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Introduction

Probabilistic models pervade almost all areas of computer science today (e.g., computer

vision, graphics, intelligent agents, and natural language processing). One common mod-

eling tool is that of a finite-state, stationary Markov chain, which is characterized by an

initial probability distribution and a transition matrix that satisfies the Markov property.

The long-term behavior of such a Markov chain can be summarized by another probability

distribution, which is a particular example of astabledistribution, or equilibrium. Under

certain conditions, a Markov matrix has a unique stable distribution, which may be com-

puted using standard linear algebra techniques. In general, however, a Markov matrix may

have an infinite number of stable distributions, so that determining the long-term behavior

of a Markov chain requires more difficult analysis.

Economists and game theorists also use finite-state, stationary Markov chains to study,

for example, market dynamics and learning in repeated games. It is quite common for such

models to have multiple equilibria. Since individuals do not always behaverationally (i.e.,

optimally), some researchers have introduced an additional parameter,ǫ, that captures the

“mistakes” (i.e., sub-optimal choices) that individuals sometimes make, and which has the

added benefit of forcing any such model to converge to a uniquelong-term equilibrium.

The resulting model is called aperturbedMarkov chain, and the corresponding transition

matrix is then aperturbedMarkov matrix (PMM), with entries that arefunctionsof ǫ. Of

particular interest is the limit of the stable distributions of a PMM asǫ → 0, the so-called

stochastically stabledistribution (SSD) of a PMM (Kandori et al., 1993; Young, 1993),

which is known to exist and to be unique.

A naive approach to computing the SSD of a PMM is to simply to fixǫ at a very small

value and to compute the corresponding stable distributionof the resulting unperturbed

Markov matrix using traditional linear algebra techniques. Repeating this computation for

a decreasing sequence ofǫs yields a sequence of approximations to the SSD. However,
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without precise analytic bounds on the error of such approximations (as a function ofǫ),

they do not really say anything about the SSD. An exact combinatorial algorithm for com-

puting the SSD is known (Friedlin and Wentzell, 1984), but itinvolves enumerating certain

spanning subtrees of the graph associated with the PMM. Because sufficiently expressive

Markov models tend to be very high-dimensional, and becausethe number of spanning

subtrees grows exponentially with the dimension, such an approach is not feasible in gen-

eral.

Recently, Gambin and Pokarowski (2001) have attempted to exploit state-aggregation

techniques to compute stable distributions of high-dimensional Markov matrices. While

these researchers have devised an efficient, recursive algorithm, their results are only ap-

proximate. We improve upon past results by presenting a novel state aggregation technique,

which we use to give the first (to our knowledge) scalable, exact algorithm for computing

the stochastically stable distribution of a perturbed Markov matrix. Since it is not com-

binatorial in nature, our algorithm is computationally feasible even for high-dimensional

models. Researchers in economics have already used our approach to study the dynamics

of housing markets. Given the widespread use of Markov models in computer science, we

imagine that it will soon find direct applications there, as well.
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Overview

This thesis is divided into three parts. Part I focuses on Markov matrices and their stable

distributions. This part sets the groundwork for Part II, onperturbed Markov matrices

(PMMs) and their stochastically stable distributions (SSDs). It is here where we present

our algorithm for computing the SSD of a PMM. Part III presents two additional algorithms,

which were inspired by our algorithmic work on computing theSSD of a PMM; however,

making these theoretical connections precise remains for future work.

Overview of Part I

In more detail, the main goal of Part I is to introduce our novel approach to state aggregation

in a Markov chain, which we callreduction(or thereduceconstruction). Unlike related

techniques, reduction actually eliminates states from consideration by compressing time.

In fact, state aggregation is only a side-effect of reduction that arises when we choose to

eliminate all but one member of a set of “closed” states.

In Part II, we show that reduction can be generalized to PMMs in a manner that is

amenable to (real) analysis. While the primary goal of Part Iis to introduce the reduction

construction for use in Part II, we will illustrate its usefulness immediately (in Part I) by

proving a number of “structure” theorems for Markov matrices. That is, we will use reduc-

tion to develop novel proofs of classic results on the natureof the set of stable distributions

of a Markov matrix.

We first present the reduce construction in the context of Markov matrices, deferring

making the connection to Markov chains until later. Although the construction may be

defined algebraically, the intuition behind it is geometric. So we begin with a combination

of graph theory and linear algebra in chapter 1, showing how algebraic properties of a
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Markov matrix,M , may be expressed in terms of its associated graphs, where the vertices

of the graph correspond to indices ofM .

Two key concepts defined in chapter 1 areopenandclosedsets of vertices in a graph.

In chapters 4 and 5 we will show that we may apply our construction to eliminate a sets

of indices ofM iff s corresponds to an open set of vertices in the graph ofM . Likewise,

chapters 2, 3, 4, and 5 will be largely dedicated to demonstrating the connection between

M ’s closed sets and its collection of stable distributions.

Because the reduce construction is defined in terms of submatrices, in chapter 2, we

develop sufficient theory to carefully define and analyze thebehavior of certain submatrices

of a Markov matrix. In chapter 3, we give a novel proof thatM∞ ≡ limN→∞
1
N

∑N−1
j=0 M j

exists for any Markov matrix,M . This will allow us to prove the first of our structure

theorems, characterizing the set of stable distributions of a Markov matrix.

Next, in chapter 4, we give an algebraic characterization ofopen sets, showing that a

set of indices is open iff the corresponding submatrix ofM is invertible. This then lays

the groundwork for chapter 5 where we show how to eliminate open sets of indices, by

applying our main construction,reduction, to reduce the dimension ofM , without losing

any information about its stable distributions. Also, in chapter 5, we present another im-

portant idea, which we callscaling. For unperturbed matrices, scaling may be recognized

as right-preconditioning, a standard technique used to solve linear systems of equations.

In this chapter we also introduce two novel notions ofequivalencebetween Markov

matrices, and show that we may recover the set of stable distributions of a given Markov

matrix from the corresponding set of any equivalent one. This is a non-trivial result, in that,

even though reduction produces a Markov matrix of strictly smaller dimension, we can still

prove that the result is, in a precise sense, equivalent to the original. Thus, if one is only

interested in computing stable distributions, reduction is a powerful tool for simplifying

high-dimensional Markov models.

Overview of Part II

The heart of Part II is our algorithm for computing the SSD of aPMM, presented in chap-

ter 7. However, we begin in chapter 6 by taking some time to prove the Markov Chain Tree

Theorem (MCTT) in detail. Although it is not computationally practical as a means of
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computing the SSD of a PMM, the MCTT provides the theoreticalbasis for most of chap-

ter 7. To our knowledge, this proof is novel. Moreover, we feel it has a pleasing geometric

flavor to it.

In chapter 7, we move on to give a precise definition of a perturbed Markov matrix,Mǫ,

and its associated stochastically stable distribution. The key issue throughout the chapter is

that we must always be able to take limits asǫ → 0 (i.e., continuity), and the unweighted

graph ofMǫ must be constant forǫ > 0. Thus, the entries ofMǫ must be well-behaved, and

they must remain so as such as we apply algebraic operations on Mǫ. These conditions on

the analytic nature ofMǫ effectively force the entries of a PMM to be in a certain classof

functions, known asexponentially convergentfunctions.

Thus, in section 7.1, we introduce the class of exponentially convergent functions and

discuss how members of this class behave both algebraicallyand analytically. After defin-

ing perturbedmatrices in section 7.2 (as matrices with exponentially convergent entries),

we define perturbedMarkovmatrices PMMs in section 7.3 (as unichain Markov matrices

with exponentially convergent entries). Using the MCTT, weshow that the unique stable

distribution of a PMM,Mǫ, is a perturbed matrix,vǫ, so that its limit,v0, asǫ → 0, i.e.,

the stochastically stable distribution ofMǫ, is well-defined. In sections 7.4 through 7.6, we

show how the concepts of equivalence, scaling, and reduction from chapter 5 generalize to

PMMs.

We then use these constructions, in section 7.7, to give our algorithm for computing the

SSD of a PMM. The two fundamental difficulties with designingsuch an algorithm are:

• how to efficiently represent a PMM for algebraic computation, and

• how to carry out the necessary algebraic computations without ever inverting a PMM.

By a careful appeal to the MCTT, we show that:

• we may represent any PMM by a pair of real-valued matrices, and

• by applying reduction to eliminate open sets in the graph ofM0 ≡ limǫ→0 Mǫ, we

need only invert submatrices ofM0, i.e., unperturbed Markov matrices.

Finally, in order to guarantee that our algorithm makes progress and eventually terminates,

we use scaling in a rather subtle manner (cf. Corollary 7.17).
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If we are instead interested in computing therate of convergenceto the SSD, we show,

in chapter 8, how minor changes to the SSD algorithm allows usto calculate this in a

similar manner. This problem has been studied in the contextof Generalized Simulated

Annealing, and the solution may be interpreted as an energy function. Thus, we call this

the Energy algorithm. We prove that, unlike the SSD algorithm where we must work one

communicating class at a time, we may reduce all communicating classes simultaneously.

Although the algorithm of Gambin and Pokarowski (2001) onlyyields an approximation

to the SSD, it is based on an exact calculation of the corresponding rates of convergence,

which turns out to be the same as our Energy algorithm. However, their algorithm is mainly

combinatorial, operating primarily as a recursive algorithm on graphs. Since our algorithm

recursively operates on GSAs, we believe that it is conceptually more satisfying.

Overview of Part III

Part III presents two additional algorithms, which were inspired by our algorithmic work

on computing the SSD of a PMM.

In chapter 9, we reformulate the problem of topologically sorting a directed graph, usu-

ally restricted to directed,acyclic graphs, as a multi-objective optimization problem over

arbitrary, weighted, directed graphs. We present an algorithm and prove that it yields an

optimal weighted, topological sort. When combined with suitable empirical techniques

for generating meaningful graphs, this algorithm could yield interesting results in several

application domains, including ranking, preference aggregation, and information retrieval.

As such, we have dubbed our algorithmGraphRank. We conjecture that the Energy algo-

rithm of chapter 8 would output precisely the same solution as GraphRank. If true, this

would give us a Markov chain interpretation forGraphRank, a la Dwork et al. (2001).

In chapter 10, we present another ranking algorithm, which we callQuickRank. This

algorithm is recursive, and can be used to rank individuals in social network, based on an

associated hierarchy. For example, these individuals may be research articles, in which

case the social network would be given by citations, and the hierarchy specified by areas of

specialization.

QuickRank is actually not simply a single algorithm, but a whole class of algorithms

parameterized by a givenbaseranking algorithm, which we apply “locally,” meaning at
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each level in the hierarchy. One view of our approach is that it suitably modifies a given

base ranking algorithm so that the resulting ranking satisfies two intuitively desirable ax-

ioms, thepeer-review principleandBonacich’s hypothesis.

The idea of exploiting a hierarchy in this way was suggested in previous work. For

example, using only a 2-level hierarchy, determined essentially by URL domains, with

PageRank as the base ranking algorithm, yields the BlockRank algorithm of Kamvar et al.

(2003b). It should be noted, however, that BlockRank was developed as a first approxi-

mation to PageRank. In contrast, we argue thatQuickRank may produce superior results,

in that they more accurately reflect the judgements of local experts and are resistant to the

ranking manipulation technique of web-spamming.
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Chapter 1

Markov Matrices and “Markov” Graphs

In this chapter, we compile a collection of definitions and facts regarding Markov matrices

and their associated graphs. Throughout, we will rely on thefollowing notation. We letSn

denote the set of integers from1 to n, and we letS0
n denote the set of integers from0 to n.

Usually,Sn will represent the index set for ann × n square matrix. We will also useSn

andS0
n to define sequences, whereσ : S0

l → Sn defines a sequence onSn of lengthl + 1.

We will denote theith element ofσ by σi (instead ofσ(i)).

We begin with some basic notions from graph theory. Specifically, we will:

• give formal definitions of (un)directed, (un)weighted graphs,

• define (strongly) connected components of a graph, as well as, open and closed sets

of vertices, and

• state and prove some basic properties of open and closed setsof vertices that we will

need in subsequent chapters.

1.1 Graph Theory Essentials

1.1.1 Basic Definitions

We will define adirected graph, G = (V, E, s, t), as a 4-tuple in whichV is a set of

vertices, E is a set ofedges, ands : E → V andt : E → V are mappings from edges to

vertices. We will restrict our attention to graphs in which bothV andE are finite, such as

2



3

Figure 1.1: Directed and Undirected Graphs

G G′ G0

v1 v2

v3
e

v4

a

b dc

v2 v3

v1
e

v4

a

b dc

v1 v2

v3
e

v4

a

b dc

in in Figure 1.1. In this figure, vertices are drawn as geometric points, and edges as arrows

from one vertex to another. Specifically, the arrow corresponding to an edge,α ∈ E, starts

at the points(α) and terminates (i.e., ends) att(α). If v = s(α) andw = t(α), we say that

w is adjacentto s. For example, inG, V = {v1, v2, v3, v4}, E = {a, b, c, d, e}, s(a) = v1,

t(a) = v2, etc., andv2 is adjacent tov1.

We will say two graphs,G = (V, E, s, t) andG′ = (V ′, E ′, s′, t′), areequal iff there

are 1-1 correspondences,δ : V ′ → V andγ : E ′ → E such thatδs′ = sγ andδt′ = tγ, i.e.,

the connections in the graph are the same – only the labels on the elements of the graph

are different. For example, the graphsG andG′ in Figure 1.1 are equal withδ (v1) = v3,

δ (v2) = v1, δ (v3) = v2, δ (v4) = v4, andγ(α) = α, ∀α ∈ E.

We will define anundirectedgraph as a directed graph,G = (V, E, s, t), with the

property that it contains the “reverse” of every edge. That is, for eachα ∈ E, there exists

an α′ ∈ E such thats(α) = t(α′) and t(α) = s(α′). Intuitively, we may view the pair

α andα′ as a single “composite” edge, drawn as an arrow with arrowheads on both ends,

or alternatively, as a line segment with no arrowheads at all, such asG0. Clearly, every

graph has an associated undirected version, and, as in Figure 1.1, ifG is a graph, we will

denote its undirected version byG0. If we define thereverse, GR, of a directed graph,G,

as we may defineG0 = (G ∪GR)T , where the union of two graphs is obtained by taking

the unions of corresponding vertex and edge sets.

When there are norepeatededges in a graphG, (i.e., when there are no two edges,

αi ∈ E, with the same starting and ending points,s(α1) = s(α2) andt(α1) = t(α2)), we

can representE by the set of ordered pairs,{(s(α), t(α)) ∈ V × V | α ∈ E}. In this case,

s andt are just the respective projections onto the first and secondcoordinates of each edge,
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and we can refer to the graph simply asG = (V, E), with each edge represented as a pair

of vertices. The order of this pair matters only when the graph is directed. In general, for

convenience,α = (v, w) ∈ E will denote anα ∈ E with s(α) = v andt(α) = w, even

when such an edge is not uniquely defined.

A walk of lengthl in a (directed or undirected) graph is a sequence ofl edges,{αi}
l
i=1

such thatt(αi) = s(αi+1) for 1 ≤ i ≤ l − 1. The walk starts ats(α1) and ends at

t(αl). A path is a walk that does not revisit any edges or vertices, i.e.,{αi}
l
i=1 is a path iff

l = |{αi | 1 ≤ i ≤ l}| and l + 1 = |{s(αi) | 1 ≤ i ≤ l} ∪ {t(αi) | 1 ≤ i ≤ l}|. Note that

since a path is a walk, and since we can always drop edges from awalk to obtain a path,

there is a walk fromv to w iff there is a path fromv to w. For example, the sequence,

(c, a, d, c, b), specifies a walk in the graph,G, shown in Figure 1.1, fromv4 to v3. By

dropping edges, we obtain the corresponding path,(c, b), from v4 to v3.

In a graph that has no repeated edges, given an enumeration ofits vertices, i.e., a 1-1

correspondence,v : S|V | → V , a walk may also be specified by a sequenceσ : S0
l → S|V |

of l + 1 vertices. For example, the walk given above corresponds to the sequence,σ =

(4, 1, 2, 4, 1, 3), with associated path given byσ′ = (4, 1, 3). Here,vσ0
= s(α1) is the first

vertex in the walk andvσl
= t(αl) is the last, with(vσi

, vσi+1
) ∈ E andvσi

= t(αi) =

s(αi+1), for all 1 ≤ i ≤ l − 1. As is clear from the examples, a path is a walk for which

the correspondingσ is 1-1 (i.e., distinct inputs map to distinct outputs), so that no vertex

is revisited. Note that this second definition is more general than the first (for graphs that

have no repeated edges), since it allows walks (and paths) oflength 0, which we specify

by a single vertex,{vi}. When we encounter such walks (and paths), we will say that they

both start and end atvi.

A cycle is essentially a path of length at least 1, except that we allow and require the

initial and final vertices to be the same; that is,σ0 = σl, or s(α1) = t(αl). To convert the

walk, σ, given above to its corresponding path,σ′, we removed the cycle,σ = (1, 2, 4, 1).

A self-loopis a cycle of length 1, such as edgee in G.

Given a directed graph,G = (V, E), its transitive closure, GT = (V, ET ), is defined

such that(vi, vj) ∈ ET iff there is a directed walk (or path) fromvi to vj in G. Because

we allow walks of length 0,(vi, vi) ∈ ET for all i, i.e., each vertex has an associated self-

loop. For example, in Figure 1.2, we showG and its transitive closure,GT , although by

convention we have suppressed drawing all the self-loops.
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Figure 1.2: Unweighted and Weighted Graphs
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This yields a natural preorder1 onV , given by the “leads to” relation,;, wherevi ; vj

iff
(
vi, vj

)
∈ ET . This preorder gives rise to an equivalence relation,∼, wherei ∼ j (read,

“vi is strongly connectedto vj”) iff i ; j andj ; i. Equivalence classes with respect

to ∼ are often called thestrongly connected components(SCCs) ofG.2 For example, in

Figure 1.2 the strongly connected components are given by{v1, v2}, {v3, v4}, and{v5}, as

indicated by the colored edges. Note that SCCs are maximal, meaning they do not contain

other SCCs; furthermore, the SCCs ofG partition the vertices ofG, meaning each vertex

belongs to exactly one SCC. A graph is said to bestrongly connectedif consists of only

one strongly connected component. For example, acompletegraph, which contains an

edge from every vertex to every other vertex, is strongly connected.

Similarly, we have a “connects to” relation,!, associated with the undirected graph

corresponding toG, G0. That is,vi ! vj iff there is anundirectedwalk (i.e., a walk in

the associated undirected graph) fromvi to vj in G. The equivalence classes associated

with this relation are called theconnected componentsof G. For example, the connected

components ofG from Figure 1.2 are{v1, v2}, {v3, v4, v5}. A graph is said to beconnected

if consists of only one connected component. A connected graph with no cycles is called a

tree.

Notice that the connected components ofG andGT are exactly the same. Likewise,

their strongly connected components are identical. Moreover, the (strongly) connected

components inGT are precisely its maximal complete subgraphs.

Thus far, we have restricted our attention to directed and undirectedunweightedgraphs.

1A preorderis a relation that is reflexive (v ; v) and transitive (u ; v andv ; w impliesu ; w).
2Strongly connected components may also reasonably be called communicating classes, to conform with
the literature on Markov chains (see section 5.3).
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Much of this thesis is actually concerned with weighted graphs. A weighted (directed or

undirected) graph is one augmented with a functiond : E → R, which assigns a real-

valued “weight” to each edge in the graph. The weight of an edge,d(α), is drawn as a label

on the corresponding arrow, and can be thought of as a cost or alikelihood of traversing

α. An example of a weighted graph,G′, is shown in Figure 1.2. Notice that the sum of

the weights over the edges emanating from any given vertex is1, so in this case, we may

interpret the weights as the probability of traversing a given edge conditioned on the fact

that we are at a particular vertex.

Sometimes, we will be given a weighted graphG = (V, E, d), but will wish to refer to

the corresponding unweighted graph. To do so, we will use thenotation,G− = (V, E). For

example, with respect to the graphs in Figure 1.2,G′
− = G.

We will call a (directed/undirected, weighted/unweighted) graphG′ a subgraphof a

graphG, if the vertex and edge sets ofG′ are subset of those ofG, with the corresponding

restrictions of all other ancillary functions (e.g.,d, s, t, etc.). For example, given a subset,

V ′, of the vertex set ofG, we define therestrictionof G, to V ′, denotedG|V ′ , to be the

subgraph ofG with vertex set,V ′, and the set of all edges with both ends inV ′. If G′ is a

subgraph ofG and their vertex sets are equal, we will say thatG′ is aspanningsubgraph of

G, or thatG′ spansG. A subgraph which is also a tree, it generally called asubtree. Thus,

aspanning subtreerefers to a subgraph which is a tree and which spansG.

1.1.2 Open Sets and Closed Classes

We will say that a subset of vertices,V ′ ⊂ V , is invariant iff V ′ has no outgoing edges, i.e.,

for all
(
vi, vj

)
∈ E, if vi ∈ V ′, thenvj ∈ V ′. An invariant SCC is referred to as aclosed

class. IfV ′ does not contain a closed class, we will say thatV ′ is open. Vertices that are

do not belong to a closed class are calledtransient. We say that a graph isunichain if it

possesses exactly one chosed class.3

Note that the terms “open” and “closed” are not opposites here. “Closed” refers only

to single (invariant) SCCs, while “open” can refer to a set ofvertices larger than a single

SCC. In fact, the vertices in an open set need not even be connected. However, any single

SCC is either open or closed. If it is not open, it contains some closed class, which must

3This terminology comes from the theory of Markov chains (Iosifescu, 1980).
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be the entire SCC since SCCs are maximal, and so it is closed. If it is not closed, it cannot

contain a closed class since SCCs are maximal, and so it is open.

We prove two simple lemmas in this section. The first is an intuitive observation about

closed classes, namely that there is always a walk terminating in a closed class. It follows

immediately from this fact that every directed graph contains a closed class. The second is

an intuitive observation about open classes, namely that there is always a walk exiting an

open class. This second lemma follows as a simple consequence of the first.

Lemma 1.1.Starting from any vertex in a directed graphG, there exists a walk terminating

in a closed class. In particular, every directed graph contains a closed class.

Proof. Let {C1, . . . , Cm} be the SCCs ofG. Pick an arbitrary vertexv, and call its SCC,

Cσ1
. If Cσ1

is closed, then we have a walk (of length 0) starting atv and terminating in a

closed class, and we are done. Otherwise,Cσ1
is open, and there is an outgoing edge(s1, t1)

with s1 ∈ Cσ1
andt1 ∈ Cσ2

for someσ2 6= σ1. Now sincev ands1 are in the same SCC,

there is a walk fromv to s1, and continuing along the edge(s1, t1), there is a walk fromv

to t1.

As above, ifCσ2
is closed, there is a walk fromv terminating in a closed class, and

we are done. Otherwise, we can repeat the process and find an outgoing edge(s2, t2) with

s2 ∈ Cσ2
andt2 ∈ Cσ3

for someσ3 6= σ2. Now sincet1 ands2 are in the same SCC, there

is a walk fromt1 to s2, and continuing along the edge(s2, t2), there is a walk fromv to t2.

Proceeding inductively, we either encounter a closed class, in which case we have found a

walk from v terminating in a closed class and we are done, or we continue the sequence

σ of open SCCs, and the walk fromv through the verticessi ∈ Cσi
andti ∈ Cσi+1

, with

Cσi
6= Cσi+1

.

Suppose we never encounter a closed class, i.e.,Cσi
is not closed for alli. Since there

are only finitely many SCCs inG (i.e.,σi ∈ Sm), for somei < j, we must haveσi = σj .

By construction, there is a walk fromv to sj−1, the starting vertex of the incoming edge to

Cσj
. This is the concatenation of a walk fromv to si, the starting vertex of the outgoing

edge fromCσi
, and a walk fromsi to sj−1. In particular,si ; sj−1. But sj−1 ; tj−1

(because of the edge(sj−1, tj−1)), andtj−1 ; si (becausetj−1 ∈ Cσj
= Cσi

), sosj−1 ; si.

This implies thatsi ∼ sj−1, which is a contradiction, sinceCσj−1
6= Cσj

= Cσi
. Thus, we

must haveCσi
closed for somei, and we have constructed a walk fromv to ti−1 ∈ Cσi

.
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Lemma 1.2. A subsetV ′ ⊂ V of vertices in a directed graph,G = (V, E), is open iff for

everyv ∈ V ′ there is a walk fromv to some vertexz /∈ V ′.

Proof. Assume thatV ′ is open, and consider an arbitrary vertex,v ∈ V ′. By Lemma 1.1,

there is a walk fromv to some vertex,w, in some closed class,C. SinceV ′ is open,C 6⊂ V ′.

Choosez ∈ C \V ′. Sincew andz are in the same SCC, there is a walk fromw to z. Hence,

there is a walk fromv to z /∈ V ′.

Now assume thatV ′ is not open, i.e., that it contains a closed class,C. We must produce

a v ∈ V ′ for which no walk inG from v leavesV ′. We can choose anyv ∈ C. Since there

is no edge leavingC, there can be no walk fromv that leavesC, much lessV ′.

1.1.3 Closed Classes in Subgraphs

In this section, we examine the relationship between the closed classes of a graph and

the closed classes of certain subgraphs and restrictions. In particular, we observe that the

number of closed classes in a graph cannot decrease as we remove its edges. Equivalently,

the number of closed classes cannot increase as we add new edges. This observation will

be particularly relevant in chapter 7.

Theorem 1.3.Given a directed graphG = (V, E) withV ′ ⊂ V an invariant set of vertices,

if C′ is a closed class ofG′ = G|V ′, then it is also a closed class ofG.

Proof. First, we will show thatC′ is invariant inG. By assumption,V ′ is invariant. So

there are no edges inG starting at vertices insideC′ and ending at verticesoutsideV ′. It

remains to show that there are no edges inG starting at vertices insideC′ and ending at

vertices inV ′ \ C′. SinceC′ is closed inG′, there are no such edges inG′. Further, sinceG′

is a restriction ofG, their edge sets coincide on the restricted set of vertices.Hence, there

cannot be any such edges inG either, andC′ is invariant inG.

Second, we must show thatC′ is a SCC ofG, that is, for allv ∈ C′, w ∈ V , v ∼ w in

G iff w ∈ C′. If v ∼ w, thenw must be inC′, becauseC′ is invariant inG. Conversely, if

w ∈ C′, thenv ∼ w in G′, sov must also be strongly connected tow in G, since any edge

in G′ is also inG. Therefore,C′ is a closed class ofG.

Theorem 1.4. Any closed classC in a connected componentG = (V , E) of a directed

graphG is also a closed class ofG.
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Proof. Connected components have no incoming or outgoing edges, soV is invariant, and

the restrictionG|V is exactlyG. Hence, we can apply Theorem 1.3 withG′ = G and

C′ = C to conclude thatC is a closed class ofG.

Theorem 1.5. If G ⊂ G with V = V andE ⊂ E, then every closed class ofG contains

some closed class ofG.

Proof. Let C be a closed class ofG, and considerG
∣∣
C
.4 By Lemma 1.1,G

∣∣
C

contains a

closed class, call itC. By construction,C is contained inC, so we have only to argue thatC

is closed inG. BecauseC is invariant inG, it is also invariant inG, sinceE ⊂ E. Hence,

we can apply Theorem 1.3, withG = G, G′ = G
∣∣
C
, andC′ = C, to conclude thatC is a

closed class ofG which is contained inC.

1.2 Markov Matrices

We will now introduce our fundamental objects of study, Markov matrices and their stable

distributions. Specifically, we will:

• define a Markov matrix, its laplacian, and its set of stable distributions;

• associate a weighted directed graph with any principal submatrix of a Markov matrix

(i.e., a sub-Markov matrix); and

• carry over the graph-theoretic concepts of section 1.1 to Markov matrices in order to

define irreducible and unichain Markov matrices.

An m× n matrixM hasm rows andn columns. We writeMi,j to refer to the element

in the ith row andj th column ofM . Observe thatMi,j = et
iMej , where(ei)j = [i = j],5

i.e.,ei has a 1 in theith component, and 0s elsewhere.

Two special cases of matrices arise when one of thedimensions(eitherm or n) equals

1. Specifically, acolumnvector is ann×1 matrix; likewise, arow vector is an1×n matrix.

To keep our notation brief, we will index vectors using one variable instead of two. That

4Note that, sinceV = V , C ⊂ V , so that this restriction is defined.
5We use Iverson’s convention: for any proposition,Q, [Q] = 1, if Q is true, and 0 otherwise (Knuth,
1997, p. 32).
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is, for a column vectorv, vi = vi,1, and for a row vectorw, wj = w1,j . We will denote the

set of column vectors of dimensionn× 1 by R
n. Unless otherwise specified, when we say

“vector,” we mean a column vector inRn.

A submatrixof ann × n matrix, M , is obtained by eliminating0 ≤ m < n rows and

0 ≤ k < n columns ofM to obtain an(n −m) × (n − k) matrix. A submatrix is called

principal if the set of removed rows is the same as the set of removed columns.

We denote thel1-norm onR
n by ‖ · ‖1. For anyv ∈ R

n, this is the sum of the absolute

values of its entries:

‖v‖1 =

n∑

i=1

|vi| .

We will use the same notation to denote the corresponding induced matrix norm on the set

of n× n matrices with real-valued entries,

‖M‖1 = max {‖Mv‖1 | v ∈ R
n, ‖v‖1 = 1} ,

and we will take as known the fact (Horn and Johnson, 1985, p. 294) that

‖M‖1 = max

{
n∑

i=1

∣∣Mi,j

∣∣ | 1 ≤ j ≤ n

}
.

In other words,‖M‖1 is the maximum of the column sums of the absolute values of the

entries ofM . As a matrix norm,‖ · ‖1 obeys the triangle inequality (i.e.,‖M + N‖1 ≤

‖M‖1 + ‖N‖1) and is sub-multiplicative (i.e.,‖MN‖1 ≤ ‖M‖1‖N‖1).

We will write M ≥ 0 to indicate that its entries are non-negative, i.e.,Mi,j ≥ 0, ∀ i, j.

We denote the set of alln × n square matrices with non-negative, real-valued entries by

Matn

(
R

+
)
. A matrix M ∈ Matn

(
R

+
)

is calledMarkov iff JM = J , whereJ =

(1, . . . , 1) ambiguously denotes a row vector of 1s of arbitrary length. In other words,

all columns in a Markov matrix sum to 1. Observe that: for any Markov matrix,M ,

‖M‖1 = 1; likewise, for any submatrixM ′ of M , ‖M ′‖1 ≤ 1.

We will sometimes refer to a principal submatrix,M , of a Markov matrix,M , as a

sub-Markovmatrix. Given a sub-Markov matrix,M , we can define itslaplacian, Λ
(
M
)
≡

M − I. By convention, we will abbreviateΛ
(
M
)

asΛ, Λ (M1) asΛ1, etc.

Notice that ifM is Markov, then:

• Λi,j = Mi,j ≥ 0, if i 6= j, i.e.,Λ has non-negative off-diagonal entries;
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• for any j,
∑

i6=j Λi,j =
∑

i6=j Mi,j = 1 − Mj,j ≤ 1, i.e., Λ’s off-diagonal column

sums are less than or equal to 1; and

• JΛ = JM − JI = J − J = 0, i.e.,Λ’s columns sum to 0.

Conversely, it is easy to check that ifΛ satisfies these three conditions, thenM = Λ + I is

Markov.

For any matrixM and vectorv, if Mv = λv, we say thatv is aneigenvectorof M

with eigenvalueλ. Given a Markov matrix,M , a stablevector ofM is an eigenvector

with eigenvalue 1, i.e.,Mv = v. A distribution is a vectorv ∈ R
n such thatv ≥ 0 and

‖v‖1 = Jv = 1. So, astable distributionis a stable vector that is also a distribution.

Observe that the set of stable vectors ofM is a subset of the kernel6 of Λ, sinceMv =

v = Iv implies that(M−I)v = 0 so thatΛv = 0. More specifically, the stable distributions

of M are precisely the non-negative, norm-1 vectors inker Λ, i.e.,stab (M) = ker Λ∩∆n.

Here,∆n = {x ≥ 0 |
∑n

i=1 xi = 1}, the standardn-simplex.

We naturally associate a weighted graphG(M) = (V, E, d) with any non-negative

matrix, M ≥ 0. Specifically, letV = {v1, . . . , vn}, with (vi, vj) ∈ E iff Mj,i > 0 and

d(vi, vj) = Mj,i. Notice that graphs obtained in this way cannot have repeated edges (cf.

section 1.1). By ignoring the weights onG(M), we obtain the corresponding unweighted

graph,G−(M) = (V, E).

For our purposes,M will usually be a Markov or a sub-Markov matrix. WhenM is

Markov, every vertex inG(M) must have at least one outgoing edge. For example, the

Markov matrixM on the left of Figure 1.3 gives rise to the “Markov” weighted graph

on the right. Intuitively, the entries ofM correspond to probabilities of traversing the

corresponding edges. We do not include an edge fromj to i in the graph whenMj,i = 0,

since there is 0 probability of traversing such an edge, so itshould not be the case that

vi ; vj , i.e., there should not be a walk (or path) fromj to i.

A Markov matrixM is said to bereducibleif G(M) consists of more than one SCC;

otherwise it is said to beirreducible. To conform with the literature on Markov chains, we

call a Markov matrixunichainiff it has exactly one closed class. By Lemma 1.1, we can be

sure that every Markov matrix has at least one closed class. Further, by Theorem 1.5, if we

increase the number of non-zero entries ofM , the number of closed classes cannot increase
6Basic linear algebra concepts, such as this, that are not defined in the main body of the thesis are reviewed
in Appendix A.
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Figure 1.3: Markov Matrix and its associated “Markov” Weighted Graph
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and must eventually decrease, since a complete graph consists of exactly one SCC, which

is necessarily closed.

We will carry over the terminology of strongly connected components, closed classes,

and invariant and transient sets of vertices inG(M) and apply it to subsets of the indices of

M in Sn. For example,s ⊂ Sn is closed iffVs = {vi | i ∈ s} is closed inG(M). We can

also define the submatrix,Ms,s
′, of M corresponding to two subsets of indicess, s′ ⊂ Sn

by removing rowi and columnj from M iff i /∈ s andj /∈ s′. This submatrix is principal

iff s = s′, in which case we say thatMs,s is the principal submatrix ofM corresponding

to s. In the next chapter, we will present a more explicit means ofconstructing such sub-

matrices.



Chapter 2

Existence of a Stable Vector

Because the reduce construction we present in chapter 5 is defined in terms of sub-matrices,

in this chapter, we carefully lay the groundwork for provingtheorems about sub-matrices.

Givens ⊂ Sn, we define two special matrices,πs andıs, that we use to extract the rows and

columns, respectively, whose indices are ins of another matrixM . We then demonstrate

how πs and ıs can be used to permute a matrix, yielding a partitioning thatisolates the

submatrix,Ms,s. Further, we prove thatıs is always injective,πs is always surjective, and

we show how their corresponding images and kernels are intimately related. Finally, and

most notably,we show that the laplacian of any sub-Markov matrix, corresponding to a set

s′, has a non-zero kernel, ifs′ contains a closed class. In particular, the laplacian of any

Markov matrix has a non-zero kernel. While this doesnot prove the existence of a stable

distribution (because a stable vector need not be non-negative), it does hint at this important

fact, which we will prove in chapter 3.

2.1 Submatrix Construction

Given a subset of indices,s ⊂ Sn, with cardinalityk = |s|, we can uniquely enumerate

s in increasing order to obtain a sequence(si)
k
i=1. Mathematically, such a sequence is a

bijective mapping fromSk to s, so we can also define its inverse,s−1 : s → Sk, such

that forj ∈ s, s−1(j) = i iff si = j. Further, we can enumerate the complement ofs, s,

which has cardinalityk ≡ n − k, and its inverse in exactly the same way. For example,

if s = {1, 4} ⊂ S4, so thats = {2, 3} ⊂ S4, thens1 = 1, s2 = 4, s−1(1) = 1, and

13
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s−1(4) = 2; ands1 = 2, s2 = 3, s−1(2) = 1, ands−1(3) = 2.

Equipped with this notation, we can now present our method for constructing sub-

matrices. Fors ⊂ Sn, we will define the matrix

ıs =
(

es1
· · · esk

)
.

It is easy to check that multiplying ann × n matrix, M , on the right byıs eliminates the

columns ofM whose indices are not ins and leaves the other columns intact, meaning in

the same order. We will also define the matrix

πs = ıts =




et
s1

...

et
sk


 .

Again, it is easy to check that multiplying ann× n matrix,M , on the left byπs eliminates

the rows ofM whose indices are not ins and leaves the other rows intact.

Now, given ann × n matrix M and two subsetss, s′ ⊂ Sn, Ms,s
′ ≡ πsMıs′ is the

submatrix that results from removing rowi and columnj from M iff i /∈ s andj /∈ s′.

Notice that
(
Ms,s

′

)
i,j

= et
iπsMıs′ej = (ısei)

t Mıs′ej = et
si
Mes

′
j

= Msi,s
′
j
.

Example 2.1. For example, lets = {1, 4}, andM =




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16




. Here,ıs =

(
e1 e4

)
=




1 0

0 0

0 0

0 1




, andπs =


 et

1

et
4


 =


 1 0 0 0

0 0 0 1


. Further,Mıs =




1 4

5 8

9 12

13 16




, πsM =


 1 2 3 4

13 14 15 16


, andπsMıs =


 1 4

13 16


 = Ms,s. Hence,

Ms,s is the (principal) submatrix corresponding tos.
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2.2 Matrix Permutations

A permutationof a sets is a bijective mappings → s. When s ⊆ Sn is viewed as

a sequence, we can think of a permutation as a reordering of the elements ofs. Given

a permutation,ρ, of Sn, we may define the associatedpermutation matrix, P ρ, so that

P ρ
i,j = [i = ρ(j)]. Notice that a permutation matrix is invertible with inverse equal to its

transpose.

Theorem 2.2. If ρ is a permutation ofSn, then(P ρ)−1 = (P ρ)t = P (ρ
−1).

Proof. Applying the definition above, gives

(P ρ)t
i,j = (P ρ)j,i = [j = ρ(i)] =

[
ρ−1(j) = i

]
= P

(ρ
−1)

i,j

Moreover,

(
P (ρ

−1)P ρ
)

i,j
=

n∑

k=1

(
P (ρ

−1)
)

i,k
(P ρ)k,j

=
n∑

k=1

[
i = ρ−1(k)

]
[k = ρ(j)] =

[
i = ρ−1(ρ(j))

]
= [i = j] = Ii,j

Therefore,P (ρ
−1)P ρ = I. SinceP ρ is a square matrix, by Theorem A.2,P (ρ

−1) =

(P ρ)−1.

Likewise, thematrix permutationof ann × n matrix,M , according toρ is defined as

M ′ = (P ρ)t MP ρ. This is simply a rearrangement of the entries ofM .

Theorem 2.3.Given a permutation,ρ, ofSn and ann×n matrixM , if M ′ = (P ρ)t MP ρ,

thenM ′
i,j = Mρ(i),ρ(j).

Proof. Using Theorem 2.2,

(
M ′
)

i,j
=

(
(P ρ)t MP ρ

)
i,j

=
∑

k,l

(
(P ρ)t)

i,k
Mk,lP

ρ
l,j

=
∑

k,l

(P ρ)k,i Mk,l [l = ρ(j)] =
∑

k

((P ρ))k,i Mk,ρ(j)

=
∑

k

[k = ρ(i)] Mk,ρ(j) = Mρ(i),ρ(j)
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Figure 2.1: The Effect of a Matrix Permutation on a Markov Graph
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


G (M) G
(
M ′
)

v1 v2

v3

0.3
v4

0.1

0.2 0.50.4

v2 v3

v1

0.3
v4

0.1

0.2 0.50.4

For example, consider the permutation,ρ, given byρ(1) = 3, ρ(2) = 1, ρ(3) = 2, and

ρ(4) = 4. Applying the corresponding matrix permutation toM given in Figure 2.1 yields

the matrixM ′, also in the Table. Notice that the corresponding graphs,G(M) andG
(
M ′
)
,

are identical, up to a relabelling of the vertices.

Using the submatrix construction given in section 2.1, for any subsets ⊂ Sn, we can

define a permutation matrix,Ps, such thatP t
sMPs is a permutation ofM that moves the

principal submatrixMs,s to the lower-right-hand corner ofM .

Theorem 2.4.Givens ⊂ Sn, if ρs : Sn → Sn is given by

ρs(i) =





si if i ≤ k

si−k otherwise

thenPs =
(

ıs ıs

)
is a permutation matrix withPs = P ρs.

Proof. First observe thatρs is clearly surjective, sinceSn = s ∪ s. SinceSn is a finite set,

this must be 1-1 as well. In particular,ρs is a permutation ofSn. To show thatPs = P ρs,
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we proceed by cases. Ifj ≤ k, then

(Ps)i,j = et
iPsej = et

i

(
ıs ıs

)
ej = et

iıs ej = et
iesj

=
[
i = sj

]
= [i = ρs(j)] = P ρs

i,j

Similarly, if j > k,

(Ps)i,j = et
i

(
ıs ıs

)
ej = et

ies
j−k

=
[
i = sj−k

]
= [i = ρs(j)] = P ρs

i,j

Since their entries are equal,Ps = P ρs.

Now notice that ifPs =
(

ıs ıs

)
, thenP t

s =


 πs

πs


, and

P t
sMPs =


 πs

πs


M

(
ıs ıs

)
=


 πsMıs πsMıs

πsMıs πsMıs


 =


 Ms,s Ms,s

Ms,s Ms,s


 .

We will refer to this collection of sub-matricesMs,s, Ms,s, Ms,s, andMs,s as apartitioning

of M with respect tos.

Example 2.5.With s andM as in Example 2.1,

P t
sMPs =




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1







1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16







0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1




=




6 7 5 8

10 11 9 12

2 3 1 4

14 15 13 16




,

so thatM has the partitioningMs,s =

(
1 4

13 16

)
, Ms,s =

(
5 8

9 12

)
, Ms,s =

(
2 3

14 15

)
,

andMs,s =

(
6 7

10 11

)
with respect tos = {1, 4}.

Corollary 2.6. For the permutation matrixPs corresponding tos ⊂ Sn, Ps and P t
s are

Markov. The product of Markov matrices (of the same dimension) is Markov, and, in par-

ticular, andP t
sMPs is Markov for anyn× n Markov matrix,M .

Proof. By definition, the columns ofPs are the standard basis vectors. Thus they are

non-negative and sum to1, andPs is Markov. In particular,JPs = J . Therefore,J =
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JPsP
−1
s = JP−1

s . However, by Theorems 2.2 and 2.4,P−1
s = P t

s , so thatJ = JP−1
s =

JP t
s , i.e., the columns ofP t

s sum to 1 as well. SinceP t
s is non-negative,P t

s is also Markov.

If M1, M2 are Markov and of the same dimension, thenM1M2 ≥ 0 andJ (M1M2) =

(JM1)M2 = JM2 = J , so thatM1M2 is Markov. SinceP t
s andPs are Markov, so is

P t
sMPs, whenM is n× n and Markov.

2.3 Projection and Inclusion

For a subsets ⊂ Sn, with k = |s|, ıs has dimensionn× k, andπs has dimensionk× n. So

left-multiplication byıs is a mappingRk → R
n. We call ı an inclusionoperator, because

it is a 1-1 linear transformation which mapsR
k to a subspace ofRn. In fact, forv ∈ R

k,

w = ısv ∈ R
n is the vector whose coordinates with indices ins are given by the coordinates

of v (in order), while its coordinates with indices ins are all 0.

Similarly,πs yields a mappingRn → R
k. This is a surjective linear transformation and

hence corresponds to an orthogonalprojection. Specifically, forv′ ∈ R
n, the coordinates

of w′ = πsv
′ ∈ R

k are just the coordinates ofv′ with indices ins.

Example 2.7. Let s = {1, 4} ⊂ S4 andv =




1

2

3

4



∈ R

4. The vectorw = πsv =


 1 0 0 0

0 0 0 1







1

2

3

4




=


 1

4


 is the corresponding projection ofv. The vectoru =

ısw =




1 0

0 0

0 0

0 1





 1

4


 =




1

0

0

4




is the inclusion ofw in R
4.
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Next, we will defineR
s ≡ span {ei | i ∈ s}, a subspace ofRn of dimensionk. Simi-

larly, R
s ≡ span {ei | i ∈ s} is a subspace ofRn of dimensionk. The next lemma high-

lights the key algebraic and geometric properties of these projection and inclusion opera-

tors.

Lemma 2.8. Givens ⊂ Sn,

a) πsıs = I = πsıs, πsıs = 0 = πsıs, andısπs + ısπs = I;

b) ker ıs = 0 = ker ıs, im πs = R
k, andim πs = R

k;

c) im ıs = R
s = ker πs, andim ıs = R

s = ker πs.

Proof.

Proof of part a): SincePs andP t
s are inverses,

I = P t
sPs =


 πs

πs



(

ıs ıs

)
=


 πsıs πsıs

πsıs πsıs




so thatπsıs = πsıs = I andπsıs = πsıs = 0. Likewise,

I = PsP
t
s =

(
ıs ıs

)

 πs

πs


 = ısπs + ısπs

Proof of part b): By part a),πsıs = πsıs = I. So,ıs andıs are left-invertible, hence injec-

tive with ker ıs = ker ıs = {0}. Likewise,πs andπs are right-invertible, hence surjective

with im πs = R
k andim πs = R

k.

Proof of part c): The fact thatim ıs = R
s can be seen as follows:

im ıs =
{

ısv | v ∈ R
k
}

by definition ofim

=

{
ıs

k∑

i=1

viei | vi ∈ R, ei ∈ R
k

}
since{ei} is a basis

=

{
k∑

i=1

viısei | vi ∈ R, ei ∈ R
k

}
by linearity of matrix multiplication

=

{
k∑

i=1

viesi
| vi ∈ R, esi

∈ R
n

}
by by defintion ofıs

= span
{
ej | j ∈ s

}
by definition ofspan

= R
s by definition ofRs
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Likewise,im ıs = R
s.

Now sinceπsıs = 0, it follows that im ıs ⊂ ker πs. Conversely, ifv ∈ ker πs, then by

part a),v = (ısπs + ısπs) v = ısπsv + ısπsv = ısπsv. But ısπsv ∈ im ıs. Thus,ker πs ⊂

im ıs, so thatker πs = im ıs = R
s. Likewise,im ıs = ker πs = R

s.

Notice that the compound operationısπs takes any vectorv ∈ R
n and maps it to a

vectoru ∈ R
s such thatui = vi if i ∈ s andui = 0 otherwise. This allows us to take any

vector,v ∈ R
n, and easily decompose it asv = vs + vs, with vs ∈ R

s andvs ∈ R
s.

Example 2.9.Takes andv as in Example 2.7. Define

vs = ısπsv =




1 0

0 0

0 0

0 1





 1 0 0 0

0 0 0 1







1

2

3

4




=




1

0

0

4




.

Similarly, define

vs = ısπsv =




0 0

1 0

0 1

0 0





 0 1 0 0

0 0 1 0







1

2

3

4




=




0

2

3

0




.

Now observe thatvs ∈ R
s, vs ∈ R

s, andvs + vs = v.

Theorem 2.10.Givens ⊂ Sn, R
n = R

s ⊕ R
s. Further, for anyv ∈ R

n, v = vs + vs, with

vs = ısπsv ∈ R
s andvs = ısπsv ∈ R

s.

Proof. Let v ∈ R
s ∩ R

s, so thatv =
∑

i∈s aiei, andv =
∑

j∈s bjej , and
∑

i∈s aiei −∑
j∈s bjej = 0. Since the standard basis vectors are linearly independent, ai = 0 = bj for

all i andj, andv = 0. In other words,Rs ∩ R
s = 0.

Now for anyv ∈ R
n, by Lemma 2.8 a),v = Iv = (ısπs + ısπs) v = ısπsv + ısπsv =

vs + vs. Sinceim ıs = R
s andim ıs = R

s, it follows thatvs ∈ R
s andvs ∈ R

s. But then

v ∈ R
s + R

s, so thatRn = R
s + R

s. Therefore,Rn = R
s ⊕R

s.
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2.4 Existence Theorem

In this section, we compile a collection of basic facts regarding the structure of a Markov

matrix, its closed classes, and stable vectors, which will be needed in subsequent chapters.

Most notably, we show that the laplacian of any sub-Markov matrix, corresponding to a set

s′, has a non-zero kernel, ifs′ contains a closed class. In particular, the laplacian of any

Markov matrix has a non-zero kernel, which contains a linearly independent set of vectors

corresponding to its closed classes.

Lemma 2.11.LetM be ann× n Markov matrix, and an invariant set of indices,s ⊂ Sn.

a) Ms,s = 0.

b) Ms,s is Markov.

c) If s′ is a subset of indices such thats ⊂ s′ ⊂ Sn, thenıs(ker Λs,s) ⊂ ıs′(ker Λs
′
,s

′).

d) ıs
(
stab Ms,s

)
⊂ stab M .

Proof.

Proof of part a): By assumption,s is invariant. So there are no edges inG(M) from s to s.

This means thatMsi,sj
= 0, for any1 ≤ i ≤ |s| and1 ≤ j ≤ |s|. But

(
Ms,s

)
i,j

= Msi,sj
,

so
(
Ms,s

)
i,j

= 0, andMs,s is the zero matrix.

Proof of part b): By part a),P t
sMPs =


 Ms,s Ms,s

Ms,s Ms,s


 =


 Ms,s 0

Ms,s Ms,s


. Since

P t
sMPs is Markov, its columns sum to1, and in particular the columns ofMs,s sum to1.

Furthermore,Ms,s ≥ 0, sinceM, ıs, πs ≥ 0. Hence,Ms,s is Markov.

Proof of part c): Take anyv ∈ ker Λs,s, so thatMs,sv = v. Becauses ⊂ s′, R
s ⊂ R

s
′

, and

sinceim ıs = R
s andim ıs′ = R

s
′

, so im ıs ⊂ im ıs′ . In particular,ısv ∈ im ıs′, so there

exists av′ ∈ R
|s

′
| such thatıs′v

′ = ısv. Now observe the following:
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Ms
′
,s

′v′ = πs
′Mıs′v

′ = πs
′Mısv = πs

′IMısv

= πs
′ (ısπs + ısπs)Mısv by Lemma 2.8 a)

= πs
′ısπsMısv + πs

′ısπsMısv

= πs
′ısMs,sv + πs

′ısMs,sv

= 0 + πs
′ısMs,sv by part a)

= πs
′ısv by assumption

= πs
′ıs′v

′

= v′ by Lemma 2.8 a)

Thus,v′ ∈ ker Λs
′
,s

′, andıs
(
ker Λs,s

)
⊂ ıs′

(
ker Λs

′
,s

′

)
.

Proof of part d): Considerv ∈ stab Ms,s, so v ≥ 0, Jv = 1, andv ∈ ker Λs,s. We

will apply part c) withs′ = Sn. The columns ofıs′ are the standard basis vectors inR
n,

ei, such thati ∈ s′. But sinces′ = Sn, this includes all of them, andıs′ = I. Thus,

v′ = ısv ∈ I ker Λ = ker Λ. Hence, we need only show thatv′ is a distribution. Since

v, ıs ≥ 0, it follows thatv′ ≥ 0. Moreover,Jv′ = Jısv = J
∑|s|

i=1 viesi
=
∑|s|

i=1 viJesi
=

∑|s|
i=1 vi =

∑|s|
i=1 viJei = J

∑|s|
i=1 viei = Jv = 1, so thatv′ ∈ stab M .

Theorem 2.12.LetM be ann× n Markov matrix.

a) ker Λ 6= 0.

b) For any subset of indicess′ ⊂ Sn such thats′ contains a closed class,ker Λs
′
,s

′ 6= 0.

Proof.

Proof of part a): The matrixM is Markov, soJM = J . But thenM tJ t = (JM)t =

J t. This implies that(M t − I)J t = 0, so J t ∈ ker Λt, meaningdim ker Λt 6= 0. By

Theorem A.1,dim ker Λ 6= 0, soker Λ 6= 0.

Proof of part b): By assumption,s′ contains a closed class. Call its. By Lemma 2.11 b),

Ms,s is Markov, so by part a),ker Λs,s 6= 0. Pick v ∈ ker Λs,s such thatv 6= 0. Now

by Lemma 2.11 c),ıs(ker Λs,s) ⊂ ıs′
(
ker Λs

′
,s

′

)
, so there existsv′ ∈ ker Λs

′
,s

′ such that

ısv = ıs′v
′. Further, by Lemma 2.8 b),ıs is injective, sov′ 6= 0. Therefore,ker Λs

′
,s

′ 6= 0.
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As a consequence of this theorem, every Markov matrixM has a stable vector. In

fact, this is true of any principal submatrix,Ms,s, of M containing a closed class,s. By

Lemma 2.11 c), any stable vector ofMs,s can be extended to be a stable vector ofM . Thus,

the kernel ofΛ contains a stable vector ofM corresponding to each of its closed classes,

and these vectors are necessarily independent (since they are non-zero on disjoint sets of

indices). Once we show, in chapter 3, that every Markov matrix has anon-negativestable

vector, and hence a stable distribution, Lemma 2.11 d) will likewise guarantee the existence

of a set of independent stabledistributionscorresponding to the closed classes ofM .



Chapter 3

Existence of a Stable Distribution

Given any distribution,v0, and a Markov matrix,M , of the same dimension, we can con-

struct a sequence of distributions via iteration,vi = Mvi−1, i ≥ 1. While vi need not

converge asi → ∞, it necessarily convergesin the Cesaro sense(Marsden, 1974, p.

363), that is, 1
N

∑N−1
i=0 vi converges asN → ∞. More generally, for any Markov ma-

trix, M j converges in the Cesaro sense (Doob, 1953; Iosifescu, 1980), that is, the matrix,

M∞ ≡ limN→∞
1
N

∑N−1
j=0 M j is well-defined. Sincevi = M iv0, this implies thatvi con-

verges in the Cesaro sense tolimN→∞
1
N

∑N−1
i=0 vi = limN→∞

1
N

∑N−1
i=0 M iv0 = M∞v0.

In this chapter, we prove a sharper result. We show that the laplacian,Λ, of M induces

a natural splitting ofRn into the kernel and the image ofΛ, and thatM∞ is the associated

projection,πker, ontoker Λ. This allows us to prove our first structure theorem for Markov

matrices, in which we characterize the set of stable distributions of a Markov matrix,M ,

in terms of the columns ofM∞. Specifically, we prove thatstab(M) is the set of convex

combinations of the columsn ofM∞. In particular, this proves the existence of a stable

distribution for any Markov matrix. Moreover, this will allow us to give an explicit formula

for M∞, in section 5.2, that does not involve limits.

Lemma 3.1. If M is Markov, then

a) ker Λ⊕ im Λ = R
n,

b) α : ker Λ× im Λ→ R
n, such thatα(v, w) = v + w, is linear and invertible,

c) there are unique, well-defined linear mappings,πker : R
n → ker Λ andπim : R

n →

im Λ such thatπker + πim = I.

24
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Proof. We first show thatker Λ ∩ im Λ = 0. Takev ∈ ker Λ ∩ im Λ. Sincev ∈ im Λ,

there existsw such thatv = Λw = (M − I)w = Mw − w so thatMw = v + w.

In addition, sincev ∈ ker Λ, Λv = 0, andMv = v. Therefore, by a straightforward

induction,Mkw = w + kv for any k ≥ 1. Solving for v yields v = 1
k

(
Mk − I

)
w.

But ‖v‖1 =
∥∥∥ 1

k

(
Mk − I

)
w
∥∥∥

1
≤ 1

k

∥∥∥Mk − I
∥∥∥

1
‖w‖1 ≤

1
k

(∥∥∥Mk
∥∥∥

1
+ ‖I‖1

)
‖w‖1 ≤

1
k

(
‖M‖k1 + ‖I‖1

)
‖w‖1 = 2

k
‖w‖1. Since0 ≤ ‖v‖1 ≤

2
k
‖w‖1, which is as small as we

like for large enoughk, it follows that‖v‖1 = 0, and thereforev = 0.

For general vector spaces,dim (V + W ) = dim V +dim W−dim (V ∩W ). Applying

this identity toV = ker Λ and W = im Λ, and using the fact thatV ∩ W = 0, we

have thatdim (ker Λ + im Λ) = dim ker Λ + dim im Λ. By Theorem A.1,dim im M +

dim ker M = n for anym × n-dimensional matrix,M . Thus,dim (ker Λ + im Λ) = n.

Sinceker Λ + im Λ ⊂ R
n, we must haveker Λ + im Λ = R

n, so thatker Λ⊕ im Λ = R
n.

This means that the mappingα : ker Λ × im Λ → R
n, such thatα(v, w) = v + w, for

v ∈ ker Λ andw ∈ im Λ, is surjective. It is also injective. If0 = α(v, w) = v + w, then

v = −w, that is,v andw are multiples of one another. Butv ∈ ker Λ andw ∈ im Λ, so

v, w ∈ ker Λ ∩ im Λ = 0. In particular,v = w = 0, soker α = (0, 0). Further,α is linear,

since it is just addition.

Thus, there exists an inverse linear mapping,α−1 : R
n → ker Λ× im Λ, corresponding

to a pair of linear mappings,πker and πim, with im πker ⊂ ker Λ and im πim ⊂ im Λ.

In particular, α(πker, πim) = πker + πim = I, sincev =
(
αα−1

)
v = α

(
α−1v

)
=

α (πkerv, πimv) = πkerv + πimv = (πker + πim) v. Since inverses are unique,πker and

πim are the unique such mappings.

We now give formulas forπker andπim directly in terms ofM . In particular, we will see

that the Cesaro limit of Markov matrices mentioned at the beginning of this section exists.

In addition, we find thatπker is Markov.

Theorem 3.2. For any Markov matrix,M , the sequence of Markov matrices,MN ≡
1
N

∑N−1
j=0 M j converges toπker as N → ∞. In other words, particular,M∞ exists and

equalsπker. In particular,πker is Markov andI −M∞ = πim.

Proof. We begin by showing thatM∞, the limit of MN asN → ∞, is well-defined. We

will appeal to the classic result from real analysis which says that a sequence converges iff

every subsequence has a convergent subsequence with a common limit (Royden, 1968, p.
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37, ex. 11). Observe that, since0 ≤
∥∥M j

∥∥
1
≤ 1,

∥∥∥
∑N−1

j=0 M j
∥∥∥

1
≤
∑N−1

j=0

∥∥M j
∥∥

1
≤ N , so

that‖MN‖1 ≤ 1. In particular,MN is a bounded sequence, so that any subsequence is also

bounded. Thus, by a standard argument from real analysis, (Royden, 1968, p. 37, ex. 8),

every subsequence, in turn, has a convergent subsequence, call it MNi
.

By Lemma 3.1, any vector,v = πkerv + πimv. Fix a basis ofker Λ, i.e., a spanning

set of independent, stable vectors with respect toM (and hence, with respect toM i for all

i), {v1, . . . , vk}. We may then writeπkerv =
∑k

r=1 βrvr ∈ ker Λ for someβr ∈ R
k, and

πimv = Λw for somew ∈ R
n. Applying,MNi

then gives:

MNi
v =

1

Ni

Ni−1∑

j=0

M jv

=
1

Ni

Ni−1∑

j=0

M j

[
k∑

r=1

βrvr + Λw

]

=
k∑

r=1

βrvr +
1

Ni

Ni−1∑

j=0

M j(M − I)w

=
k∑

r=1

βrvr +
1

Ni

[
MNiw − w

]

Now sincelimi→∞
1

Ni

[
MNiw − w

]
= 0, it follows that limi→∞ MNi

v =
∑k

r=1 βrvr =

πkerv. That is,limi→∞ MNi
= πker.

Since every such convergent subsequence has thesamelimit, πker, we know thatMN

converges. It must necessarily converge to the same limit asany of its subsequences. That

is, it must also converge toπker, and we may writeM∞ = πker. SinceI = πker + πim, we

automatically have thatπim = I − πker = I −M∞.

Finally, we argue thatM∞, and henceπker, is Markov. Observe that, for anyN , MN is

Markov. It is non-negative by definition, andJMN = J 1
N

∑N−1
j=0 M j = 1

N

∑N−1
j=0 JM j =

1
N

∑N−1
j=0 J = J . SinceMN ≥ 0, M∞ = limN→∞ MN ≥ limN→∞ 0 = 0. Moreover,

JM∞ = J limN→∞ MN = limN→∞ JMN = limN→∞ J = J .

We close this chapter with our first structure theorem in which we characterize the stable

distributions ofM in terms ofM∞. Specifically, we prove the classical result (Iosifescu,

1980, Theorem 5.3, p. 155) that each column ofM∞ is a stable distribution ofM , and

every stable distribution is a convex combination of the columns ofM∞. In particular,

every Markov matrix,M , has at least one stable distribution.
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Corollary 3.3. For any Markov matrix,M , stab(M) = stab (M∞) = M∞∆n. In partic-

ular, for all i, M∞ei ∈M∞∆n = stab (M∞) = stab(M).

Proof. First, observe that ifv ∈ ker Λ, sinceπkerv + πimv = v, πimv = v − πker ∈ ker Λ ∩

im Λ, so that0 = πimv andv = πkerv. By Theorem 3.2,M∞ = πker andI−M∞ = πim. By

our convention, we will writeΛ∞ for M∞− I = −πim, so thatker Λ∞ = ker (I −M∞) =

ker πim.

Now observer that, ifv ∈ ker Λ∞, v = M∞v = πkerv ∈ ker Λ. Conversely, ifv ∈

ker Λ, 0 = πimv = −Λ∞v, andv ∈ ker Λ∞. In other words,ker Λ∞ = ker Λ, from which

it follows thatstab (M∞) = ker Λ∞ ∩∆n = ker Λ ∩∆n = stab(M).

In addition, by Theorem 3.2,M∞ is Markov, so thatM∞∆n ⊂ ∆n. SinceM∞∆n ⊂

im M∞ = im πker ⊂ ker Λ, it follows thatM∞∆n ⊂ ker Λ ∩∆n = stab(M). Conversely,

assume thatv ∈ stab(M), so thatv ∈ ker Λ. By our earlier observation,M∞v = πkerv =

v. In particular, sincev ∈ ∆n, v ∈M∞∆n. Thus,stab(M) = M∞∆n.

Example 3.4. For example, considerM =




0 1 0 1
6

1 0 0 1
6

0 0 1 1
6

0 0 0 1
2




. By induction, one may

easily check that

M i =




[i is even] [i is odd] 0 1
3

(
1− 1

2
i

)

[i is odd] [i is even] 0 1
3

(
1− 1

2
i

)

0 0 1 1
3

(
1− 1

2
i

)

0 0 0 1

2
i




and

1

N

N−1∑

i=0

M i =




1
2

+
[N is odd]

2N
1
2
−

[N is odd]
2N

0 1
3

+ 1−2
N

3N2
N−1

1
2
−

[N is odd]
2N

1
2

+
[N is odd]

2N
0 1

3
+ 1−2

N

3N2
N−1

0 0 1 1
3

+ 1−2
N

3N2
N−1

0 0 0 2
N
−1

N2
N−1






28

so thatM∞ =




1
2

1
2

0 1
3

1
2

1
2

0 1
3

0 0 1 1
3

0 0 0 0




. In particular, we see thatM∞e4 = 2
3
M∞e1 + 1

3
M∞e3.

SinceM∞e1 = M∞e2 =




1
2

1
2

0

0




andM∞e3 =




0

0

1

0




are clearly stable distributions of

M , all the columns ofM∞ are instab(M), as Corollary 3.3 predicts.



Chapter 4

Sub-Markov Matrix Invertibility

We begin this chapter by defining various sets of walks in a directed, weighted graph cor-

responding to a given matrix. We then show how by aggregatingthe weights of such walks

we arrive at an alternate formula for the powers of a matrix. Finally, we apply these tools

to Markov matrices to obtain results about the invertibility of sub-Markov matrices.

4.1 Sequences and Walks

Let Sn(l) =
{
σ : S0

l → Sn

}
be the set of sequences inSn of length l + 1. Likewise,

let Sn(i, j, l) = {σ ∈ Sn(l) | σ0 = j andσl = i} be the set of sequences inSn of length

l + 1 starting withj and ending withi. For any sets ∈ Sn, we also defineSn(s, i, j, l) =

{σ ∈ Sn(i, j, l) | σt ∈ s, ∀ 0 < t < l} to be the set of sequences inSn of lengthl + 1 from

j to i whose intermediate values all lie ins. However,j andi do not themselves need to be

in s, so for anys, Sn(s, i, j, 1) = Sn(i, j, 1). Finally,Sn(s, i, j) =
⋃∞

l=1 Sn(s, i, j, l) is the

set of all such sequences of arbitrary length (greater than 1).

For any non-negative matrix,M ≥ 0, and for any sets ⊂ Sn, we definePM(s, i, j, l) ⊂

Sn(s, i, j, l) as follows:

PM(s, i, j, l) =
{
σ ∈ Sn(s, i, j, l) |Mσt+1,σt

6= 0, ∀0 ≤ t < l
}

.

This represents the set of walks of lengthl in G(M) from vj to vi that include vertices

in Vs ≡ {vi ∈ V | i ∈ s} only. In addition,PM(s, i, j) =
⋃∞

l=1P(s, i, j, l) is the set of

all such walks of arbitrary length (greater than or equal to 1). There are corresponding

29
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definitions forPM (i, j, l) andPM(l), representing the set of walks inG(M) of lengthl that

start atvj and end atvi, and the set of walks inG(M) of lengthl, respectively.

Lemma 4.1. For anyn× n Markov matrix,M , for any sets ⊂ Sn that is open inM , and

for anyj ∈ s,
⋃

i∈s PM(s, i, j, n) is a proper subset of
⋃

i∈Sn
PM (i, j, n).

Proof. Now
⋃

i∈Sn
PM(i, j, n) corresponds to walks inG(M) of lengthn starting atvj .

Likewise,
⋃

i∈sPM (s, i, j, n) corresponds to those same walks with the additional condition

that they end ins and include only vertices ins. Thus,
⋃

i∈s PM(s, i, j, n) is a subset of
⋃

i∈Sn
PM (i, j, n)

SinceVs is open, by Lemma 1.2, from any vertex inVs there is a walkσ that starts

at vj and ends at some vertexvk /∈ Vs. SinceM is Markov, every vertex inG(M) must

have at least one outgoing edge, soσ can be extended to a walkσ′ of lengthn. But then

σ′ ∈
⋃

i∈Sn
PM(i, j, n), andσ′ /∈

⋃
i∈sPM(s, i, j, n), since it containsvk /∈ Vs. Thus

⋃
i∈sPM (s, i, j, n) is a proper subset of

⋃
i∈Sn
PM (i, j, n).

4.2 Matrix Powers and Walks

Given ann× n matrix,M , and a sequence of indices,σ ∈ Sn(l), l ≥ 1 we will define

W (M, σ) ≡
l∏

k=1

Mσk ,σk−1
. (4.1)

The matrix entryMσk,σk−1
corresponds to the weight on the edge fromvσk−1

to vσk
in

G(M). So the functionW (M, σ) has a graph-theoretic interpretation as the “total” weight

of the walk σ in G(M), where we aggregate weights by multiplication. Sequences of

indices of length 1 correspond to walks of length 0, so following the usual convention that

a product over an empty set is 1,W (M, σ) = 1 wheneverσ ∈ Sn(0).

Lemma 4.2. For anyn× n matrix,M , andσ ∈ Sn(l), W (M, σ) 6= 0 iff σ is a walk in the

graphG(M), that is, iffσ ∈ PM(l).

Proof. If σ ∈ PM(l), thenMσi,σi−1
6= 0, for all 1 ≤ i ≤ l. SinceW (M, σ) is the product

of non-zero values, it itself is not zero. Conversely, ifW (M, σ) 6= 0, all of the terms in the

product must be non-zero, soσ must be a walk of lengthl, i.e.,σ ∈ PM(l).
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We can now give a graph-theoretic interpretation of matrix powers in terms of walks in

G(M). In words, for anyn × n matrixM , the(i, j)th entry inM l can be computed as the

sum of the “total” weights of all walks inG(M) from j to i of lengthl. We may similarly

identify sums over various subsets of walks in terms of products of submatrices ofM .

Lemma 4.3. For anyn× n matrixM and index setsα, β, s ⊂ Sn,

a)
(
M l
)

i,j
=
∑

σ∈PM (i,j,l) W (M, σ), and

b)
(
Mα,sM

l−2
s,s Ms,β

)
i,j

=
∑

σ∈PM (s,αi,βj ,l) W (M, σ),

Proof.

Proof of part a): Using the facts thatMi,j = et
iMej andI =

∑n
k=1 eke

t
k, we have

(
M l
)

i,j
= et

iM
lej = et

i M . . .M︸ ︷︷ ︸
l times

ej = et
iMIM . . .MIMej

= et
iM




n∑

rl−1=1

erl−1
et

rl−1


M . . . M

(
n∑

r1=1

er1
et

r1

)
Mej

=
n∑

rl−1=1

. . .
n∑

r1=1

et
iMerl−1

et
rl−1

M . . .Mer1
et

r1
Mej

=
n∑

rl−1=1

. . .
n∑

r1=1

Mi,rl−1
Mrl−1,rl−2

. . .Mr2,r1
Mr1,j .

We now apply the substitutionσ(k) = rk, σ(0) = j, σ(l) = i, so that each choice of values

for the summation variables,{r1, . . . , rl−1}, represents a unique choice ofσ : S0
l → Sn,

a sequence of lengthl + 1 which starts atj and ends ati. So this set ofσs is precisely

Sn(i, j, l). Thus,

(
M l
)

i,j
=

∑

σ∈Sn(i,j,l)

Mσl,σl−1
Mσl−1,σl−2

. . . Mσ2,σ1
Mσ1,σ0

=
∑

σ∈Sn(i,j,l)

W (M, σ) =
∑

σ∈PM (i,j,l)

W (M, σ)

where the final equality follows from Lemma 4.2.
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Proof of part b): Similarly, ifk = |s|,

(
Mα,sM

l−2
s,s Ms,β

)
i,j

= et
iMα,s




k∑

rl−1=1

erl−1
et

rl−1


Ms,s . . .Ms,s

(
k∑

r1=1

er1
et

r1

)
Ms,βej

=

k∑

rl−1=1

. . .

k∑

r1=1

et
iMα,serl−1

et
rl−1

Ms,s . . . Ms,ser1
et

r1
Ms,βej

=

k∑

rl−1=1

. . .

k∑

r1=1

Mαi,srl−1
Msrl−1

,srl−2
. . .Msr2

,sr1
Msr1

,βj
.

This time each choice of values for the summation variables,{r1, . . . , rl−1}, represents a

unique choice ofσ ∈ Sn(s, αi, βj, l), and the conclusion follows as in part a).
(
Mα,sM

l−2
s,s Ms,β

)
i,j

=
∑

σ∈Sn(s,αi,βj,l)

Mσl,σl−1
Mσl−1,σl−2

. . .Mσ2,σ1
Mσ1,σ0

=
∑

σ∈Sn(s,αi,βj,l)

W (M, σ) =
∑

σ∈PM (s,αi,βj,l)

W (M, σ)

4.3 Sub-Markov Matrix Invertibility

We will now show that the laplacian,Λs,s, of a sub-Markov matrix,Ms,s, is invertible iff s

is open with respect toM . The first half of this theorem will be crucial for specifyingthe

reduction presented in chapter 5, and its generalizations presented in chapter 7. The second

half will come into play when we make the connection between the reduction on Markov

matrices and the associated construction on Markov chains,in section 5.3.

Theorem 4.4. If M is ann× n Markov matrix, with a principal submatrix,Ms,s, defined

by an open set of indices,s ⊂ Sn, then

a) For all integersi ≥ 0,
∥∥M i

s,s

∥∥
1
≤ c⌊

i
n
⌋ for some0 ≤ c < 1, andlimi→∞ M i

s,s = 0.

b) I −Ms,s is invertible, and
(
I −Ms,s

)−1
=
∑∞

i=0 M i
s,s.

Inversely, ifs contains an entire closed class ofM , then

c) I −Ms,s is not invertible, and
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d) limi→∞ M i
s,s 6= 0.

Proof.

Proof of part a): Letc =
∥∥Mn

s,s

∥∥
1
≥ 0. We first show that

∥∥M i
s,s

∥∥
1

is bounded above

by c⌊
i
n
⌋. Remember from section 1.2 that for a positive matrix,M ≥ 0, ‖M‖1 is just its

maximum column sum. SinceM is Markov, and sinceMs,s is a submatrix ofM , 0 ≤∥∥Ms,s

∥∥
1
≤ ‖M‖1 ≤ 1. Since the matrix norm is sub-multiplicative, for alli,

∥∥M i+1
s,s

∥∥
1
≤∥∥M i

s,s

∥∥
1

∥∥Ms,s

∥∥
1
≤
∥∥M i

s,s

∥∥
1
, so the sequence

∥∥M i
s,s

∥∥
1
, i ≥ 1, is decreasing. Looking at

everynth term, we have the subsequence
∥∥∥Mnk

s,s

∥∥∥
1
≤
(∥∥Mn

s,s

∥∥
1

)k
= ck, k ≥ 0. Setting

k = ⌊ i
n
⌋, nk ≤ i, so

∥∥M i
s,s

∥∥
1
≤
∥∥∥Mnk

s,s

∥∥∥
1
≤ ck = c⌊

i
n
⌋.

To prove thatc < 1, we will show that all column sums ofMn
s,s are strictly less than 1.

SinceJM = J , JMn = J , i.e., all column sums ofMn equal 1. In particular, writing out

thesth
j column sum ofMn, we have:

1 =
∑

i∈Sn

(Mn)i,sj

=
∑

i∈Sn

∑

σ∈PM (i,sj ,n)

W (M, σ) (4.2)

>
∑

i∈s

∑

σ∈PM (s,i,sj,n)

W (M, σ) (4.3)

=
∑

i∈S|s|

∑

σ∈PM (s,si,sj ,n)

W (M, σ)

=
∑

i∈S|s|

(
Mn

s,s

)
i,j

. (4.4)

Equation 4.2 follows from Lemma 4.3 a). The inequality in 4.3follows from Lemma 4.1;

since
⋃

i∈sPM(s, i, sj, n) is a proper subset of
⋃

i∈Sn
PM(i, sj, n), when we restrict the

sum we throw away some positive terms. Next, we re-index and apply Lemma 4.3 b) with

α = β = s to arrive at Equation 4.4, which is thej th column sum ofMn
s,s, showing that this

is strictly less than 1. Sincej was arbitrary,
∥∥Mn

s,s

∥∥
1

< 1.

Now, since0 ≤ c =
∥∥Mn

s,s

∥∥
1

< 1, it follows that limi→∞ c⌊
i
n
⌋ = 0. Further, since

0 ≤
∥∥M i

s,s

∥∥
1
≤ c⌊

i
n
⌋, it follows thatlimi→∞

∥∥M i
s,s

∥∥
1

= 0. Finally, since the entries ofM i
s,s

are non-negative and bounded above by
∥∥M i

s,s

∥∥
1
, limi→∞ M i

s,s = 0.
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Proof of part b): By part a),
∑∞

i=0

∥∥M i
s,s

∥∥
1
≤
∑∞

i=0 c⌊
i
n
⌋. By writing i = kn + j for

0 ≤ j < n, we may rewrite this as
∑∞

k=0

∑n−1
j=0 c⌊

kn+j
n

⌋ =
∑∞

k=0

∑n−1
j=0 ck = n

∑∞
k=0 ck =

n
1−c

. Hence, the summation
∑∞

i=0

∥∥M i
s,s

∥∥
1

is bounded above and is, hence convergent.

Since each entry of
∑N

i=0 M i
s,s is an increasing sequence which is bounded above by

∑∞
i=0

∥∥M i
s,s

∥∥
1
, they each converge, i.e., the summation

∑∞
i=0 M i

s,s also converges.

Next, we argue that
∑∞

i=0 M i
s,s is the inverse ofI −Ms,s. Since both matrices are square,

by Theorem A.2, it suffices to show that the sum is a right-inverse, as follows:

(
I −Ms,s

) ∞∑

i=0

M i
s,s =

(
I −Ms,s

)
lim
j→∞

j−1∑

i=0

M i
s,s

= lim
j→∞

j−1∑

i=0

(I −Ms,s)M
i
s,s

= lim
j→∞

j−1∑

i=0

(M i
s,s −M i+1

s,s )

= lim
j→∞

(M0
s,s −M j

s,s)

= I − lim
j→∞

M j
s,s

= I

where the final step in the derivation follows from part a).

Proof of part c): Inversely, assumes contains an entire closed class ofM . By Theo-

rem 2.12 b),ker Λs,s 6= 0. But I −Ms,s = −(Ms,s − I) = −Λs,s, soker(I −Ms,s) =

ker Λs,s 6= 0, andI −Ms,s is not invertible.

Proof of part d): As above, by Theorem 2.12 b),ker Λs,s 6= 0. So there existsv ∈ ker Λs,s

with v 6= 0. Now Ms,sv = v, so(limi→∞ M i
s,s)v = limi→∞(M i

s,sv) = limi→∞ v = v. But

v 6= 0. Therefore,limi→∞ M i
s,s 6= 0.

Corollary 4.5. If M is ann× n Markov matrix, with a principal submatrix,Ms,s, defined

by an open set of indices,s ⊂ Sn, then

a)
(
−Ms,s Λ−1

s,s

)
i,j

=
∑

σ∈PM(s,si,sj) W (M, σ),

b)
(
−Λ−1

s,s Ms,s

)
i,j

=
∑

σ∈PM(s,si,sj) W (M, σ), and



35

c)
(
Ms,s −Ms,s Λ−1

s,s Ms,s

)
i,j

=
∑

σ∈PM(s,si,sj) W (M, σ).

Proof.

Proof of part a): By Theorem 4.4 b),−Ms,s Λ−1
s,s = Ms,s

(
I −Ms,s

)−1
=
∑∞

i=0 Ms,sM
i
s,s.

Since projecting to the(i, j)th index is linear, applying Lemma 4.3 b) withα = s andβ = s

gives

(
−Ms,s Λ−1

s,s

)
i,j

=

(
∞∑

k=0

Ms,sM
k
s,s

)

i,j

=
∞∑

k=0

(
Ms,sM

k
s,s

)
i,j

=
∞∑

k=0

∑

σ∈PM (s,si,sj ,k+1)

W (M, σ) =
∑

σ∈PM(s,si,sj)

W (M, σ)

Proof of part b): Similarly,−Λ−1
s,s Ms,s =

∑∞
i=0 M i

s,sMs,s so that applying Lemma 4.3 b)

with α = s andβ = s gives

(
−Λ−1

s,s Ms,s

)
i,j

=

∞∑

k=0

∑

σ∈PM (s,si,sj ,k+1)

W (M, σ) =
∑

σ∈PM(s,si,sj)

W (M, σ).

Proof of part c): Finally,

(
Ms,s −Ms,s Λ−1

s,s Ms,s

)
i,j

=
(
Ms,s

)
i,j

+

∞∑

k=0

(
Ms,sM

k
s,sMs,s

)
i,j

.

Notice thatPM

(
si, sj, 1

)
= PM

(
s, si, sj , 1

)
is a singleton set, such that

(
Ms,s

)
i,j

=
∑

σ∈PM(s,si,sj ,1) W (M, σ). By Lemma 4.3 b) withα = β = s,
(
Ms,sM

k
s,sMs,s

)
i,j

=
∑

σ∈PM(s,si,sj ,k+2) W (M, σ), so that

(
Ms,s −Ms,s Λ−1

s,s Ms,s

)
i,j

=

∞∑

l=1

∑

σ∈PM(s,si,sj ,l)

W (M, σ) =
∑

σ∈PM(s,si,sj)

W (M, σ).



Chapter 5

Two Useful Constructions

In this chapter, we present our two fundamental constructions, scale and reduce. We will

show that the result of these constructions applied to a Markov matrix is another Markov

matrix which is, in a certain sense, equivalent, in that the stable distributions of the former

can be recovered from those of the latter. Appropriate generalizations of these construc-

tions to perturbed Markov matrices will form the basis of ourmain algorithm, presented in

chapter 7.

In addition, the reduce construction will allow us to sharpen the structure theorem

shown in Corollary 3.3 by proving Theorem 5.17 and Theorem 5.18. We will also give

a Markov chain interpretation of the construction in section 5.3. This will allow us to prove

that the construction “composes” well; that is, if we use it to first eliminate one set of states,

s1, and then proceed to eliminate an additional set of states,s2, we could obtain the same

result by simply eliminating all the states,s1 ∪ s2, at once.

5.1 Scaling

In this section, we introduce the notion ofD-equivalent Markov matrices, whereD is a

matrix satisfying certain conditions. We will see that, intuitively, if we are only interested

in stable distributions, we may replace any Markov matrix with one that isD-equivalent.

Definition 5.1. If M1 andM2 are Markov matrices, we will say thatM2 is D-equivalent

to M1, and writeM2 ≈D M1, iff D ≥ 0 has a non-negative left-inverse andker Λ1 =

D ker Λ2. WhenD = I, we will say thatM2 is equivalentto M1, and writeM2 ≈M1.

36
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In the next Lemma we see that that that for two matrices which are D-equivalent,D

induces a 1-1 correspondence (i.e., a bijective mapping) between their sets of stable dis-

tributions. We will justify the term “equivalent” in section 5.2, by showing that the other

direction holds; that is, two matrices are equivalent iff they have the same set of stable

distributions.

Lemma 5.2. If M1 andM2 are Markov matrices,M2 ≈D M1, withD, L ≥ 0 andLD = I,

thenD∗(v) = Dv
‖Dv‖1

is a bijective mapping fromstab (M2) to stab (M1).

Proof. First, observe thatD∗ mapsstab (M2) to stab (M1). The matrixD mapsker M2

to ker M1, while the mappingD∗ normalizes that result, dividing by‖Dv‖1. SinceD is

non-negative, the image ofstab (M2) underD∗ is non-negative, norm-1 vectors inker M1.

Next, we will show thatD∗ is bijective.

Injective: If D∗(v) = D∗(w) for v, w ∈ stab (M2), thenDv = kDw for k = ‖Dv‖1

‖Dw‖1
>

0. So,0 = Dv − kDw = D(v − kw). Further,0 = LD(v − kw) = v − kw. Hence,

v = kw. But v andw are distributions, so1 = Jv = Jkw = kJw = k, andv = w. Thus,

D∗ is injective fromstab (M2) into stab (M1).

Surjective: For anyw ∈ stab (M1) ⊂ ker (Λ1), sinceM2 is D-equivalent toM1,

w = Du for someu ∈ ker (Λ2). Let v = u
‖u‖1

. u = LDu = Lw ≥ 0, sov ∈ stab (M2).

Now Dv = Du
‖u‖1

= w
‖u‖1

, andD∗v = Dv
‖Dv‖1

= w/‖u‖1

‖w/‖u‖1‖1
= w/‖u‖1

‖w‖1/‖u‖1
= w

‖w‖1
= w. Thus,

D∗ is surjective fromstab (M2) ontostab (M1), and hence a bijection betweenstab (M2)

andstab (M1).

We now give a simple construction that operates on certain Markov matrices and pro-

ducesD-equivalent results. For any Markov matrix,M , and any diagonal matrix,D, with

0 < Di,i andDi,i

(
1−Mi,i

)
≤ 1 (i.e.,Di,i is positive and sufficiently small) for alli ∈ Sn,

we defineMD = ΛD + I (and the correspondingΛD = ΛD). We say thatMD is the

result ofscalingM by D. Note thatD is diagonal with positive diagonal entries; hence,

it is invertible with positive inverse (it is easy to check that D−1 is also diagonal, with

D−1
i,i = (Di,i)

−1). In particular, it has both left and right inverses, and is thus both injective

and surjective.
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For example,

M =




1
2

1
3

1
4

1
2

1
3

3
4

0 1
3

0




and D =




1
3

0 0

0 3
2

0

0 0 1
2



⇒MD =




5
6

1
2

1
8

1
6

0 3
8

0 1
2

1
2




These correspond to the graphs in Figure 5.1.

Figure 5.1:G(M) andG (MD) with D = diag
(

1
3
, 3

2
, 1

2

)
.

G(M) v1 1
2

v2

1
3

v3

1
2

1
3

3
4

1
3

1
4

G (MD) v1 5
6

v2 v3

1
2

1
6

1
2

3
8

1
2

1
8

By looking at the corresponding graphs, we see that scaling by D adjusts the weight

of the self-loop at each vertex with a proportional adjustment of the weights on the corre-

sponding outgoing edges. WhenDi,i is close to0, the weight of the resulting self-loop at

i is large (near1), and whenDi,i is close to
(
1−Mi,i

)−1
, the the weight of the resulting

self-loop is small (near0).

Lemma 5.3. Given a Markov matrixM , and any diagonal matrix,D, with 0 < Di,i and

Di,i

(
1−Mi,i

)
≤ 1 for all i ∈ Sn, MD is a Markov matrix andMD ≈D M .

Proof. We first show thatMD is Markov. SinceJΛ = 0, JMD = JΛD + J = J , so the

columns ofMD sum to 1. Moreover, all the off-diagonal entries ofMD are nonnegative,

since, fori 6= j, (MD)ij = (ΛD + I)i,j = ((M − I)D)i,j + Ii,j = (MD)i,j − Di,j =

(MD)i,j andM, D ≥ 0, so (MD)i,j ≥ 0. Finally, we must show that all the diagonal

entries ofMD are nonnegative. Observe that(MD)i,i = (ΛD + I)i,i = (ΛD)i,i + Ii,i =

Λi,iDi,i + 1 = (Mi,i − 1)Di,i + 1 = (−1)(1−Mi,i)Di,i + 1. Now (1 −Mi,i)Di,i ≤ 1, so

(−1)(1−Mi,i)Di,i ≥ −1, so(MD)i,i ≥ −1 + 1 = 0.

SinceD is non-negative with a non-negative inverse,D is surjective. By Lemma A.3 b),

therefore,ker Λ = D ker ΛD = D ker ΛD. That is,MD ≈D M .
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We can use this scaling construction to produce infinitely many Markov matrices which

are equivalent to a given Markov matrix. In particular, we have the following Corollary.

Corollary 5.4. Given a Markov matrixM , if 0 < ǫ and ǫ maxi

(
1−Mi,i

)
≤ 1, then

Mǫ ≡ Λǫ + I is a parameterized family of Markov matrices equivalent toM .

Proof. Letting Dǫ = ǫI, Mǫ = MDǫ
so that Lemma 5.3 implies thatMǫ ≈Dǫ

M . But D

is simply scalar multiplication. So by Lemma 5.3,ker Λ = Dǫ ker Λǫ = ǫ ker Λǫ = ker Λǫ,

andMǫ ≈ M .

5.2 Reduction

In this section, we present a construction which allows us to“eliminate” an open set of

indices,s, of a Markov matrix,M . Specifically, it produces a Markov matrix of strictly

smaller dimension which is equivalent in the sense of Definition 5.1. In this way, itreduces

the dimensionality of the matrix in a principled manner thatdoes not lose any information

regarding its long-term behavior. In section 5.3, we will see that this corresponds directly to

compressing the time spent in the corresponding states of a Markov chain to 0. Graphically,

it effectively collapses the corresponding vertices inG(M).

ForM Markov withs ∈ Sn an open set of indices inM , we may define:

ı = Ps


 I

−Λ−1
s,s Ms,s


 , (5.1)

p =
(

I −Ms,s Λ−1
s,s

)
P t

s , and (5.2)

M̂ = pΛı + I . (5.3)

Example 5.5. In the Markov matrixM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


, the vertex with index 3 is

an open set. We will now compute the reduction ofM with respect tos = {3}. s is

already positioned in the lower-right corner ofM , so the permutation matricesPs and

P t
s are just the identity. We haveΛs,s =

(
−1

2

)
, Λ−1

s,s =
(
−2

)
, Ms,s =




1
4

1
4


,
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Ms,s =
(

0 1
2

)
. So we can calculateı =




1 0

0 1

0 1


, p =


 1 0 1

2

0 1 1
2


, M̂ =

pΛı + I =


 1 0 1

2

0 1 1
2







−1 1
2

1
4

1 −1 1
4

0 1
2
−1

2







1 0

0 1

0 1


+


 1 0

0 1


 =


 0 3

4

1 1
4


.

Theorem 5.6.For M , ı, p, andM̂ as defined above,

a) ı, p ≥ 0 andJp = J ,

b) p is surjective, andı is injective.

c) M̂ = Ms,s −Ms,s Λ−1
s,s Ms,s,

d) M̂ is Markov.

Proof.

Proof of part a): By Theorem 4.4 4.4,

−Λ−1
s,s =

(
I −Ms,s

)−1
= lim

i→∞

i−1∑

j=0

M j
s,s ≥ 0

Ms,s andMs,s are also both non-negative, sop andı are both well-defined and non-negative.

We now show that the columns ofp sum to 1. SinceP t
sMPs is Markov,JP t

sMPs = J . In

particular,JMs,s + JMs,s = J . Therefore,JMs,s = J − JMs,s = JI − JMs,s = −JΛs,s,

so that

Jp = J
(

I −Ms,s Λ−1
s,s

)
P t

s =
(

JI −JMs,s Λ−1
s,s

)
P t

s

=
(

J JΛs,s Λ−1
s,s

)
P t

s =
(

J J
)

P t
s = JP t

s = J

Proof of part b): Letk = |s|. Thenp is k × n andı is n × k. Now p has rankk because

its columns include the standard basis forR
k. Thus,dim im p = k andp is surjective.

Similarly, ı has rankk because the columns ofıt include the standard basis forR
k, and

rk ı = rk ıt. Then, by Theorem A.1,rk ı + dim ker ı = k, so dim ker ı = 0, and ı is

injective.
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Proof of part c): This follows from Equations 5.1 -5.3 and matrix algebra.

M̂ = pΛı + I

=
(

I −Ms,s Λ−1
s,s

)
P t

sΛPs


 I

−Λ−1
s,s Ms,s


+ I

=
(

I −Ms,s Λ−1
s,s

)

 Λs,s Ms,s

Ms,s Λs,s




 I

−Λ−1
s,s Ms,s


+ I

=
(

Λs,s −Ms,s Λ−1
s,s Ms,s 0

)

 I

−Λ−1
s,s Ms,s


 + I

= Λs,s −Ms,s Λ−1
s,s Ms,s + I

= Ms,s −Ms,s Λ−1
s,s Ms,s

Proof of part d): Since−Λ−1
s,s , Ms,s, Ms,s, Ms,s ≥ 0, M̂ ≥ 0. The columns of̂M also sum

to 1, sinceJM̂ = J(pΛı + I) = JΛı + J = J , becauseJΛ = 0. SoM̂ is Markov.

This motivates the following definition.

Definition 5.7. Thereductionof M with respect tos is the triple,(M̂, p, ı).

We will refer to p and ı as theprojectionand inclusionoperators of the reduction, since

they are surjective and injective mappings, respectively.We will also sometimes refer to

M̂ itself as the reduction.

Now we will examine the effect of this construction on the corresponding graphs. We

will show that the entries of̂M may be identified with walks of length at least 1 onG−(M)

between vertices inVs which only pass through vertices inVs.
1

For convenience, we will defineP(M) ≡ (G−(M))T , so that there is a path fromu to

v in G−(M) (or, equivalently, inG(M)) iff there is a walk from fromu to v in G−(M) iff

(u, v) is an edge inP(M). We will denote any of these equivalent propositions brieflyby

(u, v) ∈ P(M).

1That is, whose interior/non-end vertices are inVs. In particular, this vacuously includes walks of length
1, since such walks have no interior vertices.
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Theorem 5.8. If M is Markov ands ∈ Sn an open set of indices inM with |s| = k,

a) et
ip = et

si
+
∑k

j=1

∑
σ∈PM(s,si,sj) W (M, σ)et

sj
,

b) ıej = esj
+
∑k

i=1

∑
σ∈PM(s,si,sj) W (M, σ)esi

,

c)
(
M̂
)

i,j
=
∑

σ∈PM(s,si,sj) W (M, σ), and

d) P
(
M̂
)

= P (M)|Vs
, wherevi in P

(
M̂
)

corresponds tovsi
in P (M).

Proof.

Proof of part a): First, observe that from Equation 5.2,

p =
(

I −Ms,s Λ−1
s,s

)
P t

s =
(

I −Ms,s Λ−1
s,s

)

 πs

πs




= πs −Ms,s Λ−1
s,s πs

As in the proof of Lemma 4.3, we may use the fact thatI =
∑k

j=1 eje
t
j to compute theith

row of p as

et
ip = et

iπs − et
iMs,s Λ−1

s,s πs = et
si
− et

iMs,s Λ−1
s,s

k∑

j=1

eje
t
jπs

= et
si

+

k∑

j=1

et
i

(
−Ms,s Λ−1

s,s

)
eje

t
sj

= et
si

+

k∑

j=1

(
−Ms,s Λ−1

s,s

)
i,j

et
sj

= et
si

+

k∑

j=1

∑

σ∈PM(s,si,sj)

W (M, σ)et
sj

where we have appealed to Corollary 4.5 a) for the final equality.

Proof of part b): The proof of this part is similar to that of part a). We first observe that

ı = Ps


 I

−Λ−1
s,s Ms,s


 =

(
ıs ıs

)

 I

−Λ−1
s,s Ms,s


 = ıs − ısΛ

−1
s,s Ms,s.



43

Therefore, we may compute thej th column ofı as

ıej = ısej − ısΛ
−1
s,s Ms,sej = esj

− ıs

k∑

i=1

eie
t
iΛ

−1
s,s Ms,sej

= esj
+

k∑

i=1

ıseie
t
i

(
−Λ−1

s,s Ms,s

)
ej = esj

+
k∑

i=1

(
−Λ−1

s,s Ms,s

)
i,j

esi

= esj
+

k∑

i=1

∑

σ∈PM(s,si,sj)

W (M, σ)esi

appealing to Corollary 4.5 b) at the end.

Proof of part c): SincêM = Ms,s − Ms,s Λ−1
s,s Ms,s, this part follows immediately from

Corollary 4.5 c).

Proof of part d): Finally, if there is an edge,
(
vj , vi

)
∈ P (M), for i 6= j, then there a

walk of length at least 1 fromvj to vi in G (M). If i, j ∈ s, this walk may then be

decomposed into a concatenation of walks whose interior vertices are inVs which originate

and terminate inVs. Each of these walks correspond to an edge inG
(
M̂
)

, and together

they make a walk inG
(
M̂
)

and a single edge inP
(
M̂
)

. Conversely, any edge between

distinct vertices inP
(
M̂
)

corresponds to a walk inG
(
M̂
)

, which corresponds to a walk

in G (M) and an edge inP (M). Since, by definition, both graphs also contain all self-

loops,P
(
M̂
)

= P (M)|Vs
.

Example 5.9. In Example 5.5, we calculated that the reduction ofM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2




with respect to the open sets = {3} to beM̂ =


 0 3

4

1 1
4


.

Now we can see that is the result we would expect from our graphical intuition. InM ,

there is no path with interior vertices ins from v1 back to itself, sôM1,1 = 0. There is one

such path (of length one - it has no interior vertices) fromv1 to v2 with weight 1, soM̂2,1 =

1.
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M̂1,2 andM̂2,2 are more complicated. There are infinitely many paths beginning atv2

and ending atv1 or v2 with interior vertices ins, since there is a self-loop atv3. Specifically,

M̂1,2 is the sum of the weight of the edge(v2, v1) and the weights of all paths which begin

at v2, cycle atv3 i times, and end atv1. That is,M̂1,2 = M1,2 +
∑∞

i=0 M1,3(M3,3)
iM3,2 =

1
2

+
∑∞

i=0
1
4
(1

2
)i 1

2
= 1

2
+ 1

4
· 2 · 1

2
= 3

4
. Similarly, M̂2,2 =

∑∞
i=0 M2,3(M

i
3,3)M3,2 =

∑∞
i=0

1
4
(1

2
)i 1

2
= 1

4
.

Theorem 5.8 leads to the following important geometric property of the reduction con-

struction. Intuitively, it says that the reduction of an open set is open.

Theorem 5.10.If s ands̃ are open sets of indices ofM such thats∪ s̃ is also open, and̂M

is the reduction ofM with respect tos, thens−1 (s̃) ≡
{
j ∈ S|s| | sj ∈ s̃

}
(i.e., the indices

of M̂ that correspond to indices iñs) is open with respect tôM .

Proof. Consider anyj ∈ s−1 (s̃). By Lemma 1.2, sinces ∪ s̃ is open with respect toM ,

andsj ∈ s̃, there is an edge inP (M) from vsj
to somevsk

, wheresk ∈ s ∪ s̃ = s ∩ s̃.

That is, by Theorem 5.8, there is an edge inP
(
M̂
)

from j to k /∈ s−1 (s̃). Hence, by

Lemma 1.2,s−1 (s̃) is open with respect tôM .

Corollary 5.11. If M is unichain or irreducible, then for any open set,s, so is the corre-

sponding reduction̂M .

Proof. First, observe thatM is unichain iff there is an open set,s, with |s| = n − 1. For

example, ifM is unichain andi is a chosen index in the closed class, thens = Sn − {i} is

open. Conversely, if there is an open set,s, with |s| = n−1, s = {i} can only be contained

in at most one closed class. In particular, ifM were to have more than one closed class,

at least one of them would have to be contained ins, which is impossible sinces is open.

Since, by Lemma 1.1,M has at least one closed class, it must have exactly one, that is,M

must be unichain.

Now assume thatM is unichain ands is open. Then there must be somei ∈ s which is

in its closed class. In particular,Sn − {i} is open. If we takẽs ≡ Sn − {i} − s, then we

may apply Theorem 5.10 to conclude thats−1 (s̃) is open with respect tôM . Sinces̃ ⊂ s,

|s̃ ∩ s| = |s̃| = |s| − 1, andM̂ is |s|-dimensional, we may conclude that̂M is unichain.

If M is irreducible, thenP (M) must be complete. SinceP
(
M̂
)

= P (M)|Vs
,P
(
M̂
)

must be complete, as well. In particular,̂M is irreducible.
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We will show in section 5.3 that if we consider a Markov chain,X∗, with transition

matrix,M , and any initial distribution,̂M corresponds to another Markov chain,X̂∗, which

is justX∗, except that we pass through states ofs without pause. We will likewise obtain

a compelling probabilistic interpretation ofp as a mapping from the initial distribution of

X∗ to that ofX̂∗.

While there is no obvious probabilistic interpretation ofı, it possesses several useful

properties. Most importantly, the reduce construction “preserves” the kernel of the lapla-

cian in the following sense.

Theorem 5.12.Given a Markov matrixM and an open set of indices,s, using the notation

of Theorem 5.6,ı has a non-negative left-inverse,πs, andker Λ = ı ker Λ̂, so thatM̂ ≈ı M .

Proof. Consider the matrixB =


 Λ̂ 0

0 I


. Multiply it on the left by three invertible

matrices:A1 =


 I Ms,s

0 I


, A2 =


 I 0

0 Λs,s


, andA3 = Ps. Now A3 has inverse

P t
s , and it is easy to check thatA1 has inverse


 I −Ms,s

0 I


. In addition, sinces is

open, Theorem 4.4 implies thatΛs,s = −(I −Ms,s) is invertible, so thatA2 has inverse
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
 I 0

0 Λ−1
s,s


. Therefore,

A3A2A1B = Ps


 I 0

0 Λs,s




 I Ms,s

0 I




 Λ̂ 0

0 I




= Ps


 Λ̂ Ms,s

0 Λs,s




= Ps


 Λs,s −Ms,sΛ

−1
s,sMs,s Ms,s

0 Λs,s


 (5.4)

= Ps


 Λs,s Ms,s

Ms,s Λs,s




 I 0

−Λ−1
s,s Ms,s I




= Ps

(
P t

sΛPs

)

 I 0

−Λ−1
s,s Ms,s I


 (5.5)

= ΛPs


 I 0

−Λ−1
s,s Ms,s I


 .

Equation 5.4 follows from Theorem 5.6 c), and Equation 5.5 follows from the defini-

tions of Ps and the component submatrices ofΛ. Now sinceA1, A2, A3 are invertible,

in particular they are injective. So by Lemma A.3 c),ker A3A2A1B = ker B. That is,

ker ΛPs


 I 0

−Λ−1
s,s Ms,s I


 = ker


 Λ̂ 0

0 I


.

Now consider Lemma 2.8 withs′ = Sn − S|s|, so thatıs′ =


 I

0


, ıs′ =


 0

I


,

πs
′ =

(
I 0

)
, and πs

′ =
(

0 I
)

. Since


 Λ̂ 0

0 I


 =


 I

0


 Λ̂

(
I 0

)
+
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
 0

I



(

0 I
)

, we then have

ker


 Λ̂ 0

0 I


 = ker




 I

0


 Λ̂

(
I 0

)
+


 0

I



(

0 I
)



= ker
[
ıs′Λ̂πs

′ + ıs′πs
′

]

= ker
[
ıs′Λ̂πs

′

]
∩ ker [ıs′πs

′] by Lemma A.3 d)

= ker
[
Λ̂πs

′

]
∩ ker πs

′ by Lemma A.3 c)

= ker
[
Λ̂πs

′

]
∩ im ıs′ by Lemma 2.8 c)

= ıs′ ker
[
Λ̂πs

′ıs′
]

by Lemma A.3 a)

= ıs′ ker Λ̂ . by Lemma 2.8 a)

To summarize, we haveker ΛPs


 I 0

−Λ−1
s,s Ms,s I


 = ıs′ ker Λ̂. Ps has inverseP t

s ,

and


 I 0

−Λ−1
s,s Ms,s I


 has inverse


 I 0

Λ−1
s,s Ms,s I


, so in particular both matrices are

surjective, and therefore by Lemma A.3 b),

ker Λ = Ps


 I 0

−Λ−1
s,s Ms,s I


 ker ΛPs


 I 0

−Λ−1
s,s Ms,s I




= Ps


 I 0

−Λ−1
s,s Ms,s I


 ıs′ ker Λ̂

= Ps


 I 0

−Λ−1
s,s Ms,s I




 I

0


 ker Λ̂

= Ps


 I

−Λ−1
s,s Ms,s


 ker Λ̂

= ı ker Λ̂ .
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It is easy to check thatπs =
(

I 0
)

 πs

πs


 = πs

′P t
s ≥ 0 is a left-inverse ofi:

πsı = πs
′P t

sPs


 I

−Λ−1
s,s Ms,s


 =

(
I 0

)

 I

−Λ−1
s,s Ms,s


 = I .

Now sinceı has a non-negative left-inverse, andker Λ = ı ker Λ̂, M ≈ı M̂ by defini-

tion.

Theorem 5.12 and Lemma 5.2 then give the following importantresult.

Corollary 5.13. Given a Markov matrixM , if s is an open set of indices, with correspond-

ing reductionM̂ , thenı∗(v) = ıv
‖ıv‖1

is a bijective mapping fromstab
(
M̂
)

to stab (M).

This allows us to give simple and direct proofs of important structure theorems for

Markov matrices. For example, we may prove the uniqueness ofstable distributions in a

very general setting, without restrictive assumptions of aperiodicity or ergodicity, etc.

Theorem 5.14.Given a Markov matrixM with k closed classes,dim ker Λ = k.

Proof. Take any maximal, open set of indices,s. Thens must have exactly one element

from each distinct closed class ofM , so that|s| = k. Now consider the reduction,̂M , with

respect tos. Since there are no walks between closed classes, by Theorem5.8
(
M̂
)

i,j
= 0

for i 6= j. In particular,M̂ = I andker Λ̂ = R
k. Therefore, by Corollary 5.13,dim ker Λ =

k.

Corollary 5.15. Every unichain Markov matrixM with closed class,s, has a unique stable

distributionv such thatvi 6= 0 ⇐⇒ i ∈ s.

Proof. By Corollary 3.3,|stab M | > 1. More specifically, by Lemma 2.11 d),stab M

containsısv, wherev ∈ stab Ms,s, the stable distribution of the principal submatrix,Ms,s.

SinceM is unichain, by Theorem 5.14,dim ker Λ = 1. Thus, ifv, w ∈ stab M ⊂ ker Λ,

we would havev = kw. However, since1 = Jv = kJw = k, v = w, so that|stab M | = 1,

namely,stab M = {ısv}.

Lettingv = ısv, considers′ = {i | vi 6= 0}. It remains to show thatvi 6= 0 ⇐⇒ i ∈ s,

or equvalently, thats = s′. Consider anyi /∈ s. By Lemma 2.8 c),v ∈ im ıs = R
s =

span {ei | i ∈ s}. Sincei /∈ s, vi = 0, andi /∈ s′. Thus,s ⊂ s′, so thats′ ⊂ s.
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Now supposei ∈ s, but i /∈ s′. Sincev ∈ stab M andvj = 0 for all j /∈ s′, 0 = vi =

(Mv)i =
∑

j∈Sn
Mi,jvj =

∑
j∈s

′ Mi,jvj . Sincevj > 0 for all j ∈ s′, andMi,j ≥ 0 for all

j ∈ s′, we must haveMi,j = 0 for all j ∈ s′. That is, there are no edges from anyj ∈ s′ to

i in G(M). Since the choice ofi ∈ s− s′ was arbitrary, there are no edges from anyj ∈ s′

to anyi ∈ s− s′. But s′ ⊂ s, ands is a closed class, so eachj is in the same SCC as each

i, and this is a contradiction. Therefores′ = s, or in other words,vi 6= 0 ⇐⇒ i ∈ s.

This immediately gives the following well-known result (Horn and Johnson, 1985).

Corollary 5.16. Every irreducible Markov matrixM has a unique stable distribution,v >

0.

While the next structure theorem for Markov matrices follows from the proof of Theo-

rem 2.1 in Karlin and Taylor (1981, p. 4), the reduce construction provides a conceptually

satisfying, constructive proof.

Theorem 5.17.Given a Markov matrixM , with closed classes,{sr}kr=1, let Ms
r
,s

r be the

principal submatrix onsr with unique stable distribution,vr > 0. Let vr = ısrvr, the

inclusion ofvr in R
n.

a) ker Λ = span
{

v1, . . . , vk
}

,

b) ker Λ = span{stab(M)}, and

c) everyw ∈ stab(M) is a convex combination of the vectorsvr, i.e.,w =
∑k

j=1 αjv
j

for 0 ≤ αj ≤ 1 with
∑k

j=1 αj = 1.

Proof. We should first observe that, for anyt, by Lemma 2.11,Ms
r
,s

r is Markov. More-

over, sinceG−

(
Ms

r
,s

r

)
is strongly connected,Ms

r
,s

r is irreducible. Therefore, by Corol-

lary 5.16,Ms
r
,s

r has a unique stable distribution,vr > 0.

Proof of part a): Now defineD =
(

v1 · · · vk

)
≥ 0 andL =




Jπ
s
1

...

Jπ
s
k


 ≥ 0. Notice
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that

LD =




Jπ
s
1v1 · · · Jπ

s
1vk

...
. . .

...

Jπ
s
kv1 · · · Jπ

s
kvk




=




Jπ
s
1ı

s
1v1 · · · Jπ

s
1ı

s
kvk

...
. . .

...

Jπ
s
k ıs1v1 · · · Jπ

s
k ı

s
kvk




=




Jv1 · · · 0

...
. . .

...

0 · · · Jvk




= I ,

because by Lemma 2.8, for two setss, s′ ⊂ Sn, πsıs′ = I whens = s′ andπsıs′ = 0 when

s ∩ s′ = ∅. SoD is left-invertible with non-negative left inverseL.

In particular,D is injective. D is a n × k matrix with ker D = 0, so dim im D = k.

Now im D = span
{

v1, . . . , vk
}
⊂ ker Λ because by Lemma 2.11 d), for any column

vr of D, vr = ısrvr ∈ stab(M) ⊂ ker Λ. But by Theorem 5.14,dim ker Λ = k. So

ker Λ = im D = span
{
v1, . . . , vk

}
.

Proof of part b): Since
{
v1, . . . , vk

}
⊂ stab(M) ⊂ ker Λ,

span
{

v1, . . . , vk
}
⊂ span{stab(M)} ⊂ ker Λ.

Therefore,span
{
v1, . . . , vk

}
= span{stab(M)} = ker Λ.

Proof of part c): If we view thek × k identity matrix,I, as a Markov matrix, thenΛ(I) is

the zero matrix, andker Λ(I) = R
k. This means thatstab I = ker Λ(I)∩∆k = R

k∩∆k =

∆k. Now D ker Λ(I) = im D = ker Λ, andD is non-negative with non-negative left-

inverse, soI ≈D M , and by Lemma 5.2,D∗ is a bijection fromstab(I) to stab(M). But

JD =
(

Jv1 · · · Jvk
)

= J , so that for anyv ∈ ∆k, ‖Dv‖1 = JDv = Jv = 1, and

D∗ = D on∆k. That is,D gives a bijection between∆k andstab M . In particular, every

elementw in stab M satisfiesw = Dv for somev ∈ ∆k, sow is a convex combination of

the vectorsvr.
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We may now give a further characterization of the reduction when for each closed class

eithers does not interset it at all ors contains almost all of it. Notice this includes the case

whens is maximal.

Theorem 5.18.Using the notation of Theorem 5.17, assume thats ⊂ Sn has the property

that if sr ∩ s 6= ∅, |sr ∩ s| = 1, and in this case defineα′(r) andα(r) so that the unique

entry of this singleton is given bysr
α
′
(r)

= sα(r). If (M̂, p, ı) is the reduction ofM with

respect tos, if j = α(r), M̂ej = ej andıej = (vr)−1
sj

vr.

Proof. Assume thati is such thatPM

(
s, si, sj

)
6= ∅ for sj . By assumption,j = α(r) and

sj ∈ sr. Sincesr is closed, we must havesi ∈ sr, as well. However, sinces ∩ sr is a

singleton set, we must havei = j = α(r). Consequently, ifi 6= j, PM

(
s, si, sj

)
= ∅.

Therefore, by Theorem 5.8 c), if|s| = n− l,

M̂ej =
l∑

i=1

eie
t
iM̂ej =

l∑

i=1

ei

∑

σ∈PM(s,si,sj)

W (M, σ) = ej

∑

σ∈PM(s,sj ,sj)

W (M, σ)

that is, thej th column ofM̂ has only one non-zero entry in thej th row. SinceM̂ is Markov,

this entry must be 1, so that̂Mej = ej . This means thatej ∈ stab
(
M̂
)

. By Theorem 5.12,

ı maps stable distributions of̂M to stable vectors ofM . Thus, by Theorem 5.17,ıej =
∑k

r
′
=1 βr

′vr
′

for someβr.

Now observe that ifi 6∈ sr, et
iıej = 0. We can see this by considering the two cases,

si 6∈ sr and si 6∈ sr. First, consider the case whensi 6∈ sr. As before, we know that

PM

(
s, si, sj

)
= ∅, sincesj ∈ sr andsr is closed. Therefore, by Theorem 5.8 b),et

si
ıej =

∑
σ∈PM(s,si,sj) W (M, σ) = 0. In the second case, whensi 6∈ sr, et

si
ıej = [i = j]. Since

sj ∈ sr, i 6= j andet
si
ıej = 0.

If i 6∈ sr
′

, et
iı

s
r
′ = 0, so thatet

iv
r
′

= et
iı

s
r
′v r

′

= 0. Therefore, ifi = sr
′

i
′ ,

et
iıej =

k∑

r
′′
=1

βr
′′et

iv
r
′′

= βr
′et

iv
r
′

= βr
′

(
vr

′
)

i
.

If, in addition,r′ 6= r, we have also just shown thatet
iıej = 0 and since, by Corollary 5.15,(

vr
′
)

i
= et

iv
r
′

= et
iı

s
r
′v r

′

= et
i

∑
ı ısr

′eı e
t
ı v

r
′

= et
i

∑
ı es

r
′

ı

et
ı v

r
′

= et
i
′v r

′

=
(
v r

′
)

i
′
> 0,

we must haveβr
′ = 0. In other words,ıej = βrv

r.
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If i = sr
α
′
(r) = sj , Theorem 5.8 b) implies thatet

iıej = et
sj

ıej = 1. Therefore,1 =

et
iıej = βre

t
iv

r = βr (vr)i, so thatıej = (vr)−1
i vr = (vr)−1

sj
vr.

In the special case whens contains no transient indices, we can give a simple formula

for M̂ .

Theorem 5.19.Using the assumptions and notation of Theorem 5.18, assume further that

s ⊂
⋃k

r=1 sr. Thenp simply sums the entries in each closed class intersectings, i.e.,

pi,j =





[j = si] i 6∈ im α

[j ∈ sr] if i = α(r)
(5.6)

(5.7)

Similarly,M̂ is obtained by dropping the columns and summing the rows ins, so that

(
M̂
)

i,j
=





Msi,sj
if i, j 6= im α

∑
l∈s

r Ml,sj
i = α(r) andj 6= im α

[i = j] j = α(r)

(5.8)

Proof. By Theorem 5.8 a),

pi,j = et
ipej = [j = si] +

∑

σ∈PM (s,si,j)

W (M, σ) [j ∈ s] . (5.9)

If i ∈ im α with i = α(r) andj 6∈ sr, j 6= si = sr
α
′
(r). If j 6∈ s, then both terms of

Equation 5.9 vanish. Ifj 6∈ sr, sincesr
′

is closed,PM (s, si, j) = ∅, and again Equation 5.9

equals 0.

Similarly, in the case wheni 6= im α and j 6= si, we can show that Equation 5.9

vanishes. Whenj 6∈ s, this is trivially true. If j ∈ s, assume thatPM (s, si, j) 6= ∅. As

before, we must havej, si ∈ sr for somer. By assumption, sincej ∈ sr∩s andsi ∈ sr∩s,

we must havei = α(r), which is contrary to assumption. Therefore,PM (s, si, j) = ∅, and

again Equation 5.9 equals 0.

To this point, we have shown that the only non-vanishing entries in p occur in those

entries(i, j) for which eitheri = α(r) andj ∈ sr or i 6= im α andj = si. Now observe

that this implies thatp has exactly one non-zero row in each column. Assume the contrary,
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that there existsi 6= i′ andj, such that the(i, j)th and(i′, j)th entries ofp are both non-zero.

There are three cases to consider. Ifi, i′ ∈ im α, theni = α(r) andi′ = α(r) for r 6= r′.

For both the(i, j)th and(i′, j)th entries ofp to be non-zero, we must havej ∈ sr andj ∈ sr
′

,

but since distinct closed classes are disjoint, this is impossible. Another possibility is that

neitheri nor i′ are in im α, in which case, we must havej = si and j = si
′ , which is

impossible. Finally, we must consider the case wheni = α(r) andi′ 6∈ im α, in which case

j ∈ sr andj = si
′, so thatsi

′ ∈ sr. Sincesα(r) = sr
α
′
(r)

, we also havesi ∈ sr. However,

for this choice ofr, |sr ∩ s| = 1, which would imply thatsi = si
′, so thati = i′, a

contradiction. Thus,p has exactly one non-zero row in each column. Since by Theorema),

the columns ofp sum to 1, that non-zero entry must be 1, so that Equation 5.6 holds. Notice

this implies that
∑

σ∈PM (s,si,j)
W (M, σ) = 1 for i = α(r) andj ∈ sr.

To prove Equation 5.8, first observe that the case whenj = si has already been

proven in Theorem 5.18. Now consider the case wheni, j 6= im α, and observe that

PM

(
s, si, sj

)
⊂ Sn(1). If σ ∈ PM

(
s, si, sj

)
were a path of length greater than 1, it would

pass throughs, in particular, it would pass through some closed class,sr. This would force

si ∈ sr, as well. But sincesr∩s 6= ∅, |sr ∩ s| = 1 so thati = α(r), contrary to assumption.

Thus,PM

(
s, si, sj

)
consists of the unique path of length 1 starting atsj and ending atsi,

for whichW (M, σ) = Msi,sj
. Thus, by Theorem 5.8 c),

(
M̂
)

i,j
=

∑

σ∈PM(s,si,sj)

W (M, σ) =
∑

σ∈PM(s,si,sj ,1)

W (M, σ) = Msi,sj

Finally, consider the case wheni = α(r) andj 6= im α, so that in particulari 6= j.

Partitioning the set of paths into those of length 1 versus those of greater length which pass

through a specific index ins gives
(
M̂
)

i,j
=

∑

σ∈PM(s,si,sj)

W (M, σ)

=
∑

σ∈PM(s,si,sj ,1)

W (M, σ) +

|s|∑

l=1

∑

σ∈PM(s,si,sj)
σ(1)=sl

W (M, σ)

= Msi,sj
+

|s|∑

l=1

∑

σ∈PM (s,si,sl)

W (M, σ)Msl,sj

Sincesl is in some closed class,PM (s, si, sl) 6= ∅ only if it is in the same class assi,
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namelysr. If sr ∩ s = ∅, then
(
M̂
)

i,j
= Msi,sj

. Otherwise,sr ∩ s = sr \ {si}, in which

case

(
M̂
)

i,j
= Msi,sj

+
∑

l∈s
r

l 6=si

∑

σ∈PM (s,si,l)

W (M, σ)Ml,sj

= Msi,sj
+
∑

l∈s
r

l 6=si

Ml,sj

=
∑

l∈s
r

Ml,sj

where we have used the earlier observation that
∑

σ∈PM (s,si,j)
W (M, σ) = 1 for i = α(r)

andj ∈ sr

Example 5.20.We illustrate Theorem 5.19 using the same matrix as in Example 3.4,M =


0 1 0 1
6

1 0 0 1
6

0 0 1 1
6

0 0 0 1
2




. This matrix has two closed classes,{1, 2} and{3}. ReducingM with

respect to the open set,s = {2} yields a3-dimensional matrix withı =




1 0 0

1 0 1
6

0 1 0

0 0 1




and

p =




1 1 0 0

0 0 1 0

0 0 0 1


. Notice that the first two columns ofı do correspond to the stable

distributions of the two closed classes. Likewise,p sums entries 1 and 2 in any distribution,
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as Theorem 5.19 says it should. Finally,

M̂ = pΛı + I =




1 1 0 0

0 0 1 0

0 0 0 1







−1 1 0 1
6

1 −1 0 1
6

0 0 0 1
6

0 0 0 −1
2




ı + I

=




0 0 0 1
3

0 0 0 1
6

0 0 0 −1
2


 ı + I =




0 0 0 1
3

0 0 0 1
6

0 0 0 −1
2







1 0 0

1 0 1
6

0 1 0

0 0 1




+ I

=




0 0 1
3

0 0 1
6

0 0 −1
2


+ I =




1 0 1
3

0 1 1
6

0 0 1
2




The graph ofM and its reduction are shown in Figure 5.2. This example illustrates that,

under the assumptions of Theorem 5.19,G
(
M̂
)

is just the graph ofG(M) with each set

of vertices,Vs
r , “collapsed” to its representative,vα(t), in G

(
M̂
)

whensr ∩ s 6= ∅.

Theorem 5.21.Using notation of Theorem 5.18, consider the case whens is maximal, so

that j = im α for all j ∈ Ss. If β = α−1, then

a) ı(pı)−1 =
(

vβ(1) · · · vβ(k)
)

and

b) M∞ = ı(pı)−1p.

Proof.

Proof of part a): By Theorem 5.18, we know that̂M = I. We will begin by deriving two

additional properties of such a maximal reduction. SinceI = M̂ = pΛı + I, we see that

pΛı = 0. In fact, we may show thatpΛ = 0, that is,p(M − I) = 0 or pM = p. By
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Figure 5.2: The Effect of Reduction on a Markov Graph

M M̂




0 1 0 1
6

1 0 0 1
6

0 0 1 1
6

0 0 0 1
2







1 0 1
3

0 1 1
6

0 0 1
2




G (M) G
(
M̂
)

v1 v2

v3

1

v4
1
2

1

1

1
6

1
6

1
6

v1

1

v2

1

v3
1
2

1
3

1
6

Theorem 5.6,

pΛ = p(M − I)

=
(

I −Ms,s Λ−1
s,s

)
P t

sPs


 Ms,s Ms,s

Ms,s Ms,s


P t

s − p

=
(

Ms,s −Ms,s Λ−1
s,s Ms,s Ms,s −Ms,s Λ−1

s,s Ms,s

)
P t

s − p

=
(

M̂ Ms,s −Ms,s Λ−1
s,s

(
Λs,s + I

) )
P t

s − p

=
(

M̂ Ms,s −Ms,s −Ms,s Λ−1
s,s

)
P t

s − p

=
(

I −Ms,s Λ−1
s,s

)
P t

s − p

= p− p

= 0 .

In addition, we may show that the product,pı, is an invertible diagonal matrix. Again,

using the notation of Theorem 5.6,pı =
(

I −Ms,s Λ−1
s,s

)
P t

sPs


 I

−Λ−1
s,s Ms,s


 =
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I + Ms,s Λ
−2

Ms,s. SinceI is diagonal, it suffices to show thatMs,s Λ−2
s,sMs,s is diagonal

with non-negative entries.

By Corollary 4.5, if|s| = n− k,

(
Ms,s Λ−2

s,sMs,s

)
i,j

=
k∑

l=1

(
−Ms,s Λ−1

s,s

)
i,l

(
−Λ−1

s,sMs,s

)
l,j

=
k∑

l=1


 ∑

σ∈PM (s,si,sl)

W (M, σ)







∑

σ
′
∈PM(s,sl,sj)

W (M, σ′)




=
k∑

l=1

∑

σ∈PM (s,si,sl)

∑

σ
′
∈PM(s,sl,sj)

W (M, σ)W (M, σ′)

=
∑

σ
′′
∈PM(s,si,sj)

W (M, σ′′)

whereσ′′ corresponds to the concatenation of paths,σ and σ′. Sincesj and si are in

different closed classes, there are no no walks inG(M) from sj to si, unlessi = j. That

is, PM

(
s, si, sj

)
= ∅ and the sum is 0, ifi 6= j. Thus,Ms,s Λ−2

s,sMs,s is a non-negative,

diagonal matrix. Moreover, by Theorem 5.6,Jpı = Jı, so that the diagonal entries ofpı

correspond to the column sums ofı. In particular,(pı)−1
j,j = ‖ıej‖

−1
1 .

Thusı(pı)−1 is the result of dividing each column ofı by its corresponding column sum, so

that the resulting columns are all distributions. By Theorem 5.18,vj is a multiple ofıeα(j),

so thatvβ(j) is a multiple ofıej , and thej th column ofı(pı)−1 must bevβ(j).

Proof of part b): Now we will now show thatı(pı)−1p = M∞ by appealing to Theo-

rem 3.2. That is, we will show thatı(pı)−1p = πker. First, observe that, by Theorem 5.17

and Theorem 5.18,im ı = ker Λ. By Lemma 3.1 c), for anyv ∈ R
n, v = πkerv + πimv.

Sinceim πker = im ı, we may writeπkerv = ıα for someα. Likewise, sincepΛ = 0, and

im πim = im Λ, pπimv = 0. Thus,ı(pı)−1pv = ı(pı)−1pπkerv = ı(pı)−1pıα = ıα = πkerv.

In particular,ı(pı)−1pv = πkerv, so thatı(pı)−1p = πker = M∞.
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Example 5.22.Returning to Example 3.4 withM =




0 1 0 1
6

1 0 0 1
6

0 0 1 1
6

0 0 0 1
2




, we may verify

the conclusions of Theorem 5.21. This matrix has two closed classes,{1, 2} and {3}.

ReducingM with respect to the maximal open set,s = {2, 4} yields the2-dimensional

identity matrix with ı =




1 0

1 0

0 1

0 0




and p =


 1 1 0 2

3

0 0 1 1
3


. Then,pı


 2 0

0 1


,

ı(pı)−1 =




1
2

0

1
2

0

0 1

0 0




. The two columns of this matrix are clearly the stable distributions

associated with the corresponding closed classes. Moreover, multiplying this on the right

by p yieldsı(pı)−1p =




1
2

1
2

0 1
3

1
2

1
2

0 1
3

0 0 1 1
3

0 0 0 0




= M∞, as previously computed

We can also justify our definition of equivalence.

Corollary 5.23. For any two Markov matrices,M1 ≈ M2 ⇐⇒ stab (M1) = stab (M2).

That is, two Markov matrices are equivalent if and only if they have the same set of stable

distributions.

Proof. If M1 and M2 are equivalent, thenker (Λ1) = ker (Λ2), so thatstab (M1) =

ker (Λ1) ∩ ∆n = ker (Λ2) ∩ ∆n = stab (M2). Conversely, ifstab (M1) = stab (M2),

by Theorem 5.17,ker (Λ1) = span (stab (M1)) = span (stab (M2)) = ker (Λ2). In partic-

ular,M1 andM2 are equivalent.
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5.3 A Markov Chain Interpretation of the Constructions

In this section, we will review the basic definitions regarding finite-state, stationary, Markov

chains, assuming the reader is familiar with basic probability and measure theory. Our

goal is to show how the construction of section 5.2 corresponds to a natural construction

on finite-state, stationary Markov chains. Adiscrete-time stochastic process(or chain) is

a sequence,X∗ ≡ {Xt}
∞
t=0, of random variables i.e., real-valued measurable functions

on some shared probability space,(Ω, µ). As is common, we will writePr[ω] for the

probability,µ(ω), of a measurable subsetω ⊂ Ω. Likewise, given a random variable,X,

we will write Pr[X ∈ β] for Pr[X−1(β)], assuming thatβ ∈ B, the so-called Borel sets of

R.2 In this way, we avoid explicit reference toΩ andµ. We will also writePr[X = x] for

Pr[X ∈ {x}]. Thesupport, suppX , of a random variable,X, is the smallest Borel set,β,

such thatPr[X ∈ β] = 1. In this paper, we will restrict attention to those chains whose

state space, S =
⋃

i suppXi
, is a finite set, and we establish the convention thatβ ≡ S−β.

A chain,X∗, is Markov iff for all t, s0, . . . , st+1 ∈ S, such thatPr[Xt = st, . . . , X0 =

s0] 6= 0,

Pr[Xt+1 = st+1 | Xt = st, . . . , X0 = s0] = Pr[Xt+1 = st+1 | Xt = st].

This so-calledMarkov property(sometimes called the memoryless property) implies that

the probability of transitions to future states, such asst+1, depend only on the present state

st, and so are independent of the remote past, namelyst−1, . . . , s0 (Iosifescu, 1980).

A Markov chain isstationaryiff ∀ t s. t. Pr [Xt = st] > 0, Pr[Xt+1 = st+1 | Xt = st]

remains constant. Given an enumeration,ι : Sn → R of a superset of the state space, i.e.,

S ⊂ im ι, we say that ann×n matrix,M , is atransition matrixof the chainconsistent with

ι iff Pr[Xt+1 = ι(i) | Xt = ι(j)] = Mi,j , wheneverPr [Xt = ι(j)] > 0. Notice that this

implies thatn ≥ |S|. If n = |S|, so thatS = im ι, we say thatM is aminimal transition

matrix of the chain. The following Lemma shows that minimal transition matrices are

essentially unique.

Lemma 5.24. If M1 andM2 are two minimal transition matrices, consistent withι1 and

ι2, respectively, thenM2 = P tM1P , whereP is the permutation matrix such thatPi,j =

2B is the smallest collection of subsets ofR which contains all half-intervals (i.e.,[a,∞)) and is closed
under countable unions/intersections and taking complements; in particular, it contains all countable
subsets.
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[ι1(i) = ι2(j)], i.e.,P = P ρ for ρ = ι−1
1 ι2.

Proof. Since they are minimal,M1 andM2 are square matrices of the same size, namely,

n = |S|. For anyj ∈ Sn, ι2(j) ∈ S, so by definition, there is somet ≥ 0 such that

Pr [Xt = ι2(j)] > 0. Therefore, for anyi ∈ Sn,

(
P tM1P

)
i,j

=

n∑

k,l=1

P t
i,k (M1)k,l Pl,j =

n∑

k,l=1

Pk,i (M1)k,l Pl,j

=
n∑

k,l=1

[ι1(k) = ι2(i)] Pr[Xt+1 = ι1(k) | Xt = ι1(l)] [ι1(l) = ι2(j)]

= Pr[Xt+1 = ι2(i) | Xt = ι2(j)] = (M2)i,j

Since the entries are equal,M2 = P tM1P .

While ι allows us to associate states with indices, it is also helpful to associate states

with the vertices of the standard,n-simplex,∆n. Specifically, let the stateι(i) correspond

with the vertex,ei of the standard,n-simplex,∆n. That is, given a chain,X∗, and an

enumeration,ι, of a superset of its state space we may define an associated, vector-valued

chain, ~X∗, where ~Xt(ω) = ej , if Xt(ω) = ι(j), and 0, otherwise. This form of the chain

has the advantage that we may cleanly establish the connection between the probability

distribution ofXt and the corresponding distribution vector.

Lemma 5.25. Given a Markov chain,X∗, and an enumeration,ι, with S ⊂ im ι, define

the associated, vector-valued chain,~X∗, as above. For anyt, E

[
~Xt

]
is then a vector with

(
E

[
~Xt

])
j
= Pr [Xt = ι (j)], for all j.

Proof. By definition,

E

[
~Xt

]
=
∑

k∈Sn

ek Pr
[

~Xt = ek

]
=
∑

k∈Sn

ek Pr [Xt = ι (k)] .

Thus,
(

E

[
~Xt

])
j
= et

jE

[
~Xt

]
=
∑

k∈Sn
et

jek Pr [Xt = ι (k)] = Pr [Xt = ι (j)].

Notice that the distribution of a stationary Markov chain consistent with a given Markov

matrix, M , is determined byM and the initial distribution vector,E
[

~X0

]
, i.e., the distri-

bution ofX0. This is a consequence of the following more general result.

Lemma 5.26.For every sequence,σ ∈ Sn(k),
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a) Pr [Xt−k = ι (σ0) , . . . , Xt = ι (σk)] 6= 0 iff

Pr [Xt−k = ι (σ0)] 6= 0 and σ ∈ PM (k) .

b) More specifically,

Pr [Xt−k = ι (σ0) , . . . , Xt = ι (σk)] = W (M, σ) Pr [Xt−k = ι (σ0)] (5.10)

Proof. We prove both parts by induction onk. Whenk = 0, W (M, σ) = 1 andσ ∈

PM (0), so both parts are trivially true. In general, for anyσ ∈ Sn(k), takeσ′ ∈ Sn(k − 1)

so thatσ′
i = σi for 0 ≤ i < k. We may then prove part b) in two cases.

In the case whenPr [Xt−k = ι (σ0) , . . . , Xt−1 = ι (σk−1)] = 0, we must have that

Pr [Xt−k = ι (σ0) , . . . , Xt = ι (σk)] = 0.

Moreover, by induction, we know that eitherPr [Xt−k = ι (σ0)] = 0, in which case Equa-

tion 5.10 is trivially satisfied, orσ′ 6∈ PM (k − 1), in which case,σ 6∈ PM (k), as well, so

thatW (M, σ) = 0, and Equation 5.10 again holds.

Now assume thatPr [Xt−k = ι (σ0) , . . . , Xt−1 = ι (σk−1)] > 0. The Markov property,

along with the induction hypothesis, then implies that

Pr [Xt−k = ι (σ0) , . . . , Xt = ι (σk)]

= Pr [Xt = ι (σk) | Xt−k = ι (σ0) , . . . , Xt−1 = ι (σk−1)]

Pr [Xt−k = ι (σ0) , . . . , Xt−1 = ι (σk−1)]

= Pr [Xt = ι (σk) | Xt−1 = ι (σk−1)]

W
(
M, σ′

)
Pr
[
Xt−k = ι

(
σ′

0

)]

= Mσk ,σk−1
W
(
M, σ′

)
Pr
[
Xt−k = ι

(
σ′

0

)]

= W (M, σ) Pr [Xt−k = ι (σ0)]

where we also appeal to the definition ofW (M, σ) and the fact thatσ0 = σ′
0.

Obviously, the joint distribution of{Xt}
k
t=0, for anyk, is determined by the joint distri-

bution ofX∗. Conversely, the sequence of all such joint distributions (i.e., fork = 0, . . . )

determine the joint distribution of theX∗. Lemma 5.26 says that, for a stationary Markov

process, this sequence of joint distributions is equivalent, up to labelling of the states,ι, to

an initial distribution (i.e., forX0) and a transition matrix,M .
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Alternatively, we may associate states with vertices in a directed graph. Specifically,

we may view a stationary Markov chain with transition matrixM in terms of a random

walk on the weighted graph,G(M), where the state,ι(i), corresponds to the vertex,vi.

SinceG(M) has no repeated edges, a walk of lengthN is equivalent to a sequence of ad-

jacent vertices, which, by Lemma 5.26 a), corresponds to a possible sample from{Xt}
N
t=0.

Moreover, if we choose the initial vertex according to the distribution ofX0 and the subse-

quent edges according to the edges weights, by Lemma 5.26 b),the probability of obtaining

any given walk is the same as the probability of obtaining thecorresponding sample from

{Xt}
N
t=0. Thus, the graph,G(M), and an initial distribution give an alternative, geometric

characterization of the chain.

As before, we may carry over the terminology of strongly connected components,

closed classes, invariant and transient sets of vertices inG(M) from section 1.1 and ap-

ply it to sets of states of a stationary Markov process. To do this, however, we must first

prove the following Lemma.

Lemma 5.27. If M is a transition matrix ofX∗ with state space,S, consistent withι and

s = ι−1 (S), thens is an invariant set of indices ofM and Ms,s is a minimal transition

matrix ofX∗ consistent withι′ = ι (s∗).

Proof. The first part follows easily by contradiction. Assume thats is not invariant, so that

there is some path, given byσ ∈ PM(j, i, l) for j ∈ s andi 6∈ s. Then,W (M, σ) > 0 and

Pr [Xt = ι (j)] > 0 for somet. By Lemma 5.26 a),Pr [Xt = ι (j) , . . . , Xt+l = ι (i)] > 0.

In particular, we must havePr [Xt+l = ι (i)] > 0, contradicting the assumption thatι (i) 6∈

S, i.e.,i 6∈ s.

In particular, by Lemma 2.11 b),Ms,s is Markov. If we letι′(k) = ι (sk), ι′ : S|s| → R

is a 1-1 mapping withim ι′ = ι(s) = S, i.e., an enumeration ofS. To verify thatMs,s is a

transition matrix ofX∗ consistent withι′, assume thatPr
[
Xt = ι′(j)

]
> 0. By definition,

we then havePr
[
Xt = ι

(
sj

)]
> 0, so thatPr[Xt+1 = ι′(i) | Xt = ι′(j)] = Pr[Xt+1 =

ι (si) | Xt = ι
(
sj

)
] = Msi,sj

=
(
Ms,s

)
i,j

, as needed. Sinceι′ enumeratesS, Ms,s is

minimal.

Therefore, we define the graph ofX∗, G (X∗) = G
(
Ms,s

)
.

We should point out that, although this definition appears todepend on the choice of

transition matrix, it really only depends on the chain itself.
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Theorem 5.28. If M andM ′ are two transition matrices forX∗, consistent withι and ι′,

respectively, withs = ι−1 (S) ands′ = ι′−1 (S), thenG
(
Ms,s

)
= G

(
M ′

s
′
,s

′

)
.

Proof. Sinceι andι′ are both 1-1 and their images both containS, |s| = |S| =
∣∣s′
∣∣ ≡ n.

Thus, there is a unique permutation ofSn, ρ, such thatι
(
sρ(k)

)
= ι (sk). By Lemma 5.27,

Ms,s and M ′
s
′
,s

′ are both minimal transitions matrices forX∗, consistent withι(s) and

ι′
(
s′
)
, respectively. Thus, by Lemma 5.24,M ′

s
′
,s

′ = (P ρ)t Ms,sP
ρ, or M ′

s
′
i,s

′
j

= Msρ(i),sρ(i)

for all i, j ∈ Sn.

We can now appeal to the definition of graph equality from section 1.1.1 withG =

G
(
Ms,s

)
= (V, E, s, t) andG′ = G

(
M ′

s
′
,s

′

)
= (V ′, E ′, s′, t′). Explicitly, V = V ′ =

{v1, . . . , vn}, with δ (vk) = vρ(k), which is clearly a 1-1 correspondence, sinceρ is a

permuation ofSn. Likewise,E andE ′ are the subsets ofV × V corresponding to non-

zero entries inMs,s andM ′
s
′
,s

′, respectively, withγ : E ′ → E given by the restriction of

δ × δ to E ′. Since a Cartesian product of 1-1 correspondences is a 1-1 correspondence,

we only need verify thatδ × δ mapsE ′ to E. By definition, α =
(
vi, vj

)
is in E ′ iff

0 6= M ′
s
′
i,s

′
j
= Msρ(i),sρ(i)

iff
(
vρ(i), vρ(i)

)
= γ(α) is in E. Sinces, s′, t, t′ are just the corre-

sponding restrictions of the coordinate mappings, we clearly haveδs′ = sγ andδt′ = tγ,

so thatG = G′, as claimed.

Thus, we may define a set of states,β, of X∗ to be strongly connected, closed, open,

or transient iff the corresponding vertices inG (X∗) are. These terms originally defined on

graphs, now have compelling probabilistic interpretations. For example, a set of states is

invariant iff the probability of ever transitioning away from the set is 0. To see this, observe

that, by Lemma 5.26 a),W (M, σ) represents the conditional probability of the random

walk realizing the specific sequence of states corresponding to σ, given thatX0 = ι (σ0).

Using Lemma 1.1, we can also see that a state is transient iff there is a positive probability

of transitioning away from it, since by Lemma 1.1 there exists a path to a state in a closed

class, without ever returning (since there is no path out of aclosed class).

Given a chain,X∗, and a Borel set,β ∈ B, we want to define a new chain by reducing

the time spent in a given set of states to 0, effectively eliminating them from consideration.

We will see that this corresponds directly to the reduce construction of section 5.2. To

make this precise, we first define the functionγβ,k : Ω → N ∪ {∞} so thatγβ,k(ω) =

min {t > k | Xt(ω) 6∈ β}, with the conventions thatmin ∅ = ∞ andγβ,∞ = ∞. Notice

that, by definition,γβ,k > k, unlessk =∞. We can easily show that these are measureable
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functions, i.e., random variables. More specifically, the events
{
γβ,k = t

}
can be expressed

solely in terms of events of the form{Xi ∈ βi} for i ≤ t andβi ∈ B. Thus, these functions

areMarkov times(Iosifescu, 1980).

Lemma 5.29.For any set of states,β, of a finite-state, stationary Markov process,

{
γβ,k = t

}
=





{
Xt ∈ β

}
∩
⋂

k<t
′
<t {Xt

′ ∈ β} if k < t <∞

⋂
k<t

′ {Xt
′ ∈ β} if t =∞

∅ otherwise

(5.11)

so thatγβ,k is a Markov time.

Proof. SinceS is a finite set, andβ, β ⊂ S, β, β ∈ B. Now observe thatω ∈
{
γβ,k = t

}

iff γβ,k(ω) = t iff t = min
{
t′ > k | Xt

′(ω) 6∈ β
}

. By definition, forω ∈
{
γβ,k = t

}
,

t =∞ ⇐⇒
{
t′ > k | Xt

′(ω) 6∈ β
}

= ∅ ⇐⇒ Xt
′(ω) ∈ β, ∀ t′ > k

⇐⇒ ω ∈
⋂

k<t
′

{Xt
′ ∈ β} .

Otherwise,t < ∞ so thatt ∈
{
t′′ > k | Xt

′′(ω) 6∈ β
}

with k < t < ∞, Xt(ω) ∈ β,

andt′ 6∈
{
t′′ > k | Xt

′′(ω) 6∈ β
}

, i.e.,Xt
′(ω) ∈ β, for everyk < t′ < t. In other words,

ω ∈
{
Xt ∈ β

}
∩
⋂

k<t
′
<t {Xt

′ ∈ β}. Thus, Equation 5.11 holds.

We now prove thatγβ,k is almost always finite, whenβ is open. Such a random variable

is known as astopping time. Specifically,γβ,k is the firsthitting timefor β greater thank.

In fact, this effectively characterizes open sets of states.

Lemma 5.30.A set of states,β, of a finite-state, stationary Markov process,X∗, is open iff

Pr
[
γβ,k =∞

]
= 0, ∀ k.

Proof. Assume that the process isι-consistent with a matrix,M , with state space,S, and

let s = ι−1(β). Then, using the notation of Theorem 4.4, theuth column sum ofM q
s,s is

JM q
s,seu =

∑

v∈S|s|

(
M q

s,s

)
v,u

=
∑

v∈S|s|

∑

σ∈PMs,s
(v,u,q)

W
(
Ms,s, σ

)

=
∑

v∈S|s|

∑

σ∈PM (s,sv,su,q)

W (M, σ) (5.12)
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Moreover,

Pr

[
j+q⋂

r=j

{Xr ∈ β}

]
= Pr

[
Xj ∈ β, . . . , Xj+q ∈ β

]

=
∑

i0,...,iq∈s

Pr
[
Xj = ι (i0) , . . . , Xj+q = ι

(
iq
)]

=
∑

u,v∈S|s|

∑

σ∈PM (s,sv,su,q)

Pr
[
Xj = ι (σ0) , . . . , Xj+q = ι

(
σq

)]

Therefore,

Pr

[
j+q⋂

r=j

{Xr ∈ β}

]

=
∑

u,v∈S|s|

∑

σ∈PM (s,sv,su,q)

W (M, σ) Pr
[
Xj = ι (σ0)

]
by Equation 5.10

=
∑

u∈S|s|

JM q
s,seu Pr

[
Xj = ι (su)

]
by Equation 5.12

= JM q
s,s

∑

u∈S|s|

eu Pr
[
Xj = ι (su)

]

In particular, by Lemma 5.29,

Pr
[
γβ,k =∞

]
= lim

q→∞
Pr

[
k+q⋂

r=k

{Xr ∈ β}

]
= lim

q→∞
JM q

s,s

∑

u∈S|s|

eu Pr
[
Xj = ι (su)

]

If β is open, by Theorem 4.4 a),limq→∞ JM q
s,s = 0 so thatPr

[
γβ,k =∞

]
= 0.

Conversely, assume thatPr
[
γβ,k =∞

]
= 0, ∀ k. For anyu, sinceι(su) ∈ S, there is

somej for whichPr
[
Xj = ι(su)

]
> 0. Moreover,

Pr

[
j+q⋂

r=j

{Xr ∈ β}

]
= JM q

s,s

∑

u
′
∈S|s|

eu
′ Pr

[
Xj = ι (su

′)
]
≥ JM q

s,seu Pr
[
Xj = ι (su)

]
≥ 0

Since0 = limq→∞ Pr
[⋂k+q

r=k {Xr ∈ β}
]
, 0 = Pr

[
Xj = ι (su)

]
limq→∞ JM q

s,seu. Because

Pr
[
Xj = ι(su)

]
6= 0, we must havelimq→∞ JM q

s,seu = 0. In particular,

0 =
∑

j

lim
q→∞

JM q
s,sej =

∑

i,j

lim
q→∞

et
iM

q
s,sej ≥ lim

q→∞

(
M q

s,s

)
i,j
≥ 0

so thatlimq→∞

(
M q

s,s

)
i,j

= 0 and limq→∞ M q
s,s = 0. Appealing to the contrapositive of

Theorem 4.4 d), we may conclude thatβ is open.
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Using γβ,k, we may defineτβ,k inductively so thatτβ,0 = γβ,−1 andτβ,k = γβ,τβ,k−1

for k > 0. This reduces the time take to pass through any state inβ to 0, effectively

“eliminating” β from consideration.

Lemma 5.31.For any set of states,β, of a finite-state, stationary Markov process, ifk > 0,

{
τβ,k = t

}
=





⋃
t
′
<t

{
γβ,t

′ = t
}
∩
{
τβ,k−1 = t′

}
if t <∞

⋃
t
′

{
γβ,t

′ =∞
}
∩
{
τβ,k−1 = t′

}
if t =∞

(5.13)

In particular,τβ,k is a Markov time. Ifτβ,k(ω) <∞, ∀ k,
{
τβ,k(ω)

}∞
k=0

is a strictly increas-

ing sequence. Ifβ is open,τβ,k <∞ with probability 1, i.e., it is a stopping time.

Proof. By definition,τβ,k+1(ω) = γβ,τβ,k
, i.e., fort = τβ,k+1(ω) andt′ = τβ,k(ω), t = γβ,t

′.

By definition of γ, we must havet′ < t, unlesst = t′ = ∞. In particular,τβ,k(ω) ≤

τβ,k+1(ω), with inequality unlessτβ,k(ω) =∞.

Therefore, fork > 0, ω ∈
{
τβ,k = t

}
iff t = γβ,t

′(ω) andt′ = τβ,k−1(ω), where either

t′ < t < ∞, or t′ ≤ t = ∞. Using set notation, this becomesω ∈
⋃

t
′
<t

{
γβ,t

′ = t
}
∩

{
τβ,k−1 = t′

}
, whent <∞ andω ∈

⋃
t
′

{
γβ,t

′ =∞
}
∩
{
τβ,k−1 = t′

}
, whent =∞. Thus,

Equation 5.13 holds.

By Lemma 5.29,
{
γβ,t

′ = t
}

is measureable fort, t′ ≤ ∞, therefore, by induction,

so is
{
τβ,k = t

}
. In other words,τβ,k is a Markov time. From our ealier observations,

τβ,k ≤ τβ,k+1 for all k, except whenτβ,k = ∞. That is,τβ,k is strictly increasing, when

τβ,k(ω) <∞, ∀ k.

If β is open, by Lemma 5.30,Pr
[
γβ,t

′ =∞
]

= 0. Therefore,

Pr
[
τβ,k =∞

]
= Pr


⋃

t
′

{
γβ,t

′ =∞
}
∩
{
τβ,k−1 = t′

}



≤
∑

t
′

Pr
[
γβ,t

′ =∞ andτβ,k−1 = t′
]
≤
∑

t
′

Pr
[
γβ,t

′ =∞
]

= 0

andτβ,k is a stopping time.

We may now give the following intuitive description ofτβ,k.

Lemma 5.32. If τβ,k(ω) <∞, ∀ k,
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a) τβ,k(ω) = min
{
t ≥ 0 | k + 1 =

∣∣{0 ≤ t′ ≤ t | Xt
′(ω) ∈ β

}∣∣}.

b)
{
τβ,k(ω)

}∞
k=0

is an increasing enumeration of

T (ω) =
{
t ≥ 0 | Xt(ω) ∈ β

}
.

In particular, if β is open, a) and b) hold with probability 1.

Proof. For convenience, we will drop the notation for evaluation, since all random vari-

ables (i.e.,Xt, γβ,k, andτβ,k, etc.) will always be evaluated at a fixed value,ω, for which

τβ,k(ω) < ∞. We begin by proving part b). By definition,τβ,k = γβ,t
′ for somet′. More-

over, if τβ,k < ∞, thenγβ,t
′ < ∞, and by definition, we must haveγβ,t

′ ∈ T , so that

τβ,k ∈ T , as well. By Lemma 5.31,τβ,k is a strictly increasing increasing sequence. In

particular, it is 1-1 as a function ofk.

It remains to observe that this function, which we will denote asτβ,∗, maps ontoT . We

prove this by contradiction, so assumeT \ im τβ,∗ 6= ∅ and taket = min
(
T \ im τβ,∗

)
.

Thus, eithert′ 6∈ T for all t′ < t, or for somek andt′ < t, τβ,k = t′ ∈ T . In the former

case,Xt ∈ β andXt
′ ∈ β for all t′ < t. Thus,t = min

{
t′ > −1 | Xt

′ 6∈ β
}

, so that

t = γβ,−1 = τβ,0 contradicting the assumption thatt 6∈ im τβ,∗.

Now assume thatτβ,k = t′ ∈ T for somek and t′ < t, and take the largest sucht′.

This means that fort′ < t′′ < t, t′′ 6∈ im τβ,∗, so that we must havet′′ 6∈ T or Xt
′′ ∈ β.

In other words,t = min
{
t′′ > t′ | Xt

′′ 6∈ β
}

, so thatt = γβ,t
′ = γβ,τβ,k

= τβ,k+1, again

contradicting the assumption thatt 6∈ im τβ,∗. Thus,T \ im τβ,∗ = ∅ andT = im τβ,∗.

In other words,τβ,∗ is an increasing enumeration ofT =
{
t ≥ 0 | Xt ∈ β

}
, and we have

proven part b).

Part a) now follows easily. Sinceτβ,∗ is an enumeration ofT =
{
t ≥ 0 | Xt ∈ β

}
,

{
0 ≤ t′ ≤ t | Xt

′ ∈ β
}

=
{

0 ≤ t′ ≤ t | t′ = τβ,k
′ for somek′

}
and

∣∣{0 ≤ t′ ≤ t | Xt
′ ∈ β

}∣∣ =
∣∣∣
{
k′ | τβ,k

′ ≤ t
}∣∣∣ .

Sinceτβ,k is an increasing sequence starting fromk = 0,
∣∣∣
{
k′ | τβ,k

′ ≤ t
}∣∣∣ = 1 + max

k
′

{
k′ | τβ,k

′ ≤ t
}

.

In particular,

k + 1 =
∣∣{0 ≤ t′ ≤ t | Xt

′ ∈ β
}∣∣ ⇐⇒ k = max

k
′

{
k′ | τβ,k

′ ≤ t
}

.
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Therefore,

min
{
t ≥ 0 | k + 1 =

∣∣{0 ≤ t′ ≤ t | Xt
′ ∈ β

}∣∣}

= min

{
t ≥ 0 | k = max

k
′

{
k′ | τβ,k

′ ≤ t
}}

= τβ,k.

Finally, if β is open, by Lemma 5.31,

Pr

[
⋃

k

{
τβ,k =∞

}
]

=
∑

k

Pr
[
τβ,k =∞

]
=
∑

k

0 = 0

Therefore,τβ,k <∞, ∀ k, so that a) and b) hold, with probability 1.

Using the language of Markov chain theory, Lemma 5.32 a) saysthat τβ,k is thek + 1st

“hitting time” for β.

Evaluating a Markov chain at a stopping time is also a random variable (Iosifescu,

1980). Thus, ifβ is open, we may defineπβ,t (X∗) ≡ Xτβ,t
, where we defineπβ,t (X∗) =

min β, whenτβ,t =∞. In this way, we have defined the desired chain,X̃∗ ≡ πβ,∗ (X∗). We

will show thatπβ,∗ is an operator on Markov chains which corresponds directly to applying

the reduce construction of section 5.2 to the transition matrix of the chain. Notice that, as

we mentioned in section 5.2, from a Markov chain point of view, we have simply reduced

the time spent in the states ofβ to 0.

Using Lemma 5.32, we may show that the reduction operator is “natural” in the sense

that it behaves as expected under iteration. Lemma 5.32 b) implies that, with probability 1,

πβ,∗ (X∗) is simply the result of deleting those entries ofX∗ with values inβ. Intuitively, if

we first delete entries from a sequence with values inβ2 and then delete from the remaining

entries those with values inβ2, we get the same result as if we had simply deleted those

entries with values inβ1 ∪ β2.

Theorem 5.33.Given a Markov chain,X∗, and open Borel sets,β1, β2, andβ = β1 ∪ β2,

πβ,∗ (X∗) = πβ1,∗

(
πβ2,∗ (X∗)

)
with probability 1.

Proof. Let X2
∗ = πβ2,∗ (X∗), T2 =

{
t ≥ 0 | Xt ∈ β2

}
, T1 =

{
t ≥ 0 | X2

t ∈ β1

}
, and

T =
{
t ≥ 0 | Xt ∈ β

}
. Let Ω′ =

{
τβ2,k, τβ1,k, τβ,k <∞, ∀ k ≥ 0

}
. By Lemma 5.31,

Pr Ω′ = 1, and, by Lemma 5.32 b),τβ2,∗, τβ1,∗, andτβ,∗ are increasing enumerations ofT2,

T1, andT , respectively, onΩ′.
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As before, for the remainder of the proof, we will restrict attention to an fixed, arbitrary

ω ∈ Ω′ and omit the notation for evaluation atω from all random variables. In this case,

we have the following chain of equivalences:

∃ k ≥ 0, t = τβ2,τβ1,k

⇐⇒ ∃ k, t′ ≥ 0, t′ = τβ1,k andt = τβ2,t
′

⇐⇒ ∃ t′ ∈ T1, t = τβ2,t
′ sinceτβ1,∗ enumeratesT1

⇐⇒ ∃ t′ ≥ 0, X2
t
′ ∈ β1 andt = τβ2,t

′ by definition ofT1

⇐⇒ ∃ t′ ≥ 0, Xτ
β2,t

′
∈ β1 andt = τβ2,t

′ by definition ofX2
∗

⇐⇒ ∃ t′ ≥ 0, Xt ∈ β1 andt = τβ2,t
′

⇐⇒ Xt ∈ β1 andt ∈ T2 sinceτβ2,∗ enumeratesT2

⇐⇒ Xt ∈ β1 andXt ∈ β2 by definition ofT2

⇐⇒ Xt ∈ β1 ∩ β2 = β1 ∪ β2 = β

⇐⇒ t ∈ T by definition ofT

In particular,τβ2,τβ1,t
maps ontoT . Sinceτβ2,t, τβ1,t : N → N are both strictly increasing

mappings, so is their composite. In particular,τβ2,τβ1,t
is an increasing enumeration of

T . Since increasing enumerations are unique,τβ2,τβ1,t
= τβ,t, andπβ1,∗

(
πβ2,∗ (X∗)

)
=

πβ1,∗

(
X2

∗

)
= X2

τβ1,∗
= Xτβ2,τβ1,t

= Xτβ,t
= πβ,∗ (X∗) onΩ′, i.e., with probability 1.

We now wish to identify the transition matrix forπβ,∗ (X∗). The proof will be similar

to that of Theorem 5.8, but we will need to generalize the notation from chapter 1 a bit.

Define

Sn (s, i, j, l, m) = {σ ∈ Sn (i, j, l + m) | m = |{k ∈ (0, l + m) | σk 6∈ s}|}

i.e., sequences of lengthl+m+1 starting atj, ending ati, whose interior values lie outside

of s exactlym times. Thus, for example,Sn (s, i, j, l, 0) = Sn (s, i, j, l).

Using this notation, we may now identify the distribution ofX̃t = πβ,t (X∗). That is,

we can give a formula forPr
[
X̃t = x

]
.

Theorem 5.34.If X∗ is a finite state, stationary Markov chain with state space,S, which is

ι-consistent with an×n transition matrix,M , β is open, andX̃∗ = πβ,∗ (X∗), thenβ is the
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state space for̃X∗ andι′(k) = ι (sk) enumerates a superset ofβ, wheres = ι−1(β) ⊂ Sn.

For t > 0,

Pr
[
X̃t = ι′ (k)

]
=

∞∑

l=0

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t)

W (M, σ) Pr [X0 = ι (j)]

+

∞∑

l=0

∑

j∈s

∑

σ∈Sn(s,sk ,j,l,t−1)

W (M, σ) Pr [X0 = ι (j)] (5.14)

and

Pr
[
X̃0 = ι′ (k)

]
=
∑

j

pk,j Pr [X0 = ι(j)] (5.15)

where(M̂, p, ı) is the reduction ofM with respect tos. That is, the distribution of̃X0, is

result of applying the projection,p, to the distribution ofX0, where we view this distribution

as an column vector, as in Lemma 5.25.

Proof. Notice that sinceι ands∗ are 1-1 functions, so isι(s∗). By definition,im ι(s∗) =

ι(s) = β ∩ S, so thatι(s∗) enumeratesβ ∩ S. Similarly, ι′ = ι(s∗) enumeratesι(s) =

ι (Sn − s) = im ι− β, which is a superset ofS − β = β.

By definition,πβ,t (X∗) (ω) ∈ β for all t andω. In particular,X̃t = x only if x ∈ β iff

x = ι (sk) = ι′(k) for somek ∈ S|s|. Now remember that, whenτβ,t <∞,
{
τβ,j

}t

j=0
is an

increasing sequence of integers. In particular,τβ,t ≥ t, l ≡ τβ,t − t ≥ 0, and dividing into
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cases gives

Pr
[
X̃t = ι′ (k)

]
= Pr

[
X̃t = ι′ (k) , τβ,t <∞

]
by Lemma 5.31

= Pr
[
Xτβ,t

= ι (sk)
]

by defn ofX̃t

=
∞∑

l=0

Pr
[
Xl+t = ι (sk) , l = τβ,t − t

]
by cases

= [t = 0] Pr
[
Xt = ι (sk) , l = τβ,t − t

]

+

∞∑

l=[t=0]

Pr
[
Xl+t = ι (sk) , l = τβ,t − t

]
by notational trick

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+
∞∑

l=[t=0]

Pr
[
Xl+t = ι (sk) , l = τβ,t − t

]
by defn ofτβ,t

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+
∞∑

l=[t=0]

n∑

j=1

Pr
[
Xl+t = ι (sk) , X0 = ι(j), l = τβ,t − t

]
by cases

The first time, cases were based onl = τβ,t− t, and the second time according to the initial

state of the process, using the fact thatι enumerates a superset of the state space ofX∗. In

between, we used a notational trick to pull out thel = 0 term from the summation, when

t = 0.

Notice that, for all the terms in the summation, we are guaranteed thatl + t > 0.

Therefore, after splitting the summation according to the initial state, we can continue to
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divide into cases based on the intermediate states ofX∗.

Pr
[
X̃t = ι′ (k)

]
= [t = 0] Pr

[
X0 = ι (sk) , τβ,0 = 0

]

+

∞∑

l=[t=0]

∑

j∈s

Pr
[
Xl+t = ι (sk) , X0 = ι(j), andl = τβ,t − t

]

+

∞∑

l=[t=0]

∑

j∈s

Pr
[
Xl+t = ι (sk) , X0 = ι(j), andl = τβ,t − t

]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l+t)

Pr [Xi = ι (σi) , 0 ≤ i ≤ l + t] (5.16)

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l+t)

Pr [Xi = ι (σi) , 0 ≤ i ≤ l + t]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t)

Pr [Xi = ι (σi) , 0 ≤ i ≤ l + t] (5.17)

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t−1)

Pr [Xi = ι (σi) , 0 ≤ i ≤ l + t]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+
∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t)

W (M, σ) Pr [X0 = ι (j)] (5.18)

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t−1)

W (M, σ) Pr [X0 = ι (j)]

In Equation 5.16, we used the fact thatim ι is a superset ofS. Equation 5.17 follows from

the fact that, in the context of any of the summation terms,X0 = ι(j), Xl+t = ι (sk),

l = τβ,t − t, andl + t > 0. Therefore, by Lemma 5.32 a),{Xi}
l+t
i=0 takes exactlyt + 1

values inβ andl values inβ, with probability 1, so thatσ ∈ Sn(s, sk, j, l, t), if j ∈ s, and

σ ∈ Sn(s, sk, j, l, t− 1), if j 6∈ s. Equation 5.18 follows by Lemma 5.26 b).

Equation 5.18 simplifies to Equation 5.14, whent > 0. Moreover, it implies that the

state space for̃X∗ equals all ofβ, because, for any stateι′(k) ∈ β ⊂ S, there is somet for

which Pr
[
Xt = ι′(k)

]
> 0. If t = 0, the first term in Equation 5.18 is non-zero, so that

Pr
[
X̃t = ι′(k)

]
> 0.
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Otherwise, by Lemma 5.26, and the fact thatι enumerates a superset of the state space

of X∗,

Pr
[
Xt = ι′(k)

]
=
∑

j∈Sn

Pr [Xt = ι (sk) , X0 = ι (j)]

=
∑

j∈Sn

∑

σ∈Sn(sk,j,t)

Pr [Xi = ι (σi) , i = 0, . . . , t]

=
∑

j∈Sn

∑

σ∈Sn(sk,j,t)

W (M, σ) Pr [X0 = ι (j)]

Since this is non-zero, it must have at least one non-zero term, corresponding to some

j ∈ Sn andσ ∈ Sn(sk, j, t), such thatPr [X0 = ι (j)] andW (M, σ) are non-zero. If

l + 1 is the number of values ofσ in s, then eitherσ ∈ Sn(s, sk, j, l, t), if j ∈ s, or

σ ∈ Sn(s, sk, j, l, t − 1), otherwise. In any case, Equation 5.14 has at least one non-zero

term, so thatPr
[
X̃t = ι′(k)

]
> 0. Therefore,β is the state space for̃X∗.

To prove Equation 5.15, taket = 0. SinceSn(s, sk, j, l, t − 1) = ∅, Equation 5.18

simplifies to

Pr
[
X̃0 = ι′ (k)

]
= Pr

[
X0 = ι (sk) , τβ,0 = 0

]

+
∞∑

l=1

∑

j∈s

∑

σ∈Sn(s,sk,j,l,0)

W (M, σ) Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∞∑

l=1

∑

j∈s

∑

σ∈Sn(s,sk,j,l)

W (M, σ) Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∑

j∈s

∞∑

l=1

∑

σ∈Sn(s,sk,j,l)

W (M, σ) Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∑

j∈s

∑

σ∈Sn(s,sk,j)

W (M, σ) Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∑

j∈s

∑

σ∈PM (s,sk,j)

W (M, σ) Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∑

j∈S|s|

∑

σ∈PM (s,sk,sj)

W (M, σ) Pr
[
X0 = ι

(
sj

)]
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Now by Theorem 5.8 a), right-hand side of Equation 5.15 as follows,

∑

j

pk,j Pr [X0 = ι(j)] =
∑

j

et
kpej Pr [X0 = ι(j)]

=
∑

j


et

sk
+

|s|∑

l=1

∑

σ∈PM (s,sk,sl)

W (M, σ)et
sl


 ej Pr [X0 = ι(j)]

=
∑

j

et
sk

ej Pr [X0 = ι(j)]

+
∑

j

|s|∑

l=1

∑

σ∈PM (s,sk ,sl)

W (M, σ)et
sl
ej Pr [X0 = ι(j)]

=
∑

j

[sk = j] Pr [X0 = ι(j)]

+
∑

j

|s|∑

l=1

∑

σ∈PM (s,sk ,sl)

W (M, σ) [sl = j] Pr [X0 = ι(j)]

= Pr [X0 = ι (sk)] +

|s|∑

l=1

∑

σ∈PM (s,sk,sl)

W (M, σ) Pr [X0 = ι (sl)]

which, up to a change of summation index, is the same result asabove, so that

Pr
[
X̃0 = ι′ (k)

]
=
∑

j

pk,j Pr [X0 = ι(j)] .

We may also identify a transition matrix for̃X∗ = πβ,∗ (X∗). Intuitively, the following

theorem says that the transition matrix forX̃∗ is the result of applying the reduce con-

struction of section 5.2 to the transition matrix forX∗. The proof is similar to that of

Theorem 5.34, but it will be helpful to alter our notation a bit. Define

S ′
n (s, i, l, m) = {σ ∈ Sn (l + m) | σl+m = i, m = |{k < l + m) | σk 6∈ s}|}

i.e., sequences of lengthl +m+1, ending ati, whose values, excepting the last, lie outside

of s exactlym times. Notice that this time we do not specify the initial value and we do

not exclude it from our count of values ins.
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Theorem 5.35. If X∗ is a finite state, stationary Markov chain which isι-consistent with

transition matrix,M , andβ is an open set of states, thenπβ,∗ (X∗) is a stationary Markov

chainι′-consistent with transition matrix,̂M , whereM̂ is the reduction ofM with respect

to s = ι−1(β) andι′(j) = ι(sj). If M is minimal, then so iŝM .

Proof. The proof is similar to that of Theorem 5.34. As before, defineX̃t = πβ,t (X∗), and

notice thatι(s∗) enumeratesβ, while ι(s∗) enumerates a superset ofβ. By Lemma 5.31, we

may restrict attention to the case,τβ,t < τβ,t+1 <∞ and again exploit the fact thatt ≤ τβ,t.

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

= Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)
, τβ,t+1 <∞

]

=

∞∑

m=0

∞∑

l=0

Pr [Xl+m+t+1 = ι (sk) , Xm+t = ι (sk
′) ,

l = τβ,t+1 −m− t− 1, m = τβ,t − t
]

Assuming thatXm+t = ι (sk
′) andm = τβ,t − t, Lemma 5.32 a) impliesXl+m+t+1 =

ι (sk) with l = τβ,t+1−m−t−1 iff Xi ∈ β for m+t < i ≤ l+m+t with Xl+m+t+1 = ι (sk).

Thus,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

Pr
[
Xm+t+i = ι

(
σ′

i

)
, i = 0, . . . , l + 1, m = τβ,t − t

]

Appealing again to Lemma 5.32 a), we see thatXm+t = ι (sk
′) and m = τβ,t − t iff

{Xi}
m+t−1
i=0 takes exactlyt values inβ, i.e., we may writeXi = ι

(
σ′′

i

)
for 0 ≤ i ≤ m + t,

for someσ′′ ∈ S ′
n(s, sk, m, t). Thus, forσ′ ∈ Sn (s, sk, sk

′, l + 1),

Pr
[
Xm+t+i = ι

(
σ′

i

)
, i = 0, . . . , l + 1, m = τβ,t − t

]

=
∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Pr
[
Xm+t+i = ι

(
σ′

i

)
, i = 0, . . . , l + 1, Xi = ι

(
σ′′

i

)
, i = 0, . . . , m + t

]

Therefore,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=
∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Pr
[
Xi = ι (σi) , i = 0, . . . , l + t, σ = σ′ ∗ σ′′

]
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whereσ′ ∗ σ′′ is the concatenation of the walks given byσ′ andσ′′. Specifically,σi = σ′′
i ,

for 0 ≤ i ≤ m + t andσi+m+t = σ′
i, for 0 ≤ i ≤ l + 1.3

Now appealing to Lemma 5.26 b), we have

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk ,s

k
′ ,l+1)

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W (M, σ′ ∗ σ′′) Pr
[
X0 = ι

(
σ′′

0

)]

=
∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk ,s

k
′ ,l+1)

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′

)
W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

=
∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk ,s

k
′ ,l+1)

W
(
M, σ′

) ∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

We may then exploit Theorem 5.8 as follows,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk ,s

k
′ ,l+1)

W
(
M, σ′

) ∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

=

∞∑

m=0

∑

σ
′
∈Sn(s,sk,s

k
′)

W
(
M, σ′

) ∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

=
∞∑

m=0

∑

σ
′
∈PM(s,sk ,s

k
′)

W
(
M, σ′

) ∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

=
∞∑

m=0

M̂k,k
′

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

= M̂k,k
′

∞∑

m=0

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]

3Notice that we concatenate aswalks, rather than as sequences; for example(3, 1, 4) ∗ (4, 7, 2) =
(3, 1, 4, 7, 2), instead of(3, 1, 4, 4, 7, 2).
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Reversing our previous calculations gives

∞∑

m=0

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

W
(
M, σ′′

)
Pr
[
X0 = ι

(
σ′′

0

)]
=

=

∞∑

m=0

Pr
[
Xm+t = ι′

(
k′
)
, m = τβ,t − t

]
= Pr

[
X̃t = ι′

(
k′
)]

Therefore,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

= M̂k,k
′ Pr

[
X̃t = ι′

(
k′
)]

so that,Pr
[
X̃t+1 = ι′ (k) | X̃t = ι′

(
k′
)]

= M̂k,k
′, whenPr

[
X̃t = ι′

(
k′
)]

> 0. In partic-

ular X̃∗ is a stationary Markov chainι′-consistent with transition matrix,̂M .

By Theorem 5.34, the state space forX̃∗ is β. If M is a minimal, thenim ι = S. Since

β ⊂ S andι is 1-1,im ι′ι(s = β. Thus,M̂ is minimal.

Theorem 5.35 allows us to easily show that the reduce construction on matrices of

section 5.2 is “natural”, as well.

Theorem 5.36. If M ∈ Matn(R) is Markov, s = s1 ∪ s2 is open with respect toM ,

(M1, p1, i1) is the reduction ofM with respect tos1, (M2, p2, i2) is the reduction ofM1

with respect tõs = s1
−1 (s2), and

(
M̂, p, i

)
is the reduction ofM with respect tos, then

M2 = M̂ andp = p2p1. In addition,i = i1i2 onker
(
M̂ − I

)
.

Proof. First, notice that, by Theorem 5.10,s̃ is open with respect toM1, so that the state-

ment of the Theorem makes sense. Ifι is the identity onSn, given anyn-dimensional

distribution,v, we may define a chain,X∗, so thatM is anι-consistent transition matrix

for X∗ with initial distribution,v, i.e.,Pr[X0 = j] = vj, ∀ j ∈ Sn.

If we first takev = 1
n
J ′, so that all components are non-zero, the state space ofX∗ is

obviously all ofSn andM is minimal. By Theorem 5.35, takingβ1 = ι (s1) = s1, M1

is a minimal,ι1-consistent transition matrix forX∗ = πβ1
(X∗) andι1 = ιs1 = s1 with

state spaceβ1 = s1. Likewise, takingβ2 = ι1 (s̃) = s1 (s̃) = s1 ∩ s2, M2 is a minimal,ι2-

consistent transition matrix for̃X∗ = πβ2

(
X∗

)
andι2 = ι1s̃ with state spaceβ2 = β1\β2 =

s1 \ s1 ∩ s2 = s1 ∩ s2 = s. Moreover, sinceim ι2 = β2 = s, s1

(
s̃
)

= ι1s̃ = ι2 = s as

enumerations, as well.
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Taking β = β1 ∪ β2 = s1 ∪ (s1 ∩ s2) = s1 ∪ s2 = s, M̂ is a minimalι′-consistent

transition matrix forX̂∗ = πβ (X∗) andι′ = ιs = s = ι2 with state space,β = s. By

Theorem 5.33,̃X∗ = πβ1

(
πβ2

(X∗)
)

= πβ (X∗) = X̂∗ with probability 1. SinceM2 and

M̂ are both minimal transition matrices for̃X∗ = X̂∗, by Lemma 5.24,M2 = (P ρ)t M̂P ρ

for ρ = ι′−1ι2. Sinceι′ = ι2, ρ is the identity permutation,P ρ = I, andM2 = M̂ .

Returning to examine thepi’s, apply the same constructions as above, but now do not

restrictv to any particular value. Theorem 5.35 also implies thatPr
[
X0 = ι1(j)

]
= (p1v)j

for all j. That is, the distribution vector forX0 is p1v. This implies thatPr
[
X̃0 = ι2(j)

]
=

(p2 (p1v))j for all j, i.e., the distribution vector for̃X0 is p2p1v. Likewise, the distribution

vector forX̂0 is pv. SinceX̃0 = X̂0, p2p1v = pv. Since this is true for allv, we must have

p2p1 = p.

Sinces1

(
s̃
)

= s as enumerations,s1

(
s̃j

)
= sj for all j. Thus,ıs1

ıs̃ej = ıs1
es̃j

=

es1(s̃j) = esj
= ısej for all j, and ıs = ıs1

ıs̃. Therefore,πt
s = ıs = ıs1

ıs̃ = πt
s1

πt
s̃ =

(
πs̃πs1

)t
, andπs = πs̃πs1

.

Now recall that Theorem 5.12 says thati, i1, andi2 are 1-1 correspondences between

their corresponding sets of stable distributions, with left-inverses,πs, πs1
, andπs̃, respec-

tively. Thus, for anyv ∈ ker
(
M̂ − I

)
, i(v) ∈ ker (M − I), so that there existv′ ∈

ker (M1 − I) andv′′ ∈ ker (M2 − I) = ker
(
M̂ − I

)
with i(v) = i1

(
v′
)
, v′ = i2

(
v′′
)
,

andi(v) = i1
(
i2
(
v′′
))

. Therefore,v′′ = πs̃i2v
′′ = πs̃πs1

i1i2v
′′ = πsi1i2v

′′ = πsi(v) = v,

so thati(v) = i1 (i2 (v)). Sincev was an arbitrary stable vector inker
(
M̂ − I

)
, the final

part of the theorem is proven.
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Chapter 6

Markov Chain Tree Theorem

In this chapter, we sharpen a result, often known as the Markov Chain Tree Theorem,

proven for example by Freidlin and Wentzell (Friedlin and Wentzell, 1984), specifically

for irreducible Markov matrices. It gives a combinatorial formula for the unique stable

distribution of an irreducible Markov matrix. Because thistheorem will form the basis of

all key results in chapter 7, we give a detailed proof. Moreover, because we wish to apply it

to unichainMarkov matrices, we generalize the theorem to that setting.We present a novel

proof which exploits the properties of the determinant function.

First, we will establish some geometric preliminaries regarding directed spanning trees.

In particular, we will show that if a graph contains exactly one closed set, then it contains

a directed spanning subtree rooted at each vertex of that set. We will then define a vector,

wM , based on enumerating the weights of the directed spanning trees in the graph ofM ,

exploiting the well-known Markov Chain Tree Theorem (Friedlin and Wentzell, 1984).

WhenM is unichain (i.e., its associated graph has a single closed class), this will turn out

to be proportional to its unique stable distribution.

We will prove that this is the case by defining another vector in terms of determinants

(specifically, as the diagonal of theadjoint of the laplacian, M − I), which is easily seen

to be proportional to that stable distribution, as well as towM .

80
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6.1 Directed Spanning Trees

As given by Theorem 6.18, the Markov Chain Tree Theorem givesa combinatorial formula

for the unique stable distribution of a unichain Markov matrix in terms of the weights of its

directed spanning subtrees. In this section, we will:

• define what we mean by a directed tree and show how they are intimately related

with unichain Markov matrices,

• show how we may enumerate all directed trees onn vertices by a certain class of

functions onSn, and

• define a vector,wM , for any Markov matrix,M , in terms of the collection of all

directed spanning subtrees ofG−(M), which will turn out to be proportional to the

stable distribution ofM .

6.1.1 DST Facts

A directed graphG that contains a unique directed walk from any vertex inG to some

distinguished vertexv has been called an “oriented” tree (Knuth, 1997, p. 373). We will

refer to such a graph as adirected tree. We will also describe it as beingrooted atv. This

terminology is justified by the following theorem:

Theorem 6.1. A directed graph,G = (V, E, s, t), is a directed tree rooted atv if and only

if

• v has no outgoing edges, while everyu ∈ V \ {v} has exactly one outgoing edge,

and

• the undirected graph associated withG does not contain any cycles.

Proof. Consider a directed tree,G, rooted atv. That is,G contains a unique directed walk

from any vertex tov, so that we may define the function,lG : V → N, such thatlG(v) is

the length of the unique walk inG from u to v, with lG(v) = 0. For any edge(u, w) ∈ E,

there exists a walk fromw to v, so the unique walk fromu to v must be the concatenation

of the edge(u, w) to the walk fromw to v. If not, this walk is not unique. Thus, for any

edge(u, w) ∈ V , lG(u) = lG(w) + 1.
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The vertexv cannot have an outgoing edge,(v, u), since that would imply that0 =

lG(v) = lG(u) + 1, andlG(u) = −1, which is impossible sincelG(u) is a length. Since

there is a walk from every otheru to v, every otheru must have at least one outgoing edge.

It cannot have more than one, however, because that would imply two distinct walks from

u to v.

Since lG is strictly decreasing along any walk,G cannot contain a (directed) cycle.

In particular, it cannot contain any self-loops. More generally, the associated undirected

graph,G0, cannot contain an (undirected) cycle. If it did, we could find a vertex,u, in

the cycle such thatlG(u) is maximum among all vertices in the cycle. SinceG contains

no self-loops, the cycle has length at least 1, and there are two edges in the cycle incident

with u in G′. These edges correspond to directed edges inG. SincelG(u) is maximum,u

must be the starting vertex for both edges. Butu has only one outgoing edge, so this is a

contradiction.

Conversely, letG be a graph containing no undirected cycles, in which one vertex, v,

has no outgoing edges, while everyu ∈ V \ {v} has exactly one outgoing edge. Notice

that the strongly connected components ofG are all singleton sets, since, by definition, any

pair of vertices in a strongly connected set contains a directed cycle containing them both.

Since every vertex butv possesses an outgoing edge,G is unichain with unique closed

class,{v}. By Lemma 1.1, from any vertexu ∈ V \ {v}, G contains a walk fromu to v.

If there were more than one such walk, the first vertex at whichthe walks diverged would

have two outgoing edges, which is impossible. Thus, the walkis unique andG is a directed

tree rooted atv.

We can therefore define theparentof any non-root vertex,u ∈ V \ {v}, by t(α), where

s(α) = u.

This leads to the following well-known result.

Corollary 6.2. If G = (V, E, s, t) is a directed tree, then|E| = |V | − 1.

Proof. G must be rooted as some vertex,v, and by Theorem 6.1, there is a well-defined

mapping,σ : V \ {v} → E, taking each non-root vertex to its unique outgoing edge, so

thats(σ(w)) = w, i.e.,σ is a right-inverse ofs. Given any edge,α ∈ E, s(α) ∈ V \ {v},

sincev has no outgoing edge. In fact,σ(s(α)) = α, since each non-root vertex has aunique

outgoing edge. Thus,σ is both a right- and left-inverse, hence, both 1-1 and onto, i.e., a

1-1 correspondence. In particular,|E| = |V \ {v}| = |V | − 1
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As with undirected graphs, adirected subtreeis a subgraph which is also a directed

tree, and adirected spanning subtreeis a directed subtree which spansG (i.e., contains all

vertices ofG). We know from Lemma 1.1 that every directed graph contains at least one

closed class. In this section, our focus will be to show that if a directed graph contains

exactlyone closed class, this is, if it is unichain, then it containsdirected spanning subtrees

rooted at each of the vertices in that class.

We will say that a graph,G = (V, E), contains astar at v iff for every w ∈ V ,

(w, v) ∈ E. Likewise, we will say thatG is starry iff it contains a star at somev ∈ V . Note

thatGT contains a star atv iff there is a walk from every other vertex inG to v.

Lemma 6.3. For any directed graphG = (V, E), GT contains a star atv iff G is unichain

andv is a vertex in its closed class.

Proof. AssumeG contains exactly one closed class,C, and choose an arbitrary vertex

v ∈ C. Now for any other vertexw ∈ V , eitherw ∈ C or w /∈ C. If w ∈ C, w andv are in

the same SCC, so there is a walk fromw to v. If w /∈ C, w is transient, sinceG contains

only one closed class, so by Lemma 1.1 there is a path fromw terminating in a closed class,

which must beC. Let u ∈ C be the vertex at which this path terminates. Sinceu andv are

in the same SCC, there is a walk fromu to v, and therefore there is a walk fromw to v. So

there is a walk inG from every vertex tov, andGT contains a star atv.

Conversely, assume thatGT contains a star atv. By Lemma 1.1,G must contain at least

one closed class, call itC. Now observe thatv must be inC. If it were not, there could be

no walk fromw ∈ C to v, sinceC has no outgoing edges. In addition, there cannot be more

than one closed class, since, by the same argument,v would have to be in all of them.

Lemma 6.3 says that ifG is unichain, then it contains a directed walk from any vertexin

G to each vertex in its closed class. In the remainder of this section, we establish a stronger

result, namely that the assumption of exactly one closed class inG implies that for each

vertexv in the closed class,G contains a subgraphG′ in which there is auniquedirected

walk (which is necessarily a path) from any vertex inG′ to v (i.e., G contains directed

spanning subtrees rooted at each of the vertices in the closed class).

Lemma 6.4. For any directed graph,G, GT contains a star at the vertexv iff G contains a

directed spanning subtree rooted atv.
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Proof. Assume thatG contains a directed spanning subtree rooted atv. By definition, it

then contains a (unique) directed walk from any vertex tov. This means thatGT contains

an edge from any vertex tov. In other words,GT contains a star atv.

Conversely, ifGT contains a star atv, we can use the well-known graph algorithm

breadth-first search to construct a directed spanning subtree rooted atv. Breadth-first search

starts with a given root node,v. Each vertex reached by the algorithm is first discovered,

then placed in a queue, eventually to be dequeued and processed. To process a vertex,

w, the algorithm discovers and enqueues all undiscovered vertices adjacent to it. It then

dequeues the next vertex for processing. In this way, the algorithm processes all vertices

a certain number of edges away fromv before descending to the next level of depth. The

algorithm uses a “color” decoration to guarantee that no vertex is processed more than

once. Vertices not yet discovered are WHITE, vertices discovered but not yet processed are

GRAY, and processed vertices are BLACK.

Algorithm 1 is a modification of the basic algorithm. Since the edges in a directed

spanning tree point toward the root, this algorithm traverses edges backwards, that is, at any

iteration it discovers a vertexu iff there is an edge pointing fromu to the vertex currently

being processed. In addition, it keeps track of the edges traversed this way in the setE ′. We

will argue that the returned spanning subgraph,G′ = (V, E ′), is also directed tree rooted at

v.

First, observe that any non-root vertex,u 6= v ∈ V , is eventually discovered (turned

GRAY) by Algorithm 1. SinceGT contains a star atv, there is a path fromu to v in G.

Enumerating the vertices on this pathp1, . . . , pl with p1 = v, pl = u, and(pi, pi−1) ∈ E,

we may proceed, by induction, to show that every vertex on thepath, includingpl = u, will

be discovered. The initialization step of the algorithm guarantees thatp1 = v is discovered,

anchoring the induction. Now supposepi−1 is discovered. Thenpi−1 will be enqueued,

guaranteeing that it will eventually be processed. When it is processed,pi is examined,

since(pi, pi−1) ∈ E, and either it is already GRAY, or it is turned GRAY at that point. In

either case, we see thatpi will be discovered, completing the inductive step of the argument.

We now show that there is a path inG′ from every vertex tov. Enumerating the non-root

verticesw1, . . . , wm in the order they are discovered, we proceed by complete induction to

show that there is a path fromwi to v in G′ for all i. The first,w1, is discovered because

there is an edge,(w1, v) in G. Since this edge is added toE ′, this gives a path fromw1 to v
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Algorithm 1 BFS Tree
Q = new Queue()
E ′ = ∅
foreach{u ∈ V }

color[u] = WHITE
color[v] = GRAY
Q.enqueue(v)
while (!Q.isEmpty()) {

u = Q.dequeue()
foreach{w | (w, u) ∈ E}

if (color[w] = WHITE) {
color[w] = GRAY
E ′.insert((w, u))
Q.enqueue(w)

}
color[u] = BLACK

}
G′ = (V, E ′)

in G′. Now suppose there is a path fromwk to v in G′ for all k < i. Whenwi is discovered,

an edge(wi, wj) is added toE ′ from wi to the vertex,wj, currently being processed. Since

all vertices are discovered before they are processed,wj must have been discovered before

wi, so thatj < i. By induction hypothesis, there is a path fromwj to v in G′, and since

(wi, wj) ∈ E ′, there is a path fromwi to v in G′, completing the induction step.

It remains to observe that the path inG′ from each vertex tov is unique. The argument

is similar to that in the proof of Theorem 6.1. Since an outgoing edge is added toG′ only

as it is discovered in thewhile loop of Algorithm 1, and each edge is discovered only once,

the out-degree of each non-root vertex is 1. For any non-rootvertex,u, if there were two

distinct walks fromu to v, the first vertex at which the walks differed would have at least

two distinct outgoing edges inG′, which is impossible. Thus, there is auniquedirected

walk in G′ from every vertex tov, that is,G′ is s directed tree. Since it is a subgraph ofG

on the same vertex set,G′ is a spanning subtree ofG rooted atv.

Lemma 6.3 says thatG contains a star atv iff G is unichain andv is a vertex in its closed

class. Lemma 6.4 says thatGT contains a star atv iff G contains a directed spanning subtree

rooted atv. Therefore,
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Theorem 6.5. A directed graphG contains a directed spanning subtree rooted at a vertex

v iff G is unichain andv is in its closed class

6.1.2 DST Construction

We now give a way to represent the set of directed spanning trees of the complete graph on

n vertices in terms of certain mappings. This will allow us to give a constructive proof, in

section 6.2, of the Markov Chain Tree Theorem using determinants.

Among all directed unweighted graphs onn vertices, we restrict attention to those

which are1-regular, that is, those in which each vertex has a unique outgoing edge. There

is a 1-1 correspondence between such graphs and the setT of mappings,σ : Sn → Sn,

which we will suggestively refer to as “1-regular” mappings. Specifically, for a 1-regular

graphG = (V, E), definemap(G) = σ such thatσ(i) = j iff (vi, vj) ∈ E. Conversely,

any suchσ defines a 1-regular graph,G−(σ), such that(vi, vj) ∈ E iff σ(i) = j. Clearly,

G−(map(G)) = G andmap(G−(σ)) = σ.

There is also a 1-1 correspondence between 1-regular mappings and the setM of n×n

square Markov matrices with a single non-zero entry (i.e., 1) in each column, which we will

again refer to as “1-regular”. To any 1-regular mapping,σ ∈ T , we associate a 1-regular

matrix, mat(σ) ∈ M, so that(mat(σ))i,j = 1 iff σ(j) = i. Observe that each columnj

of mat(σ) is the standard basis vectoreσ(j), so thatmat(σ) =
(
eσ(1) . . . eσ(n)

)
. Conversely,

for any matrix,M ∈ M, we can definemap(M) ∈ T such that(map(M)) (j) = i iff

Mi,j = 1. Again,mat andmap are inverses and so give a 1-1 correspondence between the

set of 1-regular mappings andM.

Finally, note that these correspondences induce a 1-1 correspondence between the set

of 1-regular matrices and 1-regular graphs, which is just the usual procedure of associating

with a matrix,M , its unweighted graph,G−(M). We will also definemat(G) for any 1-

regular graph,G, to be the corresponding 1-regular matrix. Four such 1-regular matrices,

Mi, with their corresponding graphs, are shown in Figure 6.1.

For i ∈ Sn, define

Mi =
{
M ∈M |Mj,j = 1 iff j = i

}
andTi = {map(M) |M ∈Mi}

These sets correspond to 1-regular graphs with exactly one self-loop atvi, such asM3 and

M4 in Figure 6.1. For example,M3 ∈ M3 andM4 ∈ M1. Equivalently,map(M3) ∈ T3)
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Figure 6.1: Four 1-Regular Markov Matrices and Graphs

M1 =




0 0 1

1 0 0

0 1 0


 M2 =




0 1 1

1 0 0

0 0 0


 M3 =




0 1 0

1 0 0

0 0 1


 M4 =




1 1 1

0 0 0

0 0 0




G
−

(M1) v1

v2 v3

G
−

(M2) v1

v2 v3

G
−

(M3) v1

v2 v3

G
−

(M4) v1

v2 v3

andmap(M4) ∈ T1.

Now restrict attention further to graphs of unichain Markovmatrices, definingMi =

{M ∈Mi |M unichain} andT i =
{
map(M) |M ∈Mi

}
. By definition, for everyM ∈

Mi, G−(M) has exactly one closed class, which must be the singleton,{vi}. For example,

M4 ∈ M1. Notice that, whileM2 is unichain, it does not contain a self-loop. Likewise,

while M3 has a self-loop atv3, it has two closed classes,{v1, v2} and{v3}, so it is not

unichain.

Figure 6.2 depicts all members of the setM1 with vertices inS3. Note that the diagonal

entries and the entries in the first column of each matrix are determined by the definition

ofM1. This leaves two possibilities each for the two non-zero entries in columns 2 and 3,

resulting in the four members. Of these four,M1, M2, andM3 are unichain (each has only

one closed class,{v1}) so they are members ofM1, or equivalently,map(Mi) ∈ T 1 for

i = 1, . . . , 3. On the other hand,M4 has two closed classes,{v1} and{v2, v3}, so it is not

a member ofM1 andmap(M4) 6∈ T 1.

Figure 6.2: The setM1 of 3× 3 matrices.

M1 =




1 1 1

0 0 0

0 0 0


 M2 =




1 1 0

0 0 1

0 0 0


 M3 =




1 0 1

0 0 0

0 1 0


 M4 =




1 0 0

0 0 1

0 1 0




G
−

(M1) v1

v2 v3

G
−

(M2) v1

v2 v3

G
−

(M3) v1

v2 v3

G
−

(M4) v1

v2 v3

Now for σ ∈ T i, let G0
−(σ) be the graph obtained by removing the self-loop atvi from
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G−(σ). We will call the set of all such graphsDi = {G0
−(σ) | σ ∈ T i}. We thus have a

1-1 correspondence between mapsσ ∈ T i, Markov matrices,mat(σ) ∈ Mi, and directed

graphs,G0
−(σ) ∈ Di. Figure 6.3, shows the Markov matrices,mat(σ) and graphs,G0

−(σ),

associated withσ ∈ T 1. Notice that all graphs are directed spanning trees rooted at v1

Figure 6.3: The setD1 of directed spanning trees with vertices inS3, rooted atv1

M1 =




1 1 1

0 0 0

0 0 0


 M2 =




1 1 0

0 0 1

0 0 0


 M3 =




1 0 1

0 0 0

0 1 0




G0
− (M1) v1

v2 v3

G0
− (M2) v1

v2 v3

G0
− (M3) v1

v2 v3

We now show that this correspondence gives us a way of enumerating all directed span-

ning trees rooted atvi.

Theorem 6.6.Di is the set of all directed spanning trees onn vertices rooted atvi.

Proof. LetDi denote the set of all directed spanning trees onn vertices rooted atvi. Then

we may viewG0
− as a mapping fromT i to Di, which by definition is surjective. We wish

to show thatDi = im G0
− = Di.

For any mappingσ ∈ T i, mat(σ) is unichain, soG−(mat(σ)) = G−(σ) contains

exactly one closed class, which must be the vertexvi with the self-loop. By Theorem 6.5,

G−(σ) contains a directed spanning subtree,G′, rooted atvi. By Corollary 6.2, this graph

hasn − 1 edges, sinceG−(σ), and henceG′, hasn vertices. By definition,G−(σ) hasn

edges, so that, by removing the self-loop atvi, we obtain a spanning subgraph,G0
−(σ), on

n vertices andn− 1 edges.

To summarize, sinceG−(σ), G′, andG0
−(σ) have the same vertex set. In addition,

if we denote the corresponding edge sets byE, E ′, andE0, respectively, we have that

E ′, E0 ⊂ E \ {(vi, vi)}, sinceG′ is rooted atvi and by construction ofG0
−(σ). Since∣∣E ′

∣∣ = n− 1 =
∣∣E0
∣∣ and|E \ {(vi, vi)}| = |E| − 1 = n− 1, we must haveE ′ = E = E0,

so thatG′ = G0
−(σ). That is,Di ⊂ Di.
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Moreover, every tree inDi can be constructed in this fashion. Given a directed spanning

tree,G′ ∈ Di, with V = {v1, . . . , vn}, rooted atvi, add a self-loop atvi to obtain a 1-regular

graph,G, with associatedσ = map(G). SinceG′ has no self-loops,G has exactly one

self-loop atvi, andσ ∈ Ti. Since the directed spanning tree,G′ is a subgraph ofG, by

Theorem 6.5,G contains exactly one closed class. In particular,mat(σ) is unichain, i.e.,

mat(σ) ∈ Mi, so thatσ ∈ T i andG0
−(σ) = G′. Thus,Di ⊂ Di, so thatDi = Di. That is,

Di is the set of all directed spanning trees rooted atvi.

6.1.3 The vectorwM

Now that we have a construction for the set of directed spanning trees, for any given Markov

matrix,M , we may enumerate the directed spanning subtrees ofG−(M), and their associ-

ated “weights”. We will see that whenM is unichain, these are closely related to the stable

distribution ofM .

Given any Markov matrix,M , and anyσ ∈ Ti, we define

W (M, σ) = Πj 6=iMσ(j),j (6.1)

Intuitively, this is the “total” weight inG(M) of the edges inG0
−(σ) (where we aggregate by

multiplication rather than addition), which is a directed spanning tree whenσ ∈ T i. Notice

how we take the product overj 6= i, so that the “total” weight excludes the weight on the

self-loop ati in G−(σ). Notice further that, while we will usually apply this definition to

σ ∈ T i, W (M, σ) is well-defined for anyσ ∈ Ti.

Given a Markov matrixM , we now define the vectorwM such that

(wM)i =
∑

σ∈T i

W (M, σ) (6.2)

The ith entry ofwM is the sum of the “total” weights inG(M) of all directed spanning

subtrees rooted atvi.

Example 6.7. Throughout the remainder of this chapter, we will use the Markov matrix

M =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


 as a running example. To calculate(wM)1, we must sum over all

σ ∈ T 1, which correspond to the matricesM1, M2, M3 ∈M1 enumerated in Figure 6.2.
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First, calculateW (M, σ1), for σ1 = map(M1); in particular,σ1(1) = 1, σ1(2) = 1, and

σ1(3) = 1. Here,W (M, σ1) = Πj 6=1Mσ1(j),j = Mσ1(2),2Mσ1(3),3 = M1,2M1,3 = 1
2
× 1

4
= 1

8
.

Similarly, W (M, σ2) = Πj 6=1Mσ2(j),j = Mσ2(2),2Mσ2(3),3 = M1,2M2,3 = 1
2
× 1

4
= 1

8
, and

W (M, σ3) = Πj 6=1Mσ3(j),j = Mσ3(2),2Mσ3(3),3 = M3,2M1,3 = 1
2
× 1

4
= 1

8
.

Finally, (wM)1 =
∑

σ∈T 1
W (M, σ) = 1

8
+ 1

8
+ 1

8
= 3

8
. Repeating this process forσ ∈ T 2

andσ ∈ T 3, we find thatwM =




3
8

1
2

1
2


.

Lemma 6.8. For anyn × n Markov matrixM , all i ∈ Sn, andσ ∈ T i, W (M, σ) 6= 0 iff

the directed spanning tree associated toσ, G0
−(σ), is a subgraph ofG−(M).

Proof. Abbreviate the directed spanning tree associated toσ by G. We may enumerate all

the edges ofG as
(
vj, vσ(j)

)
for j ∈ Sn \ {i}. An edge,

(
vj, vσ(j)

)
, is in G−(M) iff it is

in G(M) iff it has positive weight, i.e.,Mσ(j),j > 0. Thus,G is a subgraph ofG−(M) iff

Mσ(j),j > 0 for all j ∈ Sn \ {i} iff 0 6= Πj 6=iMσ(j),j = W (M, σ).

By Lemma 6.8, whenG0
−(σ) is not a subgraph ofG−(M), the corresponding term in

∑
σ∈T i

W (M, σ) is zero. ForM Markov, defineT (M, i) to be only those mappingsσ in

T i whose associated direct spanning trees are subgraphs ofG−(M). That is,

T (M, i) = {σ ∈ T i | G
0
−(σ) ⊂ G−(M)} (6.3)

We may now give an equivalent definition ofwM with zero terms removed from the sum:

(wM)i =
∑

σ∈T (M,i)

W (M, σ) (6.4)

We will use this definition from now on.

Theorem 6.9. The vectorwM 6= 0 iff M is unichain. Specifically, ifM is unichain,

(wM)i 6= 0 iff vi is in the closed class ofG(M).

Proof. SupposeM is unichain. By Theorem 6.5 there exists a subgraphG′
i ⊂ G−(M)

which is a directed spanning tree rooted at the vertexvi iff vi is in the closed class of

G−(M). If vi is in the closed class, letσi ∈ T i be the mapping associated toG′
i (so that

G′
i = G0

−(σi)). Thenσi ∈ T (M, i) and there is at least one non-zero term in the sum
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∑
σ∈T (M,i) W (M, σ). Since this is a sum of positive terms,(wM)i 6= 0. On the other hand,

if vi is not in the closed class,G(M) has no directed spanning subtree rooted atvi, so

T (M, i) is empty and(wM)i = 0.

Therefore, ifM is unichain withvi in the closed class ofG−(M), then(wM)i 6= 0, and

wM 6= 0. We prove the converse implication by considering its contrapositive. That is, we

show that, ifM is not unichain,(wM)i = 0 for all i. If M is not unichain, by Theorem 6.5

G(M) has no directed spanning subtree rooted at any vertex. SoT (M, i) is empty for alli,

andwM = 0.

6.2 A Proof Using Determinants

Having established all necessary combinatorial definitions in section 6.1, we now move

on the proof of the Markov Chain Tree Theorem. The proof will depend primarily on

the multi-linearity of the determinant function from linear algebra. Thus, we will begin by

reviewing basic facts and definitions associated with the determinant function. Specifically,

we will:

• review the basic properties of the determinant,

• define what we mean by minors, cofactors, and the adjoint of a matrix,

• show how the vector,wm, from section 6.1 naturally occurs as the diagonal of the

adjoint of the laplacian of a unichain Markov matrix,M , and

• use linear algebra to show that this must then be proportional to the stable distribution

of M .

6.2.1 Determinants

We begin by recalling some basic facts regarding the determinant function on square matri-

ces. For notational convenience, we will sometimes writev1 ∧ · · · ∧ vn for the determinant

of then× n square matrix withvis as columns, wherevi ∈ R
n.

The determinant of a2 × 2 matrix,

∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad − bc. The determinant of ann × n

matrix,N , for n > 2 can be calculated recursively as follows, using the Laplaceexpansion
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formulas, given by Equations 6.5 and 6.6. The(i, j)th minor of N , N i,j , is the(n − 1) ×

(n−1) matrix obtained by removing theith row andj th column fromN . The(i, j)th cofactor

of N , Ci,j
N = (−1)i+j|N i,j|. Now, for any rowi or columnj of N ,

|N | =

n∑

k=1

Ni,kC
i,k
N (6.5)

=
n∑

k=1

Nk,jC
k,j
N (6.6)

Equation 6.5 is refered to as a Laplace expansion along rowi, while Equation 6.6 is a

Laplace expansion along columnj.

Example 6.10.For example, the determinant of the matrixM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


 can be

calculated by applying the Laplace expansion along the firstcolumn: |M | = M1,1C
1,1
M +

M2,1C
2,1
M +M3,1C

3,1
M = 0×C1,1

M +1× (−1)2+1

∣∣∣∣∣∣

1
2

1
4

1
2

1
2

∣∣∣∣∣∣
+0×C3,1

M = −1(1
2
× 1

2
− 1

4
× 1

2
) =

−1
8
.

Theorem 6.11.The determinant function on square matrices has the following well-known

properties (see, for example, Horn and Johnson (1985)):

a) |NM | = |N ||M |, or equivalently, settingvi = Mei, so that|M | = v1 ∧ · · · ∧ vn,

(Nv1) ∧ · · · ∧ (Nvn) = |N | v1 ∧ · · · ∧ vn (6.7)

b) |I| = 1 and
∣∣M−1

∣∣ = |M |−1.

c) |N | = 0 iff N is not invertible.

d) |M−1NM | = |N |, and in particular, for any permutation matrixP ,
∣∣P tMP

∣∣ =

|M |.

e)
∣∣M t

∣∣ = |M |

f ) If N is block-triangular with square diagonal blocks,Ni, then|N | =
∏

i |Ni|.
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g) The determinant function ismulti-linear, meaning it is linear in each “factor”, i.e.,

v1∧· · ·∧(αvi + w)∧· · ·∧vn = α (v1 ∧ · · · ∧ vi ∧ · · · ∧ vn)+v1∧· · ·∧w∧· · ·∧vn

Another key property of the determinant involves the adjoint operator,adj. Theadjoint

of a matrix is the transpose of its matrix of cofactors, i.e.,for anyn× n square matrix,N ,

(adjN)i,j = Cj,i
N = (−1)i+j

∣∣N j,i
∣∣ (6.8)

It then turns out that the Laplace expansion formulas, 6.5 and 6.6, are equivalent to the

following matrix equation (Wicks, 1996):

adj(N) N = |N | I = N adj(N) (6.9)

Example 6.12.Using the matrix,M , from Example 6.10,

M1,1 =


 0 1

4

1
2

1
2


 ⇒ adj(M)1,1 = (−1)1+1

∣∣M1,1
∣∣ = −

1

8
.

Similarly,

M1,2 =


 1 1

4

0 1
2


 ⇒ adj(M)2,1 = (−1)1+2

∣∣M1,2
∣∣ = −

1

2
.

Continuing this process, we find thatadj(M) =




−1
8
−1

8
1
8

−1
2

0 1
4

1
2

0 −1
2


. Now it is easy to

check thatadj(M)M = M adj(M) =




−1
8

0 0

0 −1
8

0

0 0 −1
8


 = |M | I.

6.2.2 The Stable Distribution

DefinewM to be the vector consisting of the diagonal entries ofadj (Λ). That is, remem-

bering our convention thatΛ = M − I, (wM)i ≡ adj(Λ)i,i = Ci,i
Λ =

∣∣Λi,i
∣∣. In this section,

we will show thatwM is closely related to the vectorwM , defined in section 6.1.3. This



94

will lead to a formula for the stable distribution of a unichain Markov matrix in terms of its

directed spanning subtrees.

In order to proceed, we need a bit of additional notation, letRi (N) denote the result of

replacing theith column ofN by the standard basis vector,ei.
1

Example 6.13.ForM from Example 6.10,Λ = M − I =




−1 1
2

1
4

1 −1 1
4

0 1
2
−1

2


, adj (Λ) =




3
8

3
8

3
8

1
2

1
2

1
2

1
2

1
2

1
2


, sowM =




3
8

1
2

1
2


. Moreover,R1 (Λ) =




1 1
2

1
4

0 −1 1
4

0 1
2
−1

2


. Using the

Laplace expansion formula to compute,|R1 (Λ)| = 1×

∣∣∣∣∣∣
−1 1

4

1
2
−1

2

∣∣∣∣∣∣
= −1×−1

2
− 1

4
× 1

2
=

3
8

= (wM)1.

We now prove the result suggested by Example 6.13.

Lemma 6.14.For any Markov matrix,M , (wM)i = |Ri (Λ)|.

Proof. By the Laplace expansion formula for theith column,

|Ri (Λ)| =

n∑

k=1

Ri(Λ)k,iC
k,i
Ri(Λ) =

n∑

k=1

(ei)k Ck,i
Ri(Λ)

=
n∑

k=1

[i = k]Ck,i
Ri(Λ) = Ci,i

Ri(Λ) = (−1)2i|Ri(Λ)i,i|

= (−1)2i|Λi,i| = adj(Λ)i,i = (wM)i.

Comparing Examples 6.7 and 6.13, it appears thatwM = wM . We will now work to

show that this is true, in general, with a minor caveat. We will do this by gradually rewriting

wM via a series of lemmas, until we obtainwM .

Lemma 6.15. For any Markov matrix, M,(wM)i =
∑

σ∈Ti
W (M, σ) |Ri(Λ(mat(σ)))|,

where, by our usual convention,Λ(mat(σ)) = mat(σ)− I.

1More formally,Ri (N) = N + (I −N)eie
t
i, so thatRi (N) ej = Nej + (I −N)eie

t
iej = Nej + (I −

N)ei[i = j] = ei[i = j] + N(ej − ei[i = j]) = ei[i = j] + Nej[i 6= j].
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Proof. By Lemma 6.14, remembering thatΛ ≡M − I, we may first write(wM)i in terms

of the columns ofRi(Λ),

(wM)i = |Ri (Λ)|

= Ri (Λ) e1 ∧ · · · ∧ Ri (Λ) ei ∧ · · · ∧ Ri (Λ) en

= Λe1 ∧ · · · ∧ ei ∧ · · · ∧ Λen (6.10)

Since the columns ofΛ sum to 0 (i.e., are inker J), we may write thejth column ofΛ, Λej,

in terms ofei,j ≡ ei − ej for i 6= j (i.e., a choice of basis forker J). To do so, we begin as

follows:

Λej = Mej − ej =

n∑

i=1

Mi,jei − ej =
∑

i6=j

Mi,jei +
(
Mj,j − 1

)
ej .

Since thejth column ofM sums to 1, we obtain the desired expansion:

Λej =
∑

i6=j

Mi,jei +

(
−
∑

i6=j

Mi,j

)
ej =

∑

i6=j

Mi,j(ei − ej) =
∑

i6=j

Mi,jei,j (6.11)

Applying Equation 6.11 to Equation 6.10, we have, by the multi-linearity of the deter-

minant,

(wM)i =
∑

s1 6=1

Ms1,1es1,1 ∧ · · · ∧ ei ∧ · · · ∧
∑

sn 6=n

Msn,nesn,n

=
∑

s1 6=1

· · ·
∑

sn 6=n

(
Ms1,1 · · ·Msn,n

) (
es1,1 ∧ · · · ∧ ei ∧ · · · ∧ esn,n

)

=
∑

s1 6=1

· · ·
∑

sn 6=n

(
Πj 6=iMsj ,j

) (
es1,1 ∧ · · · ∧ ei ∧ · · · ∧ esn,n

)
(6.12)

We now apply the substitution,sj = σ(j), so that each choice of values for the summation

variables,{s1, . . . , ŝi, . . . , sn}, represents a unique choice ofσ : Sn \{i} → Sn. No choice

of σ(i) is made because Equation 6.12 does not include a summation over si. Notice that

the sum now requiresσ(j) 6= j for all j 6= i. We may also requiresi = σ(i) = i to obtain

a unique choice ofσ : Sn → Sn, such thatσ(j) = j iff j = i, i.e., σ ∈ Ti. Therefore,

Equation 6.12 may be rewritten as

(wM)i =
∑

σ∈Ti

(
Πj 6=iMσ(j),j

) (
eσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n

)

=
∑

σ∈Ti

W (M, σ)
(
eσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n

)
(6.13)
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Now considereσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n. Converting back to standard determinant

notation, we have

eσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n =
∣∣∣ eσ(1),1 · · · ei · · · eσ(n),n

∣∣∣

=
∣∣∣Ri

(
eσ(1),1 · · · eσ(i),i · · · eσ(n),n

)∣∣∣

=
∣∣∣Ri

(
eσ(1) − e1 · · · eσ(n) − en

)∣∣∣

=
∣∣∣Ri

((
eσ(1) · · · eσ(n)

)
− I
)∣∣∣

= |Ri(Λ(mat(σ)))| (6.14)

Combining Equations 6.13 and 6.14 give our desired equation

(wM)i =
∑

σ∈Ti

W (M, σ) |Ri(Λ(mat(σ)))|

The formula from Lemma 6.15 may be simplified significantly, once we prove the fol-

lowing lemma.

Lemma 6.16. For any σ ∈ Ti, |Ri(Λ(mat(σ)))| = (−1)n−1, wheneverσ ∈ T i, and 0

otherwise.

Proof. Suppose thatσ ∈ T i. Consider the associated directed spanning tree,D = G0
−(σ).

We can assign each vertex inG−(M) a number according to the length functionlG on D,

given in Theorem 6.1. By sorting the vertices from low to highby their value under the

length function, and renumbering the vertices in this sorted order, we achieve the property

that the index of any non-root vertex is greater than that of its parent. This is because for

(u, w) ∈ E, with u 6= vi, lG(u) = lG(w) + 1. SincelG(vi) = 0, vi is renumbered as the

first vertex.

From a matrix perspective, if we permute the rows and columnsaccording to this

renumbering of the vertices, the result is upper-triangular, since edges always go from a

higher (column) index to a lower (row) index. Moreover, the diagonal contains all 0’s

except in the(1, 1)-entry, corresponding to the fact that the graph has a self-loop only at

the root, which gets renumbered with index 1. Therefore, thesame permutation ofΛ is

upper-triangular with -1’s on the diagonal, except for a 0 inthe(1, 1)-entry, and the same
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permutation ofRi (Λ) is upper-triangular with -1’s on the diagonal, except for a 1in the

(1, 1)-entry. By Theorems 2.3 and 6.11 d), permuting the rows and columns does not af-

fect the determinant. So by Theorem 6.11 f), the determinantis the product of these1× 1

diagonal blocks, and|Ri (Λ(mat(σ)))| = (−1)n−1.

Now suppose thatσ /∈ T i, so thatM = mat(σ) is not unichain, and has at least two

closed classes. Pick two such closed classes,s1 ands2. By Lemma 2.11, there exists a

permutation matrix,P , such thatP t
sMPs =




∗0 0 0

∗1 M1 0

∗2 0 M2


, whereM1 andM2 are

the Markov principal sub-matrices corresponding tos1 ands2, and the∗’s are unknown

entries. In particular, it is block lower-triangular, as isP tΛP =




∗0 − I 0 0

∗1 Λ1 0

∗2 0 Λ2


,

with diagonal blocks,D1 = ∗0 − I, D2 = M1 − I = Λ1, andD3 = M2 − I = Λ2. In

addition,P tRi (Λ)P is block lower-triangular with exactly one of the diagonal blocks,Dj,

replaced byRi
′

(
Dj

)
, for somei′ (determined byP andi) andj = 1, . . . , 3.

By Theorem 6.11 d),|Ri(Λ)| =
∣∣P tRi (Λ) P

∣∣. This is either|Ri
′ (∗0 − I)| |Λ1| |Λ2|,

|∗0| |Ri
′ (Λ1)| |Λ2|, or |∗0| |Λ1| |Ri

′ (Λ2)|, by Theorem f). SinceΛ1 andΛ2 correspond to

Markov matricesM1 andM2, neither is invertible. In other words, both have determinant

zero, so there is at least one zero term in each product, and|Ri(Λ)| = 0.

We can now show thatwM andwM are equal, up to a change in sign.

Theorem 6.17.For any Markov matrix,M , wM = (−1)n−1wM .

Proof. Focusing attention on theith components, we must show that

(wM)i = (−1)n−1(wM)i = (−1)n−1
∑

σ∈T (M,i)

W (M, σ) .

By Lemma 6.15,

(wM)i =
∑

σ∈Ti

W (M, σ) |Ri(Λ(mat(σ)))| .

By Lemma 6.16,|Ri(Λ(mat(σ)))| = 0, if σ 6∈ T i. Thus, this simplifies to

∑

σ∈T i

W (M, σ) |Ri(Λ(mat(σ)))| .



98

Moreover, whenσ ∈ T i, Lemma 6.16 says that|Ri(Λ(mat(σ)))| = (−1)n−1, so that this

simplifies to

∑

σ∈T i

W (M, σ)(−1)n−1 = (−1)n−1
∑

σ∈T i

W (M, σ) = (−1)n−1
∑

σ∈T (M,i)

W (M, σ) ,

as desired.

We now come to the key result of the chapter.

Theorem 6.18(Markov Chain Tree Theorem). For any unichain Markov matrix,M ,

stab M = {vM}, where

(vM)i =
1

K


 ∑

σ∈T (M,i)

W (M, σ)


 =

1

K
(wM)i (6.15)

with normalizing constant,K = ‖wM‖1 =
∑n

i=1(wM)i =
∑n

i=1

∑
σ∈T (M,i) W (M, σ).

Proof. By Theorem 2.12,ker Λ 6= 0, so thatΛ is not invertible. By Theorem 6.11 c),

|Λ| = 0, and by Equation 6.9,0 = |Λ| I = adj (Λ)Λ. Therefore,0 = (adj (Λ) Λ)t =

Λt (adj (Λ))t. In other words, all rows ofadj(Λ) are inker Λt. Likewise, sinceJΛ =

JM − J = 0, J ∈ ker Λt.

By Theorem 5.14, sinceM has 1 closed class,dim ker Λ = 1, which, by Theorem A.1,

equalsdim ker Λt. Since all vectors in a 1-dimensional subspace are multiples of any cho-

sen non-zero member, each row ofadj(Λ) must be a multiple ofJ . In other words, all

entries in any given row must be equal. Equivalently, all columns ofadj(Λ) are all equal.

Now wM is defined as the diagonal entries ofadj (Λ). Since the columns ofadj(Λ) are

identical,wM is also equal to each column. Appealing again to Equation 6.9, 0 = |Λ| I =

Λ adj (Λ), so that the columns ofadj(Λ) are all inker Λ, that is,wM ∈ ker Λ.

Therefore, by Theorem 6.17,wM ∈ ker Λ. To this point, we could still haveadj(Λ) =

0. However, sinceM is unichain, Theorem 6.9 guarantees thatwM 6= 0. In particular,

{wM} is a basis forker Λ.

The stable distributions ofM are the positive norm-1 vectors inker Λ. We know that

wM is positive, since its entries are the sums of products of positive weights. By letting

K = ‖wM‖1 andvM = 1
K

wM , we see thatvM > 0, and‖vM‖1 =
∑n

i=1(wM)i/K =
1
K
‖wM‖1 = 1, sovM is a stable distribution ofM . By Corollary5.15,vM is the unique

stable distribution ofM .
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Example 6.19.Continuing with the matrix,M , from Example 6.10, we obtain a normal-

ization constant ofK = (wM)1 +(wM)2 +(wM)3 = 11
8

, sovM =




3
11

4
11

4
11


. We may easily

verify thatvM is a stable distribution, sinceMvM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2







3
11

4
11

4
11


 =




3
11

4
11

4
11


 =

vM .

Notice that Theorem 6.18 suggests that(vM)i may be viewed as the conditional prob-

ability that a randomly selected directed spanning subtreeis rooted ati, where the relative

probability of each tree is given by product of the weights ofits edges. This implies that, if

we could efficiently sample from the corresponding distribution of directed spanning sub-

trees, we would have a Monte Carlo algorithm for computingvM . While Broder (1989)

provides such a sampling algorithm, it is not sufficiently fast to render the associated pro-

cedure for computingvM competitive with other more direct techniques.



Chapter 7

Perturbed Markov Matrices

We now wish to generalize our our study of Markov matrices to the case when the entries

are sufficiently “nice” functions of a non-negative parameter, ǫ, to so called “perturbed”

Markov matrices (PMMs). If we denote such a matrix byMǫ, we will be interested in the

stable distributions ofMǫ asǫ → 0. As such, we will need to combine the linear algebra

and graph theory of Part I with some careful real analysis.

We will show that:

• a PMM,Mǫ, has a well-defined stable distribution,vǫ, which is a “perturbed” matrix

(i.e., column vector),

• v0 ≡ limǫ→0 vǫ exists, the so-called “stochastically stable distribution” (SSD) ofMǫ,

• v0 only depends onMǫ up to an equivalence relation (“asymptotic” equality) defined

over its entries,

• the equivalence class of an entry is determined by two real-valued invariants, which

we call theresistanceandcostof the entry, respectively,

• likewise, the equivalence class of a PMM,Mǫ, may be specified by two real-valued

matrices (i.e., its resistance,R (Mǫ), and cost,C (Mǫ)),

• the two constructions from chapter 5 (i.e., scaling and reduction), as well as the

corresponding notions of equivalence andD-equivalence, generalize to PMMs, and

• by careful application of the Markov Chain Tree Theorem, we can guarantee that we

only need invertconstantmatrices in our constructions.

100
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By alternating these two constructions, we are able to give the first exact algorithm for

computingv0. Moreover, since the SSD only depends on the equivalence class ofMǫ,

we may represent all perturbed matrices in the computation by the corresponding pair of

resistance and cost matrices.

Because we will only be interested in functional values for “sufficiently small” non-

negative values ofǫ, it will be useful to establish the following two conventions. If Q(ǫ)

is a proposition containing the variableǫ, we will write “Q(ǫ) for ǫ � 0” as an short-

hand for “∃δ > 0 s. t. Q(ǫ) for ǫ ∈ [0, δ]”. Likewise, “Q(ǫ) for ǫ ≻ 0” will mean

“∃δ > 0 s. t. Q(ǫ) for ǫ ∈ (0, δ]”. In other words,ǫ � 0 may be read as “for sufficiently

small non-negativeǫ”, while ǫ ≻ 0 will mean “for sufficiently small positiveǫ”.

7.1 Exponentially Convergent Functions

In this section, we will establish the groundwork for our study of PMMs by defining pre-

cisely what we mean by “sufficiently nice functions ofǫ”. The fundamental issue is that

we need to restrict to a class of functions which:

• could serve as entries to a Markov matrix,

• have a well-defined limit asǫ→ 0, and

• is closed under basic algebraic operations.

In particular, we will want the collection of (Markov)matrices, Mǫ, with such entries to be

closed under standard matrix operations. Moreover, we willwantstab (Mǫ) to correspond

to a matrix with such entries, so that we may take limits. In addition, since we are primarily

interested in functional values asǫ→ 0, they will not need to be defined forall non-negative

ǫ. In particular, we will only be interested in such functionsup to “asymptotic” equivalence.

Thus, to begin it is natural to require that the entries should at least be positive and

continuous. In fact, we will be a bit more stringent. We will restrict attention to the col-

lection of functions,f(ǫ), which are continuous for sufficiently small non-negativeǫ, and

either positive for sufficiently small positiveǫ or zero for sufficiently small non-negativeǫ.

We will denote this collection asC+[0, ∗], and, using our convention, we may define it as

follows:

C+[0, ∗] = {f continuous forǫ � 0 | f(ǫ) > 0, ∀ ǫ ≻ 0 or f(ǫ) = 0, ∀ ǫ � 0}
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Alternatively, if C0[0, δ] denotes the set of real-valued, continuous functions on[0, δ], then

C0[0, ∗] =
⋃

δ>0

{
f ∈ C0[0, δ] | f(ǫ) > 0, ∀ 0 < ǫ ≤ δ or f(ǫ) = 0, ∀ 0 ≤ ǫ ≤ δ

}

However, this collection is too big. Anyf ∈ C0[0, δ] andδ′ ∈ (0, δ), defines a re-

striction,g ∈ C0[0, δ′], so thatg(ǫ) = f(ǫ), for all 0 ≤ ǫ ≤ δ′. We would clearly like to

consider those as the “same” function.1 Thus, we define the following relation onC+[0, ∗].

Definition 7.1. For f, g ∈ C+[0, ∗], we will say thatf is asymptotically equal tog and

write f ≃ g iff either:

i) g(ǫ) = 0 = f(ǫ) for ǫ � 0, or

ii ) g(ǫ) > 0 for ǫ ≻ 0 andlimǫ→0
+

f(ǫ)
g(ǫ)

= 1.

Notice that, ifg ∈ C0[0, ∗], then eitherg(ǫ) = 0 for ǫ � 0 or g(ǫ) > 0 for ǫ ≻ 0 (but not

both), so that Definition 7.1 makes sense.

We now show that this relation is, in fact, anequivalencerelation, along with some

other useful facts.

Lemma 7.2. For fi, gi ∈ C0[0, ∗], i = 1, 2,

a) if f1(ǫ) = g1(ǫ) > 0 for ǫ ≻ 0, thenf1 ≃ g1;

b) f1 + f2, f1f2 ∈ C0[0, ∗], that is, this collection of functions is “closed” under

addition and multiplication;

c) ≃ is an equivalence relation onC0[0, ∗];

d) if fi ≃ gi, i = 1, 2, thenf1f2 ≃ g1g2, that is,≃ is “preserved” under multiplica-

tion.

Proof. The proof of part a) is almost immediate. Assuming thatf(ǫ) = g(ǫ) > 0 for ǫ ≻ 0,

limǫ→0
+

f(ǫ)
g(ǫ)

= limǫ→0
+ 1 = 1, so thatf ≃ g, by Definition 7.1 ii). Part b) is also clear,

since the sum or product of continuous/positive functions is continuous/positive.

1Mathematically, we want to look at the “germs” ofC
+[0,∞) at 0 (Warner, 1984).
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To prove part c), we must show that≃ is reflexive, symmetric, and transitive. For any

f ∈ C+[0, ∗], eitherf(ǫ) = 0, for ǫ � 0, so thatf ≃ f by Definition 7.1 i), orf(ǫ) > 0, so

that, by part a),f ≃ f . Thus,≃ is reflexive.

Likewise, if f ≃ g, eitherg(ǫ) = 0 for ǫ � 0, so we must be in case i) whenf(ǫ) = 0

for ǫ � 0, as well. In which case, Definition 7.1 i) givesg ≃ f , as well. Alternatively,

g(ǫ) > 0 for ǫ ≻ 0 and we must be in case ii). Sincelimǫ→0
+

f(ǫ)
g(ǫ)

= 1, we cannot have

f(ǫ) = 0 for ǫ � 0, so thatf(ǫ) > 0 for ǫ ≻ 0. We may then say thatlim
ǫ→0

+
g(ǫ)
f(ǫ)

= 1, so

thatg ≃ f by Definition 7.1 ii). That is,≃ is symmetric.

To finish part c), assume thatf ≃ g andg ≃ h. Since we have already shown≃ to be

symmetric, we know thath ≃ g, as well. Now assume thatg(ǫ) = 0 for ǫ � 0, so we must

be in case i), that is, we may conclude thatf(ǫ) = 0 andh(ǫ) = 0 for ǫ � 0, as well. In

particular,f ≃ h. Otherwise,g(ǫ) > 0 for ǫ ≻ 0, and we must be in case ii). Therefore,

h(ǫ) > 0 for ǫ ≻ 0 and we may conclude thatlim
ǫ→0

+
f(ǫ)
g(ǫ)

= 1 = lim
ǫ→0

+
g(ǫ)
h(ǫ)

. Thus,

1 = 1 · 1 = lim
ǫ→0

+

f(ǫ)

g(ǫ)
lim

ǫ→0
+

g(ǫ)

h(ǫ)
= lim

ǫ→0
+

(
f(ǫ)

g(ǫ)

g(ǫ)

h(ǫ)

)
= lim

ǫ→0
+

f(ǫ)

h(ǫ)

and by Definition 7.1 ii),f ≃ h. Thus, we have proven that≃ is transitive.

Now we must prove part d). First consider the case when at least one of thefi or gi is

identically 0. Assume, for example, thatf1 ≃ 0. Using the fact that≃ is an equivalence

relation, we may reason as follows. By assumption,g1 ≃ f1 ≃ 0, so thatf1(ǫ) = 0 = g1(ǫ)

for ǫ � 0. Thenf1(ǫ)f2(ǫ) = 0 = g1(ǫ)g2(ǫ) for ǫ � 0, andf1f2 ≃ 0 ≃ g1g2.

Otherwise, sincefi ≃ gi, lim
ǫ→0

+
fi(ǫ)
gi(ǫ)

= 1. Therefore,

lim
ǫ→0

+

f1(ǫ)f2(ǫ)

g1(ǫ)g2(ǫ)
= lim

ǫ→0
+

f1(ǫ)

g1(ǫ)
lim

ǫ→0
+

f2(ǫ)

g2(ǫ)
= 1 · 1 = 1

so thatf1f2 ≃ g1g2.

Since≃ is an equivalence relation, we can partitionC0[0, ∗] into equivalence classes,

and denote the corresponding collection of equivalence classes byC. In particular, there is

a unique equivalence class containing the constant function, 0. For convenience, we will

denote this class (and any member function) by 0, as well. Notice that if f 6≃ 0, then

f(ǫ) > 0 for ǫ ≻ 0.

Lemma 7.2 d) says that multiplication is a well-defined operation on C. To perform

addition, subtraction, or division on equivalence classes, we must restrict attention to func-

tions which are “nice” enough. A standard restriction is to look at only those functions
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which “look like” exponentials, i.e., those classes which contain an exponential of the form

cǫr ∈ C0[0, ∗] for c, r ≥ 0. Thus, we define the set ofexponentially convergent(Young,

1993) functions,C+ ⊂ C as those equivalence classes containingcǫr for somer, c ≥ 0.

Intuitively, we want to focus on the collection
{
f ∈ C+[0, ∗] | ∃ r, c ≥ 0, f ≃ cǫr

}
. For

simplicity, we will blur the distinction between an equivalence class inC+ and its mem-

ber functions. Likewise, we will abuse notation slightly and write f ∈ C+ instead of

f ∈ C+[0, ∗] andf ≃ cǫr, for somer, c ≥ 0. For example, we may observe that, as

constant functions,R+ ⊂ C+.

Theorem 7.3.There exist functionsR : C+ → [0,∞] andC : C+ → [0,∞), such that, for

all f, g ∈ C+:

a) f ≃ cǫr 6≃ 0 iff C(f) = c > 0 andR(f) = r <∞, and

b) f ≃ 0 iff C(f) = 0 iff R(f) =∞

Moreover:

c) for f, g ∈ C+, f ≃ g iff C(f) = C(g) andR(f) = R(g);

d) if f is continuous forǫ � 0 andlimǫ→0
+

f(ǫ)

cǫ
r = 1, with c > 0, thenf ∈ C+ \ 0 with

R(f) = r andC(f) = c.

Proof. First, observe that the mappingα : (0,∞)× [0,∞) → C+ such thatα(c, r) = cǫr

gives a 1-1 correspondence between(0,∞)× [0,∞) andC+ \ 0. Assume thatα (c1, r1) =

α (c2, r2), that is,c1ǫ
r1 ≃ c2ǫ

r2 . Sinceci > 0, i = 1, 2, we are in case ii) of Definition 7.1.

Therefore,1 = limǫ→0
+

c1ǫ
r1

c2ǫ
r2 = c1

c2
limǫ→0

+ ǫr1−r2. If r1 > r2 this limit is 0. If r1 < r2, the

limit is ∞. Thus, we must haver1 = r2. Moreover,1 = c1
c2

limǫ→0
+ ǫ0 = c1

c2
andc1 = c2.

Thus,α is 1-1.

By definition, if f ∈ C+ \ 0, thenf ≃ cǫr for somec, r ≥ 0. Sincef 6≃ 0, we

must havec > 0, so thatf ≃ α(c, r). Thus,α maps ontoC+ \ 0. In particular, there are

unique functions,R andC, such that(R, C) : C+ \ 0 → (0,∞) × [0,∞) is the inverse

of α. Notice that, iff ≃ cǫr 6≃ 0, then0 < c = C(α(c, r)) = C(cǫr) = C(f) and

∞ > r = R(α(c, r)) = R(cǫr) = R(f). Conversely, if0 < c = C(f) and∞ > r = R(f),

thenf ≡ α(C(f), R(f)) = cǫr 6≃ 0.
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We may extend both functions to all ofC+ by settingC(0) = 0 andR(0) = ∞. Thus,

if f ≃ 0 thenC(f) = 0 andR(f) = ∞. Conversely, ifC(f) = 0 or R(f) = ∞, we must

havef ≃ 0, sinceC(f) > 0 andR(f) <∞ onC+ \ 0.

Next, observe that, sinceC andR are defined on equivalence classes, iff ≃ g, then

necessarilyC(f) = C(g) andR(f) = R(g). Conversely, ifC(f) = C(g) andR(f) =

R(g), we may show thatf ≃ g. If C(f) = C(g) = 0, thenf ≃ 0 ≃ g. Otherwise,

C(f) = C(g) > 0, so thatR(f) = R(g) <∞, andf ≃ C(f)ǫR(f) = C(g)ǫR(g) ≃ g.

Finally, assume thatf is continuous forǫ � 0 and limǫ→0
+

f(ǫ)

cǫ
r = 1. Then we must

have f(ǫ)

cǫ
r , and hencef(ǫ), be positive forǫ ≻ 0. In particular,f ∈ C \ 0. However, by

assumptionf ≃ cǫr 6≃ 0, so by part a),C(f) = c andR(f) = r.

By our comments preceding Theorem 7.3, we can and will also view C(f) andR(f) as

functions defined for allf ∈ C+[0, ∗] with f ≃ cǫr, for somer, c ≥ 0, which are constant

on equivalence classes.

We call the functions,R(f) andC(f), of Theorem 7.3, theresistanceand commu-

nication cost, respectively, off . The following Lemma shows how the resistance and

communication cost functions behave with respect to addition, subtraction, multiplication,

division, and taking limits.

Theorem 7.4.The following hold for anyf, g ∈ C+.

a) limǫ→0
+ f (ǫ) = [R(f) = 0]C(f).

b) f + g ∈ C+, with R(f + g) = min{R(f), R(g)} andC(f + g) = [R(f + g) =

R(f)]C(f) + [R(f + g) = R(g)]C(g).

c) If R(f) < R(g), or R(f) = R(g) andC(f) > C(g), thenf−g ∈ C+, C (f − g) =

C(f)− [R(f) = R(g)]C(g), andR (f − g) = R(f).

d) fg ∈ C+, with C(fg) = C(f)C(g) andR(fg) = R(f) + R(g).

e) If g 6≃ 0, R(f) ≥ R(g), and we define
(

f
g

)
(0) = [R(f) = R(g)]C(f)

C(g)
, thenf

g
∈ C+,

C
(

f
g

)
= C(f)

C(g)
, andR

(
f
g

)
= R(f)− R(g).

Proof. We first prove part a). Iff 6≃ 0, by Theorem 7.3 a), sincef ∈ C+, f ≃ C(f)ǫR(f).

Therefore,

C(f)[R(f) = 0] = lim
ǫ→0

+
C(f)ǫR(f) = lim

ǫ→0
+

C(f)ǫR(f)

f(ǫ)
lim

ǫ→0
+

f(ǫ) = lim
ǫ→0

+
f(ǫ)
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Otherwise,f ≃ 0, R(f) =∞, C(f) = 0, and[R(f) = 0]C(f) = 0 = limǫ→0
+ f (ǫ).

We will approach the proof of part b) in by cases. First, assume that eitherf ≃ 0 or

g ≃ 0. Since the statement of part b) is symmetric inf andg, we may assume, without

loss of generality, thatg ≃ 0. Thus,g(ǫ) = 0 andf(ǫ) + g(ǫ) = f(ǫ), for ǫ � 0, so

that, by Lemma 7.2 a),f + g ≃ f ∈ C+. Moreover, by Theorem 7.3 a),R(f + g) =

R(f) = min{R(f),∞} = min{R(f), R(g)} andC(f + g) = C(f) = [R(f + g) =

R(f)]C(f) + [R(f + g) = R(g)]C(g), as desired.

To complete the proof of part b), we may then assume thatf 6≃ 0 and g 6≃ 0. In

particular, we know thatf(ǫ), g(ǫ) > 0 for ǫ ≻ 0, C(f), C(g) > 0, andlim
ǫ→0

+
f(ǫ)

C(f)ǫ
R(f) =

1 = limǫ→0
+

g(ǫ)

C(g)ǫ
R(g) . By symmetry, we may assume thatR(g) ≤ R(f).

Letting c = [R(f) = R(g)]C(f) + C(g), we have

lim
ǫ→0

+

f(ǫ) + g(ǫ)

cǫR(g)
=

1

c

(
C(f) lim

ǫ→0
+

f(ǫ)ǫR(f)−R(g)

C(f)ǫR(f)
+ C(g) lim

ǫ→0
+

g(ǫ)

C(g)ǫR(g)

)

=
1

c

(
C(f) · 1 · lim

ǫ→0
+

ǫR(f)−R(g) + C(g) · 1

)

=
1

c
(C(f)[R(f) = R(g)] + C(g)) = 1

Thus, we have shown thatf + g ≃ ([R(f) = R(g)]C(f) + C(g))ǫR(g). In particular,

f + g ∈ C+. Sincef(ǫ) + g(ǫ) > 0 for ǫ ≻ 0, f + g 6≃ 0, so by Theorem 7.3 a), we

may conclude thatR(f + g) = R(g) = min{R(g), R(f)} andC(f + g) = [R(f) =

R(g)]C(f) + C(g) = [R(f + g) = R(f)]C(f) + [R(f + g) = R(g)]C(g), as desired.

Now consider part c). First, consider the case wheng ≃ 0, so thatR(g) = ∞, C(g) =

0, g(ǫ) = 0, for ǫ � 0. Therefore,f(ǫ) − g(ǫ) = f(ǫ), for ǫ � 0 and, by Lemma 7.2

a), f − g ≃ f . Thus,R (f − g) = R(f) and, sinceC(g) = 0, C (f − g) = C (f) =

C(f)− [R(f) = R(g)]C(g), as desired.

Now assume thatg 6≃ 0, so thatC(f), C(g) > 0. We know thatf(ǫ)−g(ǫ) is continuous

for ǫ � 0, since bothf andg are. Therefore, by Theorem 7.3 d), it only remains to calculate

R(f − g) andC(f − g). As in the proof of part b), letc = C(f) − [R(f) = R(g)]C(g).

EitherR(f) < R(g), soC(f) > 0, or R(f) = R(g), so thatC(f) > C(g). In both cases,
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c > 0 and we may compute

lim
ǫ→0

+

f(ǫ)− g(ǫ)

cǫR(f)
=

1

c

(
C(f) lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
+ C(g) lim

ǫ→0
+

g(ǫ)

C(g)ǫR(g)
ǫR(g)−R(f)

)

=
1

c

(
C(f) · 1 + C(g) · 1 · lim

ǫ→0
+
ǫR(g)−R(f)

)

=
1

c
(C(f)− [R(f) = R(g)]C(g)) = 1

Therefore, by Theorem 7.3 d),f − g ∈ C+, C (f − g) = c = C(f)− [R(f) = R(g)]C(g),

andR (f − g) = R(f), as desired, completing the proof of part c).

To prove part d), by Lemma 7.2 b), we know thatfg ∈ C, so it remains to show that

fg ≃ cǫr for appropriately chosenr andc. First, consider the case when one of the factors,

say,f ≃ 0. Then,C(f) = 0, R(f) = ∞, andf(ǫ) ≡ 0 for ǫ � 0. Thus,f(ǫ)g(ǫ) ≡ 0 for

ǫ � 0 andfg ≃ 0. In particular,fg ∈ C+, with C(fg) = 0 = 0 · C(g) = C(f)C(g) and

R(fg) = R(0) =∞ =∞+ R(g) = R(f) + R(g) as desired.

Now assume that neither factor is 0, so thatC(f), C(g) > 0, R(f), R(g) < ∞,

f(ǫ)g(ǫ) > 0 for ǫ ≻ 0, andlimǫ→0
+

f(ǫ)

C(f)ǫ
R(f) = 1 = limǫ→0

+
g(ǫ)

C(g)ǫ
R(g) . In this case,

lim
ǫ→0

+

f(ǫ)g(ǫ)

(C(f)C(g))ǫR(f)+R(g)
= lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
lim

ǫ→0
+

g(ǫ)

C(g)ǫR(g)
= 1 · 1 = 1

Thus,fg ≃ (C(f)C(g))ǫR(f)+R(g), andfg ∈ C+. Sincefg 6≃ 0, the equationsC(fg) =

C(f)C(g) andR(fg) = R(f)+R(g) then follow directly from Theorem 7.3 a), as desired,

completing the proof of part d).

Now to prove part e), we assume thatg 6≃ 0 andR(f) ≥ R(g). Thus,C(g) > 0,

R(g) < ∞, g(ǫ) > 0 for ǫ ≻ 0, andlim
ǫ→0

+
g(ǫ)

C(g)ǫ
R(g) = 1. First, consider the case when

f ≃ 0, so thatC(f) = 0, R(f) = ∞, andf(ǫ) ≡ 0 for ǫ � 0. Then f(ǫ)
g(ǫ)
≡ 0 for ǫ ≻ 0,

limǫ→0
+

f(ǫ)
g(ǫ)

= 0, and f
g
∈ C with

(
f
g

)
(0) = 0 = [R(f) = R(g)]C(f)

C(g)
. Moreover,f

g
≃ 0,

so that f
g
∈ C+, with C

(
f
g

)
= 0 = 0

C(g)
= C(f)

C(g)
andR

(
f
g

)
= ∞ = ∞ − R(g) =

R(f)−R(g), as desired.

Otherwise,f 6≃ 0, so thatC(f) > 0, R(f) < ∞, f(ǫ) > 0 for ǫ ≻ 0, and in the limit,
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limǫ→0
+

f(ǫ)

C(f)ǫ
R(f) = 1. Then

lim
ǫ→0

+

f(ǫ)

g(ǫ))
= lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
lim

ǫ→0
+

C(f)ǫR(f)

C(g)ǫR(g)
lim

ǫ→0
+

C(g)ǫR(g)

g(ǫ)

= lim
ǫ→0

+

C(f)ǫR(f)

C(g)ǫR(g)
=

C(f)

C(g)
lim

ǫ→0
+
ǫR(f)−R(g) = [R(f) = R(g)]

C(f)

C(g)

Thus, setting
(

f
g

)
(0) = [R(f) = R(g)]C(f)

C(g)
, f

g
∈ C[0, ∗], and

(
f
g

)
(ǫ) > 0 for ǫ ≻ 0, so

that f
g
∈ C \ 0. In addition,

lim
ǫ→0

+

f(ǫ)/g(ǫ))

C(f)ǫR(f)−R(g)/C(g)
= lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
lim

ǫ→0
+

C(g)ǫR(g)

g(ǫ)
= 1 · 1 = 1

so that f
g
≃ C(f)

C(g)
ǫR(f)−R(g). In particular, f

g
∈ C+ with R

(
f
g

)
= R(f) − R(g), and

C
(

f
g

)
= C(f)

C(g)
, as desired.

Parts b) and d) of Theorem 7.4 generalize to finite sums and products, as follows.

Corollary 7.5. If fi ∈ C
+, i = 1, . . . , k, then

a) f =
∑k

i=1 fi ∈ C
+, with R (f) = mini∈Sk

{R (fi)} andC (f) =
∑

i∈Sk
[R(f) =

R (fi)]C (fi).

b) f = Πk
i=1fi ∈ C

+, with R (f) =
∑

i∈Sk
{R (fi)} andC (f) = Πi∈Sk

C (fi).

Proof. Both parts may be proven by induction. First, consider part a). The case whenk = 1

is trivially true, sincef = f1. Fork > 1, let f =
∑

i∈Sk−1
fi and apply Theorem 7.4 b) to

f andfk, along with the induction hypothesis, to obtain

R (f) = R
(
f + fk

)
= min

{
R
(
f
)
, R (fk)

}

= min

{
min

i∈Sk−1

R (fi) , R (fk)

}
= min

i∈Sk

{R (fi)}

Likewise, by induction hypothesis,

C (f) = C
(
f + fk

)
= [R(f) = R

(
f
)
]C
(
f
)

+ [R(f) = R (fk)]C (fk)

=
∑

i∈Sk−1

[R(f) = R
(
f
)
][R
(
f = R (fi)

)
]C (fi) + [R(f) = R (fk)]C (fk)
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Now consider anyi ∈ Sk−1 and observe thatR (fi) = minj∈Sk
R
(
fj

)
=⇒ R (fi) =

minj∈Sk−1
R
(
fj

)
. Therefore, by the formula forR given above,R(f) = R (fi) =⇒

R (fi) = R
(
f
)
, andR(f) = R (fi) =⇒ R(f) = R

(
f
)
. This implies thatR(f) =

R (fi) ⇐⇒ R(f) = R
(
f
)

andR(f) = R (fi), so thatR(f) = R (fi) ⇐⇒ R(f) =

R
(
f
)

andR
(
f
)

= R (fi). In other words,

[R(f) = R (fi)] =
[
R(f) = R

(
f
)

andR
(
f
)

= R (fi)
]

=
[
R(f) = R

(
f
)] [

R
(
f
)

= R (fi)
]

for i ∈ Sk−1. Therefore,

C (f) =
∑

i∈Sk−1

[R(f) = R
(
f
)
][R
(
f = R (fi)

)
]C (fi) + [R(f) = R (fk)]C (fk)

=
∑

i∈Sk−1

[R(f) = R (fi)] C (fi) + [R(f) = R (fk)]C (fk)

=
∑

i∈Sk

[R(f) = R (fi)] C (fi)

as desired.

The proof of part b) is a bit easier. The case ofk = 1 is trivial. Whenk > 1, define

f = Πi∈Sk−1
fi and apply Theorem 7.4 b) tof andfk, along with the induction hypothesis,

to obtain

R (f) = R
(
ffk

)
= R

(
f
)

+ R (fk) =


 ∑

i∈Sk−1

R (fi)


+ R (fk) =

∑

i∈Sk

R (fi)

Likewise,

C (f) = C
(
ffk

)
= C

(
f
)
C (fk) =

(
Πi∈Sk−1

C (fi)
)

C (fk) = Πi∈Sk
C (fi)

7.2 Perturbed Matrices

Before defining a PMM (perturbedMarkov matrix), we first define simply a ”perturbed

matrix”. Notice that Theorem 7.4 implies thatC+ is closed under addition and multipli-

cation. Thus, we may define aperturbed matrixas a matrix,Mǫ ∈ Mat
(
C+
)
, that is, a
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matrix with entries inC+. As we mentioned in section 7.1, by this we mean a matrix with

entries inC+[0, ∗] which are exponentially convergent (i.e., whose equivalence class inC

belongs toC+). Denoting the set ofn × m perturbed matrices asPert(n, m), and the set

of all perturbed matrices byPert, while subtraction and inversion are only defined in very

limited circumstances, we will show thatPert is closed under addition and multiplication

(assuming compatible dimensions).2

We begin by extending the definitions ofR andC toPert. For any perturbed matrixMǫ,

we may define the associatedresistancematrix, R (Mǫ), whereR (Mǫ)i,j = R
(
(Mǫ)ij

)
.

We likewise define its associatedcostmatrix,C (Mǫ), whereC (Mǫ)i,j = C
(
(Mǫ)ij

)
.3

We will say that two perturbed matrices,Mǫ andM ′
ǫ areasymptotically equaland write

Mǫ ≃ M ′
ǫ iff (Mǫ)ij ≃

(
M ′

ǫ

)
ij

for all i, j. Notice that, by Theorem 7.3 c),Mǫ ≃ M ′
ǫ iff

C (Mǫ) = C
(
M ′

ǫ

)
andR (Mǫ) = R

(
M ′

ǫ

)
.

Theorem 7.4 then generalizes as follows.

Theorem 7.6.Assume thatMǫ, M
′
ǫ ∈ Pert(n, m), whileM̃ǫ ∈ Pert(m, p).

a) Mǫ + M ′
ǫ ∈ Pert(n, m)

b) C
(
Mǫ + M ′

ǫ

)
i,j

=
[
R
(
Mǫ + M ′

ǫ

)
i,j

= R (Mǫ)i,j

]
C (Mǫ)i,j

+
[
R
(
Mǫ + M ′

ǫ

)
i,j

= R
(
M ′

ǫ

)
i,j

]
C
(
M ′

ǫ

)
i,j

c) R
(
Mǫ + M ′

ǫ

)
i,j

= min
{
R (Mǫ)i,j , R

(
M ′

ǫ

)
i,j

}

d) MǫM̃ǫ ∈ Pert(n, p)

e) C
(
MǫM̃ǫ

)
i,j

=
∑

k∈Sm
C
(
M ′

ǫ

)
i,k

C
(
M̃ǫ

)
k,j

·

[
R
(
MǫM̃ǫ

)
i,j

= R (Mǫ)i,k + R
(
M̃ǫ

)
k,j

]

f ) R
(
MǫM̃ǫ

)
i,j

= mink∈Sm

{
R (Mǫ)i,k + R

(
M̃ǫ

)
k,j

}

In particular, addition and multiplication of perturbed matrices is well-defined on equiva-

lence classes under≃.
2Thus, we may also multiply by “scalars” inC+, since multiplication byf ∈ C+ is the same as multiplying
by fI, the diagonal matrix with all diagonal entries equal tof

3In some contexts, this is also known as thecommunicationmatrix ofMǫ.
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Proof. Parts a), b), c) and d) follow immediately from the definitions and parts b) and d) of

Theorem 7.4. To prove part e), apply Corollary 7.5 and Theorem 7.4 d):

C
(
MǫM̃ǫ

)
i,j

= C

((
MǫM̃ǫ

)
i,j

)
= C


∑

k∈Sm

(Mǫ)i,k

(
M̃ǫ

)
k,j




=
∑

k∈Sm

C

((
M ′

ǫ

)
i,k

(
M̃ǫ

)
k,j

)[
R
(
MǫM̃ǫ

)
i,j

= R

(
(Mǫ)i,k

(
M̃ǫ

)
k,j

)]

=
∑

k∈Sm

C
(
M ′

ǫ

)
i,k

C
(
M̃ǫ

)
k,j

[
R
(
MǫM̃ǫ

)
i,j

= R (Mǫ)i,k + R
(
M̃ǫ

)
k,j

]

Similarly, by Corollary 7.5 and Theorem 7.4 d)

R
(
MǫM̃ǫ

)
i,j

= R

((
MǫM̃ǫ

)
i,j

)
= R


∑

k∈Sm

(Mǫ)i,k

(
M̃ǫ

)
k,j




= min
k∈Sm

R

((
M ′

ǫ

)
i,k

(
M̃ǫ

)
k,j

)

= min
k∈Sm

{
R
(
M ′

ǫ

)
i,k

+ R
(
M̃ǫ

)
k,j

}

7.3 Perturbed Markov Matrices and Stable Distributions

In this section, we formally define what we mean by a “perturbed” Markov matrix,Mǫ, and

all the associated concepts from Part I. That is, we define

• the weighted and unweighted graphs associated withMǫ,

• the additional graphs associated with the “unperturbed” Markov matrix,M0,

• the stable and stochastically stable distributions ofMǫ, and

• the collections of rooted, directed spanning subtrees associated withMǫ with their

corresponding weight functions.
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The most delicate issue in this section is to prove that the stable distribution is sufficiently

well-behaved (i.e., is a perturbed matrix) so that we may take its limit asǫ → 0 to even

define its stochastically stable distribution. This will involve a careful application of the

Markov Chain Tree Theorem from chapter 6, where we will defineboth the “resistance”

and “cost” of a subtree, and restrict attention to minimal weight directed, spanning subtrees.

We now define aperturbed Markov matrix(PMM) as a perturbed matrixMǫ such that,

for ǫ � 0, Mǫ is a Markov matrix and is unichain forǫ ≻ 0.4 Notice that to say thatMǫ

is Markov is equivalent to saying that(Mǫ)j,j = 1 −
∑

i6=j (Mǫ)i,j ∈ C
+. SinceC+ is

not closed under subtraction, in general, this is a somewhatsubtle assumption. We will

denote the set ofn × n perturbed Markov matrices byPMM(n). We define its associated

perturbed graph, as a weighted, directed graph, but where the weight on each edge is inC+.

Formally,G (Mǫ) = (V, E, d), so thatV = {v1, . . . , vn}, with
(
vi, vj

)
∈ E iff (Mǫ)j,i 6≃ 0,

andd
(
vi, vj

)
= (Mǫ)j,i. Notice, in particular, that the graph does not contain edge

(
vi, vj

)

iff R (Mǫ)j,i =∞, corresponding to the intuition that current does not flow through a wire

with “infinite” resistance. As before, we will denote the underlying unweighted graph as

G− (Mǫ), and its transitive closure byP (Mǫ) ≡ (G− (Mǫ))T . Remember that
(
vi, vj

)
is

an edge inP (Mǫ) iff there is a walk fromvi to vj in G− (Mǫ) iff there is a path fromvi to

vj in G− (Mǫ). Thus, we may call this the “path” graph ofMǫ.

As before, we define strongly connected components, closed classes, invariant and tran-

sient sets of indices in terms of the corresponding collection of vertices inG− (Mǫ). We

should point out that the unweighted graphs corresponding to Mǫ for eachǫ ≻ 0 (which we

would also denote byG− (Mǫ)), are all the same (by definition ofC+[0, ∗]) and equal to

G− (Mǫ).
5 That is, although we could interpret the notationG− (Mǫ) in two ways, either

interpretation leads to exactly the same unweighted graph.Thus, for example, the closed

classes of the perturbed matrix are just the same as those of the Markov matrix at any fixed,

sufficiently smallǫ.

Moreover, we define the associatedunperturbedgraph,G0 (Mǫ) = G(M0), i.e., the

Markov graph on the (unperturbed) Markov matrix,M0.
6 Notice that, sincec · 0r = c > 0

iff r = 0 (andc > 0), G0 (Mǫ) may also be thought of as the “zero-resistance” subgraph
4This generalizes the usual definition of a perturbed Markov matrix, which requires thatMǫ be irreducible.
5In fact, this is the main reason why we define perturbed matrices in terms ofC+[0, ∗].
6Although this notation conflicts somewhat with that given for undirected graphs introduced in section 1.1,
the meaning is clear from the context.
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of G (Mǫ), that is, the weighted directed subgraph ofG (Mǫ) containing all edges,(vi, vj),

with R
(
d
(
vi, vj

))
= 0 and edge weights given byC

(
d
(
vi, vj

))
.

Let stab (Mǫ) denote the unique stable distribution ofMǫ for ǫ ≻ 0 given by Corol-

lary 5.15.7 Using the notation of Theorem 6.18,stab (Mǫ) = vMǫ
for ǫ ≻ 0. We will

show thatstab (Mǫ) may be defined atǫ = 0 so that its entries are all inC+. In par-

ticular, ssd (Mǫ) ≡ limǫ→0
+ stab (Mǫ) exists. We call this limit thestochastically stable

distribution of Mǫ. The set of indices,i, for which ssd (Mǫ)i > 0, or equivalently, for

which stab (Mǫ)i = 0, are called thestochastically stable statesof Mǫ, and we define

sss (Mǫ) ≡ {i | ssd (Mǫ)i > 0}.

To prove this, we will need to extend the notation of chapter 6. SinceG (Mǫ) has

weights inC+, we have three notions of the total weight of a directed subtree. For any

directed spanning tree rooted ati corresponding toσ ∈ T i, the total weight ofσ in Mǫ

may be defined, just as in chapter 6, asW (Mǫ, σ) = Πj 6=i (Mǫ)σ(j),j. By Corollary 7.5 b),

W (Mǫ, σ) ∈ C+. Thus, we may also define theresistance ofσ in Mǫ asR (Mǫ, σ) ≡

R (W (Mǫ, σ)). Similarly, we define thecost ofσ in Mǫ asC (Mǫ, σ) ≡ C (W (Mǫ, σ)).

By Corollary 7.5 b), the resistance and cost of the tree,σ, satisfy the following equations:

R (Mǫ, σ) = R (W (Mǫ, σ)) = R
(
Πj 6=i (Mǫ)σ(j),j

)
=
∑

j 6=i

R
(
(Mǫ)σ(j),j

)
(7.1)

C (Mǫ, σ) = C (W (Mǫ, σ)) = C
(
Πj 6=i (Mǫ)σ(j),j

)
= Πj 6=iC

(
(Mǫ)σ(j),j

)
(7.2)

In particular, sinceσ ∈ T i, σ (j) 6= j for j 6= i, so thatR (Mǫ, σ) andC (Mǫ, σ) do not

depend on the diagonal entries entries ofMǫ.

Notice that, ifG−(σ) is not a subgraph ofG− (Mǫ), it does not contain some edge,
(
vσ(j), vj

)
, so that(Mǫ)σ(j),j ≃ 0. In terms of the resistance, the resistance of such an edge

is∞, so that the sum,R (Mǫ, σ) = ∞. Conversely, if the sum is infinite, the resistance

of some edge is infinite, implying thatG−(σ) is not a subgraph ofG− (Mǫ). Likewise,

C (Mǫ, σ) = 0 iff G−(σ) is not a subgraph ofG− (Mǫ). Thus, corresponding to Equa-

tion 6.3, we may enumerate the set of directed spanning subtrees ofG− (Mǫ), rooted ati,

by

T (Mǫ, i) ≡
{
σ ∈ T i | R (Mǫ, σ) <∞

}
=
{
σ ∈ T i | C (Mǫ, σ) > 0

}

Also, letT (Mǫ) ≡
⋃

i∈Sn
T (Mǫ, i).

7This is a slight abuse of notation, since, up to this point,stab would have referred to the singleton set
containing the stable distribution.
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We now prove the statement above regardingstab (Mǫ). Moreover, we give formu-

las for its resistance and cost in terms of the resistance andcost of the directed spanning

subtrees ofG− (Mǫ).

Theorem 7.7. If Mǫ ∈ PMM(n), if we define

ri ≡ min
σ∈T (Mǫ,i)

R (Mǫ, σ) ,

r ≡ min
σ∈T (Mǫ)

R (Mǫ, σ) ,

T (Mǫ, i) ≡
{
σ ∈ T i | R (Mǫ, σ) = ri

}
, and

T (Mǫ) ≡
{
σ ∈ T i | i ∈ Sn, R (Mǫ, σ) = r

}

then

a) ri = minσ∈T i
R (Mǫ, σ) andr = mini ri,

b) there exists a perturbed column vector,stab (Mǫ) ∈ Pert(n, 1), which, for each

ǫ ≻ 0, is the unique stable distribution ofMǫ,

c) R (stab (Mǫ))i = ri − r, and

d) C (stab (Mǫ))i =
P

σ∈T(Mǫ,i) C(Mǫ,σ)
P

σ∈T(Mǫ)
C(Mǫ,σ)

Proof. Using the notation of Theorem 6.18, fix a perturbed Markov matrix, Mǫ.

Proof of part a): SinceR (Mǫ, σ) =∞, for anyσ ∈ T i \ T (Mǫ, i), we have

ri = min
σ∈T (Mǫ,i)

R (Mǫ, σ) = min
σ∈T i

R (Mǫ, σ) .

Moreover, sinceT (Mǫ) =
⋃

i T (Mǫ, i),

r = min
σ∈T (Mǫ)

R (Mǫ, σ) = min
i

min
σ∈T (Mǫ,i)

R (Mǫ, σ) = min
i

ri

Proof of part b): Now abbreviatewMǫ
aswǫ and setKǫ ≡ Jwǫ.

For ǫ ≻ 0, by Theorem 6.18, we havestab (Mǫ) = vMǫ
= wǫ

Kǫ
for eachǫ ≻ 0. It remains

to show that we may extend this at 0 to a vector inPert(n, 1). We first show thatwǫ ∈

Pert(n, 1).
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By Equation 6.4,(wǫ)i =
∑

σ∈T (Mǫ,i)
W (Mǫ, σ). Therefore, by Corollary 7.5,(wǫ)i ∈ C

+

and

R ((wǫ)i) = R


 ∑

σ∈T (Mǫ,i)

W (Mǫ, σ)


 = min

σ∈T (Mǫ,i)
R (Mǫ, σ) = ri

In particular, by Corollary 7.5 a), we have that

Kǫ =
∑

i

(wǫ)i =
∑

i

∑

σ∈T (Mǫ,i)

W (Mǫ, σ) =
∑

σ∈T (Mǫ)

W (Mǫ, σ) ∈ C+

and

R (Kǫ) = R


 ∑

σ∈T (Mǫ)

W (Mǫ, σ)


 = min

σ∈T (Mǫ)
R (Mǫ, σ) = r

SinceMǫ is unichain,Kǫ > 0 for ǫ ≻ 0, so thatr < ∞. Moreover, sincer ≤ ri,

Theorem 7.4 e) implies thatstab (Mǫ) = wǫ

Kǫ
∈ Pert(n, 1).

Proof of part c): Theorem 7.4 e) also says that

R (stab (Mǫ)i) = R

((
wǫ

Kǫ

)

i

)
= R ((wǫ)i)−R (Kǫ) = ri − r.

Proof of part d): Likewise, by Corollary 7.5 a),

C ((wǫ)i) = C


 ∑

σ∈T (Mǫ,i)

W (Mǫ, σ)


 =

∑

σ∈T (Mǫ,i)

[ri = R (Mǫ, σ)] C (Mǫ, σ)

=
∑

σ∈T (Mǫ,i)

C (Mǫ, σ)

Likewise,

C (Kǫ) = C


 ∑

σ∈T (Mǫ)

W (Mǫ, σ)


 =

∑

σ∈T (Mǫ)

[r = R (Mǫ, σ)]C (Mǫ, σ)

=
∑

σ∈T (Mǫ)

C (Mǫ, σ)

Thus, by Theorem 7.4 e),C (stab (Mǫ)i) = C(wǫ)
C(Kǫ)

=
P

σ∈T (Mǫ,i) C(Mǫ,σ)
P

σ∈T(Mǫ) C(Mǫ,σ)
.
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Example 7.8.To illustrate the ideas of Theorem 7.7, consider

Mǫ =




1− ǫ− ǫ2 ǫ ǫ

ǫ 1− ǫ− ǫ2 ǫ3

ǫ2 ǫ2 1− ǫ− ǫ3




then

Λǫ = Mǫ − I =




−ǫ− ǫ2 ǫ ǫ

ǫ −ǫ− ǫ2 ǫ3

ǫ2 ǫ2 −ǫ− ǫ3




By Theorem 6.17, we may compute(wǫ)1 in two ways. Using the adjoint formula:

(wǫ)1 = (−1)3−1wǫMǫ
= det

∣∣∣∣∣∣
−ǫ− ǫ2 ǫ3

ǫ2 −ǫ− ǫ3

∣∣∣∣∣∣
= ǫ2 + ǫ3 + ǫ4

Alternatively, we may sum overσ ∈ T 1. Remember from Figure 6.3 that there are three

such mappings:2 7→ 1, 3 7→ 1; 2 7→ 1, 3 7→ 2; and2 7→ 3, 3 7→ 1.

(wǫ)1 =
∑

σ∈T 1

(Mǫ, σ) =
∑

σ∈T 1

∏

p 6=1

Mσ(p),p

= (Mǫ)12(Mǫ)13 + (Mǫ)12(Mǫ)23 + (Mǫ)32(Mǫ)13 = ǫ2 + ǫ4 + ǫ3

Thus,r1 = 2, so that only the first mapping is inT (Mǫ, 1) and contributes to the sums in

C (stab (Mǫ))1.

Likewise, (wǫ)2 = ǫ2 + 2ǫ4 and(wǫ)3 = ǫ2 + 2ǫ3, so thatr2 = r3 = 2, andr = 2.

The mappings inT (Mǫ) correspond to theǫ2 terms inwǫ, which in turn correspond to the

directed spanning trees with minimum resistance. Specifically, T (Mǫ) is given by the three

mappings:2 7→ 1, 3 7→ 1; 3 7→ 1, 1 7→ 2; and2 7→ 1, 1 7→ 3. Thus, it is easy to see that

C (stab (Mǫ))i = 1
3

for all i.

As we have seen in section 5.3, indices correspond to states in a Markov process. The

collection of indices,i ∈ Sn, such thatR (stab (Mǫ))i = 0. are thus called thestochasti-

cally stablestates ofMǫ. These are precisely the indices for which the stochastically stable

distribution,v0 (Mǫ), has a non-zero component. As we will see in chapter 8, resistance

may sometimes be interpreted as a “potential energy”. Thus,stochastically stable states are

then “minimal energy” states, which correspond to “stable”equilibria in physical system.
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7.4 Equivalence of PMMs and Scaling

Since we are primarily focused, at present, on computing thestochastically stable distribu-

tion (SSD) of a PMM, we introduce an equivalence relation on PMMs for which the SSD is

invariant. Likewise, we generalize the notion of aD-equivalence from chapter 5 to PMMs,

whereD may itself be a perturbed matrix. As in the non-perturbed case, such an equiva-

lence will allow us to determine the SSD of a PMM from the SSD ofanDǫ-equivalent one.

Specifically, we will

• define an equivalence relation on PMMs (“stochastic” equivalence) and show that

equivalent PMMs have equal SSDs,

• observe that asymptotically equal PMMs are stochasticallyequivalent,

• generalize the scaling construction from chapter 5 in two rather specific settings

(“uniform” and “non-uniform” scaling), which will be crucial to our main algorithm

in section 7.7,

• prove that these two constructions lead to stochastically equivalent orDǫ-equivalent

results, respectively, and

• show these two constructions always guarantee “progress” in our algorithm to a so-

lution.

Because scaling is defined in terms of subtraction and division, these results are rather

delicate, since these operations are not generally defined in Pert.

To begin, we say that two perturbed Markov matrices are stochastically equivalent if

they have asymptotically equal stable distributions. To state this formally,

Definition 7.9. Two perturbed Markov matrices,Mǫ andM ′
ǫ arestochastically equivalent,

denoted byMǫ ∼M ′
ǫ, iff stab (Mǫ) ≃ stab

(
M ′

ǫ

)
.

For example, we can show that asymptotically equal PMMs are stochastically equiva-

lent.

Theorem 7.10.If Mǫ ≃M ′
ǫ, thenMǫ ∼M ′

ǫ.
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Proof. This follows from Theorem 7.7, Equations 7.1 and 7.2, and Theorem 7.3. Specifi-

cally, for Mǫ, M
′
ǫ ∈ Pert(n), to show thatMǫ ∼ M ′

ǫ, by Theorem 7.3, we must show that

R (stab (Mǫ))i = R
(
stab

(
M ′

ǫ

))
i

andC (stab (Mǫ))i = C
(
stab

(
M ′

ǫ

))
i

for i ∈ Sn. By

Theorem 7.7, sinceri andr can be defined with respect toT i, it suffices to show that for

all σ ∈ T i, R (Mǫ, σ) = R
(
M ′

ǫ, σ
)

andC (Mǫ, σ) = C
(
M ′

ǫ, σ
)
. By Equations 7.1 and

7.2 the resistance and cost of a tree depend only on the resistance and cost matrices. But,

again by Theorem 7.3, sinceMǫ ≃ M ′
ǫ, R (Mǫ) = R

(
M ′

ǫ

)
andC (Mǫ) = C

(
M ′

ǫ

)
, so that

R (Mǫ, σ) = R
(
M ′

ǫ, σ
)

andC (Mǫ, σ) = C
(
M ′

ǫ, σ
)

for all σ.

Notice that the resistance and cost vectors of the stable distribution, and hence the

stochastically stable distribution, are invariant under stochastic equivalence.

Theorem 7.11.GivenMǫ, M
′
ǫ ∈ PMM(n), if Mǫ ∼M ′

ǫ, then

a) R (stab (Mǫ)) = R
(
stab

(
M ′

ǫ

))
,

b) C (stab (Mǫ)) = C
(
stab

(
M ′

ǫ

))
, and

c) ssd (Mǫ) = ssd
(
M ′

ǫ

)
,

Proof. Parts a) and b) follow by Theorem 7.3. Theorem 7.4 a) gives part c).

When a uniform scaling of a PMM,Mǫ, by f ∈ C+ yields another PMM,M ′
ǫ, they are

stochastically equivalent. That is, we have an analog of Lemma 5.3 for PMMs.

Theorem 7.12.Givenf ∈ C+ \ 0 andMǫ ∈ PMM(n), such that

a) R(f) ≤ R (Mǫ)i,j for all i 6= j,

b) (Mǫ)j,j + f(ǫ)− 1 ∈ C+, and

c) R(f) ≤ R
(
(Mǫ)j,j + f(ǫ)− 1

)
for all j,

if we defineM ′
ǫ = 1

f
(Mǫ − I) + I, thenM ′

ǫ ∈ PMM(n) andMǫ ∼M ′
ǫ.

Proof. The proof is similar to that of Lemma 5.3. The real work is in proving thatM ′
ǫ ∈

PMM(n). Sincef 6≃ 0 andR(f) ≤ R (Mǫ)i,j, we have, by Theorem 7.4 e), that
(
M ′

ǫ

)
i,j
∈

C+ for all i 6= j. Moreover,f(ǫ) > 0, JΛ′
ǫ = 1

f(ǫ)
JΛǫ = 0 for ǫ ≻ 0, and by continuity,
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also atǫ = 0. Thus,
(
M ′

ǫ

)
j,j

= 1−
∑

i6=j

(
M ′

ǫ

)
i,j

, for all j ∈ Sn andǫ � 0. Moreover, by

Theorem 7.4 e),
(
M ′

ǫ

)
j,j

=
(Mǫ)j,j+f−1

f
∈ C+. Thus,

(
M ′

ǫ

)
i,j
∈ C+

It is now easy to show thatMǫ ∼ M ′
ǫ. Sincef 6≃ 0, f(ǫ) > 0, Λ′

ǫ = 1
f(ǫ)

Λǫ, and

ker Λ′
ǫ = ker Λǫ, so thatstab (Mǫ) = stab

(
M ′

ǫ

)
for ǫ ≻ 0. In particular, by Lemma 7.2 a),

stab (Mǫ) ≃ stab
(
M ′

ǫ

)
, so thatMǫ ∼ M ′

ǫ.

In particular, when computing an SSD, we can always assume that R (Mǫ)j,j = 0, for

all j.

Corollary 7.13. GivenMǫ ∈ PMM(n), if we defineM ′
ǫ = 1

2
(Mǫ − I) + I, thenM ′

ǫ ∈

PMM(n), Mǫ ∼M ′
ǫ, andR

(
M ′

ǫ

)
j,j

= 0, for all j ∈ Sn.

Proof. While we could prove this directly fairly easily, we will instead appeal to Theo-

rem 7.12 withf(ǫ) = 2 6≃ 0. As are all positive, constant functions,f ∈ C+, and by

Theorem 7.4 a),C(f) = f(0) = 2 and R(f) = 0. Thus, it only remains to observe

that, by Theorem 7.4 b),(Mǫ)j,j + f(ǫ) − 1 = (Mǫ)j,j + 1 ∈ C+. SinceR(f) = 0,

the remaining two conditions of the theorem follow immediately. Thus, by Theorem 7.12,

M ′
ǫ = 1

f
(Mǫ − I) + I = 1

2
(Mǫ − I) + I = 1

2
(Mǫ + I) ∈ PMM(n), andMǫ ∼ M ′

ǫ.

Moreover, by parts b) and e) of Theorem 7.4,R
(
M ′

ǫ

)
j,j

= 0, for all j ∈ Sn.

We also should generalize the notion ofD-equivalence from section 5.1 to apply to

PMMs.

Definition 7.14. For Dǫ ∈ Pert(n, m), Mǫ ∈ PMM(n), andM ′
ǫ ∈ PMM(m), we will

say thatM ′
ǫ is Dǫ-equivalentto Mǫ, and writeM ′

ǫ ∼Dǫ
Mǫ, iff M ′

ǫ ≈Dǫ
Mǫ for ǫ ≻ 0 and

R
(∥∥Dǫ stab

(
M ′

ǫ

)∥∥
1

)
= 0.

We then have the following analog to Lemma 5.2.

Theorem 7.15.If Mǫ ∼Dǫ
M ′

ǫ, thenD0 ssd
(
M ′

ǫ

)
∝ ssd (Mǫ).

Proof. SinceMǫ ∼Dǫ
M ′

ǫ, stab (Mǫ) , Dǫ stab
(
M ′

ǫ

)
∈ ker Λǫ. However, sinceMǫ is

unichain, forǫ ≻ 0, dim ker Λǫ = 1, so thatstab (Mǫ) ∝ Dǫ stab
(
M ′

ǫ

)
. In other words,

f(ǫ) stab (Mǫ) = Dǫ stab
(
M ′

ǫ

)
for some function,f . Since

f(ǫ) = f(ǫ)J stab (Mǫ) = JDǫ stab
(
M ′

ǫ

)
=
∥∥Dǫ stab

(
M ′

ǫ

)∥∥
1
,
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we have, by Theorem 7.6 d) thatf is inPert(1, 1), i.e.,f ∈ C+. By assumption,R (f(ǫ)) =

0, so C(f) ssd (Mǫ) = D0 ssd
(
M ′

ǫ

)
, by Theorem 7.4 a). In particular,D0 ssd

(
M ′

ǫ

)
∝

ssd (Mǫ).

Our algorithm in section 7.7 requires that, if it is not unichain, M0 should possess at

least one non-trivial (i.e., containing more than one element) communicating class, which

is not always the case for an arbitrary perturbed Markov matrix, Mǫ. However, in this case

we may transformMǫ to a closely related perturbed Markov matrix.

Lemma 7.16. Given Mǫ ∈ PMM(n), such that all communicating classes ofM0 are

singletons, defines ≡ minj 6∈T mini6=j R (Mǫ)i,j, whereT is the set of transient states of

M0. Likewise, letc ≡ 2 maxj 6∈T

∑
s=R(Mǫ)i,j

C (Mǫ)i,j. If M0 possesses more than one

closed class, then0 < s <∞ andc > 0. In addition, definingf(ǫ) ≡ cǫs and

(iǫ)i,j ≡





0 if i 6= j

f(ǫ) if i = j andj ∈ T

1 otherwise

then iǫ ∈ Pert(n) and, using the notation of chapter 5,M ǫ ≡ (Mǫ)iǫ
∈ PMM(n) and

M ǫ ≈iǫ
Mǫ, for ǫ ≻ 0. Moreover,f satisfies the assumptions of Lemma 7.12 with respect

to M ǫ, so thatM ′
ǫ = 1

f

(
M ǫ − I

)
+ I is iǫ-equivalent toMǫ.

Proof. We first show that0 < s < ∞. Notice that since all communicating classes are

singletons,j ∈ T iff 1 > (M0)j,j. By Theorem 7.4 a), this is equivalent to

0 < 1− (M0)j,j = lim
ǫ→0

+

(
1− (Mǫ)j,j

)
= lim

ǫ→0
+

∑

i6=j

(Mǫ)i,j

=
∑

i6=j

lim
ǫ→0

+
(Mǫ)i,j =

∑

i6=j

[R(Mǫ)i,j = 0]C(Mǫ)i,j

By definition,s is the minimum resistance of the outgoing edges (excluding self-loops) of

the closed classes ofM0, i.e., indicesj 6∈ T . For suchj and all i 6= j, we must have

[R(Mǫ)i,j = 0]C(Mǫ)i,j = 0. This implies thatR(Mǫ)i,j > 0 for i 6= j, so that0 < s.

By Theorem 1.5, each closed class/vertex ofM0 is contained in the closed class ofMǫ.

Thus, ifM0 possesses at least two closed classes, since both both vertices are in the closed

class ofMǫ, there are paths inG− (Mǫ) between them. In particular, there are outgoing

edges inG− (Mǫ) from them, so thats <∞.
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Likewise, sinces is a minimum, there exists somei 6= j 6∈ T , such thats = R (Mǫ)i,j.

Sinces <∞, we must then haveC (Mǫ)i,j > 0, as well. Thus,

c = 2 max
j 6∈T

∑

s=R(Mǫ)i,j

C (Mǫ)i,j > 0.

Now observe that the entries ofiǫ are either non-negative constants orf(ǫ), all of which

are functions inC+, so thatiǫ ∈ Pert(n). Moreover, forǫ ≻ 0, f(ǫ) > 0, so that0 < (iǫ)j,j

for j ∈ Sn. We now show that, forj ∈ Sn andǫ ≻ 0, (iǫ)j,j

(
1− (Mǫ)j,j

)
≤ 1, so that,

for ǫ ≻ 0, Lemma 5.3 implies thatM ǫ ≡ (Mǫ)iǫ
is Markov (by continuity,M 0 is Markov,

as well) andM ǫ ≈iǫ
Mǫ. Since(Mǫ)j,j ≥ 0, (iǫ)j,j

(
1− (Mǫ)j,j

)
≤ (iǫ)j,j. But either

(iǫ)j,j = 1 or, sinceR(f) = s > 0, Theorem 7.4 a) implies that(iǫ)j,j = f(ǫ) ≤ 1 for

ǫ ≻ 0.

Since, forǫ � 0, we are only multiplying some off-diagonal entries by the non-zero

number,f(ǫ), G−

(
M ǫ

)
is the same asG− (Mǫ), except for possible differences is their

self-loops. In particular, sinceMǫ is unichain, so isM ǫ. More generally, since we are only

multiplying some off-diagonal entries byf ∈ C+,
(
M ǫ

)
i,j
∈ C+ for i 6= j.

To show thatM ǫ ∈ Pert(n), since
(
M ǫ

)
j,j

= (Mǫ)j,j ∈ C
+ for j 6∈ T , it only remains

to verify that
(
M ǫ

)
j,j
∈ C+ for j ∈ T . In this case, since

(
M ǫ

)
j,j

= f(ǫ) (Mǫ)j,j +1−f(ǫ),

by parts b) and d) of Theorem 7.4, it suffices to show that1 − f(ǫ) ∈ C+. SinceR(f) =

s > 0 = R(1), we may apply Theorem 7.4 c) to conclude that1 − f(ǫ) ∈ C+. Thus,

M ǫ ∈ Pert(n).

Next, we verify thatf satisfies the assumptions of Lemma 7.12 with respect toM ǫ.

Starting with a), notice that, fori 6= j,
(
M ǫ

)
i,j

either equalsf(ǫ) (Mǫ)i,j, if j ∈ T , or

(Mǫ)i,j, if j 6∈ T . In the former case,R(f) ≤ R
(
M ǫ

)
i,j

, by Theorem 7.4 d). In the latter,

the inequality follows by construction, sinceR(f) = s ≤ R
(
M ǫ

)
i,j

for all i 6= j and

j 6∈ T . Thus, we have verified assumption a) of Theorem 7.12.

Now observe that, by Theorem 7.4 d), ifj ∈ T ,
(
M ǫ

)
j,j

+f(ǫ)−1 = f(ǫ) (Mǫ)j,j ∈ C
+

andR(f) ≤ R
(
f(ǫ) (Mǫ)j,j

)
. Thus, assumptions b) and c) are satisfied, in this case. On

the other hand, ifj 6∈ T ,
(
M ǫ

)
j,j

+f(ǫ)−1 = (Mǫ)j,j +f(ǫ)−1 = f(ǫ)−
[∑

i6=j (Mǫ)i,j

]
.

We will again want to apply Theorem 7.4 c) to show that this is inC+, as well, with resis-

tance no less thanR(f) = s. There are two cases to consider. For a givenj 6∈ T , if there is

somei 6= j such thatR(f) = s = R (Mǫ)i,j, thenR
(∑

i6=j (Mǫ)i,j

)
= mini6=j R (Mǫ)i,j =

s = R(f). In this case,C
(∑

i6=j (Mǫ)i,j

)
=
∑

i6=j [s = R (Mǫ)i,j]C (Mǫ)i,j = s =
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R(f) ≤ c
2

< c = C(f). Otherwise,R(f) = s < R (Mǫ)i,j for all i 6= j, so that

R
(∑

i6=j (Mǫ)i,j

)
= mini6=j R (Mǫ)i,j > R(f). In either case, the conditions of Theo-

rem 7.4 c) are satisfied, so thatf(ǫ)−
[∑

i6=j (Mǫ)i,j

]
∈ C+ with resistance,R(f). Thus,

we have verified assumptions b) and c) of Theorem 7.12.

We now show thatM ǫ is iǫ-equivalent toMǫ. Since we already know thatM ǫ ≈iǫ
Mǫ

for ǫ ≻ 0, it only remains to show thatR
(∥∥iǫ stab

(
M ′

ǫ

)∥∥
1

)
= 0. As in the proof of

Theorem 7.15, we haveg(ǫ) stab (Mǫ) = iǫ stab
(
M ′

ǫ

)
for someg ∈ C+, specifically,

g(ǫ) = Jiǫ stab
(
M ′

ǫ

)
=
∥∥iǫ stab

(
M ′

ǫ

)∥∥
1
. Thus, we must show thatR(g) = 0.

In particular, since
(
iǫ stab

(
M ′

ǫ

))
j

=
(
stab

(
M ′

ǫ

))
j

for j 6∈ T , it suffices to show that

sss
(
M ′

ǫ

)
∩ T 6= ∅. In this case,

lim
0
+

g(ǫ) ≥ lim
0
+

(
iǫ stab

(
M ′

ǫ

))
j
= lim

0
+

(
stab

(
M ′

ǫ

))
j
=
(
ssd
(
M ′

ǫ

))
j
> 0

for j ∈ sss
(
M ′

ǫ

)
∩ T , so thatR(g) = 0.

To see this, let{C1, . . . , Cm} be the closed classes ofG− (M0), so thatT =
⋃m

j=1 Ci.

Likewise, let
{
C′1, . . . , C

′
m

′

}
be the closed classes ofG−

(
M ′

0

)
. By Theorems 5.17 and

Corollary 5.15,sss
(
M ′

ǫ

)
=
⋃

j
′
∈J

′ C′
j
′ for someJ ′ ⊂

{
1, . . . , m′

}
. Now observe that

G− (M0) ⊂ G−

(
M ′

0

)
, so that, by Theorem 1.5, for every1 ≤ j′ ≤ m′, there is1 ≤ j ≤ m

so thatC′
j
′ ∩ Cj 6= ∅. In particular, for anyj′ ∈ J ′, ∅ 6= C′

j
′ ∩
⋃m

j=1 Ci ⊂ sss
(
M ′

ǫ

)
∩ T

By repeatedly applying Lemma 7.16, we may then guarantee that Mǫ always possesses

a non-trivial communicating class.

Corollary 7.17. GivenMǫ ∈ PMM(n), if M0 possesses more than one closed class, there

exists a diagonaliǫ ∈ Pert(n) andM ′
ǫ ∈ PMM(n) such thatMǫ ∼iǫ

M ′
ǫ andM ′

0 possesses

a non-trivial communicating class orM ′
0 is unichain.

Proof. If M0 possesses a non-trivial communicating class, then we may take iǫ = I. Oth-

erwise, ifM0 possesses more than one closed class, we may apply Lemma 7.16to obtain

an iǫ-equivalent perturbed Markov matrix,M ′
ǫ, so thatG−

(
M ′

0

)
⊃ G− (M0) is a strictly

larger graph. We may repeat this construction until eitherM ′
0 possesses a non-trivial com-

municating class orM ′
0 possesses only one closed class. This is guaranteed to terminate by

the timeG−

(
M ′

0

)
is complete, if not sooner.
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7.5 Equivalence of PMMs and the MCCT

Our algorithm in section 7.7 will consist of alternately applying the scaling construction

from Lemma 7.16 and the reduce construction of Theorem 5.6, generalized to PMMs.

However, since reduction involves matrix inversion, we will want to choose the sets of

indices to eliminate, so that we will only need to invertreal-valued (i.e., zero-resistance)

matrices, so that the required calculations are tractable.In this section, we appeal to the

Markov Chain Tree Theorem to show how this is always possible. Specifically, we will

show that

• given anMǫ ∈ PMM(n), we may find a stochastically equivalent one for which the

off-diagonal zero-resistance terms are actually constant;

• we may also find a stochastically equivalent one for which alledges within an SCC

(excluding self-loops) are constant; and

• we may construct a stochastically equivalent one which, foreach non-zero resistance

path fromvi to vj in G (Mǫ), contains a edge fromvi to vj with the same resistance.

We begin by highlighting an important consequence of Theorem 7.7, that the stochas-

tic equivalence class of a PMM depends only on its entries contained in some minimal

resistance spanning subtree.

Theorem 7.18.GivenMǫ, M
′
ǫ ∈ PMM(n), if

a) T (Mǫ, i) = T
(
M ′

ǫ, i
)
,

b) R (Mǫ)σ(j),j = R
(
M ′

ǫ

)
σ(j),j

, ∀j 6= i, σ ∈ T (Mǫ, i)

for every1 ≤ i ≤ n, thenR (stab (Mǫ)) = R
(
stab

(
M ′

ǫ

))
. If we also have

c) C (Mǫ)σ(j),j = C
(
M ′

ǫ

)
σ(j),j

, ∀j 6= σ (j) , σ ∈ T (Mǫ, i), ∀ 1 ≤ i ≤ n,

thenMǫ ∼M ′
ǫ.

Proof. ConsiderMǫ andM ′
ǫ satisfying conditions a) and b) and define

T̃i ≡ T (Mǫ, i) = T
(
M ′

ǫ, i
)

andT̃ ≡
⋃

1≤i≤n

T̃i.
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Condition a) then implies that

R (Mǫ, σ) =
∑

j 6=i

R (Mǫ)σ(j),j =
∑

j 6=i

R
(
M ′

ǫ

)
σ(j),j

= R
(
M ′

ǫ, σ
)

on T̃ .

Now observe that, for anyσ ∈ T̃i ⊂ T̃ , using the notation of Theorem 7.7, we have

ri = R (Mǫ, σ) = R
(
M ′

ǫ, σ
)

= r′i. By Theorem 7.7 a),r = mini ri = mini r
′
i = r′, as

well. Theorem 7.7 c) then givesR (stab (Mǫ)) = R
(
stab

(
M ′

ǫ

))
.

We now show thatT (Mǫ) =
{

σ ∈ T̃ | R (Mǫ, σ) = r
}

. The reverse inclusion is imme-

diate. Ifσ′ ∈
{

σ ∈ T̃ | R (Mǫ, σ) = r
}

, thenσ′ ∈ T̃i ⊂ T i for somei andR
(
Mǫ, σ

′
)

=

r. In particular,σ′ ∈ T (Mǫ). Conversely, ifσ′ ∈ T (Mǫ), σ′ ∈ T i for somei and

R
(
Mǫ, σ

′
)

= r. By Theorem 7.7 a),ri = minσ∈T i
R (Mǫ, σ) ≤ r. Theorem 7.7 a) also

says thatr = mini ri ≤ ri, so thatR
(
Mǫ, σ

′
)

= r = ri andσ′ ∈ T̃i ⊂ T̃ . Therefore,

σ′ ∈
{
σ ∈ T̃ | R (Mǫ, σ) = r

}
, which implies that

T (Mǫ) =
{
σ ∈ T̃ | R (Mǫ, σ) = r

}
=
{
σ ∈ T̃ | R

(
M ′

ǫ, σ
)

= r
}

= T (M ′
ǫ).

If condition c) holds, as well,C (Mǫ, σ) = C
(
M ′

ǫ, σ
)

for all σ ∈ T̃ , and

C (stab (Mǫ))i =

∑
σ∈ eTi

C (Mǫ, σ)
∑

σ∈T (Mǫ)
C (Mǫ, σ)

=

∑
σ∈ eTi

C
(
M ′

ǫ, σ
)

∑
σ∈T(M

′
ǫ) C

(
M ′

ǫ, σ
) = C

(
stab

(
M ′

ǫ

))
i
.

Thus, by Theorem 7.3 c),stab (Mǫ) ≃ stab
(
M ′

ǫ

)
. In particular, by Definition 7.9,Mǫ ∼

M ′
ǫ.

Using Theorem 7.18, we may give an alternate proof of Corollary 7.13.

Proof. ConsiderM ′
ǫ = 1

2
I + 1

2
Mǫ. NowR (Mǫ)i,j = R

(
M ′

ǫ

)
i,j

andC (Mǫ)i,j = C
(
M ′

ǫ

)
i,j

for i 6= j, since they only differ in their diagonal entries. Since a spanning tree does

not contain self-loops,R
(
M ′

ǫ, σ
)

= R (Mǫ, σ) for all σ ∈ T i andi. In particular,r′i =

minσ∈T i
R
(
M ′

ǫ, σ
)

= minσ∈T i
R (Mǫ, σ) = ri andT

(
M ′

ǫ, i
)

= T (Mǫ, i), for all i. Thus,

Theorem 7.18 implies thatMǫ ∼M ′
ǫ.

Corollary 7.19. For anyMǫ ∈ PMM(n) with R (Mǫ)i,i = 0 for all i, there is anM ′
ǫ ∈

PMM(n), such thatMǫ ≃M ′
ǫ and

(
M ′

ǫ

)
i,j

= C
(
M ′

ǫ

)
i,j

ǫ
R(M

′
ǫ)i,j , for i 6= j.
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Proof. SettingR ≡ R (Mǫ) andC ≡ C (Mǫ), define

(
M ′

ǫ

)
i,j

=





1−
∑

k 6=j Ck,jǫ
Rk,j if i = j

Ci,jǫ
Ri,j otherwise

where, by convention,0ǫ∞ ≡ 0. For i 6= j, Theorem 7.3 implies that
(
M ′

ǫ

)
i,j
∈ C+ with

R
(
M ′

ǫ

)
i,j

= Ri,j andC
(
M ′

ǫ

)
i,j

= Ci,j. In particular, by Theorem 7.4 a),
(
M ′

0

)
i,j

= (M0)i,j

for i 6= j.

On the diagonal, using the fact thatJM ′
ǫ = J = JM ,

(
M ′

0

)
j,j

= 1−
∑

i6=j

(
M ′

0

)
i,j

= 1−
∑

i6=j

(M0)i,j = (M0)j,j = C (Mǫ)i,i > 0,

sinceR (Mǫ)i,i = 0. This insures that
(
M ′

ǫ

)
i,i

> 0 for ǫ ≻ 0, with lim
ǫ→0

+

(M
′
ǫ)i,i

C(Mǫ)i,i
= 1, so

that
(
M ′

ǫ

)
i,i
∈ C+. Thus,M ′

ǫ ∈ PMM(n). Moreover, since
(
M ′

0

)
j,j

= (M0)j,j, we must

haveR
(
M ′

ǫ

)
j,j

= R (Mǫ)j,j andC
(
M ′

ǫ

)
j,j

= C (Mǫ)j,j for all j, as well. Therefore, by

Theorem 7.3 c)Mǫ ≃M ′
ǫ.

Notice that this means that, if we are only interested in computing stochastically sta-

ble distributions, we may represent a perturbed Markov matrix simply by the twon × n

matrices,C (Mǫ) andR (Mǫ), and we may assume thatR (Mǫ)i,i = 0, for all i.

Example 7.20.We may briefly illustrate the constructions of Corollaries 7.13 and 7.19 as

follows:



0 · · ·

1− ǫ

ǫ


→




1
2

· · ·

1
2
− ǫ

2

ǫ
2


→




1
2
− ǫ

2
· · ·

1
2

ǫ
2




As we have seen in chapter 1, the self-loops of a Markov matrixmay be adjusted to

a certain degree without significantly affecting its dynamics. Similarly, we may specify a

perturbed Markov matrix, with 0-resistance diagonal elements (such as in Corollary 7.19),

by simply specifying its off-diagonal elements, so long as their column sums, whenǫ = 0,

are all strictly less than 1.
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Lemma 7.21. If Mǫ ∈ Matn

(
C+
)

with
∑

i6=j (M0)i,j < 1 for 1 ≤ j ≤ n andG− (Mǫ) is

unichain forǫ ≻ 0, then there is a unique8 M ′
ǫ ∈ PMM(n), such that

(
M ′

ǫ

)
i,j

= (Mǫ)i,j

for 1 ≤ i 6= j ≤ n.

Proof. For 1 ≤ i 6= j ≤ n, let
(
M ′

ǫ

)
i,j

= (Mǫ)i,j and
(
M ′

ǫ

)
j,j

= 1 −
∑

i6=j (Mǫ)i,j for

1 ≤ j ≤ n, as required. Lettingcj ≡ 1−
∑

i6=j (M0)i,j > 0, by continuity,
∑

i6=j (Mǫ)i,j <

1 −
cj

2
, so that

(
M ′

ǫ

)
j,j

>
cj

2
> 0 for ǫ ≻ 0. Therefore,

(
M ′

ǫ

)
j,j
∈ C+ andR

(
M ′

ǫ

)
j,j

= 0.

Likewise, since(M0)j,j = 1−
∑

i6=j (M0)i,j > 0, R (Mǫ)j,j = 0 for all j. In particular, since

R
(
M ′

ǫ

)
i,j

= R (Mǫ)i,j for i 6= j, R
(
M ′

ǫ

)
= R (Mǫ). SinceG− (Mǫ) andG−

(
M ′

ǫ

)
contain

an edge
(
vi, vj

)
iff R (Mǫ)j,i = R

(
M ′

ǫ

)
j,i

< ∞, they have the same unweighted graphs.

SinceG− (Mǫ) is unichain forǫ ≻ 0, G−

(
M ′

ǫ

)
is as well. In particular,M ′

ǫ ∈ PMM(n).

Given a PMM,Mǫ, and a communicating class ofM0, s, the following Lemma shows

that we may assume that(Mǫ)s,s is constant off the diagonal.

Lemma 7.22.

If Mǫ ∈ PMM(n) with R (Mǫ)i,i = 0 for all i, ands is contained in a communicating

class ofM0, there is anM ′
ǫ ∈ PMM(n) such thatM ′

ǫ ∼Mǫ and, fori 6= j,

(
M ′

ǫ

)
i,j

=





(M0)i,j if i, j ∈ s

(Mǫ)i,j otherwise

Proof. We proceed by induction on the number of pairs,(p, q) ∈ s × s such that0 <

R (Mǫ)p,q < ∞. In this case, we defineM ′
ǫ = Mǫ − (Mǫ)p,q

(
epe

t
q − eqe

t
q

)
. Since

R (Mǫ)p,q 6= 0, p 6= q, M ′
ǫ is justMǫ with the (p, q)-entry removed. Moreover,G

(
M ′

ǫ

)

is G (Mǫ) with edge,
(
vp, vq

)
, removed. However, sincep, q ∈ s,

(
vp, vq

)
∈ P

(
M ′

0

)
⊂

P
(
M ′

ǫ

)
, andP

(
M ′

ǫ

)
= P (Mǫ). In particular,M ′

ǫ is unichain. Since
(
M ′

ǫ

)
p,q

= 0 and
(
M ′

ǫ

)
q,q

= (Mǫ)p,q + (Mǫ)q,q ∈ C
+, M ′

ǫ ∈ PMM(n).

By Theorem 7.18, to show thatM ′
ǫ ∼ Mǫ, it suffices to verify that edge

(
vp, vq

)
is not

part of any minimal resistance spanning tree ofMǫ. Specifically, ifσ ∈ T (Mǫ, k) is a

spanning subtree rooted atk containing this edge (i.e.,σ(q) = p), then the resistance ofσ

is not minimal (i.e.,σ 6∈ T (Mǫ, k)). Therefore, assume we are givenσ ∈ T (Mǫ, k) with

σ(q) = p and consider the associated directed spanning tree,T .

8Up to equality inMatn (C).
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Let
{
s1, . . . , sm

}
be the strongly connected components ofG (M0). As in the proof of

Lemma 6.16, we may re-index the matrix so that the index corresponding to any non-root

vertex is greater than that of its parent inT , i.e., so thatσ(j) < j for j 6= k, andk = 1. By

re-indexing again, we may further assume thatmin sq < min sr ⇒ q < r. In particular, we

must have1 ∈ s1.

We may now proceed by induction to construct a new directed spanning tree,T corre-

sponding to a regular mapping,σ, such thatR (Mǫ, σ) < R (Mǫ, σ). Specifically, we will

construct a spanning tree rooted at1 which only contains 0-resistance edges within each

sq. Moreover, there will be at most one edge inT between distinct communicating classes,

i.e., ∀q > 1, ∃jq ∈ sq s. t. σ(jq) = σ(jq) ∈ su andu < q. Intuitively, we will choose

edges ofT to build a directed tree on the communicating classes (specified byjq), which

will serve to link a set of 0-resistance spanning trees spanning each class into an directed

tree rooted at1.

Sinces1 is a strongly connected component ofG (M0), by Theorem 6.5, it contains

an directed tree rooted atv1 consisting entirely of 0-resistance edges spanningG (M0) |s1,

which definesσ(q) for q ∈ s1. For any1 < r ≤ m, assume that we have definedσ over
⋃r−1

q=1 sq and a sequencejq ∈ sq such that∀1 < q < r, σ(jq) = σ(jq) ∈ su for someu < q.

It suffices to show that we may extendσ to sr and definejr ∈ sr so thatσ(jr) = σ(jr) ∈ su

for someu < r.

Let jr = min sr. Sinceσ(jr) < r, if σ(jr) ∈ su, min su < jr = min sr, so thatu < r.

As before, Theorem 6.5 guarantees the existence of a directed tree rooted atjr spanning

G (M0) |sr . This definesσ on sr − {jr} and we takeσ(jr) = σ(jr). By induction, we

eventually obtain a subgraph ofG (Mǫ) consisting ofn − 1 edges which contains a path

from each vertex ofG (Mǫ) to 1, which is thus a directed spanning tree rooted at 1.

SinceT only contains edges ofT , plus edges with resistance 0, and we know it does

not include the edge fromq to p, R (σ, Mǫ) ≤ R (Mǫ, σ) − R (Mǫ)p,q < R (Mǫ, σ). In

particular,σ did not have minimal resistance, the edge fromq top is not part of any minimal

spanning tree ofMǫ, andT (Mǫ, k) = T
(
M ′

ǫ, k
)

for arbitraryk.

Since all other off-diagonal entries ofMǫ andM ′
ǫ agree, all necessary entries of the

resistance and cost matrices agree. In particular, Theorem7.18 implies thatM ′
ǫ ∼ Mǫ.

By repeating this construction sufficiently many times, we obtain M ′
ǫ ∼ Mǫ such that

R
(
M ′

ǫ

)
i,j

= 0 or∞ for i 6= j ∈ s. By applying Corollary 7.19, we obtain a newM ′
ǫ ∼Mǫ
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such that
(
M ′

ǫ

)
i,j

= C (Mǫ)i,j = (M0)i,j for i 6= j ∈ s.

To illustrate, in Example 7.8, we may drop the(3, 2)– and(2, 3)–entries (adjusting the

diagonal entries accordingly) without changing its stochastically stable distribution. We

saw explicitly that these entries are not in any of the minimal resistance spanning trees.

7.6 Reduction of PMMs

We now wish to generalize the reduce construction of chapter5 so that we may apply it to

a perturbed Markov matrix. Since the definition of the reduction, given in Theorem 5.6,

was originally stated in terms of matrix inverses and subtraction (which are problematic

in the class of perturbed matrices), it is not obvious that the result is a perturbed Markov

matrix. As with scaling, this will require careful analysis. As mentioned in section 7.5,

our algorithm in section 7.7 is guided by the need to eliminate sets of indices which only

require the inversion ofreal-valued (i.e., zero-resistance) matrices. Thus, our calculations

will be guided by the zero-resistance subgraph,G− (M0) of G− (Mǫ).

Specifically, in this section we will:

• show that ifs ⊂ Sn is open with respect toM0, it is also open with respect to

Mǫ ∈ PMM(n);

• generalize Theorem 4.4 to PMMs, proving that
(
I − (Mǫ)s,s

)−1

∈ Pert(|s|) for

Mǫ ∈ PMM(n) ands ⊂ Sn open, giving formulas for its resistance and cost matrices

in terms of minimum resistance walks (cf. Theorems 5.8 and 7.7);

• show that if we apply the reduce construction to anMǫ ∈ PMM(n) for ǫ ≻ 0, with

respect to a fixed open set of indices,s, we obtain an̂Mǫ ∈ PMM(|s|);

• derive formulas for the resistance and cost matrices of the reduction in terms of the

resistance and cost matrices ofMǫ, which shows that reduction preserves asymptotic

equality;

• generalize Theorem 5.12 to PMMs;

• show that reduction preserves stochastic equivalence of PMMs; and
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• show that for the purposes of computingssd (Mǫ), we may compute the reduction

while only inverting a constant matrix.

As mentioned above, we will want to apply the reduce construction to sets of indices

which are open with respect to the (unweighted) zero-resistance subgraph,G− (M0). We

must first verify that this is feasible.

Lemma 7.23.LetMǫ be ann×n perturbed Markov matrix. Ifs ⊂ Sn is open with respect

to M0, it is open with respect toMǫ.

Proof. By Lemma 4.4 b), sinces ⊂ Sn is open with respect toM0, I − (M0)s,s =

πs (I −M0) ıs is invertible. Thus,|πs (I −M0) ıs| 6= 0, so that|πs (I −Mǫ) ıs| 6= 0 for

ǫ � 0. Thus, by the contrapositive of Lemma 4.4 c),s ⊂ Sn must be open with respect to

Mǫ for ǫ ≻ 0, or equivalently, with respect toMǫ as a perturbed matrix.

Lemma 7.23 implies that, forǫ � 0, we may apply our reduction construction to any

perturbed Markov matrix,Mǫ, to eliminate any set of states,s, which are open with respect

to the unperturbed matrix,M0. We now show that the result is a perturbed Markov matrix.

The difficulty is that, in general, we cannot invert a perturbed matrix, since this might

involve subtraction or division. However, in this specific case, we may express the inverse

in terms of multiplication and addition alone. To do so, we will need to generalize some

more notation, this time from section 5.2.

First, observe that forMǫ ∈ PMM(n), G− (Mǫ) is constant forǫ ≻ 0. Thus, for

s ⊂ Sn, PMǫ
(s, i, j, l) ⊂ Sn (k) is a fixed subset, independent ofǫ. For anyσ ∈ Sn (k),

corresponding to a walk of lengthk in G (Mǫ), we will define its weight inG (Mǫ),

W (Mǫ, σ) = Πt∈Sk

(
(Mǫ)σt,σt−1

)
. Notice that this is simply (the equivalence class of)

the function, which atǫ � 0 is given by the weight ofσ in Mǫ.

By Corollary 7.5 b),W (Mǫ, σ) ∈ C+. Thus, we may also define theresistance of

σ in Mǫ as R (Mǫ, σ) ≡ R (W (Mǫ, σ)). Similarly, we define thecost ofσ in Mǫ as

C (Mǫ, σ) ≡ C (W (Mǫ, σ)). By Corollary 7.5 b), the resistance and cost of the walk,σ,



130

satisfy the following equations:

R (Mǫ, σ) = R (W (Mǫ, σ))

= R
(
Πt∈Sk

(
(Mǫ)σt,σt−1

))
=
∑

t∈Sk

R
(
(Mǫ)σt,σt−1

)
(7.3)

C (Mǫ, σ) = C (W (Mǫ, σ))

= C
(
Πt∈Sk

(
(Mǫ)σt,σt−1

))
= Πt∈Sk

C
(
(Mǫ)σt,σt−1

)
(7.4)

Notice that although this notation exactly mirrors the casewhenσ represents a spanning

tree, the meaning will be clear from the context, depending whetherσ represents a tree or

a walk.

Just as the stochastically stable distribution is defined interms of minimum resistance

spanning trees, the reduction is defined in terms of minimum resistancewalks. However,

since the collection of walks is infinite, we must argue that such a collection of minimum

resistance walks is well-defined.

Lemma 7.24.For anyMǫ ∈ PMM(n), s ⊂ Sn, andi, j ∈ Sn,

r ≡ min
σ∈Sn(s,i,j)

R (Mǫ, σ) = min
σ∈PMǫ

(s,i,j)
R (Mǫ, σ)

exists. In addition,PMǫ
(s, i, j) 6= ∅ iff r <∞ iff

PMǫ
(s, i, j) ≡ {σ ∈ Sn (s, i, j) | R (Mǫ, σ) = r} ⊂ PMǫ

(s, i, j) .

Proof. If PMǫ
(s, i, j) = ∅, thenR (Mǫ, σ) = ∞ for all σ ∈ Sn (s, i, j). In this case,

minσ∈Sn(s,i,j) R (Mǫ, σ) = ∞ and we setPMǫ
(s, i, j) ≡ ∅, consistent with our convention

thatmin ∅ =∞.

Otherwise, assume thatPMǫ
(s, i, j) 6= ∅, and definerk = minσ∈Sn(s,i,j,k) R (Mǫ, σ).

This is a finite set, so the minimum is well-defined. Moreover,by the “pigeon hole” princi-

ple, any walk of length greater thann must visit at least one vertex more than once. Thus,

such walks must contain a cycle, and hence have weight greater than or equal to that of a

walk of length less than or equal ton. In particular,rk ≤ rn for all k. Thus,

r ≡ min
1≤k≤n

rk = min
k

rk

= min
k

min
σ∈Sn(s,i,j,k)

R (Mǫ, σ) = min
σ∈Sn(s,i,j)

R (Mǫ, σ)
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SincePMǫ
(s, i, j) 6= ∅, ∅ 6= PMǫ

(s, i, j, k) ⊂ Sn (s, i, j, k) for somek, so thatrk < ∞,

and therefore,r <∞.

We may then definePMǫ
(s, i, j) ≡ {σ ∈ Sn (s, i, j) | R (Mǫ, σ) = r}. For anyσ ∈

Sn (s, i, j), σ ∈ PMǫ
(s, i, j) iff R (Mǫ, σ) < ∞. In particular, if σ ∈ PMǫ

(s, i, j),

R (Mǫ, σ) = r <∞, so thatσ ∈ PMǫ
(s, i, j), i.e.,PMǫ

(s, i, j) ⊂ PMǫ
(s, i, j). Notice this

implies thatminσ∈PMǫ
(s,i,j) R (Mǫ, σ) ≤ r. However, sincePMǫ

(s, i, j) ⊂ Sn (s, i, j),

min
σ∈Sn(s,i,j)

R (Mǫ, σ) ≤ min
σ∈PMǫ

(s,i,j)
R (Mǫ, σ) ,

so thatminσ∈PMǫ
(s,i,j) R (Mǫ, σ) = r.

We have shown thatPMǫ
(s, i, j) 6= ∅ ⇒ r < ∞ ⇒ PMǫ

(s, i, j) ⊂ PMǫ
(s, i, j).

However,PMǫ
(s, i, j) 6= ∅. Thus,PMǫ

(s, i, j) ⊂ PMǫ
(s, i, j)⇒ PMǫ

(s, i, j) 6= ∅, so that

all three statements are equivalent.

In other words,PMǫ
(s, i, j) represents the set of minimum resistance walks inG (Mǫ)

from vj to vi passing only throughVs. We will partition this set of minimum resistance

walks by their length, to define

PMǫ
(s, i, j, k) = Sn (s, i, j, k) ∩ PMǫ

(s, i, j)

as well.

We now show that
(
I − (Mǫ)s,s

)−1

∈ Pert and give formulas for its resistance and

cost matrices in terms of minimum resistance walks.

Theorem 7.25.For anyMǫ ∈ PMM(n) ands ⊂ Sn an open set with respect toM0, the

partial sums,(Mǫ)
(u)
s,s ≡

∑u−1
k=0 (Mǫ)

k
s,s, converge uniformly to

(
I − (Mǫ)s,s

)−1

∈ Pert.

Moreover,

R

((
I − (Mǫ)s,s

)−1
)

i,j

= min
σ∈Sn(s,si,sj)

R (Mǫ, σ) and

C

((
I − (Mǫ)s,s

)−1
)

i,j

=
∑

σ∈PMǫ
(s,si,sj)

C (Mǫ, σ)

Proof. SinceMǫ has only finitely many entries, there is an interval,[0, δ], over which all of

its entries, and hence all of the entries of(Mǫ)
(u)
s,s =

∑u−1
k=0 (Mǫ)

k
s,s, are continuous and non-

negative. By assumption,s is open with respect toM0, and by Lemma 7.23 with respect to
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Mǫ for sufficiently smallǫ. Assume thatδ has been chosen so thats is open with respect

to Mǫ for ǫ ∈ [0, δ]. Thus, by Lemma 4.4,(Mǫ)
(u)
s,s converges to

(
I − (Mǫ)s,s

)−1

≥ 0 for

eachǫ ∈ [0, δ].

Now observe that
∥∥∥(Mǫ)

n
s,s

∥∥∥
1

is a non-negative continuous function forǫ � 0, since it

is the maximum of a finite set of non-negative, continuous functions (i.e., the column sums

of (Mǫ)
n
s,s). Since

∥∥∥(Mǫ)
n
s,s

∥∥∥
1

is bounded by some0 ≤ c < 1 for eachǫ ∈ [0, δ], we may

assume that it is uniformly bounded on[0, δ] by 0 ≤ c < 1 . In particular, by the proof of

Theorem 4.4, parts a) and b),M (u)
ǫ converges uniformly to

(
I − (Mǫ)s,s

)−1

on [0, δ].

Since[0, δ] is compact, the entries of(Mǫ)
(u)
s,s are uniformly continuous on[0, δ] (Whee-

den and Zygmund, 1977). Since(Mǫ)
(u)
s,s converges uniformly to

(
I − (Mǫ)s,s

)−1

, the

entries of
(
I − (Mǫ)s,s

)−1

are continuous and non-negative on[0, δ] (Wheeden and Zyg-

mund, 1977). Finally, if an entry of
(
I − (Mǫ)s,s

)−1

is 0 for someǫ ∈ (0, δ], since this is

the sum of a non-negative series, all the terms in the series must be 0. But all the terms are

in C+[0, ∗], so that they must be identically 0, so that the limit must be in C+[0, ∗].

To show that
(
I − (Mǫ)s,s

)−1

∈ Pert, we must compute the resistance and cost of

each of its entries. Consider the(i, j)th entry of (Mǫ)
(u)
s,s , for some fixedi, j ∈ Sn. By

Lemma 4.3 b) and Corollary 7.5 a),

(
(Mǫ)

(u)
s,s

)
i,j

= et
i (Mǫ)

(u)
s,s ej =

u−1∑

k=0

et
i (Mǫ)

k
s,s ej =

u−1∑

k=0

∑

σ∈PMǫ
(s,si,sj,k)

W (Mǫ, σ) ∈ C+

Therefore, by Corollary 7.5 a) again,

ru ≡ R
(
(Mǫ)

(u)
s,s

)
i,j

= R




u−1∑

k=0

∑

σ∈PMǫ
(s,si,sj ,k)

W (Mǫ, σ)




= min
0≤k≤u−1

min
σ∈PMǫ

(s,si,sj ,k)
R (Mǫ, σ)

Also observe that

inf
u

ru = inf
u

min
0≤k≤u−1

min
σ∈PMǫ

(s,si,sj ,k)
R (Mǫ, σ)

= inf
u

min
σ∈PMǫ

(s,si,sj,u)
R (Mǫ, σ)

= inf
σ∈PMǫ

(s,si,sj)
R (Mǫ, σ) = min

σ∈PMǫ
(s,si,sj)

R (Mǫ, σ)
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Now take

u′ = min
{
u | PMǫ

(
s, si, sj, u

)
6= ∅
}

and

σ′ ∈ PMǫ

(
s, si, sj, u

′
)

By Theorem 7.25, we then have

ru
′
+1 = min

0≤k≤u
′

min
σ∈PMǫ

(s,si,sj ,k)
R (Mǫ, σ) ≤ R

(
Mǫ, σ

′
)

= min
σ∈PMǫ

(s,si,sj)
R (Mǫ, σ) = inf

u
ru

Thus,ru
′
+1 = infu ru, so thatr ≡ minu ru = ru

′
+1 is well-defined andr ≤ R (Mǫ, σ), for

all σ ∈ PMǫ
(s, si, sj).

Now considerǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

. By Theorem 7.4 e), this is inC+. Foru > u′ + 1, we

have

ǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

= ǫ−r
(
(Mǫ)

(u
′
+1)

s,s

)
i,j

+ ǫ−r
u−1∑

k=u
′
+1

∑

σ∈PMǫ
(s,si,sj ,k)

W
(
Mǫ, σ

′
)
.

so that, by Corollary 7.5 a) and Theorem 7.4 e),

R

(
ǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

)
= R

(
ǫ−r
(
(Mǫ)

(u
′
+1)

s,s

)
i,j

)
= 0

Therefore,

cu ≡ lim
ǫ→0

+
ǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

= C

(
ǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

)
by Theorem 7.4 a)

= C
(
(Mǫ)

(u)
s,s

)
i,j

by Theorem 7.4 e)

=
∑

0≤k≤u−1

∑

σ∈PMǫ
(s,si,sj,k)

[R (Mǫ, σ) = r]C (Mǫ, σ) by Corollary 7.5 a)

=
∑

0≤k≤u−1

∑

σ∈PMǫ
(s,si,sj,k)

C (Mǫ, σ) by Lemma 7.24

We may argue as before thatǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

is continuous on some interval,[0, δ].

Moreover, foru > u′+1, this sequence converges uniformly toǫ−r
(
I − (Mǫ)s,s

)−1

i,j
, which
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is therefore also continuous on[0, δ]. In particular,lim0
+ ǫ−r

(
I − (Mǫ)s,s

)−1

i,j
exists, and

we may interchange limits to compute

lim
0
+

ǫ−r
(
I − (Mǫ)s,s

)−1

i,j
= lim

0
+

lim
u→∞

ǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

= lim
u→∞

lim
0
+

ǫ−r
(
(Mǫ)

(u)
s,s

)
i,j

= lim
u→∞

cu = lim
u→∞

∑

0≤k≤u−1

∑

σ∈PMǫ
(s,si,sj ,k)

C (Mǫ, σ)

Since it is a sum of positive terms,cu ≥ cu
′
+1 > 0 for u > u′. In particular,

lim
0
+

ǫ−r
(
I − (Mǫ)s,s

)−1

i,j
= lim

u→∞
cu > 0.

Thus,R

((
I − (Mǫ)s,s

)−1

i,j

)
= r,

(
I − (Mǫ)s,s

)−1

∈ Pert, and

C

((
I − (Mǫ)s,s

)−1
)

i,j

= lim
u→∞

∑

0≤k≤u−1

∑

σ∈PMǫ
(s,si,sj ,k)

C (Mǫ, σ)

=
∑

σ∈PMǫ
(s,si,sj)

C (Mǫ, σ) .

Corollary 7.26. If Mǫ, M
′
ǫ ∈ PMM(n), s ⊂ Sn is open with respect toM0 andM0

′, and

(Mǫ)s,s ≃
(
M ′

ǫ

)
s,s

, then
(
I − (Mǫ)s,s

)−1

≃
(
I −

(
M ′

ǫ

)
s,s

)−1

.

Proof. Since(Mǫ)s,s ≃
(
M ′

ǫ

)
s,s

, by Theorem 7.3,

R
(
(Mǫ)s,s

)
= R

((
M ′

ǫ

)
s,s

)
and C

(
(Mǫ)s,s

)
= C

((
M ′

ǫ

)
s,s

)
.

Therefore,R (Mǫ, σ) = R
(
M ′

ǫ, σ
)

for all σ ∈ Sn

(
s, si, sj

)
. This then implies that

PMǫ

(
s, si, sj

)
= PM

′
ǫ

(
s, si, sj

)
. Likewise,C (Mǫ, σ) = C

(
M ′

ǫ, σ
)
, ∀σ ∈ Sn

(
s, si, sj

)
.

Therefore, by Theorem 7.25,

R
(
I − (Mǫ)s,s

)−1

= R
(
I −

(
M ′

ǫ

)
s,s

)−1

andC
(
I − (Mǫ)s,s

)−1

= C
(
I −

(
M ′

ǫ

)
s,s

)−1

so that, by Theorem 7.3,
(
I − (Mǫ)s,s

)−1

≃
(
I −

(
M ′

ǫ

)
s,s

)−1

.
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We may now show that the reduction of a PMM is also a PMM and giveformulas for

its resistance and cost matrices in terms of minimum resistance paths.

Theorem 7.27.Under the assumptions of Theorem 7.25, if, for eachǫ � 0, M̂ǫ is the

reduction ofMǫ with respect tos, M̂ǫ ∈ PMM(|s|) with

R
(
M̂ǫ

)
i,j

= min
σ∈Sn(s,si,sj)

R (Mǫ, σ) and

C
(
M̂ǫ

)
i,j

=
∑

σ∈PMǫ
(s,si,sj)

C (Mǫ, σ)

Proof. As before,s is open with respect toMǫ for sufficiently smallǫ, so the reduction is

defined. By Theorem5.6 c),̂Mǫ = (Mǫ)s,s − (Mǫ)s,s (Λǫ)
−1
s,s (Mǫ)s,s. By Theorem 7.25,

− (Λǫ)
−1
s,s =

(
I − (Mǫ)s,s

)−1

∈ Pert. Therefore, Theorem 7.6 implies that̂Mǫ ∈ Pert. In

addition, Corollary 5.11 guarantees that̂Mǫ is unichain forǫ � 0. Thus,M̂ǫ ∈ PMM(|s|).

The formulas for its resistance and cost matrices follow directly from Theorems 7.4 and

7.25.

Theorem 7.27 implies that reduction preserves asymptotic equivalence.

Corollary 7.28. GivenMǫ, Mǫ ∈ PMM(n), s ⊂ Sn open with respect toM0 andM0
′ with(

M̂ǫ, pǫ, ıǫ

)
and

(
M̂ ′

ǫ, p
′
ǫ, ı

′
ǫ

)
the reductions with respect tos of Mǫ andM ′

ǫ, respectively,

if Mǫ ≃Mǫ, thenM̂ǫ ≃ M̂ ′
ǫ.

Proof. SinceMǫ ≃Mǫ, R (Mǫ) = R
(
M ′

ǫ

)
, which implies that

R
(
M̂ǫ

)
i,j

= min
σ∈Sn(s,si,sj)

R (Mǫ, σ) = min
σ∈Sn(s,si,sj)

R
(
M ′

ǫ, σ
)

= R
(
M̂ ′

ǫ

)
i,j

for anyi, j. This implies thatPMǫ

(
s, si, sj

)
= PM

′
ǫ

(
s, si, sj

)
, for anyi, j. SinceC (Mǫ) =

C
(
M ′

ǫ

)
, we also have

C
(
M̂ǫ

)
i,j

=
∑

σ∈PMǫ
(s,si,sj)

C (Mǫ, σ) =
∑

σ∈P
M

′
ǫ
(s,si,sj)

C
(
M ′

ǫ, σ
)

= C
(
M̂ ′

ǫ

)
i,j

as well. Thus, by Theorem 7.3,̂Mǫ ≃ M̂ ′
ǫ.

Theorem 5.12 generalizes directly to PMMs.
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Theorem 7.29.Under the assumptions of Theorem 7.25, if
(
M̂ǫ, pǫ, ıǫ

)
is the reduction of

Mǫ with respect tos, M̂ǫ ∼ıǫ
Mǫ.

Proof. Theorem 5.12 guarantees that̂Mǫ ≈iǫ
Mǫ for ǫ � 0. As in the proof of The-

orem 7.15,ıǫ stab
(
M̂ǫ

)
= f(ǫ) stab (Mǫ) for somef ∈ C+, and we must show that

R(f) = 0.

By Theorem 5.12,stab
(
M̂ǫ

)
= πsıǫ stab

(
M̂ǫ

)
= f(ǫ)πs stab (Mǫ). Therefore,

stab
(
M̂ǫ

)
i

= et
i stab

(
M̂ǫ

)
= et

if(ǫ)πs stab (Mǫ)

= f(ǫ)et
si

stab (Mǫ) = f(ǫ) stab (Mǫ)si
.

Since0 = R
(
stab

(
M̂ǫ

))
i
= R(f) + R (stab (Mǫ))si

, we must haveR(f) = 0.

Theorem 7.29 implies that reduction preserves stochastic equivalence, as well.

Corollary 7.30. Under the assumptions of Corollary 7.28, ifMǫ ∼M ′
ǫ, thenM̂ǫ ∼ M̂ ′

ǫ.

Proof. By Theorem 7.29,̂Mǫ ∼ıǫ
Mǫ andM̂ ′

ǫ ∼ı
′
ǫ

M ′
ǫ. More specifically,ıǫ stab

(
M̂ǫ

)
=

f(ǫ) stab (Mǫ) and ıǫ stab
(
M̂ ′

ǫ

)
= f ′(ǫ) stab

(
M ′

ǫ

)
for somef, f ′ ∈ C+ with R(f) =

R
(
f ′
)

= 0. In fact, following the proof of Theorem 7.29,stab
(
M̂ǫ

)
= f(ǫ)πs stab (Mǫ)

andstab
(
M̂ ′

ǫ

)
= f ′(ǫ)πs stab

(
M ′

ǫ

)
. Moreover, sinceJ stab

(
M̂ǫ

)
= 1 = J stab

(
M̂ ′

ǫ

)
,

f(ǫ) = 1
Jπs stab(Mǫ)

andf ′(ǫ) = 1

Jπs stab(M
′
ǫ)

. SinceMǫ ∼Mǫ, stab (Mǫ)i ≃ stab
(
M ′

ǫ

)
i
for

all i, so thatπs stab (Mǫ) ≃ πs stab
(
M ′

ǫ

)
. In particular,f ≃ f ′, so that

stab
(
M̂ǫ

)
= f(ǫ)πs stab (Mǫ) ≃ f(ǫ)′πs stab

(
M ′

ǫ

)
= stab

(
M̂ ′

ǫ

)

We now show that we may compute the reduction while only inverting a constant ma-

trix.

Theorem 7.31.GivenMǫ ∈ PMM(n) such thatR (Mǫ)i,i = 0 for all i, a communicating

class,s′ ⊂ Sn, of M0 such that, fori 6= j ∈ s′, (Mǫ)i,j = (M0)i,j, and a subsets ⊂ s′ such

that
∣∣s′ \ s

∣∣ = 1, if M̂ǫ is the reduction with respect tos of Mǫ, there is a PMM,̃Mǫ such

thatM̂ǫ ∼ M̃ǫ, where
(
M̃ǫ

)
i,j

=

(
(Mǫ)s,s + (Mǫ)s,s

(
I − (M0)s,s

)−1

(Mǫ)s,s

)

i,j

for i 6= j.
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Proof. Notice that(Mǫ)s,s ≃ (M0)s,s. Therefore, by Corollary 7.26,

(
I − (Mǫ)s,s

)−1

≃
(
I − (M0)s,s

)−1

,

so that

M̂ǫ ≃ (Mǫ)s,s + (Mǫ)s,s

(
I − (M0)s,s

)−1

(Mǫ)s,s .

By Lemma 7.21, there is a PMM,̃Mǫ, such that

(
M̃ǫ

)
i,j

=

(
(Mǫ)s,s + (Mǫ)s,s

(
I − (M0)s,s

)−1

(Mǫ)s,s

)

i,j

for i 6= j so thatM̂ǫ ≃ M̃ǫ. By Theorem 7.10,̂Mǫ ∼ M̃ǫ.

7.7 The SSD Algorithm

In this section, we present our algorithm for computing the SSD of a PMM and prove that

it is correct. Intuitively, given a PMM,Mǫ, the algorithm is as follows:

1. Examine the corresponding unperturbed, Markov matrix,M0; this corresponds to

line 2 in Algorithm 2.

2. If it is unichain, then, as we will shortly observe, its unique stable distribution is

precisely the SSD ofMǫ, so we are done; this corresponds to lines 3-4 in Algorithm 2.

3. Otherwise, take a maximal reduction ofMǫ, i.e., reduce each of its communicating

classes to a singleton; this corresponds to line 5-6 in Algorithm 2.

4. Then apply the non-uniform scaling construction of Lemma7.16, and iterate (via tail

recursion); this corresponds to lines 7-8 in Algorithm 2.

We begin by observing that, by Theorem 7.10, Theorem 7.11, and Corollary 7.30, at

any step in the algorithm, we may replaceMǫ by an equivalent PMM without affecting

the final result (i.e., the SSD). In particular, we may representMǫ by its pair of resistance

and cost matrices. Theorem 7.6 then tells us how to carry out any subsequent algebraic

operations (i.e., addition and multiplication of PMMs).

We now prove that our termination condition in step 2 is correct.
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Algorithm 2 To Compute the SSD of a PMM.
1: function v0 = SSD(Mǫ) {
2: C = commClasses(M0);
3: if (C.numClosed== 1)
4: return (stab (M0));
5: if (C.nonTrivial> 0)
6: (Mǫ, i, C) = reduce(Mǫ, C);
7: (Mǫ, D) = nonUniformScale(Mǫ, C);
8: return (normalize(iD (SSD(Mǫ))));
9: }

Algorithm 3 To Reduce a GSA.
1: #define uniformScale(M) (hasZeroOnDiagonalP(M) : (I + M)/2 ? M)
2: function (Mǫ, i, C) = reduce(Mǫ, i, C) {
3: Mǫ = uniformScale(Mǫ);
4: Mǫ = dropNonZeroR(Mǫ, C);
5: i = identityMatrix(Mǫ.dim());
6: for (c = C.first(); c.next() 6= NULL ; c = c.next()) {
7: s = c.members().rest();
8: c.setMembers(c.members().first());

9: Mǫ = (Mǫ)s,s + (Mǫ)s,s

(
I − (M0)s,s

)−1

(Mǫ)s,s;

10: i = iPs




I
(
I − (M0)s,s

)−1

(M0)s,s


;

11: }
12: return (Mǫ, i, C);
13: }
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Theorem 7.32.GivenMǫ ∈ PMM(n), if M0 is unichain, thenstab M0 = {ssd Mǫ}.

Proof. Lettingvǫ ≡ stab (Mǫ), by definition,Mǫvǫ = vǫ for ǫ ≻ 0. Taking limits, we have

M0v0 = v0, that is,ssd Mǫ = v0 ∈ stab M0. SinceM0 is unichain,stab M0 is a singleton,

so thatstab M0 = {ssd Mǫ}.

Next, observe howuniformScalecarries out the construction of Corollary 7.13 to guar-

antee that we have zero-resistance diagonal entries. Likewise,dropNonZeroR implements

Lemma 7.22 by dropping all entries with non-zero resistancecorresponding to edges within

any communicating class inC. We may then appeal to Theorem 7.31 to justify step 3, and

the corresponding call toreduce. In this way, we reduce each communicating class, while

only inverting aconstantmatrix.

Notice also how in line 9 of Algorithm 3, we accumulate theunperturbedinclusion of

the reduction,ı0, in the (real-valued) matrix,i. This is correct by Theorem 7.15. Also,

note that as we iterate through each communicating class ofMǫ, reduce eliminates all

the elements of each classexceptthe first, updating its set of member to beonly the first.

Thus, it returns an updated communicating class decomposition, corresponding to the re-

duced result. This means that we do not need to recompute fromscratch before the call to

nonUniformScale.

Finally, Lemma 7.16 guarantees that step 4 is correct. Moreover, the algorithm is guar-

anteed to make progress to termination. Specifically, Corollary 7.17 guarantees that even-

tually either the condition of line 3 or line 5 holds. Thus, either we terminate immediately

or we reduce the dimension ofMǫ, guaranteeing that we will terminate eventually.



Chapter 8

PMMs and Generalized Simulated

Annealing

By restricting attention to a sequenceǫt = e
− 1

Tt for some sequenceTt → 0, for any given

initial distribution, a perturbed Markov matrix defines aninhomogenousMarkov chain,

{Xt}
∞
t=0, of a generalized simulated annealing (GSA) (Trouvé, 1996; Desai et al., 1994)

with transition matrixM t = Mǫt
. Moreover, ifTt → 0 slowly enough, Desai et al. (1994)

describe the resulting process as “quasi-statically cooled”. This is intended to connote

that, in some sense, the limiting distribution of this process equals the limit of the stable

distributions,vǫt
ast→∞, i.e., the stochastically stable distribution ofMǫ.

Specifically, assume that the resistance matrix,R (Mǫ), corresponds to the energy dif-

ferences of a potential function,U(i), so thatR (Mǫ)i,j = (U(i)− U(j))+. Notice that

this implies thatR (Mǫ)i,j 6= ∞ for all i andj. In particular,Mǫ is irreducible, since all

its entries are non-zero. For any such resistance matrix (with all finite entries), the corre-

sponding potential function,U , is uniquely defined, up to an additive constant, and there is

a unique choice withminj U(j) = 0.

Under certain conditions, the resistance matrix of the stable distribution ofMǫ will

allow us to recover this potential, i.e.,

R (stab (Mǫ))i = U(i)−min
j

U(j) (8.1)

To be precise, Trouvé (1996) shows that Equation 8.1 holds iff Hajek’s “weak reversibility”

condition is satisfied. For example, it suffices for the communication matrix,C (Mǫ) to be
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symmetric. Thus, the resistance,R (stab (Mǫ))i, may also be called thevirtual energy1 at

i in Mǫ. By Theorem 7.4 a), we have that(v0 (Mǫ))i > 0 iff R (stab (Mǫ))i = 0. Thus, the

stochastically stable states of a PMM are also called itsgroundstates.

In this chapter, we show how minor modifications to Algorithm2 yields an efficient

technique for computingR (stab (Mǫ)) whenMǫ is irreducible. Based on the previous

discussion, we will denote the set of alln-dimensional, irreducible PMMs asGSA(n). As

before, we will show that:

• R (stab (Mǫ)) only depends onMǫ up to an equivalence relation (weaker than that

of chapter 7) defined over its entries,

• the equivalence class of a GSA,Mǫ, is determined by its resistance,R (Mǫ),

• there are correspondingly weaker notions of equivalence and D-equivalence, which

are preserved under the operations of scaling and reduction, and

• by appealing to the Markov Chain Tree Theorem, we again only need invertconstant

matrices in our constructions.

8.1 Equivalence of GSAs

As before, we begin by defining an equivalence relation onC+, generalizing it toPert, and

then specializing toGSA(n). First, definef, g ∈ C+ to beasymptotic, written asf ≃w g

iff R(f) = R(g). The notation is motivated by fact that this is a strictly weaker notion than

asymptotic equality. The terminology is justified by the following theorem.

Theorem 8.1. If f, g ∈ C+, f is asymptotic tog iff g(ǫ) = 0 = f(ǫ) for ǫ � 0 or

0 < limǫ→0
+

f(ǫ)
g(ǫ)

<∞.

Proof. Iff is asymptotic tog, there are two cases to consider. IfR(f) = R(g) = ∞,

then by Theorem 7.3 b),f ≃ g ≃ 0, so thatg(ǫ) = 0 = f(ǫ) for ǫ � 0. Otherwise,

r ≡ R(f) = R(g) < ∞, so thatlimǫ→0
+

f(ǫ)

cǫ
r = 1 = limǫ→0

+
g(ǫ)

c
′
ǫ
r for c, c′ > 0, and

limǫ→0
+

f(ǫ)
g(ǫ)

= c

c
′ limǫ→0

+
f(ǫ)

cǫ
r

c
′
ǫ
r

g(ǫ)
= c

c
′ , where0 < c

c
′ <∞.

1Desai et al. (1994) call this the “stationary order” ati.
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Conversely, ifg(ǫ) = 0 = f(ǫ) for ǫ � 0, thenR(f) = R(g) = ∞. Otherwise,

0 < limǫ→0
+

f(ǫ)
g(ǫ)

< ∞. This implies thatf 6≃ 0 andg 6≃ 0. Sincef, g ∈ C+, we then

know thatlim
ǫ→0

+
f(ǫ)

cǫ
r = 1 = lim

ǫ→0
+

g(ǫ)

c
′
ǫ
r
′ for c, c′ > 0 and0 ≤ r, r′ < ∞. Therefore,

1 = limǫ→0
+

f(ǫ)

cǫ
r limǫ→0

+
c
′
ǫ
r
′

g(ǫ)
= c

c
′ limǫ→0

+
f(ǫ)
g(ǫ)

limǫ→0
+ ǫr−r

′

, which implies thatR(f) =

r = r′ = R(g).

Likewise, forMǫ, M
′
ǫ ∈ Pert, we will say thatMǫ is asymptoticto M ′

ǫ, writing Mǫ ≃w

M ′
ǫ, iff (Mǫ)ij ≃w

(
M ′

ǫ

)
ij

for all i, j. Theorem 7.6 implies that addition and multiplica-

tion of perturbed matrices is well-defined on equivalence classes under≃w, as well. In the

case of GSAs, we have the following definition.

Definition 8.2. If Mǫ, M
′
ǫ ∈ GSA(n), Mǫ ∼w M ′

ǫ iff stab (Mǫ) ≃w stab
(
M ′

ǫ

)
. In this

case, we sayMǫ andM ′
ǫ areenergy equivalent.

We now state the following easy consequences of Theorem 7.7.

Theorem 8.3.

a) If f ≃ g, thenf ≃w g.

b) If Mǫ ≃M ′
ǫ, thenMǫ ≃w M ′

ǫ.

c) If Mǫ ∼M ′
ǫ, thenMǫ ∼w M ′

ǫ.

d) If Mǫ ≃w M ′
ǫ, thenMǫ ∼w M ′

ǫ.

e) If Mǫ ∼M ′
ǫ andMǫ ∈ GSA(n), thenM ′

ǫ ∈ GSA(n).

Proof. Part a) follows directly from Theorem 7.3. Part b) is an immediate consequence of

part a), and implies part c). Part d) follows from Theorem 7.7and Equation 7.1, as in the

proof of Theorem 7.10.

To prove part e), notice that, by Corollary 5.15, sincestab (Mǫ) ≃ stab
(
M ′

ǫ

)
,

s = {i ∈ Sn | (stab (Mǫ))i 6≃ 0} =
{
i ∈ Sn |

(
stab

(
M ′

ǫ

))
i
6≃ 0
}

= s′

If Mǫ ∈ GSA(n), thens = Sn, so thats′ = Sn, Mǫ is irreducible, andMǫ ∈ GSA(n).

We have the following analog of Theorem 7.12.
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Theorem 8.4.Givenf ∈ C+ \ 0 andMǫ ∈ GSA(n), such that

a) R(f) ≤ R (Mǫ)i,j for all i 6= j,

b) (Mǫ)j,j + f(ǫ)− 1 ∈ C+, and

c) R(f) ≤ R
(
(Mǫ)j,j + f(ǫ)− 1

)
for all j,

if we defineM ′
ǫ = 1

f
(Mǫ − I) + I, thenM ′

ǫ ∈ GSA(n) andMǫ ∼w M ′
ǫ.

Proof. Since a GSA is a PMM, we may apply Theorem 7.12 to conclude thatM ′
ǫ ∈

PMM(n) andMǫ ∼ M ′
ǫ. Theorem 8.3 e) then says thatM ′

ǫ ∈ GSA(n) and Theorem 8.3 c)

givesMǫ ∼w M ′
ǫ.

As before, Corollary 7.13 and Theorem 8.3 allow us to restrict attention to GSAs with

R (Mǫ)j,j = 0, for all j.

Corollary 8.5. Given Mǫ ∈ GSA(n), if we defineM ′
ǫ = 1

2
(Mǫ − I) + I, thenM ′

ǫ ∈

GSA(n), Mǫ ∼w M ′
ǫ, andR

(
M ′

ǫ

)
j,j

= 0, for all j ∈ Sn.

Minor modifications to Lemma 7.16 give the corresponding result for GSAs.

Lemma 8.6. GivenMǫ ∈ GSA(n) with n > 1, such that all communicating classes ofM0

are singletons, defines ≡ minj 6∈T mini6=j R (Mǫ)i,j, whereT is the set of transient states

of M0. Likewise, letc ≡ 2 maxj 6∈T

∑
s=R(Mǫ)i,j

C (Mǫ)i,j. Then0 < s < ∞ andc > 0 so

we may definef(ǫ) ≡ cǫs and

(iǫ)i,j ≡





0 if i 6= j

f(ǫ) if i = j andj ∈ T

1 otherwise

so thatiǫ ∈ Pert(n) andM ′
ǫ = 1

f

(
M ǫ − I

)
+I is energyiǫ-equivalent toMǫ. In particular,

R (stab (Mǫ))j =





s + R
(
M ′

ǫ

)
j

if j ∈ T

R
(
M ′

ǫ

)
j

otherwise
.
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Proof. Since any GSA is a PMM, the proof of Lemma 7.16 applies unchanged, except for

showing thats < ∞. SinceMǫ is irreducible, there are paths inG− (Mǫ) from any vertex

to every other vertex. In particular, each closed indexa hasat least one outgoing edge, so

thats <∞. Continuing the proof of Lemma 7.16, we see thatM ′
ǫ is iǫ-equivalent toMǫ. In

other words,g(ǫ) stab (Mǫ) = iǫ stab
(
M ′

ǫ

)
for someg ∈ C+ with R(g) = 0. Therefore, by

Theorem 7.6,R (stab (Mǫ)) = R(g) + R (stab (Mǫ)) = R
(
iǫ stab

(
M ′

ǫ

))
. Applying The-

orem 7.6 again, theR
(
iǫ stab

(
M ′

ǫ

))
j

= mink∈Sm

{
R (iǫ)j,k + R

(
stab

(
M ′

ǫ

))
k

}
. Sinceiǫ

is diagonal,R (iǫ)j,k = ∞, unlessj = k, so that the minimum occurs whenj = k and

R
(
iǫ stab

(
M ′

ǫ

))
j

= R (iǫ)j,j + R
(
stab

(
M ′

ǫ

))
k
. SinceR (iǫ)j,j = s, if j ∈ T , and0,

otherwise, the result follows.

By repeatedly applying Lemma 8.6, we may then guarantee thatMǫ always possesses

a non-trivial communicating class, as long as we keep track of the corresponding shift in

virtual energies.

Corollary 8.7. GivenMǫ ∈ GSA(n) with n > 1, there exists a diagonaliǫ ∈ Pert(n) and

M ′
ǫ ∈ GSA(n) such thatMǫ ∼iǫ

M ′
ǫ andM ′

0 possesses a non-trivial communicating class.

Proof. As before, since any GSA is a PMM, we may repeat the proof of Corollary 7.17. In

other words, we proceed by repeatedly applying Lemma 8.6, sothat, at each step,M ′
ǫ =

(Mǫ)Dǫ
, for a diagonal matrix,Dǫ. We know thatM ′

ǫ ∈ PMM(n). However, scaling by a

diagonal matrix only affects the magnitude of the edge weights. In particular, it can only

introduce or eliminate self-loops, so thatP
(
M ′

ǫ

)
= P (Mǫ). Thus, sinceMǫ is irreducible,

P (Mǫ) andP
(
M ′

ǫ

)
are complete, so thatM ′

ǫ is irreducible, i.e.,M ′
ǫ ∈ GSA(n). As before,

G−

(
M ′

0

)
⊃ G− (M0) is a strictly larger graph, so this is guaranteed to terminate by the

timeG−

(
M ′

0

)
is complete, if not sooner.

8.2 Reduction of GSAs

Notice that, since a GSA is a PMM, Theorem 7.27 gives us the corresponding result for

GSAs almost immediately.

Theorem 8.8. For anyMǫ ∈ GSA(n) ands ⊂ Sn an open set with respect toM0, if, for

eachǫ � 0, M̂ǫ is the reduction ofMǫ with respect tos, M̂ǫ ∈ GSA(|s|) with

R
(
M̂ǫ

)
i,j

= min
σ∈Sn(s,si,sj)

R (Mǫ, σ)
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Proof. By Theorem 7.27,̂Mǫ ∈ PMM(|s|) and Corollary 5.11 then implies that̂Mǫ is

irreducible forǫ � 0, i.e.,M̂ǫ ∈ GSA(|s|).

This implies a result corresponding to Corollary 7.28 for PMMs.

Corollary 8.9. GivenMǫ, Mǫ ∈ GSA(n), s ⊂ Sn open with respect toM0 andM0
′ with(

M̂ǫ, pǫ, ıǫ

)
and

(
M̂ ′

ǫ, p
′
ǫ, ı

′
ǫ

)
the reductions with respect tos of Mǫ andM ′

ǫ, respectively,

if Mǫ ≃w Mǫ, thenM̂ǫ ≃w M̂ ′
ǫ.

Notice that the first part of Theorem 7.18 may be restated for GSAs, as follows.

Theorem 8.10.GivenMǫ, M
′
ǫ ∈ GSA(n), if

a) T (Mǫ, i) = T
(
M ′

ǫ, i
)

and

b) R (Mǫ)σ(j),j = R
(
M ′

ǫ

)
σ(j),j

, ∀j 6= i, σ ∈ T (Mǫ, i)

for every1 ≤ i ≤ n, thenMǫ ∼w M ′
ǫ.

We may use Theorem 8.10 to obtain an analog of Theorem 7.31 forGSAs, guaranteeing

that we need only invert a constant matrix when computing thereduction of a GSA. To

prove this, we must first prove the following analog of Lemma 7.22.

Lemma 8.11. Given Mǫ ∈ GSA(n), if 0 < R (Mǫ)i,j , R (Mǫ)j,k < ∞, R (Mǫ)i,k ≥

R (Mǫ)i,j + R (Mǫ)j,k, andM ′
ǫ ≡ Mǫ − (Mǫ)i,k

(
eie

t
k − eke

t
k

)
, thenM ′

ǫ ∈ GSA(n) and

Mǫ ∼w M ′
ǫ.

Proof. Observe thatM ′
ǫ is justMǫ with the(i, k)th entry set to 0, adding it to the diagonal.

Thus,M ′
ǫ ∈ Pert. Likewise,G

(
M ′

ǫ

)
is the same asG (Mǫ), except for the removal of

the edge fromvk to vi. However, sinceG (Mǫ) contains a path of length 2 fromvk to vi,

P (Mǫ) = P
(
M ′

ǫ

)
. In particular,M ′

ǫ is irreducible, andM ′
ǫ ∈ GSA(n).

We will show that ifσ ∈ T (Mǫ, r) is a spanning subtree rooted atr with σ(k) = i,

then there is another spanning subtree,σ ∈ T (Mǫ, r), rooted atr with σ′(k) = j, and

R
(
Mǫ, σ

′
)
≤ R (Mǫ, σ). Thus, when considering minimum resistance spanning subtrees,

we may restrict attention to those that do not contain an edgefrom vk to vi. Since the

resistance of such subtrees are necessarily equal forMǫ andM ′
ǫ, Theorem 8.10 would then

imply thatMǫ ∼w M ′
ǫ.
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Assume we are givenσ ∈ T (Mǫ, s) with σ(k) = i and consider the associated directed

spanning tree,T . If we remove the edge(ek, ei), we are left with two directed subtrees,T1
andT2, where we may assume thatvi andvr are inT1 andvk is in T2. Now vj must be in

one of these subtrees. Ifvj is in T1, by adding the edge fromvk to vj we obtain a tree with

total resistance which has decreased byR (Mǫ)i,j. Formally, definingσ′(t) = σ(t), for all

t 6= k, andσ′(k) = j, R
(
Mǫ, σ

′
)

= R (Mǫ, σ)− R (Mǫ)i,j < R (Mǫ, σ).

Otherwise,vj is in T2. Deleting the edge fromvj in T2 splits it into two smaller trees,

T ′
2 andT ′′

2 , where we may assume thatvj is in T ′′
2 andvk is in T ′

2 . By adding the edges

from vk to vj and fromvj to vi, we obtain a tree with total resistance no greater than before,

but which does not include the edge fromvk to vi. Formally, definingσ′(t) = σ(t), for

all t 6= k, j, σ′(k) = j, σ′(j) = i, R
(
Mǫ, σ

′
)
≤ R (Mǫ, σ) − R (Mǫ)i,k + R (Mǫ)i,j +

R (Mǫ)j,k ≤ R (Mǫ, σ).

Theorem 8.12.GivenMǫ ∈ GSA(n) such thatR (Mǫ)i,i = 0 for all i, a communicating

class,s′ ⊂ Sn, of M0 such that, fori 6= j ∈ s′, (Mǫ)i,j = (M0)i,j, and a subsets ⊂ s′

such that
∣∣s′ \ s

∣∣ = 1, if
(
M̂ǫ, pǫ, ıǫ

)
is the reduction with respect tos of Mǫ, there is an

M ′
ǫ ∈ GSA(|s|) such that

(
M ′

ǫ

)
i,j

= (p0 (Mǫ − I) ı0 + I)i,j for i 6= j andM̂ǫ ∼w M ′
ǫ.

Proof. By Theorem 5.8 c),
(
M̂ǫ

)
i,j

=
∑

σ∈PMǫ
(s,si,sj)

W (Mǫ, σ)

For anyi andj for which0 < R
(
M̂ǫ

)
i,j

<∞, chooseσ ∈ PMǫ

(
s, si, sj

)
such that|σ| ≡ l

andR (Mǫ, σ) are minimum.

If l = 1, then we replace
(
M̂ǫ

)
i,j

by (Mǫ)si,sj
, adding the difference to

(
M̂ǫ

)
j,j

to

obtain an asymptotically equivalent GSA. Likewise, ifl > 1 and bothR (Mǫ)σl,σl−1
>

0 andR (Mǫ)σ1,σ0
> 0, we will show that, by Lemma 8.11, we may set

(
M̂ǫ

)
i,j

to 0,

adjusting
(
M̂ǫ

)
j,j

, to obtain to obtain an asymptotically equivalent GSA. Repeating these

two operations as many times as necessary, we obtainM̃ǫ ∈ GSA(s) such that̃Mǫ ∼w M̂ ,

and0 = R
(
M̃ǫ

)
i,j

or∞ = R
(
M̃ǫ

)
i,j

or R
(
M̃ǫ

)
i,j

is that of any minimum resistance

walk with exactly one non-zero resistance edge.

To prove that the conditions of Lemma 8.11 hold, lets′ \ s = {q} and assume that

r1 ≡ R (Mǫ)σl,σl−1
> 0 andr2 ≡ R (Mǫ)σ1,σ0

> 0. Sinceq is in the same communicating
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class asσl−1 andσ1, there exist walks ins from q to σl−1 andσ1, respectively. Adding the

two non-zero resistance edges gives walks fromq to σl = i and fromσ0 = j to q through

s, with resistancer1 andr2, respectively. Thus,r1 ≥ R
(
M̃ǫ

)
i,q

andr2 ≥ R
(
M̃ǫ

)
q,j

, so

thatR (Mǫ, σ)i,j = r1 + r2 ≥ R
(
M̃ǫ

)
i,q

+ R
(
M̃ǫ

)
q,j

, and the conditions of Lemma 8.11

are satisfied.

Now notice that, if we letM ǫ ≡ p0 (Mǫ − I) ı0 + I thatM 0 = M̂0. In particular,M 0

is Markov. SinceR (Mǫ)i,i = 0 for all i, by Theorem 8.8,R
(
M̂ǫ

)
i,i

= 0, so thatM̂0 > 0,

and hence, for alli,
(
M ǫ

)
i,i

> 0 for ǫ � 0. Therefore,
∑

i6=j

(
M 0

)
i,j

= 1−
(
M ǫ

)
i,i

< 1.

We wish to show that
(
M ǫ

)
i,j
∈ C+ for i 6= j. By definition,

M ǫ = p0 (Mǫ − I) ı0 + I

=
(

I − (M0)s,s (Λ0)
−1
s,s

)
P t

sΛǫPs


 I

− (Λ0)
−1
s,s (M0)s,s


 + I

=
(

I − (M0)s,s (Λ0)
−1
s,s

)

 (Λǫ)s,s (Mǫ)s,s

(Mǫ)s,s (Λǫ)s,s




 I

− (Λ0)
−1
s,s (M0)s,s


 + I

=
(

I − (M0)s,s (Λ0)
−1
s,s

)

 (Λǫ)s,s − (Mǫ)s,s (Λ0)

−1
s,s (M0)s,s

(Mǫ)s,s − (Λǫ)s,s (Λ0)
−1
s,s (M0)s,s


+ I

= (Λǫ)s,s − (M0)s,s (Λ0)
−1
s,s (Mǫ)s,s − (Mǫ)s,s (Λ0)

−1
s,s (M0)s,s

+ (M0)s,s (Λ0)
−1
s,s (Λǫ)s,s (Λ0)

−1
s,s (M0)s,s + I

= (Mǫ)s,s − (M0)s,s (Λ0)
−1
s,s (Mǫ)s,s − (Mǫ)s,s (Λ0)

−1
s,s (M0)s,s

+ (M0)s,s (Λ0)
−1
s,s (Mǫ)s,s (Λ0)

−1
s,s (M0)s,s − (M0)s,s (Λ0)

−1
s,s (Λ0)

−1
s,s (M0)s,s

Focusing attention on the off-diagonal entries, by Corollary 4.5, we may rewrite this in
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terms of walks, as follows. Fori 6= j,

(
M ǫ

)
i,j

= (Mǫ)si,sj
+
∑

k

∑

σ∈PM0
(s,si,sk)

W (M0, σ) (Mǫ)sk,sj

+
∑

k

∑

σ∈PM0
(s,sk,sj)

(Mǫ)si,sk
W (M0, σ)

+
∑

k,k
′

∑

σ∈PM0
(s,si,sk)

∑

σ
′
∈PM0

(s,s
k
′ ,sj)

W (M0, σ) (Mǫ)sk,s
k
′
W
(
M0, σ

′
)

−
∑

k

∑

σ∈PM0
(s,si,sk)

∑

σ
′
∈PM0

(s,sk,sj)

W (M0, σ)W
(
M0, σ

′
)

(8.2)

If R
(
M̂ǫ

)
i,j

= ∞, then there are no walks inG (Mǫ) from sj to si throughs, so that

all the terms in Equation 8.2 vanish as well, i.e.,
(
M ǫ

)
i,j

= 0 for ǫ � 0. If R
(
M̂ǫ

)
i,j

= 0,

since
(
M 0

)
i,j

=
(
M̂0

)
i,j

> 0,
(
M ǫ

)
i,j

> 0 for ǫ � 0. Finally, if 0 < R
(
M̂ǫ

)
i,j

<∞, then

there exists at least one walk inG (Mǫ) from sj to si throughs, and every walk contains at

least one edge with non-zero resistance. In this case,

(
M ǫ

)
i,j

= (Mǫ)si,sj
+
∑

k

∑

σ∈PM0
(s,si,sk)

W (M0, σ) (Mǫ)sk,sj

+
∑

k

∑

σ∈PM0
(s,sk,sj)

(Mǫ)si,sk
W (M0, σ) (8.3)

+
∑

k,k
′

∑

σ∈PM0
(s,si,sk)

∑

σ
′
∈PM0

(s,s
k
′ ,sj)

W (M0, σ) (Mǫ)sk,s
k
′
W
(
M0, σ

′
)
≥ 0

since ∑

k

∑

σ∈PM0
(s,si,sk)

∑

σ
′
∈PM0

(s,sk,sj)

W (M0, σ) W
(
M0, σ

′
)

is a sum over zero-resistance walks. Moreover,R
(
M ǫ

)
i,j

is the minimum resistance taken

over all walks fromsj to si throughs with exactly one non-zero resistance edge.

So far we have shown that
(
M ǫ

)
i,j
∈ C+ for all i 6= j and thatR

(
M ǫ

)
i,j

= R
(
M̃ǫ

)
i,j

for all i 6= j. Consequently,G−

(
M ǫ

)
and G−

(
M̃ǫ

)
only differ in self-loops, so that

P
(
M ǫ

)
= P

(
M̃ǫ

)
. Therefore,G−

(
M ǫ

)
is unichain and Lemma 7.21 gives anM ′

ǫ ∈

PMM(n), such that
(
M ′

ǫ

)
i,j

=
(
M ǫ

)
i,j

for i 6= j. In particular,M ′
ǫ is irreducible, and

henceM ′
ǫ ∈ GSA(n).
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Moreover,R
(
M ′

ǫ

)
i,j

= R
(
M ǫ

)
i,j

= R
(
M̃ǫ

)
i,j

for i 6= j, andR
(
M ′

ǫ

)
i,i

= 0 =

R
(
M̃ǫ

)
i,i

for all i. Therefore,M ′
ǫ ≈w M̃ǫ andM ′

ǫ ∼w M̃ǫ ∼w M̂ǫ.

We these results, Algorithm 2 carries almost unchanged for GSAs. However, using

naturality of the reduce construction (i.e., Theorem 5.33), unlike the case of PMMs, we

may reduce all communicating classes simultaneously.

Theorem 8.13.GivenMǫ ∈ GSA(n) such thatR (Mǫ)i,i = 0 for all i, and for i 6= j

in the same communicating class ofM0, (Mǫ)i,j = (M0)i,j, and a subsets ⊂ Sn con-

taining all but one representative of each communicating class inM0, if
(
M̂ǫ, pǫ, ıǫ

)
is

the reduction with respect tos of Mǫ, there is anM ′
ǫ ∈ GSA(|s|) such that

(
M ′

ǫ

)
i,j

=

(p0 (Mǫ − I) ı0 + I)i,j for i 6= j andM̂ǫ ∼w M ′
ǫ.

Proof. Assume thatM0 hask non-trivial (i.e., containing more than one element) commu-

nicating classes, and
(
M̂j,ǫ, pj,ǫ, ıj,ǫ

)
is the result of eliminating all but the chosen mem-

ber of thej th communicating class from̂Mj−1,ǫ, whereM̂0,ǫ ≡ Mǫ. By Theorem 5.36,

M̂k,ǫ = M̂ǫ andM̂j,ǫ = pj,ǫ . . . p1,ǫ (Mǫ − I) i1,ǫ . . . ij,ǫ + I. Applying Theorem 8.12k

times gives that

M̂ǫ ∼w pk,0pk−1,ǫ . . . p1,ǫ (Mǫ − I) i1,ǫ . . . ik−1,ǫik,0 + I ∼w · · ·

∼w pk,0 . . . p1,0 (Mǫ − I) i1,0 . . . ik,0 + I

which, by Theorem 5.36 again, iŝ̂M ǫ = p0 (Mǫ − I) i0 + I.

8.3 The Energy Algorithm

In this section, we present our algorithm for computing the potential energy of a GSA and

prove that it is correct. The intuition and proof of correctness is generally the same as for

Algorithm 2.

As before, we may replaceMǫ by an energy equivalent GSA without affecting the final

result. In particular, we may representMǫ just by resistance matrix, using Theorem 7.6 to

carry out subsequent algebraic operations. Notice for example thatuniformScale simply

replaces each diagonal entry of the resistance matrix with a0. As before, Lemma 8.6 and

Corollary 8.7 guarantee that we either terminate immediately or we reduce the dimension

of Mǫ, guaranteeing that we will terminate eventually.
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Algorithm 4 To Compute the Energy of a GSA.
1: function r = Energy(Mǫ) {
2: C = commClasses(M0);
3: if (dim(Mǫ) == 1)
4: return ((0));
5: if (C.nonTrivial> 0)
6: (Mǫ, i, C) = reduce(Mǫ, C);
7: (Mǫ, D) = nonUniformScale(Mǫ, C);
8: return (iD (Energy(Mǫ)));
9: }

Algorithm 5 To Reduce a GSA.
1: #define uniformScale(M) (hasZeroOnDiagonalP(M) : (I + M)/2 ? M)
2: function (Mǫ, i, C) = reduce(Mǫ, i, C) {
3: Mǫ = uniformScale(Mǫ);
4: Mǫ = dropNonZeroR(Mǫ, C);
5: (s, C) = chooseMaximal(C);

6: p =
(

I (M0)s,s

(
I − (M0)s,s

)−1 )
P t

s ;

7: i = Ps




I
(
I − (M0)s,s

)−1

(M0)s,s


;

8: Mǫ = p (Mǫ − I)s,s i + I;
9: return (Mǫ, i, C);

10: }
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Besides the different termination condition, the other keydifference between Algo-

rithms 4 and 2 is the way in which we compute the reduction, while only inverting constant

matrices. We begin Algorithm 5, as before, by guaranteeing that we have zero-resistance

entries on the diagonal and within any submatrix corresponding to a communicating class.

We then usechooseMaximaltp choose a set of representatives from each communicating

class, returning their complement ass and the corresponding singleton sets asC. We may

then use Theorem 8.12 to guarantee that applying the corresponding quotient operators of

M0 to Mǫ yields a GSA which is energy equivalent to the quotient ofMǫ with respect to

s. This is essentially the algorithm of Gambin and Pokarowski(2001). However, their

algorithm is mainly combinatorial, operating primarily asa recursive algorithm on graphs.

Since our algorithm recursively operates on GSAs, we believe that it is conceptually more

satisfying.



Part III

Two Related Algorithms

152



Chapter 9

GraphRank

In this chapter, we discuss the problem of ranking and frame asolution in terms of a multi-

objective linear program. We then show how to compute Paretooptimal solutions, as well

as suggest how to find socially optimal solutions. We will assume we are given a set of indi-

viduals and for selected ordered pairs,(i, j), a positive value,d(i, j) ≥ 0, indicating thatj

is superior toi by d(i, j) units. For example, if the individuals are sports teams,d(i, j) may

represent the positive differential in points scored or games won (e.g., teamj won d(i, j)

more times against teami than it lost). We can represent this data naturally as a weighted,

directed graph,G = (V, E, d, s, t), where the vertices,V , correspond to the individuals

being ranked, the edges,E, correspond to the set of comparisons, ands(α), t(α) : E → V

are the starting and ending vertices ofα, respectively. We will assume thatV andE are

finite. The objective is then to determine a ranking function, x : V → R which is consistent

with the given data, as well as optimal, in some sense.

If the corresponding graph is not connected, then vertices in different components are

necessarily incomparable, so we will assume thatG is connected. If the corresponding

undirectedgraph is connected and acyclic, then there is a unique solution to the corre-

sponding system of equations,x (t(α)) − x (s(α)) = d(α), ∀α ∈ E, up to a constant

shift. In general, this ranking problem is complicated by the existence of undirected cycles

in the graph which lead to an inconsistent system of equations. While there are general

techniques for solving such over-determined systems of linear equations, we would prefer

a technique which is motivated by this specific application.

One approach taken in the literature for undirected graphs is to simply throw out the

153
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smallest number of edges to obtain a directed acyclic graph (DAG) and apply standard

topological sort techniques to the result (Kenyon-Mathieuand Schudy, 2007; Ailon, 2007).

This has the advantage of avoiding ties, but does not addresshow to optimallysort indi-

viduals in the resulting graph. Thus, we take an alternativeapproach which will lead to a

non-trivial ranking whenever possible. We give one justification for this approach here and

address it in further detail in section 9.3.

For a ranking to be consistent with the data, we must at least have0 ≤ x (t(α)) −

x (s(α)) ≤ d(α), ∀α ∈ E. In other words, if the data indicates that teami is better

than teamj, it should be ranked no worse. We wish to create an “informative” ranking,

by distinguishing individuals from one another whenever possible. It is easy to show that

these constraints imply that any feasible ranking must be constant on directed cycles. That

is, with these constraints it is impossible to use a feasibleranking to distinguish between

individuals within a directed cycle. However, by collapsing all cycles to single vertices,

we obtain a DAG and we can sort the vertices in strictly increasing order. Therefore,

topological sort on unweighted graphs can be viewed as an optimization problem, where

we are trying to minimize the number of strict equalities in our constraints. This objective

has the nice property of treating the data “fairly” by handling all the given edges in the

same manner.

However, a ranking should not overstate the degree of superiority of teami overj. That

is, we should impose the additional constraintsx (t(α)) − x (s(α)) ≤ d(α), ∀α ∈ E.

Now instead of distinguishing individualswheneverpossible, we can also seek to do so as

muchas possible. That is, we want a ranking which is maximal with respect to the multiple

objectives,fs,t(x) = x(t) − x(s), such that(s, t) = (s(α), t(α)) with α ∈ E. Notice

that if we consider unweighted graphs as the case whend(α) ≡ 1, this will automatically

minimize the number of tight left-hand side constraints, sothis is a natural generalization

of the previous problem.

Formally, given a weighted, directed graph,G = (V, E, d), we restrict attention to the

set of valuations onG, C(G), satisfying the corresponding system of linear constraints:

C(G) = {x : V → R | 0 ≤ x (t(α))− x (s(α)) ≤ d(α), ∀α ∈ E} .

Observe thatC(G) 6= ∅, since it contains every constant function onV . Now define a

pre-order (with corresponding partial order and equivalence relation) onC(G), �, so that

x � x′ iff x (t(α)) − x (s(α)) ≤ x′ (t(α)) − x′ (s(α)) , ∀α ∈ E. Our goal is then to
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solve the multi-objective, linear program,Rank(G): computex∗ ∈ maxC(G), that is, find

a Pareto optimal, feasible ranking.

This type of system of constraints has been well-studied in operations research, par-

ticularly in the theory of scheduling (Corman et al., 2001).The graph is then called a

PERT (Program Evaluation and Review Technique) chart. However, the classical problem

generally involvesminimizingthe difference between the largest and smallest values ofx,

which in our case would yield the trivial ranking,x(v) ≡ 0. However, we might wish to

refine our search to a Pareto optimal solution which is socially optimal with respect to some

aggregation function, such asmaxs, t∈V x(t)− x(s) or
∑

α∈E x(t(α))− x(s(α)).

In the latter case, the problem may be recast as a standard linear program, where a

solution may always be taken at a vertex ofG(G), corresponding to a consistent collection

of tight constraints. Intuitively, the tight constraints of the form x (t(α)) − x (s(α)) =

d(α) correspond to a choice of edges, while the remaining equality constraints,x (t(α)) =

x (s(α)) should only be those forced by the geometry ofG. This suggests that we pursue

a general approach to finding Pareto optimal solutions corresponding to maximizing the

difference on selected edges, using the geometry ofG to infer the subsequent equality

constraints.

We will carry out this program in section 9.2 and give an algorithm for computing a

Pareto optimal solution. We then discuss related work and future directions for research.

We conclude by outlining applications of these techniques to voting and information re-

trieval.

9.1 Existence of Solutions

In this section, we discuss some background results relatedto the problem,Rank(G),

introduced in the previous section. Most importantly, we will show that solutions exist,

and that feasible rankings are constant on strongly connected components (SCCs) ofG.

SCCs are most easily described in terms of the natural preorder of the vertices, given by

the “leads to” relation,;, wherei ; j iff there is a directed path inG from i to j. SinceG

is connected, for eachs, t ∈ V , there is a sequence{vi}
k
i=0 ⊂ V such thats ; v0 ;v1 ;

· · · ;vk ; t. This relation defines an equivalence relation,∼, wherei ∼ j iff i ;

j andj ; i, a corresponding partial order on the set of equivalence classes, which we will
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denote by�, and astrict partial order,≺. The strongly connected components ofG are

simply equivalence classes with respect to∼. They are also often called “communicating”

classes.

Given anundirectedwalk in G, we may define its length by summing the weights of

the edges, where we weight a forward edge asd(α) and a reversed edge as0. Let lG(s, t)

be the length of the shortest such walk froms to t. SinceG is connected, this set of walks

is non-empty, so thatlG(s, t) is well-defined for alls, t ∈ V .

Lemma 9.1. If x ∈ C(G), x(t)− x(s) ≤ lG(s, t). In particular, if s ; t, x(s) ≤ x(t).

Proof. Consider any undirected walk froms to t. For each forward edge,α, we have

x (t(α))− x (s(α)) ≤ d(α). For each reversed edge, we have0 ≤ x (t(α))− x (s(α)), so

thatx (s(α))−x (t(α)) ≤ 0. When we sum these inequalities, the left-hand side telescopes

to x(t) − x(s), while the right-hand side yields the length of the undirected walk. Since

this inequality holds for all such walks, it holds for the shortest such one, i.e., when the

right-hand side islG(s, t). If s ; t, then there is an undirected walk fromt to s consisting

entirely of reversed edges, so thatlG(t, s) = 0, x(s)− x(t) ≤ 0, andx(s) ≤ x(t).

We can now prove thatRank(G) has at least one solution. For the following, we will

assume only that there is a well-defined operation,I, taking a directed graph to pairs of its

vertices,I(G) ⊂ V × V , and thatx � x′ iff x(t)− x(s) ≤ x′(t)− x′(s), ∀ (s, t) ∈ I(G).

For example,

I(G) = {(s, t) | degin(s) = degout(t) = 0} or

I(G) = {(s, t) | s = s(α), t = t(α), α ∈ E} .

Lemma 9.2. If x′ − x is constant, thenx ∼ x′. Moreover, ifx ∈ C(G), thenx′ ∈ C(G).

Proof. If x′ = x + c, x′
(
t′
)
− x′

(
s′
)

= x
(
t′
)
− x

(
s′
)
, ∀ s′, t′ ∈ V . Since∼ andC(G)

are defined solely in terms collections of such differences,the conclusions of the Lemma

follow.

Theorem 9.3.max C(G) 6= ∅.

Proof. Let M = maxs,t∈V lG(s, t). By Lemma 9.1−lG(v, u) ≤ x(u) − x(v) ≤ lG(u, v),
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so that|x(u)− x(v)| ≤ max {lG(u, v), lG(v, u)} ≤ M . By Lemma 9.2, there is a repre-

sentative of each equivalence class ofC(G) in

C ′(G) ≡

{
x ∈ C(G) |

∑

v∈V

x(v) = 0

}
.

For anyv ∈ V , if N = |V |,

|x(v)| = |x(v)| =
1

N

∣∣∣∣∣
∑

u∈V

x(u)− x(v)

∣∣∣∣∣ ≤
1

N

∑

u∈V

|x(u)− x(v)| ≤
1

N
NM = M.

Thus,C ′(G) is closed and bounded, hence compact. Consider

D(x) ≡
∑

(s, t)∈I(G)

x(t)− x(s).

This is continuous onC ′(G) and hence attains a maximum there at somex∗. This must be

maximal inC(G), for if x ≺ x′, we can assume without loss of generality thatx′ ∈ C ′(G),

so thatD(x) < D
(
x′
)
, which is a contradiction.

Observe that whenG is strongly connected, the constant solution is the unique (up to

constant shift) solution toRank(G). More generally, any feasible ranking is constant on

strongly connected components ofG.

Theorem 9.4. If x ∈ C(G) ands and t are in a common cycle (i.e.,s ∼ t), thenx(s) =

x(t). In particular,x(v) is constant on strongly connected components.

Proof. Sinces ∼ t, s � t, andx(s) ≤ x(t), by Lemma 9.1. Likewise,x(t) ≤ x(s), so that

x(s) = x(t) for s andt within the same strongly connected component.

9.2 Computing Pareto Optimal Solutions

In this section we show how to solveRank(G) from the Introduction by using four ba-

sic operations, reversing 0 weight edges, collapsing cycles, dropping multiple edges, and

“shifting” vertices, to recursively simplify the problem.In so doing, we give a constructive

proof of existence of solutions toRank(G). We begin by showing how we may reduce

the problem on an arbitrary graph to a corresponding problemon a simple, directed acyclic
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graph without 0 edges, obtained by reversing 0 edges, collapsing cycles and then dropping

all but the smallest of multiple edges.

Given a a weighted, directed graph,G = (V, E, d, s, t), let E0 = {α ∈ E | d(α) = 0}

be the set of 0 weight edges. We may define a new graphT (G) = (V ′, E ′, d′, s′, t′) with

V ′ ≡ V , whereE ′ is essentially the same asE, except we introduce the reverse of the

edges inE0. Specifically,E ′ ≡ E × {0} ∪ E0 × {1}, with d′(α, 0) ≡ d(α), d′(α, 1) ≡ 0,

s′(α, 0) ≡ s(α), s′(α, 1) ≡ t(α), e′(α, 0) ≡ t(α), and e′(α, 1) ≡ s(α). Notice that

C(G) = C(T (G)), since we are simply adding redundant equality constraints.

Theorem 9.5. The set of feasible rankings forG andT (G) are identical, that is,C(G) =

C(T (G)). Likewise,x �G x′ iff x �T (G) x′. In particular,max C(T (G)) = maxC(G).

Proof. Givenx ∈ C(G) andα′ = (α, i) ∈ E ′, there are two cases to consider. Ifi = 0,

thenα ∈ E and0 ≤ x (t(α)) − x (s(α)) ≤ d(α). Sinces′(α, 0) = s(α), t′(α, 0) = t(α),

andd′(α, 0) = d(α), 0 ≤ x
(
t′(α, 0)

)
− x

(
s′(α, 0)

)
≤ d(α, 0). If i = 1, thenα ∈ E0 and

d(α) = 0. Therefore,0 ≤ x (t(α))− x (s(α)) ≤ d(α) = 0 and0 ≤ x (s(α))− x (t(α)) ≤

0 = d(α, 1). Sinces′(α, 1) = t(α) andt′(α, 1) = s(α), 0 ≤ x
(
t′(α, 1)

)
− x

(
s′(α, 1)

)
≤

d(α, 1). Therefore,x ∈ C(T (G)).

Conversely, ifx ∈ T (G) andα ∈ E, then0 ≤ x
(
t′(α, 0)

)
− x

(
s′(α, 0)

)
≤ d(α, 0).

As before,s′(α, 0) = s(α), t′(α, 0) = t(α), andd′ (α, 0) = d(α), so that0 ≤ x (t(α)) −

x (s(α)) ≤ d(α) andx ∈ C(G).

Now assume thatxi ∈ C(G) = C(T (G)), i = 1, 2, andx1 �G x2. Givenα′ = (α, i) ∈

E ′, there are again two cases to consider. Ifi = 0, thenα ∈ E, and sincex1 �G x2,

x1 (t(α)) − x1 (s(α)) ≤ x2 (t(α)) − x2 (s(α)), so thatx1

(
t′(α, 0)

)
− x1

(
s′(α, 0)

)
≤

x2

(
t′(α, 0)

)
− x2

(
s′(α, 0)

)
. If i = 1, thenα ∈ E0, xi (t(α)) = xi (s(α)), and

x1

(
t′(α, 1)

)
− x1

(
s′(α, 1)

)
= 0 ≤ 0 = x2

(
t′(α, 1)

)
− x2

(
s′(α, 1)

)
.

Thus,x1 �T (G) x2.

Conversely, assume thatx1 �T (G) x2. Givenα ∈ E, thenα′ = (α, 0) ∈ E ′. Since

x1 �T (G) x2, x1

(
t′(α, 0)

)
− x1

(
s′(α, 0)

)
≤ x2

(
t′(α, 0)

)
− x2

(
s′(α, 0)

)
. Therefore,

x1 (t(α))− x1 (s(α)) ≤ x2 (t(α))− x2 (s(α)), so thatx1 �G x2.

Given a a weighted, directed graph,G = (V, E, d, s, t), let [v] =
{
v′ ∈ V | v′ ∼ v

}
. We

wish to define a graphP (G) = (V ′, E ′, d′, s′, t′), whereV ′ = {[v] | v ∈ V }. That is, the
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vertices ofP (G) correspond to the strongly-connected components ofG. Since strongly-

connected components are unions of cycles, we have effectively collapsed each cycle to a

single vertex. To guarantee that the result is simple, we discard all loops and retain only the

smallest weight edge between any two vertices. Specifically, givens′, t′ ∈ V ′ with s′ = [s]

andt′ = [t], such thats ≺G t andEs
′
,t
′ ≡

{
α ∈ E | s (α) ∈ s′, e (α) ∈ t′

}
6= ∅, choose

αs
′
,t
′ = arg minα∈E

s
′
,t
′
d(α), and takeE ′ to be the set of all such edges. Finally, take

d′ = d|E′, s′(α) = [s(α)], andt′(α) = [t(α)]. Notice that by construction,s′
(
αs

′
,t
′

)
= s′

ande′
(
αs

′
,t
′

)
= t′.

Now observe that there is a natural, order-preserving correspondence betweenC(G)

andC(P (G)).

Theorem 9.6. The mappingp given byp(x)(v) = x([v]) is a bijective, order preserv-

ing correspondence betweenC(P (G)) and C(G). In particular, p (max C(P (G))) =

max C(G).

Proof. We first show that, ifx′ ∈ C(P (G)), x ≡ p
(
x′
)
∈ C(G). Givenα ∈ E, we

must show that0 ≤ x (t(α)) − x (s(α)) ≤ d(α). By definition,x (t(α)) − x (s(α)) =

x′([t(α)]) − x′([s(α)]). If s(α) ∼ t(α), this is 0 and we are done. Otherwise, letting

t′ ≡ [t(α)]) ands′ ≡ [s(α)], we haves(α) ≺G t(α) andα ∈ Es
′
,t
′ , so thatx′([t(α)]) −

x′([s(α)]) = x′
(
t′
)
− x′

(
s′
)

= x′
(
e′
(
αs

′
,t
′

))
− x′

(
s′
(
αs

′
,t
′

))
. Sincex′ ∈ C(P (G)),

0 ≤ x′
(
e′
(
αs

′
,t
′

))
− x′

(
s′
(
αs

′
,t
′

))
≤ d

(
αs

′
,t
′

)
≤ d(α). Sincex (t(α)) − x (s(α)) =

x′
(
e′
(
αs

′
,t
′

))
− x′

(
s′
(
αs

′
,t
′

))
, we have shown thatx ∈ C(G).

Now observe that, by Theorem 9.4, anyx ∈ C(G) is constant on equivalence classes,

[v], so that the inverse mapping,p−1 (x) ([v]) = x(v), is well-defined. Ifx′ = p−1 (x),

we must show thatx′ ∈ C(P (G)). If α ∈ E ′, thenα = αs
′
,t
′ with s′(α) = s′ and

t′(α) = t′. Moreover,s′ = [s(α)] andt′ = [t(α)] andx′
(
e′ (α)

)
−x′

(
s′ (α)

)
= x′ ([t(α)])−

x′ ([s(α)]) = x (t(α))− x (s(α]), which is between0 andd(α) = d′(α), sincex ∈ C(G).

Finally, it remains to show thatp andp−1 are order-preserving functions. Assume that

x1 � x2 with xi ∈ C(P (G)), and considerα ∈ E. For convenience, lett = t(α),

s = s(α), and observe thatp (xi) (t)− p (xi) (s) = xi([t])−xi([s]). There are two cases to

consider. Eithers ∼G t or s ≺G t. In the first case,xi([t]) = xi([s]), we havep (x1) (t) −

p (x1) (s) = 0 ≤ 0 = p (x1) (t) − p (x1) (s). Otherwise,s ≺G t andα ∈ E[s],[t], so that

α [s], [t] ∈ E ′ with [s] = s
(
α[s],[t]

)
and[t] = e

(
α[s],[t]

)
. Sincex1 � x2, x1([t])− x1([s]) ≤



160

x2([t])−x2([s]), or equivalently,p (x1) (t)−p (x1) (s) ≤ p (x1) (t)−p (x1) (s). Therefore,

p (x1) ≤ p (x2).

Conversely, assume thatx′
1 � x′

2 with x′
i ∈ C(G). Letx′

i = p (xi) and considerα ∈ E ′.

Thenα = α[s],[t], with s(α) = s andt(α) = t. Sinces′(α) = [s] andt′(α) = [t], we must

show thatx1([t])−x1([s]) ≤ x2([t])−x2([s]). Sincex′
1 � x′

2, x
′
1(t)−x′

1(s) ≤ x′
2(t)−x′

2(s).

By definition,x′
i(t) = xi([t]) andx′

i(s) = xi([s]). Therefore,x1([t])− x1([s]) ≤ x2([t]) −

x2([s]), as desired, so thatx1 � x2.

We now introduce a novel operation to “shift” a vertex. This corresponds to fea-

sible pivot in a simplex tableau forC(G), or equivalently, a change of variables that

forcesx (t(α)) − x (s(α)) = d(α). Specifically, given a weighted, directed graph with-

out self-loops,G = (V, E, d, s, t), we will say that an edge,α ∈ E, is feasible iff

d(α) = mint(β)=t(α) d(β). For any feasible edge,α, we then define a graphRα(G) which is

identical toG, but with a new set of edge weights. Specifically, letRα(G) = (V, E, d′, s, t)

with

d′(β) ≡





d(β)− d(α), if t(β) = t(α)

d(β) + d(α), if s(β) = t(α)

d(β), otherwise

.

As before, there is a corresponding mapping,rα, taking valuations onRα(G) to valua-

tions onG.

Theorem 9.7.Consider the mappingrα, given by

rα

(
x′
)
(v) ≡





x′(v) + d(α), if v = t(α)

x′(v), otherwise

This is bijective, order-preserving correspondence between:

domain rα ≡
{
x′ ∈ C(R(G)) | x′(t(β))− x′(s(β)) ≥ d(α), if t(α) = s(β)

}

and

im rα = {x ∈ C(G) | x(t(β))− x(s(β)) ≥ d(α), if t(α) = t(β)} .

Proof. We first show that

x ≡ rα

(
x′
)
∈ C ′ ≡ {x ∈ C(G) | x(t(β))− x(s(β)) ≥ d(α), if t(α) = t(β)} ,
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for anyx′ ∈ domain rα. Givenβ ∈ E, by assumption,0 ≤ x′ (e (β))− x′ (s (β)) ≤ d′(β),

with d(α) ≤ x′ (e (β)) − x′ (s (β)), if t(α) = s(β). If t(β) = t(α), thend′(β) = d(β) −

d(α), x′ (t(β)) = x (t(β)) − d(α), andx′ (s(β)) = x (s(β)), sinces(β) 6= t(β) = t(α).

Therefore,0 ≤ d(α) ≤ x (t(β)) − x (s(β)) ≤ d(β). In particular,x (t(α)) − x (s(α)) =

d(α).

Similarly, if s(β) = t(α), thend′(β) = d(β) + d(α), x′ (s(β)) = x (s(β))− d(α), and

x′ (t(β)) = x (t(β)), sincet(β) 6= s(β) = t(α). Sinced(α) ≤ x′ (e (β)) − x′ (s (β)) ≤

d′(β), 0 ≤ x (t(β))− x (s(β)) ≤ d(β).

Finally, if t(α) 6= s(β), t(β), thend′(β) = d(β), x′ (s(β)) = x (s(β)), andx′ (t(β)) =

x (t(β)). Thus,0 ≤ x (t(β)) − x (s(β)) ≤ d(β) for all β ∈ E, with d(α) ≤ x(t(β)) −

x(s(β)), whent(α) = t(β). In other words,x ∈ C ′, so thatim rα ⊂ C ′. Conversely, if

x ∈ C ′, we may then definex′(v) = x(v) − d(α), if v = t(α), andx(v), otherwise. The

previous calculations may all clearly be reversed, to show thatx′ ∈ domain rα.

We now observe that bothrα andr−1
α are order-preserving. Ifx ≡ rα

(
x′
)
, then for any

s, t ∈ V , notice thatxi(t)−xi(s) = rα (xi) (t)−rα (xi) (s)−c, wherec = −d(α), d(α), or

0, depending on whethers and/ort equalt(α). In any case,x1(t)−x1(s) ≤ x2(t)−x2(s) iff

rα (x1) (t)− rα (x1) (s) ≤ rα (x2) (t)− rα (x2) (s), for all s, t ∈ V . In particular,x1 � x2

iff rα (x1) � rα (x2).

Lemma 9.8. If x′ � x ∈ C(G) for x′ ∈ im rα, thenx ∈ im rα.

Proof. Assume thatx′ � x ∈ C(G), x′ ∈ im rα. Then, for anyβ ∈ E, x(t(β)) −

x(s(β)) ≥ x′(t(β)) − x′(s(β)). By Theorem 9.7, ift(α) = t(β), x′(t(β)) − x′(s(β)) ≥

d(α). Therefore,x(t(β))− x(s(β)) ≥ d(α), and again by Theorem 9.7,x ∈ im rα.

Lemma 9.9. rα (max C (Rα(G)) ∩ domain rα) ⊂ max C(G).

Proof. Let x1 ∈ max C (Rα(G)) ∩ domain rα andrα (x1) � x ∈ C(G). By Lemma 9.8,

x = rα (x2), for x2 ∈ domain rα. Therefore, by Theorem 9.6,x1 � x2, which implies that

x1 ∼ x2, sincea1 is maximal. Thus,rα (x1) ∼ rα (x2) = x, again by Theorem 9.6. In

particular,rα (x1) ∈ max C(G).

Combining these results gives Algorithm 6 which computes Pareto optimal rankings.

Theorem 9.10.Algorithm 6 produces a solution toRank(G).



162

Algorithm 6 To SolveRank(G).
1: function x = rk (G) {
2: G′ = P (T (G))
3: if

(
G′.numVertices== 1

)

4: return (p(0));
5: Choose a feasibleα ∈ E such thatt(α) is maximal.
6: G′ = Rα

(
G′
)

7: return
(
rα

(
p
(
rk
(
G′
))))

;
8: }

Proof. By construction,Rα

(
G′
)

has a 0 weight edge, so thatT
(
Rα

(
G′
))

will have at

least one fewer strongly connected components thanG. Thus, after the initial call, line

2 decreases the number vertices by at least 1. In particular,we are eventually left with a

trivial graph, containing a single vertex and no edges. Thus, the algorithm is guaranteed to

terminate.

If G′ is trivial, by Lemma 9.2, the constant rankingx(v) = 0 is clearly the unique

feasible ranking, up to equivalence. Moreover, Theorems 9.6 and 9.5 imply thatp takes this

optimal ranking forG′ to an optimal ranking forG. Moreover, by line 5,G′ is a simple,

acyclic directed graph. Thus, there can be no edges,β, such thatt(α) = s(β). In particular,

domain rα = C (R (G)), so that we may apply Lemma 9.9, along with Theorems 9.6 and

9.5 to prove that line 7 is correct.

Notice that after the initial call tork(G), we may optimize the subsequent calls toP

andT , since we know precisely those edges which became 0 inG, and there will only be

one non-trivial strongly connected component ofT (G). In practice, we might expect these

calls to be of roughly constant cost, so that the entire algorithm should be linear in the size

of G.

9.3 Related Work

The problem of ranking from a directed graph has been studied. However, the approach

has been to simply throw out the smallest cumulative weight of edges to obtain a directed

acyclic graph (DAG), and apply standard topological sort techniques to the result (Kenyon-

Mathieu and Schudy, 2007; Ailon, 2007). While this approachhas generated a lot of inter-

est, since it is an NP-hard problem to solve exactly, one could argue, however, that throwing
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away edges is not realistic. For example, ifG consists of a 3-cycle with equally weighted

edges, while throwing away an edge will lead to an ordering ofthe vertices, the resulting

order will depend crucially on which edge is thrown away, even though the edge can only

be chosen “randomly”. The value of such a strict ordering is dubious, since the available

evidence indicates that the vertices are indistinguishable.

When the edges are weighted, this approach becomes even moreproblematic. Consider

the case whereda,b = 1, db,c = 2, anddc,a = 3. If we throw out smallest edge,(a, b), we

obtain the orderingb < c < a, even though the data indicates thata andb are the most

similar. If we throw out largest edge,(c, a), the situation is even worse, since we obtain the

orderinga < b < c, although the data indicates thata is superior toc by the widest margin.

Moreover, this approach only reduces the problem to rankinga DAG, and does not

address how tooptimallysort individuals in the resulting graph. Thus, we studied anal-

ternative which leads to a non-trivial ranking whenever possible, that is, when the graph is

not strongly connected with non-zero weight edges between the strongly connected com-

ponents. In practice, if a given statistic leads to a strongly connected graph, we suggest that

we should look for different statistics to reduce the numberof cycles until the result is not

strongly connected. Consider our original example of sports teams. An initial approach

might be to simply weight an edge fromi to j by number of games won byj overi. But in

sports where teams play each other many times, this will produce a 2-cycle between almost

every team. By combining the number of wins and the number of losses as the difference,

we obtain a graph with many fewer cycles. If necessary, we canemploy additional statistics

to break “ties” in the resulting ranking.

Another interesting example of statistical aggregation comes from the field of informa-

tion retrieval. Ailon (2007) considers the problem of aggregating partial rankings produced

by different Web search engines. Each partial ranking givesa graph of pairwise com-

parisons between consecutive members of each ranking. We may then average the graphs

together, weighted according to our belief in the quality ofthe results of each engine, to ob-

tain a directed graph for whichRank(G) may give useful results. One approach that Ailon

(2007) use is to define a Markov process and use it to determinean aggregate ranking. We

conjecture that we may similarly define a GSA, so that its associated energy function yields

a meaningful aggregate ranking. In fact, we conjecture thata minor variant of Algorithm 4

is essentially the same as Algorithm 6, so that the Pareto optimal ranking it computes may
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also be interpreted in terms of a Markov process.



Chapter 10

QuickRank

10.1 Introduction

A fundamental problem in the field of social network analysisis to rank individuals in a

society according to their implicit “importance” (e.g., power or influence), derived from

a network’s underlying topology. More precisely, given a social network, the goal is to

produce a (cardinal)ranking, whereby each individual is assigned a nonnegative real value,

from which an ordinal ranking (an ordering of the individuals) can be extracted if desired.

In this chapter, we propose a solution to this problem specifically geared toward social

networks that possess an accompanying hierarchical structure.

A social network is typically encoded in alink graph, with individuals represented by

vertices and relationships represented by directed edges,or “links,” annotated with weights.

Given a link graph, there are multiple ways to assign meaningto the weights. On one hand,

one can view the weight on a link fromi to j as expressing the distance fromi to j—a

quantity inversely related toj’s importance. On the other hand, one can view each weight

as the level of endorsement, or respect,i grantsj—a quantity directly proportional toj’s

importance. We adopt this latter interpretation.

Under either interpretation (weights as distances or weights as endorsements), a social

network can be seen as a collection of judgments, one made by each individual in the

society. Correspondingly, we seek a means of aggregating individual judgments into a

single collective ranking. In other words, we consider the aforementioned fundamental

problem in social network analysis as akin to a key question in voting: how to aggregate

165
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the preferences of many individuals into a single collective persuasion that reflects the

preferences of the population as a whole.

Given a link graph, perhaps the most basic ranking scheme is degree centrality, in which

i’s rank is a combined measure of its indegree, the strength ofthe endorsementsi receives,

and outdegree, the strength of the endorsementsi makes. It is straightforward to compute

this metric. However, it could be argued that it is also sensible to take into account inferred

endorsements: e.g., ifi endorsesj and j endorsesk, then i endorsesk in a sense. At

the opposite end of the spectrum lie ranking schemes that incorporate all such inferred

endorsements.

Central to these alternatives is a hypothesis due to Bonacich (1972): an individual

is deemed important if he is endorsed by other important individuals. In other words,

the strength of an endorsement should be construed relativeto the rank of the individual

making the endorsement. In terms of our voting analogy, Bonacich suggests relating the

collective ranking to the sum of all individual judgments, each weighted by its respective

rank as determined by the collective. The fixed point of this averaging process—the prin-

cipal eigenvector of the link graph—defines Bonacich’s metric, also known as eigenvector

centrality. Although intuitively appealing, the computation of this fixed point can be pro-

hibitive in large networks.

Recently, computer scientists have developed related schemes to rank web pages based

on the Web’s underlying topology. Viewed as a social network, web pages are individuals

and hyperlinks are links. The most prominent approach to ranking web pages is the Page-

Rank algorithm (Page and Brin, 1998; Page et al., 1998), uponwhich the Google search

engine is built. PageRank aggregates the information contained in the Web’s hyperlinks to

generate a ranking using a process much like Bonacich’s method for computing eigenvector

centrality.

In this chapter, we present QuickRank, an efficient algorithm for computing a ranking

in anhierarchical social network. Many social networks are hierarchical. One apt example

already mentioned is the Web, where the individuals are web pages, the network structure is

provided by hyperlinks from one web page to another, and an explicit hierarchical structure

is given by the Web’s domains, subdomains, and so on. Anotherfitting example is the

Enron email database, where individuals are employees, thenetwork structure is given by

emails from one employee to another, and an explicit hierarchical structure is given by the
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corporate hierarchy. Yet another compelling example is a citation index. In this case, the

individuals are publications, the network structure is dictated by the references from one

publication to another, and an explicit hierarchical structure is given by the categorization

of publications by fields (e.g., computer science), subfields (e.g., AI, theory, and systems),

and so on.

As we sketch the key ideas behind the QuickRank algorithm in this introductory section,

we allude to the sample hierarchical social network shown inFigure 10.1, a network of

web pages within a domain hierarchy. The web pages, indicated by gray rectangles, are the

individuals in this society. Social relationships betweenthese individuals (i.e., hyperlinks

between web pages) are shown as dashed lines with arrows. Thedomain hierarchy is drawn

using solid lines with domains and subdomains as interior nodes, indicated by solid black

circles, and web pages as leaves (gray rectangles).

Figure 10.1: A sample hierarchical social network.

Up to normalization, a ranking is a probability distribution. Given any normalized rank-

ing (i.e., probability distribution) of the individuals inan hierarchical social network, by

conditioning that global distribution on a particular subcommunity (e.g., CS), we can derive

aconditionalranking of only those individuals within that subcommunity(e.g., Pr[page 1|

CS], Pr[page 2| CS], etc.). Likewise, from the respective marginal probability of each sub-

community, we can infer what we call amarginalranking1 of subcommunities themselves

(e.g., Pr[AI | CS], Pr[theory| CS], etc.). Conversely, it is straightforward to recover the

global ranking by combining the conditional and marginal rankings using the chain rule.

For example, Pr[page 1] = Pr[page 1| AI] Pr[AI | CS] Pr[CS].

1Viewing each interior node as the root of a subtree, we informally refer to the ranking of the children
of an interior node as a marginal ranking, although such a ranking is technically aconditionalmarginal
ranking, conditioned on the subcommunity defined by that subtree.
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Hence, to compute a global ranking of the individuals in an hierarchical social network,

it suffices to compute marginal rankings at all interior nodes (i.e., rank the children of all

interior nodes), and combine those marginal rankings via the chain rule. To facilitate re-

cursive implementation, QuickRank localizes the computation of each marginal ranking:

any links to or from leaves outside the subtree at hand are ignored in such computations.

Beyond this computational motivation, localizing marginal ranking computations can be

motivated by the following “peer-review principle:”endorsements among peers (i.e., mem-

bers of the same subcommunity) should be taken at face value,while other endorsements

should be considered as only approximate.

Intuitively, it is plausible that ranking information among individuals in a tightly-knit

community would be more reliable than ranking information among individuals who are

only loosely connected. Recall the citation index, a natural example of an hierarchical so-

cial network. When a researcher cites a topic in his area of expertise, he is likely to select

the most appropriate references. In contrast, if for some reason a researcher with exper-

tise in one area (e.g., computer science) is citing a result in another (e.g., sociology), he

may choose only somewhat relevant references. Hence, we contend that the peer-review

principle, which justifies localized marginal ranking computations, befits at least some ap-

plication areas.

To fully implement the peer-review principle it is necessary to define some notion of

approximate endorsements. To this end, we interpret an endorsement by an individuali in

communityA for another individualj 6= i in another communityB 6= A as comprising part

of an endorsement byA of B. More precisely, we aggregate endorsements by individuals

in A for individuals inB into an endorsement byA of B by first scaling the endorsements

from eachi to eachj by i’s marginal rank, and then summing the resulting weighted en-

dorsements. If we were to replace the targetj of an endorsement by any otherj′ ∈ B, the

resulting aggregate endorsement remains unchanged. In this sense, the original endorse-

ment is viewed as “fuzzy” or “approximate.” Moreover, by interpreting links originating

at i asi’s judgment, this aggregation process can be seen as an application of Bonacich’s

hypothesis (to obtain endorsements of eachj ∈ B by A) followed by a summation over all

j ∈ B (to obtain an endorsement ofB).

Together, the principle of peer review and Bonacich’s hypothesis lead to the QuickRank

algorithm, which we illustrate on the example in Figure 10.1. We begin by restricting the



169

link graph to, say, the AI subdomain, thereby constructing alocal link subgraph. Next, we

apply any “flat” ranking scheme (e.g., degree and eigenvector centrality and PageRank) to

this link subgraph to produce a marginal ranking of the pagesin the AI subdomain (i.e., a

distribution over1 and2). Then, we scale the links from1 to 4 and2 to 3 by the marginal

ranks of1 and2, respectively, to generate links from AI to4 and3. Finally, we sum these

results to produce an aggregate link from AI to theory.

Repeating this procedure for the theory and systems subdomains, we “collapse” each of

the CS subdomains into a leaf, and substitute these subdomains for their corresponding web

pages in the link graph. We then proceed recursively, constructing a local link subgraph,

and computing a marginal ranking of the CS subdomains. Combining this marginal ranking

with the marginal rankings of the web pages in each CS subdomain yields a single marginal

ranking of all the web pages in the CS domain. We repeat this process until the entire

hierarchy has been collapsed into a single node, at which point we obtain a ranking of all

pages in theedu.brown domain.

We conclude this introduction by noting the following property of QuickRank: The

relative global ranking between two individuals is determined by their local ranks in the

smallest community to which they both belong.This property follows from the fact that

scaling is the only operation which is performed on rankings(conditional rankings are

scaled by marginal ranks), but scaling does not affect relative rankings.

Overview This chapter purports to contribute to the literature on social network analysis

by introducing the QuickRank algorithm. As suggested by theprevious example, Quick-

Rank is parameterized by a “BaseRank” procedure (i.e., a flatranking scheme, such as

degree centrality) used to compute marginal rankings. We begin in the next section by

precisely defining BaseRank procedures and identifying desirable properties of such pro-

cedures. In section 10.3, we present pseudocode for the QuickRank algorithm. We also

consider to what extent QuickRank preserves our previouslyidentified desirable proper-

ties of BaseRank procedures. Then, in section 10.4, we provide sample QuickRank cal-

culations. Our first example illustrates the distinction between stand alone “BaseRanks”

and “QuickRanks,” the rankings output by these schemes. A further example shows how

QuickRank is potentially more resistant to link-spamming than corresponding BaseRank

procedures. We conclude in section 10.8. A discussion of related work is deferred to the

QuickRank technical report, currently in preparation.
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10.2 A Unified View of Flat Ranking Algorithms

QuickRank is parameterized by a flat (i.e., non-hierarchical) ranking algorithm, or a “Base-

Rank” procedure. In this section, we precisely define a BaseRank procedure, and we for-

mulate the four flat ranking schemes mentioned in the introduction as such. We also present

four desirable properties of BaseRank procedures, and discuss to what extent the four afore-

mentioned ranking schemes satisfy these properties.

10.2.1 Preliminary Definitions

A social network encodes relationships among individuals in a society. Such a network can

be represented by alink graph. Individualsi, j ∈ I are represented asvertices, and the

fact that individuali relates to individualj is represented by a directedlink from vertexi

to vertexj, augmented by a nonnegative real-valued weight indicatingthe strength ofi’s

relationship toj.

A judgmentis a nonnegative, real-valued vector indexed onI. We define an equivalence

relation on judgments withr1 andr2 equivalent ifcr1 = r2. For our purposes, aranking

is such an equivalence class〈r〉 (although we often refer to a ranking by any representative

of the class). A ranking has exactly one representative thatis a probability distribution,

which can be obtained by normalizing any other representative. Further, a ranking repre-

sents a consistent estimate of the relative merit of pairs ofindividuals: i.e., for all pairs of

individualsi andj, the ranking ofi relative toj, namelyri

rj
∈ [0,∞], is well-defined.

A link graph is a nonnegative, real-valued square matrix indexed onI. We restrict

attention to the case where the weights in the link graph may reasonably be interpreted as

endorsements, rather than distances.2 A judgmentgraph is a link graph further constrained

to havepositivediagonal entries. Each column in a judgment graph represents the judgment

of one individual. The requirement that the diagonal be positive can be interpreted to mean

that individuals are required to judge others relative to themselves. Whereas rankings are

scale invariant, judgments are scale dependent.

In the introduction, we presented ranking schemes as operating on link graphs. That

was a convenient oversimplification. More precisely, they map a judgment graph and a
2It is conceivable that QuickRank can be suitably modified to handle the distance interpretation by redefin-
ing the peer-review notion of approximation as aggregatingby taking a minimum instead of summing,
but we have not yet explored any applications of this sort.
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prior ranking to aposterior ranking. We view the inference of a judgment graph from a

link graph as a preprocessing step. This step might consist of inserting self-loops: replacing

zeros on the diagonal with ones. In the case of the Web or a citation database, for example,

such self-loops would model each web page or publication as implicitly referring to (i.e.,

endorsing) itself.

Analogously, we define aBaseRankprocedure as a higher-order function that takes a

judgment graph to a mapping which infers a posterior rankingfrom a prior. When used

within the QuickRank algorithm, we require that the posterior ranking output by the Base-

Rank procedure be normalized to a probability distribution. The prior ranking may be

viewed as the persuasion of the “center” (i.e., the implementer of the ranking scheme). A

BaseRank procedure then is a means of aggregating the judgments of the individuals in the

society, and the center, into a single collective posteriorranking.

Given a judgment graphR and a prior ranking〈r〉, Bonacich’s hypothesis suggests

that we may infer a collective judgment asr′ = Rr. In this way, individualj’s posterior

position is the sum of each individuali’s conception ofj, weighted by the prior rank ofi.

By ignoring scale inr′, we can infer the posterior ranking〈r′〉. Note that the result of these

two inference steps is well-defined, in that〈r′〉 depends only on〈r〉 and not onr itself. We

use the termlinear to describe a BaseRank procedure whose mapping from a prior ranking

to a posterior abides by Bonacich’s hypothesis.

This inference rule shows up naturally in the case of two simple types of judgment

graphs, namely, finite-state, discrete-time, stationary Markov processes and Bayesian up-

dating. In the former case, the judgment graph corresponds directly to the probability

transition matrix of the Markov process and the inference rule follows the corresponding

reallocation of probability. In Bayesian updating, one is given a prior probability distribu-

tion ri = Pr[Ai] over eventsAi, together with the conditional probabilitiesRii = Pr[B |

Ai] of some common eventB. The Bayesian approach infers the posterior distribution

r′i = Pr[Ai | B] precisely as above: i.e.,r′i =
(Rr)i

‖Rr‖1
. In fact, any judgment graph can be

expressed as the composite of these two types, a matrix with constant column sums and a

diagonal matrix.



172

10.2.2 Sample BaseRank Procedures

We now describe how the four ranking schemes mentioned in theintroduction (i.e., in-

degree, outdegree, eigenvector centrality and PageRank) can be viewed BaseRank proce-

dures. We assume that the link graph has been pre-processed,with self-loops inserted as

necessary, to yield an “initial” judgment graph. Since the inference step is fixed, the key

step in a linear BaseRank procedure is the way in which a “final” judgment graph is inferred

from the initial judgment graph. The degree centrality metrics and PageRank are examples

of linear BaseRank procedures, as is eigenvector centrality under certain assumptions (see

Theorem 10.2).

The indegree and outdegree of individuali are defined respectively, as follows: given

an initial judgment graphR,

IN(i) =
∑

j

Rij OUT(i) =
∑

j

Rji (10.1)

Both these centrality metrics can be understood as linear BaseRank procedures that infer a

posterior ranking from a uniform prior. Indegree is simply the identity function: the initial

and final judgment graphs are identical. Outdegree is the transpose operation: the initial

and final judgment graphs are transposes of one another.

The PageRank algorithm is parameterized by a valueǫ ∈ (0, 1) and a distributionv,

often referred to as a “personalization vector.” In a preprocessing step, the columns of the

judgment graph are normalized to yield a Markov matrixM . PageRank operates on the

convex combination ofM with the rank one Markov matrixvJ t (whereJ ambiguously

denotes any vector of all1’s), namelyMǫ = (1 − ǫ)M + ǫvJ t. This matrix is easily

seen to beunichain(see chapter 1), hence with a unique stable distributionv∞. Moreover,

Haveliwala and Kamvar (2003) have shown thatMǫ has a second largest eigenvalue of1−ǫ,

so thatlimk→∞ Mk
ǫ v0 = v∞, for any initial distributionv0, with convergence as(1 − ǫ)k.

This result follows alternatively by writingv∞ as the limit of a geometric series:

Theorem 10.1.If M is a Markov matrix andMǫ = (1− ǫ)M + ǫvJ t, then

v∞ = lim
k→∞

Mk
ǫ v0 = ǫ

∞∑

i=0

(1− ǫ)iM iv (10.2)

This theorem implies that PageRank is a linear BaseRank procedure, which takes an

initial judgment graphM to a final judgment graphǫ
∑∞

i=0(1 − ǫ)iM i. The prior ranking
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corresponds to the personalization vector and the posterior ranking is a discounted sum of

all the inferred rankings (including the prior).

Unlike degree centrality and PageRank, which we have shown are linear BaseRank

procedures, eigenvector centrality is not. Given a judgment graphR and an prior ranking

v0, the algorithm infers a sequence of posterior rankingsvn+1 = Rvn

‖Rvn‖1
. It can be shown

that this sequence eventually converges to a fixed pointv∞, which can be interpreted as the

collective ranking. Moreover, this iterative process can be expressed as a linear inference

v∞ = Rαv0

‖Rαv0‖1
, whereα, and henceRα, depend on the support ofv0. In particular, eigen-

vector centrality is apiecewise-linear BaseRank procedure. In the special case where the

judgment graph is strongly-connected (i.e.,R is irreducible), eigenvector centrality is lin-

ear, becauseRα is constant (i.e., independent ofα) andv∞ is independent ofv0. Formally,

Theorem 10.2. If a judgment graphR ≥ 0 is irreducible with non-zero diagonal, there

exists a unique rankingv > 0, such that‖v‖1 = 1 andRv = ρ(R)v, whereρ(R) is the

magnitude of the largest eigenvalue ofR. Moreover, for anyv0 ≥ 0, if vn+1 = Rvn

‖Rvn‖1
,

limn→∞ vn = v. That is,v∞ = v and for allα, Rα = vJ t.

10.2.3 Generalized Proxy Voting

If we view each individual’s rank as a collection of proxy (i.e., infinitely divisible and

transferable) votes, then a judgment graph may be interpreted as aproxy-vote specification

indicating how each individual is willing to assign his proxy votes to others. Given a

prior ranking (i.e., an initial allocation of proxy votes),the posterior inferred by a linear

BaseRank procedure is a reallocation based on the results ofa single round of proxy voting.

More generally, ingeneralized proxy-voting(GPV), individuals cast their votes repeatedly

over time (i.e., each posterior serves as a prior in the next round), until ultimately, the

sequence of posteriors is averaged into a final vote count: i.e., a final ranking.

While historically PageRank has been viewed in terms of a “random-surfer” model (cf.

Page et al. (1998)), Theorem 10.1 suggests that it may be moreaptly viewed as a GPV

mechanism with a discount factorγ ∈ [0, 1). In particular, for a given prior rankingv,

the posterior computed by PageRank can be expressed as(1 − γ)−1∑∞
i=0 γiM iv. Notice

that this is just the average of the inferred rankingsM iv, wherei is distributed geometri-

cally with meanγ. It is natural to generalize to allow weighting by arbitrarydistributions,
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∑∞
i=0 αiM

iv, or even as the limit of such,limN→∞

∑N
i=0 αi,NM iv. Formally, we define a

generalized proxy-voting mechanism as a (linear) BaseRankprocedure that takes an initial

judgment graphM into a final judgment graphlimN→∞

∑N
i=0 αi,NM i.

Observe that all the flat ranking schemes mentioned above, except outdegree, are not

only linear BaseRank procedures, but can be seen as GPV mechanisms as well. Indegree

is a trivial instance of GPV withαi,N = δi,1. By Theorem 10.1, PageRank is a GPV

mechanism withαi,N = ǫ(1 − ǫ)i. Finally, if we restrict attention to irreducible judgment

graphs, eigenvector centrality is a GPV mechanism, withαi,N =





1
N+1

if 0 ≤ i ≤ N

0 otherwise
.

This final claim follows from Theorem 10.2 and the well-knownfact that

lim
i→∞

si = lim
k→∞

1

k

k−1∑

i=0

si.

Although outdegree, which takesR to Rt is linear, it is not a GPV mechanism.

10.2.4 Axioms

Next, we identify two types of judgment graphs that have natural interpretations, and on

which a particular behavior for a BaseRank procedure seems preferred. First, consider

the identity matrixI as a judgment graph—theidentitygraph—in which each individual

ranks himself infinitely superior to all others. Such a ranking graph provides no basis

for modifying a prior ranking. Thus, on this input, it seems reasonable that a BaseRank

procedure should act as the identity function (i.e., posterior = prior).

Second, consider the case of aconsensusgraph, that is, a judgment graphxyt, wherex

is a distribution andyi is individuali’s arbitrary scaling factor. In other words, a consensus

graph is a rank 1 matrix: everyone agrees on the rankingx, up to a multiple. Since there is

consensus among the individuals in the society, we contend that any prior ranking should

be ignored. A BaseRank procedure should simply return the consensusx. We restate these

two properties succinctly, as follows:

Identity: BaseRank(I) = id

Consensus:BaseRank(xyt) = x
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Another important issue associated with ranking schemes isthat of manipulation via

“link spamming.” The goal of link spamming is to game a ranking system by creating

many false nodes, sometimes called sybils (Cheng and Friedman, 2006), that link to some

noden, thereby attempting to influence the rank of noden. Web spamming is a particularly

popular form of link spamming (Gyongyi and Garcia-Molina, 2004).

A judgment graph inhabited by sybils takes the following form: M ′ =


 M N

0 M


,

whereM is the original judgment graph (i.e., without the sybils),N describes the links

from the sybils to existing members of the society, andM describes the links among sybils.

Since sybils are new to the community, and hence unknown its original members, we as-

sume that there are no links from those members to sybils.

Observe that generalized proxy-voting mechanisms are spam-resistant in the follow-

ing sense: Given a prior ranking which places no weight on sybils, the posterior ranking

computed with respect to the modified judgment graphM ′ is, for all intents and purposes,

equivalent to the posterior ranking computed with respect to the original judgment graph

M . That is,

Theorem 10.3.If M ′ =


 M N

0 M


, v′ =


 v

0


, and

BaseRank(·) = lim
N→∞

N∑

i=0

αi,N (·)i ,

thenBaseRank(M ′)v′ =


 BaseRank(M)v

0


.

For example, since PageRank is a GPV mechanism, we apply Theorem 10.3 to show

that the posterior ranking of non-sybils is unaffected by their presence, if we assign sybils

a prior rank of 0. In other words, if sybils can be detecteda priori, then PageRank may

be rendered immune to such an attack. Although the corresponding Markov matrix need

not be irreducible for such a “personalization” vector, we conclude from Theorem 10.1 that

the Markov process converges forall prior rankingsv0. Note that this conclusion follows

specifically from our interpretation of PageRank as a GPV mechanism, as opposed to the

traditional “random surfer” model.
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Property Indegree Outdegree Eigenvector PageRank
Linear Yes Yes No Yes
GPV Yes No Yes Yes
Identity Yes Yes Yes Yes
Consensus Yes Yes Yes No

Table 10.1: Some properties of ranking schemes.

Table 10.1 summarizes how each of the four ranking schemes discussed in this section

behave with respect to the four properties of BaseRank procedures discussed in this section.

PageRank doesnot satisfy the consensus property because it is always biased to some

degree by the prior ranking. However, using the notation introduced above, if we instead

defineMǫ = (1− ǫ)M + ǫMvJ t, the resulting algorithm satisfies all four properties. This

modified PageRank corresponds to a linear BaseRank procedure with final judgment graph

ǫ
∑∞

i=0(1 − ǫ)iM i+1, that is, the posterior is a discounted sum of all inferred rankings

excludingthe prior.

Fundamentally, QuickRank’s design is based on the two key ideas discussed in the

introduction, namely the peer-review principle and Bonacich’s hypothesis. However, as

QuickRank is parameterized by a BaseRank procedure, it is also designed to preserve the

Identity and Consensus properties. In the next section, we detail the algorithm and argue

informally that it indeed preserves these two properties ofBaseRank procedures, although

it fails to preserve linearity. When we present sample calculations in section 10.4, we note

that QuickRank preserves the spam-resistance of its BaseRank procedure, and we illustrate

its potential to resist spam even further.

10.3 QuickRank: The Algorithm

QuickRank operates on a hierarchical social network, that is a judgment3 graphR whose

vertices are simultaneously leaves of a treeT . At a high level, QuickRank first ranks the

leaves using the link information contained in the local subgraphs; it then propagates those

local4 rankings up the tree, aggregating them at each level, until they have been aggregated

3As above, we assume the link graph has been pre-processed to form a judgment graph.
4Whereas in the introduction, we used the term marginal, we now use the term local to refer to the ranking
of a node’s children. The salient point here is: this rankingis computed using strictly local information.



177

into a single global ranking. Ultimately,a node’s QuickRank is the product of its own

local rank and the local rank of each of its ancestors.QuickRank is parameterized by a

BaseRank procedure, which it uses to compute local rankings. It also takes as input a prior

ranking of the leaves. It outputs a posterior distribution.

Although we present QuickRank pseudo-code (see Algorithm 7) that is top-down and

recursive, like many algorithms that operate on trees, the simplest way to visualize the

QuickRank algorithm is bottom-up. From this point of view, QuickRank repeatedly identi-

fies “collapsible” nodes inT , meaning the root nodes of subtrees of depth 1, and collapses

them into leaf nodes (i.e., subtrees of depth 0) until there are no further opportunities for

collapsing: i.e., untilT itself is a leaf node. Collapsing noden entails: (i) computing a

local ranking atn, that is a ranking ofn’s children, and (ii) based on this local ranking, ag-

gregating the rankings and the judgments ofn’s children into a single ranking and a single

judgment, both of which are associated withn.

Note that QuickRank is a well-defined algorithm: that is, theorder in which local rank-

ings are computed does not impact the global ranking. This property is immediate, since

QuickRank propagates strictly local calculations up the tree in computing its global output.

Moreover, the collapse operation replaces a subtree of depth 1 with a subtree of depth 0 so

that QuickRank is guaranteed to terminate.

Data Structures Algorithm 7 takes as inputTn, subtree ofT rooted at noden, and returns

two data structures: (i) a ranking of all leaves (with support only onTn) and (ii) a judgment,

which is the average of all judgments ofTn’s leaves, weighted by the ranking computed in

(i). At leaf noden, the ranking is simply the probability distribution with all weight onn,

denoteden, and the judgment is given byRn.

Computing Local Rankings Recall that the main idea underlying QuickRank is to first

compute local rankings, and to then aggregate those local rankings into a single global

ranking. Given a collapsible noden, a local ranking is a ranking ofn’s children. To

compute such a ranking, QuickRank relies on a BaseRank procedure.

There are two inputs to this BaseRank procedure. The first isn’s local (i.e., marginal)

prior ranking. The second is a local judgment graphM . Forj andk both children of node

n, the entry ofM in the row corresponding tok and the column corresponding toj is the

aggregation of all endorsements from leaves inTj to leaves inTk, equal to the sum of all
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entries in thejth judgment corresponding to leaves ofTk.

Aggregating Rankings and Links To aggregate the rankings ofn’s m children into a

single ranking associated withn, QuickRank averages the rankingsr1, . . . , rm according

to the weights specified by the local rankingr. If we concatenate them rankings into a

matrix Q =
[

r1 · · · rm
]
, then the aggregation of rankings can be expressed simply

asQr. Also associated with each childj of a collapsible noden is a judgmentlj . These

judgments are aggregated in precisely the same way as rankings.

Algorithm 7 QuickRank(noden)
1: if (n.isLeaf())
2: return (〈n.getJudgment(), en〉);
3: m = n.numChildren()
4: for (j = 1 to m) {
5: 〈lj, rj〉 ← QuickRank(n.getChild(j))
6: for (k = 1 to m) {
7: Mkj = Sum(lj, n.getChild(k))
8: }
9: }

10: P =
[

l1 . . . lm
]

11: Q =
[

r1 . . . rm
]

12: r = BaseRank(M , n.getLocalPriorRanking())
13: return (〈Pr, Qr〉);

We now argue that if the BaseRank procedure satisfies the Identity and Consensus prop-

erties, then so, too, does QuickRank. First, notice that, when restricted to any subcommu-

nity (i.e., square, diagonal block), an identity or consensus graph yields the same type of

graph again. Moreover, aggregating links in such a community within the original graph

(i.e., summing rows and averaging columns) also results in the same type of graph. Con-

sequently, if QuickRank employs a BaseRank procedure with the Identity property, it will

output the prior distribution on the identity graph, since the prior local rankings will remain

unchanged at each level in the hierarchy.

Now consider a consensus graph with rankingx s. t. ‖x‖1 = 1. Restriction to a sub-

community gives a consensus graph on the corresponding conditional distribution ofx.

Likewise, aggregation produces a consensus graph on the corresponding marginal distri-

bution of x. If QuickRank employs a BaseRank algorithm with the consensus property



179

on a consensus graph, it will gradually replace the prior distribution at the leaves with the

conditional distributions ofx, until it finally outputsx itself.

We conclude this section by pointing out that, even if the BaseRank procedure is linear,

QuickRank may not be expressible as a linear inference. Normalizing local rankings to

form distributions can introduce non-linearities. In the next section, we provide sample

QuickRank calculations.

10.4 Examples

We now present two examples that verify our intuition regarding QuickRank and illustrate

some of its novel features. Recall that QuickRank, as it operates on an hierarchical social

network (HSN), is parameterized by a prior ranking and a BaseRank procedure.

First, consider the HSN shown in Figure 10.2a. The hierarchyis drawn using solid lines.

The link graph is indicated by dotted lines between the numbered leaves. All weights are

assumed to be 1. Computing QuickRanks for this HSN, varying the BaseRank procedure

among indegree, eigenvector centrality, and PageRank,5 but always assuming a uniform

prior ranking, leads to the rankings, cardinal and ordinal,shown in Table 10.2. The values

in the posterior distributions have been rounded; hence, the ordinal rankings more precisely

reflect the exact values in those distributions.

Figure 10.2: Two examples of hierarchical social networks.

For each BaseRank procedure, we list two pairs of rankings: that which results from

ignoring the hierarchy, and that which results from exploiting it using QuickRank. When

we ignore the hierarchy, all three algorithms rank leaf 1 above (or equal to) 3. However,

since 1 defers to 3 (i.e., 1 endorses 3, but not vice versa), based on our peer-review principle,

5The results of ranking with outdegree are not qualitativelydifferent, but are omitted for lack of space.
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Table 10.2: BaseRanks and QuickRanks from Figure 10.2a and uniform prior.

Indegree Eigenvector PageRank
cardinal {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13} {0.19, 0.08, 0.16, 0.14, 0.22, 0.10, 0.12} {0.14, 0.32, 0.11, 0.09, 0.14, 0.09, 0.11}

Flat
ordinal 5 > 1 = 2 = 3 = 4 = 6 = 7 5 > 1 > 3 > 4 > 7 > 6 > 2 2 > 1 > 5 > 3 > 7 > 6 > 4

cardinal {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.18} {0, 0, 0.41, 0, 0.59, 0, 0} {0.04, 0.14, 0.25, 0.04, 0.41, 0.06, 0.06}
QuickRank

ordinal 5 > 3 > 7 > 6 > 1 = 2 > 4 5 > 3 > 1 = 2 = 4 = 6 = 7 5 > 3 > 2 > 7 > 6 > 1 > 4

3 should be ranked higher than 1. This outcome indeed prevails in the QuickRanks, for all

three BaseRank procedures.

When using a uniform prior ranking, the resulting rankings are not biased by the depth

at which individuals reside in the hierarchy. If such a bias is desirable, however, it can be

easily achieved with a non-uniform prior. For example, taking 1
12
{2, 2, 2, 2, 1, 1, 2} as prior

ranking and indegree as BaseRank yields a posterior rankingof

{.10, 0.10, 0.19, 0.12, 0.18, 0.09, 0.23},

which corresponds to an ordinal ranking of7 > 3 > 5 > 4 > 1 = 2 > 6. Whereas 5 was

ranked higher than 7 with a uniform prior, 7 ranks highest with this biased prior.

As an added benefit, QuickRank may be more resistant to link spamming than Base-

Rank procedures that do not exploit hierarchies. To demonstrate this phenomenon, in Fig-

ure 10.2b, we introduce a sybil, leaf 8, into our original example to try and raise the rank

of 6 by recommending it highly. Note the multiplicity of links from 8 to 6.

Table 10.3: Fig. 10.2b with Indegree as BaseRank.

Uniform Prior Weighted Prior
cardinal {0.10, 0.10, 0.10, 0.10, 0.15, 0.30, 0.10, 0.05} {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13, 0.0}

Flat
ordinal 6 > 5 > 1 = 2 = 3 = 4 = 7 > 8 5 > 1 = 2 = 3 = 4 = 6 = 7 > 8

cardinal {0.09, 0.09, 0.18, 0.06, 0.28, 0.14,0.11, 0.06} {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.19, 0.0}
QuickRank

ordinal 5 > 3 > 6 > 7 > 1 = 2 > 4 = 8 5 > 3 > 7 > 6 > 1 = 2 > 4 > 8

Applying QuickRank with indegree as BaseRank to this example yields the rankings

shown in Table 10.3. Using a uniform prior, the sybil is able to raise the rank of 6 over 7

and 6 over 4, whether we exploit the hierarchy (i.e., use QuickRank) or not (i.e., compute
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indegrees directly). QuickRank cannot prevent this outcome, since the sybil is an accepted

member of 4’s and 7’s community. However, the influence of thesybil is somewhat miti-

gated under QuickRank. Since the resulting ranking must respect the hierarchy, the effect

of the sybil is to raise the ranks ofboth5 and 6 (i.e., both values in the posterior distribu-

tion). No amount of link spam from a sybil outside their localcommunity can increase the

rank of 6 relative to 5.

Moreover, if one is able to identify sybilsa priori, by setting the prior ranks of sybils

to zero, one can reduce their influence even further. If we usea prior ranking which is

weighted against the sybil, say uniform over 1-7 and zero on 8, Table 10.3 shows that

indegree produces the same rankings as in Table 10.2, that is, withoutthe sybil, whether we

exploit the hierarchy or not. In general, Theorem 10.3 states that any BaseRank procedure

which is a GPV mechanism will necessarily exhibit this same behavior. QuickRank is not

a GPV scheme (recall that QuickRank is nonlinear but that GPVschemes are linear). Still,

QuickRank preserves the spam-resistance property characteristic of GPV mechanisms.

10.5 Experiments

In this section, we discuss some preliminary experiments weperformed to validate our

QuickRank technique. Specifically, we compare the performance ofQuickRank utilizing

two different BaseRank algorithms (indegree and PageRank)on three sample information

retrieval tasks, the 2002, 2003, and 2004 TREC Topic Distillation Tasks, part of the annual

TREC competition6. As described in the 2003 report, “the topic distillation task involves

finding relevant homepages, given a broad query,” where “a good homepage [corresponds]

to a site which:

• Is principally devoted to the topic,

• Provides credible information on the topic, and

• Is not part of a larger site also principally devoted to the topic.” (Craswell and Hawk-

ing, 2003).

6http://trec.nist.gov/
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Queries were applied to a corpus of U.S. government web pages, the .GOV test collec-

tion, containing about 1.25 million pages.7 In each of 2002 and 2003, the task involved 50

queries, while in 2004 it used 75 queries. For each query, theTREC organizers compiled

a list of pages which it deemed as sufficiently good responses, or “query-relevant”, for the

task. Specifically, the pages returned by all the entrants tothe competition were rated by

human judges. Those with sufficiently high scores were deemed query-relevant, and a cor-

responding list of “qrels” were then published by the TREC organizers for future research.

Notice that this set of qrels is thus biased to favor competitors against non-entrants of the

competition, such as ourQuickRank implementation.

Apart from the third criteria, the goal of the Topic Distilation (TD) task is to strike a

balance between relevance and “authoritativeness” (authority) in Web search. While we

believe thatQuickRank should provide a meaningful (query-independent) measure of the

authority of a web page (as judged by the community of web pagepublishers), we needed

an additional (query-dependent) technique to filter web pages for relevance to the given

query. We used Apache Lucene, a “high-performance, full-featured text search engine

library written entirely in Java.”8 We then took a convex combination of the resulting rank

scores from each technique, with mixing parameter,α, to obtain the ranking of each page

of a query.

In order to applyQuickRank, we needed to infer a hierarchical, social network on the

corpus of web pages. We used the (unweighted) link graph which the TREC organizers dis-

tributed with the corpus, converting it to a judgment graph as described in section 10.2.2.

We used the URL hierarchy as described in section 10.2.2, except for efficiency, we col-

lapsed subtrees to insure that there were a minimum 200 leaves per node and the hierarchy

had a maximum depth ofk, wherek = 0, . . . , 7. This is clearly not the most informative

hierarchy; it was simply the most readily available one. Thus, in our results we focus atten-

tion to compare depth 0 (i.e., simply applying the BaseRank algorithm) and depth 1. The

branching factor at depth 1 is roughly 250

So that we could compare our results with those of the TREC competitors, we applied

several standard measures to the ranking resulting produced each query. If, for a given

query,H represents the set of all documents retrieved andQrels is the set of documents

7http://ir.dcs.gla.ac.uk/test collections/
8http://lucene.apache.org/java/docs/
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judged to be query-relevant, whileHn is the subset ofn top-ranked documents, we may

define the following measures on the retrieval system:9

• Success atn: S@n = [Hn ∩Qrels 6= ∅]

• Recall atn: R@n = |Hn∩Qrels|
|Qrels|

• Precision atn: P@n = |Hn∩Qrels|
|Hn|

• Precision atR: P@R =
|H|Qrels|∩Qrels|

|Qrels|

• Average Precision: AP =
∑|H|

n=1 P@n
[Hn−Hn−1⊂Qrels]

|Qrels|

Notice that these measures assume thatH may be orderedwithout ties. SinceQuickRank

makes so such guarantees, these measures may have been unduly affected by the order in

which equally ranked pages were processed. The same set of measures were not applied

uniformly across all three years; we report only those statistics reported from each year.

We give the results of our experiments in Tables 10.4-10.6. Each column represents

the average of the given measure over all queries for that year’s competition. The rows

correspond to the three selected competitors, along with five runs of our algorithm with

varying parameters. We chose to include the top- and bottom-scoring competitors for each

year, along with a third competitor which has roughly the median score for reference.

Likewise, we include the results withα = 1, which we label “Lucene”, since the ranking

of the query results is entirely determined by Lucene’s relevance score.

For each query, the rank scores produced by Lucene andQuickRank were on very

different scales. The latter tends to be more exponential, while the precise nature of the

former is unclear. In addition,|H| ≫ |Qrels|. Thus, how to combine the two scores was

problematic. We first converted each rank score to a linear, 0to 1 scale; that is, the scores

of consecutively ranked documents were1
|Qrels|

and 1
|H|

apart, respectively. We then used a

simple convex combination, with weight parameterα, to combine the results. Again, since

it is unclear how much weight to assign to topic relevance versus authorithy, we ran our

experiments for various values ofalpha to discover a proper value, which ranged from.95

to .99 over the three years.

9While |Hn| = n, we write it out to show the symmetry in the definitions of precision and recall.
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Table 10.4: Comparison with TREC 2002 competitors

P@10 α Algorithm Depth
0.251 - thutd5 -
0.198 0.99 PageRank 0
0.194 - mu525 -
0.190 0.99 Indegree 1
0.190 0.99 Indegree 0
0.184 0.99 PageRank 1
0.182 1 Lucene -
0.057 - ajouai0210 -

Table 10.5: Comparison with TREC 2003 competitors

P@10 P@R AP α Algorithm Depth
0.124 0.164 0.154 - csiro03td03 -
0.090 0.114 0.099 0.97 Indegree 1
0.086 0.105 0.097 0.97 Indegree 0
0.082 0.086 0.089 1.00 Lucene -
0.074 0.092 0.088 0.97 PageRank 0
0.062 0.078 0.087 0.97 PageRank 1
0.092 0.092 0.070 - meijihilw1 -
0.032 0.028 0.023 - C2B -

Along with the three reference competitors and the results of simply using relevance

score alone (i.e., Lucene), we report the performance ofQuickRank using indegree and

PageRank as BaseRank algorithms. When depth is 0, these techniques are just the standard

algorithms (i.e., without exploiting the hierarchy). Fromthe results in Tables 10.4-10.6,

we can see that indegree at depth 1 generally performed well,and in particular, it always

performed indegree at depth 0. Moreover, it almost always outperformed PageRank at

either depth.

This suggests a number of practical benefits toQuickRank. Remember that PageRank

was designed to mitigate the manipulability of indegree vialink-spamming. However,

from these experiments and our discussion in Section 10.4, we see that simply by applying

QuickRank with indegree at depth 1, we can limit the influence of link-spamming without
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sacrificing the quality of our resulting rankings. Notice that this is even more striking, since

indegree is much simpler and faster to compute than PageRank.

Table 10.6: Comparison with TREC 2004 competitors

S@1 S@5 S@10 P@10 R@1000 AP α Algorithm Depth
0.507 0.773 0.893 0.249 0.777 0.179 - uogWebCAU150 -
0.213 0.680 0.773 0.151 0.590 0.123 0.95 Indegree 1
0.253 0.680 0.813 0.163 0.590 0.120 0.95 Indegree 0
0.333 0.64 0.76 0.199 0.647 0.115 - MU04web1 -
0.227 0.587 0.707 0.135 0.586 0.093 0.95 PageRank 0
0.080 0.400 0.573 0.109 0.569 0.075 1.00 Lucene -
0.187 0.533 0.600 0.097 0.582 0.074 0.95 PageRank 1
0.067 0.147 0.173 0.029 0.147 0.018 - irttil -

10.6 Discussion: Implicit Hierarchical Structure

Some networks may come equipped with an explicit hierarchical structure (e.g., the Web’s

URL tree), but others may not. For networks in the latter category, it has been argued

that many (social) networks tend to exhibit hierarchical structure at least implicitly (Simon,

1962). To run QuickRank on such a network, it would be necessary to infer this hierarchical

structure. Even for networks in the former category, it may be worthwhile to infer an

alternative hierarchical structure. In the case of the Web for example, QuickRanks may

be more useful if pages are categorized into a topic hierarchy, rather than according to the

URL tree.

It is possible to imagine a number of ways to infer an implicithierarchical structure,

given a network whose nodes are documents (e.g., Web pages, email messages, or publica-

tions). On the one hand, one could rely solely on the textual content of the documents (Blei

et al., 2004). On the other hand, one could rely solely on the underlying graph-theoretic

structure. In the case of the Web, it has been observed that the URL tree is reflective of the

hierarchy that would be inferred based on its graph-theoretic structure (Eiron and McCur-

ley, 2004). In principle, one could also rely on some combination of both approaches.

A difficulty arises in that some nodes in a network may not fit squarely in one category.
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For example, Arnold Schwarzenneger could be classified as both an actor and a politi-

cian. Alternatively, an algorithm that infers an implicit hierarchical structure may output a

probability that each node belongs to each category. For example, Arnold Schwarzenneger

could be classified as an actor with probability0.9 and a politician with probability0.1.

We are developing natural extensions of the basic QuickRankalgorithm that operate on

hierarchical structures like these.

10.7 Related Work

The idea of constructing a global ranking by combining combining local rankings is not

new. Indeed the electoral college is based on the same basic principle. Each state holds

a local presidential election, the global outcome of which is determined by weighing the

local outcomes according to the importance—in this case, the size of the Congressional

delegation—of each state.10

More to the point, Kamvar et al. (2003a) apply similar methodology to rank web pages

in their algorithm, BlockRank, which is designed to exploitthe block structure they ob-

serve in the Web. They do not recursively apply their reasoning, however. They combine

domain and subdomain rankings only once, and then initialize PageRank with the resulting

distribution, in an attempt to speed up the usual PageRank computation.

10.8 Conclusion

Social network, or link, analysis is regularly applied to information networks to compute

rankings (Garfield, 1972; Kleinberg, 1998; Page and Brin, 1998; Page et al., 1998) and to

social networks (Bonacich, 1972; Hubbell, 1965; Katz, 1953; Wasserman and Faust, 1994)

to determine standing. We discuss two examples of information networks with inherent

hierarchical structure: the Web and citation indices. Social networks, like the Enron email

database, also exhibit hierarchical structure. Simon (1962) suggests that such hierarchies

are ubiquitous:

10QuickRank, applied to presidential elections, would normalize the popular vote in each state, and then
weigh the resulting distributions by the corresponding number of electoral votes, a process which reduces
to plurality voting.
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Almost all societies have elementary units called families, which may be grouped into

villages or tribes, and these into larger groupings, and so on. If we make a chart of

social interactions, of who talks to whom, the clusters of dense interaction in the chart

will identify a rather well-defined hierarchic11 structure.

Still, to our knowledge, link analysis procedures largely ignore any hierarchical struc-

ture accompanying an information or social network. In thispaper, we introduced Quick-

Rank, a link analysis technique for ranking individuals that exploits hierarchical structure.

The foundational basis for QuickRank is the peer-review principle, which implies that the

relative ranking between two individuals be determined by their local ranks in the smallest

community to which they both belong. This principle, together with an hypothesis due

to Bonacich, leads to a recursive algorithm which is scalable, parallelizable, and easily

updateable.

For a large-scale network such as the Web, we anticipate thatQuickRank will yield sub-

stantial computational gains over standard ranking methods (e.g., calculating PageRanks

via the power method). Moreover, it appears more resistant to link spamming than other

popular ranking algorithms on contrived examples, although it remains to verify this claim

empirically.

In ongoing research, we are attempting to empirically validate the merits of QuickRanks

computed with some BaseRank procedure as compared to the ranking computed by the

BaseRank procedure itself. Specifically we are augmenting Lucene, an open source Web

search engine, with QuickRanks, PageRanks, and indegree ranks in order to measure the

precision and recall of the augmented tool on the topic distillation queries from the TREC

2002, 2003, and 2004 web tracks.

11Simon’s use of the terminology “hierarchic” is slightly broader than our use of “hierarchical structure,”
by which we mean tree structure. Still, the point remains: hierarchies (or approximations thereof) arise
naturally in societies.



Appendix A

Review of Linear Algebra

Throughout this thesis, we assume basic knowledge of vectorspaces. Here we remind the

reader of many of those specifics on which we heavily rely.

For any matrix,M , thekernelof M , sometimes called thenullspaceof M , is defined as

follows: ker M = {v ∈ R
n |Mv = 0}. Likewise, here is the definition of theimageof M :

im M = {Mv | v ∈ R
n}. Thespanof a set of vectors is the set of all linear combinations

of those vectors. The image ofM is sometimes called thecolumnspaceof M because it is

the span of the columns ofM .

A finite set of vectors{vi ∈ V | 1 ≤ i ≤ k} is said to belinearly independentiff αi = 0,

for all 1 ≤ i ≤ k, whenever
∑k

i=1 αivi = 0, i.e., 0 cannot be expressed as a non-trivial

linear combination of the vectors in the set. Abasisfor a vector space,V , is a linearly

independent set of vectors whose span isV . Thedimensionof V is the cardinality of any

basis (all bases have the same cardinality).

With these definitions in hand, we now state without proof twoimportant theorems

from linear algebra.

Theorem A.1. For anym× n matrix,M ,

a) dim im M = dim im M t. We call this value therankof M .

b) rk M + dim ker M = n, andrk M + dim ker M t = m.

c) WhenM is square (whenm = n), dim ker M = dim ker M t. We call this value

thenullity of M .

188
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Theorem A.2. For anym× n matrix,M ,

a) If LM = I for somen×m matrixL, we callM left-invertiblewith left-inverseL.

M is left-invertible iff M is injectiveiff ker M = 0.

b) If MR = I for somen×m matrixR, we callM right-invertiblewith right-inverse

R. M is right-invertibleiff M is surjectiveiff ker M t = 0.

c) If M is square, thenM is surjective iffM is injective iffM is invertiblewith inverse

M−1 such thatM−1M = MM−1 = I.

The addition of two matrices is well-defined iff both matrices have the same dimen-

sions. The multiplicationMM ′ of an m × n matrix M and anm′ × n′ matrix M ′ is

well-defined iffn = m′, and the resulting matrix will be of dimensionm × n′. Here are

some simple observations about how the kernel of a matrix behaves with respect to matrix

multiplication and addition.

Lemma A.3. For any matrices,A andB, such thatAB andBA are well-defined (i.e., ifA

is m× n, B is n×m),

a) ker A ∩ im B = B ker AB

b) if B is surjective, thenker A = B ker AB;

c) if B is injective, thenker A = ker BA.

For any matrices,C andD, such thatC + D is well-defined (i.e.,C andD have the same

dimension),

d) if im C ∩ im D = 0, thenker(C + D) = ker C ∩ ker D.

Proof. Proof of part a): Ifv ∈ ker AB, thenA(Bv) = (AB)v = 0, so thatBv ∈ ker A ∩

im B, i.e.,B ker AB ⊂ ker A ∩ im B. Conversely, anyw ∈ ker A ∩ im B may be written

asw = Bv for somev. SinceABv = Aw = 0, v ∈ ker AB, andw = Bv ∈ B ker AB, so

thatker A ∩ im B ⊂ B ker AB. Therefore,ker A ∩ im B = B ker AB.

Proof of part b): Further, ifB is surjective, thenker A ⊂ im B, so thatker A = B ker AB.
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Proof of part c): Now assume thatB is injective, i.e., ifBv = a andBw = a, thenv = w.

If w ∈ ker BA, thenB(Aw) = (BA)w = 0. SinceB is injective,ker B = 0, and so

Aw = 0, i.e., w ∈ ker A. Therefore,ker BA ⊂ ker A. Likewise, if v ∈ ker A, then

B(Av) = B0 = 0, so thatv ∈ ker BA, ker A ⊂ ker AB, andker A = ker BA.

Proof of part d): Finally, ifv ∈ ker C ∩ker D, then(C +D)v = Cv +Dv = 0+0 = 0, so

thatv ∈ ker(C + D). Conversely, assume thatim C ∩ im D = 0. Now, if v ∈ ker(C + D),

thenCv + Dv = (C + D)v = 0, so thatCv = −Dv = D(−v) ∈ im C ∩ im D. Ty

assumption, this is0, soCv = Dv = 0. Therefore,v ∈ ker C ∩ ker D, andker(C + D) =

ker C ∩ ker D.
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