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Introduction

Probabilistic models pervade almost all areas of computense today (e.g., computer
vision, graphics, intelligent agents, and natural langua@cessing). One common mod-
eling tool is that of a finite-state, stationary Markov chawhich is characterized by an
initial probability distribution and a transition matrikdt satisfies the Markov property.
The long-term behavior of such a Markov chain can be summaiby another probability
distribution, which is a particular example ostabledistribution, or equilibrium. Under
certain conditions, a Markov matrix has a unique stableidigion, which may be com-
puted using standard linear algebra techniques. In gerenakver, a Markov matrix may
have an infinite number of stable distributions, so thatmet@ng the long-term behavior
of a Markov chain requires more difficult analysis.

Economists and game theorists also use finite-state, saayiddarkov chains to study,
for example, market dynamics and learning in repeated galtiisgjuite common for such
models to have multiple equilibria. Since individuals da alevays behaveationally (i.e.,
optimally), some researchers have introduced an additparametere¢, that captures the
“mistakes” (i.e., sub-optimal choices) that individuatereetimes make, and which has the
added benefit of forcing any such model to converge to a urimpeeterm equilibrium.
The resulting model is called@erturbedMarkov chain, and the corresponding transition
matrix is then goerturbedMarkov matrix (PMM), with entries that aeinctionsof . Of
particular interest is the limit of the stable distributsosf a PMM as — 0, the so-called
stochastically stabl@listribution (SSD) of a PMM (Kandori et al., 1993; Young, B9
which is known to exist and to be unique.

A naive approach to computing the SSD of a PMM is to simply ta &t a very small
value and to compute the corresponding stable distribugfotme resulting unperturbed
Markov matrix using traditional linear algebra techniquespeating this computation for
a decreasing sequence «¥f yields a sequence of approximations to the SSD. However,
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without precise analytic bounds on the error of such appmaekons (as a function a),
they do not really say anything about the SSD. An exact coatbiial algorithm for com-
puting the SSD is known (Friedlin and Wentzell, 1984), butvblves enumerating certain
spanning subtrees of the graph associated with the PMM.UBecsufficiently expressive
Markov models tend to be very high-dimensional, and bec#usewumber of spanning
subtrees grows exponentially with the dimension, such @nogeh is not feasible in gen-
eral.

Recently, Gambin and Pokarowski (2001) have attemptedpmistate-aggregation
techniques to compute stable distributions of high-dinered Markov matrices. While
these researchers have devised an efficient, recursivatatgptheir results are only ap-
proximate. We improve upon past results by presenting al state aggregation technique,
which we use to give the first (to our knowledge) scalablectabgorithm for computing
the stochastically stable distribution of a perturbed Marknatrix. Since it is not com-
binatorial in nature, our algorithm is computationally $éde even for high-dimensional
models. Researchers in economics have already used owaappo study the dynamics
of housing markets. Given the widespread use of Markov nsadetomputer science, we
imagine that it will soon find direct applications there, adlw
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Overview

This thesis is divided into three parts. Part | focuses onkigdamatrices and their stable
distributions. This part sets the groundwork for Part Il, perturbed Markov matrices
(PMMs) and their stochastically stable distributions (SpDt is here where we present
our algorithm for computing the SSD of a PMM. Part Ill presemio additional algorithms,
which were inspired by our algorithmic work on computing 8@D of a PMM; however,
making these theoretical connections precise remainsitord work.

Overview of Part |

In more detail, the main goal of Part | is to introduce our napgroach to state aggregation
in a Markov chain, which we caleduction(or thereduceconstruction). Unlike related
techniques, reduction actually eliminates states fronsiciamation by compressing time.
In fact, state aggregation is only a side-effect of redurctlmat arises when we choose to
eliminate all but one member of a set of “closed” states.

In Part Il, we show that reduction can be generalized to PMMa manner that is
amenable to (real) analysis. While the primary goal of P&t introduce the reduction
construction for use in Part I, we will illustrate its uskfass immediately (in Part 1) by
proving a number of “structure” theorems for Markov matsic&hat is, we will use reduc-
tion to develop novel proofs of classic results on the nabfithe set of stable distributions
of a Markov matrix.

We first present the reduce construction in the context ofkiblamatrices deferring
making the connection to Markov chains until later. Althbu@e construction may be
defined algebraically, the intuition behind it is geometBo we begin with a combination
of graph theory and linear algebra in chapter 1, showing higwhaaic properties of a
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Markov matrix, M, may be expressed in terms of its associated graphs, whexettices
of the graph correspond to indices of.

Two key concepts defined in chapter 1 apenandclosedsets of vertices in a graph.
In chapters 4 and 5 we will show that we may apply our constadb eliminate a set
of indices of M iff s corresponds to an open set of vertices in the grapi ofLikewise,
chapters 2, 3, 4, and 5 will be largely dedicated to demotiisgyséhe connection between
M'’s closed sets and its collection of stable distributions.

Because the reduce construction is defined in terms of suizestin chapter 2, we
develop sufficient theory to carefully define and analyzégteavior of certain submatrices
of a Markov matrix. In chapter 3, we give a novel proof that” = limy .., + Zé\:ol M
exists for any Markov matrix)/. This will allow us to prove the first of our structure
theorems, characterizing the set of stable distributiérasMarkov matrix.

Next, in chapter 4, we give an algebraic characterizatioopain sets, showing that a
set of indices is open iff the corresponding submatrix\ofis invertible. This then lays
the groundwork for chapter 5 where we show how to eliminatenogets of indices, by
applying our main constructiomeduction to reduce the dimension a@f/, without losing
any information about its stable distributions. Also, irapter 5, we present another im-
portant idea, which we caficaling For unperturbed matrices, scaling may be recognized
as right-preconditioning, a standard technique used teesmlear systems of equations.

In this chapter we also introduce two novel notionsegliivalencebetween Markov
matrices, and show that we may recover the set of stableldisons of a given Markov
matrix from the corresponding set of any equivalent ones & non-trivial result, in that,
even though reduction produces a Markov matrix of striathyaBer dimension, we can still
prove that the result is, in a precise sense, equivalenttotiginal. Thus, if one is only
interested in computing stable distributions, reduct®ma ipowerful tool for simplifying
high-dimensional Markov models.

Overview of Part Il

The heart of Part Il is our algorithm for computing the SSD &MNM, presented in chap-
ter 7. However, we begin in chapter 6 by taking some time togthe Markov Chain Tree
Theorem (MCTT) in detail. Although it is not computationapractical as a means of
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computing the SSD of a PMM, the MCTT provides the theoretieais for most of chap-
ter 7. To our knowledge, this proof is novel. Moreover, wd felbas a pleasing geometric
flavor to it.

In chapter 7, we move on to give a precise definition of a peediMarkov matrix )/,
and its associated stochastically stable distributiore Kéy issue throughout the chapter is
that we must always be able to take limitseas- 0 (i.e., continuity), and the unweighted
graph ofM, must be constant far > 0. Thus, the entries af/, must be well-behaved, and
they must remain so as such as we apply algebraic operatiohs.oThese conditions on
the analytic nature of/, effectively force the entries of a PMM to be in a certain class
functions, known asxponentially convergemanctions.

Thus, in section 7.1, we introduce the class of exponenttahvergent functions and
discuss how members of this class behave both algebraaadlyanalytically. After defin-
ing perturbedmatrices in section 7.2 (as matrices with exponentiallyeogent entries),
we define perturbetarkov matrices PMMs in section 7.3 (as unichain Markov matrices
with exponentially convergent entries). Using the MCTT, stw that the unique stable
distribution of a PMM, M., is a perturbed matrix,,, so that its limit,u,, ase — 0, i.e.,
the stochastically stable distribution df., is well-defined. In sections 7.4 through 7.6, we
show how the concepts of equivalence, scaling, and redufttbon chapter 5 generalize to
PMMs.

We then use these constructions, in section 7.7, to givelgaritnm for computing the
SSD of a PMM. The two fundamental difficulties with designswgh an algorithm are:

¢ how to efficiently represent a PMM for algebraic computatemd

e how to carry out the necessary algebraic computations witer inverting a PMM.

By a careful appeal to the MCTT, we show that:
e We may represent any PMM by a pair of real-valued matrices, an

e by applying reduction to eliminate open sets in the grapigf= lim,_,, M., we
need only invert submatrices 81, i.e., unperturbed Markov matrices.

Finally, in order to guarantee that our algorithm makes preg and eventually terminates,
we use scaling in a rather subtle manner (cf. Corollary 7.17)
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If we are instead interested in computing thge of convergenct the SSD, we show,
in chapter 8, how minor changes to the SSD algorithm allowsousalculate this in a
similar manner. This problem has been studied in the comtes@eneralized Simulated
Annealing, and the solution may be interpreted as an enemggstibn. Thus, we call this
the Energy algorithm. We prove that, unlike the SSD algarithhere we must work one
communicating class at a time, we may reduce all communigalasses simultaneously.
Although the algorithm of Gambin and Pokarowski (2001) oyislds an approximation
to the SSD, it is based on an exact calculation of the corredipg rates of convergence,
which turns out to be the same as our Energy algorithm. Horvehar algorithm is mainly
combinatorial, operating primarily as a recursive aldorton graphs. Since our algorithm
recursively operates on GSAs, we believe that it is con@ytmore satisfying.

Overview of Part Il

Part 11l presents two additional algorithms, which werepinsd by our algorithmic work
on computing the SSD of a PMM.

In chapter 9, we reformulate the problem of topologicallstieg a directed graph, usu-
ally restricted to directedacyclicgraphs, as a multi-objective optimization problem over
arbitrary, weighted, directed graphs. We present an algorithm aneeptat it yields an
optimal weighted, topological sort. When combined withtalie empirical techniques
for generating meaningful graphs, this algorithm coulddyiateresting results in several
application domains, including ranking, preference aggtien, and information retrieval.
As such, we have dubbed our algoritfBnaphRank. We conjecture that the Energy algo-
rithm of chapter 8 would output precisely the same solut®@ephRank. If true, this
would give us a Markov chain interpretation f8raphRank, a la Dwork et al. (2001).

In chapter 10, we present another ranking algorithm, whietcall QuickRank. This
algorithm is recursive, and can be used to rank individualocial network, based on an
associated hierarchy. For example, these individuals neagebearch articles, in which
case the social network would be given by citations, and igv@ichy specified by areas of
specialization.

QuickRank is actually not simply a single algorithm, but a whole clakalgorithms
parameterized by a givdpaseranking algorithm, which we apply “locally,” meaning at



each level in the hierarchy. One view of our approach is thsitably modifies a given
base ranking algorithm so that the resulting ranking sefigfivo intuitively desirable ax-
ioms, thepeer-review principlendBonacich’s hypothesis

The idea of exploiting a hierarchy in this way was suggestegrevious work. For
example, using only a 2-level hierarchy, determined essgnby URL domains, with
PageRank as the base ranking algorithm, yields the BlodkRigorithm of Kamvar et al.
(2003b). It should be noted, however, that BlockRank wasld@ed as a first approxi-
mation to PageRank. In contrast, we argue (aickRank may produce superior results,
in that they more accurately reflect the judgements of logaéds and are resistant to the
ranking manipulation technique of web-spamming.
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Chapter 1
Markov Matrices and “Markov” Graphs

In this chapter, we compile a collection of definitions anct$aegarding Markov matrices
and their associated graphs. Throughout, we will rely orfahewing notation. We letS,,
denote the set of integers frofrto n, and we letS!, denote the set of integers frabrto n.
Usually, S,, will represent the index set for an x n square matrix. We will also usg,
andS? to define sequences, where S — S, defines a sequence ¢f) of lengthl + 1.
We will denote theé" element ofr by o, (instead ofr(7)).

We begin with some basic notions from graph theory. Spedifjcae will:

¢ give formal definitions of (un)directed, (un)weighted dnap

o define (strongly) connected components of a graph, as weblesn and closed sets
of vertices, and

e state and prove some basic properties of open and closeaf setsices that we will
need in subsequent chapters.

1.1 Graph Theory Essentials

1.1.1 Basic Definitions

We will define adirected graph G = (V, E, s,t), as a 4-tuple in whichH/ is a set of
vertices F is a set ofedgesands : F — V andt : E — V are mappings from edges to
vertices. We will restrict our attention to graphs in whiatlb)” and E are finite, such as
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Figure 1.1: Directed and Undirected Graphs
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inin Figure 1.1. In this figure, vertices are drawn as geoimptiints, and edges as arrows
from one vertex to another. Specifically, the arrow corresiieg to an edgey € F, starts
at the points(«) and terminates (i.e., ends)#@ty). If v = s(a) andw = t(«), we say that
w is adjacentto s. For example, irG, V = {v;, vy, v5, 04}, E = {a,b,c,d, e}, s(a) = vy,
t(a) = vy, etc., andy, is adjacent ta,.

We will say two graphsG = (V, E,s,t) andG’' = (V' E', s, t'), areequaliff there
are 1-1 correspondencés, V' — V andy : £’ — E such thatis’ = sy andét’ = tv, i.e.,
the connections in the graph are the same — only the labelseoeléments of the graph
are different. For example, the grapfisandG’ in Figure 1.1 are equal with (v,) = v,
d(vy) = vy, 0 (v3) = 1y,0 (vy) = vy, andy(a) =, Va € E.

We will define anundirectedgraph as a directed grapty, = (V, E, s,t), with the
property that it contains the “reverse” of every edge. Thatar eachn € FE, there exists
ana’ € E such thats(a) = t(a’) andt(a) = s(a). Intuitively, we may view the pair
a anda’ as a single “composite” edge, drawn as an arrow with arrodéiea both ends,
or alternatively, as a line segment with no arrowheads asatth as7,. Clearly, every
graph has an associated undirected version, and, as ireFiglrif G is a graph, we will
denote its undirected version lay,. If we define theeverse G, of a directed graphts,
as we may definé&/, = (G U Gp),, where the union of two graphs is obtained by taking
the unions of corresponding vertex and edge sets.

When there are neepeatededges in a graply:, (i.e., when there are no two edges,
a; € E, with the same starting and ending poir#&y;) = s(«,) andt(ay) = t(ay)), we
can represent by the set of ordered pair§(s(«),t(a)) € V x V | a € E}. In this case,

s andt are just the respective projections onto the first and secoodlinates of each edge,



and we can refer to the graph simply@s= (V, E), with each edge represented as a pair
of vertices. The order of this pair matters only when the grairected. In general, for
conveniencey = (v,w) € E will denote ano € E with s(o) = v andt(a) = w, even
when such an edge is not uniquely defined.

A walk of length! in a (directed or undirected) graph is a sequen(ﬂaerafges,{ozi}ﬁz1
such thatt(a;) = s(a;4,) for 1 < i < [ — 1. The walk starts at(«;) and ends at
t(ay). A pathis a walk that does not revisit any edges or vertices,ﬁ@.}iz1 is a path iff
l=Ha |1 <i<l}andl+1 = |{s(a;) |1 <i<I}U{t(ey)|1<i<I}. Note that
since a path is a walk, and since we can always drop edges fwatkao obtain a path,
there is a walk fromv to w iff there is a path fronv to w. For example, the sequence,
(¢,a,d,c,b), specifies a walk in the graplds, shown in Figure 1.1, fromy, to v;. By
dropping edges, we obtain the corresponding path), from v, to vs.

In a graph that has no repeated edges, given an enumeratisnveftices, i.e., a 1-1
correspondence, : S, — V, a walk may also be specified by a sequemceS; — S|
of [ + 1 vertices. For example, the walk given above correspondsedséquence; =
(4,1,2,4,1,3), with associated path given by = (4,1, 3). Here,v,, = s(a;) is the first
vertex in the walk and,,, = t(«,) is the last, with(v, ,v,, ,) € E andv, = t(a;) =
s(ayyq), foralll <i <1 —1. Asis clear from the examples, a path is a walk for which
the corresponding is 1-1 (i.e., distinct inputs map to distinct outputs), sattho vertex
is revisited. Note that this second definition is more gdrnéan the first (for graphs that
have no repeated edges), since it allows walks (and pathHshgth O, which we specify
by a single vertex{v;}. When we encounter such walks (and paths), we will say tlest th
both start and end at.

A cycleis essentially a path of length at least 1, except that waevadlod require the
initial and final vertices to be the same; thatdg,= o;, or s(a;) = t(«y). To convert the
walk, o, given above to its corresponding patt, we removed the cycle; = (1,2,4,1).

A self-loopis a cycle of length 1, such as edgan G.

Given a directed grapl; = (V, E), its transitive closureG; = (V, Ey), is defined
such that(v;,v;) € Er iff there is a directed walk (or path) from} to v, in G. Because
we allow walks of length Ov;, v;) € E for all 4, i.e., each vertex has an associated self-
loop. For example, in Figure 1.2, we shawand its transitive closuréz, although by

convention we have suppressed drawing all the self-loops.



Figure 1.2: Unweighted and Weighted Graphs
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This yields a natural preordeon V/, given by the “leads to” relation,», wherev, ~ v;
iff (vi, vj) € Er. This preorder gives rise to an equivalence relationyherei ~ j (read,
“v; is strongly connectedb v;") iff i ~» j andj ~ i. Equivalence classes with respect
to ~ are often called thetrongly connected componer{&CCs) ofG.> For example, in
Figure 1.2 the strongly connected components are givevpy, }, {vs, v4}, and{vs}, as
indicated by the colored edges. Note that SCCs are maxinggnimg they do not contain
other SCCs; furthermore, the SCCs(@fpartition the vertices of7, meaning each vertex
belongs to exactly one SCC. A graph is said tosblengly connected consists of only
one strongly connected component. For exampleprapletegraph, which contains an
edge from every vertex to every other vertex, is stronglyneated.

Similarly, we have a “connects to” relation;~, associated with the undirected graph
corresponding td~, G,,. That is,v; « v; iff there is anundirectedwalk (i.e., a walk in
the associated undirected graph) frepto v, in G. The equivalence classes associated
with this relation are called theonnected component$ G. For example, the connected
components ofr from Figure 1.2 ardv,, v, }, {vs, vy, v5}. A graph is said to beonnected
if consists of only one connected component. A connectealhgnath no cycles is called a
tree

Notice that the connected componentband G are exactly the same. Likewise,
their strongly connected components are identical. Magahe (strongly) connected
components itz are precisely its maximal complete subgraphs.

Thus far, we have restricted our attention to directed amfiraatedunweightedyraphs.

A preorderis a relation that is reflexives(~ v) and transitive ~ v andv ~ w impliesu ~ w).

2Strongly connected components may also reasonably bel callemunicating classet conform with
the literature on Markov chains (see section 5.3).



Much of this thesis is actually concerned with weighted gsapA weighted (directed or
undirected) graph is one augmented with a function £ — R, which assigns a real-
valued “weight” to each edge in the graph. The weight of areed(@), is drawn as a label
on the corresponding arrow, and can be thought of as a coslilelidood of traversing
a. An example of a weighted graphy’, is shown in Figure 1.2. Notice that the sum of
the weights over the edges emanating from any given vertéxss in this case, we may
interpret the weights as the probability of traversing segiedge conditioned on the fact
that we are at a particular vertex.

Sometimes, we will be given a weighted gra@h= (V, E, d), but will wish to refer to
the corresponding unweighted graph. To do so, we will usathation,G_ = (V, E). For
example, with respect to the graphs in Figure 1:2,= G.

We will call a (directed/undirected, weighted/unweightgdaphG’ a subgraphof a
graphd, if the vertex and edge sets @f are subset of those 6f, with the corresponding
restrictions of all other ancillary functions (e.d,,s, t, etc.). For example, given a subset,
V', of the vertex set o7, we define theestrictionof G, to V', denotedG|,, to be the
subgraph of> with vertex set)’, and the set of all edges with both ends/ih If G’ is a
subgraph of and their vertex sets are equal, we will say tfiats aspanningsubgraph of
G, or thatG’ spans. A subgraph which is also a tree, it generally callexlibtree Thus,
aspanning subtreeefers to a subgraph which is a tree and which sgans

1.1.2 Open Sets and Closed Classes

We will say that a subset of verticdg, C V, isinvariantiff V' has no outgoing edges, i.e.,
for all (v;,v;) € E, if v; € V', thenv; € V'. An invariant SCC is referred to ascbosed
class. IfV’ does not contain a closed class, we will say thiats open Vertices that are
do not belong to a closed class are calisthsient We say that a graph isnichainif it
possesses exactly one chosed cfass.

Note that the terms “open” and “closed” are not opposites.h&Closed” refers only
to single (invariant) SCCs, while “open” can refer to a seveftices larger than a single
SCC. In fact, the vertices in an open set need not even be ctmtheHowever, any single
SCC is either open or closed. If it is not open, it contains s@sed class, which must

3This terminology comes from the theory of Markov chains iflscu, 1980).



be the entire SCC since SCCs are maximal, and so it is clob#ds hot closed, it cannot
contain a closed class since SCCs are maximal, and so itis ope

We prove two simple lemmas in this section. The first is aniintiobservation about
closed classes, namely that there is always a walk termgpatia closed class. It follows
immediately from this fact that every directed graph camda closed class. The second is
an intuitive observation about open classes, namely tlea¢ tis always a walk exiting an
open class. This second lemma follows as a simple consegwéiiae first.

Lemma 1.1. Starting from any vertex in a directed graph there exists a walk terminating
in a closed class. In particular, every directed graph camsea closed class.

Proof. Let {C,,...,C,,} be the SCCs of7. Pick an arbitrary vertex, and call its SCC,
C,,. If C,, is closed, then we have a walk (of length 0) starting and terminating in a
closed class, and we are done. Otherwisejs open, and there is an outgoing edgg ¢, )
with s; € C,, andt, € C,, for someo, # o,. Now sincev ands, are in the same SCC,
there is a walk fromv to s, and continuing along the edge,, ¢,), there is a walk from
tot,.

As above, ifC,, is closed, there is a walk from terminating in a closed class, and
we are done. Otherwise, we can repeat the process and findgoirmuedgsd s,, t,) with
sy € C,, andt, € C,, for someo; # 0,. Now sincet; ands, are in the same SCC, there
is a walk fromt, to s,, and continuing along the edge,, t,), there is a walk from to ¢,.
Proceeding inductively, we either encounter a closed clasghich case we have found a
walk from v terminating in a closed class and we are done, or we conthrisdquence
o of open SCCs, and the walk fromthrough the vertices; € C,, andt; € C,,, , with
Co, #Co,, -

Suppose we never encounter a closed clasg?,j.as, not closed for alf. Since there
are only finitely many SCCs itr (i.e.,o; € S,,), for somei < j, we must have; = o;.
By construction, there is a walk fromto s;_,, the starting vertex of the incoming edge to
C,,. This is the concatenation of a walk fromto s;, the starting vertex of the outgoing
edge fromC, , and a walk froms; to s,_;. In particular,s; ~ s;_;. Buts; | ~ ;4
(because of the edde; ;,¢; 1)), andt; , ~ s; (because; , € C,, = C,,), S0s; |~ s;.
This implies thats; ~ s;_;, which is a contradiction, sinc@,ﬂ # Cy, = G, Thus, we
must haveZ,,. closed for some, and we have constructed a walk franto ¢,_, € C,.. O



Lemma 1.2. A subsel/’ C V of vertices in a directed graplty = (V, E), is open iff for
everyv € V' there is a walk fromy to some vertex ¢ V.

Proof. Assume that’’ is open, and consider an arbitrary vertexs V'. By Lemma 1.1,
there is a walk fromy to some vertexy, in some closed clas€, SinceV’ is openC ¢ V'.
Choose: € C\ V. Sincew andz are in the same SCC, there is a walk franto 2. Hence,
there is a walk from to 2 ¢ V'

Now assume thdt” is not open, i.e., that it contains a closed cl&sd/Ve must produce
av € V' for which no walk inG from v leavesV’. We can choose any < C. Since there
is no edge leaving, there can be no walk fromthat leave€, much less/’. O

1.1.3 Closed Classes in Subgraphs

In this section, we examine the relationship between theetlalasses of a graph and
the closed classes of certain subgraphs and restrictiongarticular, we observe that the
number of closed classes in a graph cannot decrease as weerésedges. Equivalently,
the number of closed classes cannot increase as we add new. &dgs observation will
be particularly relevant in chapter 7.

Theorem 1.3.Given a directed graphy = (V, E) with V' C V an invariant set of vertices,
if C' is a closed class af’ = G/, then it is also a closed class 6f.

Proof. First, we will show thatC’ is invariant inGG. By assumption)/’ is invariant. So
there are no edges if starting at vertices insidé€ and ending at verticesutsideV”’. It
remains to show that there are no edgesristarting at vertices insidé€’ and ending at
vertices inV’\ C’. SinceC’ is closed ini’, there are no such edgesGh. Further, sinceé:’
is a restriction of7, their edge sets coincide on the restricted set of vertidesce, there
cannot be any such edgesGreither, and’’ is invariant inG.

Second, we must show th@tis a SCC ofG, that is, for allv € C', w € V, v ~ win
G iff w € C'. If v ~ w, thenw must be inC’, becaus&’ is invariant inGG. Conversely, if
w € C', thenv ~ win G’, sov must also be strongly connectedutdn G, since any edge
in G" is also inG. Therefore(' is a closed class af. O

Theorem 1.4. Any closed clas§ in a connected componetit = (V, E) of a directed
graph( is also a closed class @f.



Proof. Connected components have no incoming or outgoing edgésjsmvariant, and
the restrictionG|;- is exactlyG. Hence, we can apply Theorem 1.3 with = G and
C' = C to conclude tha€ is a closed class af. O

Theorem 1.5.1f G ¢ G withV = V andE C E, then every closed class 6fcontains
some closed class 6f.

Proof. Let C be a closed class af, and conside@}c.4 By Lemma 1.1,5]0 contains a
closed class, call . By construction¢ is contained irC, so we have only to argue that
is closed inG. Becausé is invariant inG, it is also invariant in7, sinceE C E. Hence,
we can apply Theorem 1.3, with = G, G’ = G|,, andC’ = C, to conclude tha€ is a
closed class of’ which is contained ir€. O

1.2 Markov Matrices

We will now introduce our fundamental objects of study, Marknatrices and their stable
distributions. Specifically, we will:

e define a Markov matrix, its laplacian, and its set of stab&trdiutions;

e associate a weighted directed graph with any principal subxof a Markov matrix
(i.e., a sub-Markov matrix); and

e carry over the graph-theoretic concepts of section 1.1 tckMamatrices in order to
define irreducible and unichain Markov matrices.

Anm x n matrix M hasm rows andr columns. We writel/; ; to refer to the element
in the i" row and;j" column of M. Observe thal/, ; = ¢{Me;, where(e,), = [i = j],°
i.e.,e; has a1intheé” component, and Os elsewhere.

Two special cases of matrices arise when one ofitheensiongeitherm or n) equals
1. Specifically, aolumnvector is am x 1 matrix; likewise, aow vector is anl x n matrix.

To keep our notation brief, we will index vectors using oneafale instead of two. That

“Note that, sincd” = V, C C V, so that this restriction is defined.

We use Iverson’s convention: for any propositioh, [Q] = 1, if Q is true, and 0 otherwise (Knuth,
1997, p. 32).
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is, for a column vectoo, v; = v, ;, and for a row vectow, w; = w, ;. We will denote the
set of column vectors of dimensionx 1 by R". Unless otherwise specified, when we say
“vector,” we mean a column vector IR".

A submatrixof ann x n matrix, M, is obtained by eliminatin@ < m < n rows and
0 < k < n columns ofM to obtain an(n — m) x (n — k) matrix. A submatrix is called
principal if the set of removed rows is the same as the set of removedsiu

We denote thé,-norm onR" by || - ||;. For anyv € R", this is the sum of the absolute

n
lolly = luil.
i=1

We will use the same notation to denote the correspondingced matrix norm on the set

values of its entries:

of n x n matrices with real-valued entries,
M|, = max {||Mv]|; | veR" |lv||, =1},

and we will take as known the fact (Horn and Johnson, 198594) that

1M1[4 :max{z Ml 11<j< n} :
i=1

In other words,|| M ||, is the maximum of the column sums of the absolute values of the
entries of M. As a matrix norm,| - ||; obeys the triangle inequality (i.g|A/ + N||; <
|M||; + ||N|;) and is sub-multiplicative (i.e||MN|; < || M| || N|}).

We will write M > 0 to indicate that its entries are non-negative, iM;, > 0, Vi, j.

We denote the set of all x n square matrices with non-negative, real-valued entries by
Mat, (R"). A matrix M € Mat, (R") is calledMarkov iff JM = J, whereJ =
(1,...,1) ambiguously denotes a row vector of 1s of arbitrary length.other words,
all columns in a Markov matrix sum to 1. Observe that: for angrkbv matrix, M,
|M||, = 1; likewise, for any submatrid/’ of M, ||M’||; < 1.

We will sometimes refer to a principal submatrix/, of a Markov matrix,/, as a
sub-Markovmatrix. Given a sub-Markov matrix/, we can define itiplacian A (M) =
M — 1. By convention, we will abbreviat& (M) asA, A (M) asA,, etc.

Notice that if M is Markov, then:

o A, ;=M,;,; >0,if i # j,i.e., A has non-negative off-diagonal entries;
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o foranyyj, >, Ai; = > ., Mi; =1—M;; <1,ie.,A’s off-diagonal column

sums are less than or equal to 1; and

o JA\=JM—-JI=J—-J=0,1i.e.A'scolumns sum to O.

Conversely, it is easy to check that\fsatisfies these three conditions, thdn= A + I is
Markov.

For any matrix)/ and vector, if Mv = v, we say that is aneigenvectorof M
with eigenvalue\. Given a Markov matrix,M/, a stablevector of M is an eigenvector
with eigenvalue 1, i.e)fv = v. A distributionis a vectoro € R" such thatv > 0 and
|v||; = Jv = 1. So, astable distributioris a stable vector that is also a distribution.

Observe that the set of stable vectors\6fis a subset of the kerrfedf A, sinceMv =
v = Ivimpliesthat M/ —I)v = 0 so thatAv = 0. More specifically, the stable distributions
of M are precisely the non-negative, norm-1 vectorsin\, i.e.,stab (M) = ker ANA,,.
Here,A, = {z > 0| """, x; = 1}, the standard-simplex.

We naturally associate a weighted gragh)/) = (V, E,d) with any non-negative
matrix, M > 0. Specifically, letV’ = {v,...,v,}, with (v;,v;) € Eiff M;; > 0 and

d(v;,v;) = M;,;. Notice that graphs obtained in this way cannot have regeadges (cf.
section 1.1). By ignoring the weights @i()/), we obtain the corresponding unweighted
graph,G_(M) = (V, E).

For our purposes)/ will usually be a Markov or a sub-Markov matrix. Whéi is
Markov, every vertex inG(M) must have at least one outgoing edge. For example, the
Markov matrix M on the left of Figure 1.3 gives rise to the “Markov” weightedagh
on the right. Intuitively, the entries ai/ correspond to probabilities of traversing the
corresponding edges. We do not include an edge fraau in the graph when/; ; = 0,
since there is O probability of traversing such an edge, sbould not be the case that
v; ~ v, .e., there should not be a walk (or path) frgrto ..

A Markov matrix M is said to bereducibleif G(M) consists of more than one SCC;
otherwise it is said to bereducible To conform with the literature on Markov chains, we
call a Markov matrixunichainiff it has exactly one closed class. By Lemma 1.1, we can be
sure that every Markov matrix has at least one closed clasthét, by Theorem 1.5, if we
increase the number of non-zero entriedffthe number of closed classes cannot increase

®Basic linear algebra concepts, such as this, that are notedifi the main body of the thesis are reviewed
in Appendix A.
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Figure 1.3: Markov Matrix and its associated “Markov” Wetigth Graph

M G (M)
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and must eventually decrease, since a complete graph okexactly one SCC, which
is necessarily closed.

We will carry over the terminology of strongly connected gmments, closed classes,
and invariant and transient sets of vertice&:i{/) and apply it to subsets of the indices of
M in S,,. For examples C S, is closed iffV, = {v, | i € s} is closed inG(M). We can
also define the submatrid/, , of M corresponding to two subsets of indices’ C S,
by removing rowi and columnj from M iff i ¢ s andj ¢ s'. This submatrix is principal
iff s = ', in which case we say that/,  is the principal submatrix of/ corresponding
to s. In the next chapter, we will present a more explicit meansooistructing such sub-
matrices.



Chapter 2
Existence of a Stable Vector

Because the reduce construction we present in chapter bneden terms of sub-matrices,
in this chapter, we carefully lay the groundwork for provihgorems about sub-matrices.
Givens C S,,, we define two special matrices, and:,, that we use to extract the rows and
columns, respectively, whose indices ares iof another matrix\/. We then demonstrate
how 7, and:, can be used to permute a matrix, yielding a partitioning tbalates the
submatrix,M; .. Further, we prove that is always injectiver is always surjective, and
we show how their corresponding images and kernels are atgipnrelated. Finally, and
most notably,we show that the laplacian of any sub-Markotrimmacorresponding to a set
s', has a non-zero kernel, if contains a closed class. In particular, the laplacian of any
Markov matrix has a non-zero kernel. While this does prove the existence of a stable
distribution (because a stable vector need not be non4meat does hint at this important
fact, which we will prove in chapter 3.

2.1 Submatrix Construction

Given a subset of indices, C S,,, with cardinalityk = |s|, we can uniquely enumerate

s in increasing order to obtain a sequer@egle. Mathematically, such a sequence is a
bijective mapping fromsS,, to s, so we can also define its inverse,! : s — S, such
that forj € s, s~'(j) = i iff s; = j. Further, we can enumerate the complement,
which has cardinalityy = n — &, and its inverse in exactly the same way. For example,
if s = {1,4} C S,, sothats = {2,3} C S,, thens, = 1, s, = 4, s '(1) = 1, and

13
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s7'(4) =2;ands; = 2,5, =3,5 '(2) = 1,ands ' (3) = 2.
Equipped with this notation, we can now present our metheccémstructing sub-
matrices. Fos C S,,, we will define the matrix

ZS:<651 “ e eSk)'

It is easy to check that multiplying am x n matrix, M, on the right by:, eliminates the
columns of M whose indices are not inand leaves the other columns intact, meaning in
the same order. We will also define the matrix

Again, it is easy to check that multiplying anx n matrix, M, on the left byr, eliminates
the rows of M whose indices are not inand leaves the other rows intact.

Now, given ann x n matrix M and two subsets, s’ C S,,, M, s = m My is the
submatrix that results from removing rawand column;j from M iff i ¢ s andj ¢ s’
Notice that(M&sr) = efwstS/ej = (1¢;)" Mage; = eiiMeS; =M

/.
. 8i,S5
i, J

1 2 3 4
5 6 7 8
Example 2.1. For example, let = {1,4}, andM = . Here,1, =
9 10 11 12
13 14 15 16
1 0
00 e 1 000
<e1 e4> = ,andr, = = . Further, M, =
0 0 e} 0001
01
1 4
5 8 1 2 3 4 1 4
, T M = ,andr M, = = M, ,. Hence,
9 12 13 14 15 16 13 16
13 16

M ; is the (principal) submatrix correspondingsto™]
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2.2 Matrix Permutations

A permutationof a sets is a bijective mapping — s. Whens C S, is viewed as
a sequence, we can think of a permutation as a reorderingecéléments ok. Given
a permutationp, of S,,, we may define the associatpdrmutation matrix P”, so that

p _ . . . - - - - - - - - .
P/, = [i = p(j)]. Notice that a permutation matrix is invertible with inversqual to its

transpose.
Theorem 2.2.1f p is a permutation of,,, then(P*) ™" = (P*)" = pl),
Proof. Applying the definition above, gives

(PP)ey = (P = i = p)] = [p () =] = P )

Moreover,

(F0m), = (),

Y]

= [i=p~ ()] [k = p(j)] = [i = p~ " (p(h))] = i = j] = I,

Therefore, P ) P? — . Since P is a square matrix, by Theorem A.Z(" ) —
(P .o

Likewise, thematrix permutatiorof ann x n matrix, M, according to is defined as
M' = (P?)' MP”. This is simply a rearrangement of the entries\bf

Theorem 2.3.Given a permutatiory, of S, and ann x n matrix M, if M’ = (Pp)t MP?,
thenM; ; = M

p(),p(4) "

Proof. Using Theorem 2.2,

(M/)i P ((Pp)t Mpp)z‘,j - Z <(Pp)t)i,k Mkvlpl/,)j

»J



16

Figure 2.1: The Effect of a Matrix Permutation on a Markov @ra

M M
0 0 0 04 03 02 0 0
0.1 0 0 0 0 0 0 04
02 0 03 0 0 01 0 0
0 05 0 0 0 0 05 0
G (M) G (M)

=T 7T
AN e N
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For example, consider the permutatipngiven byp(1) = 3, p(2) = 1, p(3) = 2, and
p(4) = 4. Applying the corresponding matrix permutationtbgiven in Figure 2.1 yields
the matrixA/’, also in the Table. Notice that the corresponding gragtis/) andG (M/),
are identical, up to a relabelling of the vertices.

Using the submatrix construction given in section 2.1, foy aubset C S,,, we can
define a permutation matrix,, such thatP’ M P, is a permutation of\/ that moves the
principal submatrix\/, ; to the lower-right-hand corner afl .

Theorem 2.4.Givens C S,,, if p, : S,, — S,, IS given by

ifi <k
s;_7 otherwise

thenP, = ( s 1 ) is a permutation matrix wittP, = P"s.

Proof. First observe thag, is clearly surjective, sincg,, = s Us. Sinces,, is a finite set,
this must be 1-1 as well. In particular, is a permutation of,,. To show thatP, = P"s,
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we proceed by cases. Jf< k, then

(Ps)i,j - egpsej = < s % ) € = €its € = eg@gj
= [i=5]=li=p0)] =P
Similarly, if j > &,
(Ps>z‘,j =€ ( ls s ) € = eies. P [Z - Sj—d =[i=ps(h)] = PZ?JS

Since their entries are equal, = P". O

s
Now notice that ifP, = < T ) thenpP! = , and
7TS
. TS Mz w=Moa, M;5 Ms
PiMP, = M(zg zs)= -
Tg WSMZE T‘—SMZS MS,E Ms,s

We will refer to this collection of sub-matricéd ., M ., M, 5, andM/; ; as apartitioning
of M with respect tos.

Example 2.5. With s and M as in Example 2.1,

0100 1 2 3 4 0010 6 7 5 8
P;MPS: 0010 5 6 7 8 1000 _ 10 11 9 12 ’

1000 9 10 11 12 0100 2 3 1 4

0001 13 14 15 16 0001 14 15 13 16

T 1 4 5 8 2 3
so thatM has the partitionind/, , = M = M, = ,
’ 13 16 ’ 9 12 ' 14 15

6 7 .
andM 5 = ( 0 11 ) with respect tos = {1,4}. O

Corollary 2.6. For the permutation matrix, corresponding tos  S,,, P, and P! are
Markov. The product of Markov matrices (of the same dimensgoMarkov, and, in par-
ticular, and P! M P, is Markov for anyn x n Markov matrix, ).

Proof. By definition, the columns of°, are the standard basis vectors. Thus they are
non-negative and sum tg and P, is Markov. In particular,JP, = J. Therefore,J =
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JP,P;' = JP;'. However, by Theorems 2.2 and 24,' = P!, sothat/ = JP, ! =
JP!, i.e., the columns oP! sum to 1 as well. Sinc€! is non-negativeP! is also Markov.

If M,, M, are Markov and of the same dimension, thgn), > 0 and.J (M, M,) =
(JM,) M, = JM, = J, so thatM, M, is Markov. SinceP! and P, are Markov, so is
P!MP,, whenM isn x n and Markov.O

2.3 Projection and Inclusion

For a subset C S, with & = |s|, 2, has dimension x k, andr, has dimensiot x n. So
left-multiplication by, is a mappingR” — R". We call. aninclusionoperator, because
it is a 1-1 linear transformation which map$ to a subspace d". In fact, forv € R,
w = 1,0 € R" is the vector whose coordinates with indices are given by the coordinates
of v (in order), while its coordinates with indicesdrare all 0.

Similarly, 7, yields a mappindk” — R*. This is a surjective linear transformation and
hence corresponds to an orthogopadjection Specifically, foro” € R", the coordinates
of w' = w0 € R” are just the coordinates of with indices ins.

1
2 4
Example 2.7.Let s = {1,4} C S, andv = € R*. The vectorw = 7,v =
3
4
1
1000 2 1) . ) o
= is the corresponding projection of The vecton, =
0001 3 4
4
10 1
00 |1 U
LW = = is the inclusion ofw in R™. O
0 0 4 0
0 1 4
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Next, we will defineR® = span{e; | i € s}, a subspace dR" of dimensionk. Simi-
larly, R® = span {e; | i € 5} is a subspace d&" of dimensionk. The next lemma high-
lights the key algebraic and geometric properties of thesggtion and inclusion opera-
tors.

Lemma 2.8. Givens C S,
a) ma, =1 = a5, 1, = 0= ma,, andims + 1,71, = 1
b) keriz =0 = kersg, immg = RE, andim 7, = R¥;
¢) ime; = R® = ker 7, andim s, = R® = ker 7.

Proof.

Proof of part a): Sincé, and P! are inverses,

T Tisls TS
t S s7s S7Ss
[=Pp — (Zg zs):
Tg 7rs7’§ Wsls
So thatrgiy = w1, = I andmg, = w5 = 0. Likewise,
t Ts
[ = PSPS - 7/§ ZS - Zgﬂ_g _'_ 7/571—5
™

Proof of part b): By part a)r;1: = 7,1, = I. S0,1; andq, are left-invertible, hence injec-
tive with ker 2z = kers, = {0}. Likewise,ns andr, are right-invertible, hence surjective
with im 7, = R* andim 7, = R.
Proof of part ¢): The fact thatn -z = R® can be seen as follows:

ima, — {zsv lve Rk} by definition ofim

k
= {zs > v |v €Re; € ]Rk} since{e;} is a basis

i=1

i=1

k
= {Z vige; | v; € R, e; € Rk} by linearity of matrix multiplication

i=1

k
- {Z vie,, | v € Rye,, € R"} by by defintion ofi,

=span {e; | j € s} by definition ofspan
=R° by definition ofR*
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Likewise,im 1, = R”.

Now sinceryi, = 0, it follows thatim:, C ker . Conversely, ifv € ker 7, then by
part a),v = (1475 + 1,7,) V = 15TV + 1, = 1w, Buteymow € ime,. Thus,ker gy C
im 2, S0 thatker > = im 1, = R®. Likewise,im 15 = ker 7, = R®.

O

Notice that the compound operationr, takes any vector € R" and maps it to a
vectoru € R® such thatu; = v, if © € s andu; = 0 otherwise. This allows us to take any
vector,u € R", and easily decompose it as= v, + v5, with v, € R® anduv; € R®.

Example 2.9. Takes andv as in Example 2.7. Define

10 1 1

0 0 100 0 2 0
Vg = 1TV = =

0 0 0001 3 0

0 1 4 4

Similarly, define

0 0 1 0

10 01 00 2 2
’U§:Z§7T§U: —

0 1 0010 3 3

0 0 4 0

Now observe that, € R®, v € R®, andv, + vz = v. O

Theorem 2.10.Givens C S, R” = R® @ R®. Further, for anyv € R", v = vs + v,, with
vy = 1m0 € R® andov, = 1,0 € R,

Proof. Letv € R° N R", so thatv = Y, a;e;, andv = Y. bie;, and ", a;e; —
>_jes bje; = 0. Since the standard basis vectors are linearly independent( = b; for
all 7 andj, andv = 0. In other wordsR* N R* = 0.

Now for anyv € R", by Lemma 2.8ayy = [v = (1515 + 1,m,) v = 15750 + 1,0 =
vs 4+ v,. Sinceimi; = R® andim:, = R?, it follows thatv; € R® andv, € R®. But then

v € R* + R, so thalR" = R® + R’. ThereforeR" = R* @ R*. O
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2.4 Existence Theorem

In this section, we compile a collection of basic facts rdgag the structure of a Markov
matrix, its closed classes, and stable vectors, which wilhéeded in subsequent chapters.
Most notably, we show that the laplacian of any sub-Markowixacorresponding to a set

s', has a non-zero kernel, if contains a closed class. In particular, the laplacian of any
Markov matrix has a non-zero kernel, which contains a litydadependent set of vectors
corresponding to its closed classes.

Lemma 2.11.Let M be ann x n Markov matrix, and an invariant set of indicesC S,,.
a) M;, = 0.
b) M; , is Markov.
c) If ' is a subset of indices such thatt s’ C S,,, thene,(ker A, ;) C 1, (ker Ay y)

d) e, (stab Ms,s> C stab M.

Proof.

Proof of part a): By assumptios,is invariant. So there are no edgesin\/) from s tos.

This means thadf;, . = 0, foranyl < i < [s] and1 < j < |s|. But (Mg,s)ij = Ms, .,
o) (MES)” = 0, and)Ms , is the zero matrix.
; Mss Mg, Mss 0 .
Proof of part b): By part a)P,M P, = ’ ’ = ’ . Since
MS,E Ms,s MS,E Ms,s

P.MP, is Markov, its columns sum tb, and in particular the columns af/, , sum tol.
Furthermore)/, ; > 0, sinceM,, 7, > 0. Hence,M; , is Markov.

Proof of part c): Take any € ker A, ,, so that)/, ,o = v. Becauses C s', R* C RSI, and

5,81

!
sinceim:, = R* andim:y = R*, soime, C im: . In particular,.,v € ime, So there
!
exists a’ € RI*! such that,v' = 2,0. Now observe the following:
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M, S/v/ = WS/MZS/U/ =7 Migv =7 I M
= my (1575 + 1,7,) Mav by Lemma 2.8 a)
= g Mo + o m Mgy

= msMs v + 7o M, v

=0+ my M v by part a)
= T 15V by assumption
/
= 71'8/25/1}
= by Lemma 2.8a)

Thus,v’ € ker Ay gvandeg (ker AS,S) C oy (ker AS/,S/).

Proof of part d): Considev € stab M, sov > 0, Juv = 1, andv € kerA,,. We
will apply part c) withs’ = S,,. The columns of_ are the standard basis vectorsHHh,
e;, such that € s'. But sinces’ = S, this includes all of them, and, = I. Thus,
v = 1,0 € Tker A = ker A. Hence, we need only show thdtis a distribution. Since
v,1, > 0, it follows thatv” > 0. Moreover,Jv' = Ji,v = JZLS:H Vi€, = Zi‘il v Je, =
Z‘f:'l v; = Zi‘il v Je; = JZLS:H v;e; = Ju =1, sothat' € stab M.

O
Theorem 2.12.Let M be ann x n Markov matrix.

a) ker A # 0.

b) Forany subsetofindices C S, such that’ contains a closed clasker A/ # 0.
Proof.

Proof of part a): The matriX// is Markov, soJM = J. But thenM'J" = (JM)" =
J'. This implies that M"* — 1)J" = 0, soJ" € ker A", meaningdimker A* # 0. By
Theorem A.1dim ker A # 0, soker A # 0.

Proof of part b): By assumptior; contains a closed class. Calkit By Lemma 2.11 b),
M  is Markov, so by part a)ker A, ; # 0. Pickv € ker A, such thatv # 0. Now
by Lemma 2.11 c)y (ker A, ) C 2y <ker AS/,S/), so there exists’ € ker A, such that
1,0 =10, Further, by Lemma 2.8 b), is injective, sa’ # 0. Thereforeker A + # 0.
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As a consequence of this theorem, every Markov matfixhas a stable vector. In
fact, this is true of any principal submatrix/; ., of M containing a closed class, By
Lemma 2.11 c), any stable vector ik, , can be extended to be a stable vectakbfThus,
the kernel ofA contains a stable vector @f corresponding to each of its closed classes,
and these vectors are necessarily independent (since theon-zero on disjoint sets of
indices). Once we show, in chapter 3, that every Markov matis anon-negativestable
vector, and hence a stable distribution, Lemma 2.11 d) ikéiVise guarantee the existence
of a set of independent stallestributionscorresponding to the closed classes/bf



Chapter 3
Existence of a Stable Distribution

Given any distributiony,, and a Markov matrix)\/, of the same dimension, we can con-
struct a sequence of distributions via iteration,= Mwv,_,, ¢ > 1. While v; need not
converge as — oo, it necessarily converges the Cesaro sensgMarsden, 1974, p.
363), that is,+ >_; ‘0 v; converges asv. — oo. More generally, for any Markov ma-
trix, M7 converges in the Cesaro sense (Doob, 1953; losifescu, 19@0)s, the matrix,
M* =limy . + ZN ' MY is well- deflned Since; = M'v,, this implies that; con-
verges in the Cesaro sensdiiay .., + Zi v; =lmy o & ZN ' Moy = M™w,.

In this chapter, we prove a sharper result. We show that filadean,\, of M induces
a natural splitting o™ into the kernel and the image &f and that\/* is the associated
projection,m,.,, ontoker A. This allows us to prove our first structure theorem for Marko
matrices, in which we characterize the set of stable digiobs of a Markov matrix)\/,
in terms of the columns af/>. Specifically, we prove thatab(/) is the set of convex
combinations of the columsn df/*. In particular, this proves the existence of a stable
distribution for any Markov matrix. Moreover, this will @llv us to give an explicit formula
for M, in section 5.2, that does not involve limits.

Lemma 3.1. If M is Markov, then
a) ker A ®im A =R",
b) a:ker A x im A — R", such thatx(v, w) = v + w, is linear and invertible,

c) there are unique, well-defined linear mappings, : R" — ker A andr,,, : R" —
im A such thatr, + m, = I.
24
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Proof. We first show thaker A Nim A = 0. Takev € ker A Nim A. Sincev € imA,
there existsw such thatv = Aw = (M — Iw = Mw — w so thatMw = v + w.
In addition, sincev € ker A, Av = 0, and Mv = v. Therefore, by a straightforward
induction, M*w = w + kv for anyk > 1. Solving forv yieldsv = 1 (M’c —I)w.
L - Dol o< gt el < (] i) el <

2 (HMH’f + HIHl) Jw|l; = 2 |lw|,. Since0 < [jv]|; < 2 |lw|,, which is as small as we

But [[o]], =

like for large enouglt, it follows that||v||, = 0, and therefore = 0.

For general vector spacelm (V + W) = dim V +dim W —dim (V N W). Applying
this identity toV = ker A andW = im A, and using the fact that "W = 0, we
have thatdim (ker A +im A) = dimker A + dimim A. By Theorem A.1dimim M +
dimker M = n for anym x n-dimensional matrix)}/. Thus,dim (ker A +im A) = n.
Sinceker A +im A C R", we must havéer A + im A = R", so thatker A ® im A = R".

This means that the mapping: ker A x im A — R", such thatv(v, w) = v + w, for
v € ker A andw € im A, is surjective. It is also injective. I = a(v,w) = v + w, then
v = —w, that is,» andw are multiples of one another. Bute ker A andw € im A, so
v,w € ker ANim A = 0. In particulary = w = 0, soker o = (0, 0). Further,« is linear,
since it is just addition.

Thus, there exists an inverse linear mapping, : R" — ker A x im A, corresponding
to a pair of linear mappingsr,., and r,,,, with imm,., C ker A andimm,,, C imA.
In particular, (e, Tim) = Ter + Tim = 1, SiNCEV = (ozofl) v = « (oflv) =
A (Tieey U, T V) = TV + Ti¥ = (Tier + M) v SINCE iNVErses are unique,,, and
Tim @re the unique such mappings.

We now give formulas fott,,. andmr,,, directly in terms of)M . In particular, we will see
that the Cesaro limit of Markov matrices mentioned at tharir@gg of this section exists.
In addition, we find thatr,., is Markov.

Theorem 3.2. For any Markov matrix,M, the sequence of Markov matriceky =
% Zj.v: *01 M’ converges tor,, as N — oo. In other words, particular)/> exists and
equalsmy,,. In particular, ., is Markov andl — M = 7,,,,.

Proof. We begin by showing that/*, the limit of M asN — oo, is well-defined. We
will appeal to the classic result from real analysis whicyssat a sequence converges iff
every subsequence has a convergent subsequence with a ndmmh@Royden, 1968, p.
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: j N-1 j N-1 j
37, ex. 11). Observe that, singe< HMJH1 <1, |10 M 1 <> HMJH1 < N, so
that|| M|/, < 1. In particular,My is a bounded sequence, so that any subsequence is also

bounded. Thus, by a standard argument from real analysiyd@gh, 1968, p. 37, ex. 8),
every subsequence, in turn, has a convergent subsequahde) £y .

By Lemma 3.1, any vectoy = m,v + m,v. Fix a basis ofker A, i.e., a spanning
set of independent, stable vectors with respedt/t¢and hence, with respect fd* for all
i), {v1,...,v;}. We may then writer,,v = Zleﬁrvr e ker A for someg, € R*, and
Timv = Aw for somew € R". Applying, My then gives:

‘ N,

1 .

L Nl
Myv = —ZM%
e

L N k
- ¥ Z M [Z@«UTWLAUJ

1
= Zﬁrvr + ﬁ [MNiw_w]

r=1
Now sincelim; ., §- [MNiw — w} = 0, it follows thatlim,_ ., Myv = Sr_ Bv, =
Ter¥- ThAtis lim; oo My, = Ty

Since every such convergent subsequence hasatinelimit, .., we know that)/,,
converges. It must necessarily converge to the same lingiha®f its subsequences. That
is, it must also converge ta,.,, and we may write\/* = m.. Sincel = m, + m;,,, We
automatically have that,, = I — m, = I — M.

Finally, we argue thad/>°, and hencer,.,, is Markov. Observe that, for any, M, is
Markov. It is non-negative by definition, antiVy = J+ Y2 ' M7 = L™V g0 =
LT = J. SinceMy > 0, M = limy_, My > limy_. 0 = 0. Moreover,
JM™ = Jlimy_ . My =limy_ JMy =limy_,J = J. O

We close this chapter with our first structure theorem in Wwhve characterize the stable
distributions ofM in terms of M *°. Specifically, we prove the classical result (losifescu,
1980, Theorem 5.3, p. 155) that each column\éF is a stable distribution of\/, and
every stable distribution is a convex combination of theupols of M/*°. In particular,
every Markov matrix M/, has at least one stable distribution.
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Corollary 3.3. For any Markov matrix,}/, stab(M) = stab (M™) = M™A,,. In partic-
ular, for all i, M*e; € M™A, = stab (M) = stab(M).

Proof. First, observe that if € ker A, SinCem, v + T,V = v, T,V = U — My € ker AN
im A, so thay) = 7,,,v andv = m,v. By Theorem 3.2M*° = 7, and] — M = 7. By
our convention, we will write\* for M>° — I = —m;,,,, so thatker A™ = ker (I — M™) =
ker 7,

Now observer that, ih € ker A, v = M™v = mv € ker A. Conversely, ifv €
ker A, 0 = m,,v = —A™v, andv € ker A”°. In other wordsker A* = ker A, from which
it follows thatstab (M™) = ker A N A, = ker AN A, = stab(M).

In addition, by Theorem 3.2y/*° is Markov, so thatV/ ™ A,, C A,,. SinceM > A, C
im M = imm,, C ker A, it follows that M A,, C ker AN A,, = stab(M). Conversely,
assume that € stab(M), so thatv € ker A. By our earlier observation/> v = m,v =
v. In particular, since € A,,, v € M™A,,. Thus,stab(M) = M*A,,. O

010 ¢
: 00 g : :
Example 3.4. For example, considel/ = . By induction, one may
001 g
000 3

easily check that

iiseven [iisodd 0 3 (1 - 2L>
. . A

V- liisodd [iiseven 0 ? (1 21) and

’ o1 3(1-3)

0 0 0 zi
. [visodd | [~visodd 1 1oV
sty — 2w U 3 F gy
R, . [wvisodd |  [~visodd 1 1oV
~“ N o= 77w 2t TTaw 3 T oo
N i=0 0 0 14 1-2
- 3 7 3NV
N
0 0 0 254
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biod
11 g 1
sothat\/™ = | * 2 °|. In particular, we see that/ e, = 2M e, + 1M Ve,
001 3
0 0 00
1
3 0
1 0
SinceM®e; = M®e, = | ? | andM®e, = are clearly stable distributions of
0 1
0 0

M, all the columns of\/* are instab(M ), as Corollary 3.3 predicts]



Chapter 4
Sub-Markov Matrix Invertibility

We begin this chapter by defining various sets of walks in eatéd, weighted graph cor-
responding to a given matrix. We then show how by aggregé#tiegveights of such walks
we arrive at an alternate formula for the powers of a matriraly, we apply these tools
to Markov matrices to obtain results about the invertipitit sub-Markov matrices.

4.1 Sequences and Walks

Let S,(1) = {o:S5 — S,} be the set of sequences $f of length! + 1. Likewise,
let S, (i,7,1) = {0 € S,(l) | 0y = j ando;, = i} be the set of sequences ) of length
[ + 1 starting withj and ending with.. For any set € S,,, we also define,, (s, 7, j,[) =
{o0 €8,(i,5,1) | 0, € s, VO < t < [} to be the set of sequencesSip of length! + 1 from
j toi whose intermediate values all lie inHowever,j andi do not themselves need to be
in s, so for anys, S,,(s,i,5,1) = S,(¢,7,1). Finally, S,,(s,i,7) = U2, Su(s,i, 4, 1) is the
set of all such sequences of arbitrary length (greater than 1

For any non-negative matri®/ > 0, and for any set C S,,, we defineP,,(s,i,7,1) C
S,.(s,1i,7,1) as follows:

P]W(Sai>j7 l) = {U € Sn(sai7j7 l) ‘ McrtJrl,crt 7& 07 V0 S t < l} .

This represents the set of walks of lengtin G'(1M) from v; to v; that include vertices
inV, = {v; € V|ies}only. Inaddition,Py(s,i,7) = U=, P(s,14,4,1) is the set of
all such walks of arbitrary length (greater than or equal o There are corresponding

29
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definitions forP,, (i, j,1) andP,,(l), representing the set of walks@( /) of lengthi that
start atv; and end at;, and the set of walks i6/()) of lengthl, respectively.

Lemma 4.1. For anyn x n Markov matrix,M, for any sets C .S,, that is open inM/, and
foranyj € s, U;c, Pu(s, i, j,n) is a proper subset df), o Py (7,7, n).

Proof. Now {J,cs Pa(i,j,n) corresponds to walks it¥(A) of lengthn starting atv;.
Likewise,| J,c, P (s, 1, 7, n) corresponds to those same walks with the additional camditi
that they end ins and include only vertices in. Thus,J,., P (s, %, j,n) is a subset of
UiGSn Par(is j,n)

SinceV, is open, by Lemma 1.2, from any vertex i) there is a walks that starts
atv; and ends at some vertex ¢ V,. SinceM is Markov, every vertex irz()/) must
have at least one outgoing edge,csoan be extended to a wadk of lengthn. But then
o' € Uies, Par(i, j, n), ando’ ¢ U, Pu(s.i,j,n), since it containg;, ¢ V,. Thus
Uics Par(s,4, 4, n) is a proper subset ¢fl,.; P (4, j,n). O

4.2 Matrix Powers and Walks

Given ann x n matrix, M, and a sequence of indicesg S,,(1), [ > 1 we will define

!
W(M,o)=]] M. . (4.1)

Oky0k—1
k=1

The matrix entryM,, corresponds to the weight on the edge from = to v, in

G(M). So the functioriV (M, o) has a graph-theoretic interpretation as the “total” weight
of the walko in G(M), where we aggregate weights by multiplication. Sequenées o
indices of length 1 correspond to walks of length 0, so foitaythe usual convention that

a product over an empty set isi;(M, o) = 1 whenevewr € S,,(0).

Lemma 4.2. For anyn x n matrix, M, ando € S,,(1), W (M, o) # 0 iff o is a walk in the
graphG (M), that s, iffc € Py, (1).

Proof. If o € Py, (1), then)M,

04,01

# 0, forall1 <i <. SinceWW (M, o) is the product
of non-zero values, it itself is not zero. Converselylif M, o) # 0, all of the terms in the
product must be non-zero, samust be a walk of length i.e.,o € P, (1).

O
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We can now give a graph-theoretic interpretation of matawers in terms of walks in
G(M). In words, for anyn x n matrix M, the (i, )" entry in M' can be computed as the
sum of the “total” weights of all walks id7(A/) from j to i of lengthl. We may similarly
identify sums over various subsets of walks in terms of pot&laf submatrices af/.

Lemma 4.3. For anyn x n matrix M and index sets, 3, s C S,,,
a) (MZ)Z] - ZUG’P}u(i,j,l) W(M7 J)a and

-2
) (MoMiPMes) = Yy WM. ),
Proof.

Proof of part a): Using the facts that; ; = e;Me; andl = >"}_, e.el., we have

1 t l t t
(M') = eiMe; = M. Me; = eiMIM ... MIMe,
,J I
[ times
n n
= M ! M...M M
= € €r,_1Cr,_, €r, Er, €;
7’171:1 7‘1:1
n n
= ‘M L M...Me, et M
= e;Me,, e, M...Me,e. Me;
r_1=1 ri=1
n n
= § j § M, M. o M, M, .
r_1=1 ri=1

We now apply the substitution(k) = r,, 0(0) = j, o(l) = i, so that each choice of values
for the summation variables$y, ..., r,_}, represents a unique choice of: Sy — S,

a sequence of length+ 1 which starts afj and ends at. So this set obs is precisely
S,(i,4,1). Thus,

l
<M )Z . Z M0170171M017170172 e MU2701M01700
" 0€S, (i,j)])
= ) W(Mo)= W (M, o)
€8, (i,5,0) a€P s (i,5,1)

where the final equality follows from Lemma 4.2.
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Proof of part b): Similarly, ift = |s|,

k k
-2 t t t

2y r_q1=1 ri=1

k
t t t
= E e E e; My sep, €r M. M e,. e, M ge;

Tl71:1 7’1:1
k k
= Y > Mo Mo M M, g
r_1=1 ri=1

This time each choice of values for the summation varialles,. .., r,_, }, represents a
unique choice of € S, (s, o, 3;,1), and the conclusion follows as in part a).

-2
(Mo M2 Msﬂ)ij - Y MM M

01-1,01—2 : 02701M01700
oES, (S7ai7ﬁjvl)

= Y WMe)= ) W(M,o)

€S, (5,0;,5;,0) o€P(s,04,85:0)

4.3 Sub-Markov Matrix Invertibility

We will now show that the laplacian, ;, of a sub-Markov matrix)\/; ., is invertible iff s

is open with respect td/. The first half of this theorem will be crucial for specifyitige
reduction presented in chapter 5, and its generalizatijesepted in chapter 7. The second
half will come into play when we make the connection betwdwnreduction on Markov
matrices and the associated construction on Markov chiaisgction 5.3.

Theorem 4.4.1f M is ann x n Markov matrix, with a principal submatrix\/; ;, defined
by an open set of indices,C S,,, then

a) For all integersi > 0, || M.

71— 00

|, < cbw) for some < ¢ < 1, andlim, . M!, = 0.
b) I — M, isinvertible, and(l — M, )~ = > M.
Inversely, ifs contains an entire closed class &f, then

c) I — M, isnotinvertible, and
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Proof.

Proof of parta): Lett = ||M{,||, > 0. We first show that| M ||, is bounded above
by cl+J). Remember from section 1.2 that for a positive matfik,> 0, ||A/]], is just its
maximum column sum. Sinc&/ is Markov, and sincel/, ; is a submatrix ofd/, 0 <
| M, 4]|, < IM]l, < 1. Since the matrix norm is sub-multiplicative, for all|| M/:%'||, <
| M|, [ Mss]], < ||M ||, so the sequendeM,||,, i > 1, is decreasing. Looking at

everyn" term, we have the subsequer“‘M;f’,fH1 < (HMQSHI)k = ¢, k > 0. Setting
k= L]k < so||ML ), < ||pt

< &=l
1

To prove thatc < 1, we will show that all column sums af/;; are strictly less than 1.
SinceJM = J, JM" = J, i.e., all column sums of/" equal 1. In particular, writing out
the s column sum of\/", we have:

I = Z(Mn)i,s]-

i€S,,

= > >  W(Mo) (4.2)

1€S, a€Ppy(i,5;,n)

> > > W(M,o) (4.3)

1€s Ue,P]W (Svivsj ,TL)

= Z Z W (M, o)

ZES‘S‘ UGPAI(Svsivsj7n)

= M.},). . 4.4

2 (M2),, (4.4)
Equation 4.2 follows from Lemma 4.3 a). The inequality in #aBlows from Lemma 4.1,
sinceU,c, Pu(s,i,s;,n) is a proper subset df),_s Py (4, s;,n), when we restrict the
sum we throw away some positive terms. Next, we re-index aptyd.emma 4.3 b) with
o = [ = sto arrive at Equation 4.4, which is th& column sum of\/',, showing that this

is strictly less than 1. Sincgwas arbitrary}| M|, < 1.

Now, since0 < ¢ = ||MZ,|, < 1, it follows thatlim, ., cbil = 0. Further, since
0 < || MZ,]|, < b+, itfollows thatlim, ., ||MZ,||, = 0. Finally, since the entries of; ,
are non-negative and bounded above|By; || , lim; ., M; , = 0.
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< % clvl. By writing i = kn + j for

| ks 1 k k
J—Zk 02”06 —HZE‘LOC =

. Hence, the summatiop ;°, || M., ||, is bounded above and is, hence convergent.
—c 1= ) 1

Since each entry op ¥ M.
>0 ||ML ]|, they each converge i.e., the summafoft,, M. , also converges.

Proof of part b): By part a)y_: || M:
0 < j < n,we may rewrite thisa§ ;- 02 e

z'

s IS an increasing sequence which is bounded above by

Next, we argue tha}_ .~ M;S is the inverse of — M, .. Since both matrices are square,
by Theorem A.2, it suffices to show that the sum is a rightdiseeas follows:

o9 j—1
— M)y M, = (I-M,) lim JZM
=0 T
j—1
= i Z<f

_ 1 MZ-I—l
Jim Z

- 11I11 (Mgs - Mg,s)

= ] — lim M]

Jj—0o0
= T

where the final step in the derivation follows from part a).

Proof of part c): Inversely, assumecontains an entire closed class &f. By Theo-
rem 2.12b)ker A, # 0. Butl — M, = —(M;, — ) = —A, g, soker(I — M) =
ker A, # 0, andl — M, is not invertible.

Proof of part d): As above, by Theorem 2.12k); A, ; # 0. So there exists € ker A,
with v # 0. Now M ;v = v, so(hme M v = lim;_ o (M. ) = lim;_, v = v. But
v # 0. ThereforehmHOO es 7 0.

O

Corollary 4.5. If M is ann x n Markov matrix, with a principal submatrix\/, ., defined
by an open set of indices,C S,,, then

-1
a) <_M§,S AS,S )’L,j = ZUEPA{(S 5 5]) W(M? U)!

b) (—ASM.5), . = > oepy(ss;) WM, o), and
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-1
) (Mgs— My AgiM,5), . = > vepu (s0s) WM, 0).

Proof.
Proof of part a): By Theorem 4.4by,M; A, = M, (I — M, ) = >, Mg M.,
Since projecting to thé, ;)" index is linear, applylng Lemma 4.3b) with=sandg = s
gives
-1 k k
(_Ms s As s )i,j - <Z Ms,sMs,s> - Z <M§,8M5,5> i
k=0 ij k=0 ’
=y > W(M,e)= Y  W(Mo)
k=0 UEPM(S,Ei,sj,kJrl) UEPM( 5 s])

Proof of part b): Similarly,—A, ) M, = >°°°, M. M, so that applying Lemma 4.3 b)
with o = s and = s gives

(A Mos), = > W(Mo)= >  W(M,o).

k=0 0€Pp;(s,5;,5;,k+1) UEPM( ])

Proof of part c): Finally,
-1 k
(Mas — My AZIM,5) = Z(M MEM.z)

Notice thatP,, (5;,5;,1) = Py (s,5,,5;, 1) is a singleton set, such theéMgvg)ij =
) W(M,0). By Lemma 4.3b) witha = § = 5, (Mg,st,sMs,g), =
]
12) W(M, o), so that



Chapter 5
Two Useful Constructions

In this chapter, we present our two fundamental constraostiecale and reduce. We will
show that the result of these constructions applied to a Mankatrix is another Markov
matrix which is, in a certain sense, equivalent, in that thbls distributions of the former
can be recovered from those of the latter. Appropriate gdizations of these construc-
tions to perturbed Markov matrices will form the basis of main algorithm, presented in
chapter 7.

In addition, the reduce construction will allow us to shargke structure theorem
shown in Corollary 3.3 by proving Theorem 5.17 and Theoret®5We will also give
a Markov chain interpretation of the construction in sat&a3. This will allow us to prove
that the construction “composes” well; that is, if we useffitst eliminate one set of states,
s1, and then proceed to eliminate an additional set of stajesye could obtain the same
result by simply eliminating all the states,U s,, at once.

5.1 Scaling

In this section, we introduce the notion of-equivalent Markov matrices, wheie is a
matrix satisfying certain conditions. We will see thatyuititely, if we are only interested
in stable distributions, we may replace any Markov matrithvaine that isD-equivalent.

Definition 5.1. If M, and M, are Markov matrices, we will say that/, is D-equivalent
to M,, and write M, ~, M,, iff D > 0 has a non-negative left-inverse aker A; =
Dker A,. WhenD = I, we will say that)/, is equivalento M, and write M, ~ M, .

36
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In the next Lemma we see that that that for two matrices whiehaequivalent,D
induces a 1-1 correspondence (i.e., a bijective mappinigydsn their sets of stable dis-
tributions. We will justify the term “equivalent” in sectidh.2, by showing that the other
direction holds; that is, two matrices are equivalent igythhave the same set of stable
distributions.

Lemma5.2.If M, and M, are Markov matrices)M, ~, M,,withD,L > 0andLD = I,

thenD*(v) = ”gﬁ is a bijective mapping fromtab (M,) to stab (M;).

Proof. First, observe thaD* mapsstab (M,) to stab (M;). The matrixD mapsker M,
to ker M, while the mappingD* normalizes that result, dividing byDv||,. SinceD is
non-negative, the image efab (M,) underD” is non-negative, norm-1 vectorslar ;.
Next, we will show thatD" is bijective.

Injective: If D*(v) = D*(w) for v, w € stab (M,), thenDv = kDw for k = |'|'§Z’U'|‘|11 >
0. S0,0 = Dv — kDw = D(v — kw). Further,0 = LD(v — kw) = v — kw. Hence,
v = kw. Butv andw are distributions, sé = Jv = Jkw = kJw = k, andv = w. Thus,
D" is injective fromstab (M,) into stab (M,).

Surjective: For anyw € stab (M;) C ker (A,), since M, is D-equivalent to)M,,
w = Du for someu € ker (A,). Letv = %—. uw = LDu = Lw > 0, sov € stab (M,).
Now Dv = g = iz, and D' = e = Eiiie = miiy = o, = @ Thus,

D" is surjective fromstab (M,) ontostab (M, ), and hence a bijection betweetab (11,)
andstab (M;). O

We now give a simple construction that operates on certairkbdamatrices and pro-
ducesD-equivalent results. For any Markov matrix], and any diagonal matrix), with
0 < D;;andD;; (1 - M,;;) <1(i.e.,D,, is positive and sufficiently small) for alle S,,,
we defineM, = AD + I (and the corresponding, = AD). We say that\/j, is the
result ofscaling M by D. Note thatD is diagonal with positive diagonal entries; hence,
it is invertible with positive inverse (it is easy to checlatiD ™' is also diagonal, with
D, L= (Dm-)*l). In particular, it has both left and right inverses, andhisstboth injective
and surjective.
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For example,
1 1 1 1 5 1 1
3 3 1 5 00 6 2 3
M=1113 and D = 03 0|=Mp=| 10 ¢
0 % 0 00 ;5 0 3 3
These correspond to the graphs in Figure 5.1.
Figure 5.1:G(M) andG (M) with D = diag (3,2, 1).
G(M) v ) G(Mp) w 5
2 6
3 % 1 2 é 8
3 3 2 2
— 3 3
Vo 4 U3 Vo 8 U3

By looking at the corresponding graphs, we see that scaynfy ladjusts the weight
of the self-loop at each vertex with a proportional adjusttreé the weights on the corre-
sponding outgoing edges. Whé) ; is close ta0, the weight of the resulting self-loop at

i is large (neail), and whenD, ; is close to(l — M, )_1, the the weight of the resulting

N2

self-loop is small (neab).

Lemma 5.3. Given a Markov matrix\/, and any diagonal matrixD, with0 < D, ; and
D;,; (1 —M,;;) <1forallie S,, Mpis aMarkov matrix and\/,, ~p M.

Proof. We first show that\/, is Markov. Since/A = 0, JMp = JAD + J = J, so the
columns of M, sum to 1. Moreover, all the off-diagonal entries g, are nonnegative,
since, fori # j, (Mp);; = AD +1);; = (M —=1)D);; +1,; = (MD),; — D;; =
(MD),; andM,D > 0, so(MD),;
entries of M/, are nonnegative. Observe th@t/,),; = (AD + 1);;, = (AD);; + I;; =
N;Di;+1=(M;;, —1)D;; +1=(=1)(1 = M,;,;)D;; + 1. Now (1 — M;;)D;; < 1, so
(-1)(1 = M,;)D;; > —1,s0(Mp);; > -1 +1=0.

SinceD is non-negative with a non-negative invergeis surjective. By Lemma A.3 b),
thereforeker A = Dker AD = Dker Ap. Thatis,Mp, ~p M. O

> 0. Finally, we must show that all the diagonal
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We can use this scaling construction to produce infinitelpyridarkov matrices which
are equivalent to a given Markov matrix. In particular, wednthe following Corollary.

Corollary 5.4. Given a Markov matrix\/, if 0 < e and emax; (1 — M,;) < 1, then
M. = Ae + [ is a parameterized family of Markov matrices equivalentto

Proof. Letting D, = eI, M. = Mp_so that Lemma 5.3 implies that, ~, M. ButD
is simply scalar multiplication. So by Lemma 5Ky A = D ker A, = eker A, = ker A,
andM, ~ M. O

5.2 Reduction

In this section, we present a construction which allows u&liminate” an open set of
indices, s, of a Markov matrix,M. Specifically, it produces a Markov matrix of strictly
smaller dimension which is equivalent in the sense of Dé&bimi5.1. In this way, iteduces
the dimensionality of the matrix in a principled manner thaés not lose any information
regarding its long-term behavior. In section 5.3, we wi# feat this corresponds directly to
compressing the time spent in the corresponding states affdv chain to 0. Graphically,
it effectively collapses the corresponding vertice&:in\/).

For M Markov with s € S,, an open set of indices i/, we may define:

I
1 = Py , (5.1)
_Aa:,sl MS,E
p = (1 —M, AL )Pi, and (5.2)
M = phi+1. (5.3)
0 3 3
Example 5.5. In the Markov matrixM = 1 0 1 |, the vertex with index 3 is
0 3 3

an open set. We will now compute the reductionidgf with respect tos = {3}. s is
already positioned in the lower-right corner &f, so the permutation matrice, and

P! are just the identity. We hava, , = < —3 ) AL = < -2 ) M5 =

L L
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10
1035\ —~
M§S:<0%). So we can calculate = 01 |,p= ) , M =
01 =
0 1 ?
-1 1 1 1 0
2 4
B 10 3 X 1 o) 0 3
pho+ 1 = L -1 5 01 |+ = O
01 3 L 01 1 :
0o i -3 0 1

Theorem 5.6. For M, 1, p, and M as defined above,
a) ,p>0andJp=J,
b) pis surjective, and is injective.
Q) M = Mz — My Al Mg,
d) M is Markov.
Proof.

Proof of part a): By Theorem 4.44.4,
1—1 '
Al =(I-M,) " =1lim > M, >0
j=0

M, 5 and)Vf; ; are also both non-negative, sand: are both well-defined and non-negative.
We now show that the columns pfsum to 1. Sinceé?! M P, is Markov, JP!MP, = J. In
particular,J M,  + JM; ., = J. Therefore JM; , = J — M, , = JI — JM, , = —JA
so that

5,81

Tp = J( 1 M A ) PL= (T I AL ) P

_ (,1 ,]ASVSA;;)P;:(J J)Pst:JPSt:J

Proof of part b): Lett = |s|. Thenpisk x n andeisn x k. Now p has rankk because
its columns include the standard basis . Thus,dimimp = & andp is surjective.
Similarly, : has rankk because the columns dfinclude the standard basis f&", and

rke = rks'. Then, by Theorem A.1tk: + dimkers = k, sodimker: = 0, andz is

injective.
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Proof of part c): This follows from Equations 5.1 -5.3 and rixaélgebra.

M = ph+1
. 1
- <[ —MgsA§51>PSAPS +1
7 7 _As_,sl MS,E

Ngs Mg, I
= (1 - ALl 1 +1

MS,E As,s _Asjs MS,E

1
= < Ass — Mg, AsjslMs,E 0 ) 1 +1
_A;s MS,E

= Ag,g - ME,S As:slMs,E + 1
= M§,§ - Mg,s As_,slMs,E

Proof of part d): Since-A; L, M, M, M, > 0, M > 0. The columns of\/ also sum
to 1, since/ M = J(pAv+ 1) = JAv+ J = J, because/A = 0. SoM is Markov.

O
This motivates the following definition.
Definition 5.7. Thereductionof M with respect te is the triple,(]\//f,p, 7).

We will refer top and+ as theprojectionandinclusionoperators of the reduction, since
they are surjective and injective mappings, respectivélg. will also sometimes refer to
M itself as the reduction.

Now we will examine the effect of this construction on theresponding graphs. We
will show that the entries af/ may be identified with walks of length at least 1@Gn (M)
between vertices ifi; which only pass through vertices in. *

For convenience, we will defif@(M) = (G_(M)),, so that there is a path fromto
vin G_(M) (or, equivalently, inG(M)) iff there is a walk from fromu to v in G_ (M) iff
(u,v) is an edge ifP(M). We will denote any of these equivalent propositions bribfly
(u,v) € P(M).

That is, whose interior/non-end vertices ard/in In particular, this vacuously includes walks of length
1, since such walks have no interior vertices.
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Theorem 5.8.1f M is Markov ands € S,, an open set of indices it/ with |s| = k,
a) efp = eéi + Z?:l ZaePM(s,Ei,sj) W(M, 0)62,
b) 1e; = €5, + 3201 Dgep, (ssy) WML 0)es,
C) (]\/Z)” = ZaepM(S@_@_) W(M,o),and
d) P (]\/4\) = P (M)|., wherev; in P (]\7) corresponds tas in P (M).
Proof.
Proof of part a): First, observe that from Equation 5.2,

s
p = < I _ME,S As_,sl )P; - ( I _ME,S As_,sl )

Ts

—1
= T — ME,S As,s T

As in the proof of Lemma 4.3, we may use the fact that Z to compute the"

=1 €5€
row of p as
k
elp = elmg —eM s A, L, —e——eM s N e-eéws
7=1
k k
t t t
= el —l—Ze )e]e =e; + ( M, A )” 5
j=1 j=1

= et + Z W (M, U)eij

=Ll sepy, (s S5, s])

where we have appealed to Corollary 4.5 a) for the final etyuali

Proof of part b): The proof of this part is similar to that ofrpa). We first observe that

8,8 s,8*

1 I .
1 = P, :<z§ 7,8) =1z —1,\; o M
—A,,
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Therefore, we may compute th& column of: as

J 5,577 5,5%]

we;, = — 1A M s€j = €, zZeetA M. -e;

k

= e5 + Z 1,66 ) ej = es, + Z (—A;s1 M&g)m e,

k
=1 i=1
k

= e+ Y WMo,

=1 oEP, (s Si, s])

appealing to Corollary 4.5 b) at the end.

Proof of part c): Sincell = M, — M, A} M,

s this part follows immediately from
Corollary 4.5c).

Proof of part d): Finally, if there is an edgéy;,v;) € P (M), fori # j, then there a
walk of length at least 1 fromy; to v, in G (M). If i,j € 3, this walk may then be
decomposed into a concatenation of walks whose interidicesrare in/, which originate
and terminate ilZ. Each of these walks correspond to an edgé& |6M\> and together

they make a walk itz (]\7) and a single edge i® <J\7) Conversely, any edge between

distinct vertices irP <J\7) corresponds to a walk i <J\7) which corresponds to a walk
in G (M) and an edge irP (M). Since, by definition, both graphs also contain all self-

loops, P <J\/4\) =P (M)]y..

O
044
Example 5.9.In Example 5.5, we calculated that the reduction\éf= | 1 0 ;
013

with respect to the open set= {3} to bel =

== W

1
Now we can see that is the result we would expect from our geapimtuition. In M,

there is no path with interior vertices #from v; back to itself, soZ/\ZL1 = 0. There is one
such path (of length one - it has no interior vertices) frgno v, with weight 1, so]@;1 =
1.
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J\/ZL2 and]\?l2 are more complicated. There are infinitely many paths beggnat v,
and ending at, or v, with interior vertices irs, since there is a self-loop af. Specifically,
M\LQ is the sum of the weight of the edge,, v,) and the weights of all paths which begin
atwv,, cycle atv, ¢ times, and end at;. That is,]\//fl,2 =M+, Ml,g(Mg,g)iM&2 =
s oi(3)'s =5+ 1-2-5 = 1. Similarly, My, = 327%0 My y(M; )My, =
>ioiz)3 =10

Theorem 5.8 leads to the following important geometric propof the reduction con-
struction. Intuitively, it says that the reduction of an ot is open.

Theorem 5.10.If s ands are open sets of indices 8f such thats U s is also open, and/
is the reduction of\/ with respect tos, thens ' (5) = {j € Sy |55 € 5} (i.e., the indices
of M that correspond to indices i§) is open with respect tor.

Proof. Consider anyj € 5" (5). By Lemma 1.2, since U 5 is open with respect td/,
ands; € 3, there is an edge i® (M) from v, 0 somevs, , wheres, € sUs =35 3.
That is, by Theorem 5.8, there is an edgé’ﬁn(]\?) from jto k ¢ 57! (5). Hence, by

Lemma 1.25 " (3) is open with respect td/. O

Corollary 5.11. If M is unichain or irreducible, then for any open set,so is the corre-
sponding reductio/.

Proof. First, observe thal/ is unichain iff there is an open set, with |s| = n — 1. For
example, ifM is unichain and is a chosen index in the closed class, thea S,, — {i} is
open. Conversely, if there is an open setyith |s| = n— 1,5 = {i} can only be contained
in at most one closed class. In particular)if were to have more than one closed class,
at least one of them would have to be containes, iwhich is impossible since is open.
Since, by Lemma 1.1}/ has at least one closed class, it must have exactly onesthdt i
must be unichain.

Now assume that/ is unichain and is open. Then there must be soine s which is
in its closed class. In particulas,, — {i} is open. If we tak& = S,, — {i} — s, then we
may apply Theorem 5.10 to conclude tRat (3) is open with respect td/. Sinces C 3,
5035 = |3] = [5] — 1, and} is |s|-dimensional, we may conclude that is unichain.

If M isirreducible, therP (M) must be complete. Singe <J\//7> =P M), P <J\7>

must be complete, as well. In particulad, is irreducible.
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We will show in section 5.3 that if we consider a Markov chal,, with transition
matrix, M, and any initial distribution)/ corresponds to another Markov chakn,, which
is just X, except that we pass through states @fithout pause. We will likewise obtain
a compelling probabilistic interpretation pfas a mapping from the initial distribution of
X, to that of)A(*.

While there is no obvious probabilistic interpretation:pft possesses several useful
properties. Most importantly, the reduce constructiore§arves” the kernel of the lapla-
cian in the following sense.

Theorem 5.12.Given a Markov matriX\/ and an open set of indices, using the notation
of Theorem 5.6, has a non-negative left-inverse,, andker A = 2 ker A, so thath/ ~, M.

A0
Proof. Consider the matri3 = . Multiply it on the left by three invertible
0 I
_ I M, I 0 _
matrices: A, = LAy = ,andA; = P,. Now A3 has inverse
0 I 0 A,

S,8

P!, and it is easy to check that, has inverse . In addition, sinces is

S M~
|

1

open, Theorem 4.4 implies that , = —(/ — M, ) is invertible, so thatd, has inverse

~—
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1
. Therefore,
0 A,.
I 0 I M., A O
A3A2A1.B - Ps '
0 A,, 0 I 0 1
A M,
= Ps ’
As,s
AEE_MESAS_;Msg MEs
A e e (5.4)
0 Ag s
A5 My, 1 0
= Ps ’ ’
Ms,s As,s _AsjslMs,E I
t I o
— P, (P!AP) (5.5)
_AsjslMs,E I
1 0
— AP,
_AsjslMs,E I

Equation 5.4 follows from Theorem 5.6 c), and Equation 51®v¥es from the defini-
tions of P, and the component submatrices/of Now sinceA,, A,, A; are invertible,
in particular they are injective. So by Lemma A.3&yr A;A, A, B = ker B. That is,

I 0 A0
ker AP, = ker
—ANg M5 T 0 I
_ ., I 0
Now consider Lemma 2.8 with' = S, — Si5, so thatiy = Uy = :
0 I

o =)
~ O
o

Ty = (I 0), andr, = <0 ]). Since
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0
( 0 I ),we then have
I
A 0O I\ 0
ker — ker A(10)+ (o 1)
0 I 0 I
= ker -Zgl//iﬂ'gl + zs/ws/]
= ker _ZEIJAXWEI} Nker [o 7] by Lemma A.3d)
— ker _K@} Nker 7, by Lemma A.3¢)
= ker -/A\wgf} Nimay by Lemma 2.8 c)
= 1 ker [/Ahrg/zg/] by Lemma A.3 a)
=1 ker A . by Lemma 2.8 a)
. I 0 N . +
To summarize, we havieer A P, = 1o ker A. P, has inverseF;,
_AsjslMs,E I
1 0 ) I 0 _ _ _
and has invers , SO In particular both matrices are
_As_,slMs,E I As_,slMs,E
surjective, and therefore by Lemma A.3b),
I 0 I 0
kerA = P, ker AP,
_A;slMs,E I _As_,slMs,E I
I 0 —~
frd PS Zgl kel' A
—A M5 T
I 0 I ~
= P, ker A
—A M5 T 0
I ~
= P, ker A
_As_,sl MS,E

— skerA.
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Ts . .
It is easy to check that, = ( I 0 ) = ngPj > 0 is a left-inverse of:

Ts

. I I
Tt = TP P = ( I 0 ) =1.
_AST51 MS,E _A;sl MS,E
Now since: has a non-negative left-inverse, ald A = 1 ker A M ~, M by defini-
tion. O

Theorem 5.12 and Lemma 5.2 then give the following impontesilt.

Corollary 5.13. Given a Markov matrix\/, if s is an open set of indices, with correspond-
ing reduction}/, then:*(v) = Tolls is a bijective mapping fromtab (]\7) to stab (M).

This allows us to give simple and direct proofs of importamticture theorems for
Markov matrices. For example, we may prove the uniquenestabfe distributions in a
very general setting, without restrictive assumptionspareodicity or ergodicity, etc.

Theorem 5.14.Given a Markov matrix\/ with & closed classeslim ker A = k.

Proof. Take any maximal, open set of indices, Thens must have exactly one element
from each distinct closed class bf, so thats| = k. Now consider the reductiod/, with
respect tas. Since there are no walks between closed classes, by Th@oﬂe(rﬂ? ) =0

Zh]
fori # j. In particular, M/ = I andker A = R*. Therefore, by Corollary 5.18jm ker A =

k. O

Corollary 5.15. Every unichain Markov matri/ with closed classs, has a unique stable
distributionv such thaty, 2 0 < i € s.

Proof. By Corollary 3.3,|stab M| > 1. More specifically, by Lemma 2.11 dytab M
contains,, v, wherev € stab M, ., the stable distribution of the principal submatri, ..
SinceM is unichain, by Theorem 5.1djmker A = 1. Thus, ifv,w € stab M C ker A,
we would have) = kw. However, sincé = Jv = kJw = k, v = w, so thafstab M| = 1,
namely,stab M = {1,7}.

Lettingv = 1,0, considers’ = {i | v; # 0}. It remains to show that, # 0 <= i € s,
or equvalently, that = s’. Consider any ¢ s. By Lemma 2.8¢)p € imz, = R® =
span {e; | i € s}. Sincei ¢ s,v; = 0,andi ¢ s'. Thus,5 C 5, so thats’ C s.
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Now suppose € s, buti ¢ s'. Sincev € stab M andv; = 0forall j ¢ s, 0 =v; =
(Mv); = 3 ies Miju; = > 00 M; jv;. Sincev; > Oforall j € s', andM; ; > 0 for all
j € s, we musthavel, ; = 0 forall j € s'. Thatis, there are no edges from gng s’ to
i in G(M). Since the choice of € s — s’ was arbitrary, there are no edges from angy s’
toanyi € s — s'. Buts' C s, ands is a closed class, so eaglis in the same SCC as each

i, and this is a contradiction. Therefore= s, or in other wordsy, # 0 <= i € 5. O
This immediately gives the following well-known result (khoand Johnson, 1985).

Corollary 5.16. Every irreducible Markov matrid/ has a unique stable distribution,>
0.

While the next structure theorem for Markov matrices fokdinom the proof of Theo-
rem 2.1 in Karlin and Taylor (1981, p. 4), the reduce constoncprovides a conceptually
satisfying, constructive proof.

Theorem 5.17.Given a Markov matrix\/, with closed classegs’}:_,, let M, - be the
principal submatrix ons” with unique stable distributior;” > 0. Letv" = 17", the
inclusion oft" in R".

a) ker A = span {vl, o ,vk},

b) ker A = span{stab(M)}, and

C) everyw € stab(M) is a convex combination of the vectefsi.e.,w = Zz‘f:l v’
for0 <o; < 1withy " o) =1.

Proof. We should first observe that, for anyby Lemma 2.11)/ .- is Markov. More-

S

over, sincelz_ (Msr,sr) is strongly connected\/,- .- is irreducible. Therefore, by Corol-
lary 5.16,M,- . has a unique stable distributiari, > 0.

J’/TS1
Proof of part a): Now defin® = < vy e U ) >0andL = : > 0. Notice
J'/Tsk
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that
1 k
Jrav -+ Jmav
S S
LD =
1 k
Jm kv Jm kv
S S
_1 —k
J7T17,1’U J’/Tle’U
S S S S
_1 —k
Jrrrav -+ JT okt kU
S S S S
_1
Jot o0
_k
o --- Jo

= 1

Y

because by Lemma 2.8, for two sets’ C S, w2, = [ whens = s andr,:, = 0 when
sN s = (. SoD is left-invertible with non-negative left inverde

In particular, D is injective. D is an x k matrix with ker D = 0, sodimim D = k.
Now im D = span {vl, . .,vk} C ker A because by Lemma 2.11d), for any column
v" of D, v" = 147" € stab(M) C ker A. But by Theorem 5.14dimker A = k. So
ker A =im D = span{vl,...,vk}.

Proof of part b): Since[vl, . ,vk} C stab(M) C ker A,
span {vl, . ,vk} C span{stab(M)} C ker A.
Therefore span {vl, . ,vk} = span{stab(M)} = ker A.

Proof of part ¢): If we view thé x k identity matrix,/, as a Markov matrix, then(7) is
the zero matrix, anler A(I) = R*. This means thatab I = ker A(1)N A, = R"NA, =
A;. Now Dker A(I) = im D = ker A, and D is non-negative with non-negative left-
inverse, sd ~p M, and by Lemma 5.2D" is a bijection fromstab([/) to stab(M). But
JD = ( Jo' o Jof ) = J, so that foranyw € A,, |Dv|, = JDv = Jv =1, and
D" = DonA,. Thatis,D gives a bijection between, andstab M. In particular, every
elementw in stab M satisfiesv = Dv for somev € A,, sow is a convex combination of
the vectors".
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We may now give a further characterization of the reductibemfor each closed class
eithers does not interset it at all orcontains almost all of it. Notice this includes the case
whens is maximal.

Theorem 5.18.Using the notation of Theorem 5.17, assume that S,, has the property
thatif s"Ns # 0, |s" N3] = 1, and in this case define’(r) and a(r) so that the unique
entry of this singleton isAgiven bs/;/m = Sa@r)- If (]\/4\,1), 1) is the reduction ofV/ with
respect tos, if j = a(r), Me; = e; andue; = (v"); ' 0",

S

Proof. Assume that is such thatP,, (s Sis s]) # () for 5,. By assumption; = a(r) and
5; € s'. Sinces" is closed, we must havg < s', as well. However, sincen s" is a
singleton set, we must have= j = a(r). Consequently, if # j, Py (s,5,,5;) = 0.

19 9]
Therefore, by Theorem 5.8¢), || = n — |,

Z e;e M Z Z W(M,o) = e, Z W (M, o)

= o€Pr (5,555 ) o€Pr(5,5;.55)

that is, thej" column of M has only one non-zero entry in th&row. SincelM is Markov,
this entry must be 1, so thMe = ¢;. Thismeans that; € stab ( ) By Theorem 5.12,

» maps stable distributions dif to stable vectors of/. Thus, by Theorem 5.1%¢; =
Sk B for somes,.

Now observe that if ¢ s", eﬁzej = 0. We can see this by considering the two cases,
s; € s ands; € s". First, consider the case when ¢ s". As before, we know that
Par (s,5:,5;) = 0, sinces; € s” ands’ is closed. Therefore, by Theorem 5.84)ze; =
ZU@M(S’S@) W (M, o) = 0. In the second case, whan¢ s”, e5 1e; = [i = j]. Since
5,€8,1F] andeéizej =0.

Ifig s, efzs,/ — 0, s0 thatelv” = ¢4 /5" = 0. Therefore, ifi = s://,

S

k
t t 7" t 7 v
ej1e; = E Burev' = [iev =B <v E

"
r =1

If, in addition,r’ # r, we have also just shown thdte- = (0 and since, by Corollary 5.15,

/ / / / / /
r t t—r —r
<v )}—ev —ez/v —€E z/eev —€§ e/ev = e, :<v )‘/>0,
i

we must haves, = 0 In other words;e =g."
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|f 1 = 8:)/(r) = g]

eﬁzej = B.elv” =3, (v"),, SO thate; = (vr)i_1 v = (") O

Sj

, Theorem 5.8 b) implies thatwe; = 5 1e; = 1. Therefore,l =

In the special case whencontains no transient indices, we can give a simple formula
for M.

Theorem 5.19.Using the assumptions and notation of Theorem 5.18, asaumheif that
s C Ule s". Thenp simply sums the entries in each closed class intersesting.,

J=3] igima
bi; = (5.6)
[jes] ifi=a(r)

(5.7)

Similarly,]\? is obtained by dropping the columns and summing the rowsso that

M, 5, ifi,7 #ima«
(A/J)J — Yy Mz, i =a(r)andj # ima (5.8)
[i = Jl j=a(r)
Proof. By Theorem 5.8 a),
Piy = eipe; = [j =5] + W(M,o)[j € s]. (5.9)
c€PM(8,5;,7)

If i € imawithi = a(r)andj &€ s", 7 # 35 = s;/( If j & s, then both terms of

r)”
Equation 5.9 vanish. If £ s", sinces’” is closed Py, (s,5;,7) = 0, and again Equation 5.9
equals 0.

Similarly, in the case when # im«a andj # 5;, we can show that Equation 5.9
vanishes. When ¢ s, this is trivially true. Ifj € s, assume thaP,, (s,s;,7) # 0. As
before, we must havgs, € s" for somer. By assumption, sincge s" Ns ands; € s" N,
we must havé = «(r), which is contrary to assumption. TherefoR, (s,s;,j) = 0, and
again Equation 5.9 equals O.

To this point, we have shown that the only non-vanishingiestin p occur in those
entries(z, j) for which eitheri = a(r) andj € s" ori # im«a andj = 5;. Now observe
that this implies thap has exactly one non-zero row in each column. Assume theaigntr
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that there exists # " andyj, such that thei, j)" and(i’, j)" entries ofp are both non-zero.
There are three cases to consider, If € im «, theni = «a(r) andi’ = «a(r) for r # .
For both the(i, )" and(i’, j)" entries ofp to be non-zero, we must hayes s” and; € s,
but since distinct closed classes are disjoint, this is ssgie. Another possibility is that
neitheri nor ¢’ are inim «, in which case, we must have= 5, andj = 5,, which is
impossible. Finally, we must consider the case whena(r) andi’ ¢ im «, in which case

j € s"andj = 35,, sothats; € s". Sinces, ) = s/, We also have, € s". However,

for this choice ofr, |s" N3] = 1, which would |mr()l)y thats, = 5,, so thati = 7', a
contradiction. Thusy has exactly one non-zero row in each column. Since by Thea)em
the columns op sum to 1, that non-zero entry must be 1, so that Equation 3ds hNotice
this implies thafy W(M,o)=1fori=«(r)andj € s".

To prove Equation 5.8, first observe that the case wher s, has already been

c€PM(8,5,7)

proven in Theorem 5.18. Now consider the case whgn=+# im«, and observe that
P (5,5,5;) € S,(1). If o € Py, (s,5;,5;) were a path of length greater than 1, it would
pass through, in particular, it would pass through some closed classT his would force

5; € s",aswell. Butsince"Ns # 0, |s" N'5| = 1 so that = «(r), contrary to assumption.

Thus,P,, (s S, S5 ) consists of the unique path of length 1 starting aand ending a¥;,

1) °F
for whichW (M, o) = M, 2 . Thus, by Theorem 5.8 ¢),
M) = W(M, o) = W(M,o) = M, .
( )z‘,j Z (M,0) Z (M, o) 5:,5;
UEPM(S@'@') UGPM(S,EZ-,EJ-J)

Finally, consider the case whén= «(r) and;j # im«, so that in particulai # j.
Partitioning the set of paths into those of length 1 versasetof greater length which pass
through a specific index ingives

(H)J = Y WMo

|s|
= Mz +> > W(Mo)M,;
=1

=1 o€Pps(s,5::81)

Sinces; is in some closed clas®),, (s,5;,s;) # 0 only if it is in the same class &as,



54

namelys”. If s" N's = 0, then (]\//7) = Ms,5,. Otherwises" N's = s"\ {5;}, in which
7’7]
case

(M) = Mg+ > WMo)My
ZJ lEs €PN (8,3;,0)
- s 155 + ZMZS

l;és

- ZMIS

where we have used the earlier observation at , W(M,o) =1fori = a(r)

w (8:54,7)
andj € s" O

Example 5.20.We illustrate Theorem 5.19 using the same matrix as in Exaddl, M =

010 1%
100 ¢ _ _ _ .
N E This matrix has two closed class€s, 2} and{3}. ReducingM with
0011
000 3
1 00
0 L
respect to the open set= {2} yields a3-dimensional matrix with = ¢ | and
01 0
0 01
1100
p=1 0 0 1 0 |. Notice that the first two columns efdo correspond to the stable
0001

distributions of the two closed classes. Likewigssums entries 1 and 2 in any distribution,
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as Theorem 5.19 says it should. Finally,

-1 1 0 3
1100 X
— B 1 -10 1
M = ph+I=1]10010 1+ 1
0 0 0 ¢
0001
0 0 0 —3
100
000 4 000 4% X
10 3
= 000 ¢ |e+I=]000 ¢ 6|47
010
000 —3 000 —3
00 1
00 5 10 3
=loo & |+I=[01 1
00 —3 00 3

The graph ofM and its reduction are shown in Figure 5.2. This exampletiiaiss that,
under the assumptions of Theorem 5029(]\7) is just the graph o+ (M) with each set

of vertices,V;r, “collapsed” to its representative,,, in G (]\//.7 ) whens" Ns # (. O
Theorem 5.21.Using notation of Theorem 5.18, consider the case whiermaximal, so
thatj = imaforall j € S.. If 5 =o', then

a) up) ' = < PR ) and

b) M =u(p)"'p.
Proof.

Proof of part a): By Theorem 5.18, we know tHet = 7. We will begin by deriving two
additional properties of such a maximal reduction. Sihce M= pAr + I, we see that
pA2 = 0. In fact, we may show thagiA = 0, thatis,p(M — ) = 0 or pM = p. By
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Figure 5.2: The Effect of Reduction on a Markov Graph

M M
1

0101 Lot
1 3

1001 011

001 1 6
6 00 1
1 2

0001

W=

Theorem 5.6,
pA = p(M —1I)
t ME? M t
= (1 AL ) PP, ‘p
M,z M

— M ASS<ASS+J))P;—
My, = My, = M ALY ) Pi=p

I )Pt

In addition, we may show that the produgt, is an invertible diagonal matrix. Again,

I
using the notation of Theorem 5.6; = ( I —M; A} ) PP, ) =
e AL M

S,8 8,8
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I+ M KﬁzMS,g. Since! is diagonal, it suffices to show that A;EM&g is diagonal
with non-negative entries.

By Corollary 4.5, if|s| = n — k,

k
(ME,S As_,ng,g)i,j - Z (_ME,S Ag’_;)zl <_A;;Msv§)l,j
=1
k
-y W(M, o) Y. WM
=1 | c€Py(5,5;,51) U,EPJ\/I (575175]')

=Y ¥ > W(M,0)W (M, o)

I=1 0€Pn(8,34:81) o’ Py, (s,sl,gj)

= > WM, ")

" —
o €EPy (s,si,sj)

whereo” corresponds to the concatenation of pathsindo’. Sinces; ands; are in
different closed classes, there are no no walk§'(i/) froms; to 5, unlessi = j. That
is, Py (s,5;,5;) = 0 and the sum is 0, if # j. Thus, M, A;2M, is a non-negative,
diagonal matrix. Moreover, by Theorem 5.6 = Ju, So that the diagonal entries pf
correspond to the column sums:oin particular,(p2); | = [|ze;||; "

Thus:(p2) ! is the result of dividing each column oby its corresponding column sum, so
that the resulting columns are all distributions. By Theo&18,v; is a multiple ofie,,;,
so thatvg ;) is @ multiple ofie;, and thej" column ofu(p2) ™" must bevy;.

Proof of part b): Now we will now show thatp:)'p = M> by appealing to Theo-
rem 3.2. That is, we will show thatp:)'p = m,. First, observe that, by Theorem 5.17
and Theorem 5.18m: = ker A. By Lemma 3.1¢), for any € R", v = m,v + m,,0.
Sinceim m,, = im1, we may writerm,,v = 1« for somea. Likewise, sincepA = 0, and
im m, = im A, pry,v = 0. Thus,u(p) " pv = o(pr) " prev = o(p) ' prac = 100 = w0

In particular,(p) ™' pv = T, v, SO that(p) ™ 'p = m, = M™.

O
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010 ¢

_ _ 100 3 _

Example 5.22. Returning to Example 3.4 with/ = .| we may verify
001 3
000 3

the conclusions of Theorem 5.21. This matrix has two clodasgses,{1,2} and{3}.
ReducingM with respect to the maximal open set= {2,4} yields the2-dimensional

10
S o 1 110 2 2 0
identity matrix with: = andp = . Then,m ,
01 001 3 01
0 0
0
1
)t =] 2 . The two columns of this matrix are clearly the stable disttions
0 1
00
associated with the corresponding closed classes. Mataowdtiplying this on the right
23 0 35
11 ¢ 1
by pyieldsi(p) 'p=| > ? 5 | = M*, as previously computed
001 5
0000

We can also justify our definition of equivalence.

Corollary 5.23. For any two Markov matrices\/; ~ M, <= stab (M;) = stab (M,).
That is, two Markov matrices are equivalent if and only ifytlrave the same set of stable
distributions.

Proof. If M, and M, are equivalent, theter (A;) = ker (A;), so thatstab (M;) =
ker (A1) N A, = ker (Ay) N A,, = stab (M,). Conversely, ifstab (M;) = stab (M),
by Theorem 5.17ker (A;) = span (stab (M;)) = span (stab (M,)) = ker (A,). In partic-
ular, M, and M, are equivalent



59

5.3 A Markov Chain Interpretation of the Constructions

In this section, we will review the basic definitions regaglifinite-state, stationary, Markov
chains, assuming the reader is familiar with basic proigkaind measure theory. Our
goal is to show how the construction of section 5.2 corredpdn a natural construction
on finite-state, stationary Markov chains. discrete-time stochastic proce@w chain) is
a sequenceX, = {X,}2,, of random variables i.e., real-valued measurable funstio
on some shared probability spac€), ;). As is common, we will writePr|w] for the
probability, ;1(w), of a measurable subsetC (. Likewise, given a random variablé,
we will write Pr[X € /] for Pr[X ' ()], assuming thaf € B, the so-called Borel sets of
R.% In this way, we avoid explicit reference fvand.. We will also writePr[X = z] for
Pr[X € {z}]. Thesupport suppy, of a random variableX, is the smallest Borel seg,
such thatPr[X € ] = 1. In this paper, we will restrict attention to those chainsosén
state spaceS = |, suppy,, Is a finite set, and we establish the convention that S — 3.

A chain, X, is Markoviff for all ¢, sg,...,s,.; € S, suchthatr[X, = s,,..., X, =

50]7&&
Pr[Xt+1 = St+1 ‘ Xt :St7“‘7X0 :So] :Pr[Xt+1 :St+1 ‘ Xt = St]‘

This so-calledViarkov property(sometimes called the memoryless property) implies that
the probability of transitions to future states, sucls,as, depend only on the present state
s, and so are independent of the remote past, namely. . ., s, (losifescu, 1980).

A Markov chain isstationaryiff V¢ s.t. Pr[X; = s;] > 0, Pr[X, ., = 5,41 | X; = s
remains constant. Given an enumerationS, — R of a superset of the state space, i.e.,
S C im, we say that an x n matrix, M, is atransition matrixof the chainconsistent with
iff PriXy = (i) [ Xy = o(j)] = My,
implies thatn > |S|. If n = |S|, so thatS = im(, we say thatl/ is aminimaltransition

wheneverPr [ X, = «(j)] > 0. Notice that this

matrix of the chain. The following Lemma shows that minimanisition matrices are
essentially unique.

Lemma 5.24.If M, and M, are two minimal transition matrices, consistent withand
Lo, respectively, thed/, = P'M, P, whereP is the permutation matrix such th#t ; =

2B is the smallest collection of subsets®fwhich contains all half-intervals (i.€lg, 00)) and is closed
under countable unions/intersections and taking compi¢snen particular, it contains all countable
subsets.
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[11(7) = 15(4)], i.e.,P = P*for p = 17 1.

Proof. Since they are minimal)/;, and M, are square matrices of the same size, namely,
n = |S|. Foranyj € S, 12(j) € S, so by definition, there is some> 0 such that
Pr[X, = 13(j)] > 0. Therefore, for any € S,

(Pt]\/[lp)m = zn: Pztk (Ml)kJPl,j = zn: Py (Ml)k;,l B
= Z (11 (B) = 0o()] Pr[Xopq = 11 (k) | Xy = 11 (D)] [t (1) = 12(5)]

= Pr[Xyp = 0() | Xy =u()] = (M),
Since the entries are equal, = P'M,P. O

While . allows us to associate states with indices, it is also hetpfassociate states
with the vertices of the standards;simplex,A,,. Specifically, let the statgi) correspond
with the vertex,e; of the standardp-simplex, A,. That is, given a chainX,, and an
enumeration;, of a superset of its state space we may define an associattdr-valued
chain, X,, where X, (w) = ¢;, if X,(w) = «(j), and 0, otherwise. This form of the chain
has the advantage that we may cleanly establish the coandmtitween the probability
distribution of X, and the corresponding distribution vector.

Lemma 5.25. Given a Markov chainX,, and an enumeration, with S C im ¢, define
the associated, vector-valued chaﬁ,, as above. For any, E [)?t} is then a vector with

<E [X'tDj = Pr[X, = (5)], forall j.

Proof. By definition,

E[X}} = ZekPr [)?t:ek} = ZekPr[Xt:L(k)].

kes,, kes,,
Thus,(E [X't]) =cjE [)_(’t} = es €ier Pr[X, = (k)] =Pr[X, =(j)]. O
j n
Notice that the distribution of a stationary Markov chaimsistent with a given Markov
matrix, M, is determined byl\/ and the initial distribution vectoif [X'O} l.e., the distri-
bution of X,. This is a consequence of the following more general result.

Lemma 5.26. For every sequence, € S, (k),
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a) PriX,_.=t(og),..., Xy =1t(0op)] #Oiff

PriX, ,=1t(09)] #0 and o€ Py (k).

b) More specifically,

Pr(X, ,=1t(09),..., Xy =1t(op)]| =W (M,0)Pr[X,_,, =t(09)] (5.10)

Proof. We prove both parts by induction dh Whenk = 0, W (M,o) = 1 ando €
Py (0), so both parts are trivially true. In general, for ang S, (k), takes’ € S,,(k — 1)
so thato; = o, for 0 < i < k. We may then prove part b) in two cases.

In the case whelr [ X,_, = t(0g),..., X1 = t(0,_1)] = 0, we must have that

Pr(X,_,=t(09),..., Xy =1t(0})] = 0.

Moreover, by induction, we know that eithBr [ X,_,, = ¢ (0,)] = 0, in which case Equa-
tion 5.10 is trivially satisfied, os’ ¢ P,; (k — 1), in which caseg ¢ P,, (k), as well, so
thatWW (M, o) = 0, and Equation 5.10 again holds.

Now assume thder [X,_;, = ¢ (0g),..., X;_1 = t(0,_1)] > 0. The Markov property,
along with the induction hypothesis, then implies that

Xy =1(op) | Xooy = t(0p-1)]
M,d") Pr X, 1 = (00)]

W (M,o')Pr X, , = (0p)]
=W (M,0)Pr[X, = u(00)]

I
)—U
[

w
=M

Ok 0k—1

where we also appeal to the definitionldf (1, o) and the fact that, = 0. O

Obviously, the joint distribution of X, };_,, for anyk, is determined by the joint distri-
bution of X,. Conversely, the sequence of all such joint distributiors, (fork = 0,...)
determine the joint distribution of th&,. Lemma 5.26 says that, for a stationary Markov
process, this sequence of joint distributions is equivalgmto labelling of the states, to
an initial distribution (i.e., forX) and a transition matrix)/.



62

Alternatively, we may associate states with vertices inraaied graph. Specifically,
we may view a stationary Markov chain with transition matkik in terms of a random
walk on the weighted graplt; (M), where the state,(i), corresponds to the vertex;.
SinceG(M) has no repeated edges, a walk of lenytlis equivalent to a sequence of ad-
jacent vertices, which, by Lemma 5.26 a), corresponds teaiple sample fronaﬁXt}iio.
Moreover, if we choose the initial vertex according to th&toution of X, and the subse-
guent edges according to the edges weights, by Lemma 5.2&lgrobability of obtaining
any given walk is the same as the probability of obtainingatwesponding sample from
{X,}Y,. Thus, the graph;i(M), and an initial distribution give an alternative, geonetri
characterization of the chain.

As before, we may carry over the terminology of strongly asted components,
closed classes, invariant and transient sets of verticé§ /) from section 1.1 and ap-
ply it to sets of states of a stationary Markov process. Tohiy however, we must first
prove the following Lemma.

Lemma 5.27.If M is a transition matrix ofX, with state space$, consistent with and
s = ' (S), thens is an invariant set of indices aff and M, , is a minimal transition
matrix of X, consistent with’ = ¢ (s,).

Proof. The first part follows easily by contradiction. Assume thét not invariant, so that
there is some path, given aye P,,(j,i,() for j € sandi ¢ s. Then,W (M, o) > 0 and
Pr[X, =¢(j)] > 0 for somet. By Lemma 5.26 a)Pr [X, = ¢ (j),..., X,y = ¢(i)] > 0.
In particular, we must haver [X,,;, = ¢ ()] > 0, contradicting the assumption th&t) ¢
S,i.e.i & s.

In particular, by Lemma 2.11b)\/, , is Markov. If we let)'(k) = ¢ (s;,), /' : Sjy — R
is a 1-1 mapping withm /' = (s) = S, i.e., an enumeration &. To verify that) ; is a
transition matrix ofX, consistent with’, assume thafr [ X, = //(j)] > 0. By definition,
we then havePr [X, = . (s;)] > 0, so thatPr[X,,, = /(i) | X, = /(j)] = Pr[X,,, =
v(s) | X = u(sy)] = M, = (Ms,s)m-’ as needed. Sincé enumeratesS, M, , is

1197

minimal. O

Therefore, we define the graph &t, G (X.) = G (M,,).

We should point out that, although this definition appearddpend on the choice of
transition matrix, it really only depends on the chain itsel
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Theorem 5.28.1f M and M’ are two transition matrices foX,, consistent with and:’,
respectively, withs = .~ (S) ands’ = /' (S), thenG (M, ,) = G (M; S/).

Proof. Since: and:’ are both 1-1 and their images both cont&ins| = [S| = || = n.
Thus, there is a unique permutation%f, p, such that (sp(k,)) =1 (s;). By Lemma 5.27,
M, , and M;/,s/ are both minimal transitions matrices fof,, consistent with.(s) and
/' (s), respectively. Thus, by Lemma 5.2%/, , = (P")" M, ,P", or M;;S; =M, ;0
forallz,j € S,,.

We can now appeal to the definition of graph equality fromisact.1.1 withG' =
G(M,,) = (V,E,st) andG = G (M) — (V',E. ¢, t). Explicity, V = V' =
{v1, ... v, ), with 0 (vy) = wv,q, Which is clearly a 1-1 correspondence, sincés a
permuation ofS,. Likewise, E and E’ are the subsets df x V corresponding to non-
zero entries inV/, ; and Ms/,,s/’ respectively, withy : E' — E given by the restriction of
§ x dto E'. Since a Cartesian product of 1-1 correspondences is a frdspondence,
we only need verify thab x § mapsE’ to E. By definition,a = (v;,v;) is in E' iff

0# M, =M, . iff (v,(0),0,(i)) = v(a)isin E. Sinces, s',t, ¢ are just the corre-
015

sponding restrictions of the coordinate mappings, we sléaveds’ = sy anddét’ = tv,
so thatG' = G’, as claimedD

Thus, we may define a set of statgs,of X, to be strongly connected, closed, open,
or transient iff the corresponding verticesGn X, ) are. These terms originally defined on
graphs, now have compelling probabilistic interpretagioRor example, a set of states is
invariant iff the probability of ever transitioning awayf the set is 0. To see this, observe
that, by Lemma 5.26 a)}/ (M, o) represents the conditional probability of the random
walk realizing the specific sequence of states correspgridin, given thatX, = ¢ (o).
Using Lemma 1.1, we can also see that a state is transiehei# is a positive probability
of transitioning away from it, since by Lemma 1.1 there ex#&spath to a state in a closed
class, without ever returning (since there is no path outadbsed class).

Given a chainX,, and a Borel setj € B, we want to define a new chain by reducing
the time spent in a given set of states to 0, effectively elating them from consideration.
We will see that this corresponds directly to the reduce waoson of section 5.2. To
make this precise, we first define the functigg, : & — N U {oo} so thatyg,(w) =
min {t > k | X,(w) € }, with the conventions thahin ) = oo andy;,, = oo. Notice
that, by definition;y; , > k, unlessk = co. We can easily show that these are measureable
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functions, i.e., random variables. More specifically, therﬂs{fyﬁ,k = t} can be expressed
solely in terms of events of the forfnX; € 5;} fori < t andg; € B. Thus, these functions
areMarkov timeglosifescu, 1980).

Lemma 5.29. For any set of stateg], of a finite-state, stationary Markov process,

(X, €B} N ey {Xy €8} ifh<t<oo
{Vox =1} = { Ny (X, €5} if £ — oo (5.11)
0 otherwise

so thatyg ,, is a Markov time.

Proof. SincesS is a finite set, andb, 3 C S, 3,3 € B. Now observe that € {mk = t}
iff v54(w) =tiff ¢t =min{t' > k| X, (w) & 3}. By definition, forw € {~5, = ¢},

t=00 <= {t' >k|X,(w) €8} =0 < X,y(w)€ B,V >k
= we [ {X, €p}.
k<t'
Otherwiset < oo sothatt € {t" > k| X,(w) & B} with k < ¢ < oo, X,(w) € B,
andt’ ¢ {t" > k| X, (w) € B}, i.e., Xy (w) € B, for everyk < ¢' < t. In other words,
w € {X, € B} NNy {Xy € B}. Thus, Equation 5.11 holds)

We now prove that ;. is almost always finite, whefiis open. Such a random variable
is known as atopping time Specifically,y; , is the firsthitting timefor 3 greater thark.
In fact, this effectively characterizes open sets of states

Lemma 5.30. A set of statesj?, of a finite-state, stationary Markov process,, is open iff
Pr [Vﬂ,k = oo} =0,Vk.

Proof. Assume that the process/igonsistent with a matrix)/, with state space$, and
lets = .~ '(53). Then, using the notation of Theorem 4.4, tffecolumn sum of\/Z, is

IMie, = Y (ML), . => >  W(Myo)

VES|4 VES|4) UGPMS_S(%%Q)

— Z Z W (M, o) (5.12)

UES\S\ 0'67)]\/[ (S,S,U,Su,q)
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Moreover,

Pr [ﬂ'{XTeﬁ}] = Pr[X;€8,...,X;., €0

UVES || 0EP N (8,54,54,0)

Therefore,
Jta
Pr [ﬂ {X, € ﬁ}]
r=j

=y > W(M,0)Pr[X;=1(0y)] byEquation5.10

UVES 5| 0EP N (8,54554,0)

= Y IMLe,PrX; =(s,)] by Equation 5.12
UES‘ |
- JM‘;]’S Z €y Pr [Xj =1t (Su)]
UGS‘S‘

In particular, by Lemma 5.29,

k+q
Pr [y54 = oo] = lim Pr [ﬂ {X, € ﬁ}] = lim JM{, Z e, Pr[X; =1(s,)]
e r=k e UGS‘S‘
If 3is open, by Theorem 4.4d)m, .., JMZ, = 0 so thatPr [, = co] = 0.
Conversely, assume thBt [, = oo| = 0, V k. For anyu, since(s,) € S, there is
some;j for whichPr [X; = «(s,)] > 0. Moreover,

J+a
Pr [ﬂ {X, e ﬁ}] =JMI, Y ey Pr[X;=1(s,)] = IMe,Pr[X;=1(s,)] >0
=Jj ’U/ES‘S‘
Since0 = lim, ., Pr [ﬂ’”q {X, € ﬁ}} 0 =Pr[X; =1(s,)]lim, ., JM{ e,. Because
Pr[X; = «(s,)] # 0, we must havéim, .., JM{ e, = 0. In particular,
0= thl?o JM{e; = thl?oe M{.e; > lim (Mg,s)i >0

q—00 5J

so thatlim M;{s)ij = 0 andlim, ., M{, = 0. Appealing to the contrapositive of

—
Theorem 4.4 d), we may conclude titais open.O
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Using v, ,, we may definer; . inductively so thatrs g = 75 1 and7s, = v5.,, |
for £ > 0. This reduces the time take to pass through any statetm O, effectively
“eliminating” 3 from consideration.

Lemma 5.31.For any set of stategi, of a finite-state, stationary Markov process; it 0,

Uy < {’7,6’,7&/ = t} N {Tﬁ’k_l = t/} if t < oo

(5.13)
Uy {Vﬁ,t' = oo} N {Tﬁ;,k,l = t/} if t =00

{mor =1t} =

In particular, 75, is a Markov time. Ifr; ;. (w) < oo, Vk, {75, (w)},_, is astrictly increas-
ing sequence. If is open,r;,, < oo with probability 1, i.e., it is a stopping time.

Proof. By definition, 7 .1 (w) = 7.7, ,, -, fOrt = 75,1 (w) andt’ = 75, (w), t = 75 -
By definition of y, we must have’ < ¢, unlesst = ¢ = co. In particular,7s ;(w) <
75 x+1(w), with inequality unless; ;. (w) = oo.

Therefore, fork > 0, w € {75, =t} iff t =7, ,(w) andt’ = 74,_,(w), where either
t' <t < oo, 0rt’ <t = o0. Using set notation, this becomese | J, _, {'yﬁ’t/ = t} N
{751 =1}, whent < coandw € | J, {'yﬁ’t/ = oo}ﬂ{Tﬁ,k_l =t'}, whent = co. Thus,
Equation 5.13 holds.

By Lemma 5.29,{75,{ = t} is measureable fof,t’ < oo, therefore, by induction,
so is {75, =t}. In other words,r;, is a Markov time. From our ealier observations,
Tar < Tgrsa fOr all k, except whenrg,, = oco. That is, 75 is strictly increasing, when
T,ﬁ’,k(w) < 00, Vk.

If 5is open, by Lemma 5.3®r [Vﬁ,t’ = oo} = 0. Therefore,

Pr [ = 00] = Pr |{J {70 = 00} 0 {mosms = '}

t

< Z Pr [”y@t/ =ooandrg,_; = t'] < Z Pr ['Yg,t’ = oo} =0
/ t/

t

andr . is a stopping timex
We may now give the following intuitive description of .

Lemma 5.32.1f 73 (w) < oo, V£,
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8) Top(w) =min{t>0|k+1=|{0<t' <t|X,(w)ep}}.
b) {7s4(w)},, is an increasing enumeration of

T(w)={t>0]X,(w) € B}.

In particular, if 5 is open, aand b hold with probability 1.

Proof. For convenience, we will drop the notation for evaluatiangcs all random vari-
ables (i.e..X;, v, and7y, etc.) will always be evaluated at a fixed valug for which
Tsk(w) < oo. We begin by proving part b). By definitiomg . = v, for somet’. More-
over, if 75, < oo, theny, , < oo, and by definition, we must have; , € T, so that
T3, € T, as well. By Lemma 5.315;, is a strictly increasing increasing sequence. In
particular, itis 1-1 as a function éf

It remains to observe that this function, which we will denasr; ., maps ontd’. We
prove this by contradiction, so assuffie\ im 75, # @ and taket = min (7"\ im74,).
Thus, eithert’ ¢ T for all ¢' < t, or for somek andt’ < t, 75, = ¢ € T. In the former
case X, € fandX, € gforallt < t. Thus,t = min{t' > —1|X, &€ 3}, so that
t = v5.1 = T contradicting the assumption thiaZ im 75 ..

Now assume that;, = ¢ € T for somek andt’ < t, and take the largest suth
This means that fof' < ¢ < t, ¢ ¢ im7,,, so that we must hav€ ¢ T or X,» € [3.
In other words# = min {¢" > ¢'| X,» ¢ B}, so thatt = v, = v5.,, = 7541, @gain
contradicting the assumption thatZ im 75 ,. Thus,T'\ im75, = 0 andT = im7g,.
In other wordsy, , is an increasing enumeration 6f= {t > 0 | X, € 3}, and we have
proven part b).

Part a) now follows easily. Since;, is an enumeration of' = {t >0 X, € B},
o<t <t| X, ep}= {0 <t <t|t =74, for somek’} and

(o<t <t Xy ey = |{WImp<t}|
Sincer; , is an increasing sequence starting frors 0,

{W 1w <t} =1+ max {k' | 7,0 < 1}
In particular,

Fe1=[{o<t <t| X, €B}| <= k=max{k |7, <t}
: ,
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Therefore,
min{t>0|k+1=[{0<t <t|X,€p}}

= min{t20|k:max{k'\Tﬁk/St}}
k/ ’

= Tﬁ,kz'

Finally, if 5 is open, by Lemma 5.31,

Pr [Lk){%kzoo}] :;Pr (e =00] =) 0=0

k

Therefore,r;, < oo, Vk, so that a) and b) hold, with probability d.

Using the language of Markov chain theory, Lemma 5.32 a) $iagfsr; ;. is thek + 1%
“hitting time” for 3.

Evaluating a Markov chain at a stopping time is also a randanmble (losifescu,
1980). Thus, if3 is open, we may defing;, (X,) = X

T3t

, Where we definer;, (X,) =
min /3, whenr,, = occ. In this way, we have defined the desired chain= 7, (X,). We
will show thatr, , is an operator on Markov chains which corresponds direotapplying
the reduce construction of section 5.2 to the transitiorrisnat the chain. Notice that, as
we mentioned in section 5.2, from a Markov chain point of viexe have simply reduced
the time spent in the states 6fo 0.

Using Lemma 5.32, we may show that the reduction operataratutal” in the sense
that it behaves as expected under iteration. Lemma 5.32#)asthat, with probability 1,
75 (X,) is simply the result of deleting those entriesdf with values ing. Intuitively, if
we first delete entries from a sequence with valugs, iand then delete from the remaining
entries those with values ifl,, we get the same result as if we had simply deleted those
entries with values i, U (,.

Theorem 5.33.Given a Markov chainX,, and open Borel setg,, 3,, andg3 = (3, U (s,
Tgu (X.) = 75, . (75, (X,)) with probability 1.

Proof. Let X7 = 75, . (X,), T, = {t>0|X, €3}, T, = {t>0] X} €p}, and
T ={t>0]|X,epB}. LetQ = {754,754 Tsr <00, Vk>0}. By Lemma 5.31,
PrQ’ =1, and, by Lemma 5.32b);, ., 75, ., andr;, are increasing enumerations’b,

Ty, andT, respectively, o).
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As before, for the remainder of the proof, we will restrideation to an fixed, arbitrary
w € € and omit the notation for evaluation atfrom all random variables. In this case,
we have the following chain of equivalences:

dk > 0, t= 7'5277.[31 &

= Fkt' >0, =15 pandt =1, ,

= e, t=14 sincer; , enumerate§’
— 3t'>0, X epandt =7, , by definition of 7}

«— 3t >0, X . € By andt =7, , by definition of X

= 3 >0, X, e prandt =7,

— X,c B andt €T, sincerg, , enumerates;
< X, € pandX, € 3, by definition of 7,

= X, ehNB=0UB=7

— teT by definition of T’

In particular,7s, ;, . maps ontdl'. Sincery, ;, 75, : N — N are both strictly increasing
mappings, so is their composite. In particula, o ¢ is an increasing enumeration of
Tay.

T. Since increasing enumerations are uniqug, , = 75, andmg , (74,. (X.)) =
y l’t ) ) ’
T, (X2) = Xfﬂw — X%%J = X,,, = 7. (X,) on®, i.e., with probability 1.0

We now wish to identify the transition matrix far; , (X,). The proof will be similar
to that of Theorem 5.8, but we will need to generalize the timtarom chapter 1 a bit.
Define

S (8:4,5,L,m) = {0 € 8, (1,5, L +m) | m = |{k € (0,0 +m) [ o), & s}[}

i.e., sequences of length-m+ 1 starting atj, ending at, whose interior values lie outside
of s exactlym times. Thus, for exampl&,, (s,,7,1,0) =S, (s, 1, 7,1).

Using this notation, we may now identify the distributioniij = 75, (X,). Thatis,
we can give a formula foPr [)N(t = x} .

Theorem 5.34.If X, is a finite state, stationary Markov chain with state spateyhich is
(-consistent with a x n transition matrix,M, 3 is open, andy, = g (Xo), theng is the
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state space foX, and.'(k) = . (5,) enumerates a superset@fwheres = .~ (3) C S,,.
Fort > 0,

Pr[)?t:/(k)] _ ZZ Z W (M, o) Pr[X,=1(j)]

=0 jES UESn(S7§k7jvl7t)

+3°% Y WMo Pr[X = ()] (5.14)

1=0 jJ€F €S, (5,55.j,l,t—1)
and
Pr [ Xy =1/ (k)] = 3 iy Pr (X = u())] (5.15)

J
Where(]\/f,p, 1) is the reduction of\/ with respect tos. That is, the distribution 015?0, IS

result of applying the projectiom, to the distribution ofX,, where we view this distribution
as an column vector, as in Lemma 5.25.

Proof. Notice that since ands, are 1-1 functions, so ifs,). By definition,im(s,) =
((s) = NS, so that(s,) enumerates N S. Similarly, ;' = «(3,) enumerates(s)
1 (S, — s) = im¢ — 3, which is a superset & — 3 = 3.

By definition, 5, (X,) (w) € 3 for all t andw. In particular, X, = = only if = € 7 iff
x =1 (5;) = (k) for somek € Sj5. Now remember that, when; , < oo, {Tﬁ,j}j.zo is an
increasing sequence of integers. In particutay,> ¢, | = 75, — t > 0, and dividing into
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cases gives
Pr [)N(t —/ (k)} — Pr [)N(t = (k) 75, < oo] by Lemma 5.31

— Pr [XW — (gk)} by defn of X,

- i Pr[X; =u(5) .l =15, — 1] by cases
=0

=[t=0]Pr[X,=1.(5,),l =715, —t]

+ i Pr(X; =t(5) .l =75, — 1] by notational trick
1=[t=0]

=[t=0]Pr [XO =1(51), 750 = 0]

+ i Pr(X;,; =(5),l =15, — 1] by defn ofrg,

1=[t=0]

=[t=0]Pr[Xo=1(5).750 = 0]

+ > Pr(Xi =1(5), X =1(j),l =75, — ] bycases
I1=[t=0] j=1

The first time, cases were basedion 73, — ¢, and the second time according to the initial
state of the process, using the fact thahumerates a superset of the state space, ofn
between, we used a notational trick to pull out the 0 term from the summation, when
t=0.

Notice that, for all the terms in the summation, we are guaeththat/ + ¢t > 0.
Therefore, after splitting the summation according to tiigal state, we can continue to
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divide into cases based on the intermediate statég, of

Pr [Xt —/ (k)] = [t=0]Pr[X,=0(5), 750 = 0]

+ Z ZPr Xy =0 (5), Xo =(4), andl_Tﬁt—t]
I=[t=0] j€s

+ Z ZPr Xy = (5), Xo = (4), andl_Tﬁt—t]

I=[t=0] jE€s

= [t= O] Pr [Xo =1 (5;), T30 = O}

+ZZ Y PriXi=1(0,),0<i<1+1] (5.16)

=[t=0] j€s €S, (5,5k,5,l+t)

+ZZ > Pr[X;=1u(0),0<i <I+1]

=[t=0] JES €S, (5,5k,5,l+t)

= 0P [, 1 (). =]

[e.e]

+ 3> > PrX,=u(0),0<i<I+1] (5.17)
1=[t=0] jES o€S,,(8,5,5,l,t)

+ ZZ Z Pr(X; =1¢(0;),0 <i<Il+1]

I=[t=0] j€S oS, (s,5,7,l,t—1)

— [t:O]Pr [X():L(gk) T,@ozo}

+ Z S Y WM 0)PrX, = (j)] (5.18)

=[t=0] j€s €S, (5,5k,5,L,t)

+ Z Z Z W(M,o)Pr[X,=1(j)]

=[t=0] JES 0€S,(s,5,j,l,t—1)

In Equation 5.16, we used the fact that. is a superset af. Equation 5.17 follows from
the fact that, in the context of any of the summation terfig,= «(j), Xy, = ¢ (51),

| = 15, —t,andl +t > 0. Therefore, by Lemma 5.32 a{)Xi}ﬁ;’f) takes exactly + 1
values in3 and! values in3, with probability 1, so that € S,,(s,3,, 5,1, 1), if j € s, and
o€ S,(s,35, 4,0, t —1),if j ¢ s. Equation 5.18 follows by Lemma 5.26 b).

Equation 5.18 simplifies to Equation 5.14, whien- 0. Moreover, it implies that the
state space fak, equals all of3, because, for any staték) € 3 C S, there is some for
which Pr [X; = /(k)] > 0. If ¢ = 0, the first term in Equation 5.18 is non-zero, so that
Pr [)N(t = L/(/{Z)} > 0.
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Otherwise, by Lemma 5.26, and the fact thahumerates a superset of the state space
of X,,

Pr(X,=/(k)] =) PriX,=1.(5).X,=1¢(j)]

JESy,
= Z PI‘[XZ:L(O'Z)7Z:0,,?5]
jESn UESn(Ekvjvt)
-y W (M, 0)Pr[X, = ¢ ()
jesn UESn(gkvjvt)

Since this is non-zero, it must have at least one non-zerm, teorresponding to some
j € S,ando € S,(5,4,t), such thatPr [ X, = ¢ (j)] andW (M, o) are non-zero. If
[ 4+ 1 is the number of values af in s, then eithers € S, (s,35,,7,0,t), if j € s, or
o € S,(s,5,7,0,t — 1), otherwise. In any case, Equation 5.14 has at least one eéran-z
term, so thaPr [)?t = L/(/{Z)} > 0. Therefore 3 is the state space fo¥, .

To prove Equation 5.15, take= 0. SinceS,,(s,3sy,j,l,t — 1) = (), Equation 5.18
simplifies to

Pr [)?0 =/ (k)} = Pr[Xy=1(5),750=0]

+3 3 Y W(Mo)Pr (X, =())]

I=1 j€s 0€S,,(8,51,5,1,0)

= Pr(Xo=:G)]+>. >, >, W(Mo)Pr[X,=1(j)]

I=1 j€s o€S,,(8,51.J,)

= Pr(Xo=:G)I+>.>, >, W(Mo)Pr[X,=1(j)]

jes I=1 0€S8, (5,545,

= Pr[XOZL(Ek)]+Z Z W(M, o) Pr[Xy=(j)]

Jj€s 0€S5,,(8,5,7)

= Pr(Xo=:G)]+Y_ Y. W(Mo)Pr[X,=1(j)]

jES UGPA{(S,gk ,])

= Pr(Xo=c()l+ Y. Y. W(Mo)Pr[Xy=1(s;)]

JES|s| 0€P M (5,5k,55)
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Now by Theorem 5.8 a), right-hand side of Equation 5.15 devi,

Zpk,j Pr(Xy=(j)] = Z 621963' Pr[X, = (j)]
J J
|s|
= Z eék + Z Z W (M, U)e';l e; Pr[Xg = 1(j)]
J I=1 0€Pps(8,3k,51)

= Z egkej Pr[X, = «(j)]

J

|s]
+3 3 > W(M,0)ele; PrXy = u(j)]

J =1 0€Pyy(5,3;,81)

= Y [5 = 4] Pr[Xo = u(j)]

J

Is|
YN > WM, o) [s; = j]Pr[Xy = u(j)]

J =1 0€Pp(5,3,81)

||
= Pr[X,=1¢(5)] + Z Z W (M, o) Pr[Xy=1(s)]

=1 0c€Ppr(s,5,,51)

which, up to a change of summation index, is the same resal@ge, so that

Pr [)N(O =/ (/{3)] = Zpk,j Pr[X, = (j)] -

We may also identify a transition matrix fof, = 7. (X.). Intuitively, the following
theorem says that the transition matrix f§r is the result of applying the reduce con-
struction of section 5.2 to the transition matrix far,. The proof is similar to that of
Theorem 5.34, but it will be helpful to alter our notation & Iefine

Su(si,l,m) ={o €8, (I+m) | o, =im=|{k <l+m)]|o, &s}|}

i.e., sequences of length- m + 1, ending at, whose values, excepting the last, lie outside
of s exactlym times. Notice that this time we do not specify the initialualand we do
not exclude it from our count of valuesin
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Theorem 5.35.1f X, is a finite state, stationary Markov chain which:tgsonsistent with
transition matrix,M, and 3 is an open set of states, thep, (X,) is a stationary Markov
chain/-consistent with transition matrix/, where} is the reduction of\/ with respect
tos =~ (8) and/(j) = «(5,). If M is minimal, then so i8/ .

Proof. The proof is similar to that of Theorem 5.34. As before, def?fge: 75, (X.), and
notice that(s,) enumerates, while .(3,) enumerates a supersetbfBy Lemma 5.31, we
may restrict attention to the casg,, < 73,,, < oo and again exploit the fact that< 7 ;.

Pr [)ZHI =1 (k) X, =1 (kz/)} =Pr [)ZHI = (k) X, = (K') 75001 < oo}
=3 > PriXipm = t(5k) Xonpe = ¢ (5),
m=0 [=0

l= T4 —m—t—1m=r4, —t]

Assuming thatX,, ., = ¢ (5,/) andm = 75, — t, Lemma 5.32 a) implie(;, ;1 =
L(Bp)withl = 75, —m—t—1iff X; € gform+t <i <Il+m+twith X, .1 = ¢ (5;).
Thus,

PI‘ |:)A(:7H_1 — L/ (k) 7),275 - [’/ (k/)]
- ZZ Z Pr{ X =1(00),i=0,... .1+ 1,m=r75,—1]
m=01=0 o'es, (s:5,5,1,1+1)

Appealing again to Lemma 5.32a), we see thaf,, = ¢(5,) andm = 75, — t iff
{X,; 10! takes exactly values ing, i.e., we may writeX; = ¢ (o)) for 0 < i < m +t,
for somes” € S, (s, 5, m, t). Thus, fore’ € S, (s,5;,5,, 1+ 1),

Pr [Xmﬂﬂ-:L(all-),izO,...,l+1,m:Tﬁ7t—t}
= Z Pr[Xm+t+,»:L(ag),izo,...,lJrl,Xi:L(ag/),izo,...,m—i-t]

0//€Sé(s,§k/,m,t)

Therefore,

i
()
Il
[en}
Q\
m
%)
3
—
Tl
B
Tl
R‘\
+
=
S~—
q\
i
n
S
W
|
k‘\
3
=
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whereo’ x ¢” is the concatenation of the walks given dyando”. Specifically,o; = o},

for0 <i <m+tando, ., =0}, for0 <i<l+12
Now appealing to Lemma 5.26 b), we have

= > > > WMo x0")Pr[Xy =1 ()]

m=0 [=0 a/ESn(s,Ek,Ek/,lJrl) U”ES;(S,Ek/,m,t)

RIS S WL W (.0 P 1 ()]
m=0 =0 U/GSn(s,Ek,Ek/,lJrl) o es! (s3 1,mt)
)

k

i > WMo Y W(M,o")Pr[X,=1(07)]

m=0 =0 U,ESn(S,EkSk/,l‘Fl) UIIGS;(S’gk/’m’t)

We may then exploit Theorem 5.8 as follows,

= > ) > W (M) Y W(M,o")Pr[X,=1(07)]
m=0 =0 o' €8, (8,518, 1,141) "' €8, (5,5,/,m.t)

= > >  w(Md) D W (Mo")Pr[Xy=1(og)]
m=0 oes, (s,?k,gk/) o'es! (S,Ek/ ,m,t)

= ) > W (M, o) > W (M, 0") Pr[X, = ¢ (a7)]
m=0 o ePy (s,Ek ,Ek/) cr//ES;l(s,Ek/ ,m,t)

= Z M\k,kf Z w (M, a") Pr [XO =y (06/)}
m=0

U//GS;(sE]cz,m,t)

= J/\/Tk,k:/ i Z w (M> J”) Pr [XO =t (Ug”

m=0 O'NES; (s,Ek/ ,m,t)

3Notice that we concatenate asmlks rather than as sequences; for exam@el,4) = (4,7,2)
(3,1,4,7,2), instead 0f3,1,4,4,7,2).
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Reversing our previous calculations gives

i Y W(M,o")Pr[X,=1(07)] =

m=0 U”GS; (S,Ek/ ,m,t)
= S Pr[Xpy = (K) m =7y, — 1] = Pr [ X, =/ (W)
m=0
Therefore,
Pr [)N(Hl =1 (k) X, = (kz/)} = ]/\/[\k’k/ Pr [)N(t =/ (k:/)]

so that,Pr [)?m =/ (k)| X, ="/ (k/)} = ]\/Zkk whenPr [)?t =/ (k;’)] > 0. In partic-
ular )?* is a stationary Markov chairi-consistent with transition matriz(\/i :

By Theorem 5.34, the state space #ris 3. If M is a minimal, therim . = S. Since
B C Sanduis 1-1,im ¢/4(5 = 5. Thus,M is minimal. o

Theorem 5.35 allows us to easily show that the reduce cartgiruon matrices of
section 5.2 is “natural”, as well.

Theorem 5.36.1f M € Mat,(R) is Markov,s = s; U s, is open with respect td/,
(M, py,1,) is the reduction ofM with respect tos;, (Ms, po,iy) is the reduction of\/;
with respect tos = 57 ' (s,), and <Z\//.7,p, z) is the reduction of\/ with respect tos, then

M, = ]\/Zandp = pop;. In addition,i = i,7, onker <J\//.7— I).

Proof. First, notice that, by Theorem 5.10js open with respect td/,, so that the state-
ment of the Theorem makes sense.. I the identity onS,,, given anyn-dimensional
distribution,v, we may define a chain¥,, so thatM is an.-consistent transition matrix
for X, with initial distribution,v, i.e.,Pr[X, = j| = v;,Vj € S,,.

If we first takev = 1.7, so that all components are non-zero, the state spade &f
obviously all of S, and M is minimal. By Theorem 5.35, taking, = ¢(s;) = s, M;
is a minimal,.,-consistent transition matrix fok, = 75, (X,) andy; = (37 = 57 with
state spacg, = 57. Likewise, takings, = ¢, () = 57 (3) = 57 N 84, M, is a minimal,z,-
consistent transition matrix fox, = 75, (X,) andw, = 1,5 with state spacg, = 3,\ 3, =
51\S1Nsy =35 N5, =35. Moreover, sincéme, = f, = 5,5, (5) = 15 = 1, = 5as
enumerations, as well.
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Takings = iU By = 51U (51N 8sy) = 51U sy = s, M is a minimal//-consistent
transition matrix forX, = 74 (X,) and/ = 5 = 5 = 1, with state spacej = 5. By
Theorem 5.33X, = 7, (74, (X.)) = 75 (X,) = X, with probability 1. Sincel/, and
M are both minimal transition matrices fof, = X,, by Lemma 5.24)\, = (P?)" MP*
for p = /" '1,. Sincel = 15, pis the identity permutation?” = I, andM, = M.

Returning to examine thg’s, apply the same constructions as above, but now do not
restrictv to any particular value. Theorem 5.35 also implies thatX, = ¢, (j)] = (p1v);
for all j. That is, the distribution vector foX , is p;v. This implies thaPr [)?0 = LQ(j)} =
(py (plv))j for all j, i.e., the distribution vector fof(O IS popyv. Likewise, the distribution
vector for X, is pv. SinceX, = X, p,p;v = pv. Since this is true for alh, we must have
P2P1 = P-

Sinces; (5) = 5 as enumerations; (5;) = 5; for all j. Thus,iize; = 150z =
€s(z,) = O = 1€ for all j, andv; = 1540z, Thereforemt = 15 = 1505 = meme =
(7T§7T§)t, andmsy = mz7s

Now recall that Theorem 5.12 says that,, andi, are 1-1 correspondences between
their corresponding sets of stable distributions, with-ie¥ersesr, 7, andnsz, respec-
tively. Thus, for anyv € ker <J\7— I), i(v) € ker (M — I), so that there exist' €
ker (M, — I) and” € ker (M, — 1) = ker (M = I') with i(v) = iy (v/), v/ = iy (¢"),
andi(v) = i, (ig (v")). Thereforep” = mzin” = Wgﬁqill'g’l)” = Tr5i1i00" = m5i(v) = v,
so thati(v) = i, (i5 (v)). Sincev was an arbitrary stable vector kar <Z\//.7 - I), the final
part of the theorem is provem
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Chapter 6
Markov Chain Tree Theorem

In this chapter, we sharpen a result, often known as the Ma@{wain Tree Theorem,
proven for example by Freidlin and Wentzell (Friedlin andntzell, 1984), specifically
for irreducible Markov matrices. It gives a combinatoriafrhula for the unique stable
distribution of an irreducible Markov matrix. Because ttlisorem will form the basis of
all key results in chapter 7, we give a detailed proof. Mosgpliecause we wish to apply it
to unichainMarkov matrices, we generalize the theorem to that settvgpresent a novel
proof which exploits the properties of the determinant fiorc

First, we will establish some geometric preliminaries regay directed spanning trees.
In particular, we will show that if a graph contains exactheclosed set, then it contains
a directed spanning subtree rooted at each vertex of that\&ewill then define a vector,
wyr, based on enumerating the weights of the directed spanreeg in the graph af/,
exploiting the well-known Markov Chain Tree Theorem (Ftiecand Wentzell, 1984).
When M is unichain (i.e., its associated graph has a single clossd) this will turn out
to be proportional to its unique stable distribution.

We will prove that this is the case by defining another veatderms of determinants
(specifically, as the diagonal of tlaeljoint of the laplacian, M — I), which is easily seen
to be proportional to that stable distribution, as well as }p.

80
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6.1 Directed Spanning Trees

As given by Theorem 6.18, the Markov Chain Tree Theorem gavasmbinatorial formula
for the unique stable distribution of a unichain Markov maitn terms of the weights of its
directed spanning subtrees. In this section, we will:

e define what we mean by a directed tree and show how they areatgiy related
with unichain Markov matrices,

e show how we may enumerate all directed treesmorertices by a certain class of
functions onS,,, and

e define a vectorw,,, for any Markov matrix,M, in terms of the collection of all
directed spanning subtrees@f (1), which will turn out to be proportional to the
stable distribution of\/.

6.1.1 DST Facts

A directed graph’ that contains a unique directed walk from any vertexGino some
distinguished vertex has been called an “oriented” tree (Knuth, 1997, p. 373). We w
refer to such a graph asdirected tree We will also describe it as beimgoted atv. This
terminology is justified by the following theorem:

Theorem 6.1. A directed graph(G = (V, E, s, t), is a directed tree rooted atif and only
if

e v has no outgoing edges, while every= V' \ {v} has exactly one outgoing edge,
and

¢ the undirected graph associated withdoes not contain any cycles.

Proof. Consider a directed treé&;, rooted at. That is,G contains a unique directed walk
from any vertex ta, so that we may define the functialp, : V' — N, such that;(v) is
the length of the unique walk i@ from « to v, with [ (v) = 0. For any edgéu, w) € E,
there exists a walk fromv to v, so the unique walk from to v must be the concatenation
of the edg€g(u, w) to the walk fromw to v. If not, this walk is not unique. Thus, for any
edge(u,w) € V,lg(u) = lg(w) + 1.
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The vertexv cannot have an outgoing edde, «), since that would imply that =
lo(v) = lg(u) + 1, andig(u) = —1, which is impossible sinc&;(u) is a length. Since
there is a walk from every otherto v, every othern: must have at least one outgoing edge.
It cannot have more than one, however, because that woulg tmp distinct walks from
u to .

Sincel is strictly decreasing along any walk; cannot contain a (directed) cycle.
In particular, it cannot contain any self-loops. More getlgy the associated undirected
graph,G,, cannot contain an (undirected) cycle. If it did, we couldfa vertex,u, in
the cycle such thal;(u) is maximum among all vertices in the cycle. SinGecontains
no self-loops, the cycle has length at least 1, and therenaredges in the cycle incident
with u in G’. These edges correspond to directed edgés iBincel . (u) is maximum,u
must be the starting vertex for both edges. Butas only one outgoing edge, so this is a
contradiction.

Conversely, let; be a graph containing no undirected cycles, in which oneexert
has no outgoing edges, while everyc V' \ {v} has exactly one outgoing edge. Notice
that the strongly connected components-adre all singleton sets, since, by definition, any
pair of vertices in a strongly connected set contains a tdicecycle containing them both.
Since every vertex but possesses an outgoing edgejs unichain with unique closed
class,{v}. By Lemma 1.1, from any vertex € V' \ {v}, G contains a walk fromu to v.

If there were more than one such walk, the first vertex at wthehwalks diverged would
have two outgoing edges, which is impossible. Thus, the ¥galkique and- is a directed
tree rooted at. O

We can therefore define tiparentof any non-root vertexy € V'\ {v}, by t(«), where
s(a) = u.
This leads to the following well-known result.

Corollary 6.2. If G = (V, E, s, t) is a directed tree, thef¥| = |V| — 1.

Proof. G must be rooted as some vertex,and by Theorem 6.1, there is a well-defined
mapping,c : V' \ {v} — FE, taking each non-root vertex to its unique outgoing edge, so
thats(o(w)) = w, i.e.,o is a right-inverse ok. Given any edgey € F, s(a) € V' \ {v},
sincev has no outgoing edge. In faet(s(«)) = «, since each non-root vertex hasrdque
outgoing edge. Thug; is both a right- and left-inverse, hence, both 1-1 and onéo, &

1-1 correspondence. In particulggl| = |V \ {v}| =|V|—-10O
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As with undirected graphs, @directed subtrees a subgraph which is also a directed
tree, and alirected spanning subtras a directed subtree which spafgi.e., contains all
vertices ofGG). We know from Lemma 1.1 that every directed graph contairisast one
closed class. In this section, our focus will be to show that directed graph contains
exactlyone closed class, this s, if it is unichain, then it contaiimected spanning subtrees
rooted at each of the vertices in that class.

We will say that a graph¢z = (V, E), contains astar at v iff for every w € V,
(w,v) € E. Likewise, we will say tha& is starryiff it contains a star at somec 1. Note
thatG contains a star at iff there is a walk from every other vertex @ to v.

Lemma 6.3. For any directed grapltz = (V, E'), G contains a star at iff GG is unichain
andv is a vertex in its closed class.

Proof. AssumeG contains exactly one closed clags, and choose an arbitrary vertex
v € C. Now for any other vertexy € V, eitherw € Corw ¢ C. If w € C, w andv are in
the same SCC, so there is a walk framto v. If w ¢ C, w is transient, sincé& contains
only one closed class, so by Lemma 1.1 there is a path fréemminating in a closed class,
which must beC. Letwu € C be the vertex at which this path terminates. Sin@ndv are

in the same SCC, there is a walk franto v, and therefore there is a walk fromto v. So
there is a walk inG from every vertex ta, andG contains a star at.

Conversely, assume th@t- contains a star at By Lemma 1.1(7 must contain at least
one closed class, call@. Now observe that must be inC. If it were not, there could be
no walk fromw € C to v, sinceC has no outgoing edges. In addition, there cannot be more
than one closed class, since, by the same argumewauld have to be in all of thent

Lemma 6.3 says that (¥ is unichain, then it contains a directed walk from any vemex
G to each vertex in its closed class. In the remainder of tluB@® we establish a stronger
result, namely that the assumption of exactly one closessalaG; implies that for each
vertexv in the closed clasg; contains a subgrap@’ in which there is ainiquedirected
walk (which is necessarily a path) from any vertexGhto v (i.e., G contains directed
spanning subtrees rooted at each of the vertices in thecctdass).

Lemma 6.4. For any directed graph(+, G, contains a star at the vertexiff G contains a
directed spanning subtree rootedat
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Proof. Assume thatz contains a directed spanning subtree rooted. @y definition, it
then contains a (unique) directed walk from any vertex.td@his means that contains
an edge from any vertex ta In other words(=; contains a star at.

Conversely, ifG contains a star at, we can use the well-known graph algorithm
breadth-first search to construct a directed spanningesibdoted at. Breadth-first search
starts with a given root node, Each vertex reached by the algorithm is first discovered,
then placed in a queue, eventually to be dequeued and peatce3® process a vertex,
w, the algorithm discovers and enqueues all undiscoverdatesradjacent to it. It then
dequeues the next vertex for processing. In this way, theriéthgn processes all vertices
a certain number of edges away franbefore descending to the next level of depth. The
algorithm uses a “color” decoration to guarantee that noexeis processed more than
once. Vertices not yet discovered are WHITE, vertices disced but not yet processed are
GRAY, and processed vertices are BLACK.

Algorithm 1 is a modification of the basic algorithm. Since thdges in a directed
spanning tree point toward the root, this algorithm tra@sexiges backwards, that is, at any
iteration it discovers a vertex iff there is an edge pointing from to the vertex currently
being processed. In addition, it keeps track of the edgeersad this way in the sét’. We
will argue that the returned spanning subgraghs= (V, E'), is also directed tree rooted at
V.

First, observe that any non-root vertex# v € V, is eventually discovered (turned
GRAY) by Algorithm 1. Since(z, contains a star at, there is a path from to v in G.
Enumerating the vertices on this path ..., p, with p, = v, p; = u, and(p;,p;_1) € E,
we may proceed, by induction, to show that every vertex opé#tle, includingy; = u, will
be discovered. The initialization step of the algorithmrguéees that, = v is discovered,
anchoring the induction. Now suppogg ; is discovered. Thep,_; will be enqueued,
guaranteeing that it will eventually be processed. Whes firbcessedy, is examined,
since(p;, p,_1) € E, and either it is already GRAY, or it is turned GRAY at that qioiln
either case, we see thatwill be discovered, completing the inductive step of theuangnt.

We now show that there is a pathdi from every vertex ta. Enumerating the non-root
verticesw, . . ., w,, in the order they are discovered, we proceed by completetimuto
show that there is a path from, to v in G’ for all i. The first,w,, is discovered because
there is an edgéjw,, v) in G. Since this edge is added i, this gives a path fromy, to v



85

Algorithm 1 BFS Tree
@ = new Queue()
E' =0
foreach{u € V'}
color[u] = WHITE
color[v] = GRAY
@.enqueue()
while (1Q.isEmpty() {
u = ().dequeue()
foreach{w | (w,u) € E}
if (colorfw] = WHITE) {
colorfw] = GRAY
E'.insert(w, u))

@.enqueuay)
}

colorfu] = BLACK

}
G¢'=(V.E)

in G’. Now suppose there is a path fram to v in G’ for all k < i. Whenuw), is discovered,
an edggw;, w;) is added ta&’ from w; to the vertexyu;, currently being processed. Since
all vertices are discovered before they are processedust have been discovered before
w;, SO thatj < ¢. By induction hypothesis, there is a path fram to v in G', and since
(w;, w;) € E', there is a path fromy, to v in G, completing the induction step.

It remains to observe that the pathdfifrom each vertex te is unique. The argument
is similar to that in the proof of Theorem 6.1. Since an outgatdge is added t6’ only
as itis discovered in thehile loop of Algorithm 1, and each edge is discovered only once,
the out-degree of each non-root vertex is 1. For any nonvextex,u, if there were two
distinct walks fromu to v, the first vertex at which the walks differed would have astea
two distinct outgoing edges i, which is impossible. Thus, there isumiquedirected
walk in G’ from every vertex ta, that is,’ is s directed tree. Since it is a subgraphcof
on the same vertex sef; is a spanning subtree 6f rooted atv. O

Lemma 6.3 says thé&t contains a star atiff  is unichain and is a vertex in its closed
class. Lemma 6.4 says th@l- contains a star atiff G contains a directed spanning subtree
rooted atv. Therefore,
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Theorem 6.5. A directed graphG contains a directed spanning subtree rooted at a vertex
v iff G is unichain andv is in its closed class

6.1.2 DST Construction

We now give a way to represent the set of directed spannieg tkthe complete graph on
n vertices in terms of certain mappings. This will allow us teega constructive proof, in
section 6.2, of the Markov Chain Tree Theorem using detants

Among all directed unweighted graphs anvertices, we restrict attention to those
which arel-regular, that is, those in which each vertex has a unique outgoing.eHtgere
is a 1-1 correspondence between such graphs and thé gethappingse : S, — S,,,
which we will suggestively refer to as “1-regular” mappin@pecifically, for a 1-regular
graphG = (V, E), definemap(G) = o such thatr (i) = j iff (v;,v;) € E. Conversely,
any suchy defines a 1-regular grapty,_(o), such thatv;, v;) € E iff o(i) = j. Clearly,
G_(map(G)) = G andmap(G_(0)) = 0.

There is also a 1-1 correspondence between 1-regular nggognd the sedt of n x n
square Markov matrices with a single non-zero entry (i)an &ach column, which we will
again refer to as “1-regular”. To any 1-regular mappings 7', we associate a 1-regular
matrix, mat(o) € M, so that(mat(c)), ; = 1 iff o(j) = i. Observe that each column
of mat (o) is the standard basis vectqy;, so thatmat (o) = (e,(1) - - - €,(n) ). COnversely,
for any matrix, M € M, we can definenap(M) € T such thatmap(M)) (j) = ¢ iff
M, ; = 1. Again,mat andmap are inverses and so give a 1-1 correspondence between the
set of 1-regular mappings auod!.

Finally, note that these correspondences induce a 1-1spmnelence between the set
of 1-regular matrices and 1-regular graphs, which is justisual procedure of associating
with a matrix, M, its unweighted graph’_(M). We will also definemat(G) for any 1-
regular graph(z, to be the corresponding 1-regular matrix. Four such liegguatrices,
M;, with their corresponding graphs, are shown in Figure 6.1.

Fori € S,,, define

These sets correspond to 1-regular graphs with exactlyafiosp atv;, such as\/; and
M, in Figure 6.1. For examplé\/; € M; andM, € M,. Equivalentlymap(Ms) € T5)
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Figure 6.1: Four 1-Regular Markov Matrices and Graphs

00 1 0 1 1 01 0 1
My=|10 0 My=|1 0 0 My=| 1 0 0 My=1 0
01 0 000 00 1 0
G, (Ml) Ul G, (]V[Q)K Gi (]V[j)/ Ul G, (]V[4)
Vo U3 Vo / V3 Vo / O. V3 Vo V3
andmap(M,) € T;.
Now restrict attention further to graphs of unichain Markoatrices, defining\;, =
{M € M, | M unichair} andT’; = {map(M) | M € M,}. By definition, for everyM €
M,;, G_(M) has exactly one closed class, which must be the singlétgh, For example,

M, € M,. Notice that, whileM/, is unichain, it does not contain a self-loop. Likewise,
while M; has a self-loop ats, it has two closed classe$y;, v,} and{v;}, so it is not

o O =
o O =

unichain.

Figure 6.2 depicts all members of the 34t with vertices inS;. Note that the diagonal
entries and the entries in the first column of each matrix aterchined by the definition
of M. This leaves two possibilities each for the two non-zereiesiin columns 2 and 3,
resulting in the four members. Of these folif,, M,, andM; are unichain (each has only
one closed clasgv, }) so they are members d¥1,, or equivalentlymap(M;) € T, for
i =1,...,3. On the other hand)/, has two closed classe§;, } and{v,, v}, so it is not
a member ofM; andmap(M,) € T,.

Figure 6.2: The seM, of 3 x 3 matrices.

G- (M) G- (Mf@ G (Ms) ? G- (M,) &%)
Uy U3 Uy @e—@ U3 Uy @———@ U3 v @@ Us

Now for o € T}, let G° (¢) be the graph obtained by removing the self-loop,dtom
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G_ (o). We will call the set of all such graphs; = {G° (o) | o € T;}. We thus have a
1-1 correspondence between maps T;, Markov matricesmat(c) € M;,, and directed
graphsG* (o) € D,. Figure 6.3, shows the Markov matricesat(c) and graphsi:? (o),
associated witlr € T';. Notice that all graphs are directed spanning trees rodted a

Figure 6.3: The seb, of directed spanning trees with verticesSg rooted at,

/\ G° (M) @ U G° (M) @ v
U3 vz‘—> U3

We now show that this correspondence gives us a way of entingeadl directed span-

0
M2: 1 M3:
0

o O =
o O =
o O =
o O =
o O =
o O =
—_ O O
o O =

ning trees rooted at,.
Theorem 6.6. D;, is the set of all directed spanning treesowertices rooted at,.

Proof. Let D; denote the set of all directed spanning trees amertices rooted at;. Then
we may viewG" as a mapping fronl’; to D;, which by definition is surjective. We wish
to show thatD; = im G* = D,.

For any mappingr € T, mat(c) is unichain, soG_(mat(c)) = G_(o) contains
exactly one closed class, which must be the vertexith the self-loop. By Theorem 6.5,
G'_(o) contains a directed spanning subtré§, rooted atv,. By Corollary 6.2, this graph
hasn — 1 edges, sincé&'_ (o), and hence?’, hasn vertices. By definition(z_ (o) hasn
edges, so that, by removing the self-loopatwe obtain a spanning subgragi, (), on
n vertices anch — 1 edges.

To summarize, sinc&'_(c), G', andG” (o) have the same vertex set. In addition,
if we denote the corresponding edge setsyE’, and E°, respectively, we have that
E' E° c E\ {(v;,v;)}, sinceG’ is rooted atv; and by construction of:’ (¢). Since
|E'| =n—1=|E° and|E\ {(v;,v)}| = |E| —1=n—1, we musthave?’ = £ = E,
so thatG’ = G (o). Thatis,D; C D,.
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Moreover, every tree i»; can be constructed in this fashion. Given a directed spgnnin
tree,G' € D;, withV = {v,,...,v,}, rooted aw;, add a self-loop at; to obtain a 1-regular
graph,G, with associatedr = map(G). SinceG’ has no self-loops(: has exactly one
self-loop atv;, ando € T,. Since the directed spanning tre&, is a subgraph o7, by
Theorem 6.5(7 contains exactly one closed class. In particulatt(o) is unichain, i.e.,
mat (o) € M,;, sothatr € T; andG" (¢) = G'. Thus,D; C D;, so thatD, = D,. That is,

D, is the set of all directed spanning trees rooted at

6.1.3 The vectorw,,

Now that we have a construction for the set of directed spayinees, for any given Markov
matrix, M, we may enumerate the directed spanning subtreés ¢#/), and their associ-
ated “weights”. We will see that whel is unichain, these are closely related to the stable
distribution of M.

Given any Markov matrix)/, and any € T;, we define

7)5
Intuitively, this is the “total” weight inG (1) of the edges i’ (o) (where we aggregate by
multiplication rather than addition), which is a directg@isning tree whear € T',. Notice
how we take the product ovgr+ i, so that the “total” weight excludes the weight on the
self-loop ati in G_(o). Notice further that, while we will usually apply this detiioin to
o €T;, W(M,o)is well-defined for anyr € T,.

Given a Markov matrix\/, we now define the vectar,, such that

(war)i = Y, W(M,0) (6.2)
o€T;
Theith entry ofw,, is the sum of the “total” weights id=(A/) of all directed spanning

subtrees rooted at.

Example 6.7. Throughout the remainder of this chapter, we will use the kdamatrix

1 1
0 3 1
M = 10 i as a running example. To calculate,,),, we must sum over all
1 1
0 3 2

o € T, which correspond to the matricas$,, M,, M; € M, enumerated in Figure 6.2.



First, calculatéV (M, o,), for o; = map(M,); in particular,o, (1) = 1, 0,(2) = 1, and
01(3) = 1. Here,W (M, 01) = Iy M, (jy; = My 2)2My (33 = MipMys = 5% 5 = 5.
Similarly, W (M, 05) = I, M, jy; = M, 2 2My 33 = MiaMss = 5 x 1 = £, and

W (M, 03) = L0 Mg,y = Moy 2Moy )5 = MapgMyz =5 % § = §.

Finally, (wy), = 3,7, W(M,0) = 5 +5+4 = 3. Repeating this process fore T,

ando € T, we find thatw,, =

NI—= NI= olw

Lemma 6.8. For anyn x n Markov matrixM/, all i € S,,, ando € T;, W (M, o) # O iff
the directed spanning tree associateditaz (o), is a subgraph o _ (M).

Proof. Abbreviate the directed spanning tree associatedldg G. We may enumerate all
the edges of7 as (v;,v,(;)) for j € S, \ {i}. Anedge,(v;,v,(;), isinG_(M) iff it is
in G(M) iff it has positive weight, i.e.M, ;) ; > 0. Thus,G is a subgraph of/_ (M) iff
M,y ; > 0forallj € S, \ {i} iff 0 # 11, ;M) ; = W(M, o). O

a

By Lemma 6.8, whert?” (¢) is not a subgraph off_ (1), the corresponding term in
>oct, W(M,0) is zero. ForM Markov, definel’(1/, i) to be only those mappingsin
T, whose associated direct spanning trees are subgraghs(af ). That is,

T(M,))={oceT;|G°(c) C G_(M)} (6.3)
We may now give an equivalent definitionof,, with zero terms removed from the sum:

(war)i= Y. W(M,o0) (6.4)

oc€T(M,i)

We will use this definition from now on.

Theorem 6.9. The vectorw,, # 0 iff M is unichain. Specifically, if\/ is unichain,
(wyr); # 0iff v; is in the closed class @F(M).

Proof. SupposeM is unichain. By Theorem 6.5 there exists a subgréphc G_ (M)
which is a directed spanning tree rooted at the verieif v, is in the closed class of
G_(M). If v; is in the closed class, let. € T, be the mapping associated®) (so that

G, = G(l(o—i)). Theno, € T(M,i) and there is at least one non-zero term in the sum
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> oerryy W (M, o). Since this is a sum of positive ternisy,,); # 0. On the other hand,
if v; is not in the closed clasg; (M) has no directed spanning subtree rooted;aso
T(M,i)is empty andw,,); = 0.

Therefore, ifM is unichain withv, in the closed class @ _ (M), then(w,,); # 0, and
wyr # 0. We prove the converse implication by considering its cgmsitive. That is, we
show that, ifM is not unichain(w,,);, = 0 for all .. If A is not unichain, by Theorem 6.5
G (M) has no directed spanning subtree rooted at any verteX'($0 ) is empty for alli,
andw,,; = 0. O

6.2 A Proof Using Determinants

Having established all necessary combinatorial defingtimnsection 6.1, we now move
on the proof of the Markov Chain Tree Theorem. The proof wdpdnd primarily on
the multi-linearity of the determinant function from lineglgebra. Thus, we will begin by
reviewing basic facts and definitions associated with thherdenant function. Specifically,
we will:

review the basic properties of the determinant,

define what we mean by minors, cofactors, and the adjoint cditaix)

show how the vectory,,, from section 6.1 naturally occurs as the diagonal of the
adjoint of the laplacian of a unichain Markov matrix,, and

use linear algebra to show that this must then be propottioniae stable distribution
of M.

6.2.1 Determinants

We begin by recalling some basic facts regarding the detemtifunction on square matri-
ces. For notational convenience, we will sometimes wrjte - - - A v,, for the determinant
of then x n square matrix with);s as columns, wherg € R".

a b
The determinant of & x 2 matrix, = ad — be. The determinant of an x n

c d
matrix, IV, for n > 2 can be calculated recursively as follows, using the Lapéx@ansion
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formulas, given by Equations 6.5 and 6.6. Tlgj)" minor of N, N/, is the(n — 1) x
(n—1) matrix obtained by removing th& row and;" column fromN. The(i, j)" cofactor
of N, C% = (—=1)""7|N"/|. Now, for any rowi or columnj of N,

IN| = > N.CF (6.5)
k=1

= > NOF (6.6)
k=1

Equation 6.5 is refered to as a Laplace expansion along:yavhile Equation 6.6 is a
Laplace expansion along colurjin

o L 1
2 4
Example 6.10.For example, the determinant of the mattik = | 1 0 § | can be
1 1
03 2
calculated by applying the Laplace expansion along thedoktmn: | M| = Ml,l(]}\j +
1
My O + My O = 0x Oyt +1x (<17 2 2 1h0x Oy = —1(5x 5~ x3) =
2 2

.0

0 |+—=

Theorem 6.11.The determinant function on square matrices has the fotigwiell-known
properties (see, for example, Horn and Johnson (1985)):

a) |[NM| = |N||M]|, or equivalently, setting; = Me;, sothat|M| =v; A --- A v,

(Nv ) A+ A(Nv,) = |Njvg A+ A, (6.7)

b) |I| =1land|M'| = |M|"".
c) |N| = 0iff Nis notinvertible.

d) [M~'NM| = |N|, and in particular, for any permutation matrir, |P'M P| =
| M].

e |M'| =|M]|

f) If N is block-triangular with square diagonal blockd}, then|N| = [, | V;|.
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g) The determinant function multi-linear, meaning it is linear in each “factor”, i.e.,

VA A(av; +w)A- - Av, =a(vp A Avg A Avy) oA AwWA- - Ao,

Another key property of the determinant involves the adjoperatoradj. Theadjoint
of a matrix is the transpose of its matrix of cofactors, f@.anyn x n square matrix}V,

(6.8)

It then turns out that the Laplace expansion formulas, 6cb@6, are equivalent to the
following matrix equation (Wicks, 1996):

adj(N) N = |N|I = N adj(N) (6.9)

Example 6.12.Using the matrix, M/, from Example 6.10,

0o 1 1
MU= = adi(M), = ()" MY = -
2 2
Similarly,
1
1,2 1 P . _ 1+2 1,2 1
MY = = adj(M)y, = (—1)"7 [MM?] = —<.
0 1 ’ 2
2
1 11
8 8 8
Continuing this process, we find thadj()M) = —% 0 i . Now it is easy to
b0
-5 0 0
check thatdj(M)M = Madj(M)=] 0 -1 0 |[=[M[I.O
0 0 —3

6.2.2 The Stable Distribution

Definew,, to be the vector consisting of the diagonal entriesdjf(A). That is, remem-
bering our convention that = M — I, (w,,); = adj(A);; = C}' = |A*"|. In this section,
we will show thatw,, is closely related to the vectar,,, defined in section 6.1.3. This
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will lead to a formula for the stable distribution of a uniah®arkov matrix in terms of its
directed spanning subtrees.

In order to proceed, we need a bit of additional notationRlgtV) denote the result of
replacing the" column of N by the standard basis vectey,*

-1 1 1
2 4
Example 6.13.For M from Example 6.10A = M — [ = 1 -1 i ,adj (A) =
04 -
3.3 3 3 1 L1
8 8 8 8 2 4
111, sowy = | 4 [ Moreover,R(A) = | 0 -1 1 |[. Usingthe
1 1 1 1 1 1
3 2 2 3 0 3 —3
-1 1
Laplace expansion formula to computB, (A)| = 1 x fl=ix—i-ixl=

[N
N[

¢ = @y O
We now prove the result suggested by Example 6.13.
Lemma 6.14. For any Markov matrixM/, (w,,), = |R; (A)].

Proof. By the Laplace expansion formula for tiiecolumn,

n

|’ (A)] = ZR R(A Z(ei)kcjk%j(A)
k=1

= D li=KCg ) = Ciny = CD[Ri(A)"]

k=1

= (=D"AY| = adj(A)y; = (@)

Comparing Examples 6.7 and 6.13, it appears that= w,,. We will now work to
show that this is true, in general, with a minor caveat. Wedualthis by gradually rewriting
w,, Via a series of lemmas, until we obtain,.

Lemma 6.15. For any Markov matrix, M,(wy,); = >_,cp W(M, o) [R;(A(mat(0)))],
where, by our usual conventiof(mat(c)) = mat(c) — I.

*More formally, R, (N) = N + (I — N)e;e}, so thatR, (N)e; = Ne; + (I — N)esele; = Nej + (I —
Neli = jl = e;li = j]l + N(e; — e;[i = j]) = e;[i = j] + Nej[i # jl.
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Proof. By Lemma 6.14, remembering that= M — I, we may first write(w,,), in terms
of the columns of?;(A),

(Wa); = R (A)]
= AeyA--Ae; Ao Ade, (6.10)

Since the columns of sumto O (i.e., are iker .J), we may write thgith column ofA, Ae;,
interms ofe; ; = e; —e; fori # j (i.e., a choice of basis fdter .J). To do so, we begin as

follows:
A€]:M€]—€j:ZMZJ 6 —ZM 6"‘ —1>€j
i=1 i#j
Since thejth column of M sums to 1, we obtain the desired expansion:

i#j i#j i#j i#j
Applying Equation 6.11 to Equation 6.10, we have, by the iimearity of the deter-

minant,
(EM)Z = ZMshléshl/\“‘/\@i/\“‘/\ZM
171 sp#n
= D> > (Mg M, ) @i A Ae A AT )
Sl7£1 n#n
= > > <H#iMsﬁj) (@ Ao Aeg A AT, L) (6.12)
Sl7£1 Sn#”
We now apply the substitution, = o(j), so that each choice of values for the summation
variables{s,,..., s, ...,s,}, represents a unique choicewof S, \ {i} — S,. No choice

of o(7) is made because Equation 6.12 does not include a summator;oWotice that
the sum now requires(j) # j for all j # i. We may also require;, = o (i) = i to obtain
a unique choice of : S, — S, such thav(j) = jiff j = i, i.e.,o € T;. Therefore,
Equation 6.12 may be rewritten as

(Wy); = Z (H#ZM (). ) (50(1),1 N Neg N N Ea(n),n)

o€eT;

= Z W(M, O') (55(1)71 ANRIERIVANGHIVANCIEAN Ea(n),n) (613)

oeT;
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Now conside®,); A---Ae; A+ A€y, Converting back to standard determinant
notation, we have

Y C

e
(e )

= | (A(mat( )] (6.14)

Combining Equations 6.13 and 6.14 give our desired equation

(War)s ZW (M, o) |R;(A(mat(0)))]

o€eT;

The formula from Lemma 6.15 may be simplified significantiyce we prove the fol-
lowing lemma.

Lemma 6.16. For any o € T}, |R;(A(mat(0)))| = (—1)""", whenevew € T;, and O
otherwise.

Proof. Suppose that € T',. Consider the associated directed spanning tee, G° (o).
We can assign each vertex@h (M) a number according to the length functinon D,
given in Theorem 6.1. By sorting the vertices from low to hightheir value under the
length function, and renumbering the vertices in this sbasler, we achieve the property
that the index of any non-root vertex is greater than thatsoparent. This is because for
(u,w) € E, withu # v;, lg(u) = lg(w) + 1. Sincelg(v;) = 0, v; is renumbered as the
first vertex.

From a matrix perspective, if we permute the rows and coluast®rding to this
renumbering of the vertices, the result is upper-triangudismce edges always go from a
higher (column) index to a lower (row) index. Moreover, thagbnal contains all O’s
except in the(1, 1)-entry, corresponding to the fact that the graph has a seff-bnly at
the root, which gets renumbered with index 1. Therefore stémae permutation ok is
upper-triangular with -1's on the diagonal, except for a the(1, 1)-entry, and the same
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permutation ofR; (A) is upper-triangular with -1's on the diagonal, except for i the
(1,1)-entry. By Theorems 2.3 and 6.11d), permuting the rows ahdmes does not af-
fect the determinant. So by Theorem 6.11f), the determiisathie product of thesé x 1
diagonal blocks, antR; (A(mat(c)))| = (—1)"".

Now suppose that ¢ T);, so thatM = mat (o) is not unichain, and has at least two
closed classes. Pick two such closed classeands,. By Lemma 2.11, there exists a

xg 0 0
permutation matrix P, such thatP! M P, = | «, M, 0 , Wwhere M, and M, are
*9 O MQ
the Markov principal sub-matrices correspondingstcand s,, and thex’s are unknown
entries. In particular, it is block lower-triangular, asisAP = *q Ay O |,
*2 0 A2

with diagonal blockspD, = %, — I, D, = M, — I = A, andD; = My, — I = A,. In
addition, P‘R; (A) P is block lower-triangular with exactly one of the diagonkdks, D,
replaced byr, (D;), for some:’ (determined by’ and:) andj = 1,..., 3.

By Theorem 6.11 d)|R,(A)| = |P'R; (A) P|. This is either|R; (x, — I)| |A;] |As],
0| | Ry (Ay)||Asal, OF |%o| [A{| | Ry (Ay)], by Theorem f). Since\; and A, correspond to
Markov matricesV/; and M,, neither is invertible. In other words, both have determtna
zero, so there is at least one zero term in each product,/g0d)| = 0. O

We can now show that,, andw,, are equal, up to a change in sign.

n—1

Theorem 6.17.For any Markov matrixM, w,; = (—1)" " wy,.

Proof. Focusing attention on th& components, we must show that
(@rr); = (=1)" (wyy); = (1) Z W(M, o).
o€T (M,i)

By Lemma 6.15,
(Wa); = ) W(M,0) |Ri(A(mat(0)))] -

oeT;

By Lemma 6.16/R;(A(mat(c)))| = 0, if o € T;. Thus, this simplifies to

™ WM, o) [Ri(Amat(0)))]

o€T;
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Moreover, wherr € T;, Lemma 6.16 says thaR, (A(mat(c)))| = (—=1)"", so that this
simplifies to

S OW(M,o)(—1)" = (=1)"" Y W(M,0) = LY WMo,
€T, €T, o€T(M,i)
as desiredd

We now come to the key result of the chapter.

Theorem 6.18(Markov Chain Tree Theorem}-or any unichain Markov matrix}/,
stab M = {v,;}, where

(var); = Ie Z W(M,o)| = %(wM)i (6.15)

o€T (M,i)
with normalizing constants’ = [lwx ||y = > (war)i = 22721 D perarsy WM, o).

Proof. By Theorem 2.12ker A # 0, so thatA is not invertible. By Theorem 6.11c),
|A] = 0, and by Equation 6.9) = |A| 7 = adj(A)A. Therefore0 = (adj(A)A)" =
A" (adj (A))". In other words, all rows ofidj(A) are inker A’. Likewise, sinceJA =
JM —J=0,J € ker A".

By Theorem 5.14, sinc&/ has 1 closed clasdjm ker A = 1, which, by Theorem A.1,
equalsdim ker A*. Since all vectors in a 1-dimensional subspace are mutipi@ny cho-
sen non-zero member, each roweaofj(A) must be a multiple of/. In other words, all
entries in any given row must be equal. Equivalently, aluowhs ofadj(A) are all equal.

Now w,, is defined as the diagonal entriesaadf (A). Since the columns aidj(A) are
identical, w,, is also equal to each column. Appealing again to Equation06=9 |A| I =
A adj (A), so that the columns afdj(A) are all inker A, that is,w,, € ker A.

Therefore, by Theorem 6.1, € ker A. To this point, we could still havedj(A) =
0. However, sinceV/ is unichain, Theorem 6.9 guarantees that # 0. In particular,
{w,,} is a basis foker A.

The stable distributions af/ are the positive norm-1 vectors ker A. We know that
wy, IS positive, since its entries are the sums of products otipesveights. By letting
K = |lwy|, andvy, = +w)y,, we see thaty, > 0, and|lvy ||, = Y0, (wy)i/K =
=|lwally = 1, sow,, is a stable distribution ofi/. By Corollary5.15,v,, is the unique
stable distribution of\/. O
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Example 6.19. Continuing with the matrix)/, from Example 6.10, we obtain a normal-

3
11

ization constant o\’ = (wy;); + (wyy)e + (wyr)3 = 1—81 Sov,, = % . We may easily
4
11
1 1 3 3
0 35 1% i i
verify thatv,, is a stable distribution, sindefv,;, = | 1 0 i 1;41 = % —
1 1 4 4
035 3 i1 ]
Vg - O

Notice that Theorem 6.18 suggests thaf;), may be viewed as the conditional prob-
ability that a randomly selected directed spanning subtreaoted at, where the relative
probability of each tree is given by product of the weightg®&dges. This implies that, if
we could efficiently sample from the corresponding disttiitiu of directed spanning sub-
trees, we would have a Monte Carlo algorithm for computipg While Broder (1989)
provides such a sampling algorithm, it is not sufficientlgtfeo render the associated pro-
cedure for computing,, competitive with other more direct techniques.



Chapter 7
Perturbed Markov Matrices

We now wish to generalize our our study of Markov matrice®dase when the entries
are sufficiently “nice” functions of a non-negative paraengt, to so called “perturbed”
Markov matrices (PMMs). If we denote such a matrix/y, we will be interested in the
stable distributions of\/, ase — 0. As such, we will need to combine the linear algebra
and graph theory of Part | with some careful real analysis.

We will show that:

e a PMM, M, has a well-defined stable distributian, which is a “perturbed” matrix
(i.e., column vector),

e v, = lim,_, v, exists, the so-called “stochastically stable distribeitigcSD) of M.,

e v, only depends o/, up to an equivalence relation (“asymptotic” equality) dedin
over its entries,

¢ the equivalence class of an entry is determined by two ralaled invariants, which
we call theresistanceandcostof the entry, respectively,

¢ likewise, the equivalence class of a PMM,, may be specified by two real-valued
matrices (i.e., its resistanch, (), ), and cost(' (M,)),

¢ the two constructions from chapter 5 (i.e., scaling and c&dn), as well as the
corresponding notions of equivalence anekquivalence, generalize to PMMs, and

e by careful application of the Markov Chain Tree Theorem, &e guarantee that we
only need invertonstanimatrices in our constructions.
100
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By alternating these two constructions, we are able to dieefirst exact algorithm for
computingv,. Moreover, since the SSD only depends on the equivalenss d@&\/,,
we may represent all perturbed matrices in the computatyotind corresponding pair of
resistance and cost matrices.

Because we will only be interested in functional values faufficiently small” non-
negative values of, it will be useful to establish the following two conventgnlf Q(¢)
is a proposition containing the variable we will write “Q(e) for ¢ = 0” as an short-
hand for ‘96 > 0 s.t. Q(e) for e € [0,0]". Likewise, “Q(¢) for e = 0" will mean
“35 >0 s.t. Q(e) fore € (0,6]". In other words,e = 0 may be read as “for sufficiently
small non-negative’, while € > 0 will mean “for sufficiently small positive”.

7.1 Exponentially Convergent Functions

In this section, we will establish the groundwork for ourdstof PMMs by defining pre-
cisely what we mean by “sufficiently nice functions«&f The fundamental issue is that
we need to restrict to a class of functions which:

e could serve as entries to a Markov matrix,
e have a well-defined limit as— 0, and

e is closed under basic algebraic operations.

In particular, we will want the collection of (Markowhatrices M., with such entries to be
closed under standard matrix operations. Moreover, wewsititstab (1/,) to correspond
to a matrix with such entries, so that we may take limits. Idi&on, since we are primarily
interested in functional values as- 0, they will not need to be defined fall non-negative
e. In particular, we will only be interested in such functiasto “asymptotic” equivalence.

Thus, to begin it is natural to require that the entries sti@illeast be positive and
continuous. In fact, we will be a bit more stringent. We wadktrict attention to the col-
lection of functions,f(e), which are continuous for sufficiently small non-negatiyand
either positive for sufficiently small positiveor zero for sufficiently small non-negative
We will denote this collection a&'* [0, ], and, using our convention, we may define it as
follows:

C*[0,+] = {f continuous fol = 0 | f(e) >0, Ve = 0o0r f(e) =0, Ve = 0}
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Alternatively, if C°[0, §] denotes the set of real-valued, continuous function® o, then

C°l0, ] = [ J{feC0,6]| fle) >0, VO <e<dorf(e)=0,Y0<e <6}

6>0

However, this collection is too big. Any € C°[0,4] andé’ € (0,4), defines a re-
striction,g € C°[0,0'], so thatg(e) = f(e), forall 0 < ¢ < ¢§'. We would clearly like to
consider those as the “same” functibithus, we define the following relation @' [0, ].

Definition 7.1. For f,g € C™[0, %], we will say thatf is asymptotically equal tg and
write f ~ ¢ iff either:

i) g(e) =0= f(e) fore = 0, or

i) g(e) > 0fore = 0andlim__+ 58 — 1.

Notice that, ifg € C°[0, ¥, then either(e) = 0 for e = 0 or g(e) > 0 for e = 0 (but not
both), so that Definition 7.1 makes sense.

We now show that this relation is, in fact, aguivalenceelation, along with some
other useful facts.

Lemma 7.2. For f;, g; € C°[0,%],i = 1,2,
a) if fi(e) = g1(e) > 0fore = 0, thenf, ~ g;;

b) fi + fo, fifa € CO[O, ], that is, this collection of functions is “closed” under
addition and multiplication;

) ~ is an equivalence relation ofi°[0, *|;

d) if f; ~ g;,,7=1,2,thenf, f, ~ g,9,, thatis,~ is “preserved” under multiplica-
tion.

Proof. The proof of part a) is almost immediate. Assuming th@) = g(e) > 0fore > 0,

lim_+ % = lim_+ 1 = 1, so thatf ~ g, by Definition 7.1 ii). Part b) is also clear,

since the sum or product of continuous/positive functiensontinuous/positive.

1Mr:xthematically, we want to look at the “germs” 6f" [0,0) at O (Warner, 1984).
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To prove part c), we must show thatis reflexive, symmetric, and transitive. For any
f € C0,%], eitherf(e) = 0, for e = 0, so thatf ~ f by Definition 7.11), orf(¢) > 0, SO
that, by part a)f ~ f. Thus,~ is reflexive.

Likewise, if f ~ g, eitherg(e) = 0 for ¢ > 0, so we must be in case i) wheife) = 0
for e = 0, as well. In which case, Definition 7.11) gives~ f, as well. Alternatively,
g(e) > 0 for e = 0 and we must be in case ii). Sintien__+ % = 1, we cannot have
f(e) = 0fore =0, sothatf(e) > 0 for e = 0. We may then say thaim__+ % =1,s0
thatg ~ f by Definition 7.11ii). That isp~ is symmetric.

To finish part c), assume thgt~ g andg ~ h. Since we have already shownto be
symmetric, we know that ~ ¢, as well. Now assume thate) = 0 for ¢ = 0, SO we must
be in case i), that is, we may conclude tifat) = 0 andh(e) = 0 for ¢ = 0, as well. In

particular, f ~ h. Otherwiseg(e) > 0 for e = 0, and we must be in case ii). Therefore,

h(e) > 0 for e - 0 and we may conclude thiitn_+ 29 =1 =lim_+ £9. Thus,

1=1-1= lim & lim @: lim (&@) = lim&
0" 9(€) ot h(€) ot \ g(€) h(e) o+ h(e)
and by Definition 7.1ii),f ~ h. Thus, we have proven thatis transitive.

Now we must prove part d). First consider the case when dt ¢eesof thef; or g, is
identically 0. Assume, for example, that ~ 0. Using the fact that- is an equivalence
relation, we may reason as follows. By assumptigny f; ~ 0, so thatf,(¢) = 0 = g,(¢)
fore = 0. Thenf;(e) fo(e) = 0 = g1(€)ga(€) for e = 0, and f, fo >~ 0 =~ g, go.

Otherwise, sincg; ~ g;, lim_+ 58 — 1. Therefore,

. file) fale) _ 1 file) o fale) 1.1 —
o (@00~ e i g
sothatf, fy >~ g195. O

Since~ is an equivalence relation, we can partitiofi[0, +] into equivalence classes,
and denote the corresponding collection of equivalensekabyC. In particular, there is
a unique equivalence class containing the constant fumddio For convenience, we will
denote this class (and any member function) by 0, as well.icBdhat if f % 0, then
f(e) > 0fore > 0.

Lemma 7.2d) says that multiplication is a well-defined operaonC. To perform
addition, subtraction, or division on equivalence clasgesmust restrict attention to func-
tions which are “nice” enough. A standard restriction isdoK at only those functions
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which “look like” exponentials, i.e., those classes whioht@in an exponential of the form
ce” € C°[0, ] for ¢, > 0. Thus, we define the set ekponentially convergergoung,
1993) functionsC™ C C as those equivalence classes contairiigfor somer, ¢ > 0.
Intuitively, we want to focus on the collectiof)f € C*[0,%] | 3r,c >0, f ~ce"}. For
simplicity, we will blur the distinction between an equigate class i©" and its mem-
ber functions. Likewise, we will abuse notation slightlydawrite f € C" instead of

f € CT0,+] and f ~ c€", for somer,c > 0. For example, we may observe that, as
constant function®®™ c C™.

Theorem 7.3. There exist function& : C™ — [0,00] andC : C* — [0, c0), such that, for
all f,gecC”:

a) f~ce £0iff C(f) =c>0andR(f) =r < oo, and
b) f =~ 0iff C(f) = 0iff R(f) = oo

Moreover:
o) for f,g €C", f ~giff C(f) = C(g) andR(f) = R(g);

d) if fis continuous foe = 0 andlim__ + % =1, withc > 0, thenf € C* \ 0 with
R(f) =randC(f) =c.

Proof. First, observe that the mapping: (0, 00) x [0,00) — C* such that(c,7) = cc”
gives a 1-1 correspondence betwéernc) x [0, cc) andC™ \ 0. Assume that (c;,r,) =
a (cq,19), thatis,ci e ~ cye™. Sincec; > 0,1 = 1,2, we are in case ii) of Definition 7.1.

Therefore,l = lim__+ Z;; = z—; lim_ g+ €72 If vy > 7y thislimitis 0. If r; < 7y, the
limit is co. Thus, we must have, = r,. Moreover,1 = i—;lime_w ¢ = z—; andc, = c,.
Thus,a is 1-1.

By definition, if f € C* \ 0, thenf ~ c€" for somec,r > 0. Sincef £ 0, we
must have: > 0, so thatf ~ a(c,r). Thus,a maps ontaC* \ 0. In particular, there are
unique functions2 andC, such that R, C) : C*\ 0 — (0,00) x [0, 00) is the inverse
of a. Notice that, if f ~ ce” % 0, then0 < ¢ = C(a(e, 1)) = C(ce”) = C(f) and
oo > 1 = R(a(e,r)) = R(ce") = R(f). Conversely, iD < ¢ = C(f) andoo > r = R(f),

thenf = a(C(f), R(f)) = ce” £ 0.
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We may extend both functions to all 6 by settingC'(0) = 0 and R(0) = oo. Thus,
if f~0thenC(f)=0andR(f)= oco. Conversely, ifC(f) =0or R(f) = oo, we must
havef ~ 0, sinceC(f) > 0 andR(f) < coonC™ \ 0.

Next, observe that, sinag@ and R are defined on equivalence classes/ it g, then
necessarilyC'(f) = C(g) and R(f) = R(g). Conversely, ifC(f) = C(g) andR(f) =
R(g), we may show thaf ~ ¢g. If C(f) = C(g) = 0, thenf ~ 0 ~ g. Otherwise,
C(f) = C(g) > 0, sothatR(f) = R(g) < oo, andf ~ C(f)e") = C(g)e"@ ~ g.

Finally, assume thaf is continuous for = 0 andlim__+ J;(j) = 1. Then we must
have J;(j), and hencef (¢), be positive fore = 0. In particular,f € C \ 0. However, by

assumptiory ~ ce" 2 0, so by part a)('(f) = candR(f) =r. O

By our comments preceding Theorem 7.3, we can and will ale @i(f) and R(f) as
functions defined for alf € C*[0, ] with f ~ c¢", for somer, ¢ > 0, which are constant
on equivalence classes.

We call the functionsR(f) and C(f), of Theorem 7.3, theesistanceand commu-
nication cost respectively, off. The following Lemma shows how the resistance and
communication cost functions behave with respect to amldisubtraction, multiplication,
division, and taking limits.

Theorem 7.4. The following hold for anyf, g € C*.

a) lim_ o+ f () = [R(f) = 0]C(f).

b) f+g € C" with R(f + g) = min{R(f), R(9)} andC(f + g) = [R(f + g) =
R(NHIC(f) + [R(f +g) = R(9)]C(9).

¢) If R(f) < R(g), or R(f) = R(g) andC(f) > C(g), thenf—g € C*, C'(f — g) =
C(f) = [R(f) = R(9)IC(g), and R (f — g) = R(f).

d) fg € withC(fg) = C(f)C(g) and R(fg) = R(f) + R(q).

&) If g 20, R( ) > R(g), and we defin({g) (0) = [R(f) = R(9)] S8, then! e c*,
C (g) on andR( ) R(f) — R(g).

Proof. We first prove part a). Iff £ 0, by Theorem 7.3 a), singee C*, f ~ C(f)e"\).
Therefore,

(R
CNIR(S) = 0] = tim C(H™ = tim TD i () = 1 s(e)

e—>0+ e—>0+ f(E) e—>0 e—>0
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Otherwise,f ~ 0, R(f) = oo, C(f) = 0, and[R(f) = 0]C(f) =0 =1lim__,+ f ().

We will approach the proof of part b) in by cases. First, asstmat eitherf ~ 0 or
g ~ 0. Since the statement of part b) is symmetricfiand g, we may assume, without
loss of generality, thay ~ 0. Thus,g(e) = 0 and f(e) + g(e¢) = f(e), fore = 0, so
that, by Lemma 7.2a)f + g ~ f € C*. Moreover, by Theorem 7.3aR(f + g) =
R(f) = min{R(f), 00} = min{R(f), R(9)} andC(f + g) = C(f) = [R(f + g) =
R(H)IC(f) + [R(f + g) = R(9)|C(g), as desired.

To complete the proof of part b), we may then assume fhat 0 andg 2 0. In

particular, we know thaf (), g(¢) > 0fore = 0, C(f),C(g) > 0, andlim__+ ﬁ:}m —
g(€)

0" Gy T By symmetry, we may assume thatg) < R(f).
Lettinge = [R(f) = R(9)|C(f) + C(g), we have

1 =lim

' f(e)eR(f)_R(g) ' g(e)
(C(f) elifég oD +C(g) lim R

e—0" C(g)e

<0( f)-1- lim fD7E9 4 o(g) 1)

e—0

!
!
*(CUPR() = Rig)) + Clo)) =1

Thus, we have shown thagt+ g ~ ([R(f) = R(9)|C(f) + C(g))e"®. In particular,
f+g e C’. Sincef(e) +g(e) > 0fore = 0, f + g % 0, so by Theorem 7.3a), we
may conclude thaR(f + g) = R(g) = min{R(g), R(f)} andC(f + g) = [R(f) =
R(9)]C(f) +C(g) = [R(f + g) = R(NIC(f) + [R(f + g9) = R(9)]C(9), as desired.

Now consider part c). First, consider the case when 0, so thatR(g) = oo, C(g) =
0, g(e) = 0, for e = 0. Therefore,f(¢) — g(e) = f(¢), for e = 0 and, by Lemma 7.2
a), f—g =~ f. Thus,R(f —g) = R(f) and, sinceC(g) = 0, C(f —g) = C(f) =
C(f) = [R(f) = R(g)|C(g), as desired.

Now assume that £ 0, so thatC'(f), C'(g) > 0. We know thatf (¢) —g(¢) is continuous
for e = 0, since bothf andg are. Therefore, by Theorem 7.3 d), it only remains to cateula
R(f — g) andC(f — g). As in the proof of part b), let = C(f) — [R(f) = R(9)]C(g).
EitherR(f) < R(g), soC(f) > 0, or R(f) = R(g), so thatC(f) > C(g). In both cases,
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¢ > 0 and we may compute

: f(e) . g(e) g
<O(f) ji%i oD +C(g) eli%l+ WGR( ) R(f)>

(C(f) 1+C(g)-1- lim ER@—R(f))

e—0

Ol Ol Ol

Therefore, by Theorem 7.3d),— g € C*, C (f — g) = c = C(f) — [R(f) = R(9)]C(qg),
andR (f — g) = R(f), as desired, completing the proof of part c).

To prove part d), by Lemma 7.2 b), we know that € C, so it remains to show that
fg ~ ce" for appropriately chosenandc. First, consider the case when one of the factors,
say,f ~ 0. Then,C(f) =0, R(f) = oo, andf(e) = 0 for e = 0. Thus,f(e)g(e) = 0 for
e = 0andfg ~ 0. In particular,fg € C*, with C(fg) = 0=0-C(g) = C(f)C(g) and
R(fg) = R(0) =00 =00+ R(g) = R(f) + R(g) as desired.

Now assume that neither factor is 0, so tid&atf),C(g) > 0, R(f),R(g9) < oo,

f(e)g(e) > 0fore =0, andlim__+ ﬁ:f)ﬂﬁ =1=1lim_ -+ W In this case,
lim f(e)g(e) = hm f(e) hm 9(62% =1-1=1
—o" (C(f)C(g))eIHHD 0t C(f)e™D) ot C(g)e™®

Thus, fg ~ (C(f)C(g))e" 9 andfg € C*. Sincefyg 0, the equation§’(fg) =
C(f)C(g)andR(fg) = R(f)+ R(g) then follow directly from Theorem 7.3 a), as desired,
completing the proof of part d).

Now to prove part ), we assume thatt 0 and R(f) > R(g). Thus,C(g) > 0
R(g) < o0, g(e) > 0 for e = 0, andlim C(;’)(%(g) = 1. First, consider the case when

e—0"

f ~0,sothatC(f) =0, R(f) = oo, and f(¢) = 0 for ¢ = 0. Thenfe) = 0fore = 0,

@ =
lim,_+ 29 =0, and? € € with <f> (0) = 0 = [R(f) = R(9)] 2. Moreover,! ~ 0,

f + _ _ W) _ _ _
sothatEeC,Wlth(,‘(;) O—W—C(Q)andR<>—OO—oo—R(g)_
R(f) — R(g), as desired.

Otherwise,f 2 0, so thatC'(f) > 0, R(f) < oo, f(e) > 0for e > 0, and in the limit,
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lim€H0+ % = 1 Then
R(f) R(9)
lim 1(©) = lim f(ER lim )GR lim Cly)e
e—>0+ g(E)) e—>0+ C(f)E &) e—>0+ (g)E (9) e—>0+ g(E)
OO R C(f)
= lim = lim € 9) R(f) = R(g)]|—==
e—>0+ C(Q)ER(g) C(g) e—0 [ (f) (g)] (g)

Thus, setting(g) (0) = [R(f) = R(g)) &L, L e Cl0,], and (5) (€) > 0fore = 0, so
thatg € C\ 0. In addition,
f(e)/g(e))

. . €) .
lim = lim lim
ot C(f)eRD=E9D 10 (g) ot C(f)e"™) o+ g(e)

so that ~ OO in particular,L € ¢* with R <§> = R(f) — R(g), and

C <i) = U] as desiredn
g (9)

Parts b) and d) of Theorem 7.4 generalize to finite sums ardlpts, as follows.

Corollary 7.5. If f, € C",i=1,...,k, then

a) f =30, fi € Chwith R(f) = minyeq {R(f;)} andC (f) = ¥, [R(f) =
R(fIC(f)-

b) f =TI,/ € CT,withR(f) = Dies, IR (f)}andC (f) = Ilics, C (f3)-

Proof. Both parts may be proven by induction. First, consider parfhe case wheh = 1

is trivially true, sincef = f,. Fork > 1, let f = Ziesk,l f; and apply Theorem 7.4 b) to

f and f,, along with the induction hypothesis, to obtain

R(f) = R(?—l—fk):min{R(f),R(fk)}
= win{ min R() R () = min (R(£)

i€SE_1 i€S),

Likewise, by induction hypothesis,

C(f) = C(F+£) =R =REICE) + R = R(£)IC ()
= YR = R(AIR (T = R(S)IC (fi) + [R(f) = R(FIC (f)

€S,
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Now consider any € S, and observe thak (f;) = min;cs, R (f;) = R(f;) =
min;cs, R (f;). Therefore, by the formula foR given above,R(f) = R(fi)) =
R(f;) = R(f),andR(f) = R(f;) = R(f) = R(f). This implies thatR(f) =

) =

R(f;) <= R(f) = R(f) andR(f) = R(f,), sothatR(f) = R(f;) <= R(f
R(f)andR (f) = R(f;). In other words,

[R(f)=R(f)) = [R(f)=R(f) andR (f) = R (f)]
= [R(N=R(N][R() = R(f)]

fori € S;,_,. Therefore,

C(f) = Y[R =RDIR(F=R))IC(f) +[R(f) = R()IC ()

— 'Z [R(f)=R(f)C(f;)+[R(f) = R(fx)IC (fr)
= DR = R(FC ()

as desired.

The proof of part b) is a bit easier. The casetof 1 is trivial. Whenk > 1, define
f= I;es, , f; and apply Theorem 7.4 b) tband f,,, along with the induction hypothesis,
to obtain

R(f) = R(ffk)R(f)+R<fk><Z R(fz)+R f) =S R(f)

1€SL_1 1E€S),

Likewise,

C(f) = C(Fh) =C (N C W) = (s, ,C (F)) C(f) = Wics, C (£)

7.2 Perturbed Matrices

Before defining a PMM (perturbellarkov matrix), we first define simply a "perturbed
matrix”. Notice that Theorem 7.4 implies th@t is closed under addition and multipli-
cation. Thus, we may defineferturbed matrixas a matrix,M/, € Mat (C*), that is, a
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matrix with entries irC*. As we mentioned in section 7.1, by this we mean a matrix with
entries inC*[0, ] which are exponentially convergent (i.e., whose equivedesiass irC
belongs taC™). Denoting the set of, x m perturbed matrices dert(n, m), and the set
of all perturbed matrices blyert, while subtraction and inversion are only defined in very
limited circumstances, we will show thRert is closed under addition and multiplication
(assuming compatible dimensiorfs).

We begin by extending the definitions BfandC to Pert. For any perturbed matrix/,,
we may define the associatessistancematrix, i (M.), whereR (M,), ; = R ((Me)ij).

We likewise define its associatedstmatrix, C' (M, ), whereC' (M,); , = C <( )”> 3
We will say that two perturbed matrice®/, and)M’, areasymptotlcally equand write
M, ~ M iff (M,),; ~ (M’e)ij for all i, j. Notice that, by Theorem 7.3 ¢)/, ~ M’. iff
C (M) =C (M) andR (M,.) = R (M]).
Theorem 7.4 then generalizes as follows.

Theorem 7.6. Assume thad/,, M’, € Pert(n, m), while M, € Pert(m, p).
a) M, + M', € Pert(n,m)

b) C (M, + M), = |R(M,+ M), = R(M,);;| C (M),
+ R (M + 0 ) R(M'), | C (),
D}

¢) R(M.+ M ) —mm{R(]\/[e).

i
d) M_M, € Pert(n,p)
e) C (ME]\Z)” - ZszSm c <M/E)i7k’ ¢ <M> k.j

{R <MJ\7) = R(M);, + R <1\7)M}

.3

f) R <M]\7>j — minges, {R (M), + R (1\7)1”}

In particular, addition and multiplication of perturbed rraces is well-defined on equiva-
lence classes undet.

“Thus, we may also multiply by “scalars” @', since multiplication byf € C* is the same as multiplying
by fI, the diagonal matrix with all diagonal entries equajfto

3In some contexts, this is also known as teenmunicatiomatrix of M.,.
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Proof. Parts a), b), c) and d) follow immediately from the definis@nd parts b) and d) of
Theorem 7.4. To prove part e), apply Corollary 7.5 and Thaofed d):

¢ (ME]\Z)U

—o((win) ) -c (Z o @’“’j)

((Mle)ivk <AZ> k,j)m{R (MJ\Z)M =k <<M€)i’k <AZ> ’w)]

=y oWy, C (M)k] {R (MM) =R(M),, + R (M),w}

Z?]

Elng
Q

Similarly, by Corollary 7.5 and Theorem 7.4 d)

R(MIL) = R ((MM)) =R (Z (M), (M)k)

kes,,

= in K ((M/)zkr (Me) lw')

J— 1 ! M,
B Igg: {R <M e)i,k tR <M€) lw}

7.3 Perturbed Markov Matrices and Stable Distributions

In this section, we formally define what we mean by a “pertdiiddarkov matrix, M., and
all the associated concepts from Part I. That is, we define

e the weighted and unweighted graphs associated Wjth
¢ the additional graphs associated with the “unperturbedfkghamatrix, M,
¢ the stable and stochastically stable distributions/f and

e the collections of rooted, directed spanning subtreescagsa with M, with their
corresponding weight functions.
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The most delicate issue in this section is to prove that thiglsdistribution is sufficiently
well-behaved (i.e., is a perturbed matrix) so that we mag itklimit ase — 0 to even
define its stochastically stable distribution. This wilvaive a careful application of the
Markov Chain Tree Theorem from chapter 6, where we will debioth the “resistance”
and “cost” of a subtree, and restrict attention to minimabledirected, spanning subtrees.

We now define gerturbed Markov matriXPMM) as a perturbed matrik/, such that,
for ¢ = 0, M. is a Markov matrix and is unichain far = 0.* Notice that to say that/.
is Markov is equivalent to saying thad/,),, = 1 — >, (M,),; € C". SinceC" is
not closed under subtraction, in general, this is a somesdiatle assumption. We will
denote the set af x n perturbed Markov matrices BlyMM(n). We define its associated
perturbed graphas a weighted, directed graph, but where the weight on edgghis inC™.
Formally,G (M,) = (V, E,d), so thatl” = {v;, ..., v,}, with (v;,v;) € Eiff (M,),, # 0,
andd (v;,v;) = (M,),,. Notice, in particular, that the graph does not contain gdge; )
iff R (M.);, = oo, corresponding to the intuition that current does not flomtigh a wire
with “infinite” resistance. As before, we will denote the @nkying unweighted graph as
G_ (M,), and its transitive closure b (M,) = (G_ (M.)),. Remember thav;, v;) is
an edge irP (M,) iff there is a walk fromw; to v; in G_ (M1, iff there is a path from, to
v; in G_ (M,). Thus, we may call this the “path” graph of..

As before, we define strongly connected components, cldasses, invariant and tran-
sient sets of indices in terms of the corresponding cobectif vertices inG_ (M,). We
should point out that the unweighted graphs corresponadiig, tfor eache - 0 (which we
would also denote byr_ (M,)), are all the same (by definition &f*[0, ¥]) and equal to
G_ (M,).> That is, although we could interpret the notati@n (1Z,) in two ways, either
interpretation leads to exactly the same unweighted grdpis, for example, the closed
classes of the perturbed matrix are just the same as thase bfdrkov matrix at any fixed,
sufficiently smalle.

Moreover, we define the associatedperturbedgraph,G, (M,) = G(M,), i.e., the
Markov graph on the (unperturbed) Markov matrix,.° Notice that, since - 0" = ¢ > 0
iff = 0 (andc > 0), G, (M,) may also be thought of as the “zero-resistance” subgraph

“This generalizes the usual definition of a perturbed Markatrix, which requires that/, be irreducible.
®In fact, this is the main reason why we define perturbed neatiic terms of* [0, ).

6Although this notation conflicts somewhat with that givendadirected graphs introduced in section 1.1,
the meaning is clear from the context.



113

of G (M,), thatis, the weighted directed subgraptCof)/,) containing all edgesy;, v;),
with R (d (v;, v;)) = 0 and edge weights given iy (d (v;, v;)).

Let stab (M,) denote the unique stable distribution &f for ¢ > 0 given by Corol-
lary 5.157 Using the notation of Theorem 6.18ab (M,) = vy, fore = 0. We will
show thatstab (M,) may be defined at = 0 so that its entries are all i6". In par-
ticular, ssd (M,) = lim__,+ stab (M,) exists. We call this limit thestochastically stable
distribution of M,. The set of indices;, for whichssd (M,), > 0, or equivalently, for
which stab (M,), = 0, are called thestochastically stable statesf M., and we define
sss (M) = {i | ssd (M,), > 0}.

To prove this, we will need to extend the notation of chapterSnceG (M,) has
weights inC*, we have three notions of the total weight of a directed sabtFor any
directed spanning tree rootediatorresponding ta@ ¢ T, the total weight ofr in A7,
may be defined, just as in chapter 6 JES M., o) = 11, (Me)a(j)’j. By Corollary 7.5b),
W (M., o) € C*. Thus, we may also define thiesistance ofr in M, asR (M., o) =
R (W (M., o)). Similarly, we define theost ofo in M, asC (M,,0) = C (W (M, 0)).
By Corollary 7.5 b), the resistance and cost of the tresatisfy the following equations:

R(M0) = R(W(M,0) =R (T (M),,) = 3R ((M),,) (7D
i
C(M0) = C(W (M) = C (T (M), ) = s (Mo)5,) (7:2)
In particular, sincer € T, o (j) # j for j # 4, so thatR (M., o) andC (M,, o) do not
depend on the diagonal entries entries\ff

Notice that, ifG_(o) is not a subgraph of/_ (1/,), it does not contain some edge,
(va(j), vj), SO that(Me)U(j)J ~ (. In terms of the resistance, the resistance of such an edge
iS 0o, so that the sumR (M., o) = oco. Conversely, if the sum is infinite, the resistance
of some edge is infinite, implying th&t_ (o) is not a subgraph of/_ (M, ). Likewise,
C (M., o) = 0iff G_(0) is not a subgraph of7_ (M,). Thus, corresponding to Equa-
tion 6.3, we may enumerate the set of directed spanningessbfG_ (), ), rooted at,
by

T (M., i) = {a eT,| R(M,o) < oo} = {J eT,|C(M,o)> O}
Also, letT (M,) = U,;.q T (M., 7).

i€S,,

"This is a slight abuse of notation, since, up to this paitith would have referred to the singleton set
containing the stable distribution.
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We now prove the statement above regarditid (1/,). Moreover, we give formu-
las for its resistance and cost in terms of the resistancecasidof the directed spanning
subtrees ot7_ (M,).

Theorem 7.7.1f M, € PMM(n), if we define

r; = min R(M,o0),
oc€T(M,,i)
r = min R(M,o0),
oc€T(M,)
T(M.i) = {c€T;|R(M.,o)=r;},and
T(M,) = {c€T;|i€S, R(M.,o)=r}

then
a) r; = min,z R (M, o) andr = min, r;,

b) there exists a perturbed column vectamb (M,) € Pert(n, 1), which, for each
e > 0, is the unique stable distribution af,

c) R (stab(M,)), =r; —r, and

ZaeT(ME,i) C(M,,0o)

d) C (stab(M,)), = S roe, O0T)

Proof. Using the notation of Theorem 6.18, fix a perturbed Markowixai/..
Proof of part a): Sincé (M., o) = oo, foranye € T, \ T (M,, i), we have

r,= min R(M,oc)=minR(M.,o0).
€T (M) o€T;

Moreover, sincd’ (M,) = J, T (M., 1),

r= min R(M,c)=min min R (M, 0)=minr,
oc€T(M,) . o€T (M) i

Proof of part b): Now abbreviate,;, asw, and set, = Jw.,.

Fore - 0, by Theorem 6.18, we haweab (M.) = vy, = %= for eache - 0. It remains
to show that we may extend this at 0 to a vectoPint(n,1). We first show thatv, €
Pert(n, 1).
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By Equation 6.4(w.); = >_,cror o W (M, o). Therefore, by Corollary 7.5u,); € c*
and

R ((w.);) R( Z W(M€,0)> = min R(M.,o)=r,
)

o€T(M,,i)
o€T(M,,i

In particular, by Corollary 7.5 a), we have that

KG:Z( => Y W = Y W(M,o)ecC"

i oceT(M,_i o€T(M.)
and
(K,) e;“ o) | = min R(M.o)=r

Since M, is unichain, K, > 0 for ¢ > 0, so thatr < oco. Moreover, since: < r,,
Theorem 7.4 e) implies thatab (M,) = Z= € Pert(n, 1).

Proof of part c): Theorem 7.4 e) also says that

R (stab (M.),) = R ((%)) = R((w.),) — R(K)=r—r

€

Proof of part d): Likewise, by Corollary 7.5 a),

C((w6>z> = C( Z W(Me70)) = Z [Ti :R(Me70)]C(Meva>
oceT(

M. i) o€T (M, i)
= Z C (M, o
o€T(M,,i)
Likewise,
C(K) = C| Y W(M.o)|= > [r=R(M,0)C(M.,0)
o€T(M,) o€T(M,)
= Z C (M., o)
o€T(M,)

= L C(M,,o
Thus, by Theorem 7.4 efj} (stab (M, ),) = g((}‘;)) = ZZG(,GETT((N;’;)C(LHU))'
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O

Example 7.8.To illustrate the ideas of Theorem 7.7, consider

2

l—e—c¢ € €
2 3
M, = € 1l—¢e—ce¢ €
2 2 3
€ € l—€e—c¢
then
2
—€—¢€ € €
2 3
A=M —1= € —€—¢€ €
2 2 3
€ € —€— €

By Theorem 6.17, we may compute, ), in two ways. Using the adjoint formula:

2 3
—€—¢ €
(we), = (—1)3*1W€ME = det ) s | = e+ +e
€ —€—¢€

Alternatively, we may sum over € T,. Remember from Figure 6.3 that there are three
such mapping2 — 1,3 —1;2+— 1,3 — 2;and2 — 3,3 — 1.

(we), = Z (M,,0) = Z HMU(p),P

o€l oeT, p#1

= (M)12(M)1s + (Mc)12(Me)ag + (M) 3o (M, )13 = E4etté

Thus,r, = 2, so that only the first mapping is ifi(M,, 1) and contributes to the sums in
C (stab (M,)),.

Likewise, (w,), = € + 2¢* and (w,), = € + 2¢°, so thatr, = r; = 2, andr = 2.
The mappings ifl'(M,) correspond to the’ terms inw,, which in turn correspond to the
directed spanning trees with minimum resistance. Speltjfia().,) is given by the three
mappings:2 — 1,3 +— 1;3 +— 1,1 — 2; and2 — 1,1 — 3. Thus, it is easy to see that

C (stab (M,)), = s forall i. O

1
3
As we have seen in section 5.3, indices correspond to stateMiarkov process. The
collection of indices;j € S, such thatR (stab (),)), = 0. are thus called thstochasti-
cally stablestates of\/,.. These are precisely the indices for which the stochabtistdble
distribution, v, (M,), has a non-zero component. As we will see in chapter 8, aggist
may sometimes be interpreted as a “potential energy”. T8tashastically stable states are
then “minimal energy” states, which correspond to “stalequilibria in physical system.
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7.4 Equivalence of PMMs and Scaling

Since we are primarily focused, at present, on computingtihehastically stable distribu-
tion (SSD) of a PMM, we introduce an equivalence relation b3 for which the SSD is
invariant. Likewise, we generalize the notion abaequivalence from chapter 5 to PMMs,
where D may itself be a perturbed matrix. As in the non-perturbee casch an equiva-
lence will allow us to determine the SSD of a PMM from the SS@mwD_-equivalent one.
Specifically, we will

¢ define an equivalence relation on PMMs (“stochastic” edaivee) and show that
equivalent PMMs have equal SSDs,

e observe that asymptotically equal PMMs are stochastiegjlyivalent,

e generalize the scaling construction from chapter 5 in twbeamaspecific settings
(“uniform” and “non-uniform” scaling), which will be crual to our main algorithm
in section 7.7,

e prove that these two constructions lead to stochasticgliyvalent orD -equivalent
results, respectively, and

e show these two constructions always guarantee “progresstii algorithm to a so-
lution.

Because scaling is defined in terms of subtraction and divigihese results are rather
delicate, since these operations are not generally defineel-t.

To begin, we say that two perturbed Markov matrices are sistatally equivalent if
they have asymptotically equal stable distributions. &besthis formally,

Definition 7.9. Two perturbed Markov matriced/, and )M, are stochastically equivalent
denoted by\l, ~ M., iff stab (M,) ~ stab (Me/)

For example, we can show that asymptotically equal PMMs taighastically equiva-
lent.

Theorem 7.10.1f M, ~ M!, thenM, ~ M.
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Proof. This follows from Theorem 7.7, Equations 7.1 and 7.2, andofém® 7.3. Specifi-
cally, for M_, M, € Pert(n), to show thatV/, ~ M., by Theorem 7.3, we must show that
R (stab (M,)), = R (stab (M/)). andC (stab (M,)), = C (stab (1)) fori € S,. By
Theorem 7.7, since; andr can be defined with respect 19, it suffices to show that for
allo € T;,, R(M.,0) = R(M/,0) andC (M,,0) = C (M/,0). By Equations 7.1 and
7.2 the resistance and cost of a tree depend only on theareseséind cost matrices. But,
again by Theorem 7.3, sincd, ~ M/, R (M,) = R (M) andC (M,) = C (M/), so that
R(M,,0) =R (M, 0)andC (M, o) =C (M, o) forallo.O

Notice that the resistance and cost vectors of the stabtabdison, and hence the
stochastically stable distribution, are invariant undeckastic equivalence.

Theorem 7.11.GivenM,, M. € PMM(n), if M, ~ M, then
a) R (stab(M,)) = R (stab (M/)),
b) C (stab (M,)) = C (stab (M/)), and
c) ssd (M,) = ssd (M),
Proof. Parts a) and b) follow by Theorem 7.3. Theorem 7.4 a) giveisg)an

When a uniform scaling of a PMM\/,, by f € C" yields another PMMJ//, they are
stochastically equivalent. That is, we have an analog ofrharf.3 for PMMs.

Theorem 7.12.Givenf € C* \ 0 and M, € PMM(n), such that
a) R(f) < R(M,),;foralli=#j,

b) (M.),;+ f(e) —1eC",and

0 R(f) <R ()—1>forallj,
if we definell; = 7 (M, — I) + I, thenM; € PMM(n) and M, ~ M.

Proof. The proof is similar to that of Lemma 5.3. The real work is iying that)! €
PMM(n). Sincef % 0 andR(f) < R (M,), ;, we have, by Theorem 7.4 ), th@tfy), . €
C* forall i # j. Moreover,f(e) > 0, JA. = ﬁJAE = 0 for € = 0, and by continuity,
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also ate = 0. Thus,(Me’)M =1-3 (Me’)m., for all j € S, ande = 0. Moreover, by
Theorem 7.4 e)(Mé)jyj = % eC’. Thus,(Me’)m. cCct

It is now easy to show that/, ~ M. Sincef # 0, f(¢) > 0, AL = %Ae, and
ker A, = ker A, so thatstab (M, ) = stab (M) for e - 0. In particular, by Lemma 7.2 a),

stab (M,) ~ stab (M/), so thatM, ~ M/. O

In particular, when computing an SSD, we can always assuatgthl/, ). . = 0, for

J:J

all j.

Corollary 7.13. Given M, € PMM(n), if we defineM =
PMM(n), M, ~ M/, and R (Me’)jj =0, forallj € S,.

(M, — 1)+ I, thenM, €

L
2

Proof. While we could prove this directly fairly easily, we will itesad appeal to Theo-
rem 7.12 withf(e) = 2 % 0. As are all positive, constant functiong,c C+, and by
Theorem 7.4a)C'(f) = f(0) = 2 andR(f) = 0. Thus, it only remains to observe
that, by Theorem 7.4 b\M.,),. + f(e) =1 = (M,),, +1 € C". SinceR(f) = 0,
the remaining two conditions of the theorem follow immeeigt Thus, by Theorem 7.12,
M =3 (M.=T)+1 = 3(M.~I)+1 = §(M.+1) € PMM(n), and M, ~ M.
Moreover, by parts b) and e) of Theorem 7M(Me’)j’j =0,forallj € S,.O

We also should generalize the notion Bfequivalence from section 5.1 to apply to
PMMs.

Definition 7.14. For D, € Pert(n,m), M, € PMM(n), and M, € PMM(m), we will
say thatM is D.-equivalentto M., and writeM] ~p, M., iff M, ~p_ M, for e > 0 and
R (|D.stab (M)],) = 0.

We then have the following analog to Lemma 5.2.
Theorem 7.15.1f M, ~p_ M/, thenDy ssd (M) o ssd (M,).

Proof. Since M, ~p_ M., stab(M,), D, stab (M) € kerA.. However, sincel/, is
unichain, fore > 0, dimker A, = 1, so thatstab (M,) o D, stab ()/). In other words,
f(€) stab (M,) = D, stab (M/) for some function/. Since

f(e) = f(e)J stab (M,) = JD,stab (M!) = || D, stab (M)

v
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we have, by Theorem 7.6 d) thats in Pert(1,1),i.e.,f € C*. By assumptionR (f(e)) =
0, soC(f)ssd (M,) = Dyssd (M), by Theorem 7.4a). In particulaf),ssd (M) o
ssd (M,). O

Our algorithm in section 7.7 requires that, if it is not uragh ), should possess at
least one non-trivial (i.e., containing more than one el@neommunicating class, which
is not always the case for an arbitrary perturbed Markov imatt,. However, in this case
we may transforml/, to a closely related perturbed Markov matrix.

Lemma 7.16. Given M, € PMM(n), such that all communicating classes &, are
singletons, define = min g7 min;,; R (M,), ;, whereT is the set of transient states of
M,. Likewise, letc = 2max;qr ZS:R(ME)I_J C (M), ;- If M, possesses more than one
closed class, thefr < s < co andc > 0. In addition, definingf (¢) = ce” and

0 ifi#£j
(i);; =4 fle) ifi=jandjeT
1 otherwise

theni. € Pert(n) and, using the notation of chapter 5/, = (M,), € PMM(n) and
M, ~; M., fore = 0. Moreover,f satisfies the assumptions of Lemma 7.12 with respect
to M., sothatM; = ; (M, — I) + I isi-equivalent taV/,.

Proof. We first show thad < s < oo. Notice that since all communicating classes are
singletons, € 7 iff 1 > (Mo)j,j. By Theorem 7.4 a), this is equivalent to

0 < 1= (M), = lim (1— (Me)w) — lirtr)LZ(Me)i,j
o TV iy
= Z 11111 (Me)z‘,j = Z[R(Me)z,] - O]C(Me>z,j

i#j 0 i#]
By definition, s is the minimum resistance of the outgoing edges (excludatfg@ops) of
the closed classes dff,, i.e., indices; ¢ 7. For suchj and all: # j, we must have
[R(M,); ; = 0]C(M,),; ; = 0. This implies thatR(M.), ; > 0 fori # j, so that) < s.

By Theorem 1.5, each closed class/verteX/fyfis contained in the closed class/af.
Thus, if M, possesses at least two closed classes, since both botlesexte in the closed
class of M., there are paths i/ (M,) between them. In particular, there are outgoing
edges inG_ (M,) from them, so that < co.
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Likewise, sinces is a minimum, there exists some# j ¢ 7, such that = R (M,), ;.
Sinces < oo, we must then havé' (M, ), ; > 0, as well. Thus,

c=2 rﬁza?gc Z) ) C (M), ;

Now observe that the entries@fare either non-negative constantsf¢¢), all of which
are functions irC", so thati, € Pert(n). Moreover, fore > 0, f(¢) > 0, so that) < (4e)
for j € S,. We now show that, foy € S, ande > 0, (i), ; <1 - (Me)jyj) < 1, so that,
for e - 0, Lemma 5.3 implies that/, = (M,), is Markov (by continuity,}/,, is Markov,
as well) andM, ~; M.. Since(M,);; > 0, (ic);; (1 - (Me)j,j) < (i);,;- But either
(ic);; = 1 or sinceR(f) = s > 0, Theorem 7.4a) implies that.), ; = f(e) < 1 for
e > 0.

Since, fore > 0, we are only multiplying some off-diagonal entries by theta@ro
number, f(e), G_ (M,) is the same a&'_ (1M,), except for possible differences is their
self-loops. In particular, sinc&/, is unichain, so is\/.. More generally, since we are only
multiplying some off-diagonal entries byec C*, (M), € C*fori # j.

To show that)/, € Pert(n), since(ﬁe)m = (M,),, € C" for j ¢ T, it only remains
to verify that(Me)j,j € C*forj € 7. Inthis case, sincéﬁe)j,j = f(e) (M), ;+1—f(e),
by parts b) and d) of Theorem 7.4, it suffices to show that f(¢) € C*. SinceR(f) =
s > 0 = R(1), we may apply Theorem 7.4c) to conclude that f(¢) € C". Thus,

M, € Pert(n).

Next, we verify thatf satisfies the assumptions of Lemma 7.12 with respedt/to
Starting with a), notice that, for # j, (M ) either equalsf(e) (M.,), ;, if j € T, or
(M,), ;,if j & T. Inthe former caseR(f) < R (M., ) , by Theorem 7. 4d) In the latter,
the inequality follows by construction, sind®(f) = s < R(M ) for all i« # j and
j € T. Thus, we have verified assumption a) of Theorem 7.12.

Now observe that, by Theorem 7.4 d);j i€ 7, (Me>j7j+f(€)_1 = f(e)(M,);; eC”
andR(f) < R <f(e) (ME)jJ). Thus, assumptions b) and c) are satisfied, in this case. On
the other hand, if & 7, (11,) + () 1= (M), -+ f(e)—1 = f() = [, (M), ]

We will again want to apply Theorem 7.4 c) to show that thia 8, as well, with resis-
tance no less thaR(f) = s. There are two cases to consider. For a given7, if there is

somei # jsuchtha?(f) =s=R (Me)m., thenR (Zi# (Me)m.) = min, 4; R(Me)m. =
s = R(f). In this case(C (Zz’yﬁj (Me)”> = Zz‘;éj[s = R(Me)i,j]O(Me)z‘,j =S5 =



122

R(f) < 5 < c¢ = C(f). Otherwise,R(f) = s < R(M.),; for all i # j, so that
R <Z#j (Me)m.> = min,; R (M), ; > R(f). In either case, the conditions of Theo-

rem 7.4 c) are satisfied, so théte) — [Z#j (Me)m.] € C* with resistanceR(f). Thus,
we have verified assumptions b) and c) of Theorem 7.12.

We now show thal/. is i_-equivalent to)/,.. Since we already know that/, ~; M,
for e > 0, it only remains to show thak (||i. stab (M/)||,) = 0. As in the proof of
Theorem 7.15, we havg(e) stab (M,) = i.stab (M,) for someg € C™, specifically,
g(e) = Ji.stab (M) = ||i. stab (M) ||,. Thus, we must show thdt(g) = 0.

In particular, since(i, stab (Mé))j = (stab (Mé))j for j ¢ T, it suffices to show that
sss (M!) N'T # 0. In this case,

l(i)an gle) > l(i){rn (z’e stab (Mé))] = l(i)an (stab (Mé))j = (ssd (Me'))j >0
for j € sss (Mé) N7, so thatR(g) = 0.

To see this, le{Cy,...,C,,} be the closed classes 6f (1/,), so thatT = Uiz, G
Likewise, let{C],...,C/ /} be the closed classes 6f (M;). By Theorems 5.17 and
Corollary 5.15,sss (M) = ., C; for someJ’ C {1,...,m'}. Now observe that
G_ (M,) € G_ (M), so that, by Theorem 1.5, for every< j' < m/, thereisl < j <m
so thatC; N C; # 0. In particular, forany’ € 7', 0 # C, NUjL, C; Csss (M) N T O

By repeatedly applying Lemma 7.16, we may then guaranteéithalways possesses
a non-trivial communicating class.

Corollary 7.17. GivenM, € PMM(n), if M, possesses more than one closed class, there
exists a diagonal, € Pert(n) andM, € PMM(n) such thatM, ~; M andM; possesses

7

a non-trivial communicating class av/; is unichain.

Proof. If M, possesses a non-trivial communicating class, then we mkay ta- /. Oth-
erwise, if M, possesses more than one closed class, we may apply Lemmi Digin
ani_-equivalent perturbed Markov matrig/!, so thatG _ (M{)) D G_ (M,) is a strictly
larger graph. We may repeat this construction until eithigmpossesses a non-trivial com-
municating class ok/; possesses only one closed class. This is guaranteed toéterby
the timeG_ (M) is complete, if not sooner:
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7.5 Equivalence of PMMs and the MCCT

Our algorithm in section 7.7 will consist of alternately §ppg the scaling construction
from Lemma 7.16 and the reduce construction of Theorem ®femlized to PMMs.
However, since reduction involves matrix inversion, welwiant to choose the sets of
indices to eliminate, so that we will only need to invezal-valued (i.e., zero-resistance)
matrices, so that the required calculations are tractdblehis section, we appeal to the
Markov Chain Tree Theorem to show how this is always possiBleecifically, we will
show that

e given anM, € PMM(n), we may find a stochastically equivalent one for which the
off-diagonal zero-resistance terms are actually constant

e we may also find a stochastically equivalent one for whicledfies within an SCC
(excluding self-loops) are constant; and

e We may construct a stochastically equivalent one whicheémh non-zero resistance
path fromo, to v; in G (M, ), contains a edge fromy to v; with the same resistance.

We begin by highlighting an important consequence of Theore7, that the stochas-
tic equivalence class of a PMM depends only on its entriesaoed in some minimal
resistance spanning subtree.

Theorem 7.18.GivenM,, M. € PMM(n), if
a) T(M.,i)=T(M.,i),

b) R(M,),. =R (M

é)o‘(j),j ,Vj 7& i? g e T(Mea Z)

o(4),d
for everyl < i < n,thenR (stab (M,)) = R (stab (M/)). If we also have

) O (M), =C (M;)UW Ni#o(j),0 €T (M.,i),V1<i<n,
thenM, ~ M.

Proof. Consider)M, and M. satisfying conditions a) and b) and define

T;

(Mi) =T (M.,i) andT = | ] T,

1<i<n
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Condition a) then implies that

R(M,o)=> R(M),;, => R(M = R (M, 0)

JFi J#i

onT.

Now observe that, for any € 7, C T, using the notation of Theorem 7.7, we have
r; = R(M,,0) = R(M/,0) = r;. By Theorem 7.7a); = min;r; = min;r; = r, as
well. Theorem 7.7 ) then give (stab (M,)) = R (stab (M})).

We now show thal'(M,) = {a eT | R(M,,0) = 7‘}. The reverse inclusion is imme-
diate. Ifo’ € {o— eT|R(M.,o)= r}, theno’ € T, c T, for somei andR (M., 0") =
r. In particular,c’ € T(M,). Conversely, ife’ € T(M,), ' € T, for somei and
R (M.,0") = r. By Theorem 7.7a); = min, 5 R(M, o) < r. Theorem 7.7 a) also
says that = min,r; < r;, so thatR (M,,o') = r = r; ando’ € T, C T. Therefore,
o' € {0 eT|R(M,o)= 7‘}, which implies that

T(M,) = {O’ eT|R(M., o) :T} = {O’ eT| R(M o) = r} =T(M)).
If condition c) holds, as welly' (M,, o) = C (M, o) forall o € T, and

Zaeﬂ C (M., o) - Zae’fi c (Me/a 0) B /
C (stab (M,)), = S v, C O o) = Zo—ef(ME/) o) C (stab (M7)), .

Thus, by Theorem 7.3 cjtab (M,) ~ stab (M/). In particular, by Definition 7.9), ~
M!..O

Using Theorem 7.18, we may give an alternate proof of Canplfal 3.

Proof. ConsiderM; = 31+ 3M,. NowR (M.,), , = R (Me’)m. andC (M,), ; = C (M, )”
for i # j, since they only differ in their diagonal entries. Since arsgng tree does
not contain self-loopsRk (M!,0) = R(M,, o) forall ¢ € T; andi. In particular,r; =
min, .z R (M/,0) = min,.z R (M, 0) =r; andT (M(,i) = T (M., 1), for alli. Thus,
Theorem 7.18 implies thalt/, ~ M.. O

Corollary 7.19. For any M. € PMM(n) with R (M,), ;

= 0 for all 4, there is anM, ¢
PMM(n), such thatM, ~ M, and (ME’)”. =C (ME’) R(M:)

i, fori #£ j.
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Proof. SettingR = R (M,) andC = C (M,), define

1= 3 Chye™ if i =
C; et otherwise

where, by conventior)e™ = 0. Fori # j, Theorem 7.3 implies tha(tMé)Z.j € C* with
R (Me’)m. = R, ;andC (Me’)m. = C, ;. Inparticular, by Theorem 7.4 a()M{))Z,’j = (Mp),
fori # j.

On the diagonal, using the fact thadl! = J = JM,

i#] Gl

M)
sinceR (M,),; = 0. This insures thafM;) . > 0 fore > 0, with lim__+ % =1,s0
that (A/;),, € C*. Thus,M! € PMM(n). Moreover, sincg M) . = (M), ;, we must
have R (Me’)j’j = R(M,),;, andC (ME’)M = C(M.,),, for all j, as well. Therefore, by

Theorem 7.3c), ~ M!. O

Notice that this means that, if we are only interested in aating stochastically sta-
ble distributions, we may represent a perturbed Markov imatmply by the twon x n
matricesC' (M.) and R (M, ), and we may assume that(}, ), ; = 0, for all .

Example 7.20.We may briefly illustrate the constructions of Corollarie$¥and 7.19 as
follows:

N —

N —
wle o=

N[

N

As we have seen in chapter 1, the self-loops of a Markov matay be adjusted to
a certain degree without significantly affecting its dynesniSimilarly, we may specify a
perturbed Markov matrix, with O-resistance diagonal eletsésuch as in Corollary 7.19),
by simply specifying its off-diagonal elements, so longlasitcolumn sums, when= 0,
are all strictly less than 1.
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Lemma 7.21.1f M, € Mat,, (C*) with }>, . (M), ; < 1for1 < j <nandG_ (M,)is
unichain fore > 0, then there is a uniqelM! € PMM(n), such that(Me’)ij = (M.),,
forl1 <i+#j <n.

Proof. Forl < i # j < n, let (Me’)m. = (M,), ; and (Me’)j’j =1-3,., (M), for

1 < j <n,asrequired. Letting; =1— >, (M), ; > 0, by continuity,> ., (M), ; <

1— %, sothat(M/). . > 3 > 0fore = 0. Therefore, (M), . € C* andR (M]). . = 0.
753 753 753

Likewise, sinc& M), . = 1=, (My), ; > 0, R(M,); ; = Oforall j. In particular, since

R (Me’)ij = R(M.,),; fori # j, R(M;) = R(M.). SinceG_ (M,) andG_ (M) contain

an edge(v;, v;) iff R(M,),;, = R (Me’)ji < o0, they have the same unweighted graphs.

SinceG_ (M, ) is unichain fore > 0, G_ (M) is as well. In particular)!; € PMM(n). O

Given a PMM, M., and a communicating class 8f,, s, the following Lemma shows
that we may assume th@at/, ), . is constant off the diagonal.

S

Lemma 7.22.

If M. € PMM(n) with R (M,),; = 0 for all 4, ands is contained in a communicating
class ofM,, there is anVI. € PMM(n) such thatV/! ~ M, and, fori # j,

(My),; ifi,j€s
(M,),; otherwise

Proof. We proceed by induction on the number of paiis,q) € s x s such that0 <
R(M,),, < oo. In this case, we defindf; = M, — (M.), (e,e; —eqe,). Since
R(M.),, # 0,p # ¢, M_is just M, with the (p, ¢)-entry removed. Moreovet; (M)
is G (M,) with edge, (v, v,), removed. However, singe g € s, (v,,v,) € P (M) C
P (M/), andP (M) = P (M,). In particular, M, is unichain. Since(Me’)p’q = 0 and
(M), = (M), , + (M), , € CT, M; € PMM(n).

By Theorem 7.18, to show that ~ M., it suffices to verify that edgév,, v,) is not
part of any minimal resistance spanning treeMdf. Specifically, ifoc € T (M., k) is a
spanning subtree rooted fatontaining this edge (i.es(q) = p), then the resistance of
is not minimal (i.e.o & T (M., k)). Therefore, assume we are givere T (M., k) with

o(q) = p and consider the associated directed spanningTree,

8Up to equality inMat,, (C).
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Let {s',...,s™} be the strongly connected component&ifif,). As in the proof of
Lemma 6.16, we may re-index the matrix so that the index spording to any non-root
vertex is greater than that of its parentZini.e., so that'(j) < j for j # k, andk = 1. By
re-indexing again, we may further assume that s? < min s" = ¢ < r. In particular, we
must havel € s'.

We may now proceed by induction to construct a new directedrsipg tree7” corre-
sponding to a regular mapping, such thatk (M.,7) < R (M., o). Specifically, we will
construct a spanning tree rootedlatvhich only contains O-resistance edges within each
s?. Moreover, there will be at most one edgeZibetween distinct communicating classes,
ie., Vg > 1,3j, € s"s.t. 7(j,) = o(j,) € s* andu < ¢. Intuitively, we will choose
edges of7 to build a directed tree on the communicating classes (gpedy j,), which
will serve to link a set of O-resistance spanning trees sippgneach class into an directed
tree rooted at.

Sinces' is a strongly connected component®f M/,), by Theorem 6.5, it contains
an directed tree rooted af consisting entirely of O-resistance edges spanairig/,) | 1,
which definesz(q) for ¢ € s'. For anyl < r < m, assume that we have definedver
U;;} s? and a sequencg € s? such thav'l < g < r,5(j,) = o(j,) € s* for someu < q.

It suffices to show that we may exteido s” and defing, € s" sothaz(j,) = o(j,) € s*
for someu < r.

Let j, = mins". Sinceo(j,) < r,if 0(j,) € s*, mins" < j, = mins", so thatu < r.
As before, Theorem 6.5 guarantees the existence of a diréee rooted ajf, spanning
G (M,) |g. This definess on s — {j,} and we take(j.) = o(j,.). By induction, we
eventually obtain a subgraph 6f(1/,) consisting ofn — 1 edges which contains a path
from each vertex of~ (M,) to 1, which is thus a directed spanning tree rooted at 1.

SinceT only contains edges df, plus edges with resistance 0, and we know it does
not include the edge fromto p, R (7, M,) < R(M.0) — R(M,),, < R(M0). In
particular,s did not have minimal resistance, the edge frptap is not part of any minimal
spanning tree o/, andT (M., k) = T (M, k) for arbitraryk.

Since all other off-diagonal entries @f. and A/ agree, all necessary entries of the
resistance and cost matrices agree. In particular, The@r&timplies thathV! ~ M..
By repeating this construction sufficiently many times, weain M. ~ M, such that
R (Mé)m. =0 oroofori # j € s. By applying Corollary 7.19, we obtain a ne\ ~ M,
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such that(Mf)), . = C (M,),, = (M), ;fori # j € 5. O

irj
To illustrate, in Example 7.8, we may drop th& 2)— and (2, 3)—entries (adjusting the
diagonal entries accordingly) without changing its statitally stable distribution. We
saw explicitly that these entries are not in any of the minirasistance spanning trees.

7.6 Reduction of PMMs

We now wish to generalize the reduce construction of chdpserthat we may apply it to
a perturbed Markov matrix. Since the definition of the redurgtgiven in Theorem 5.6,
was originally stated in terms of matrix inverses and suliva (which are problematic
in the class of perturbed matrices), it is not obvious thatrésult is a perturbed Markov
matrix. As with scaling, this will require careful analysifss mentioned in section 7.5,
our algorithm in section 7.7 is guided by the need to elingrssts of indices which only
require the inversion akal-valued (i.e., zero-resistance) matrices. Thus, our taions
will be guided by the zero-resistance subgragh,(M,) of G_ (M,).
Specifically, in this section we will:

e show that ifs C S, is open with respect td/,, it is also open with respect to
M, € PMM(n);

e generalize Theorem 4.4 to PMMs, proving tl'(dt— (Me)s,s) € Pert(|s]) for

M, € PMM(n) ands C S,, open, giving formulas for its resistance and cost matrices

in terms of minimum resistance walks (cf. Theorems 5.8 aii§i 7.

e show that if we apply the reduce construction toldp e PMM(n) for € > 0, with
respect to a fixed open set of indiceswe obtain an\, € PMM(|3]);

e derive formulas for the resistance and cost matrices ofa@tiaation in terms of the
resistance and cost matricesMdf, which shows that reduction preserves asymptotic
equality;

e generalize Theorem 5.12 to PMMs;

e show that reduction preserves stochastic equivalence dignd
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e show that for the purposes of computisgl (1,), we may compute the reduction
while only inverting a constant matrix.

As mentioned above, we will want to apply the reduce constyado sets of indices
which are open with respect to the (unweighted) zero-r@stst subgraphG;_ (M,). We
must first verify that this is feasible.

Lemma 7.23.Let M, be ann x n perturbed Markov matrix. I§ C .S,, is open with respect
to M,, itis open with respect td/..

Proof. By Lemma 4.4b), sincea C S, is open with respect td/,, I — (M,),, =
7, (I — M), is invertible. Thus|z, (I — M,) | # 0, so that|z, (I — M,),| # 0 for

e = 0. Thus, by the contrapositive of Lemma 4.4¢€)_ S, must be open with respect to
M, for e > 0, or equivalently, with respect tb/, as a perturbed matrixi

Lemma 7.23 implies that, far > 0, we may apply our reduction construction to any
perturbed Markov matrix)/,, to eliminate any set of states,which are open with respect
to the unperturbed matrix/,. We now show that the result is a perturbed Markov matrix.

The difficulty is that, in general, we cannot invert a peradhmatrix, since this might
involve subtraction or division. However, in this specifase, we may express the inverse
in terms of multiplication and addition alone. To do so, wél weed to generalize some
more notation, this time from section 5.2.

First, observe that fol/, € PMM(n), G_ (M,
s C Sy, Pa(s,4,7,1) C S, (k) is a fixed subset, independentofFor anyo € S, (k),
corresponding to a walk of length in G (M,), we will define its weight inG (M,),

W (M., o) = I, ((Me)amt_l). Notice that this is simply (the equivalence class of)
the function, which at = 0 is given by the weight of in M..

) is constant fore > 0. Thus, for

By Corollary 7.5b),WW (M,,o) € C*. Thus, we may also define thresistance of
oin M, asR(M,,0) = R(W(M,o)). Similarly, we define theost ofo in M, as
C(M,,o0)=C(W(M,o)). By Corollary 7.5 b), the resistance and cost of the walk,
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satisfy the following equations:

R(M.,o) = R(W (M.o0o))
= R(Wes, (M, ) =D R(M,0, ) (73)
teS
C(M,0) = C(W(M,0)
= C (T, ((MJ%%)):Hteskc(we)at,at,l) (7.4)

Notice that although this notation exactly mirrors the cateno represents a spanning
tree, the meaning will be clear from the context, dependihgtivers represents a tree or
a walk.

Just as the stochastically stable distribution is defingdnms of minimum resistance
spanning trees, the reduction is defined in terms of minimesistancevalks However,
since the collection of walks is infinite, we must argue thathsa collection of minimum
resistance walks is well-defined.

Lemma 7.24.For any M, € PMM(n), s C S,,, andi, j € S,,,

r= min R(M,o)= min R(M.,o0)

c€S,,(8,i,7) UEPME (8,%,7)

exists. In additionP,, (s,i,j) # 0 iff r < oo iff

Pu (s,i,j) ={0€S,(s,i,7) | R(M.,0) =r} C Pu (5,1,7).
Proof. If Py, (s,i,5) = 0, thenR (M,,0) = oo for all o € S, (s,4,7). In this case,
Mil,es (5.5 1 (M., 0) = oo and we seﬁMe (s,1,7) = 0, consistent with our convention
thatmin () = oo.

Otherwise, assume th@,, (s,i,j) # 0, and definer;, = min,cs (50 R (M., 0).
This is a finite set, so the minimum is well-defined. Moreobgrthe “pigeon hole” princi-
ple, any walk of length greater thanmust visit at least one vertex more than once. Thus,
such walks must contain a cycle, and hence have weight griate or equal to that of a
walk of length less than or equal to In particular,~, < r, for all k. Thus,

r = min r, =minr,
1<k<n k

= min min R(M,o)= min R(M,o0)
k  o€eS, (s,i,5,k) 0€S,,(8,4,7)
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SincePy (s,4,7) # 0, 0 # P (s.4,7,k) C S, (s,1,j, k) for somek, so thatr, < oo,
and thereforey < oc.

We may then defin®,, (s,i,j) = {0 €S, (s,i,7) | R(M.,0) =r}. Foranyo &
S, (s,4,5), 0 € Py (s,4,j) iff R(M, o) < oco. In particular, ifo € Py (s,i,5),
R(M,,0) =r < oo,sothatr € Py, (s,i,j),i.e., Py (s,4,5) C Py (s,4,j). Notice this
implies thatminaepMs(S,i,j) R(M,,o) < r. However, sincé®,, (s,i,j) C S, (s,1,7),

min R(M.,o)< min R(M,o0),
0ES, (5,0,) TE€P (5,i27)

so thatmin,cp,, (5.5 2 (M, 0) = 7.

We have sﬁown thaPy, (s,i,7) # 0 = r < oo = Py (s,4,5) C P (5,4, 7).
However, Py, (s,i,7) # 0. Thus, Py, (s,4,5) C Pay (s,1,74) = Py (s,4,5) # 0, so that
all three statements are equivalent.

In other wordsP,, (s, 1, j) represents the set of minimum resistance walks i/, )
from v, to v; passing only througl;. We will partition this set of minimum resistance
walks by their length, to define

Par (s,i,5,k) =S, (s,4,4,k) NPy (s,1,5)

as well.
-1
We now show that [ — (Me)ss> € Pert and give formulas for its resistance and
cost matrices in terms of minimum resistance walks.

Theorem 7.25.For any M, € PMM(n) ands C S,, an open set with respect td,, the

—1
partial sums,(Me)ng =y, (MG)];,S' converge uniformly tc([ — (MG)S,S) € Pert.
Moreover,
-1
R ((I— (M6)5,8> ) —  min  R(M,o0) and
ij UESn(s,si,sj)

O((I —<M6>S,S)_1)i7j = Y oM.

UEfME (s,si,sj)

Proof. Sincel, has only finitely many entries, there is an intery@ly], over which all of
its entries, and hence all of the entries{ME)g = Z;é (M,)* , are continuous and non-

e)s,s’

negative. By assumption,is open with respect td/,, and by Lemma 7.23 with respect to
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M. for sufficiently smalle. Assume thabt has been chosen so thais open with respect
to M, for e € [0,6]. Thus, by Lemma 4.4(,M€)gs) converges tc([ — (ME)&S) B > ( for
eache € [0, 4].

Now observe thaH (M),
is the maximum of a finite set of non-negative, continuousfioms (i.e., the column sums
of (M,);,). Sincel|(M),
assume that it is uniformly bounded @hé] by 0 < ¢ < 1. In particular, by the proof of
Theorem 4.4, parts a) and b)) converges uniformly to{] - (Me)s,s)l on [0, d].

IS a non-negative continuous function tok- 0, since it
1

is bounded by some < ¢ < 1 for eache € [0, ], we may
1

Since[0, §] is compact, the entries QM )(") are uniformly continuous oft), 5] (Whee-
-1
den and Zygmund, 1977). SIH¢M) converges uniformly tc([— (M) ) , the

-1
entries of([ — (Me)s,s) are continuous and non-negative [0nd] (Wheeden and Zyg-
-1

mund, 1977). Finally, if an entry oé[ - )55> is 0 for some: € (0, 6], since this is
the sum of a non-negative series, all the terms in the seness$ lpe 0. But all the terms are
in C™[0, %], so that they must be1 identically 0, so that the limit mustrb€7]0, *].

To show that(] - (MG)S,S> € Pert, we must compute the resistance and cost of

s,8

each of its entries. Consider thi& j)" entry of(ME)SS), for some fixedi,j € S,. By
Lemma 4.3 b) and Corollary 7.5 a),

-1

((0)2) = r)ie; =3 e (M) ey > wge)ect

k=0 k=0 o€Py, (8,84555,k)

7
A
Q

Therefore, by Corollary 7.5 a) again,

o= R(OL)) =R S Y wono

k= 0 0€Pu, (5,854,585 ,k)

= min min R (M, o)
0<k<u—1o€Py_(5,5:,5;,k)

Also observe that

infr, = inf min min R (M, o)
u u 0<k<u—1 ae’PME(s,si,sj,k)

= inf min R (M, o)

u o€Py, (8,8;,85,u)

= inf R(M.,o)= min R(M,o0)

o€Pnr_ (5,54, s5) o€Pw_(5,51555)
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Now take

v = min{u| Py (s,s;,s;,u) #0} and

/ ) /
o € Py (s,si,sj,u)

By Theorem 7.25, we then have

r ;= min min R(M. o)< R (M. o) = min R(M_ o) =1infr
u Al 0<k<u’ UG’PME(S,Si,Sjvk‘) ( “ ) o ( “ ) UGPME(S,Siij) ( “ ) u
Thus,r,,, = inf, r,, so that- = min, r, =, is well-defined and < R (M., o), for

all o € Py (s, 8;,85).
Now consider ™" ((M )(“)) . By Theorem 7.4e), thisis i@". Foru > u' + 1, we

€/s,s
7]

have
() = () s Y Y W (M)
! 7 k=u'+1 UEPM€ (5,8;,55,k)

so that, by Corollary 7.5a) and Theorem 7.4 e),

Therefore,

— (u)

= Jim e ((0412),
= (e"“ <(M€)(Sf2)' ) by Theorem 7.4 a)

]
=C <(M€)(;fs)) N by Theorem 7.4 e)
2y
= > > [R(M,0)=r]C(M.,0o) by Corollary 7.5a)
0<k<u—10€Py; (s,5;,5;,k)

= > C(M,0) by Lemma 7.24

We may argue as before that" <(M€)§“s)) is continuous on some intervdl), 9].
) Z7j

-1
Moreover, foru > u'+1, this sequence converges uniformly:t6 (I - (MG)S,S) ~,which
vJ
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-1

is therefore also continuous ¢ §]. In particular,lim+ ¢ <I — (M,), S) exists, and
/g

we may interchange limits to compute

-1
lime ™ (1—(M,),,) = tim Tim e ((2,)\")

.. S,S
0" i,j ot u—oo ’

,J

= lim lime " ((0)1)
K Z"j

u—oo gt
= lim ¢, = lim Z C (M, o)

0<k<u—1 UGfM€ (s,si,sj,k)

Since it is a sum of positive terms, > ¢/, > 0 foru > u'. In particular,

-1
lime " (1-(M,),,) = lim e, >0.

ot i,j ~ u—00

Thus,R ((I = (Me)s,s),_l) =, (1= (),,,) "' & Pert, and

.3
c((r-on.)") = m > X cong
1,J ngguflaG'PME(S’si’Sij)
- Y o)

crEfM6 (s,si,sj)

Corollary 7.26. If M_, M, € PMM(n),ls C S, is open wittl respect td/, and M,’, and
(M), = (M), then(1 = (a),,) = (1-(m),,) -

Proof. Since(M,), , ~ (M’)ss, by Theorem 7.3,

7s €

r((0),,) and C((M),,)=C((M),,).

Therefore, R (M,,0) = R (M/,0) forall ¢ € S, (s,s;,s;). This then implies that

fMe (s, S;, sj) =Py (s, S;, sj). Likewise,C (M_,0) = C (Mé,a) , Vo e S, (s, S, sj).
Therefore, by Theorem 7.25,

Iy
/N
~—~
=
S—

w
W
—
I

o <[ a (Me)s,S) B = (I N (Mé) s,S> N andC (I B (M€)575>_1 =¢ (I B (M6,>578)_1

so that, by Theorem 7.{,[ — (Me)&s)_1 o~ (I — (M;)M) =
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We may now show that the reduction of a PMM is also a PMM and fpu@ulas for
its resistance and cost matrices in terms of minimum rewstpaths.

Theorem 7.27.Under the assumptions of Theorem 7.25, if, for each 0, J\Z is the
reduction ofM, with respect tas, J\7e € PMM([s]) with

R(]\Z)H _ Srr(lin )R(ME,U) and
i, 0€S,, (5,53,
c(m)m = Y C(M.0

o€Par(5,5:5;)
Proof. As before,s is open with respect td/, for sufficiently smalle, so the reduction is
defined. By Theorem5.6c)/, = (Mo)gs — (M), (Ae);s1 (M,),5 By Theorem 7.25,
— (Ae);: = <I - (MG)S,S)l € Pert. Therefore, Theorem 7.6 implies that. € Pert. In
addition, Corollary 5.11 guarantees tid} is unichain fore = 0. Thus,M, € PMM(]3]).
The formulas for its resistance and cost matrices followatly from Theorems 7.4 and

7.25.0

Theorem 7.27 implies that reduction preserves asymptqticalence.

Corollary 7.28. GivenM,, M, € PMM(n), s C S, open with respect td/, and M, with
<J\7€, Pe, z€> and <J\7€’, ., 7,'6) the reductions with respect toof M, and M, respectively,

P

if M, ~ M., thenM, ~ M.
Proof. SinceM, ~ M., R (M,) = R (M), which implies that

R <Z\//Z>” = crESiI(lin )R(Me, o)= min R (Me/, a) =R <Z\//Z)”

5,51, cES,, (s,gi,gj)

for anyi, j. This implies thaP,;, (s,5;,5;) = P, (s,5;,5;), foranyi, j. SinceC' (M,) =
C (M), we also have

O(Z\//T)J - Y oMo = Y C(Mé,a):(}(]\%\é)i,j

UefME (S,Ei,gj) aefM/ (S,Ei,’j)
as well. Thus, by Theorem 7.3/, ~ M.. O

Theorem 5.12 generalizes directly to PMMs.
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Theorem 7.29.Under the assumptions of Theorem 7. 25( ) ) is the reduction of

M., with respect tcs, M6 ~, M..

Proof. Theorem 5.12 guarantees twﬁ ~; M, fore = 0. As in the proof of The-

orem 7.15,, stab (]\Z) = f(e)stab (M,) for somef € C*, and we must show that

R(f)=0.
By Theorem 5.125tab <J\Z> = g1, stab <J\Z> = f(e)mgstab (M,). Therefore,

stab (]\//Z) = e stab( ) = ¢! f(e)msstab (M)

7

= f(e)egi stab (M) = f(e) stab (M), .

(3

Since0 = R <stab (z\?)) — R(f) + R(stab (M,)); , we must have?(f) = 0. 0

Theorem 7.29 implies that reduction preserves stochagtivaence, as well.
Corollary 7.30. Under the assumptions of Corollary 7.28Mif. ~ M, then]\Z ~ ]\/4\6/
Proof. By Theorem 7. 29[\/4\ ~, M, and]\//z ~y M!. More specifically;, stab <J\Z) =
F(€)stab (M.) and. btab< ) — f'(e)stab (M) for somef, f' € C* with R(f) =
R (f') = 0. In fact, following the proof of Theorem 7.2%ab <Z\//.76> = f(e)msstab (M,)
andstab (]\//TE’) = f'(e)mgstab (M). Moreover, since/ stab (J\?) = 1= Jstab <J\76’)
f(€) = Fmsmapy @ndf'(e) = ﬁb() SinceM, ~ M., stab (M,), ~ stab (M), for
all 4, so thatrg stab (M,) ~ s stab (M/). In particular,f ~ f’, so that

stab <J\//TE> = f(e)mgstab (M,) ~ f(e)'mgstab (M!) = stab (]\//Z)

We now show that we may compute the reduction while only itmvgra constant ma-
trix.

Theorem 7.31.GivenM, € PMM(n) such thatk (M.), ; = 0 for all 4, a communicating
class,s’ C S, of M, such that, for # j € s, (M,), ; = (M,), ;, and a subset C s" such
that }s s} = 1, if M. is the reduction with respect toof M., there is a PMM,\Z, such
thatM ME, where

(J\Z )] — <( M)ss+ (M,)s, (1 — (MO)S,S) B (Me)s,g) N

fori # j.
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Proof. Notice that(M.), , ~ (M,), ,. Therefore, by Corollary 7.26,

5
-1

<I - (Me)s,s>_1 ~ (I -~ (Mo)s,s) :

so that

o

M, o (M)gs + (), (1= O4),,) (M), 5.

By Lemma 7.21, there is a PMMZ, such that
—~ -1
(32),, = (s + 010, (1= ,,) 01,5 )
: i

for i # j so thatM, ~ M.. By Theorem 7.10). ~ M.. O

7.7 The SSD Algorithm

In this section, we present our algorithm for computing t&®®f a PMM and prove that
it is correct. Intuitively, given a PMMJ/,, the algorithm is as follows:

1. Examine the corresponding unperturbed, Markov mat¥fy; this corresponds to
line 2 in Algorithm 2.

2. If it is unichain, then, as we will shortly observe, its gué stable distribution is
precisely the SSD af/,, so we are done; this corresponds to lines 3-4 in Algorithm 2.

3. Otherwise, take a maximal reduction fof, i.e., reduce each of its communicating
classes to a singleton; this corresponds to line 5-6 in Atigor 2.

4. Then apply the non-uniform scaling construction of Lenyris, and iterate (via tail
recursion); this corresponds to lines 7-8 in Algorithm 2.

We begin by observing that, by Theorem 7.10, Theorem 7.1d Guorollary 7.30, at
any step in the algorithm, we may replag€ by an equivalent PMM without affecting
the final result (i.e., the SSD). In particular, we may repréd/, by its pair of resistance
and cost matrices. Theorem 7.6 then tells us how to carry musabsequent algebraic
operations (i.e., addition and multiplication of PMMSs).

We now prove that our termination condition in step 2 is odtrre
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Algorithm 2 To Compute the SSD of a PMM.

1: function v, = SSD(M,) {
2: C = commClasse§\/,);
if (C.numClosed== 1)
return (stab (My));
if (C.nonTrivial> 0)
(M, i,C) =reducg M, C);
(M., D) = nonUniformScalé)M,, C);
return (normalize(i D (SSD(M,))));

©CeNO R

Algorithm 3 To Reduce a GSA.

1: #define uniformScal¢)) (hasZeroOnDiagonalR/) :

2: function (M., i, C) = reduce(M,, i, C) {
3 M, = uniformScalg M. );

M, = dropNonZeroR M., C);

i = identityMatrix(M,.dim());

s = c.member§).rest);
c.setMembergc.members§) first());

A R A

l
v 2”1(@umgglwmm);

11: }
12: return (M., 4, C);

for (¢ = Cfirst(); c.next) # NULL; ¢ = c.next)) {

M, = (M), + L), (1- (M),)

(I+M)/27 M)
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Theorem 7.32.Given)M, € PMM(n), if M, is unichain, therstab M, = {ssd M. }.

Proof. Lettingv, = stab (M,), by definition,M v, = v, for € > 0. Taking limits, we have
Myvy = vy, thatis,ssd M, = v, € stab M,. SincelM, is unichainstab M, is a singleton,
so thatstab M, = {ssd M_}. O

Next, observe howniformScale carries out the construction of Corollary 7.13 to guar-
antee that we have zero-resistance diagonal entries. lskgivopNonZeroR implements
Lemma 7.22 by dropping all entries with non-zero resistaaceesponding to edges within
any communicating class ifi. We may then appeal to Theorem 7.31 to justify step 3, and
the corresponding call teeduce In this way, we reduce each communicating class, while
only inverting aconstantmatrix.

Notice also how in line 9 of Algorithm 3, we accumulate theperturbednclusion of
the reductiony, in the (real-valued) matrix;,. This is correct by Theorem 7.15. Also,
note that as we iterate through each communicating clasd. pfreduce eliminates all
the elements of each clasgceptthe first, updating its set of member to bely the first.
Thus, it returns an updated communicating class decom@osdorresponding to the re-
duced result. This means that we do not need to recomputedtaaitch before the call to
nonUniformScale

Finally, Lemma 7.16 guarantees that step 4 is correct. M@rethe algorithm is guar-
anteed to make progress to termination. Specifically, Ganol’.17 guarantees that even-
tually either the condition of line 3 or line 5 holds. Thugher we terminate immediately
or we reduce the dimension 68f_, guaranteeing that we will terminate eventually.



Chapter 8

PMMs and Generalized Simulated
Annealing

By restricting attention to a sequenge= e_%t for some sequencg — 0, for any given
initial distribution, a perturbed Markov matrix defines mmihomogenoudlarkov chain,
{X,}i2,, of a generalized simulated annealing (GSA) (Trouvé, 188ai et al., 1994)
with transition matrix\/* = M,,. Moreover, ifT, — 0 slowly enough, Desai et al. (1994)
describe the resulting process as “quasi-statically col&his is intended to connote
that, in some sense, the limiting distribution of this psxequals the limit of the stable
distributions,v., ast — oo, i.e., the stochastically stable distribution/of.

Specifically, assume that the resistance matixj}\/,), corresponds to the energy dif-
ferences of a potential functiot](i), so thatR (M), ; = (U(i) — U(j))". Notice that
this implies thatR(Me)m. # oo for all 7 andj. In particular,)M, is irreducible, since all
its entries are non-zero. For any such resistance matrtk @i finite entries), the corre-
sponding potential functiord/, is uniquely defined, up to an additive constant, and there is
a unique choice witlin; U(j) = 0.

Under certain conditions, the resistance matrix of thelstdistribution of M7, will
allow us to recover this potential, i.e.,

R (stab (M,)); = U(i) — min U(j) (8.1)
To be precise, Trouvé (1996) shows that Equation 8.1 hifltajek’s “weak reversibility”
condition is satisfied. For example, it suffices for the comioation matrix,C' (), ) to be

140
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symmetric. Thus, the resistandg{stab (1,)),, may also be called thértual energy at
iin M.. By Theorem 7.4 a), we have tha, (1,)), > 0iff R (stab (M,)), = 0. Thus, the
stochastically stable states of a PMM are also callegridsndstates.

In this chapter, we show how minor modifications to Algoritnyields an efficient
technique for computing? (stab (M,)) when M, is irreducible. Based on the previous
discussion, we will denote the set of alildimensional, irreducible PMMs &$SA(n). As
before, we will show that:

e R (stab (M,)) only depends ord/, up to an equivalence relation (weaker than that
of chapter 7) defined over its entries,

e the equivalence class of a GSA,, is determined by its resistande )/, ),

e there are correspondingly weaker notions of equivalende/aequivalence, which
are preserved under the operations of scaling and reduetiah

e by appealing to the Markov Chain Tree Theorem, we again cedyglnnverconstant
matrices in our constructions.

8.1 Equivalence of GSAs

As before, we begin by defining an equivalence relatiod bpgeneralizing it tPert, and
then specializing t&SA(n). First, definef, g € C* to beasymptotigwritten asf ~,, g

iff R(f)= R(g). The notation is motivated by fact that this is a strictly Wexanotion than
asymptotic equality. The terminology is justified by theddaling theorem.

Theorem 8.1.1f f,g € C", f is asymptotic tag iff g(¢) = 0 = f(e) for e = 0 or

; f(e)
0< hmeH0+ m < OQ.

Proof. If f is asymptotic tog, there are two cases to consider. Aff) = R(g) = oo,
then by Theorem 7.3b)f ~ ¢ ~ 0, so thatg(¢) = 0 = f(e) for ¢ = 0. Otherwise,

r = R(f) = R(g) < oo, so thatlim__+ % = 1= lim_ -+ 9 for c,d > 0, and

C,G
1 &—E f(e)cley‘_i c
lim__ o+ o0 = 7 lim__ g+ = GRREL where() < S < oo,

'Desai et al. (1994) call this the “stationary order7at
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Conversely, ifg(e) = 0 = f(e) for e = 0, thenR(f) = R(g) = oo. Otherwise,
0 < lim_ 5+ &9 < co. This implies thatf # 0 andg # 0. Sincef,g € C*, we then
know thatlim_+ 19 = 1 = lim__+ 49 forc,¢ > 0 and0 < r,7' < oco. Therefore,
1= lim_ e 29 %m0 <6 = Slim,_ oo L9 0im_ ", which implies thatr(f) =
r=1r"=R(g).O

Likewise, for M., M. € Pert, we will say thatM, is asymptotido M, writing M, ~,,
M, iff (M), ~, (M’E)Z.j for all i, j. Theorem 7.6 implies that addition and multiplica-
tion of perturbed matrices is well-defined on equivalenessts under,,, as well. In the
case of GSAs, we have the following definition.

Definition 8.2. If M., M. € GSA(n), M, ~, M/ iff stab(M,) =, stab (M). In this
case, we say/. and M are energy equivalent

We now state the following easy consequences of Theorem 7.7.
Theorem 8.3.

a) If f~g,thenf ~, g.

b) If M, ~ M/, thenM, ~,, M..
c) If M, ~ M., thenM, ~,, M..
d) If M, ~,, M., thenM, ~,, M.

e) If M, ~ M, and M, € GSA(n), thenM, € GSA(n).

Proof. Part a) follows directly from Theorem 7.3. Part b) is an immgsglconsequence of

part a), and implies part c). Part d) follows from Theoremahd Equation 7.1, as in the
proof of Theorem 7.10.

To prove part e), notice that, by Corollary 5.15, sinteb (1, ) ~ stab (M),
s={ieS,| (stab(M,)), #0} ={ieS,]| (stab (M) #0} =
If M. € GSA(n), thens = S,,, so thats’ = S,,, M, is irreducible, andV/, € GSA(n). O

We have the following analog of Theorem 7.12.
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Theorem 8.4.Givenf € C* \ 0 and M, € GSA(n), such that

a) R(f) < R(M,),,foralli#j,

c) R(f) <R 1) for all 7,

if we defineM! = 1 (M, — I) + I, thenM, € GSA(n) and M, ~,, M.

Proof. Since a GSA is a PMM, we may apply Theorem 7.12 to conclude Atfate
PMM(n) andM, ~ M!. Theorem 8.3 e) then says that € GSA(n) and Theorem 8.3 ¢)
givesM, ~,, M.. O

As before, Corollary 7.13 and Theorem 8.3 allow us to res#iention to GSAs with
R(M,),,; =0, forallj.

Corollary 8.5. Given M, € GSA(n), if we defineM, = % (M, —1I) + I, thenM, €
GSA(n), M, ~, M/, andR (M;)jj =0, foralljes,.

Minor modifications to Lemma 7.16 give the correspondingltder GSAs.

Lemma 8.6. GivenM, € GSA(n) withn > 1, such that all communicating classesidf
are singletons, defing = min; g, min, ,; R (Me)m., where7 is the set of transient states
of M,. Likewise, let = 2max; g7 ZS:R(MJM C (M.), ;- Then0 < s < ocoandc > 0s0

we may defing(e) = ce® and
0 if i £ j
(i);; =4 fle) ifi=jandjeT

1 otherwise

so thati, € Pert(n) and M, = (ME — ]) +1 is energyi.-equivalent ta/,. In particular,

ifjeT
R (stab (M,)); = :
otherwise
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Proof. Since any GSA is a PMM, the proof of Lemma 7.16 applies uncedngxcept for
showing thats < oo. Sincel/, is irreducible, there are paths@_ (M, ) from any vertex
to every other vertex. In particular, each closed indexadbdsast one outgoing edge, so
thats < oco. Continuing the proof of Lemma 7.16, we see thftis i.-equivalent tal/.. In
other wordsg(e) stab (M,) = i stab (M) for someg € C* with R(g) = 0. Therefore, by
Theorem 7.6R (stab (M,)) = R(g) + R (stab (M.,)) = R (i stab (M) ). Applying The-
orem 7.6 again, th& (i_stab (ME’))]. = mingeg {R (ic);, + R (stab (Mg))k} Sincei,

is diagonal,R (ie)jyk = o0, unlessj = k, so that the minimum occurs when= k and

R (icstab (M()), = R(i.);; + R (stab (M()),. SinceR (i)
otherwise, the result follows

. i = s ifj €T, and0,
By repeatedly applying Lemma 8.6, we may then guaranteeMhatiways possesses
a non-trivial communicating class, as long as we keep trd¢keocorresponding shift in

virtual energies.

Corollary 8.7. GivenM, € GSA(n) withn > 1, there exists a diagona) € Pert(n) and
M, € GSA(n) such thatM, ~; M! and M/, possesses a non-trivial communicating class.

Proof. As before, since any GSA is a PMM, we may repeat the proof oblaoy 7.17. In
other words, we proceed by repeatedly applying Lemma 8.6 ato at each step\l! =
(M), for a diagonal matrixD.. We know thatV/! € PMM(n). However, scaling by a
diagonal matrix only affects the magnitude of the edge wisighh particular, it can only
introduce or eliminate self-loops, so tlﬂat(Me’) = P (M,). Thus, sincél/, is irreducible,
P (M.) andP (M) are complete, so that’; is irreducible, i.e. M. € GSA(n). As before,
G_ (M) D G_(M,) is a strictly larger graph, so this is guaranteed to terreitbgt the
time G_ (M) is complete, if not sooner

8.2 Reduction of GSAs

Notice that, since a GSA is a PMM, Theorem 7.27 gives us theesponding result for
GSAs almost immediately.

Theorem 8.8.For any M, € GSA(n) ands C S,, an open set with respect 1, if, for
eache = 0, M, is the reduction of\/, with respect tos, M, € GSA([s]) with

R (]\/4\6)” = min R (M, o)

oES, (S,Ei ,5]-)
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Proof. By Theorem 7.27M. € PMM([s|) and Corollary 5.11 then implies that, is
irreducible fore = 0, i.e., M. € GSA(|s]). O

This implies a result corresponding to Corollary 7.28 for¥a#/4

Corollary 8.9. GivenM,, M, € GSA(n), s C S, open with respect td/, and M, with
<J\//fe, Pe, 26> and <J\Z’, P, 7,'6) the reductions with respect toof M, and M, respectively,

if M, ~,, M., thenM_ ~, M.

€ €

Notice that the first part of Theorem 7.18 may be restated f8As; as follows.
Theorem 8.10.GivenM,, M. € GSA(n), if
a) T (M,i)=T(M.,i)and

b) R(M,) = R (M) Vi #i,0€T(M,.,i)

o(4).3 o(4).3

for everyl < i < n, thenM, ~, M..

We may use Theorem 8.10 to obtain an analog of Theorem 7.81Sés, guaranteeing
that we need only invert a constant matrix when computingrégleiction of a GSA. To
prove this, we must first prove the following analog of Lemni227

Lemma 8.11. Given M, € GSA(n), if 0 < R(M.),;, R(M);, < oo, R(M.);, >
R(M,);; + R(M,);,, and M = M, — (M,),, (e;e;, — exey,), thenM; € GSA(n) and
M, ~, M.

Proof. Observe thaf\/, is just M, with the (i, k)" entry set to 0, adding it to the diagonal.
Thus, M! € Pert. Likewise, G (Me’) is the same a6/ (M,), except for the removal of
the edge fromy,, to v;. However, sinc&r (M,) contains a path of length 2 from, to v,

P (M,) =P (M!). In particular,M; is irreducible, and\Z; € GSA(n).

We will show that ifo € T (M,,r) is a spanning subtree rootedrawith o(k) = ¢,
then there is another spanning subtrees T (M,,r), rooted at- with ¢'(k) = j, and
R (Me, a’) < R (M., o). Thus, when considering minimum resistance spanning esesitr
we may restrict attention to those that do not contain an éadge v, to v,. Since the
resistance of such subtrees are necessarily equaf fand)//, Theorem 8.10 would then
imply that M, ~,, M.
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Assume we are givenm € T (M., s) with o(k) = ¢ and consider the associated directed
spanning tree7 . If we remove the edgg,,, ¢;), we are left with two directed subtreé€s,
and7,, where we may assume thgtandv, are in7; andv,, is in 7,. Now v; must be in
one of these subtrees.f is in 7;, by adding the edge from), to v; we obtain a tree with
total resistance which has decreasedry\l, ), .. Formally, definings’(t) = o (t), for all
t # k,ando’(k) = j, R (M,,0") = R(M,,0) — R(M,),, < R(M,,0).

Otherwise; is in 7,. Deleting the edge from; in 7, splits it into two smaller trees,
7, and7;’, where we may assume thatis in 7,' andv, is in 7,. By adding the edges
from v, tov; and fromw, to v;, we obtain a tree with total resistance no greater than eefor
but which does not include the edge framto v;. Formally, definingo’(t) = o(t), for
allt # k,j,o'(k) = j,0'(j) =i, R (Maal) < R(M0) - R(Me)z’,k + R(Me)i,j +
R(M);, < R(Mo0). O

Theorem 8.12.Given M, € GSA(n) such thatR (M,), ; = 0 for all i, a communicating
class,s’ C S, of M, such that, fori # j € s, (M,), . = (M,), ;,, and a subset C s’
such that\ s\ s\ =1, if <]/W\6,p€, 26) is the reduction Wlth respect toof M., there is an
M, € GSA([3]) such that(Me’)m. = (po (M. = I) 1o+ 1), ; fori # jand M, ~,, M.

Proof. By Theorem 5.8¢),

<Z/\Ze>z,j - Z W (ME’O-)

UEPAIE (S,gi 7§j)

For anyi andj for which0 < R (]\Z)” < 00, chooser € Py, (s ( 2 Sis j) suchthato| =1
andR (M., o) are minimum.

If [ = 1, then we repIace(M) by (M, )S 5 adding the difference t(éM) y to
obtain an asymptotically equwalent GSA. Likewise/ if> 1 and bothR (),

0 and R (M,

>

)O'Ull

Joro, > 0, we will show that, by Lemma 8.11, we may s(eM€> 1o 0,
Zh]
adjusting<M£> ~, to obtain to obtain an asymptotically equivalent GSA. Reipg these
)
two operations as many times as necessary, we obfaia GSA (5) such thatV/, ~,, M,

and0 = R <M6)‘ oroo = R <M6)‘ OorR <Z\Z> _is that of any minimum resistance
walk with exactly one non-zero resistance edge.
To prove that the conditions of Lemma 8.11 hold, 4t s = {¢} and assume that

r, = R(M,) > 0 andry, = R (M,) > (. Sinceq is in the same communicating

01,01—1 01,00
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class aw;_; ando, there exist walks is from ¢ to 0;_, ando, respectively. Adding the
two non-zero resistance edges gives walks frotm o, = ¢ and fromo, = j to ¢ through

s, with resistance; andr,, respectively. Thus;; > R <J\Z> andr, > R <J\Z> , SO
2,9 q,]

+R (]\Z) , and the conditions of Lemma 8.11

q,]

thatR (M,,0),, = ry +15 > R (M)q
are satisfied.

Now notice that, if we let\, = p, (M. — 1), + I thatM, = M,. In particular, M,
is Markov. SinceR (Me)m = 0 for all 7, by Theorem 8.8R <J\Z) ~=0,s0 that]@\0 > 0,

and hence, for all, (M), > 0 for e = 0. Thereforey”, . (HO)” =1-(M,),, <1
We wish to show thafM/,) € C* for i # j. By definition,

i

M, = po(M,—1)1y+1

-1 t I
= (1~ (M), (A} ) PAAP, o ) +1
- 0/s,s 0/s,5

= (Ae)§,§ - (MO)E,
+ (My)5 , (Ao) )
= (Me)g,g - (Mo): (Ao)

s 3 (M€>§,s (A0>;sl (MO)S,E
+ (MO>§75 (AO)s,sl (Me>s,s (AO

s_,sl (M())s,E - (MO)E,S (A0>s_,sl (AO)S_,sl (M0>s,§

Focusing attention on the off-diagonal entries, by Corglih5, we may rewrite this in
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terms of walks, as follows. Far# j,

(Mﬁ)i,j = (Me)gi,gj + Z Z W (M, o) (]\46)%’g

k o€Pu (s,5::51)

+ ; Z (Me>§i,sk w (M07 0)

0'67)]\/]0 (S,Sk,gj)

+> > Y. W(My0) (M), , W (M, 0)

bk o€P, (8,3::51) O'IEP]\/]O (s,sk/,Ej)

-2 > > W (My,0)W (M, 0) (8.2)

k UGPAIO (Svgivsk) UIE’P]WO (S,Sk,gj)

If R (]\Z)Z = oo, then there are no walks i@ ()M,) from 3, to 5, throughs, so that
all the terms ir? Equation 8.2 vanish as well, i.@e)i’j =0fore=0.If R (]\Z)U =0,
since(Ho)m. = <]\/4\0>” >0, (He)i,j > 0fore = 0. Finally, if0 < R (]\Z)” < oo, then
there exists at least one walkdh(1/,) froms; to5,; throughs, and every walk contains at

least one edge with non-zero resistance. In this case,

(Me)i,j = (Me)gng + Z Z W (M0> J) (Me)sk,gj

k o€Pp, (s,5;5k)

Y Y (M) W (My,0) (8.3)
k UEPMO (s,sk,gj)
T Z Z Z w (MO’ 0) (Me)sk,sk/ W <M07 OJ) >0
k" 0€Pw, (5,5:,51) a/ePMO (S’Sk/’gj)

since

Z Z Z W (Mg, o) W (Mg, 0")

k UEPAIO(S’Ei’Sk) O'IE,PJMO (S,Sk,gj)

is a sum over zero-resistance walks. Moreoxliefﬁe) ; is the minimum resistance taken

over all walks froms; tos; throughs with exactly one non-zero resistance edge.
So far we have shown thgfl/, ) € C* foralli # j and thatR (Mﬁ)ij =R <J\Z)

b .3

for all i # j. ConsequentlyZ_ (M,) andG_ <Z\Z> only differ in self-loops, so that
P(M,) =P <J\Z> Therefore,G_ (M,) is unichain and Lemma 7.21 gives af{ €
PMM(n), such that(Mé)Z.j = (Me)ij for i # j. In particular,)M! is irreducible, and
henceM, € GSA(n).
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Moreover, & (M/), = R (M), = R(M,) fori # j, andR (M), =0 -

1,1

R <J\Z) ~ for all i. Therefore M, ~,, M, and M, ~,, M, ~,, M. O

We these results, Algorithm 2 carries almost unchanged ®A$ However, using
naturality of the reduce construction (i.e., Theorem 5.88)ike the case of PMMs, we
may reduce all communicating classes simultaneously.

Theorem 8.13.Given M, € GSA(n) such thatiz (M,),; = 0 for all i, and fori # j
in the same communicating class &, (M.),; = (M), ;, and a subset C S, con-
taining all but one representative of each communicatiragslin M,, if (]\Z,pe,ze) is
the reduction with respect te of A, there is anM, € GSA([s]) such that(M)). . =

i
(po (M, = I)1g + 1), ; fori # jand M, ~,, M.

Proof. Assume thatl/, hask non-trivial (i.e., containing more than one element) commu

—~

nicating classes, an<j/\/[j76,pj7£,2#> is the result of eliminating all but the chosen mem-
ber of the;" communicating class from//fj,l,e, Where]\//_TO,6 = M.. By Theorem 5.36,
J\//Yk,,6 = ]\//f6 and J\/ij,6 = Dje---Pre (M. —=1)iy....1;.+ I. Applying Theorem 8.1%
times gives that

—

Me ~w  PrkoPk—1,---Ple (Me - [) 7;1,6 s ik’fl,eik,o +1 ~Nw Tt
~w Pro---Pro(Me—1)igg. . .igo+ 1

which, by Theorem 5.36 again,j\/é?6 =po(M,—1)ig+ 1.0

8.3 The Energy Algorithm

In this section, we present our algorithm for computing tb&eptial energy of a GSA and
prove that it is correct. The intuition and proof of correzgn is generally the same as for
Algorithm 2.

As before, we may replac¥, by an energy equivalent GSA without affecting the final
result. In particular, we may represel just by resistance matrix, using Theorem 7.6 to
carry out subsequent algebraic operations. Notice for plathatuniformScale simply
replaces each diagonal entry of the resistance matrix withAs before, Lemma 8.6 and
Corollary 8.7 guarantee that we either terminate immelyiatewe reduce the dimension
of M., guaranteeing that we will terminate eventually.
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Algorithm 4 To Compute the Energy of a GSA.
1: function r = Energy(M,) {
2: C' = commClasse@\/,);
if (dim(M,) ==1)
return ((0));
if (C.nonTrivial> 0)
(M, i,C) =reducg M, C);
(M., D) = nonUniformScaléM,, C);
return (i D (Energy(M.,)));

©CeNO RO

Algorithm 5 To Reduce a GSA.
1: #define uniformScal¢)M) (hasZeroOnDiagonal@/) : (I + M)/27 M)
2: function (M., i, C) = reduce(M,, i, C) {
3: M, = uniformScalg M. );

M, = dropNonZeroR M., C);

(s,C') = chooseMaxima|C);

p=(1 o), (1-00),,)"
i=P

)
" \ (- om),) o), )
M,

8: Me:p( 6_[)5 Z_'_[’
o: return (M., i, C);

o gk

Pt.

,S
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Besides the different termination condition, the other kid@ference between Algo-
rithms 4 and 2 is the way in which we compute the reduction]endmly inverting constant
matrices. We begin Algorithm 5, as before, by guarantediag we have zero-resistance
entries on the diagonal and within any submatrix correspanich a communicating class.
We then usehooseMaximaltp choose a set of representatives from each communicating
class, returning their complement @aand the corresponding singleton set€£ad/Ne may
then use Theorem 8.12 to guarantee that applying the comdspgy quotient operators of
M, to M, yields a GSA which is energy equivalent to the quotienfifhfwith respect to
s. This is essentially the algorithm of Gambin and PokarowgKi01). However, their
algorithm is mainly combinatorial, operating primarily asecursive algorithm on graphs.
Since our algorithm recursively operates on GSAs, we belibat it is conceptually more
satisfying.
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Two Related Algorithms
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Chapter 9

GraphRank

In this chapter, we discuss the problem of ranking and fras@wion in terms of a multi-
objective linear program. We then show how to compute Paxetional solutions, as well
as suggest how to find socially optimal solutions. We willase we are given a set of indi-
viduals and for selected ordered paifis,), a positive valued(i, j) > 0, indicating thatj

is superior ta by d(i, j) units. For example, if the individuals are sports teadis,j) may
represent the positive differential in points scored or gamvon (e.g., team won d(i, j)
more times against teairthan it lost). We can represent this data naturally as a vieigh
directed graph(G = (V, E,d, s, t), where the verticesy, correspond to the individuals
being ranked, the edgek, correspond to the set of comparisons, ad),¢(«) : E — V
are the starting and ending verticesagfrespectively. We will assume thaét and £ are
finite. The objective is then to determine a ranking functionV' — R which is consistent
with the given data, as well as optimal, in some sense.

If the corresponding graph is not connected, then verticekfierent components are
necessarily incomparable, so we will assume thas connected. If the corresponding
undirectedgraph is connected and acyclic, then there is a unique ealtbi the corre-
sponding system of equations(t(a)) — z (s(«)) = d(a), Va € E, up to a constant
shift. In general, this ranking problem is complicated bg éxistence of undirected cycles
in the graph which lead to an inconsistent system of equatidihile there are general
techniques for solving such over-determined systems egliequations, we would prefer
a technique which is motivated by this specific application.

One approach taken in the literature for undirected graphs simply throw out the

153
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smallest number of edges to obtain a directed acyclic gr@#t) and apply standard
topological sort techniques to the result (Kenyon-Matlaed Schudy, 2007; Ailon, 2007).
This has the advantage of avoiding ties, but does not adtmggo optimally sort indi-
viduals in the resulting graph. Thus, we take an alternatp@oach which will lead to a
non-trivial ranking whenever possible. We give one jusdiiien for this approach here and
address it in further detail in section 9.3.

For a ranking to be consistent with the data, we must at lemgt h < x (t(«)) —
z(s(a)) < d(a), Ya € E. In other words, if the data indicates that teans better
than teany, it should be ranked no worse. We wish to create an “inforveatianking,
by distinguishing individuals from one another whenevesgiole. It is easy to show that
these constraints imply that any feasible ranking must Instemt on directed cycles. That
is, with these constraints it is impossible to use a feas#u&ing to distinguish between
individuals within a directed cycle. However, by collagsiall cycles to single vertices,
we obtain a DAG and we can sort the vertices in strictly insieg order. Therefore,
topological sort on unweighted graphs can be viewed as amption problem, where
we are trying to minimize the number of strict equalities ur oonstraints. This objective
has the nice property of treating the data “fairly” by handliall the given edges in the
same manner.

However, a ranking should not overstate the degree of sujigrof teami over;. That
is, we should impose the additional constraintg(«)) — z (s(«)) < d(a), Ya € E.
Now instead of distinguishing individuaigheneveipossible, we can also seek to do so as
muchas possible. That is, we want a ranking which is maximal vadpect to the multiple
objectives, f, ,(x) = x(t) — z(s), such that(s,t) = (s(a),t(a)) with o € E. Notice
that if we consider unweighted graphs as the case wlieh= 1, this will automatically
minimize the number of tight left-hand side constraintsttss is a natural generalization
of the previous problem.

Formally, given a weighted, directed gragh,= (V, E, d), we restrict attention to the
set of valuations oi/, C'(G), satisfying the corresponding system of linear constsaint

CG@)={z:V-R|0<z(tla) —z(s(a)) <d(a), Va € E}.

Observe that(G) # (), since it contains every constant function Bn Now define a
pre-order (with corresponding partial order and equivedgerelation) orC'(G), <, so that
r = 2 iff x(t(a) — 2 (s(a)) < 2’ (t(a)) — 2’ (s(a)),YVa € E. Our goal is then to
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solve the multi-objective, linear prografRank(G): computer” € maxq (), that is, find
a Pareto optimal, feasible ranking.

This type of system of constraints has been well-studiedoerations research, par-
ticularly in the theory of scheduling (Corman et al.,, 200T)he graph is then called a
PERT (Program Evaluation and Review Technique) chart. Wewéhe classical problem
generally involvesninimizingthe difference between the largest and smallest values of
which in our case would yield the trivial ranking(v) = 0. However, we might wish to
refine our search to a Pareto optimal solution which is slyagitimal with respect to some
aggregation function, such asax; ,cy z(t) — x(s) ory_ . z(t(a)) — z(s(a)).

In the latter case, the problem may be recast as a standaat jpnogram, where a
solution may always be taken at a vertex&f=), corresponding to a consistent collection
of tight constraints. Intuitively, the tight constraint tbe form z (t(«)) — x (s(a)) =
d(«) correspond to a choice of edges, while the remaining equaditstraintsy (t(«)) =
x (s(«)) should only be those forced by the geometryzofThis suggests that we pursue
a general approach to finding Pareto optimal solutions sparding to maximizing the
difference on selected edges, using the geometr§ b infer the subsequent equality
constraints.

We will carry out this program in section 9.2 and give an alipon for computing a
Pareto optimal solution. We then discuss related work ahddulirections for research.
We conclude by outlining applications of these techniquegoting and information re-
trieval.

9.1 Existence of Solutions

In this section, we discuss some background results retatede problemRank(G),
introduced in the previous section. Most importantly, wdl sow that solutions exist,
and that feasible rankings are constant on strongly coademimponents (SCCs) 6f.
SCCs are most easily described in terms of the natural peeofdhe vertices, given by
the “leads to” relatiom-—, wherei ~ j iff there is a directed path i& from to 5. SinceG
is connected, for eacht € V, thereis a sequenc{e),»}fzo C V such thats ~ vy «~v; ~
.-+« v, ~ t. This relation defines an equivalence relatien, wherei ~ jiff i ~
j andj ~ i, a corresponding partial order on the set of equivalenasels which we will
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denote by=, and astrict partial order,<. The strongly connected componentsCofire
simply equivalence classes with respecttoThey are also often called “communicating”
classes.

Given anundirectedwalk in GG, we may define its length by summing the weights of
the edges, where we weight a forward edgé(@s and a reversed edge @slLet (s, )
be the length of the shortest such walk frerto ¢t. SinceG is connected, this set of walks
is non-empty, so thdt (s, t) is well-defined for alls, t € V.

Lemma 9.1.If x € C(G), z(t) — x(s) < lg(s,t). In particular, if s ~ ¢, z(s) < z(t).

Proof. Consider any undirected walk fromto ¢t. For each forward edgey, we have
z (t(a)) — z (s(a)) < d(«). For each reversed edge, we have z (t(a)) — z (s(a)), SO
thatz (s(a)) —z (t(a)) < 0. When we sum these inequalities, the left-hand side tepesco
to z(t) — x(s), while the right-hand side yields the length of the undiedovalk. Since
this inequality holds for all such walks, it holds for the giest such one, i.e., when the
right-hand side i$;(s,t). If s ~ ¢, then there is an undirected walk franto s consisting
entirely of reversed edges, so thatt, s) = 0, z(s) — z(t) < 0, andz(s) < z(t). O

We can now prove thaank(() has at least one solution. For the following, we will
assume only that there is a well-defined operatigomaking a directed graph to pairs of its
vertices,/(G) C V x V, and thatr < 2" iff z(t) — z(s) < 2'(t) — 2'(s),V (s, t) € I(G).
For example,

HG) = {(s, 1) | degy,(s) = deg,,,(t) =0} or
I(G) = {(s,)]s=s(a), t = t(a), a € E}.
Lemma 9.2. If 2’ — z is constant, them ~ 2’. Moreover, ifr € C(G), thenz’ € C(G).

Proof. If 2’ =z + ¢, 2 (t') — (s') =x (t') — (3') , Vst € V. Since~ andC(G)
are defined solely in terms collections of such differentfes,conclusions of the Lemma
follow. O

Theorem 9.3. max C(G) # 0.

Proof. Let M = max, ey lg(s,t). By Lemma 9.1-I;(v,u) < z(u) — z(v) < lg(u,v),
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so that|z(u) — z(v)| < max{lg(u,v),lg(v,u)} < M. By Lemma 9.2, there is a repre-
sentative of each equivalence clasggty) in

C'(G) = {a: €C(G) ) =z(v) = o} .

Foranyv € V,if N = |V|,

[o(o)] = a0} = - |3 o) = 2(0)] < - 3 le(w) — w(o)] < N M = M,

ueV

Thus,C’(G) is closed and bounded, hence compact. Consider

(s,0)EI(G)

This is continuous 0@’ (G) and hence attains a maximum there at sofmeThis must be
maximal inC(G), for if z < 2’, we can assume without loss of generality that C'(G),
so thatD(z) < D (z'), which is a contradictionz

Observe that whery is strongly connected, the constant solution is the unigped
constant shift) solution tRank(G). More generally, any feasible ranking is constant on
strongly connected components@f

Theorem 9.4.1f z € C(G) ands andt are in a common cycle (i.es, ~ t), thenz(s) =
x(t). In particular, z(v) is constant on strongly connected components.

Proof. Sinces ~ ¢, s < t, andz(s) < z(t), by Lemma 9.1. Likewisey(t) < x(s), so that
x(s) = x(t) for s andt within the same strongly connected component.

9.2 Computing Pareto Optimal Solutions

In this section we show how to sohRank(G) from the Introduction by using four ba-
sic operations, reversing 0 weight edges, collapsing syclepping multiple edges, and
“shifting” vertices, to recursively simplify the problerin so doing, we give a constructive
proof of existence of solutions tBank(G). We begin by showing how we may reduce
the problem on an arbitrary graph to a corresponding probler simple, directed acyclic
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graph without O edges, obtained by reversing 0 edges, aifiggycles and then dropping
all but the smallest of multiple edges.

Given a a weighted, directed grapgh,= (V, E,d, s,t), let B, = {a € E | d(a)) = 0}
be the set of 0 weight edges. We may define a new giah) = (V' E',d’, s, ') with
V' = V, whereE' is essentially the same ds, except we introduce the reverse of the
edges ink,. Specifically,’ = £ x {0} U B, x {1}, with d'(c,0) = d(a), d (o, 1) = 0,
s'(a,0) = s(a), s'(a,1) = t(a), €(a,0) = t(a), ande'(a,1) = s(a). Notice that
C(G) = C(T(@Q)), since we are simply adding redundant equality constraints

Theorem 9.5. The set of feasible rankings fotf and7'(G) are identical, that isC'(G) =
C(T(G)). Likewisex = 2’ iff 2 <) «'. In particular, max C(T'(G)) = max C(G).

Proof. Givenz € C(G) anda’ = («,i) € E', there are two cases to consideri K 0,
thena € E and0 < z (t(a)) — z (s()) < d(a). Sinces'(a,0) = s(a), t'(a,0) = t(a),
andd'(«,0) = d(a), 0 < z (t'(a,0)) — z (s'(,0)) < d(e,0). If i =1, thena € E;, and
d(a) = 0. Thereforep) < z (t(a)) — z (s(a)) < d(a) = 0and0 < z (s(a)) — z (t(a)) <
0 = d(a,1). Sinces'(a, 1) = t(a) andt'(a, 1) = s(a), 0 < z ('(a, 1)) — 2z (s'(a, 1)) <
d(a, 1). Thereforex € C(T(G)).

Conversely, ifz € T(G) anda € E, then0 < z ('(,0)) — z (s'(,0)) < d(v,0).
As before,s'(a,0) = s(a), t'(a,0) = t(a), andd’ (a,0) = d(a), so that) < z (t(a)) —
z (s(a)) < d(a)andz € C(G).

Now assume that, € C'(G) = C(T(G)),i = 1,2, andz, = z,. Givena' = (a,i) €
E', there are again two cases to consideri ¥ 0, thena € E, and sincer; =<, x,,
2 (1a) — o) (5(0) < 25 (Ha)) — 2 (s(a)), SO thate, (£(a,0)) — 2, (s/(a,0)) <
2y (t'(a,0)) — 25 (s'(,0)). If i = 1, thena € EO, () = ( (), and

zy (e, 1)) — 2y (s'(, 1)) =0 < 0=y (£(e, 1)) — 25 (s'(r, 1)) .

Thus,z; =r@ 2o

Conversely, assume thaf <) 2,. Givena € E, thena’ = (,0) € E'. Since
Ty 2@y Tan Tq (t'(a,O)) -1 (s'(a,O)) < x4 (t'(a,())) — T (3'(04,0)). Therefore,
2 (1a)) — 1 (5(0)) < 23 (£(a) — 73 (s(a)), 50 thate, =g 5. O

Given a aweighted, directed graggh~= (V, E, d, s, t), let[v {v eVvVi]v ~ v} We
wish to define a grapt?(G) = (V' E',d’, s, t'), whereV' = {[ | |v eV} Thatis, the
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vertices of P(G) correspond to the strongly-connected components.oince strongly-
connected components are unions of cycles, we have e#f§ctollapsed each cycle to a
single vertex. To guarantee that the result is simple, weadisall loops and retain only the
smallest weight edge between any two vertices. Specifigillgns’, ' € V' with s = [s]
andt’ = [t], such thats < tandE,, = {a € E|s(a) € s, e(a) €t'} # 0, choose
agy = argmingep, , d(a), and takeE' to be the set of all such edges. Finally, take
d =d|, s'(a) = [s(a)], andt'(a) = [t(a)]. Notice that by construction; (%’,y> =5
ande’ <O‘s’,t’) =t.

Now observe that there is a natural, order-preserving spodence betweedl(G)
andC(P(Q)).

Theorem 9.6. The mapping given byp(z)(v) = z([v]) is a bijective, order preserv-
ing correspondence betwee&n P(G)) and C(G). In particular, p (max C(P(G))) =
max C'(G).

Proof. We first show that, ift’ € C(P(G)), 2 = p(2') € C(G). Givena € E, we

must show that < z (t(a)) — z (s(a)) < d(«). By definition, z (t(a)) — z (s(a)) =

7' ([t(a)]) — 2'([s(a)]). If s(a) ~ t(a), this is O and we are done. Otherwise, letting

t' = [t(a)]) ands’ = [s(a)], we haves(a) <¢ t(a) anda € E, , so thate'([t(a)]) —

2 ([s(@)]) =2 (') —a' (s') = o (e/ <as/7t/)> —x <s <O‘s/,t’>>- Sincez’ € C(P(@Q)),
0<az ( ( )) ( (at)> < d(as/vt/) < d(a). Sincez (t(a)) — z (s(a)) =
( <as’,t’)) —x <s <Oés',t’)>’ we have shown that € C(G).

Now observe that, by Theorem 9.4, any C'(G) is constant on equivalence classes,

[v], so that the inverse mapping, ' (z) ([v]) = z(v), is well-defined. Ifz’ = p~' (z),

we must show that’ € C(P(G)). If @ € F', thena = ay, with s'(a) = 5" and

t'(a) = t'. Moreover;s' = [s(a)] andt’ = [t(a)] andz’ (¢’ (o)) —2" (s (@) = 2 ([t(a)])—

7' ([s(a)]) = z (t(a)) — z (s(a]), which is betweel andd(a) = d'(«), sincex € C(G).

Finally, it remains to show thatandp ' are order-preserving functions. Assume that

r; =2 xo With z; € C(P(G)), and considery € E. For convenience, let = t(«),

s = s(«a), and observe that(zx;) (t) — p (z;) (s) = z;([t]) — z;([s]). There are two cases to

consider. Eithes ~ t or s < t. In the first caser;([t]) = =;([s]), we havep (z,) () —

p(ry)(s) =0 <0=p(x)(t) —p(z)(s). Otherwises < t anda € Ey 4, SO that
as], [t] € E with [s] = s (ajq) and[t] = e (o ). Sincer; < @y, 2, ([t]) — 2, ([s]) <
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2([t]) — z3([s]), or equivalentlyp (z,) (£) —p (1) (s) < p (1) () — p (1) (). Therefore,
p (1) < p(xy).

Conversely, assume thet < 5, with ; € C(G). Letz = p (x;) and considen € E'.
Thena = gy, With s(a) = s andt(«) = t. Sinces’(«) = [s] andt'(«r) = [t], we must
show thatr, ([t]) =2, ([s]) < @o([t]) —2a([s]). Sincer) = a5, 7' (t) 2! (s) < @5(t) —a5(s).
By definition, z;(t) = x;([t]) andz;(s) = z;([s]). Thereforex,([t]) — z1([s]) < z5([t]) —
x4([s]), as desired, so that < z,. O

We now introduce a novel operation to “shift” a vertex. Th@responds to fea-
sible pivot in a simplex tableau faf'(G), or equivalently, a change of variables that
forcesz (t(a)) — x (s(a)) = d(«). Specifically, given a weighted, directed graph with-
out self-loops,G = (V,E,d,s,t), we will say that an edgeq € F, is feasibleiff
d(a) = miny )y d(3). For any feasible edge, we then define a graph, (&) which is
identical toGG, but with a new set of edge weights. Specifically,iet{G) = (V, E, d’, s, t)
with

d(B) — d(a), ift(5) = t(e)
d(B) =< d(B)+d(a), ifs(3)=ta) .
d((), otherwise

As before, there is a corresponding mapping.taking valuations o?,,(G) to valua-
tions onG.

Theorem 9.7. Consider the mapping,, given by

ra () (v) —{ Hl e, e

7'(v), otherwise
This is bijective, order-preserving correspondence betwe
domainr, = {2’ € C(R(Q)) | 2'(t(3)) — 2'(s(3)) > d(w), if t(a) = s(B)}

and

imr, = {z € C(G) | 2((8)) — 2(s(8)) > d(a), if t(a) = H(B)} .

Proof. We first show that

v =7, (1) € C'={x € C(G) | 2(t(B)) — 2(s(B)) = d(a), if t(a) =1(8)},
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for anyz’ € domainr,. Giveng € E, by assumption) < 2’ (e (8)) — 2’ (s (8)) < d'(B),
with d(a) < o' (¢ (8)) — 2/ (s (8)), if t(a) = s(8). If t(3) = t(a), thend'(5) = d(B) —
d(a), «' (H(8)) = = (H(B)) — d(a), and’ (s(8)) = z (s(8)), sinces() # t(B) = t(a).
Therefore) < d(a) < z (t(8)) — x (s(B)) < d(p). In particular,x (t(a)) — z (s(«)) =
d(a).

Similarly, if s(3) = t(«), thend'(3) = d(B) + d(«), 2’ (s(3)) =
« (t(8)) = = (t(3)), sincet(8) # s(8) = t(a). Sinced(a) < 2’ (e () — o' (s(3)) <
d(8),0 <z (t(B)) — = (s(8)) < d(B).

Finally, if t(a) # s(5), t(5), thend () = d(B), 2’ (s(8)) = « (s(5)), anda’ ((3)) =
x (t(F)). Thus,0 < z (t(B)) —x (s(B)) < d(B) for all 5 € E, with d(«) < z(t(5)) —
z(s(8)), whent(a) = t(3). In other words;y € C’, so thatimr, C C’. Conversely, if
r € C', we may then define’(v) = x(v) — d(a), if v = t(a), andx(v), otherwise. The
previous calculations may all clearly be reversed, to shataf € domainr,,.

z (s(f)) — d(a), and

We now observe that both, andr, ' are order-preserving. if = r,, ('), then for any
s,t € V, notice thate;(t) — z;(s) = r,, (z;) (t) =, (z;) (s) — ¢, wherec = —d(«), d(«), or
0, depending on whetherand/ort equalt(«). Inany casey, (t) —z,(s) < xy(t) —x4(s) iff
ro (1) (t) — 7o (1) (5) < 1y (25) (1) — ry (z5) (s), forall s, ¢ € V. In particularz, < z,
iff 7o (21) 2o (22). O

Lemma 9.8.1f 2’ <z € C(G) for 2’ € imr,, thenx € imr,.

Proof. Assume thatt’ < = € C(G), ' € imr,. Then, for any3 € E, z(t(3)) —

z(s(8)) = «'(t(B)) — 2'(s(8)). By Theorem 9.7, it(a) = t(5), 2'(t(8)) — 2'(s(8)) =
d(a). Thereforex(t(3)) — xz(s(8)) > d(«), and again by Theorem 9.7,€ imr,. O

Lemma 9.9.r, (max C (R,(G)) Ndomainr,) C max C(G).

Proof. Letz; € maxC (R,(G)) Ndomainr, andr, (z;) = = € C(G). By Lemma 9.8,

x =1, (25), fOr z, € domainr,. Therefore, by Theorem 9.6, < x,, which implies that

Ty ~ Iy, Sincea, is maximal. Thusy, (z;) ~ 7, (xy) = x, again by Theorem 9.6. In
particular,r, (z;) € maxC(G). O

Combining these results gives Algorithm 6 which computeg®eaoptimal rankings.

Theorem 9.10. Algorithm 6 produces a solution Rank(G).
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Algorithm 6 To SolveRank(G).

1: function z =1k (G) {

2: G'=P(T(Q))
if (G'.numVertices== 1)

return (p(0));

Choose a feasible € £ such that(«) is maximal.
G' =R, (G
return (r, (p (tk (G"))));

O N g kR®

Proof. By construction,R, (G') has a 0 weight edge, so that(R,, (G')) will have at
least one fewer strongly connected components tharThus, after the initial call, line
2 decreases the number vertices by at least 1. In particuéaare eventually left with a
trivial graph, containing a single vertex and no edges. Tthesalgorithm is guaranteed to
terminate.

If G’ is trivial, by Lemma 9.2, the constant rankingv) = 0 is clearly the unique
feasible ranking, up to equivalence. Moreover, Theore®s8d 9.5 imply thap takes this
optimal ranking forG’ to an optimal ranking fotz. Moreover, by line 5G" is a simple,
acyclic directed graph. Thus, there can be no edgesjch that(«) = s(/3). In particular,
domainr, = C (R (G)), so that we may apply Lemma 9.9, along with Theorems 9.6 and
9.5 to prove that line 7 is correats

Notice that after the initial call tok(G), we may optimize the subsequent callsito
andT, since we know precisely those edges which became(® ind there will only be
one non-trivial strongly connected componenf@t7). In practice, we might expect these
calls to be of roughly constant cost, so that the entire @lyorshould be linear in the size
of G.

9.3 Related Work

The problem of ranking from a directed graph has been studisvever, the approach
has been to simply throw out the smallest cumulative weifletges to obtain a directed
acyclic graph (DAG), and apply standard topological satiteques to the result (Kenyon-
Mathieu and Schudy, 2007; Ailon, 2007). While this approbak generated a lot of inter-
est, since itis an NP-hard problem to solve exactly, oneccargue, however, that throwing
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away edges is not realistic. For examplegsitonsists of a 3-cycle with equally weighted
edges, while throwing away an edge will lead to an orderinthefvertices, the resulting
order will depend crucially on which edge is thrown away,retleough the edge can only
be chosen “randomly”. The value of such a strict orderinguBidus, since the available
evidence indicates that the vertices are indistinguishabl

When the edges are weighted, this approach becomes evemprablematic. Consider
the case wheré,, = 1, d, . = 2, andd.., = 3. If we throw out smallest edgéq, b), we
obtain the ordering < ¢ < a, even though the data indicates thaandb are the most
similar. If we throw out largest edgé;, a), the situation is even worse, since we obtain the
orderinga < b < ¢, although the data indicates thais superior ta: by the widest margin.

Moreover, this approach only reduces the problem to rankifi@AG, and does not
address how toptimally sort individuals in the resulting graph. Thus, we studiedaan
ternative which leads to a non-trivial ranking wheneversilge, that is, when the graph is
not strongly connected with non-zero weight edges betweerstrongly connected com-
ponents. In practice, if a given statistic leads to a stryponghnected graph, we suggest that
we should look for different statistics to reduce the nundfezycles until the result is not
strongly connected. Consider our original example of sptams. An initial approach
might be to simply weight an edge froito ; by number of games won bjyoveri. Butin
sports where teams play each other many times, this willyrea 2-cycle between almost
every team. By combining the number of wins and the numbeosssds as the difference,
we obtain a graph with many fewer cycles. If necessary, weeogploy additional statistics
to break “ties” in the resulting ranking.

Another interesting example of statistical aggregatiomes from the field of informa-
tion retrieval. Ailon (2007) considers the problem of aggteng partial rankings produced
by different Web search engines. Each partial ranking gavegaph of pairwise com-
parisons between consecutive members of each ranking. WWehma average the graphs
together, weighted according to our belief in the qualityhef results of each engine, to ob-
tain a directed graph for whidRank(G) may give useful results. One approach that Ailon
(2007) use is to define a Markov process and use it to deteramiggregate ranking. We
conjecture that we may similarly define a GSA, so that its@ased energy function yields
a meaningful aggregate ranking. In fact, we conjectureahmainor variant of Algorithm 4
is essentially the same as Algorithm 6, so that the Paretmaptanking it computes may
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also be interpreted in terms of a Markov process.



Chapter 10

QuickRank

10.1 Introduction

A fundamental problem in the field of social network analysiso rank individuals in a
society according to their implicit “importance” (e.g.,wer or influence), derived from
a network’s underlying topology. More precisely, given &iabnetwork, the goal is to
produce a (cardinabanking whereby each individual is assigned a nonnegative reaéyal
from which an ordinal ranking (an ordering of the individsledan be extracted if desired.
In this chapter, we propose a solution to this problem spatiyi geared toward social
networks that possess an accompanying hierarchical steuct

A social network is typically encoded inlmk graph with individuals represented by
vertices and relationships represented by directed edg#sks,” annotated with weights.
Given a link graph, there are multiple ways to assign meatartige weights. On one hand,
one can view the weight on a link fromto j as expressing the distance frano j—a
guantity inversely related tgs importance. On the other hand, one can view each weight
as the level of endorsement, or respedrantsj—a quantity directly proportional tg's
importance. We adopt this latter interpretation.

Under either interpretation (weights as distances or vieigh endorsements), a social
network can be seen as a collection of judgments, one madady iadividual in the
society. Correspondingly, we seek a means of aggregatohgigual judgments into a
single collective ranking. In other words, we consider th@ementioned fundamental
problem in social network analysis as akin to a key questiovoting: how to aggregate
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the preferences of many individuals into a single collecipersuasion that reflects the
preferences of the population as a whole.

Given a link graph, perhaps the most basic ranking schenegi®gd centrality, in which
i's rank is a combined measure of its indegree, the strengtiea#ndorsementgeceives,
and outdegree, the strength of the endorsememizkes. It is straightforward to compute
this metric. However, it could be argued that it is also dalegp take into account inferred
endorsements: e.g., ifendorseg andj endorses:, then: endorses: in a sense. At
the opposite end of the spectrum lie ranking schemes thatpocate all such inferred
endorsements.

Central to these alternatives is a hypothesis due to Bomgdi@72): an individual
is deemed important if he is endorsed by other importantviddals In other words,
the strength of an endorsement should be construed retativee rank of the individual
making the endorsement. In terms of our voting analogy, Bwhasuggests relating the
collective ranking to the sum of all individual judgmentach weighted by its respective
rank as determined by the collective. The fixed point of thisraging process—the prin-
cipal eigenvector of the link graph—defines Bonacich’s me#iso known as eigenvector
centrality. Although intuitively appealing, the compudatt of this fixed point can be pro-
hibitive in large networks.

Recently, computer scientists have developed relatedrsehto rank web pages based
on the Web’s underlying topology. Viewed as a social netwardb pages are individuals
and hyperlinks are links. The most prominent approach tkingnweb pages is the Page-
Rank algorithm (Page and Brin, 1998; Page et al., 1998), uwgooh the Google search
engine is built. PageRank aggregates the information owedan the Web’s hyperlinks to
generate a ranking using a process much like Bonacich’sadétin computing eigenvector
centrality.

In this chapter, we present QuickRank, an efficient algoritbr computing a ranking
in anhierarchical social networkMany social networks are hierarchical. One apt example
already mentioned is the Web, where the individuals are vaglep, the network structure is
provided by hyperlinks from one web page to another, and phaghierarchical structure
is given by the Web’s domains, subdomains, and so on. Andittieg example is the
Enron email database, where individuals are employees\dtveork structure is given by
emails from one employee to another, and an explicit hiareat structure is given by the
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corporate hierarchy. Yet another compelling example igation index. In this case, the
individuals are publications, the network structure idatied by the references from one
publication to another, and an explicit hierarchical suue is given by the categorization
of publications by fields (e.g., computer science), suldiédg., Al, theory, and systems),
and so on.

As we sketch the key ideas behind the QuickRank algorithimgintroductory section,
we allude to the sample hierarchical social network showRigure 10.1, a network of
web pages within a domain hierarchy. The web pages, indidstgray rectangles, are the
individuals in this society. Social relationships betwdeese individuals (i.e., hyperlinks
between web pages) are shown as dashed lines with arrowslontegn hierarchy is drawn
using solid lines with domains and subdomains as interidespindicated by solid black
circles, and web pages as leaves (gray rectangles).

edu.brown

edu.brown/cs edu.brown/econ

Figure 10.1: A sample hierarchical social network.

Up to normalization, a ranking is a probability distributidGiven any normalized rank-
ing (i.e., probability distribution) of the individuals ian hierarchical social network, by
conditioning that global distribution on a particular sabanunity (e.g., CS), we can derive
aconditionalranking of only those individuals within that subcommur{gyg., Pr[page 1
CS], Pr[page 2CS], etc.). Likewise, from the respective marginal probghof each sub-
community, we can infer what we callmaarginalranking of subcommunities themselves
(e.g., Pr[Al| CS], Pr[theory| CS], etc.). Conversely, it is straightforward to recoves th
global ranking by combining the conditional and marginailkiags using the chain rule.
For example, Pr[page 1] = Pr[page Al] Pr[Al | CS] Pr[CS].

l\ﬁewing each interior node as the root of a subtree, we infdlnrefer to the ranking of the children
of an interior node as a marginal ranking, although such kimgrs technically aconditionalmarginal
ranking, conditioned on the subcommunity defined by thatreeb
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Hence, to compute a global ranking of the individuals in ardrichical social network,
it suffices to compute marginal rankings at all interior r@ee., rank the children of all
interior nodes), and combine those marginal rankings \e@actiain rule. To facilitate re-
cursive implementation, QuickRank localizes the compoadf each marginal ranking:
any links to or from leaves outside the subtree at hand a@éghin such computations.
Beyond this computational motivation, localizing mardirenking computations can be
motivated by the following “peer-review principleéndorsements among peers (i.e., mem-
bers of the same subcommunity) should be taken at face wahile, other endorsements
should be considered as only approximate

Intuitively, it is plausible that ranking information amgmdividuals in a tightly-knit
community would be more reliable than ranking informationoag individuals who are
only loosely connected. Recall the citation index, a natexample of an hierarchical so-
cial network. When a researcher cites a topic in his areapértise, he is likely to select
the most appropriate references. In contrast, if for soraea® a researcher with exper-
tise in one area (e.g., computer science) is citing a reswhother (e.g., sociology), he
may choose only somewhat relevant references. Hence, wentbthat the peer-review
principle, which justifies localized marginal ranking comgtions, befits at least some ap-
plication areas.

To fully implement the peer-review principle it is necesstr define some notion of
approximate endorsements. To this end, we interpret anrsagh@nt by an individualin
communityA for another individuaj # 7 in another communitys # A as comprising part
of an endorsement byt of B. More precisely, we aggregate endorsements by individuals
in A for individuals in B into an endorsement by of B by first scaling the endorsements
from eachi to eachj by 's marginal rank, and then summing the resulting weighted en
dorsements. If we were to replace the targef an endorsement by any othgrc B, the
resulting aggregate endorsement remains unchanged.slsehse, the original endorse-
ment is viewed as “fuzzy” or “approximate.” Moreover, byenpreting links originating
at: asi’s judgment, this aggregation process can be seen as awrcatppli of Bonacich’s
hypothesis (to obtain endorsements of eaeh B by A) followed by a summation over all
Jj € B (to obtain an endorsement 5.

Together, the principle of peer review and Bonacich’s higpsis lead to the QuickRank
algorithm, which we illustrate on the example in Figure 10Me begin by restricting the
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link graph to, say, the Al subdomain, thereby constructitaral link subgraph. Next, we
apply any “flat” ranking scheme (e.g., degree and eigenveetatrality and PageRank) to
this link subgraph to produce a marginal ranking of the pagdéise Al subdomain (i.e., a
distribution overl and2). Then, we scale the links fromto 4 and2 to 3 by the marginal
ranks ofl and2, respectively, to generate links from Al foand3. Finally, we sum these
results to produce an aggregate link from Al to theory.

Repeating this procedure for the theory and systems sulideymee “collapse” each of
the CS subdomains into a leaf, and substitute these subdsifoatheir corresponding web
pages in the link graph. We then proceed recursively, coaistilg a local link subgraph,
and computing a marginal ranking of the CS subdomains. Caimipthis marginal ranking
with the marginal rankings of the web pages in each CS subuhoyiedds a single marginal
ranking of all the web pages in the CS domain. We repeat tlusgss until the entire
hierarchy has been collapsed into a single node, at whiaft pe obtain a ranking of all
pages in thedu. br own domain.

We conclude this introduction by noting the following progyeof QuickRank: The
relative global ranking between two individuals is detared by their local ranks in the
smallest community to which they both belofithis property follows from the fact that
scaling is the only operation which is performed on rankifgsnditional rankings are
scaled by marginal ranks), but scaling does not affectivelaankings.

Overview This chapter purports to contribute to the literature onaawetwork analysis
by introducing the QuickRank algorithm. As suggested bypfrevious example, Quick-
Rank is parameterized by a “BaseRank” procedure (i.e., adt#dting scheme, such as
degree centrality) used to compute marginal rankings. Vgnbie the next section by
precisely defining BaseRank procedures and identifyingalgs properties of such pro-
cedures. In section 10.3, we present pseudocode for the&kRanmk algorithm. We also
consider to what extent QuickRank preserves our previodglgtified desirable proper-
ties of BaseRank procedures. Then, in section 10.4, we geasample QuickRank cal-
culations. Our first example illustrates the distinctiommeEen stand alone “BaseRanks”
and “QuickRanks,” the rankings output by these schemes.rihduexample shows how
QuickRank is potentially more resistant to link-spammihgrt corresponding BaseRank
procedures. We conclude in section 10.8. A discussion afedlwork is deferred to the
QuickRank technical report, currently in preparation.
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10.2 A Unified View of Flat Ranking Algorithms

QuickRank is parameterized by a flat (i.e., non-hierardhreaking algorithm, or a “Base-
Rank” procedure. In this section, we precisely define a BaskRrocedure, and we for-
mulate the four flat ranking schemes mentioned in the intbdao as such. We also present
four desirable properties of BaseRank procedures, andsito what extent the four afore-
mentioned ranking schemes satisfy these properties.

10.2.1 Preliminary Definitions

A social network encodes relationships among individuassociety. Such a network can
be represented by lank graph Individualsi, ; € 7 are represented artices and the
fact that individuali relates to individua} is represented by a directédk from vertexi

to vertexj, augmented by a nonnegative real-valued weight indicahegstrength of’s
relationship toj.

A judgmenis a nonnegative, real-valued vector indexed oliVe define an equivalence
relation on judgments with' andr? equivalent ifer' = . For our purposes, mnking
is such an equivalence clags (although we often refer to a ranking by any representative
of the class). A ranking has exactly one representativeishatprobability distribution,
which can be obtained by normalizing any other represemtaturther, a ranking repre-
sents a consistent estimate of the relative merit of pairsdividuals: i.e., for all pairs of
individualsi andj, the ranking ofi relative toj, namely:- € [0, oc], is well-defined.

A link graphis a nonnegative, real-valued squaré matrix indexed orWe restrict
attention to the case where the weights in the link graph reaganably be interpreted as
endorsements, rather than distartésjudgmentgraph is a link graph further constrained
to havepositivediagonal entries. Each columnin a judgment graph represeajudgment
of one individual. The requirement that the diagonal betp@scan be interpreted to mean
that individuals are required to judge others relative enteelves. Whereas rankings are
scale invariant, judgments are scale dependent.

In the introduction, we presented ranking schemes as apgran link graphs. That
was a convenient oversimplification. More precisely, thegpna judgment graph and a

%It is conceivable that QuickRank can be suitably modifiedsiodie the distance interpretation by redefin-
ing the peer-review notion of approximation as aggregaiiyngaking a minimum instead of summing,
but we have not yet explored any applications of this sort.
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prior ranking to aposteriorranking. We view the inference of a judgment graph from a
link graph as a preprocessing step. This step might corfsisd@rting self-loops: replacing
zeros on the diagonal with ones. In the case of the Web ort@ocitdatabase, for example,
such self-loops would model each web page or publicatiomadgitly referring to (i.e.,
endorsing) itself.

Analogously, we define BaseRanlprocedure as a higher-order function that takes a
judgment graph to a mapping which infers a posterior rankiam a prior. When used
within the QuickRank algorithm, we require that the posteranking output by the Base-
Rank procedure be normalized to a probability distributidrhe prior ranking may be
viewed as the persuasion of the “center” (i.e., the implderenf the ranking scheme). A
BaseRank procedure then is a means of aggregating the judgofehe individuals in the
society, and the center, into a single collective postedaking.

Given a judgment grapl® and a prior rankingr), Bonacich’s hypothesis suggests
that we may infer a collective judgment es= Rr. In this way, individualj’s posterior
position is the sum of each individués conception ofj, weighted by the prior rank of
By ignoring scale in’, we can infer the posterior rankirig’). Note that the result of these
two inference steps is well-defined, in tHat) depends only ory) and not onr itself. We
use the terntinear to describe a BaseRank procedure whose mapping from a priking
to a posterior abides by Bonacich’s hypothesis.

This inference rule shows up naturally in the case of two &ntypes of judgment
graphs, namely, finite-state, discrete-time, stationaayldv processes and Bayesian up-
dating. In the former case, the judgment graph correspoirdstly to the probability
transition matrix of the Markov process and the inferende follows the corresponding
reallocation of probability. In Bayesian updating, oneiigeg a prior probability distribu-
tion r; = Pr[A;] over events4,;, together with the conditional probabilitids;, = Pr[B |
A;] of some common evenB. The Bayesian approach infers the posterior distribution
! = Pr|A; | B] precisely as above: i.e; =

Bl
expressed as the composite of these two types, a matrix asitst@nt column sums and a

In fact, any judgment graph can be

diagonal matrix.
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10.2.2 Sample BaseRank Procedures

We now describe how the four ranking schemes mentioned imtheduction (i.e., in-
degree, outdegree, eigenvector centrality and PageRanlk)e& viewed BaseRank proce-
dures. We assume that the link graph has been pre-procegitiedelf-loops inserted as
necessary, to yield an “initial” judgment graph. Since thietience step is fixed, the key
stepin alinear BaseRank procedure is the way in which a "fjndgment graph is inferred
from the initial jJudgment graph. The degree centrality nestand PageRank are examples
of linear BaseRank procedures, as is eigenvector cegtradder certain assumptions (see
Theorem 10.2).

The indegree and outdegree of individuare defined respectively, as follows: given
an initial judgment grapl,

IN(i) =Y Ry ouT(i) = Y Ry (10.1)

Both these centrality metrics can be understood as lineseank procedures that infer a
posterior ranking from a uniform prior. Indegree is simgig identity function: the initial
and final judgment graphs are identical. Outdegree is tmsp@se operation: the initial
and final judgment graphs are transposes of one another.

The PageRank algorithm is parameterized by a valge (0, 1) and a distributiony,
often referred to as a “personalization vector.” In a prepssing step, the columns of the
judgment graph are normalized to yield a Markov matrix PageRank operates on the
convex combination of\/ with the rank one Markov matrixJ* (where.J ambiguously
denotes any vector of all's), namely M, = (1 — €)M + evJ'. This matrix is easily
seen to beinichain(see chapter 1), hence with a unique stable distributipnMoreover,
Haveliwala and Kamvar (2003) have shown thathas a second largest eigenvalué ef,
so thatlim, ., M"v, = v.., for any initial distributionv,, with convergence asl — e)"”.
This result follows alternatively by writing,, as the limit of a geometric series:

Theorem 10.1.1f M is a Markov matrix and\/, = (1 — €)M + ev.J, then

oo

vy = lim My, = 62(1 —e)'M'y (10.2)

k—o0 -
1=0

This theorem implies that PageRank is a linear BaseRanlkegdure, which takes an
initial judgment graph/ to a final judgment graph>_°>° (1 — ¢)'M". The prior ranking
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corresponds to the personalization vector and the postaiing is a discounted sum of
all the inferred rankings (including the prior).
Unlike degree centrality and PageRank, which we have shoerirrear BaseRank

procedures, eigenvector centrality is not. Given a judgrgespph R and an prior ranking

Ruv,
[ Ry l1

that this sequence eventually converges to a fixed pointvhich can be interpreted as the

vy, the algorithm infers a sequence of posterior rankings = . It can be shown

collective ranking. Moreover, this iterative process carelpressed as a linear inference
vy, = —2=%_ whereq, and hence?,,, depend on the support of. In particular, eigen-

T [[Rawolly !

vector centrality is giecewisdinear BaseRank procedure. In the special case where the

judgment graph is strongly-connected (i.B.is irreducible), eigenvector centrality is lin-
ear, becaus®,, is constant (i.e., independent®f andv, is independent of,. Formally,

Theorem 10.2.1f a judgment graph? > 0 is irreducible with non-zero diagonal, there

exists a unique ranking > 0, such that|v|; = 1 and Rv = p(R)v, wherep(R) is the

Rv,,

magnitude of the largest eigenvalue ®f Moreover, for anyy, > 0, if v,,,; = TRo T

lim,, ... v, = v. Thatis,u,, = v andforalla, R, = vJ".

10.2.3 Generalized Proxy Voting

If we view each individual’s rank as a collection of proxye(i. infinitely divisible and
transferable) votes, then a judgment graph may be integbiges goroxy-vote specification
indicating how each individual is willing to assign his pyoxotes to others. Given a
prior ranking (i.e., an initial allocation of proxy voteshe posterior inferred by a linear
BaseRank procedure is a reallocation based on the resalsiadle round of proxy voting.
More generally, irgeneralized proxy-votinflGPV), individuals cast their votes repeatedly
over time (i.e., each posterior serves as a prior in the rexd), until ultimately, the
sequence of posteriors is averaged into a final vote coentaifinal ranking.

While historically PageRank has been viewed in terms of adoan-surfer” model (cf.
Page et al. (1998)), Theorem 10.1 suggests that it may be aptheviewed as a GPV
mechanism with a discount facter € [0,1). In particular, for a given prior ranking,
the posterior computed by PageRank can be expressdd-as) " > >, 7'M v. Notice
that this is just the average of the inferred rankidd&, where; is distributed geometri-
cally with meany. It is natural to generalize to allow weighting by arbitragtributions,
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S, a;M'v, or even as the limit of suchimy_., S~ a; yM'v. Formally, we define a
generalized proxy-voting mechanism as a (linear) BaseRermtedure that takes an initial
judgment graph\/ into a final judgment graphm,y_ ., 2 o, v M.

Observe that all the flat ranking schemes mentioned aboeepéxutdegree, are not
only linear BaseRank procedures, but can be seen as GPV migcisaas well. Indegree
is a trivial instance of GPV withy, y = ¢,;. By Theorem 10.1, PageRank is a GPV
mechanism withy; y = ¢(1 — €)". Finally, if we restrict attention to irreducible judgment
¥ F0<i<N
0 otherwise
This final claim follows from Theorem 10.2 and the well-knofaot that

graphs, eigenvector centrality is a GPV mechanism, wjth =

k—
1
lim s; = lim —Ej.
ZlmS kl ]{jios

Although outdegree, which takésto R’ is linear, it is not a GPV mechanism.

10.2.4 Axioms

Next, we identify two types of judgment graphs that have radtunterpretations, and on
which a particular behavior for a BaseRank procedure seeeferped. First, consider
the identity matrix/ as a judgment graph—thdentity graph—in which each individual
ranks himself infinitely superior to all others. Such a rawgkgraph provides no basis
for modifying a prior ranking. Thus, on this input, it seeneasonable that a BaseRank
procedure should act as the identity function (i.e., paster prior).

Second, consider the case af@nsensugraph, that is, a judgment graph’, wherez
is a distribution andj; is individuali’s arbitrary scaling factor. In other words, a consensus
graph is a rank 1 matrix: everyone agrees on the rankjng to a multiple. Since there is
consensus among the individuals in the society, we conteatcany prior ranking should
be ignored. A BaseRank procedure should simply return theatsus:.. We restate these
two properties succinctly, as follows:

ldentity: BaseRank(I) = id

Consensus: Base Rank(zy') =
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Another important issue associated with ranking schemé#saitsof manipulation via
“link spamming.” The goal of link spamming is to game a ramksystem by creating
many false nodes, sometimes called sybils (Cheng and Faied?006), that link to some
noden, thereby attempting to influence the rank of nad&Veb spamming is a particularly
popular form of link spamming (Gyongyi and Garcia-Molin@02).

M N
0 M
where M is the original judgment graph (i.e., without the sybil8),describes the links

A judgment graph inhabited by sybils takes the followingnior)d/’ =

from the sybils to existing members of the society, andlescribes the links among sybils.
Since sybils are new to the community, and hence unknowrriggal members, we as-
sume that there are no links from those members to sybils.

Observe that generalized proxy-voting mechanisms are $paistant in the follow-
ing sense: Given a prior ranking which places no weight onlsythe posterior ranking
computed with respect to the modified judgment graphis, for all intents and purposes,
equivalent to the posterior ranking computed with respe¢hé original judgment graph
M. Thatis,

M N v
Theorem 10.3.1f M’ = R ,and
0O M

N
BaseRank(-) = A}im Z Q; N ()",
0

BaseRank(M )v
thenBaseRank(M')v' = [ (M) ]

0

For example, since PageRank is a GPV mechanism, we applydinet).3 to show
that the posterior ranking of non-sybils is unaffected Isirtpresence, if we assign sybils
a prior rank of 0. In other words, if sybils can be detecéegriori, then PageRank may
be rendered immune to such an attack. Although the correlspgpMarkov matrix need
not be irreducible for such a “personalization” vector, wadude from Theorem 10.1 that
the Markov process converges fat prior rankingsv,. Note that this conclusion follows
specifically from our interpretation of PageRank as a GPVharism, as opposed to the
traditional “random surfer” model.
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Property | Indegree Outdegree Eigenvector PageRank
Linear Yes Yes No Yes

GPV Yes No Yes Yes
Identity Yes Yes Yes Yes
Consensus  Yes Yes Yes No

Table 10.1: Some properties of ranking schemes.

Table 10.1 summarizes how each of the four ranking schernseashied in this section
behave with respect to the four properties of BaseRank duoes discussed in this section.
PageRank doesot satisfy the consensus property because it is always biasedme
degree by the prior ranking. However, using the notatioroguced above, if we instead
defineM, = (1 — €)M + eMv.J*, the resulting algorithm satisfies all four properties.sThi
modified PageRank corresponds to a linear BaseRank praceatirfinal judgment graph
€3, (1 —e)'M™!, that is, the posterior is a discounted sum of all inferreakirags
excludingthe prior.

Fundamentally, QuickRank’s design is based on the two kegsdliscussed in the
introduction, namely the peer-review principle and Boohs hypothesis. However, as
QuickRank is parameterized by a BaseRank procedure, isesddsigned to preserve the
Identity and Consensus properties. In the next section,etaldhe algorithm and argue
informally that it indeed preserves these two propertieBageRank procedures, although
it fails to preserve linearity. When we present sample datmns in section 10.4, we note
that QuickRank preserves the spam-resistance of its BakgiRacedure, and we illustrate
its potential to resist spam even further.

10.3 QuickRank: The Algorithm

QuickRank operates on a hierarchical social network, thatjudgmeritgraph R whose

vertices are simultaneously leaves of a tféeAt a high level, QuickRank first ranks the
leaves using the link information contained in the localgalphs; it then propagates those
local’ rankings up the tree, aggregating them at each level, inetjl have been aggregated

3As above, we assume the link graph has been pre-processedta judgment graph.

*Whereas in the introduction, we used the term marginal, weuse the term local to refer to the ranking
of a node’s children. The salient point here is: this ranksngpmputed using strictly local information.
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into a single global ranking. Ultimately node’s QuickRank is the product of its own
local rank and the local rank of each of its ancesto@uickRank is parameterized by a
BaseRank procedure, which it uses to compute local ranklhgkso takes as input a prior

ranking of the leaves. It outputs a posterior distribution.

Although we present QuickRank pseudo-code (see Algoriththat is top-down and
recursive, like many algorithms that operate on trees, timplsest way to visualize the
QuickRank algorithm is bottom-up. From this point of viewjiGkRank repeatedly identi-
fies “collapsible” nodes ifl’, meaning the root nodes of subtrees of depth 1, and collapses
them into leaf nodes (i.e., subtrees of depth 0) until thegena further opportunities for
collapsing: i.e., untill" itself is a leaf node. Collapsing nodeentails: (i) computing a
local ranking at, that is a ranking of's children, and (ii) based on this local ranking, ag-
gregating the rankings and the judgmentssfchildren into a single ranking and a single
judgment, both of which are associated with

Note that QuickRank is a well-defined algorithm: that is,dh@éer in which local rank-
ings are computed does not impact the global ranking. Thupeaty is immediate, since
QuickRank propagates strictly local calculations up tee tn computing its global output.
Moreover, the collapse operation replaces a subtree ohdegith a subtree of depth 0 so
that QuickRank is guaranteed to terminate.

Data Structures Algorithm 7 takes as inpul,, subtree of" rooted at node, and returns
two data structures: (i) a ranking of all leaves (with suppaty on7;,) and (ii) a judgment,
which is the average of all judgmentsBf's leaves, weighted by the ranking computed in
(). At leaf noden, the ranking is simply the probability distribution withl aleight onn,
denotect,,, and the judgment is given by,,.

Computing Local Rankings Recall that the main idea underlying QuickRank is to first
compute local rankings, and to then aggregate those lon&lngs into a single global
ranking. Given a collapsible node a local ranking is a ranking af’s children. To
compute such a ranking, QuickRank relies on a BaseRank qguoee

There are two inputs to this BaseRank procedure. The firssilcal (i.e., marginal)
prior ranking. The second is a local judgment gragh For ;7 andk both children of node
n, the entry ofM in the row corresponding tb and the column corresponding fas the
aggregation of all endorsements from leave§irio leaves in7}, equal to the sum of all
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entries in thejth judgment corresponding to leavesigf

Aggregating Rankings and Links To aggregate the rankings afs m children into a
single ranking associated with QuickRank averages the rankings. .., ™ according

to the weights specified by the local ranking If we concatenate the: rankings into a
matrix@ = | ' ... ™ |, then the aggregation of rankings can be expressed simply
asQr. Also associated with each chijdof a collapsible node is a judgment’. These
judgments are aggregated in precisely the same way as gamkin

Algorithm 7 QuickRank(node:)

. if (n.isLeaf))

2 return ((n.getJudgmery, e,,));

3: m =n.numChildren()

4: for (j=1tom) {

5. (I/,r") « QuickRanKn.getChild;))
6

7

8

9

> =

for (k =1tom) {
M,; = Sum(l’, n.getChild k))

C
2
10: P=[ 1" ... 1™
11: @ = [ P }
12: r = BaseRank{/, n.getLocalPriorRanking())
13: return ((Pr, Qr));

We now argue that if the BaseRank procedure satisfies théatigand Consensus prop-
erties, then so, too, does QuickRank. First, notice thagnariestricted to any subcommu-
nity (i.e., square, diagonal block), an identity or consesngraph yields the same type of
graph again. Moreover, aggregating links in such a communithin the original graph
(i.e., summing rows and averaging columns) also resultsersame type of graph. Con-
sequently, if QuickRank employs a BaseRank procedure WweHdentity property, it will
output the prior distribution on the identity graph, sinlae prior local rankings will remain
unchanged at each level in the hierarchy.

Now consider a consensus graph with ranking t. ||z||; = 1. Restriction to a sub-
community gives a consensus graph on the correspondingticorad distribution ofx.
Likewise, aggregation produces a consensus graph on thesponding marginal distri-
bution of z. If QuickRank employs a BaseRank algorithm with the congsrmoperty
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on a consensus graph, it will gradually replace the priarihigtion at the leaves with the
conditional distributions of, until it finally outputsz itself.

We conclude this section by pointing out that, even if thedBank procedure is linear,
QuickRank may not be expressible as a linear inference. Blazimg local rankings to
form distributions can introduce non-linearities. In thexhsection, we provide sample
QuickRank calculations.

10.4 Examples

We now present two examples that verify our intuition regagdQuickRank and illustrate
some of its novel features. Recall that QuickRank, as itaesron an hierarchical social
network (HSN), is parameterized by a prior ranking and a Basé& procedure.

First, consider the HSN shown in Figure 10.2a. The hieraictyawn using solid lines.
The link graph is indicated by dotted lines between the nustkaves. All weights are
assumed to be 1. Computing QuickRanks for this HSN, vanjiegdaseRank procedure
among indegree, eigenvector centrality, and PageRdmk,always assuming a uniform
prior ranking, leads to the rankings, cardinal and ordislabwn in Table 10.2. The values
in the posterior distributions have been rounded; henetitiinal rankings more precisely
reflect the exact values in those distributions.

a) b)

Figure 10.2: Two examples of hierarchical social networks.

For each BaseRank procedure, we list two pairs of rankirfust which results from
ignoring the hierarchy, and that which results from exjhgjtit using QuickRank. When
we ignore the hierarchy, all three algorithms rank leaf 1vab@r equal to) 3. However,
since 1 defersto 3 (i.e., 1 endorses 3, but not vice verssg¢duan our peer-review principle,

°The results of ranking with outdegree are not qualitatiifferent, but are omitted for lack of space.
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Table 10.2: BaseRanks and QuickRanks from Figure 10.2a ifaton prior.

Indegree Eigenvector PageRank
cardinal| {0.13,0.13,0.13,0.13,0.2,0.13, 0}13 {0.19, 0.08, 0.16, 0.14, 0.22, 0.10, O}1f {0.14, 0.32, 0.11, 0.09, 0.14, 0.09, O}11
Flat
ordinal 5>1=2=3=4=6=7 5>1>3>4>7>6>2 2>1>5>3>7>6>4
cardinal| {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, O}18 {0,0,0.41,0,059,0,p {0.04,0.14, 0.25, 0.04, 0.41, 0.06, 0}0
QuickRank
ordinal 5>3>7>6>1=2>4 5>3>1=2=4=6=17 5>3>2>7>6>1>4

3 should be ranked higher than 1. This outcome indeed psavaihe QuickRanks, for all
three BaseRank procedures.

When using a uniform prior ranking, the resulting rankings@ot biased by the depth
at which individuals reside in the hierarchy. If such a bedesirable, however, it can be
easily achieved with a non-uniform prior. For example, taki{2,2,2,2,1,1, 2} as prior
ranking and indegree as BaseRank yields a posterior ramking

{.10,0.10,0.19, 0.12, 0.18, 0.09, 0.23},

which corresponds to an ordinal rankingof- 3 > 5 >4 > 1 =2 > 6. Whereas 5 was
ranked higher than 7 with a uniform prior, 7 ranks higheshwhis biased prior.

As an added benefit, QuickRank may be more resistant to liaknsging than Base-
Rank procedures that do not exploit hierarchies. To dematesthis phenomenon, in Fig-
ure 10.2b, we introduce a sybil, leaf 8, into our original ryde to try and raise the rank
of 6 by recommending it highly. Note the multiplicity of liskrom 8 to 6.

Table 10.3: Fig. 10.2b with Indegree as BaseRank.

Uniform Prior Weighted Prior

cardinal| {0.10, 0.10, 0.10, 0.10, 0.15, 0.30, 0.10, 3:05 {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13,p.

Flat

ordinal 6>5>1=2=3=4=7>38 5>1=2=3=4=6=7>38

cardinal| {0.09, 0.09, 0.18, 0.06, 0.28, 0.14,0.11, .06 {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.19,)0.0
QuickRank

ordinal 5>3>6>7>1=2>4=8 5>3>7>6>1=2>4>8

Applying QuickRank with indegree as BaseRank to this exanyplds the rankings
shown in Table 10.3. Using a uniform prior, the sybil is aldedise the rank of 6 over 7
and 6 over 4, whether we exploit the hierarchy (i.e., use KRank) or not (i.e., compute
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indegrees directly). QuickRank cannot prevent this ougmsince the sybil is an accepted
member of 4’s and 7's community. However, the influence ofsyial is somewhat miti-
gated under QuickRank. Since the resulting ranking mugieshe hierarchy, the effect
of the sybil is to raise the ranks bbth5 and 6 (i.e., both values in the posterior distribu-
tion). No amount of link spam from a sybil outside their locammunity can increase the
rank of 6 relative to 5.

Moreover, if one is able to identify sybibs priori, by setting the prior ranks of sybils
to zero, one can reduce their influence even further. If weaupgor ranking which is
weighted against the sybil, say uniform over 1-7 and zero omaBle 10.3 shows that
indegree produces the same rankings as in Table 10.2, thathisutthe sybil, whether we
exploit the hierarchy or not. In general, Theorem 10.3 stdtat any BaseRank procedure
which is a GPV mechanism will necessarily exhibit this samledvior. QuickRank is not
a GPV scheme (recall that QuickRank is nonlinear but that GEhémes are linear). Still,
QuickRank preserves the spam-resistance property cbkastict of GPV mechanisms.

10.5 Experiments

In this section, we discuss some preliminary experimentparéormed to validate our
QuickRank technique. Specifically, we compare the performand@wtkRank utilizing
two different BaseRank algorithms (indegree and PageRamkree sample information
retrieval tasks, the 2002, 2003, and 2004 TREC Topic Dastdh Tasks, part of the annual
TREC competitiof As described in the 2003 report, “the topic distillatioakanvolves
finding relevant homepages, given a broad query,” where tal gjomepage [corresponds]
to a site which:

¢ Is principally devoted to the topic,
e Provides credible information on the topic, and

e Is not part of a larger site also principally devoted to th@dd (Craswell and Hawk-
ing, 2003).

®http://trec. nist.gov/
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Queries were applied to a corpus of U.S. government web pagessO0V test collec-
tion, containing about 1.25 million pagédn each of 2002 and 2003, the task involved 50
queries, while in 2004 it used 75 queries. For each queryl REEC organizers compiled
a list of pages which it deemed as sufficiently good respomseguery-relevant”, for the
task. Specifically, the pages returned by all the entranteé@ompetition were rated by
human judges. Those with sufficiently high scores were ddegnery-relevant, and a cor-
responding list of “qrels” were then published by the TREGamizers for future research.
Notice that this set of grels is thus biased to favor compegiagainst non-entrants of the
competition, such as o@uickRank implementation.

Apart from the third criteria, the goal of the Topic Distitat (TD) task is to strike a
balance between relevance and “authoritativeness” (atighan Web search. While we
believe thaQuickRank should provide a meaningful (query-independent) measiutteeo
authority of a web page (as judged by the community of web pagd@ishers), we needed
an additional (query-dependent) technique to filter webepédgr relevance to the given
query. We used Apache Lucene, a “high-performance, falitfieed text search engine
library written entirely in Java® We then took a convex combination of the resulting rank
scores from each technique, with mixing parametetp obtain the ranking of each page
of a query.

In order to applyQuickRank, we needed to infer a hierarchical, social network on the
corpus of web pages. We used the (unweighted) link graphhith&e TREC organizers dis-
tributed with the corpus, converting it to a judgment grapldascribed in section 10.2.2.
We used the URL hierarchy as described in section 10.2.2péxor efficiency, we col-
lapsed subtrees to insure that there were a minimum 200d¢mrenode and the hierarchy
had a maximum depth df, wherek = 0,...,7. This is clearly not the most informative
hierarchy; it was simply the most readily available one. §ho our results we focus atten-
tion to compare depth O (i.e., simply applying the BaseRdg&rahm) and depth 1. The
branching factor at depth 1 is roughly 250

So that we could compare our results with those of the TRECpetitors, we applied
several standard measures to the ranking resulting prddeseh query. If, for a given
query, H represents the set of all documents retrieved @né's is the set of documents

"http://ir.dcs. gl a. ac. uk/test collections/

®ht t p:/ /1 ucene. apache. or g/ j aval/ docs/
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judged to be query-relevant, whilg,, is the subset ofi top-ranked documents, we may
define the following measures on the retrieval system:

e Success at: SQn = [H, N Qrels # (]

e Recall atn: RQn = W
rels|
e Precision atn: PQn = W

|H‘les‘ﬂQrels‘

e Precision atR: PQR = [Orels|

H,—H,_,CQrels|
|Qrels|

« Average PrecisionAP — ! pay!

Notice that these measures assume thatay be ordereavithout ties SinceQuickRank
makes so such guarantees, these measures may have begnaffedtgd by the order in
which equally ranked pages were processed. The same setastines were not applied
uniformly across all three years; we report only those #tiat reported from each year.

We give the results of our experiments in Tables 10.4-10.&chEcolumn represents
the average of the given measure over all queries for thatsyeampetition. The rows
correspond to the three selected competitors, along wighrtims of our algorithm with
varying parameters. We chose to include the top- and bostmiming competitors for each
year, along with a third competitor which has roughly the rmaedscore for reference.
Likewise, we include the results witlh = 1, which we label “Lucene”, since the ranking
of the query results is entirely determined by Lucene’svaalee score.

For each query, the rank scores produced by LuceneCanckRank were on very
different scales. The latter tends to be more exponentiailewthe precise nature of the
former is unclear. In additionH| > |Qrels|. Thus, how to combine the two scores was
problematic. We first converted each rank score to a linetar,J0scale; that is, the scores
and - apart, respectively. We then used a

rels| |H |
simple convex combination, with weight parameteto combine the results. Again, since

of consecutively ranked documents w

it is unclear how much weight to assign to topic relevanceswgruthorithy, we ran our
experiments for various values @fpha to discover a proper value, which ranged frain
to .99 over the three years.

*While |H,,| = n, we write it out to show the symmetry in the definitions of psean and recall.



Table 10.4: Comparison with TREC 2002 competitors

P@10 « |Algorithm |Depth
0.251| - thutd5 -
0.198|0.99 PageRank O
0.194| - mu525 -
0.190(0.99| Indegree| 1
0.190{0.99| Indegree| O
0.184/0.99 PageRank 1
0.182| 1 -
0.057| - |ajouai021Q -

Table 10.5: Comparison with TREC 2003 competitors

P@10

P@R

AP

«

Algorithm

Depth

0.124

0.164

0.154

csiro03td03

0.090

0.114

0.099

0.97

Indegree

0.086

0.105

0.097

0.97

Indegree

1
0

0.082

0.086

0.089

1.00

0.074

0.092

0.088

0.97

PageRank

0.062

0.078

0.087]

0.97

PageRank|

Rl of

0.092

0.092

0.070

meijihilwl

0.032

0.028

0.023

C2B
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Along with the three reference competitors and the resul&noply using relevance
score alone (i.e., Lucene), we report the performand®@wtkRank using indegree and
PageRank as BaseRank algorithms. When depth is 0, thesegeeh are just the standard
algorithms (i.e., without exploiting the hierarchy). Frdhe results in Tables 10.4-10.6,
we can see that indegree at depth 1 generally performed avelljn particular, it always
performed indegree at depth 0. Moreover, it almost alwaypartormed PageRank at

either depth.

This suggests a number of practical benefitQtockRank. Remember that PageRank
was designed to mitigate the manipulability of indegree link-spamming. However,
from these experiments and our discussion in Section 1@4ee that simply by applying
QuickRank with indegree at depth 1, we can limit the influence of linlspning without
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sacrificing the quality of our resulting rankings. Noticatlthis is even more striking, since
indegree is much simpler and faster to compute than PageRank

Table 10.6: Comparison with TREC 2004 competitors

S@1| S@5|S@10P@10 R@1000 AP | « Algorithm Depth
0.507/0.773 0.893| 0.249| 0.777 |0.179 - |uogWebCAU150 -
0.213/0.680 0.773] 0.151] 0.590 |0.123 0.95 Indegree 1
0.253/0.680 0.813| 0.163| 0.590 |0.120 0.95 Indegree 0
0.333/ 0.64| 0.76 | 0.199| 0.647 |0.115 - MUO4webl
0.227/0.587/0.707| 0.135| 0.586 |0.093/0.95] PageRank
0.080/0.400 0.573| 0.109| 0.569 |0.075/1.00
0.187/0.533 0.600| 0.097| 0.582 |0.074{0.95] PageRank
0.067/0.147/0.173| 0.029| 0.147 |0.018 - irttil -

= | Of

10.6 Discussion: Implicit Hierarchical Structure

Some networks may come equipped with an explicit hieraatlsicucture (e.g., the Web’s
URL tree), but others may not. For networks in the latter gattg, it has been argued
that many (social) networks tend to exhibit hierarchicalaure at least implicitly (Simon,
1962). To run QuickRank on such a network, it would be necgdeanfer this hierarchical
structure. Even for networks in the former category, it maywworthwhile to infer an
alternative hierarchical structure. In the case of the Wirbekample, QuickRanks may
be more useful if pages are categorized into a topic hieyarakther than according to the
URL tree.

It is possible to imagine a number of ways to infer an impligérarchical structure,
given a network whose nodes are documents (e.qg., Web pagat neessages, or publica-
tions). On the one hand, one could rely solely on the textoraient of the documents (Blei
et al., 2004). On the other hand, one could rely solely on tigetlying graph-theoretic
structure. In the case of the Web, it has been observed #atfRh tree is reflective of the
hierarchy that would be inferred based on its graph-theosétucture (Eiron and McCur-
ley, 2004). In principle, one could also rely on some comtiameof both approaches.

A difficulty arises in that some nodes in a network may not fitasgly in one category.
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For example, Arnold Schwarzenneger could be classified #s do actor and a politi-
cian. Alternatively, an algorithm that infers an implicieharchical structure may output a
probability that each node belongs to each category. Fanpbe Arnold Schwarzenneger
could be classified as an actor with probability and a politician with probability).1.
We are developing natural extensions of the basic QuickRégdrithm that operate on
hierarchical structures like these.

10.7 Related Work

The idea of constructing a global ranking by combining camrig local rankings is not
new. Indeed the electoral college is based on the same ba@soipte. Each state holds
a local presidential election, the global outcome of whkletermined by weighing the
local outcomes according to the importance—in this case stke of the Congressional
delegation—of each stat8.

More to the point, Kamvar et al. (2003a) apply similar metvlody to rank web pages
in their algorithm, BlockRank, which is designed to explibie block structure they ob-
serve in the Web. They do not recursively apply their reasprinowever. They combine
domain and subdomain rankings only once, and then inigi&egeRank with the resulting
distribution, in an attempt to speed up the usual PageRamipatation.

10.8 Conclusion

Social network, or link, analysis is regularly applied téoirmation networks to compute
rankings (Garfield, 1972; Kleinberg, 1998; Page and Bri®8l%age et al., 1998) and to
social networks (Bonacich, 1972; Hubbell, 1965; Katz, 198§38sserman and Faust, 1994)
to determine standing. We discuss two examples of infoonatetworks with inherent
hierarchical structure: the Web and citation indices. &laoetworks, like the Enron email
database, also exhibit hierarchical structure. SimonZ}86ggests that such hierarchies
are ubiquitous:

10QuickRank, applied to presidential elections, would ndireathe popular vote in each state, and then
weigh the resulting distributions by the corresponding hanof electoral votes, a process which reduces
to plurality voting.



187

Almost all societies have elementary units called familisich may be grouped into
villages or tribes, and these into larger groupings, andrsolowe make a chart of
social interactions, of who talks to whom, the clusters afsgeinteraction in the chart

will identify a rather well-defined hierarcHit structure.

Still, to our knowledge, link analysis procedures largglgare any hierarchical struc-
ture accompanying an information or social network. In traper, we introduced Quick-
Rank, a link analysis technique for ranking individualst#eploits hierarchical structure.
The foundational basis for QuickRank is the peer-reviemqpile, which implies that the
relative ranking between two individuals be determinedhgyrtiocal ranks in the smallest
community to which they both belong. This principle, togatiwith an hypothesis due
to Bonacich, leads to a recursive algorithm which is scalaphrallelizable, and easily
updateable.

For a large-scale network such as the Web, we anticipat&tinakRank will yield sub-
stantial computational gains over standard ranking mettiedy., calculating PageRanks
via the power method). Moreover, it appears more resistatibk spamming than other
popular ranking algorithms on contrived examples, altlioitigemains to verify this claim
empirically.

In ongoing research, we are attempting to empirically \&édhe merits of QuickRanks
computed with some BaseRank procedure as compared to tkimgasomputed by the
BaseRank procedure itself. Specifically we are augmentughe, an open source Web
search engine, with QuickRanks, PageRanks, and indegnks imraorder to measure the
precision and recall of the augmented tool on the topicldigon queries from the TREC
2002, 2003, and 2004 web tracks.

1Simon’s use of the terminology “hierarchic” is slightly lamter than our use of “hierarchical structure,”
by which we mean tree structure. Still, the point remainsrdnichies (or approximations thereof) arise
naturally in societies.



Appendix A

Review of Linear Algebra

Throughout this thesis, we assume basic knowledge of veptres. Here we remind the
reader of many of those specifics on which we heavily rely.

For any matrix M, thekernelof M, sometimes called thaullspaceof M, is defined as
follows: ker M = {v € R" | Mv = 0}. Likewise, here is the definition of thimageof M:
im M = {Mv | v € R"}. Thespanof a set of vectors is the set of all linear combinations
of those vectors. The image 81 is sometimes called th@lumnspacef M because it is
the span of the columns af.

Afinite setof vectordv; € V' | 1 <i < k} is said to bdinearly independerniff a; = 0,
forall1 < i <k, Wheneveer:1 a;v; = 0, 1.e., 0 cannot be expressed as a non-trivial
linear combination of the vectors in the set. basisfor a vector spacel/, is a linearly
independent set of vectors whose spalrisThedimensionof V' is the cardinality of any
basis (all bases have the same cardinality).

With these definitions in hand, we now state without proof tmportant theorems
from linear algebra.

Theorem A.1. For anym x n matrix, M,
a) dimim M = dimim M". We call this value theankof M.
b) rk M + dimker M = n, andrk M + dim ker M' = m.

¢) When) is square (whemn = n), dimker M = dimker M*. We call this value
thenullity of M.
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Theorem A.2. For anym x n matrix, M,

a) If LM = I for somen x m matrix L, we callM left-invertiblewith left-inverseL.
M is left-invertibleiff M is injectiveiff ker M = 0.

b) If MR = I for somen x m matrix R, we call M right-invertiblewith right-inverse
R. M isright-invertibleiff M is surjectiveiff ker M* = 0.

c) If M is square, thed/ is surjective iffM is injective iff M is invertiblewith inverse
M~ 'suchthatM 'M = MM ™' = 1.

The addition of two matrices is well-defined iff both matsdeave the same dimen-
sions. The multiplication/ M’ of anm x n matrix M and anm’ x n' matrix M’ is
well-defined iffn = m’, and the resulting matrix will be of dimensien x »n’. Here are
some simple observations about how the kernel of a matriaveshwith respect to matrix
multiplication and addition.

Lemma A.3. For any matricesA and B, such thatd B and B A are well-defined (i.e., it

iISm X n, Bisn x m),
a) ker ANim B = Bker AB
b) if B is surjective, thetker A = Bker AB;
c) if Bis injective, therker A = ker BA.

For any matrices(’ and D, such thatC' + D is well-defined (i.e.¢’ and D have the same
dimension),

d) if imC Nim D = 0, thenker(C' + D) = ker C' Nker D.

Proof. Proof of part a): Ifv € ker AB, thenA(Bv) = (AB)v = 0, so thatBv € ker AN

im B, i.e., Bker AB C ker AN im B. Conversely, anyv € ker A Nim B may be written
asw = Bv for somev. SinceABv = Aw = 0, v € ker AB, andw = Bv € Bker AB, SO
thatker A Nim B C Bker AB. Thereforeker A Nim B = Bker AB.

Proof of part b): Further, iB is surjective, theter A C im B, so thatker A = Bker AB.
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Proof of part c): Now assume th&tis injective, i.e., ifBv = a and Bw = a, thenv = w.
If w € ker BA, thenB(Aw) = (BA)w = 0. SinceB is injective,ker B = 0, and so
Aw = 0, i.e.,w € ker A. Therefore,ker BA C ker A. Likewise, ifv € ker A, then
B(Av) = B0 =0, so thatv € ker BA, ker A C ker AB, andker A = ker BA.

Proof of part d): Finally, ifv € ker CNker D, then(C'+ D)v = Cv+Dv=0+0=0, so
thatv € ker(C' + D). Conversely, assume thiat C'Nim D = 0. Now, if v € ker(C' + D),
thenCv + Dv = (C + D)v = 0, so thatCv = —Dv = D(—v) € imC Nim D. Ty
assumption, this i8, soCv = Dv = 0. Thereforep € ker C' N ker D, andker(C + D) =
ker C'Nker D.

O
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