2):81–104, 2004.

[76] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to

prove modular polynomial relations. In CRYPTO, pages 16–30, London, UK,

1997. Springer-Verlag.

[77] Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably secure scheme

for publicly verifiable secret sharing and its applications. In EUROCRYPT,

volume 1403 of LNCS, pages 32–46, 1998.

[78] J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract

signing. In CRYPTO, 1999.

[79] Décio Luiz Gazzoni and Paulo Sérgio Licciardi Messeder Barreto. Demonstrat-

ing data possession and uncheatable data transfer. Cryptology ePrint Archive,

Report 2006/150, 2006.

198

[80] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

Journal of ACM, 33(4):807, 1986.

[81] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

STOC, pages 218–229, 1987.

[82] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity or all languages in np have zero-knowledge proof systems. Journal of

ACM, 38(3):728, 1991.

[83] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-

active proof systems. SIAM Journal on Computing, 18(1):208, 1989.

[84] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal on Computing,

17(2):281–308, April 1988.

[85] P. Golle and I. Mironov. Uncheatable distributed computations. In CT-RSA,

2001.

[86] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenti-

cated dictionary with skip lists and commutative hashing. In DISCEX II, pages

68–82, 2001.

[87] Michael T. Goodrich, Charalampos Papamanthou, Roberto Tamassia, and

Nikos Triandopoulos. Athos: Efficient authentication of outsourced file sys-

tems. In ISC, pages 80–96, 2008.

[88] Identity mixer project. http://idemix.wordpress.com.

199

[89] Ru Iosup, Pawe Garbacki, Johan Pouwelse, and Dick Epema. Correlating topol-

ogy and path characteristics of overlay networks and the internet. In GP2PC,

2006.

[90] Ari Juels and Burton S. Kaliski. PORs: Proofs of retrievability for large files.

In ACM CCS, pages 584–597, 2007.

[91] Burt Kaliski. Twirl and rsa key size. Technical report, RSA Laboratories, 2003.

http://www.rsa.com/rsalabs/node.asp?id=2004.

[92] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scal-

able secure file sharing on untrusted storage. FAST, pages 29–42, 2003.

[93] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.

Chapman & Hall/CRC, 2007.

[94] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishan Gummadi, Sean Rhea, HakimWeatherspoon, West-

ley Weimer, Chris Wells, and Ben Zhao. Oceanstore: an architecture for global-

scale persistent storage. SIGPLAN Not., 35(11):190–201, 2000.

[95] Alptekin Küpçü and Anna Lysyanskaya. Optimistic fair exchange with multi-

ple arbiters. PODC brief announcement, full version under submission, 2009.

http://eprint.iacr.org/2009/069.

[96] Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. In

CT-RSA, 2010. http://eprint.iacr.org/2008/431.

[97] RSA Laboratories. Faq: What key size should be used?

http://www.rsa.com/rsalabs/node.asp?id=2264.

200

[98] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B.A. Huberman. Tycoon: An

implementation of a distributed, market-based resource allocation system. Mul-

tiagent and Grid Systems, 1(3):169–182, 2005.

[99] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic

authenticated index structures for outsourced databases. In SIGMOD, pages

121–132, 2006.

[100] H.C. Li, A. Clement, E.L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin.

BAR Gossip. Proceedings of the 7th Symposium on Operating System Design

and Implementation (OSDI), 2006.

[101] J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure Untrusted Data Repository

(SUNDR). OSDI, pages 121–136, 2004.

[102] A.Y. Lindell. Legally-enforceable fairness in secure two-party computation. In

CT-RSA, 2008.

[103] H. Lipmaa. On diophantine complexity and statistical zero-knowledge argu-

ments. ASIACRYPT, 2894:398–415, 2003.

[104] Ben Lynn. PBC (pairing-based cryptography) library.

http://crypto.stanford.edu/pbc.

[105] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to build a

trusted database system on untrusted storage. In OSDI, pages 10–26, Berkeley,

CA, USA, 2000. USENIX Association.

[106] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplaya secure two-party com-

putation system. In USENIX Security, 2004.

201

[107] O. Markowitch and S. Saeednia. Optimistic fair exchange with transparent

signature recovery. In FC, 2001.

[108] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

[109] R.C. Merkle. A digital signature based on a conventional encryption function.

LNCS, 293:369–378, 1987.

[110] Silvio Micali. Simultaneous electronic transactions with visible trusted parties.

US Patent 5,553,145, 1996.

[111] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange.

In PODC, 2003.

[112] G.L. Miller. Riemann’s hypothesis and tests for primality. In STOC, pages

234–239, 1975.

[113] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Transac-

tions on Fundamentals of Electronics, Communications and Computer Sciences,

85(2):481–484, 2002.

[114] David Molnar. The seti@home problem. ACM Crossroads, Sep 2000.

http://www.acm.org/crossroads/columns/onpatrol/september2000.html.

[115] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen. Ivy: A Read/Write

Peer-to-Peer File System. OSDI, pages 31–44, 2002.

[116] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In

USENIX Security, pages 17–17, 1998.

[117] Moni Naor and Guy N. Rothblum. The complexity of online memory checking.

In FOCS, pages 573–584, 2005.

202

[118] Moni Naor and Moti Yung. Universal one-way hash functions and their cryp-

tographic applications. In STOC, 1989.

[119] NIST. Digital signature standard (dss). FIPS PUB 186-2, 2000.

[120] A. Oprea, M.K. Reiter, and K. Yang. Space-Efficient Block Storage Integrity.

NDSS, 2005.

[121] John Ousterhout. Tcl/tk. http://www.tcl.tk/.

[122] H. Pagnia and F. Gärtner. On the impossibility of fair exchange without a

trusted third party. Darmstadt University of Technology, TUD-BS-1999-02,

1999.

[123] Pascal Paillier. Public-key cryptosystems based on composite residuosity

classes. In EUROCRYPT, 1999.

[124] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient

algorithms for two-party authenticated data. In ICICS, 2007.

[125] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient

algorithms for two-party authenticated data structures. In ICICS, pages 1–15,

2007.

[126] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Au-

thenticated hash tables. In ACM CCS, pages 437–448, 2008.

[127] Patch-free-processing. http://web.archive.org/web/20070207064618/http://

home.hccnet.nl/a.alfred/p-free-p1pfp.html.

[128] Torben Pryds Pedersen. Non-interactive and information-theoretic secure veri-

fiable secret sharing. In CRYPTO, 1991.

203

[129] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-

mun. ACM, 33(6):668–676, 1990.

[130] M.O. Rabin and J.O. Shallit. Randomized algorithms in number theory. Com-

munications on Pure and Applied Mathematics, 39:239–256, 1986.

[131] Anatol Rapoport. Prisoner’s dilemma - recollections and observations. Game

Theory as a Theory of Conflict Resolution, 1974.

[132] O. Regev and N. Nisan. The POPCORN market. Online markets for compu-

tational resources. Decision Support Systems, 28(1-2):177–189, 2000.

[133] Rosetta@home. http://boinc.bakerlab.org/rosetta/.

[134] Samba. Samba.org CVS repository. http://cvs.samba.org/cgi-bin/cvsweb/.

[135] CP Schnorr. Efficient signature generation by smart cards. Journal of Cryptol-

ogy, 4(3):161–174, 1991.

[136] T. Schwarz and E.L. Miller. Store, Forget, and Check: Using Algebraic Signa-

tures to Check Remotely Administered Storage. ICDCS, page 12, 2006.

[137] F. Sebe, A. Martinez-Balleste, Y. Deswarte, J. Domingo-Ferre, and J.-J.

Quisquater. Time-bounded remote file integrity checking. Technical Report

04429, LAAS, July 2004.

[138] Seti@home. http://setiathome.berkeley.edu.

[139] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In ASI-

ACRYPT, 2008.

[140] Adi Shamir. How to share a secret. ACM Communications, 22(11):612–613,

November 1979.

204

[141] V. Shmatikov and J.C. Mitchell. Finite-state analysis of two contract signing

protocols. Theoretical Computer Science, 283(2):419–450, 2002.

[142] Victor Shoup. Lower bounds for discrete logarithms and related problems.

LNCS, 1233:256, 1997.

[143] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against

chosen ciphertext attack. In EUROCRYPT, 1998.

[144] Roberto Tamassia. Authenticated data structures. In ESA, pages 2–5, 2003.

[145] Roberto Tamassia and Nikos Triandopoulos. Computational bounds on hier-

archical data processing with applications to information security. In ICALP,

pages 153–165, 2005.

[146] truXoft Calibrating BOINC Core Client. http://boinc.truxoft.com/core-cal.htm.

[147] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stor-

netta. Spawn: A Distributed Computational Economy. IEEE Transactions on

Software Engineering, 18(2):103–117, 1992.

[148] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public

verifiability and data dynamics for storage security. In ESORICS, 2009.

Appendix A

Algorithms Used

A.1 Security Parameters

In this chapter, we will use a unified security parameter sec, which corresponds to the

conjecture that any attack that breaks the system must perform roughly 2sec steps.

We also define the following security parameters for ease of notation:

RSALength defines the bit-length of an RSA modulus.

stat defines the statistical security parameter. That is to say, two statistically

indistinguishable distributions will be 2−stat close to each other.

hashLength defines the length of the output of a hash function used for collision

resistance or as a random oracle.

orderLength defines the bit-length of the order of the prime-order group we will

use. primeLength defines the bit-length of the modulus of Z∗
primeModulus . The prime-

order group will be a subgroup of Z∗
primeModulus of order primeOrder .

To get sec = 80, which is considered the bare minimum requirement for security,

we need to have RSALength = 1024, stat = sec = 80, hashLength = 2 ∗ sec = 160,

orderLength = 2 ∗ sec = 160, primeLength = 1024. We will use these numbers

for performance evaluation. The reasoning for hash functions and prime order is

205

206

related to the birthday bound, and states the best known algorithms break them in

2hashLength/2 and 2orderLength/2 time respectively [108]. We will use SHA-1 as our hash

function.

To get a longer-lasting security, we should use sec = 128, which corresponds to

RSALength = 2048, stat = sec = 128, hashLength = 2 ∗ sec = 256, orderLength =

2 ∗ sec = 256, primeLength = 1024. For symmetric encryption, we should use AES-

128 as the block cipher and SHA-256 as the hash function whenever necessary (note

that the RSA numbers correspond to sec = 112 [91, 97]).

Finally, if we want a really paranoid level of security (e.g., for financial uses), we

can set RSALength = 4096, primeLength = 2048, and use SHA-512 and AES-256.

The only issue is that we will sacrifice some amount of efficiency.

A.2 Assumptions

The suggested security parameters above are set to satisfy the following assumptions

(by conjecture). Those assumptions are computational: they work against compu-

tationally bounded —probabilistic polynomial time (PPT)— adversaries. They are

also probabilistic. A negligible probability denotes a probability that is a negligible

function of the security parameter (e.g., the key-length of an encryption scheme). A

negligible function of n is a function which is smaller than any inverse polynomial

over n with n > N for sufficiently large N (e.g., neg(n) = 2−n). A non-negligible

probability is a probability that is not negligible.

Strong RSA Assumption (see [18]): Given an RSA modulus n, and a random

value x ∈ Z∗
n, no PPT adversary can find z > 1 and y ∈ Z∗

n such that yz = x mod n

with non-negligible probability.

Discrete Logarithm Assumption (see [142]): Given a group G with modulus

n, a random generator g, and a random element x ∈ G, no PPT adversary can find

207

a value y such that gy = x mod n with non-negligible probability.

A.3 Setup

We will concentrate on two main types of groups that are widely-used: a special RSA

group and a prime order group. These groups are usually generated by a trusted third

party, but we will describe methods that can be used if for some reason the setup is

untrusted.

208

Let QRn denote the quadratic residues modulo n.

Algorithm A.3.1: Setup for generating a special RSA group.

Input: security parameter RSALength, number of generators m

Pre-conditions: RSALength must be at least 1024. m must be at least 1.

Output: modulus n, primes p, q, p′, q′, generators g1, . . . , gm, h, exponents

a1, . . . , am

Post-conditions: The length of n must be RSALength . n = pq, p = 2p′ + 1,

q = 2q′ + 1. p, q, p′, q′ are primes. p = 3 mod 4, q = 3

mod 4. |p| = |q| = RSALength/2

Special RSA Group Setup

Choose primes p, q of length RSALength/2 each such that p = 2p′ + 1 and1

q = 2q′ + 1 where p′, q′ are primes (so p, q are safe primes, p′, q′ are Sophie

Germain primes, and n is a special RSA modulus). Note that p and q need

to be Blum integers (i.e. p = 3 mod 4 and q = 3 mod 4), and that this will

indeed be the case for primes chosen as above.

Compute n = pq.2

Choose h← QRn. To do this, pick a random residue, square it, and check3

that h(p−1)/2 = 1 mod p and h(q−1)/2 = 1 mod q. Alternatively, pick

hp ← Z∗
p and hq ← Z∗

q , and set h = hq−1
p ∗ hp−1

q mod n.

for i : 1..m do4

Choose ai ← {0, 1}
RSALength+stat and set gi = hai mod n5

Output modulus n, primes p, q, p′, q′, generators g1, . . . , gm, h, and exponents6

a1, . . . , am.

209

Algorithm A.3.2: Setup for generating a prime-order group.

Input: security parameters primeLength, orderLength, number of generators m

Pre-conditions: primeLength must be at least 512. orderLength must be at

least 160 or 2 ∗ stat , whichever is larger.a m must be at least

1.

Output: modulus primeModulus , order primeOrder , generators g1, . . . , gm, h,

exponents a1, . . . , am

Post-conditions: The length of primeModulus must be primeLength. The

length of primeOrder must be orderLength.

Prime Order Group Setup

Pick a prime order primeOrder of length orderLength and a prime modulus1

primeModulus of length primeLength where primeModulus − 1 is divisible by

primeOrder . This results in the order primeOrder subgroup of Z∗
primeModulus .

Pick generator h for the subgroup with order primeOrder . To do this, pick2

h′ ← Z∗
primeModulus and set h = h′(primeModulus−1)/primeOrder

mod primeModulus .

for i : 1..m do3

Pick generators gi each with order primeOrder (same method as above)4

Output modulus primeModulus , order primeOrder , generators g1, . . . , gm, h,5

exponents a1, . . . , am

aThe best algorithms to solve Discrete Logarithm problem in prime-order groups have running

time that depends on the size of either the order of the subgroup or the modulus of the group

[142, 108]

Definitions of Groups:

Throughout this chapter, the “definition of the RSA group” means the modulus n

and possibly the bases g1, . . . , gm, h if they are not explicitly defined.

210

Similarly, when we use the “definition of the prime-order group”, it means the

modulus primeModulus and the order primeOrder , and possibly the bases g1, . . . , gm, h

if they are not explicitly defined.

Bases will generally be explicitly defined in the algorithms.

Group Operations:

A group operation is an operation on a group element. We will use multiplicative

notation when denoting the group operation and inverse of an element. All group

operations must be done modulo the modulus of the group. Therefore, all group

operations will be done modulo n for the RSA group, and modulo primeModulus for

the prime-order group. A simple example of this is g ∗ h mod n.

Operations on Exponents:

An operation on exponents means the multiplication, addition, or inversion of expo-

nents. In RSA groups, all such operations must be performed over integers, as the

order of the group is not assumed to be known. In prime-order groups, all such oper-

ations will be done modulo primeOrder , as this value is always public. An example

of such an operation is ga∗b mod primeOrder mod primeModulus .

Group Secrets:

When we emphasize that some party has not generated a group itself, we mean that

that party may not know the secrets associated with the group generation. For an

RSA group, the secrets will be p, q; the factorization of the modulus n. Furthermore,

in both an RSA group and a prime-order group, the relative discrete logarithms of

the generators are secrets.

211

A.4 Commitment Schemes

A.4.1 Fujisaki-Okamoto Commitment Scheme

The Fujisaki-Okamoto commitment scheme [76, 58] is a statistically hiding, compu-

tationally binding commitment scheme. The Committer commits to something and

sends the resulting commitment to the Verifier. At some later time, the Committer

opens the commitment and the Verifier needs to verify that the opening matches the

commitment sent before.

Setup:

This commitment scheme uses a special RSA group. In the case that an untrusted

party (e.g., the Verifier) generates the RSA group, he needs to prove to the Committer

that each gi is in the group generated by h, so that the commitment is statistically

hiding. This can be done by proving in zero knowledge the knowledge of ai such that

gi = hai mod n. The committer may not generate or know p, q, p′, q′, a1, . . . , am, as

otherwise the scheme will not provide any meaningful binding property.

Assumptions:

The security of the scheme relies on the Strong RSA assumption.

Hiding:

The hiding property relies on the fact that gi, h all generate the same group, so that

when randomization is used the resulting commitment is a random group element.

Binding:

The binding property relies on the assumption that the Committer cannot find two

different openings (using the same bases) that result in the same commitment. This

follows from the Strong RSA assumption.

Warnings:

This commitment scheme requires at least two generators: g1, h, otherwise it does

212

not work.

Algorithm A.4.1: Commitment procedure of the Fujisaki-Okamoto commit-

ment scheme. This procedure is run by the Committer.

Input: Definition of the RSA group, number of secrets k, bases g1, . . . , gk, h,

secrets x1, . . . , xk

Pre-conditions: The RSA group must be generated by a trusted third party

or it must be proven that each gi, h generates QRn.

Output: commitment C, opening open

Commit

Pick a random number r from {0, 1}RSALength+stat .1

Create the commitment C = hr
∏k

i=1 g
xi

i mod n.2

Output commitment C and opening open = x1, . . . , xk, r.3

Comments:

The random number r actually needs to be relatively prime to φ(n), but since this

will be the case with high probability we omit the check.

To open a commitment, the Committer just sends the opening open to the Veri-

fier. After that, the Verifier needs to verify the opening of the commitment. This is

done as follows:

213

Algorithm A.4.2: Verification procedure of the Fujisaki-Okamoto commitment

scheme. This procedure is run by the Verifier after receiving the opening open

for a commitment C.
Input: Definition of the RSA group, number of secrets k, bases g1, . . . , gk, h,

commitment C, opening open = x1, . . . , xk, r

Pre-conditions: The RSA group may NOT be generated by the Committer.

Output: accept or reject

Verify

if C = hr
∏k

i=1 g
xi

i mod n then1

Output accept2

else3

Output reject4

A.4.2 Pedersen Commitment Scheme

The Pedersen commitment scheme [128] is a statistically hiding, computationally

binding commitment scheme. It allows for commitments to values between 1 and

primeOrder − 1.

Setup:

This commitment scheme uses a prime-order group. If an untrusted party (e.g., the

Verifier) generates the prime-order group, then the participants (both the Commit-

ter and the Verifier) need to check that both primeModulus and primeOrder are

primes (such that primeOrder divides primeModulus − 1) and that gi, h have or-

der primeOrder (which is equivalent to saying that gi 6= 1 mod primeModulus and

gprimeOrder
i = 1 mod primeModulus). It is important that the Committer does not

know the relative discrete logarithms of the bases, or otherwise the commitment is

214

no longer binding.

Assumptions:

The security of the scheme relies on the Discrete Logarithm assumption.

Hiding:

The hiding property relies on the fact that gi, h all generate the group with prime

order primeOrder , so that when randomization is used the resulting commitment is

a random element of the prime-order group.

Binding:

The binding property relies on the Committer not being able to find two different

openings, using the same bases, that result in the same commitment. This follows

directly from the Discrete Logarithm assumption.

Algorithm A.4.3: Commitment procedure of the Pedersen commitment

scheme. This procedure is run by the Committer.

Input: Definition of the prime-order group, number of secrets k, bases

g1, . . . , gk, h, secrets x1, . . . , xk

Pre-conditions: Group and the bases must adhere to guidelines in the Setup

in this section. Each xi must be between 1 and

primeOrder − 1.

Output: commitment C, opening open

Post-conditions: C should be sent to the Verifier.

Commit

Pick a random number r from Z∗
primeOrder .1

Create the commitment C = hr
∏k

i=1 g
xi

i mod primeModulus .2

Output commitment C and opening open = x1, . . . , xk, r.3

To open a commitment, the Committer simply sends open to the Verifier. Upon

215

receiving the opening, the Verifier needs to verify its validity. This is done as follows:

Algorithm A.4.4: Verification procedure of the Pedersen commitment scheme.

This procedure is run by the Verifier after receiving the opening open for a

commitment C.
Input: Definition of the prime-order group, number of secrets k, bases

g1, . . . , gk, h, commitment C, opening open = x1, . . . , xk, r

Pre-conditions: The group may not be generated by the Committer. Each

xi, r must be between 1 and primeOrder − 1.

Output: accept or reject

Verify

if C = hr
∏k

i=1 g
xi

i mod primeModulus then1

Output accept2

else3

Output reject4

Comments:

If only one generator exists (namely g1), then the commitment is only computationally

hiding based on the Discrete Logarithm assumption, although it still works.

A.5 Honest-Verifier Zero Knowledge Sigma Proofs

In these Σ-protocols (sigma proofs) [55, 59, 135], both the Prover and the Verifier

know the definition of the group used, as well as some common information (typically

a commitment) C. In all honest-verifier zero knowledge Σ-proofs, the Prover first

sends a randomized proof R. The Verifier then replies with a challenge c (which is

always generated in the same way). The Prover then responds to that challenge with

216

some value A. Finally, the Verifier verifies the whole proof.

Algorithm A.5.1: Randomized Proof round of a Σ-protocol. This procedure

is run by the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h,

Output: randomized proof R, its opening openR

Randomize Proof

Will be defined separately for each protocol.1

Algorithm A.5.2: Challenge round of a 3-round Σ-protocol. This procedure

is run by the Verifier upon receipt of randomized proof R from the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h,

commitment C, randomized proof R

Pre-conditions: In many protocols we use, the group may not be generated

by the Prover. See the specific protocol specification for

more on this.

Output: challenge c

Post-conditions: C,R and c should be kept for use in the verification

procedure.

Challenge

Pick a random number c from the domain of challenges DC .1

Output challenge c2

Domain of Challenges DC :

If an RSA group is used, the domain of challenges is DC = {0, 1}stat (with the

exception that the challenge must not be 0). If a prime-order group is used, the

domain of challenges is DC = Z∗
primeOrder (actually DC = {0, 1}stat will also work).

When using non-interactive proofs, DC = {0, 1}2∗stat will be used, which will be the

same as DC = Z∗
primeOrder . This means that in practice it will make sense to simply

217

use DC = {0, 1}2∗stat − {0} for both groups.

Domain of Randomness DR:

If an RSA group is used, the domain of randomness is DR = {0, 1}RSALength+stat

(except again the randomness must not be 0). If a prime-order group is used, the

domain of randomness is DR = Z∗
primeOrder . Note that, unlike the challenge domains,

these domains are very different for both groups, and that the prime-order group is

more efficient in terms of both computation and communication.

Non-Interactive Version:

If non-interactive proofs will be employed using the Fiat-Shamir heuristic [74], the

challenge will be computed as c = hash(definition of the group and bases used || k ||

C || R). This computation can be carried out by the Prover and the Verifier sepa-

rately, and then the Verifier can verify the proof as before. It is important to note

that if the Fiat-Shamir heuristic is used, the resulting protocol is secure only in the

Random Oracle model [19, 46].

Full Zero Knowledge:

Techniques for converting honest-verifier zero-knowledge proofs to full zero-knowledge

proofs (i.e., using trapdoor commitments as in [60]) should be applied for the interac-

tive versions. Non-interactive versions using the Fiat-Shamir heuristic do not require

this conversion, since the Random Oracle model essentially forces the Verifier to be

honest. Since all the proofs we will use are non-interactive, we do not provide full

218

zero-knowledge protocols here.

Algorithm A.5.3: Response round of a Σ-protocol. This procedure is run by

the Prover.
Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h, opening

of C: openC, randomized proof R and its opening openR, challenge c

Output: response A

Respond

Will be defined separately for each protocol.1

Algorithm A.5.4: Verification of a Σ-protocol. This procedure is run by the

Verifier upon receipt of response A from the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h,

commitment C, randomized proof R, challenge c, response A

Output: accept or reject

Verify

Will be defined separately for each protocol.1

Non-Interactive Verification:

When verifying non-interactive proofs, the verification procedure is called with chal-

lenge c = hash(definition of the group and bases used || k || C || R), and the rest

proceeds the same as the interactive version.

Randomization:

Here is a tiny procedure that we will refer to when we would like to create random

219

numbers.

Algorithm A.5.5: Procedure to generate a random group element with asso-

ciated random exponents. Call this procedure Randomize.

Input: Definition of the group, number of random elements k, number of fixed

elements l, bases g1, . . . , gk+l−1, h, fixed elements x1, . . . , xl if any.

Pre-conditions: l < k, k ≥ 1, l ≥ 0

Output: random element R, random exponenets openR

Randomize

Pick k − 1 random numbers si from the domain of randomness DR.1

Pick another random number t from the domain of randomness DR.2

Compute R = [
∏l

i=1 g
xi

i][
∏k−1

i=1 g
si
l+i]h

t using group operations.3

Output the random group element R and random exponents4

openR = s1, . . . , sk−1, t.

A.5.1 Proof of Knowledge of Discrete Logarithm Represen-

tation

This is the protocol used for proving knowledge of the discrete logarithm representa-

tion of a number using some well-defined bases in an honest verifier zero knowledge

way [135]. The Verifier knows the number and the bases. We call this protocol

PoKoDLR. It has two versions:

The RSA group version uses Fujisaki-Okamoto commitments. Therefore it re-

quires the same setup and the same assumptions. Everything said for the Fujisaki-

Okamoto commitments also applies here.

The prime-order group version uses Pedersen commitments. Therefore it requires

the same setup and the same assumptions. Everything said for the Pedersen commit-

ments also applies here.

220

Version Commitments Used Assumption
RSA group Fujisaki-Okamoto Strong RSA
Prime-order group Pedersen Discrete Log

Table A.1: PoKoDLR protocol security summary.

All operations will be done in respective groups.

Assumptions:

RSA group version makes the Strong RSA assumption.

Prime-order group version makes the Discrete Logarithm assumption.

Honest-Verifier Zero Knowledge:

RSA group version is honest verifier zero knowledge provided that the Fujisaki-

Okamoto commitment is hiding. This means that the RSA group must be generated

by a trusted third party or it must be proven to the Prover that each gi, h generates

QRn.

Prime-order group version is honest verifier zero knowledge provided that the Ped-

ersen commitment is hiding. This means that the prime-order group must be gen-

erated by a trusted third party or the Prover must verify that each gi, h has order

primeOrder .

Soundness:

In RSA group version, the extraction works under the Strong RSA assumption, which

requires that the RSA group may NOT be generated by the Prover.

In prime-order group version, the extraction works without any assumption.

221

Algorithm A.5.6: Randomized Proof round of PoKoDLR protocol. This pro-

cedure is run by the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h

Pre-conditions: The group must be generated by a trusted third party, or it

must be proven to the Prover that each gi, h generates QRn

in a special RSA group, or the Prover must verify that each

gi, h has order primeOrder in a prime-order group.

Output: randomized proof R, its opening openR

Randomize Proof

for i : 1..k do1

Pick a random number si from domain of randomness DR.2

Create a random element R using Randomize(group definition, k + 1,3

g1, . . . , gk, h) as in Algorithm 16. Let the random exponents returned by the

Randomize procedure be openR = s1, . . . , sk, t.

Output randomized proof R and its opening openR.4

222

Algorithm A.5.7: Response round of PoKoDLR protocol. This procedure is

run by the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h,

opening open = x1, . . . , xk, r, randomized proof R and its opening

openR = s1, . . . , sk, t, challenge c

Pre-conditions: The group must be generated by a trusted third party, or it

must be proven to the Prover that each gi, h generates QRn

in a special RSA group, or the Prover must verify that each

gi, h has order primeOrder in a prime-order group.

Output: response A

Respond

for i : 1..k do1

Compute ai = si + cxi2

Compute b = t + cr3

[In prime-order group version, let ai = ai mod primeOrder and b = b4

mod primeOrder]

Output response A = a1, . . . , ak, b5

223

Algorithm A.5.8: Verification of PoKoDLR protocol. This procedure is run

by the Verifier upon receipt of response A from the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h,

commitment C, randomized proof R, challenge c, response

A = a1, . . . , ak, b

Pre-conditions: The RSA group may NOT be generated by the Prover

Output: accept or reject

Verify

if RCc = hb
∏k

i=1 g
ai
i (mod n for RSA group version, mod primeModulus1

for Prime-order group version) then

Output accept2

else3

Output reject4

Warnings:

In prime-order group version of this protocol, it’s important for both parties to make

sure that each xi, r, si, t is between 1 and primeOrder − 1. Prover can only prove

knowledge of xi that is in that range.

A.5.2 Proof of Equality of Discrete Logarithm Representa-

tion

This is the protocol for proving knowledge of the equality of discrete logarithm rep-

resentations of some numbers using some well-defined bases in an honest verifier zero

knowledge way. The Verifier knows the bases. We call this protocol PoEoDLR. it

has two versions:

The first version uses Fujisaki-Okamoto commitments. Therefore it requires the

224

same setup and the same assumptions. Everything said for the Fujisaki-Okamoto

commitments also applies there.

The second version uses Pederson commitments. Therefore it requires the same

setup and the same assumptions. Everything said for the Pederson commitments also

applies there.

All operations will be done in respective groups.

Assumptions:

RSA group version makes the Strong RSA assumption.

Prime-order group version makes the Discrete Logarithm assumption.

Honest-Verifier Zero Knowledge:

RSA group version is honest verifier zero knowledge provided that the Fujisaki-

Okamoto commitment is hiding. This means that the RSA group must be generated

by a trusted third party or it must be proven to the Prover that each gi, h generates

QRn.

Prime-order group version is honest verifier zero knowledge provided that the Ped-

ersen commitment is hiding. This means that the prime-order group must be gen-

erated by a trusted third party or the Prover must verify that each gi, h has order

primeOrder .

Soundness:

In RSA group version, the extraction works under the Strong RSA assumption, which

requires that the RSA group may NOT be generated by the Prover.

225

In prime-order group version, the extraction works without any assumption.

Algorithm A.5.9: Randomized Proof round of PoEoDLR protocol. This pro-

cedure is run by the Prover.

Input: Definition of the group, bases g1, ..., gk, h, number of common secrets k,

number other secrets l

Output: randomized proof set R, its opening set openR

Randomize Proof

for i : 1..k do1

Pick a random number si from domain of randomness DR.2

for i : 1..l do3

Create the randomized proof Ri to using Randomize(group definition, 14

(number of random elements), k (number of fixed elements), g1, ...gk, h

(bases), s1, . . . , sk (fixed elements)). Let the opening returned by the

Commit procedure be openRi = s1, . . . , sk, ti.

Output randomized proof set R (set of Ri’s) and opening set openR (set of5

openRi’s).

226

Algorithm A.5.10: Response round of PoEoDLR protocol. This procedure is

run by the Prover.

Input: Definition of the group, f the group, bases g1, ..., gk, h, number of

common secrets k, number other secrets l, common secrets x1, . . . , xk

and other secrets r1, . . . , rl, openings of randomized proofs

openR1 . . . openRl where openRj = s1, . . . , sk, tj , challenge c

Output: set of responses A = a1, . . . , am

Respond

for i : 1..k do1

Compute ai = si + cxi2

for j : 1..l do3

Compute bj = tj + crj4

If no RSA group is involved, let ai = ai mod primeModulus and bi = bi5

mod primeModulus

Output response A = a1, . . . , ak, b1, . . . , bl6

227

Algorithm A.5.11: Verification of PoEoDLR protocol. This procedure is run

by the Verifier upon receipt of response A from the Prover.

Input: Definition of the group, number of common secrets k, number of other

secrets l, bases g1, . . . , gk, h, set of commitments C = C1, . . . Cl, set of

randomized proofs R = R1, . . . Rl, challenge c, response

A = a1, . . . , ak, b1, . . . , bl

Output: accept or reject

Verify

if R1C
c
1 = hb1

∏k
i=1 g

ai
i AND . . . AND RlC

c
l = hbl

∏k
i=1 g

ai
i then1

Output accept2

else3

Output reject4

A.5.3 Proof that a Committed Value x is of the Form x = y∗z

This is the protocol used for proving that a discrete logarithm representation is a

product of two discrete logarithm representations in an honest verifier zero knowledge

way [58]. In particular, this protocol can be used to prove that a committed number

is a square, as in [32].

Suppose the Prover knows secrets x, y, z such that x = y ∗ z and wants to prove

this to an honest verifier. The Verifier knows commitments to each of these numbers:

Cx is a commitment to x, Cy is to y and Cz is to z. We call this protocol Mult.

It uses Fujisaki-Okamoto commitments. Therefore it requires the same setup and

the same assumptions. Everything said for the Fujisaki-Okamoto commitments also

applies here.

Assumptions:

228

The security of the scheme relies on Strong RSA assumption.

Honest-Verifier Zero Knowledge:

The protocol is honest verifier zero knowledge provided that the Fujisaki-Okamoto

commitment is hiding. This means that the RSA group must be generated by a

trusted third party or it must be proven to the Prover that each gi, h generates QRn.

Soundness:

The extraction works under the Strong RSA assumption, which requires that the

RSA group may NOT be generated by the Prover.

Algorithm A.5.12: Randomized Proof round of a Mult protocol for x = yz.

This procedure is run by the Prover.

Input: Definition of the RSA group and bases: n, g1, h

Output: randomized proof R, its opening openR

Randomize Proof

Pick a random number s from DR.1

Create a random element R1 using Randomize(group definition, 1, 1, g1, h,2

s) as in Algorithm 16 where s is a fixed element. Let the random exponent

returned by the Randomize procedure be openR1 = t1.

Create a random element R2 using Randomize(group definition, 1, 1, Cy, h,3

s) as in Algorithm 16 where s is again a fixed element. Note the use of Cy as

one of the bases in the procedure (it will be used with the fixed element). Let

the random exponent returned by the Randomize procedure be openR2 = t2.

Output randomized proof R = R1, R2 and opening openR = s, t1, t2.4

229

Algorithm A.5.13: Response round of a Mult protocol for x = yz. This

procedure is run by the Prover.

Input: Definition of the RSA group and bases: n, g1, h, openings to

commitments Cx, Cy, Cz as openX = x, rx, openY = y, ry,

openZ = z, rz , randomized proof R = R1, R2 and its opening

openR = s, t1, t2, challenge c

Output: response A

Respond

Compute a = s+ cz, b1 = t1 + crz, b2 = t2 + c(rx − zry)1

Output response A = a, b1, b22

Algorithm A.5.14: Verification of a Mult protocol for x = yz. This procedure

is run by the Verifier upon receipt of response A from the Prover.

Input: Definition of the RSA group and bases: n, g1, h, commitments

Cx, Cy, Cz, randomized proof R = R1, R2, challenge c, response

A = a, b1, b2

Output: accept or reject

Verify

if R1C
c
z = ga1h

b1 mod n AND R2C
c
x = Ca

yh
b2 mod n then1

Output accept2

else3

Output reject4

Proving knowledge of x, y such that x = y2:

Using the proof above, it is very easy to prove knowledge of x, y such that x = y2.

Just set z = y, which also means getting rid of Cz, or in other words, setting Cz = Cy

and hence openCz = openCy.

230

A.5.4 Proof that a Committed Value x is Non-Negative x ≥ 0

We would like to prove that a secret value x is greater than or equal to 0 [32, 103].

The protocol uses a special RSA group. The verifier knows a commitment Cx to x,

along with the RSA group definition. The prover additionally knows the secret x.

As shown by Lagrange, any non-negative integer can be represented as a sum of

4 squares [130, 103] (e.g., x = v21 + v22 + v23 + v24), whereas negative integers cannot

(obviously, square numbers must sum up to a non-negative number). These numbers

(vi) can be computed efficiently [103, 130]. Let Wi be v2i .

We have seen that using the Mult algorithm, we can prove that a committed

number is actually a square. Therefore, the basic idea is to prove that each Wi is a

square (by committing to them so that the verifier does not learn Wi or vi), and then

their sum is equal to x.

We call this protocol Non-Negative. It uses Fujisaki-Okamoto commitments.

Therefore it requires the same setup and the same assumptions. Everything said for

the Fujisaki-Okamoto commitments also applies here.

Assumptions:

The security of the scheme relies on Strong RSA assumption.

Honest-Verifier Zero Knowledge:

The protocol is honest verifier zero knowledge provided that the Fujisaki-Okamoto

commitment is hiding. This means that the RSA group must be generated by a

trusted third party or it must be proven to the Prover that each gi, h generates QRn.

Soundness:

The extraction works under the Strong RSA assumption, which requires that the

RSA group may NOT be generated by the Prover.

Below we provide the pseudocode for proving that a given value y is non-negative

231

(y ≥ 0). We call this protocol Non-Negative.

In the Non-Negative protocol, the Prover is given a commitment Cy and its open-

ing openy = y, ry, and the group definition. The Verifier is given Cy and the group

definition.

1. The Prover computes v1, v2, v3, v4 using the four-squares algorithm [103, 130].

Let Wi = v2i .

2. The Prover computes commitments Ci toWi with their openings openi = Wi, ri,

with the only rule that the last randomness is set to be r4 = ry − (r1+ r2+ r3).

3. The Prover proves that each Ci is a commitment to a square, using the special

case of the Mult protocol.

4. The Verifier, in addition to checking that each Ci is a commitment to a square,

checks if Cy = Π4
i=1Ci. If all checks pass, the Verifier accepts, otherwise he

rejects.

A.5.5 Proof that a Committed Value x lies within an Interval

[lo, hi]

We would like to prove that a secret value x lies within a publicly known interval

[lo, hi], as in [32, 103, 40]. The protocol uses a special RSA group. The verifier knows

a commitment Cx to x, and lo, hi, along with the RSA group definition. The prover

additionally knows the secret x.

Observe that x is in the interval [lo, hi] iff (x − lo) ∗ (hi − x) ≥ 0. This is true

for any proper range (hi ≥ lo), since no value x can be smaller than lo and greater

than hi at the same time. Further observe that a commitment to x − lo can easily

be obtained by computing D = Cxg
−lo
1 , and a commitment to hi − x can easily

232

be obtained by computing E = ghi1 C−1
x . Once the verifier computes D,E himself,

notice that the prover can use the Mult algorithm to prove that commitment Cy to

y = (x− lo) ∗ (hi− x) is the multiplication of x− lo and hi− x committed as D,E.

Then, the prover can prove that y ≥ 0. We call this protocol Range.

The Verifier knows a commitment Cx to x, the interval (meaning lo, hi), and the

RSA group definition, and can compute D and E. The Prover, in addition to these,

also knows the opening openx = x, rx to Cx.

1. The Prover sets y = (x− lo)∗ (hi−x) and computes Cy = gyhr and proves that

Cy contains multiplication of the values in D and E using the Mult protocol.

2. The Prover runs the Non-Negative protocol for y using Cy as the commitment.

A.6 CL Signatures

Camenisch-Lysyanskaya (CL) signatures [42, 43, 38, 13] is an example of blind signa-

tures, where the signer may not know the values she signed. Besides, useful protocols

such as proving existence of a CL signature on a secret value is also necessary. The

version of CL signatures we will present here uses special RSA groups.

Setup:

The key generation of CL signatures is exactly as generating a special RSA group as

in Algorithm 6:

• We have the following generators: f, g1, . . . , gm, h, and the key owner (signer)

needs to provide a non-interactive proof that all these generators generate the

same group (namely, QRn). This can be done by proving the knowledge of ai

such that gi = hai mod n and a such that f = ha mod n.

• The public key (i.e., verification key) is CLPK = n, f, g1, . . . , gm, h.

233

• The secret key (i.e., signing key) is CLSK = p, q.

Assumptions:

The security of the scheme relies on Strong RSA assumption.

Parameters:

This scheme uses the following (security) parameters: RSALength for the length of

the RSA modulus, m for the number of bases (maximum number of messages that can

be signed at once), lx for the length of a message and Dx for the domain of messages

(each message xi is in Dx = {0, 1}lx). We can also use messages in the domain

Dx = [−(2lx−1), 2lx−1]. Further define le = lx+2 and lv = RSALength+ lx+2∗stat.

Algorithm A.6.1: Signing procedure for a CL signature. This is the signing

procedure to sign a public message (not a blind signature yet). This procedure

is run by the Signer.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, secret key

CLSK = p, q, messages to be signed x1, . . . , xk

Pre-conditions: Each message xi needs to be in Dx.

Output: signature σ = A, e, v

Sign

Pick a random prime number e of length le.1

Pick a random number v of length lv.2

Compute the value A such that Ae = fhvΠk
i=1g

xi

i mod n. This can be done3

with the knowledge of the CLSK = p, q by setting A = [fhvΠk
i=1g

xi

i]1/e

Output the signature A, e, v.4

234

Algorithm A.6.2: Verification procedure for a CL signature. This is the ver-

ification procedure to verify a public message (not a blind signature yet). This

procedure is run by the Verifier.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, messages

x1, . . . , xk, signature σ = A, e, v

Pre-conditions: Each message xi needs to be in Dx. e needs to be of length

le, v needs to be of length lv.

Output: accept or reject

Verify

Check the pre-conditions (Length checks are important !!).1

if Ae = fhvΠk
i=1g

xi

i mod n then2

Output accept3

else4

Output reject5

A.6.1 Obtaining a Blind CL Signature

Here, we present the protocol to obtain the CL signature on messages that are com-

mitted by the Recipient. Without loss of generality, let the first l out of k messages

be the committed messages, and the rest be public messages.

Hence, both the Recipient and the Issuer knows the Fujisaki-Okamoto commit-

ments C1, . . . , Cl to messages x1, . . . , xl (note that another version can just use one

commitment to all x1, . . . , xl under different bases. The extension is very straightfor-

ward, and hence not shown). The Issuer knows the public (or issuer-chosen) messages

235

xl+1, . . . , xk. The Recipient knows all the messages x1, . . . , xk.

Algorithm A.6.3: This procedure is run by the Recipient of a blind CL signa-

ture to initiate the signature issuing process.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, messages

x1, . . . , xk, commitments C1, . . . , Cl and their openings

openC1, . . . , openCl which include r1, . . . , rl (if there was only one

commitment to those messages, there’s just on r)

Pre-conditions: Each message xi needs to be in Dx.

Receive

Choose a random v′ of length RSALength + stat .1

Compute C = hv′Πl
i=1g

xi

i .2

Prove using PoEoDLR protocol that the discrete logarithm representation of3

each secret xi in C corresponds to those in C1, . . . , Cl and also prove that

each secret xi is in Dx (note that Dx = [−(2lx − 1), 2lx − 1] and we use a

Range proof).

236

Algorithm A.6.4: This procedure is run by the Issuer of a blind CL signature

to issue a blind CL signature.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, secret key

CLSK = p, q, messages xl+1, . . . , xk, commitments C1, . . . , Cl

Pre-conditions: Each message xi needs to be in Dx.

Output: partial signature σ′ = A, e, v′′

Issue

Pick a random prime number e of length le.1

Choose a random v′′ of length RSALength + lx + stat .2

Compute A = [fChv′′Πk
i=l+1g

xi

i)]1/e. Let us explain this step in detail. The3

given commitment is re-randomized using v′′. Then, public messages are

added to the signature in the Π clause. Finally, the signature is computed.

Send A, e, v′′ to the Recipient and prove using PoKoDLR protocol the4

knowledge of 1/e in the equation above.

Algorithm A.6.5: This procedure is run by the Recipient of a blind CL signa-

ture to construct a CL signature upon receipt of the partial signature.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, partial signature

σ′ = A, e, v′′

Pre-conditions: Each message xi needs to be in Dx. e must be a prime of

length le, v
′′ needs to be of length lv.

Output: signature σ = A, e, v

Construct

Check the range (and optionally primality) for e1

Set v = v′ + v′′2

Output signature σ = {A, e, v}3

237

A.6.2 Proving a CL Signature

Now that the Recipient has a blind CL signature, he wants to prove that fact to a

verifier, without revealing the signature. Without loss of generality, let the first l out

of k messages be the committed messages, and the rest be public messages.

Hence, both the Recipient and the Verifier knows the Fujisaki-Okamoto com-

mitments C1, . . . , Cl to messages x1, . . . , xl (as before, there can be just one com-

mitment to all those messages). The Verifier knows the public (or issuer-chosen)

messages xl+1, . . . , xk. The Recipient knows all the messages x1, . . . , xk and the

signature σ = A, e, v. Of course, both parties know the CL signature public key

CLPK = n, f, g1, . . . , gm, h.

• The Recipient choses a random number r from {0, 1}RSALength+stat .

• The Recipient computes A′ = Ahr and sends A′ to the Verifier. Set v′ = v+r∗e.

• The Verifier and the Recipient both separately computes the public value D =

Πk
i=l+1g

xi

i using public messages xl+1, . . . , xk.

• The Recipient computes the commitment C = hrCΠl
i=1g

xi

i for secret messages

(using a random rC from {0, 1}RSALength+stat), and proves to the Verifier using

PoEoDLR protocol that the discrete logarithm representation of each secret xi

in C corresponds to those in C1, . . . , Cl and also proves that each secret xi is

in Dx (note that Dx = [−(2lx − 1), 2lx − 1], and we use a Range proof), and of

course the knowledge of rC .

• Lastly, the Recipient proves using PoKoDLR protocol the knowledge of e, v′ such

that A′ehrC = fhv′CD (actually, prove that fCD = A′e∗h(rC−v′) or equivalently

fCD = A′e ∗ (1/h)v
′−rC).

238

A.7 E-cash

In this section, we will provide the most efficient e-cash construction until now. We

will be using the regular (non-bilinear) and offline versions of Compact E-Cash [40]

and Endorsed E-Cash [44]. We require that all connections between a user and the

Bank must be over an authenticated and secure channel (i.e., an SSL connection using

the Bank’s certificate).

A.7.1 Compact E-cash

Compact e-cash [40] enables a user to withdraw a wallet containing many coins at

once. But, the coins need to be spent one by one. Some extensions addressing this

issue will be discussed later. Using offline compact e-cash, the Bank can find the

public keys of double-spenders. Double deposits can easily be detected using serial

numbers. The use of CL signatures assure that the serial numbers are not known to

the Bank during the withdrawal process, and hence the anonymity of an honest user

is guaranteed.

Compact e-cash works with a prime-order group, and utilizes CL signatures, so

uses a special RSA group for the purposes of CL signatures. It’s important that the

orderLength ≤ lx, the CL signature message length.

Below, we will present a slightly modified version of compact e-cash. The modifi-

cations keep the scheme secure, while improving its efficiency greatly.

Assumptions:

Compact e-cash works in the Random Oracle model and makes Discrete Logarithm

and Strong RSA assumptions, and also the following assumptions:

q-Decisional Diffie-Hellman Inversion Assumption (see [40, 64]): Given

a group G with modulus n and prime order p, a random generator g, and a q-tuple

(gx, . . . , gx
q

) for a random x ∈ Zp, and a value R, no PPT adversary can decide

239

whether or not R = g1/x mod n with non-negligible probability.

Register

Every user must register with the Bank her public key. This is a very simple protocol,

where the User just picks a random secret key 1 < sku < primeOrder and sends her

public key pku = gsku mod primeModulus to the Bank. The Bank registers the User’s

public key in a database, and associates it to an account.

Later on, whenever a user contacts the Bank and needs to prove her identity, the

User proves knowledge of sku that corresponds to pku using the PoKoDLR protocol

using only one base and Pedersen commitments.

Withdraw

To withdraw a coin, a user contacts the Bank. Before this, the User must have been

registered with the Bank. First, the User proves her identity to the Bank. Then, the

240

User and the Bank execute the following randomization procedure:

Algorithm A.7.1: Randomization procedure between the User and the Bank.

This procedure needs to be executed for each wallet, before the withdrawal.

Input: Both parties know the definition of the prime-order group. The User

knows his secret key sku registered with the bank.

Pre-conditions: The group must be generated by a trusted third party, or

the Prover must verify that each gi, h has order primeOrder

in a prime-order group.

Output: The User’s output is s, t, A, the Bank’s output is A.

Randomize Together

The User picks secrets s′ and t from Z∗
primeOrder .1

The User creates a Pedersen commitment to sku, s
′, t. Call this commitment2

A′. The User sends A′ to the Bank.

The Bank picks a random number r′ from Z∗
primeOrder . The Bank sends r′ to3

the User.

The User sets s = s′ + r′. The User and the Bank independently compute4

A = A′ ∗ gr
′

.

The User’s output is s, t, A, the Bank’s output is A.5

After the Randomize Together protocol, the User gets a blind CL signature from

the Bank. The User starts with the commitment A, which he needs to prove that the

secrets in A correspond to the the secrets he committed to in the CL signature proto-

col, and the first secret corresponds to his secret key. Furthermore, the User also sends

the Bank a wallet size W , which must be picked from a choice of wallet sizes (e.g.,

1,10,100,1000,10000) and must be at most the User’s current account balance. After

checking the User’s balance, the Bank signs sku, s, t,W using blind CL signatures

(where W is public input), and decrements the User’s account balance. At the end

241

of the Withdraw protocol, the User’s wallet is composed of sku, s, t,W, σ(sku, s, t,W)

where σ(sku, s, t,W) denotes the Bank’s CL signature on sku, s, t,W , and a data

structure to keep track of spent and remaining coins in the wallet (even though this

can be a simple counter, we would like to spend coins with random indices, and so

we need to keep a shuffled list of coin indices).

Spend

This is the protocol between a user and a merchant. To prevent man-in-the-middle

attacks, before the exchange of the money, the User and the Merchant perform a

secure key exchange protocol without setup. This can be a simple Diffie-Hellman key

exchange over an RSA group using fresh randomly generated keys for both parties.

Let the session secret derived from the key exchange be ses = hash(session key).

At the beginning, the Merchant picks a random info and sends this to the User.

Both the Merchant and the User computes R = hash(ses , info). Note that only the

User and the Merchant can compute this value. Furthermore, the Merchant needs

to use a different info for every transaction. This is to prevent man-in-the-middle

attacks.

Next, the User picks the next unused coin index (i.e., the next random index in

242

the shuffled list of coin indices). Call this index J .

Algorithm A.7.2: Spend-Earn procedure between the User and the Merchant

for Compact E-cash.

Input: Both parties know the definition of the prime-order group, and the

Bank’s CL signature public key CLPK. The User knows her wallet

sku, s, t,W, σ(sku, s, t,W), and the index J . Both parties know

R = hash(info, ses).

Pre-conditions: The User must have withdrawn a wallet from the Bank, and

the wallet must contain an unused coin. Furthermore, R

must be computed as directed above.

Output: The Merchant outputs coin = B,C,D,W, S, T, J, πCL, πST , info, ses.

Spend Compact E-cash

The User creates Pedersen commitments B to sku, C to s, and D to t. The1

User prepares a non-interactive proof of knowledge of a CL signature on

these values, where W is a public value. Call this proof πCL.

The User computes S = g1/(s+J) and T = pku ∗ g
R/(t+J).2

The User prepares a non-interactive proof that S, T are formed correctly.3

This is done by proving the knowledge of s, t, sku, rB, α, r1, β, r2 such that

B = gsku ∗ hrB , g = (gJ ∗ C)αhr1 (the Prover knows r1 = −rC/(s+ J)

mod primeOrder), g = (gJ ∗D)βhr2 (the Prover knows r2 = −rD/(t+ J)

mod primeOrder), S = gα, T = gsku ∗ (gR)β. Call this proof πST .

The User sends B,C,D,W, S, T, J, πCL, πST to the Merchant.4

The Merchant checks if the coin index is correct: 0 ≤ J < W , the proof of5

knowledge of the CL signature πCL verifies, and S, T are correct under the

proof πST . If all these are satisfied, the Merchant stores

coin = B,C,D,W, S, T, J, πCL, πST , info, ses.

243

Deposit

Depositing the coin is very easy. The Merchant contacts the Bank over a secure

and one-way authenticated channel (i.e., SSL), proves his identity to the Bank, and

then sends the coin to the Bank (coin = B,C,D,W, S, T, J, πCL, πST , info, ses). The

Bank performs the exact check on line 5 of the Spend protocol in Algorithm 32. This

verifies that the coin is formed correctly.

The bank then performs double-spending checks. First, the bank checks if S

appears in the list of deposited coins. If it does not exist in the deposited coins

database, the Bank credits the Merchant’s account, and adds the coin to the database.

If S indeed does exist, it exists together with an R′. If R = R′, then the Merchant is

trying to deposit twice, and thus the Bank rejects the deposit. Otherwise, R 6= R′,

and so the User double-spent the coin. The Bank runs the following Identify Double-

Spender algorithm to find the public key (and hence the account) of the double-

spender. An appropriate punishment can be performed afterwards.

Algorithm A.7.3: Identify Double-Spender procedure run by the Bank.

Input: Two coins coin1, coin2 with the same serial number S but different

R1, T1 and R2, T2.

Output: the public key of the double-spender pku, and proof of

double-spending πDS = coin1, coin2.

Identify Double-Spender

Verify the coins, if not already verified.1

The Bank computes pku = (TR1
2 /TR2

1)(R1−R2)−1
mod primeModulus .2

The Bank outputs the public key of the double-spender pku, and proof of3

double-spending πDS = coin1, coin2.

Given the proof of double-spending, anyone can run the Identify Double-Spender

protocol and be assured that the user with public key pku has really double-spent.

244

This is because the coins require the knowledge of the secret key of the user.

A.7.2 Endorsed E-cash

The Withdraw, Deposit, and Identify Double-Spenders protocols of endorsed e-cash

[44] are the same as the compact e-cash. It makes different assumptions, though.

Assumptions:

Endorsed e-cash works in the Random Oracle model and makes Discrete Logarithm

and Strong RSA assumptions, and also the following assumptions:

Computational Diffie-Hellman Assumption: Given a group G with mod-

ulus n and prime order p, a random generator g, and two values gx mod n and gy

mod n for two random values x, y ∈ Zp, no PPT adversary can compute gxy mod n

with non-negligible probability.

q-Diffie-Hellman Inversion Assumption (see [113]): Given a group G with

modulus n and prime order p, a random generator g, and values (g, gx, . . . , gx
q

) for

a random x ∈ Zp, no PPT adversary can compute g1/x mod n with non-negligible

probability.

Spend

The only different part of the endorsed e-cash is how to spend a coin. The spend

algorithm below is run by the user, who, on input a valid set of values for (info, ses),

245

outputs the unendorsed coin and its endorsment.

Algorithm A.7.4: The algorithm whereby a user generates an unendorsed coin

together with a valid endorsement

Input: The User, as well as the Merchant who will ultimately receive the coin,

know the definition of the prime-order group, and the Bank’s CL

signature public key CLPK. The User knows her wallet

sku, s, t,W, σ(sku, s, t,W), and the index J . Both parties know

R = hash(info, ses).

Pre-conditions: The User must have withdrawn a wallet from the Bank, and

the wallet must contain an unused coin. Furthermore, R

must be computed as directed above.

Output: The unendorsed coin is uecoin = (B,C,D,W, S, T, J, πCL, πST). The

corresponding endorsement is endorsement = (x1, x2, ry)

Spend Endorsed E-cash

The User creates Pedersen commitments B to sku, C to s, and D to t. The1

User prepares a non-interactive proof of knowledge of a CL signature on

these values, where W is a public value. Call this proof πCL.

The User picks random x1, x2, ry from Z∗
primeOrder . The User sets2

y = gx1
1 ∗ g

x2
2 ∗ f

ry ; i.e., y is a Pedersen commitment to (x1, x2, x3). (The

bases used for y are also generators of the prime-order group, but they are

different generators than used for B,C,D, S, T .)

The User computes S = g1/(s+J) ∗ gx1 and T = pku ∗ g
R/(t+J) ∗ gx2.3

The User prepares a non-interactive proof that S, T, E are formed correctly.4

This is done by proving the knowledge of s, t, sku, rB, α, r1, β, r2, x1, x2, ry

such that y = gx1
1 ∗ g

x2
2 ∗ f

ry , B = gsku ∗ hrB , g = (gJ ∗ C)αhr1 (the Prover

knows r1 = −rC/(s+ J) mod primeOrder), g = (gJ ∗D)βhr2 (the Prover

knows r2 = −rD/(t+ J) mod primeOrder), S = gα ∗ gx1,

T = gsku ∗ (gR)β ∗ gx2. Call this proof πST .

The unendorsed coin is uecoin = (B,C,D,W, S, T, J, πCL, πST , y).5

The endorsement is (x1, x2, ry).6

246

The Deposit protocol consists of doing Algorithms 35 and 36 together. Notice

that, the resulting coin is the same as in the compact e-cash, except that the proofs

πCL, πST are slightly different, and that we should use S ′ = S/gx1, T ′ = T/gx2 for

double-spending detection and identification purposes.

The Withdraw protocol stays the same since no extra information needs to be

stored in the wallet for the endorsed e-cash. The usefulness of endorsed e-cash will

be clear once we see Verifiable Encryption and Fair Exchange protocols.

A.7.3 E-Cash FAQ

Q: Why do we run Algorithm 31 before the withdrawal to randomize s?

A: If multiple users use the same s, then their coins will have identical S values. This

means, to identify a double-spender, the Bank needs to check all 2-combinations of

those coins. Therefore, malicious users might mount a denial-of-service attack on the

Bank this way.

Q: Why does the user pick the wallet size W from only a limited list of wallet

sizes?

A: The problem occurs since for efficiency we send both W and the coin index J in

clear when spending. Consider a wallet size of 1 million coins. Only very few people

will have such a wallet, and once anyone sees a coin index that is very large, the

spender can be identified as one of the rich guys. A fully flexible and secure version

would commit to both W and J , and change the proofs accordingly. A range proof

that proves a value is in a committed range (as opposed to a public range) must to

be used [54].

Q: Why do we need Endorsed E-Cash?

A: The values x1, x2, ry can be easily used in verifiable encryption to prove that y, and

hence the coin is formed correctly. Then, it is very easy and fast to fairly exchange

247

x1, x2, ry with the material being bought.

Q: Why do we need the randomness R in the coin?

A: We use R = hash(ses , info) for mainly two reasons. Use of ses ensures that no one

other than the user and merchant knows that value, and thus prevents man-in-the-

middle attacks. The use of info ensures that the merchant uses different R values for

each transaction, which means all the coins he receives will be honored, and so the

Bank can catch double-spenders.

Note that other types of contracts can also be used. What is required from a

contract is that it is different for each transaction. This benefits the merchant and

the Bank, but not the User who wants to cheat. Therefore, the merchant needs to

input enough randomness (in the form of info above) into the contract. The other use

of the contract prevents man-in-the-middle attacks. Consider the case above where

ses is not used and only info is used. Then, an attacker can just forward the coin he

gets from the User to the merchant. One possible problem of this is that the man-in-

the-middle gets the service in effect “for free”. This may not present a problem in all

the scenarios, but we choose to be on the safe side. With ses in use, the connections

of the attacker to the User and the Merchant will be distinguished.

Q: We can identify the public keys of double-spenders, but can we do more?

A: Another version of e-cash is available where the Bank gets enough information to

trace all the coins spent from a wallet of a double-spender. The idea is that dur-

ing withdrawal, the Bank learns a verifiable encryption of the wallet secret under

some other secret. Later on, when double-spending occurs, the Bank learns the se-

cret encryption key similar to the way he learns the user’s public key. Using the

wallet decrypted secret, the Bank can create a blacklist for wallets/coins that the

merchants should not accept. This way, further double-spending will be prevented

online. Unfortunately, this version reveals all purchases of the double-spender. The

248

double-spending may be accidental (faulty software, stolen card, etc.), and so the pri-

vacy of an innocent user may be lost this way. There are “glitch protection” methods

[39] to let some number of accidents happen, but this means all the adversarial users

will double-spend some allowed number of coins every time. Therefore, blacklisting

only “future” coins is an important open problem.

A.8 Verifiable Encryption

We will be using Caminisch-Shoup verifiable encryption [45]. This will later be the

verifiable escrow method used in fair exchange.

Assumptions:

The security of the scheme relies on Strong RSA assumption, Paillier’s Decision Com-

posite Residuosity assumption [123], and existence of a collision-resistant family of

hash functions.

Parameters:

The parameter m denotes the number of messages that can be verifiably encrypted

at once. For Endorsed E-Cash, we need m = 3.

Setup:

The key generation of CS verifiable encryption uses two runs of special RSA group

generation as in Algorithm 6. The important differences are clearly identified below:

• Let N be the modulus returned by the first special RSA group generation. The

generators will be picked in a completely different way. In fact, the group that

will be in use will be a subgroup of Z∗
N2 instead of Z∗

N .

• Pick a random number f ′ from Z∗
N2. Compute f = f ′2N mod N2.

• Pick random numbers x1, . . . , xm, y, z from the interval (0, N2/4). Compute

ai = fxi mod N2 for 1 ≤ i ≤ m, d = f y mod N2, e = f z mod N2.

249

• Compute b = (1+N) mod N2. Notice that b is an element of order N in Z∗
N2 .

• Let the second special RSA group generation return a group with modulus n

and generators g1, . . . , gm, h.

• Also, pick a key hk as the key for a keyed hash function. For simplicity in

presentation below, we will omit the key in hashes, but it will be used for every

hash calculation.

• The public key (i.e., encryption and verification key) is composed of all public

parts of the groups, and the hash function key: V EPK = N, a1, . . . , am, b, d, e, f,

n, g1, . . . , gm, h, hk .

• The secret key (i.e., decryption key) is the secret parts of the groups V ESK =

P,Q, x1, . . . , xm, y, z, p, q such that N = PQ and n = pq.

The absolute value algorithm below will be used in the verifiable encryption

250

scheme a lot.

Algorithm A.8.1: Absolute Value procedure for Camenisch-Shoup verifiable

encryption scheme.

Input: x in range (0, N2)

Pre-conditions: x needs to be in range (0, N2)

Output: abs(x)

abs

if x > N2/2 then1

Output (N2 − x) mod N2
2

else3

Output x mod N2
4

A.8.1 Encrypt

The encryption procedure creates a ciphertext. To turn it into verifiable encryption,

we will need some specialized non-interactive zero knowledge proofs. Just as we need

for fair exchange, this is a labeled encryption scheme [143]. The label is also known

251

as tag, or contract.

Algorithm A.8.2: Encryption procedure for Camenisch-Shoup verifiable en-

cryption scheme. This procedure is run by the Encryptor. This is a sub-

procedure; it’s not verifiable yet.

Input: Verifiable encryption public key

V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk , messages to be

verifiably encrypted x1, . . . , xm, a label L

Output: Ciphertext u1, . . . , um, v, w.

Encrypt

Pick a random number r from the interval (0, N/4).1

for i : 1..m do2

Compute ui = bxi ∗ ari mod N2.3

Compute v = f r mod N2
4

Compute w = abs([d ∗ ehash(u1||...||um||v||L)]r mod N2)5

Output u1, . . . , um, v, w.6

A.8.2 Verifiably Encrypt

We will now provide a conversion from regular encryption to verifiable encryption for

Camenisch-Shoup verifiable encryption scheme. This will involve non-interactive zero

knowledge proofs.

This verification can be used to prove correct encryption of discrete logarithms.

When we consider Endorsed E-Cash, the Prover will verifiably encrypt x1, x2, ry such

that y = gx1
1 ∗ g

x2
2 ∗ f

ry in the group chosen by the Endorsed E-Cash setup. Take a

note that it is a different group than the ones used in verifiable encryption here. X

252

below will be y of the Endorsed E-Cash.

Algorithm A.8.3: Verifiable Encryption procedure for Camenisch-Shoup veri-

fiable encryption scheme. This procedure is run by the Encryptor/Prover.

Input: Verifiable encryption public key

V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk , commitment X to

all messages x1, . . . , xm (or a commitment Xi to each one of them), a

label L

Output: Ciphertext and its proof u1, . . . , um, v, w,X
′, πV E.

Verifiably Encrypt

Get the ciphertext u1, . . . , um, v, w from the Encrypt function in Algorithm1

38, along with the randomness r used in the encryption.

Pick a random number s from the interval (0, N/4).2

Compute a Fujisaki-Okamoto commitment X ′ to x1, . . . , xm using the3

randomness s in the group defined by n, g1, . . . , gm, h (the second RSA group

generated for verifiable encryption purposes).

Prove knowledge of r, s, x1, . . . , xm such that v2 = f 2r mod N2,4

w2 = [d ∗ ehash(u1||...||um||v||L)]2r mod N2, and that each u2
i = b2xi ∗ a2ri

mod N2, and that each xi corresponds to the one in X ′ and X , and that the

range of each xi is (−N/2, N/2) (using a Range proof). Call this proof πV E .

Output u1, . . . , um, v, w,X
′, πV E .5

253

Any party with the verifiable encryption public key can verify the encryption.

Algorithm A.8.4: Verification procedure for Camenisch-Shoup verifiable en-

cryption scheme. This procedure is run by the Verifier.

Input: Verifiable encryption public key

V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk , commitment X

(or commitments X1, . . . , Xm), a label L, ciphertext and its proof

u1, . . . , um, v, w,X
′, πV E

Output: acceptor reject.

Verify

Verify πV E . If verification fails, output reject.1

if abs(w) = w mod N2 then2

Output accept.3

else4

Output reject.5

254

A.8.3 Decrypt

Only a party equipped with the correct secret key can decrypt. In the fair exchange,

this party will be the Arbiter.

Algorithm A.8.5: Decryption procedure for Camenisch-Shoup verifiable en-

cryption scheme. This procedure is run by the Decryptor/Arbiter.

Input: Verifiable encryption public key

V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk , associated secret

key V ESK = P,Q, x1, . . . , xm, y, z, p, q, a label L, ciphertext

u1, . . . , um, v, w

Output: Plaintext m1, . . . , mm or error.

Decrypt

if abs(w) 6= w mod N2 OR vy+z∗hash(u1||...||um||v||L) 6= w2 mod N2 then1

Output error.2

Compute t = 2−1 mod N .3

for i : 1..m do4

Compute m′
i = (ui/v

xi)2t mod N2.5

Set mi = (m′
i − 1)/N mod N2.6

if mi is not in range (0, N) then7

Output error.8

Output m1, . . . , mm9

Proving decryption is done correctly is also possible as given in [45], although it is

a complicated algorithm. But, we employ verifiable encryption in fair exchange, and

the decryption is performed by a trusted third party. Since he is a trusted entity, we

do not expect a proof of decryption. We leave this as possible future work.

255

A.9 Merkle Tree

AMerkle tree is a binary tree where each leaf is a hash of some data, and each non-leaf

node is a hash of its two children. Below we provide pseudocodes on how to employ

Merkle trees to perform verification of any leaf. The nice property is that it requires

O(logn) time to prove and verify that a leaf is part of a Merkle tree with a total of

n leaves.

First, we give the procedureMHash(h, block , `) to compute bhash, the Merkle hash

function [109] that outputs the root of the depth-` Merkle tree of a given block with

hash function h. Next, we give two procedures. One is used to compute the proof

MProve((h, block , `), i) that a particular value is the ith leaf of the Merkle hash tree

of which bhash is the root; and the other procedure MVerify((h, `), (bhash, i, chunk))

is used to verify the proof MProof that the value chunk is the ith leaf of the Merkle

hash tree of which bhash is the root.

Let us start by explaining the idea of the MHash procedure. Consider a rooted

binary tree with 2` leaves (i.e., it is a binary tree of height `). Associated with every

node the tree, there is the address a of the node. Specifically, the label a associated

with the root node is the empty string ε. The label of a left (resp. right) child is

derived by concatenating 0 (resp., 1) to the label of the parent node. Thus, the label

a associated with the ith leaf is the integer i written in binary. Stored at a node

labeled with a, is a value va. In a Merkle tree, stored at each leaf 0 ≤ a ≤ 2` − 1

is the value va = h(chunka), where chunka is the ath chunk of the block; and stored

at every internal node 0 ≤ a ≤ 2i − 1 at depth i ≥ 1 is the value va = h(va||0||va||1).

Finally, the value corresponding to the root node is vε = h(v0||v1). The algorithm

256

MHash outputs this value.

Algorithm A.9.1: MHash : Generating a Merkle hash tree.

Input: A collision-resistant hash function h : {0, 1}∗ 7→ {0, 1}hashLength , the

data block block , the desired tree height `.

Pre-conditions: None.

Output: The value bhash.

Post-conditions: None.

If ` = 0, output h(block).1

Otherwise, divide the block block into block0 and block1, 2 strings of2

approximately equal byte lengths (this has to be done in a deterministic

fashion so that running twice on same input gives same results) and output

h(MHash(h, block0, `− 1)||MHash(h, block1, `− 1))

To prove that chunk is the ith chunk of the block, whose hash value is bhash =

MHash(block), reveal the values vaj where for 1 ≤ j ≤ `, the label aj is obtained by

taking the first j−1 bits of the binary representation of i, and concatenating to them

the negation of the jth bit. (For example, if i = 0101, then a1 = 1, a2 = 00, a3 = 011

and a4 = 0100.) In the Merkle tree, the node aj will be the sibling of the jth node on

the path from the root to the chunk in question. The procedure for doing this is as

257

follows:

Algorithm A.9.2: Generating the proof MProof = (v1, . . . , vj, chunk) that

chunk is the ith leaf of the Merkle tree.
Input: A collision-resistant hash function h : {0, 1}∗ 7→ {0, 1}hashLength , the

data block block , the desired tree height `; the index i.

Pre-conditions: 0 ≤ i < 2`

Output: The value MProof .

Post-conditions: None.

If ` = 0, return block .1

Otherwise, divide the block block into block0 and block1, 2 strings of2

approximately equal byte lengths (this has to be done in a deterministic

fashion, the same as what is done by the algorithm MHash).

If i ≥ 2`−1, return3

(MHash(h, block0, `− 1),MProve((h, block1, `− 1), i− 2`−1)).

Else return (MHash(h, block1, `− 1),MProve((h, block0, `− 1), i)).4

To verify that (v1, ..., v`) is a valid proof that chunk is the ith chunk of block

associated with bhash, we recompute the labels aj (as above). We know that vj = vaj

is the value that should be associated with node labelled aj . Let i = i1i2 . . . i`, i.e.,

ij is the jth bit of the `-bit binary representation of i. Let bj = i1 . . . ij be the j-bit

prefix of i. First, we know that vi = h(chunk). For each j, ` − 1 ≥ j ≥ 0, compute

vbj = h(vbj ||0||vbj ||1). We can do it because one of (vbj ||0, vbj ||1) is vaj+1
, and the other

one is computed in the previous step. Finally, verify that vε = bhash.

If two conflicting proofs can be constructed (i.e., for chunk 6= chunk ′, there are

proofs that each of them is the ith chunk of block associated with bhash), then a

collision in h is found, contradicting the assumption that h is collision-resistant.

258

A.10 Skip List

The skip list data structure (see Figure A.1) is an efficient means for storing a set S of

elements from an ordered universe. One can think of it as a randomized Merkle tree

that supports the following operations efficiently: find(x) (determine whether element

x is in S), insert(x) (insert element x in S), and delete(x) (remove element x from

S). It stores a set S of elements in a series of linked lists S0, S1, S2, . . . , St. The base

list, S0, stores all the elements of S in order, as well as sentinels associated with the

special elements −∞ and +∞. Each successive list Si, for i ≥ 1, stores a sample of

the elements from Si−1. To define the sample from one level to the next, we choose

each element of Si−1 at random with probability 1
2
to be in the list Si.

-oo

39 +oo

v1
v8

0

4

-oo

-oo

25

25

25

31

31 38 44 55

v3v4v5

v7

v6 v9

w 3

w 4

w 5

w 6

w 7

3 55

55

58 67

67

80

67

81

Figure A.1: A skip list used to store the ordered set
{25, 31, 38, 39, 44, 55, 58, 67, 80, 81}. The proof for the existence of element
39 (and for the absence of element 40) as proposed in [86] is the set
{44, 39, 38, 31, f(v1), f(v6), f(v7), f(v8), f(v9)}. The recomputation of f(w7) is
performed by sequentially applying h(·, ·) to this set.

A.11 ASW Fair Exchange

We present, for reference, the fair exchange protocol for exchanging signatures, due

to Asokan, Shoup, and Waidner (ASW) [7]. Alice and Bob would like to exchange

259

their signatures on some contract. The version we present below does not employ

timeouts. The protocol in its basic sense (without conflict resolution details) is:

1. Alice sends Bob a non-verifiable escrow of her signature, with a label defining

how Bob’s signature should look like. Bob checks if the definition is the correct

definition.

2. Bob sends Alice a verifiable escrow of his signature, with the label defining how

Alice’s signature should look like and also attaching the escrow he obtained in

step 1. Alice verifies the verifiable escrow. She furthermore checks if the label

is formed correctly. If anything goes wrong at this step or a message timeout

occurs, she aborts the protocols and runs AliceAbort with the Arbiter.

3. Alice sends Bob her signature. Bob verifies this signature, and stops and runs

BobResolve if it does not verify or a message timeout occurs.

4. Bob sends Alice his signature. If the signature does not verify, Alice runs

AliceResolve.

The AliceAbort, BobResolve and AliceResolve protocols have a similar logic as ours.

AliceAbort tells the Arbiter to consider that trade as aborted and not to honor any

further resolution request on that particular trade. BobResolve gets Alice’s signature

by providing Bob’s signature, and similarly, AliceResolve gets Bob’s signature by

providing Alice’s signature. ASW provide a more complicated protocol for exchanging

an electronic check for a digital file, building on top of their signature exchange

protocol. The details of both protocols can be found in [7].

	List of Tables
	List of Figures
	The Next Generation Secure Cloud
	Fairness in the Cloud
	Trust in the Cloud
	Computation in the Cloud
	Storage in the Cloud
	Judging in the Cloud
	Implementing the Cloud
	Organization

	Networking in the Cloud
	Introduction
	Previous Work
	Contributions

	Notation
	(Optimistic) Fair Exchange
	Barter with Timeouts
	BobResolve
	AliceResolve
	Subprotocols

	Security Analysis
	Universal One-Way Hash Functions
	Privacy Analysis

	Efficient Barter without Timeouts
	AliceAbort
	Analysis of Barter without Timeouts

	Generalized Version
	Efficiency Analysis
	Limitations and Future Work
	Conclusion

	Trusting the Cloud
	Introduction
	Definition of a DAFE Protocol
	Sample DAFE Protocols

	Notation
	DAFET Protocols (DAFE Protocols with Timeouts)

	Framework for Analysis of DAFE Protocols
	Scenario 1: M can Abort
	Scenario 2: Only H can Abort
	Scenario 3: H can Resolve only after Timeout
	Scenario 4: M already Resolved

	Impossibility Results on DAFE Protocols
	Protocol 1: Alice and Bob can Abort and Resolve
	Protocol 2: Only one party can Abort

	Relaxing Autonomous Arbiters Assumption
	Scenario 2 Revisited
	Protocol 2 Revisited (More Impossibility Results)

	Applying DAFET Framework to Prove Optimality
	Discussion: Timeouts and Dynamic Resolution Sets
	Conclusion and Future Work

	Computing in the Cloud
	Introduction
	Related Work

	Model
	Basic Construction
	Accuracy and Hash Functions
	When to Check an Answer
	Double Checking
	Hiring Multiple Contractors
	Hybrid Strategy
	Employing Bounties

	Malicious Contractors
	Independent Malicious Contractors
	Colluding Malicious Contractors

	Evaluation
	Conclusion and Future Work

	Storing in the Cloud
	Introduction
	Contributions
	Related Work

	Model
	Rank-based Authenticated Skip Lists
	Rank-based Queries
	Authenticating Ranks
	Setup
	Queries
	Verification
	Updates

	DPDP Scheme Construction
	Core Construction
	Blockless Verification

	Security
	Rank-based RSA Trees
	Extensions and Applications
	Variable-sized Blocks
	Directory Hierarchies
	Version Control

	Performance Evaluation
	Communication
	Server Computation
	Version Control

	Future Work
	Other DPDP Constructions
	On Impossibility of Dynamic Proof of Retrievability Schemes

	Official Arbitration in the Cloud
	Introduction
	Previous Work
	Contributions

	Agreement and Official Arbitration
	Efficient Dynamic Agreement and Official Arbitration Protocol
	Payment-Extended Dynamic Official Arbitration Protocol
	Dispute Resolution
	Analysis

	Performance Evaluation

	Practicality of the Cloud
	Introduction
	Related work
	Contributions

	Cryptographic Background
	Implementation of Cashlib
	Modifications to Endorsed E-cash
	Modifications to Buying and Bartering
	Performance of Primitives
	Performance of High Level Protocols

	Conclusions and Future Work

	Conclusion and Future of the Cloud
	Bibliography
	Algorithms Used
	Security Parameters
	Assumptions
	Setup
	Commitment Schemes
	Fujisaki-Okamoto Commitment Scheme
	Pedersen Commitment Scheme

	Honest-Verifier Zero Knowledge Sigma Proofs
	Proof of Knowledge of Discrete Logarithm Representation
	Proof of Equality of Discrete Logarithm Representation
	Proof that a Committed Value x is of the Form x = y * z
	Proof that a Committed Value x is Non-Negative x 0
	Proof that a Committed Value x lies within an Interval [lo,hi]

	CL Signatures
	Obtaining a Blind CL Signature
	Proving a CL Signature

	E-cash
	Compact E-cash
	Endorsed E-cash
	E-Cash FAQ

	Verifiable Encryption
	Encrypt
	Verifiably Encrypt
	Decrypt

	Merkle Tree
	Skip List
	ASW Fair Exchange

