
An Extensible Overlay Infrastructure for Wide-Area Stream Processing and Dissemination

by

Olga Papaemmanouil

B. S., University of Patras, Patras, Greece, 1999

M. S., Athens University of Economics and Business, Athens, Greece, 2001

M. S., Brown University, Providence, RI, USA, 2004

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2009

c© Copyright 2009 by Olga Papaemmanouil

This dissertation by Olga Papaemmanouil is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Uğur Çetintemel, Director

Recommended to the Graduate Council

Date
John Jannotti, Reader

Date
Stan Zdonik, Reader

Approved by the Graduate Council

Date

Dean of the Graduate School

iii

Vita

Olga Papaemmanouil was born on November 22, 1976 in Alexandria, Imathia, Greece. She received

her undergraduate degree in Computer Engineering and Informatics at the University of Patras,

Greece in 1999. In 2001, she received her Sc.M. in Information Systems at the University of Eco-

nomics and Business, Athens, Greece. She worked as a software engineer for the Athens Stock

Exchange untill 2002. She then joined the graduate program in Brown University, where she re-

ceived her Sc.M. in Computer Science at Brown University, in 2004. She completed her Ph.D. in

Computer Science in Brown University in 2008. She has been a recipient of the Paris Kanellakis

Fellowship.

iv

Acknowledgments

The first person I would like to thank is my advisor, Ugur Cetintemel. Ugur’s positive attitude

inspired me from the first time I met him, in my visit at Brown as a perspective student. During

my studies in Brown, he continued to be an endless source of motivation and encouragement for me.

Ugur taught me how to be a researcher, invested a lot of time teaching me how to effectively present

my ideas and provided his valuable advice on many critical points in my career and personal life. I

will always be grateful to him for his guidance, his support and his patience all of these years.

I would like also to thank my committee member and co-author, John Jannotti. His interesting

questions and feedback helped me understand my own work in more depth and had an important

impact on this dissertation. Thanks are also due to my third committee member, Stan Zdonik,

whose support and encouragement helped me pursue my career goals.

I would also like to thank the student members of the Data Management Group in Brown. I am

really happy I met and worked with all of you! Nesime, you have inspired me in many different ways,

in my research, in my career choices (and even during our gym classes!). My dear officemates, Ying

and Jeong-Hyon, thank you for sharing with me many stressful moments. Yanif, I really appreciate

the effort and time you spent discussing the details of XPORT and building our demonstration.

Finally, I would like to thank the summer interns who contributed to the prototyping of my work:

Yenel Yildirim, Mohit Gogia and Swati Goyal.

The years I spent at Brown were the best years of my life thanks to my friends. Manos Renieris,

Yiannis Tsochantaridis and Aris Anagnostopoulos patiently listened and advised me, especially in

the early years. Ioanna Papaefthimiou and Ioanna Grypari were always bringing out the positive

aspect of any situation and they made my life so much more fun. I would like also to thank Cleopatra

Christoforou, Socratis Dimitriadis, Vaggelis Evaggelou, Dimitris Kazazis, Stelios Michalopoulos,

Stefan Roth and Yiannis Vergados for all the laughs we shared. Finally, the last couple of years

were much more enjoyable and less lonely than I ever expected thanks to Menia Pavlakou, Sofocles

Mavroeidis, Babis Papamanthou and Dimitra Politi.

This thesis wouldn’t have been a reality without the support of my family. First and foremost,

v

I want to express my deepest gratitude to my husband, Nikos Triandopoulos. Nikos is the person

who inspired me to apply to graduate school. He believed in me more than any other person in my

life and he is always encouraging me to pursue more. My achievements wouldn’t have been possible

without his unconditional love and endless support.

Finally, I want to thank my parents, Grigoris and Evgenia Papaemmanouil. My parents made

numerous sacrifices for my education and they helped me in any possible way during my studies.

They encouraged me through all the difficult moments and they taught me to believe in myself. I

want to thank them for allowing me to pursue my dreams, even when my decisions were very difficult

for them. This thesis is dedicated to them.

vi

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Design Goals . 2

1.2 Our approach . 3

2 Background 5

2.1 Overlay networks . 5

2.2 Publish-Subscribe systems . 6

2.3 Stream-based processing . 8

3 Basic Models and Concepts 11

3.1 Overlay construction . 11

3.2 Extensibility . 13

3.3 Generic Metric Definition . 14

3.4 General optimization framework . 16

3.4.1 Optimization rules . 17

3.4.2 Impact evaluation of an optimization rule . 19

3.4.3 Bottleneck-based optimization . 19

4 Network Optimizations for Dissemination Applications 21

4.1 XPORT API . 22

4.2 Cost definition model . 23

4.3 Distributed optimization . 25

4.3.1 Local network optimizations . 25

vii

4.3.2 Directed optimization rules . 28

4.3.3 Evaluating global cost changes . 31

4.3.4 Multi-metric cost functions . 39

4.3.5 Statistics approximation . 40

4.4 Run-time functionality . 41

4.5 Network optimization protocol . 42

4.6 Performance evaluation . 45

4.6.1 Convergence . 46

4.6.2 Adaptivity . 58

4.6.3 Optimization Scope . 59

4.6.4 Network traffic . 61

5 Supporting Distributed Stream Processing Applications 66

5.1 System model . 68

5.1.1 Publish-Subscribe model . 68

5.1.2 Source registration . 69

5.1.3 Query registration . 69

5.1.4 Stream processing model . 70

5.1.5 Node architecture. 71

5.1.6 Benefits of our model . 72

5.2 Tree management. 72

5.3 Cost definition model . 73

5.3.1 Optimization metrics and constraints . 74

5.3.2 Statistics collection . 75

5.4 Distributed optimization . 76

5.4.1 Query optimization rules . 76

5.4.2 Local optimizations . 80

5.4.3 Directed optimizations . 80

5.4.4 Evaluating global cost changes . 83

5.4.5 Query optimization protocol . 87

5.5 Performance evaluation . 89

5.5.1 Extensibility and effectiveness . 90

5.5.2 Effect of initial placement . 97

5.5.3 Probabilistic statistics . 97

5.5.4 Scalability . 98

viii

5.5.5 Operator replication and partition . 101

6 Related Work 103

6.1 Extensibility . 103

6.2 Publish-Subscribe systems . 105

6.3 Application-level multicast . 107

6.4 Distributed stream processing . 110

6.5 Continuous adaptive optimization . 111

7 Conclusions 113

7.1 XPORT: Extensible Profile-driven Stream Dissemination 114

7.2 XFlow: Extensible Stream Processing . 114

7.3 Future directions . 115

Bibliography 117

ix

List of Tables

4.1 Two-level aggregation examples. 24

4.2 Primitive and composite local optimization rules. 28

4.3 Statistics filtering and dissemination per node. 30

4.4 Model Terminology . 32

4.5 Simplified cost equations for local optimizations and an additive (SUM) system cost

function. 32

4.6 Transformation state (T) and optimization state (O) for node ni (V : set of nodes). . 42

4.7 Number of network transformations for optimizing the average network latency. . . . 48

4.8 Performance for different constrained metrics (t: number of optimizations, f : fanout

constraint). 49

4.9 Number of network transformations for XPORT and simulated annealing and the

bandwidth bottleneck metric. 56

5.1 Implementation of operator replication and partition. 78

5.2 Statistics dissemination per node. (c: system cost) 82

5.3 Model terminology . 84

5.4 Change on operator cost ocj upon change on local metric li (ocj uses the MIN aggre-

gation function). 87

5.5 Optimization state for ni (Bj = {(βj(m), ocj)|qm ∈ Ej}). 88

5.6 RSS feed processing operators. 90

x

List of Figures

3.1 Construction of profile-driven publish-subscribe tree. 12

3.2 General metric definition grammar . 15

3.3 Optimization unit of ni. 18

4.1 XPORT’s grammar . 23

4.2 Optimization unit of ni in XPORT. 26

4.3 Primitive local optimization rules . 26

4.4 Composite local optimization rules. 27

4.5 XPORT’s high-level node architecture. 41

4.6 Simulated annealing algorithm. 43

4.7 Convergence to the optimal for the total network latency. 47

4.8 Convergence to the optimal for the average network latency. 48

4.9 Convergence to the optimal for the average superfluous incoming data. 49

4.10 Convergence to the optimal for the average bandwidth consumption under various

latency constraints. 50

4.11 Convergence to the optimal for the bandwidth bottleneck metric and a random initial

tree. 51

4.12 Number of network transformations for optimizing the bandwidth bottleneck metric

and a random initial tree. 52

4.13 Impact of directed swap operations for optimizing the bandwidth bottleneck. 52

4.14 Convergence to the optimal for the bandwidth bottleneck and different initial trees. 53

4.15 Number of network transformations for optimizing the bandwidth bottleneck and for

different initial trees. 54

4.16 Convergence to the optimal for the bandwidth bottleneck and a best-effort initial tree. 55

4.17 Number of network transformations for optimizing the bandwidth bottleneck metric

and a best-effort initial tree. 55

xi

4.18 Convergence to the optimal for XPORT and simulated annealing and the bandwidth

bottleneck metric. 56

4.19 Bandwidth bottleneck under fanout constraints. 57

4.20 Convergence to the optimal for the maximum network latency. 57

4.21 Number of network transformations for optimizing the maximum network latency. . 58

4.22 Convergence to the optimal for XPORT and simulated annealing for the maximum

network latency metric. 58

4.23 System adaptivity for the dissemination and processing latency. 59

4.24 Convergence to the optimal for the average network latency and optimization units

of different size. 61

4.25 Number of network transformations for optimizing the average network latency and

using optimization units of different size. 62

4.26 Impact of optimizations with small scope for optimizing the average network latency. 62

4.27 Impact of combining optimizations with different scope for optimizing the average

network latency. 63

4.28 Maintenance and optimization traffic (S = Maintenance period, P= optimization

period). 64

4.29 Improvement on network traffic due to statistics approximation. 64

4.30 Impact of statistics approximation on performance when optimizing the path la-

tency variance. The percentage values indicate relative differences over the non-

approximated case . 65

4.31 Impact of statistics approximation on convergence time when optimizing the path

latency variance. The percentage values indicate relative differences over the non-

approximated case . 65

5.1 XFlow system model. 69

5.2 Distribution of queries in Figure 5.1 . 70

5.3 XFlow node architecture. 71

5.4 XFlow grammar . 73

5.5 Optimization area of ni in XFlow . 77

5.6 Operator replication. 79

5.7 Operator partition. 79

5.8 Example of operator distribution. 85

5.9 Convergence to the optimal for the total bandwidth consumption. 92

5.10 Convergence to the optimal for the average query latency. 92

xii

5.11 Average network and processing latency. 93

5.12 Average query response latency when maximum node load is restricted to five (5)

CPU cycles per time unit . 94

5.13 Total bandwidth consumption under constraints on the processing load of each node. 95

5.14 Maximum node load with local and directed optimizations. 96

5.15 Maximum processing load for different network sizes. 96

5.16 Improvement of maximum load for different initial placements. 97

5.17 Optimization of maximum node load with probabilistic statistics. 98

5.18 Overhead for different number of queries. 99

5.19 Overhead for different network sizes. 99

5.20 Overhead reduction from probabilistic statistics. 100

5.21 Network traffic for different metrics. 100

5.22 Impact of operator replication and migration for the total bandwidth consumption. 101

5.23 Impact of operator partition and migration for the maximum load across nodes. . . . 102

xiii

Chapter 1

Introduction

The advent of the Internet as a global, easily accessible and fast evolving communication infrastruc-

ture has advanced network computing and enabled opportunities for building large-scale distributed

applications. This new setting for developing applications with scale increased by several orders

of magnitude led to systems with millions of nodes that seek to communicate and cooperate in a

highly decentralized and heterogeneous environments. These systems consist of large numbers of

geographically dispersed entities: sources that generate large volumes of data streams and consumers

that register large numbers of interest subscriptions over these data streams, which are acquired,

processed and then distributed to consumers in real-time.

In large-scale stream-based applications, data producers and consumers typically communicate

through application-level networks (or overlay networks) consisting of nodes that cooperate with

each other to route packets on behalf of any pair of communicating nodes. Using these overlay

networks, endhosts are able to select by themselves paths with better performance and availability

without relying on the underlying IP routing infrastructure.

Depending on their processing requirements, we divide stream-based applications into two types:

• Dissemination applications, which route streams from their producers to their consumers based

on their subscriptions. These applications require stateless processing operations, which match

the generated streams against the clients’ subscriptions and identify the overlay routes to their

interested parties. Example applications include multi-player online games, multicast-based

content distribution, web feed dissemination [5], and stock ticker distribution.

• Monitoring (or stream processing) applications, on the other hand, require sophisticated pro-

cessing of stream-based queries, e.g., complex aggregation and correlation over data streams.

Examples are planetary-scale sensor network applications [4, 15], and network performance

1

and security monitoring applications [2, 3].

Monitoring and dissemination applications are often developed using custom, ad-hoc approaches

that hinder their implementation and maintainability. Furthermore, these systems are commonly

optimized for a specific metric, which may limit their applicability to diverse applications and en-

vironments. Going forward, there is a need for general-purpose infrastructures that can effectively

support a broad spectrum of these applications. This thesis introduces such an infrastructure, which

is an extensible data stream acquisition, processing and dissemination system.

1.1 Design Goals

The design of this infrastructure was guided by three main goals:

• Extensibility : Monitoring and stream dissemination applications often exhibit diverse applica-

tion logic and performance requirements. For example, a camera-based surveillance application

may need to perform feature extraction over MPEG streams, whereas a feed-oriented appli-

cation may involve XPATH queries over RSS streams. Moreover, different systems may have

widely varying performance requirements and constraints. For example, a network intrusion

detection application may have strict result latency requirements, whereas an environmen-

tal monitoring application running in a peer-to-peer setting may care more about fairness in

bandwidth consumption. Hence, an extensible infrastructure is required that can be easily cus-

tomized to support application-specific data types, stream processing logic and performance

expectations.

• Scalability : Stream-based applications need to provide high network and workload scalability.

The former refers to the ability to gracefully deal with increasing geographically distributed

system components, whereas the later addresses large number of simultaneous stream pro-

ducers and consumers. To achieve both types of scalability, the system should scale out and

distribute its functionality across multiple nodes. Moreover, it should avoid global coordina-

tion as well as global knowledge of its nodes’ state. Instead, its functionality should rely only

on localized interactions and operations that utilize localized information.

• Adaptivity : Dissemination and monitoring applications are expected to operate over the public

Internet, with large numbers of unreliable receptors, on commodity machines, some of which

may contribute their resources only on a transient basis (e.g., in peer-to-peer settings). The

highly dynamic nature of these environments requires the design of adaptive infrastructures,

which can deal effectively to churn, time-varying workload, and resource availability.

2

In this thesis we introduce a distributed, adaptive infrastructure that can be easily customized for

specific target applications and optimization metrics and can address the aforementioned design

goals. In the next section, we present an overview of our approach.

1.2 Our approach

The designed of our infrastructure was motivated by the following observation: stream processing

and dissemination applications have diverse logic and performance requirements, yet they all require

several common facilities, which include construction, maintenance and optimization of an overlay

network, routing and processing logic, and membership management. These applications are cur-

rently developed from scratch, requiring substantial effort and investment to “get it right” for each

specific case. In contrast to existing approaches that provide point solutions to point problems, we

introduce an application-agnostic infrastructure that can be easily customized for target applica-

tions. By abstracting over the common core functionalities of stream processing and dissemination

systems, our solution achieves a clean separation between the “plumbing” and “application” and

enables the system to uniformly support disparate dissemination and monitoring applications.

Extensibility is the central design consideration for our infrastructure, which supports diverse

processing logic, stream and profile types, and optimization metrics. Specifically, we support two

types of extensibility. Profile-related extensibility refers to the ability to easily accommodate new

data and profile types, and is key to supporting diverse applications. Cost-related extensibility refers

to the ability to express application-specific performance goals, and allows applications to define

their own criterion of an efficient and effective system. Both types of extensibility are implemented

through a set of application-defined methods that encapsulate application-specific behavior and a

cost model for defining desired performance metrics and constraints. Given these application-defined

methods and performance expectations, the system automatically creates a data stream acquisition,

processing and dissemination overlay network.

Our infrastructure relies on the publish-subscribe paradigm as its underlying communication

model for routing streams from their producers to interested consumers, a design decision we argue

has the potential to meet our objective for high scalability. Distributed publish-subscribe systems

effectively decouple sources and destinations over geography and time: producers send data without

knowing where and when the consumers will access them and consumers declaratively express their

profiles and receive matching data without knowledge of specific data producers. This loosely-

coupled architecture allows for high network scalability and robustness in the presence of churn, as

these systems can gracefully deal with increasing geographically distributed sources and clients and

3

dynamic changes in their membership.

To address the adaptivity requirement for our infrastructure, we designed a distributed, self-

tuning optimization framework. This framework uses a novel, extensible, metric definition model

that relies on the aggregation of cost metrics defined over the system entities (e.g., nodes, links,

queries). Our model allows for the uniform specification of many commonly used performance mea-

sures, as well as new ones, through combinations of different aggregation functions and metrics.

Moreover, the optimization process is driven by the iterative execution of metric-independent oper-

ations drawn from a set of optimization rules, which are designed towards system’s convergence to

a minimal cost configuration.

The optimization framework includes two types of optimization rules. Network optimization

rules refine its structure by modifying the overlay connections among brokers. This set of rules

includes pre-defined primitive rules as well as application-defined composite rules obtained through

the composition of the primitive ones. We studied these rules in the context of publish-subscribe

dissemination trees. More specifically, we used our infrastructure to build a peer-to-peer RSS feed

dissemination service. We used this service to implement distribution trees that optimize a variety

of metrics including total path latency, variance of path latency, average bandwidth consumption,

bandwidth bottleneck, and total received redundant data. Our experiments demonstrate our sys-

tem’s flexibility and effectiveness, as it manages to improve each of these metrics significantly through

its network-based optimizations.

The second type of optimization operations are the query optimization rules. We studied these

rules in the context of monitoring applications that process continuous stream-based queries over

the generated streams. The query optimization rules improve the network deployment of registered

queries by migrating, replicating and partitioning query operators. We used our prototype to im-

plement three distributions of feed-based processing queries, each one optimizing a different metric,

including average query latency, maximum processing load across all nodes and total bandwidth

consumption. Our experiments revealed that we can efficiently deploy stream processing queries

over a network of brokers through a sequence of query distribution operations.

This thesis proposal report is outlined as follows. In Chapter 2, we provide general background

on publish-subscribe systems and the stream processing model. Chapter 3 describes the basic models

and concepts of our extensible infrastructure. Chapter 4 focuses on the network optimizations in the

context of single-tree stream dissemination applications, while Chapter 5 concentrates on the query

optimization operations that apply to monitoring applications. A detailed review of the related

work is presented in Chapter 6. Finally, we conclude in Chapter 7, presenting interest directions for

future work.

4

Chapter 2

Background

This chapter covers general background information on the concepts and models used throughout this

thesis. In Section 2.1 we describe overlay-networks, which we utilized to construct the application-

level networking infrastructure required by ISM applications. In Section 2.2 we discuss the publish-

subscribe model, which is the communication model of our infrastructure. Finally, Section 2.3

covers basic concepts on streams processing, a data management and manipulation model used by

stream-based applications.

2.1 Overlay networks

Overlay networks are virtual networks formed by cooperating nodes that share the underlying phys-

ical network. Similarly to a physical network, an overlay network has a topology consisting of the

nodes of the network. However, the links between them are constructed by the agreement of the

overlay nodes, creating a virtual topology. Nodes in an overlay are connected by virtual or logical

links, each of which corresponds to a path, perhaps through many physical links, in the underlying

network. Messages are transmitted only along these virtual links between the overlay nodes using

the underlying unicast mechanism provided by IP. For example, many peer-to-peer networks are

overlay networks because they run on top of the Internet. Dial-up Internet is an overlay upon the

telephone network.

Overlay networks are suitable for routing messages to destinations not specified by an IP address.

For example, distributed hash tables can be used to route messages to a node having specific logical

address, whose IP address is not known in advance. In contrast to the Internet, in which routers are

shared and thus, cannot be specialized for a particular purpose, the members of an overlay network

may provide specialized services specific to the application at hand. An overlay-based multicast

5

system can duplicate packets in the servers while a content distribution network can cache gigabytes

of data. Examples of overlay networks include Akamai Technologies [1] for reliable, efficient content

delivery, End System Multicast [33] and Overcast for multicast [35], and RON (Resilient Overlay

Network) [10] for resilient routing, among others.

Overlay networks have also been proposed as a way to improve Internet routing. Previous pro-

posals such as IP Multicast have not seen wide acceptance largely because they require modification

of all routers in the network. On the other hand, an overlay network can be incrementally deployed

on end-hosts running the overlay protocol software, without cooperation from ISPs. The overlay

has no control over how packets are routed in the underlying network between two overlay nodes,

but it can control, for example, the sequence of overlay nodes a message traverses before reaching

its destination.

In general, overlay networks provide a flexible approach for applications to obtain new network

semantics without modification of the underlying network. This characteristic makes overlays the

most suitable model for designing a generic, networked infrastructure that supports a wide variety

of ISM applications.

2.2 Publish-Subscribe systems

The publish-subscribe model [31] is an asynchronous, many-to-many communication model for dis-

tributed systems. It is an efficient way to disseminate data to a large number of clients depending

on their interests. From a programmer’s point of view, it is simple to use because it ensures that

information is delivered to the right place at the right time.

The publish-subscribe model has data publishers that produce data and data subscribers that

receive them. Subscribers describe the kind of data that they want to receive through their profile

(or subscription). Data produced by the publishers will subsequently be delivered to all interested

subscribers with matching interests.

A publish-subscribe system implements the publish-subscribe model and provides a service to

applications by storing and managing profiles and asynchronously disseminating events. An impor-

tant feature of the publish-subscribe model is that clients are decoupled. A publisher does not need

to know all subscribers that receive the data it produces, and similarly, subscribers do not know the

identity of publishers that send data to them. All communication between them is handled by the

publish-subscribe system. Thus, this loose coupling removes dependencies between clients so that

the publish-subscribe model is a scalable communication paradigm for large-scale systems.

Many publish-subscribe systems exist that implement different variants of the publish-subscribe

6

model. A major distinction is how profiles express the interest of subscribers. Two main forms of the

publish-subscribe model have resulted from this, topic-based and content-based publish-subscribe.

In topic-based publish-subscribe, publishers publish data with respect to a topic or subject. Data

subscribers specify their interest in a topic and receive all data messages published on this topic.

Therefore, topics can be seen as groups in group communication. This makes the implementation

of a topic-based publish-subscribe system simple and efficient since it can be built on top of a group

communication mechanism such as IP multicast.

However, ISM application like network monitoring or feed-based dissemination would benefit

from a more precise specification of interests than just a topic name. Subdividing the event space

into topics has the disadvantage that it is inflexible and may lead to subscribers having to filter data

coming from general topics. To address this limitations content-based publish-subscribe systems

have emerged. In content-based systems profiles can be any function over the data content. This

provides higher degree of flexibility and expressiveness, making this model suitable for designing

generic publish-subscribe systems. Hence, in the rest of the section we concentrate on content-based

publish-subscribe systems.

Content-based publish-subscribe In a content-based publish-subscribe system, the structure

of a profile is not restricted — it can be any function over the content of the data message. This

introduces a trade-off between scalability and expressiveness [17]. The more expressive a profile

becomes, the more difficult it is to evaluate it, increasing the overhead in the publish-subscribe

system. A content-based profile usually depends on the structure of the data. The structure can be

binary data, name/value pairs, or even semi-structured data such as XML. A profile is expressed in

a language that usually specifies a filter expression over data messages.

Depending on the application’s data types and the complexity of its profiles, publish-subscribe

dissemination systems may use their own algorithms and indexing structures for efficiently storing

profiles and matching incoming data against them. ONYX [30] uses YFilter [29] and XRoute [25]

employs the XTrie index [24] for matching XPath profiles, whereas SIENA [18] uses a custom index

[20] for storing and matching relational profiles.

In centralized implementations of a publish-subscribe system, all subscribers forward their profiles

in a single server. This server also receives all generated data from the registered publishers and

is responsible for matching incoming data messages to the specified profiles and identifying the

subscribers each data message should be forwarded to. The main drawback of this approach is that

the data matching and forwarding cost is allocated to a single broker, limiting the scalability of the

system. Thus, distributed publish-subscribed systems have been proposed, aiming to distributed

7

this load to a set of nodes and address the scalability concerns.

The dissemination infrastructure of a distributed publish-subscribe system consists of a set of

nodes (also referred as brokers) organized into an overlay network. Publishers and subscribers

are clients that first need to connect to a broker in the logical overlay network. Data messages

published by the publishers are then routed through the overlay network of brokers depending on

the profiles submitted by subscribers. The process of content-based routing [19] can be viewed as a

distributed implementation of a data matching algorithm so that events are delivered to all interested

subscribers.

Although several topologies for the network of event brokers are proposed, we will only consider

the general peer-to-peer topology because it is the most realistic for a large-scale network. On

top of this general network topology, brokers are usually organized into one or more application-

level dissemination trees [18, 30, 44]. These trees are created based on the idea of reverse path

forwarding of messages in broadcast algorithms [28]. More specifically, a subscriber registers its

interest by forwarding its profile to a broker. This profile creates state in the overlay network by

being propagated upstream to the root of the tree. When profiles propagate, they create entries in

routing tables that store (1) the profile, (2) the last hop, and (3) the next hop for this message.

Thus, profiles create reverse routing paths from the root of the tree to the subscriber. Optionally,

profiles are merged when possible to reduce routing state requirements and filtering costs.

Using the routing tree created, a broker can now forward incoming data to the subset of its

children that is interested in receiving the data, instead of forwarding each data message to all its

children, thereby eliminating the “flooding” problem. This routing scheme works by matching each

data message with the routing table entries that represent the aggregated profile for each subtree.

It is obvious that this communication model can satisfy the scalability and adaptivity to churn

requirements of ISM applications. A problem is that a pure publish/subscribe system is of limited

use to distributed dissemination applications designers because the implementation of the commu-

nication model will be specific to each applications data types and optimization metrics. A better

solution is to provide an extensible publish-subscribe system that complements the scalable and

efficient implementation of the publish-subscribe model with additional functionality.

2.3 Stream-based processing

Data Stream Processing systems (DPSs) [16, 26, 27, 42] has emerged in response to applications

that must deal with stream, that is possibly unbounded sequences of data elements. These data

streams are typically generated rapidly one after the other, and usually require real-time processing.

8

Common stream sources include sensors for collection of physical measurements about their en-

vironment (e.g. a temperature sensor), and software programs that report the occurrence of certain

events of interest (e.g. a program reporting the trades of stock shares). An important property of

these data sources is that they are push-based, i.e., they are not programmed to store and provide

data on demand, but to release it as soon as new data becomes available. There are an increasing

number of applications that require continuous monitoring and processing on data streams. Exam-

ples include sensor-based monitoring (e.g. biomedical monitoring, road traffic monitoring), financial

analysis applications, GPS-based location tracking, and network traffic monitoring.

A DSMS provides the same kind of infrastructure to stream-based applications that Database

Management Systems (DBMS) have provided for data processing applications. In traditional data

processing systems, large volumes datasets are persistently stored on disk, and one-time queries are

executed on them. In this model, data is pulled from the disk as it is demanded by the queries. In

case of data streams, these roles are completely reversed. A large number of long-lived queries called

continuous queries are defined in advance of the data, and are persistently stored in the system.

Data streams, as they arrive, are evaluated through these standing queries. In this model, data is

pushed from the sources and needs to be processed through the queries.

Data streams are possibly infinite sequences of data elements, referred to as data tuples. Tuples

are composed of attribute values and all the tuples contained in the same stream have the same set

of attributes. The set of attributes of a stream is called the schema of the stream.

In a stream-based processing model queries can be described by a dataflow diagram. Each box

represents a query operator and each arc represents a data flow or a queue between the operators.

Stream processing engines [16] process a large number of queries that are built out of a set of

operators. Each such query has an arbitrary number of input streams and a single output. An

operator may be connected to multiple downstream operators. All such splits carry identical tuples

and enable sharing of computation among different queries. Multiple streams can also be merged

by the operators that accept more than one input. A query network is a collection of such queries.

Stream-based operators process tuples and producing results of interest. Depending on the state

they require to perform their processing, we distinguish two types of stream processing operators,

stateless and stateful. In this section, we briefly discuss both types of operators.

Stateless Operators Stateless operators perform their computation on one tuple at a time with-

out holding any state. Here, state refers to the data structures that an operator maintains to perform

its operation. Examples of stateless operators include: filter, map, and union operations. Filter is

the equivalent of a relational selection operator. It applies a predicate to every input tuple, and

9

forwards the ones that satisfy the predicate to its output stream. Tuples that do not satisfy the

predicate are either dropped or forwarded to a second output stream. A map operator extends the

projection operator in relational algebra: it transforms input tuples into output tuples by applying

a set of functions on the tuple attributes. Finally, a union operator simply merges a set of input

streams (all with the same schema) into a single output stream. Union merges tuples as they arrive

without enforcing any order on the output tuples.

Stateful Operators In contrast to stateless operators, stateful operators produce output tuple

as a result of computation over a collection of input tuples. Here, we present one representative

stateful operator, namely aggregate. An aggregate operator computes an aggregate function such as

average, maximum, or count. The function is computed over the values of one attribute of the input

tuples. Before applying the function, the aggregate operator may partition the input stream based

on the values of one or more other attributes (e.g., produce the average temperature for each room).

To deal with the infinite nature of input streams, aggregates conduct computations over windows of

tuples (e.g., produce the average temperature every minute). These windows are defined over the

values of one attribute of the input tuples, such as the timestamps of tuples. Windows can also be

defined in terms of the number of tuples (e.g., windows of ten tuples can be defined for every two

tuples). Both the window size and the amount by which the window slides can be parameterized.

10

Chapter 3

Basic Models and Concepts

In this chapter, we describe the basic concepts and the core functionality of our infrastructure.

These concepts form the basic building blocks for the extensible dissemination and stream processing

systems we built. We introduce the underlying communication model in Section 3.1. We concentrate

on its extensibility aspects and describe the general metric definition model in Section 3.2. Finally,

we outline our optimization framework in Section 3.4.

3.1 Overlay construction

Our infrastructure relies on the publish-subscribe paradigm as its underlying communication model.

More specifically, we rely on the content-based data dissemination model, where data producers

publish their generated data and data receivers express the content of the data they wish to receive.

As mentioned in Section 2.2, this model provides many advantages, namely source and client de-

coupling, scalability and adaptivity to subscription changes. In order to take advantages of these

properties, we disseminate all generated streams through content-based publish-subscribe trees. Our

infrastructure is responsible for:

• constructing the overlay content-based publish-subscribe trees connecting the publishers with

the participating subscribers and

• routing the generated data, based on their content, only to the interested consumers (referred

to as content-based routing).

In this section, we describe how a single dissemination tree is created, given a set of brokers,

sources that generate streams and subscribers which specify the streams of interests through their

profiles.

11

S o u r c e s

x > 1 0(x > 1 0 , I P 2)I P 2
(x > 1 0 , E)(x > 2 0 , F)E

ABC D F
(x > 5 , C)(x > 1 0 , D)(x > 5 , B)

(x > 2 0 , I P 3)I P 2
x > 5I P 1 (x > 5 , I P 1)

Figure 3.1: Construction of profile-driven publish-subscribe tree.

Constructing an overlay publish-subscribe tree The basic application-level overlay tree of

our infrastructure consists of a subset of the available brokers. In order to join the tree, nodes

select an existing node as its parent. Generally, no specific attempt to find a “good” parent is

made at this point with the expectation that subsequent optimization steps will move the node to a

better network location. Hence, nodes pick a random node from the available ones as their parent.

However, this parent selection process should not violate any specified constraints, if any defined by

the application (e.g., node fanout).

In certain cases we modify our general approach and initially construct a best-effort overlay

tree. Under this approach nodes collect information about the available nodes and connect to the

“best” node, as defined by the application’s criteria. For instance, if the application aims to reduce

dissemination latency among nodes, then, the joining node would ping the available ones and collect

their latency from the root of the tree and their latency from the new node. Based on these latency

values, it connects to the one with the minimum total latency. Generally, it connects to the node

that adds the minimum overhead on the application’s optimization metric.

Once a node has decided on its parent, it connects to that node and registers its profile. The

node adds the new profile along with the address of the new node as a new routing entry. Based

on this entry, it can route to the new node all incoming data that match the node’s (or client’s)

profile. An example is shown in Figure 3.1. Leaf nodes maintain routing entries to their clients along

with their profile, while intermediate nodes maintaining routing entries for their children in the tree.

Every new profile is disseminated towards the root of the tree and on every intermediate node it

is merged with the existing profiles (if any). Profile merging aims to reduce space and processing

12

requirements on the intermediate nodes by storing only the more general profiles expressing their

subtree’s interest. This general profile will “cover” any profiles registered in the node’s subtree. For

example, in Figure 3.1, node D, propagates to its parent, node B, the profile x > 10, as this covers

the profiles of its subtree. If a new general profile is produced by the merging process, then the node

will propagate it up the tree towards the root, until it reaches either a node with a more general

“covering” profile or eventually the root. This process leaves the root of the tree with a profile that

covers all registered profiles.

The root of the tree is responsible for acquiring the streams either by pulling the corresponding

sources or by providing a pushed-based interface that handles and forwards any incoming data

streams. Upon the receipt of a data message, a broker checks all the entries in its routing table to

determine whether the message should be forwarded to a downstream broker (or a client).

Based on this single-tree communication model, we defined our basic extensible cost model and

our optimization framework, which are described in the following sections.

3.2 Extensibility

The central design consideration for our infrastructure is extensibility: it supports an extensible set

of data and profiles/query types, optimization metrics and constraints. For the rest of the discussion,

we will use the terms query and profile interchangeably. We support two types of extensibility:

• Profile-related extensibility allows for easy specification and integration of new data and profile

types and is key to supporting diverse applications.

• Cost-related extensibility refers to the ability to express application-specific performance goals

and allows applications to define their own criterion of an efficient system.

Given application-defined data types, profile types and performance metrics, the system au-

tomatically builds, maintains and optimizes an overlay network consisting of the available broker

machines in the system. Depending of the application, brokers are customized to perform (or not)

different types of stream processing, however, in all cases, the overlay network is responsible for

routing generated streams from their producers to the interested consumers.

While profile-related extensibility depends on the processing requirements of an application (i.e.,

simple content-based routing or advanced stream processing), cost-related extensibility is based on

a common metric definition model. Hence, in the rest of the section we concentrate on our approach

for supporting cost-related extensibility and describe our generic metric definition model. We will

refer to profile related extensibility in Chapter 4.

13

3.3 Generic Metric Definition

Our basic metric definition model is based on a novel aggregation schema that defines the perfor-

mance expectations of an application. The model allows applications designers to express cost met-

rics for the global system cost, e.g., average bandwidth bottleneck, maximum dissemination latency,

as well as cost metrics for each broker, e.g., processing load, outgoing bandwidth consumption.

Our metric definition model specifies performance criteria for a single publish-subscribe dissem-

ination tree. Thus, for the rest of the discussion, we assume that each node has a single parent and

a set of children in this tree. In Chapter 5, we will describe how this model is extended for multiple

dissemination trees.

In our model, the system cost is defined through a two-level aggregation model. In the first level,

it computes the cost of each node (node cost) by aggregating application-defined statistics collected

from the node’s local neighborhood. The second level defines the cost of the system by aggregating

the node costs. Both aggregations are defined by the following general signature:

aggregate (aggregation function, value, aggregation set)

The model allows for the uniform specification of many commonly used performance measures, as

well as new ones, through combinations of different aggregation functions and statistics. Similarly,

applications can also specify constraints for each node. Figure 3.2 shows the general grammar for

defining the performance criteria. We now describe our grammar and the two-level aggregation

model in a bottom-up manner.

Local statistics

To facilitate the expression of a broad spectrum of metrics, nodes maintain some built-in performance

local statistics like overlay link latency, incoming data rate, etc. Moreover, they maintain state

related to their local profiles and that of their neighbors, e.g., the client profiles, its children’s profiles.

Applications define their own local metrics using either use these built-in statistics or computed them

by applying an application-defined arbitrary function over a set of the local statistics. For example,

the incoming data rate can be defined based on the selectivity of the node’s profiles.

A local metric may refer either to the node itself (e.g., CPU usage) or to its links with its

neighbors (e.g., latency to the parent). This option is specified by the parameter NODE or LINK,

respectively, in the metric’s implementation method. The exact links on which the local metric will

be calculated is determined by the node cost set term of the grammar. If this term is set to PATH,

14

01. system cost:= aggregate (aggregation function, node cost, system cost set)
02. node cost:= aggregate (aggregation function, local metric, node cost set)
03. node cost set:= PATH|CHILDREN
04. local metric:= f(local stats, LINK|NODE, node cost set)

f(LINK|NODE, node cost set)
05. local stats:= path latency|incoming data rate|local profiles...
06. constrained metric:= (system cost|node cost, operator, threshold)
07. operator:= < | > | ≤ | ≥ | 6=

Figure 3.2: General metric definition grammar

then the local metric is measured on the link to the node’s parent, while if it is set to CHILDREN

the local metric is measured on the links to the children. This is described in the following section.

Node cost

The node cost can be defined as an aggregation of the local metrics of some neighboring nodes:

aggregate (aggregation function, local metric, PATH | CHILDREN)

Node cost set defines which neighbors’ local metrics we will aggregate. It could be either the

nodes on the path to the root (referred as aggregation over path), or the immediate children in

the tree (referred as aggregation over children). The above method allows applications to define

a large set of metrics that are frequently used for the evaluation of dissemination-based systems.

An example metric defined as aggregation over the path is the path latency; this is the sum of the

latency of every link on the path to the root. Outgoing bandwidth consumption per node can be

defined as an aggregation over children; it is the sum of the incoming data to each child.

System cost

An application defines the system performance metric, which we refer to as the system cost. This is

an aggregation of the node cost values over all brokers in the tree:

aggregate (aggregation function, node cost, system cost set)

The system cost set refers to the set of cost metrics we will aggregate. In this case, this set is

the total set of nodes participating in the dissemination tree.

15

Constraints

Often, application designers wish to express constraints on certain attributes of the network. For

example, they may need to limit the fanout of the nodes (i.e., the number of their children) in order

to reduce the outgoing bandwidth requirements of the nodes. Our model allows constraints to be

expressed based on the following generic signature:

constraint (metric, operator, threshold)

Constrained metrics can be defined in the same way as the system cost or the node cost, i.e.,

following the two-level aggregation model. An operator and a threshold for the constrained metric

should also be specified. For example, an application might want to impose an upper bound on

the path latency of every node, which is one-level aggregation over path. Similarly, a dissemination

system might try to guarantee a lower bound of the maximum path latency. This is a two-level

aggregation of the path latency over all the nodes system. Our system customizes its functionality

and optimization framework to respect these constraints. This process will be described in Chapter 4

and Chapter 5.

3.4 General optimization framework

Our infrastructure strives to meet three requirements. First, it must be scalable in terms of the

number of brokers and subscriptions (or queries) in our network. Second, it should be efficient

and adaptive to time-varying network or workload conditions. Finally, it should be extensible with

respect to the performance measures it can support and optimize. To address these challenges, we

designed a general, decentralized optimization framework that strives to create an overlay network

and identify in-network query deployment that minimizes application-specific cost functions. One

unique characteristic is that our framework is metric-independent ; it uniformly applies to and handles

a variety of cost metrics.

A brute-force approach for identifying the best network configuration or the best query in-

network deployment would be to consider all possible reconfigurations of our system. There are two

main drawbacks of this approach. The first is the exponential number of configurations that need

to be considered. The second is the increased communication overhead—exchanging information

to quantify the benefit of each possible optimization may be prohibitively expensive. Instead of

performing an exhaustive search of all configurations, XPORT limits its search to a smaller set

of “promising” reconfigurations, called optimization rules. The optimization process is driven by

16

the iterative execution these metric-independent rules, which are designed towards the system’s

convergence to a minimal cost configuration.

Our approach does not rely on global information and has low communication overhead. Each

node maintains information about its own “neighborhood” and applies local optimization rules in

order to converge to a minimal cost configuration, optionally subject to constraints (e.g., “minimize

the total bandwidth consumption in the system while ensuring that the dissemination latencies do

not exceed 100ms”). Periodically, we consider specific non-localized optimizations that help our

system avoid local optimum. Our framework exploits its structured cost-definition model and the

semantics of the aggregation functions to derive generic properties and equations to quantify the

benefits of any candidate optimization operation. Our cost-model for evaluating the effect of an

optimization operation depends on the type of optimization rules (network or query optimization

rules) and so will be described in detail in Chapter 4 and Chapter 5.

In the next sections, we provide a high level outline of the basic optimization approach followed

by our infrastructure. In general, our optimization framework addresses the following challenges:

1. What type of optimization rules are require?

2. How can we efficiently quantify the impact of an optimization rule on the system cost?

3. How we decide which optimization rule should be applied?

3.4.1 Optimization rules

Optimization rules are categorized in two types, depending on their scope, i.e., the set of nodes they

take under consideration and hence, the set of node they could affect:

• Local optimizations: Nodes consider modifications of their local neighborhood, e.g., parent,

children, grandchildren, etc.

• Directed optimizations: Nodes consider non-localized network areas that could potentially yield

higher performance improvement than the local neighborhood.

Local optimizations We informally define a local optimization rule as one that requires inter-

actions among only the “nearby” brokers on the overlay tree. This set of “neighbors” of a broker

is defined by the optimization unit. For the basic publish-subscribe dissemination tree of our com-

munication model this unit is shown in Figure 3.3. This includes a broker ni, its parent np and its

children. We refer to these nodes collectively as the optimization unit of ni. Local optimization rules

can change either the structure of the network, or, in the case of stream processing applications,

17

modify the deployment and execution of queries across the network brokers. These rules are de-

fined based on the scope of the optimization units. Moreover, they can be statically or dynamically

composed to define complex but more powerful composite optimization operations.

...... Level 2

Level 1

Level 0

nk

ni

np

nj nm

subj subk subm

Figure 3.3: Optimization unit of ni.

Figure 3.3 shows the minimum optimization unit in our system. However, optimization units

can be defined differently; in particular, they can be extended to include more nodes in the network.

Extending the optimization scope in this manner increases the flexibility of the framework, as it

facilitates the definition of a larger number of more powerful rules. On the downside, such an

extension also increases the maintenance traffic and the size of the state nodes need to collect and

maintain in order to apply optimization rules in this unit. We will refer in detail on this trade-off

in Chapter 4.

The main advantage of relying on localized optimizations is that it reduces the search space

of candidate optimizations. In the case of network optimization rules, each node will considering

restructuring nodes in its local neighborhood. Moreover, if we attempt to optimize stream processing

queries, e.g., through operator migration, our localized approach will limit the space of candidate

locations only to the nodes in the neighborhood of the operator’s current location. Furthermore,

non overlapping neighborhoods can be optimized locally and concurrently, allowing the system to

converge faster in a lower-cost configuration.

Directed optimizations Although our experimental results showed that local optimizations can

yield significant improvements for some metrics, we also discovered that certain measures are more

prone to local optimum. Our system selectively disseminates network statistics, on the basis of the

optimization metric, that allow nodes to efficiently identify promising non-local operations. These

operations focus on specific low cost network areas and we refer to them as directed optimizations.

18

As a result of the statistics collection process, our nodes maintain certain local and aggregated

cost metrics. Our infrastructure selectively disseminates these metrics across nodes, allowing the dis-

covery of alternative neighborhoods that could be utilized and improve the system performance. We

rely on the definition of the cost metrics, specifically on the semantics of the aggregation functions,

in order to determine: (i) which nodes may be interested in the statistics, and (ii) which statistics

could be of potential interest. Moreover, we utilize the dissemination trees to create filter-based

routing paths that forward statistics from their producers only to the interested consumers. Nodes

can exploit these statistics in order to identify promising optimization areas.

3.4.2 Impact evaluation of an optimization rule

The goal of the local and directed optimizations is to improve the overall system cost. Our framework

calculates the benefit of every candidate rule and applies the best one. Since the system cost is an

aggregation of specific node cost metrics, the exhaustive approach for quantifying this cost benefit is

to estimate the value of these node cost metrics after the optimization and aggregate them to get the

new system cost. This approach may have prohibitively high communication overhead. However,

our framework avoids this overhead as it understands the semantics of the aggregation functions and

the definitions of the cost metrics. This knowledge allow us to efficiently quantify the impact of an

optimization rule.

More specifically, quantifying the benefit of an optimization rule relies on the notion of depen-

dencies. We identify cost dependencies across all entities over which the system cost is defined, i.e.,

we define which nodes have an impact on their peers cost metric. This can be derived from the

definition of our cost metrics. For example, if a node aggregates the local metrics of its children to

evaluate its own cost metric, then, any change on its children metrics will project on its own cost as

well. Thus, for every optimization rule we quantify the impact on the affected entities. Furthermore,

based on the semantics of the aggregation functions, we can automatically identify the state required

by each node, as well as the information to be exchanged among nodes during the optimization. We

maintain state regarding depended entities and, whenever feasible, we aggregate this state to reduce

the optimization traffic and state size.

3.4.3 Bottleneck-based optimization

Our framework uses a bottleneck-based approach for optimization in which it focuses only on effective

optimization rules that have the potential to reduce the overall system cost. Other rules, even

though they might yield smaller local costs, are ignored. For example, if the optimization goal is

to minimize the maximum CPU load in the system, then we will focus solely on the most loaded

19

node and attempt to decrease its cost. To implement this approach, we rely on the notion of critical

entities. For example, a node is considered critical if a change in its cost may potentially affect the

system performance.

Our optimization proceeds over optimization periods. At each period, each node that can affect a

critical entity exchanges data with the nodes in its unit, and quantifies the benefit of the candidate

optimization rules. It then identifies the most effective rule and sends it to the root of the tree.

The root simply decides on the best rule (i.e., with the maximum expected benefit) and informs

the corresponding to about the new configuration to which it should switch. This bottleneck-

based approach ensures cost improvement in every optimization period, assuming that at least one

beneficial rule is identified.

20

Chapter 4

Network Optimizations for

Dissemination Applications

In this chapter, we introduce XPORT (eXtensible Profile-driven Overlay Routing Trees), a generic

publish-subscribe distributed data dissemination system. XPORT uses our basic communication

model and creates an overlay content-based publish-subscribe tree that disseminates streams from

their producers to any interested subscribers. Our system provides the core dissemination infras-

tructure for a growing set of dissemination-based applications and services, including web feed

dissemination (RSS/Atom), multicast-based content distribution, multiplayer network games, stock

ticker distribution and large-scale distributed collaborative applications.

By abstracting over the core functionalities of publish-subscribed dissemination systems, XPORT

supports profile-related extensibility : it can be customized for a wide variety of dissemination ap-

plications through a small set of methods that encapsulate application logic. It also builds on top

of our general extensible cost model and supports cost extensibility : it can express of a large set of

performance measures and constraints, including ones that involve multiple metrics.

XPORT’s optimization framework is driven by a set of rules that continuously refine the structure

of its dissemination tree. We refer to these rules as network optimizations. The set of optimization

rules is extensible: applications can define their own composite optimizations by combining a set

of primitive rules provided by XPORT. XPORT relies both on localized and directed optimization

rules, as they were defined in Chapter 3. Based on these operations, it consistently delivers efficient

network configurations with near-optimal performance. Our framework is supported by a set of

statistics dissemination and approximation techniques that maintain low network traffic.

We introduce the system’s API in Section 4.1 and its optimization in Section 4.3. We describe

21

the basic XPORT architecture and its run-time behavior in Section 4.4 and present our experiments

and results in Section 4.6.

4.1 XPORT API

Based on the main functionality of data dissemination systems, we identified the types of methods

an application needs to define in XPORT, in order to support an extensible set of profile types.

These methods describe how the matching of data and profiles will be performed. Optionally,

the application can specify how profiles should be stored, indexed and maintained at each node.

Thus, each application designer should provide the implementation of an interface that includes the

following two methods:

• match(m, p): Given a data message m and a profile p, it returns true if m matches p, or false

otherwise.

• merge(p, q): Given two profiles p and q, it returns a more general profile covering p and q.

This function can merge profiles received from clients or children, reducing the routing state

maintained in a node and the matching costs.

• Index-related methods: XPORT allows applications to integrate an index structure by

specifying the following methods:

– init(): declares and initializes the index structure

– add(p): adds a profile p to the index

– remove(p): removes a profile p from the index

– match(m, ind): Given a data message m and a profile index ind, it returns the set of

profiles matching m.

By default, XPORT stores every new profile as a separate routing entry, and uses a disjunction

operator for profile merging.

Our implementation is based on dynamic method invocation using the reflection package available

in Java. More specifically, our system is designed to define in run-time which method to invoke, given

the name of the class implementing the above interface. Thus, application designers simply need to

implement the above interface and provide the name of the implementation class as a parameter to

our system. Moreover, each application designer should provide the implementation for the following

classes:

22

01. system cost:= aggregate (system cost function, node cost, system cost set)
02. system cost function:= MIN|MAX|SUM|AVERAGE|PRODUCT|VARIANCE|STD
03. system cost set:= BROKERS|CLIENT|BROKERS—CLIENTS
04. node cost:= aggregate (node cost function, local metric, node cost set)|

local metric| g(node cost)
05. node cost set:= PATH|CHILDREN
06. node cost function:= MIN|MAX|SUM|AVERAGE
07. local metric:= f(local stats, LINK|NODE, node cost set)

f(LINK|NODE, node cost set)
08. local stats:= path latency|incoming data rate|local profiles...
09. constrained metric:=(system cost|node cost, operator, threshold)
10. operator:= < | > | ≤ | ≥ | 6=

Figure 4.1: XPORT’s grammar

• Profile class. The class defines the type of profiles the application will use.

• Root class. The root class defines the functionality for the root of tree. It is used to specify

the push/pull-based interface between the root broker and the sources. In the case of a pull-

based system, the root class specifies how to fetch data messages from the source and forward

them to XPORT. For the push-based systems, it specifies how to handle incoming messages

from the sources.

4.2 Cost definition model

In order to support cost-related extensibility, XPORT implements and extends the general cost

model defined in Chapter 3. In particular, it implements specific aggregation functions and extends

the definition of the node cost to allow the definition of multi-metric overlays. In this section, we

describe these extensions in detail.

Aggregation functions. In order to generalize the aggregation technique and make the presen-

tation more succinct, we categorize the aggregation functions used by XPORT into three classes:

• additive functions: SUM, AVERAGE,

• bottleneck functions: MIN, MAX and

• holistic functions: VARIANCE, STANDARD DEVIATION STD, PRODUCT.

This categorization is based on the state required by the nodes for optimization purposes. In par-

ticular, for the holistic functions, nodes can identify beneficial optimizations by estimating changes

23

Aggregation System Cost Node Cost Example
Type Function Function Metrics
Type I Additive Additive average path latency
Type II Bottleneck total path bandwidth bottleneck
Type III Bottleneck Additive maximum path latency
Type IV Bottleneck min path bandwidth bottleneck
Type V Holistic Additive variance of path latency
Type VI Bottleneck variance of bandwidth bottleneck

Table 4.1: Two-level aggregation examples.

on the cost of the nodes affected by the optimization, while for the additive and bottleneck functions,

nodes need to estimate changes on some aggregated state for these nodes.

Figure 4.1 shows the extended grammar used in XPORT. The system cost can use all types of

aggregation functions, while the node cost uses only the additive and bottleneck functions. Table 4.1

shows the different aggregation function combinations along with some example metrics.

Node cost. We generalized further the definition of the node cost which, in XPORT, can be defined

as (i) an application-defined local metric, (ii) a combination of metrics defined as the node cost, or

(iii) an aggregation of the local metrics of some neighboring nodes (as described in Chapter 3).

Based on this extension, XPORT can create multi-metric overlay networks by allowing applications

to specify the node cost as a combination of multiple optimization measures, e.g., the product of

latency and bandwidth.

Cost metric examples In this section, we provide some example metrics. We start with the

average path latency. Here, every node measures the link latency to its parent and adds this to the

path latency of its parent:

system cost = aggregate (AVERAGE, path latency, BROKERS)

path latency= aggregate (SUM, link latency, PATH)

If the system cost is the bandwidth bottleneck, every broker measures the bandwidth of its path

to the root (i.e., the link with the minimum bandwidth capacity) and the cost is defined as:

system cost = aggregate (MIN, bandwidth, BROKERS)

bandwidth = aggregate (MIN, link bandwidth, PATH)

An example of a metric with no aggregation for the node cost is the total redundant incoming

data. In this case, the application aims to minimize the undesired data each broker receives and

24

forwards. This is the data the broker is not interested in receiving itself, but needs to forward it to

any interested descendants.

system cost = aggregate (SUM, superfluous data, BROKERS)

superfluous data = (extraIncoming(), PARENT)

The function extraIncoming() estimates the difference between the incoming data rate and the

matching rate of the client profiles.

Our last example uses a combination of metrics for the node cost. We define the node cost

as the bandwidth-delay product of its path. This metric provides an estimation of the amount of

data currently in transit on the path. The performance goal is to minimize the average product

over all nodes.

system cost = aggregate (AVERAGE, node cost, BROKERS)

node cost = path latency × bandwidth

path latency = aggregate (SUM, link latency, PATH)

bandwidth = aggregate (MIN, link bandwidth, PATH)

4.3 Distributed optimization

As mentioned in Chapter 3, the goal of the optimization process is to minimize the application-

specified system cost and, through a set of optimization rules, adapt to time-varying network or

workload conditions. In XPORT these rules modify the structure of its tree. We refer to these rules

as network optimization rules. In the rest of section we describe in detail this rules. We start from

the local optimizations and continue with our set of directed optimizations.

4.3.1 Local network optimizations

To allow the definition of powerful local rules, we extended the minimum optimization unit described

in Chapter 3. XPORT’s unit consist of brokers that are at most three levels from each other; it

includes a broker ni, its parent np, its children and its grandchildren, as shown in Figure 4.2.

XPORT’s local optimization rules are transparent outside its optimization unit; i.e., the rule

does not affect the optimization unit’s interface with the rest of the network. This implies that the

path from np to the root and the subtrees below the last level of the unit will not be affected in

terms of their topology and (merged) profiles. Thus, both the parent of np and the brokers at the

25

......

...

... Level 3

Level 2

Level 1

...

... ...

Level 0

nk

ni

subk1
subks

np

nj

nj1

subj1

nm

subms

nms
nk1

nks

Figure 4.2: Optimization unit of ni in XPORT.

(b) child promotion

...

...

...

...

(a) child demotion

subj1

subj1

nj

nj2

subj2

ni

nj1

nj1

ni

nj

nknj1

subj1

nk

subk

subk

Figure 4.3: Primitive local optimization rules

last level will continue forwarding the same data to the same nodes, as they did before applying

the optimization rule. The only nodes that might experience a change in their connections and

profiles are those within the optimization unit. However, any node’s cost might be affected by

an optimization rule. Keeping the topological and profile-related effects of our optimizations local

reduces the cost of network reconfiguration, as fewer nodes are affected by each rule.

XPORT’s localized optimizations contains a number of built-in primitive optimization rules as

well as other composite operations defined by the application. Our experimental results show that

a small number of well-chosen rules can be very effective while incurring low overhead.

26

...

...

...

subj

ni

nj

subj

(a) subtree promotion (b) parent-child swap

ni

nj

(c) subtree migration

nk

subksubj subj

nk nj

ni

(d) sibling swap

subksubj

ni

nj1

subj1

nj

Figure 4.4: Composite local optimization rules.

Primitive optimization rules

XPORT’s primitive rules are child demotion and child promotion (Figure 4.3(a) and (b)). We explain

these optimizations with respect to the optimization unit in Figure 4.2.

• Child demotion. This rule picks a node nk from the second level of the unit and moves it

along with its subtree under one of its siblings nj . This increases the number of subtrees of nj

leaving ni with one less subtree.

• Child promotion. This rule moves a node nj1 , along with its subtree subj1 , under its

grandparent ni. This increases the number of subtrees of ni leaving nj with one less subtree.

Composite optimization rules

The optimization rule set of XPORT is extensible. Applications can define their own composite rules

by using the primitive ones. Allowing composite optimizations is important as they improve conver-

gence times and also could prevent XPORT from settling in local optimum. In our implementation,

we defined the following composite rules.

• Subtree promotion. In this operation the subtree subj of a node nj is moved under its

parent ni. This will increase the children of ni leaving nj with an empty subtree (shown in

Figure 4.4 (a)). This rule can be derived by applying the promote child operation to every

child njs
of nj .

• Parent-child swap. In this rule, the owner of the optimization unit ni and its child nj

swap positions without moving the subtree of nj (Figure 4.4(b)). This will force every subtree

27

Optimization Rule Definition
Child demotion demote(nk, nj)
Child promotion promote(nj1)
Subtree promotion (nj) promote(njs

)∗

Parent-child swap (nj) promote(nj)→
demote(ni, nj)→
promote(nis

)∗ →
demote(njs

, ni)
∗

Subtree migration (nk, nj) promote(njs
)∗ →

demote(njs
, nk)∗

Sibling swap (nj , nk) promote(njs
)∗ →

demote(njs
, nk)∗ →

promote(nks
)∗ →

demote(nks
, nj)

∗

Table 4.2: Primitive and composite local optimization rules.

previously under ni or nj to have a different parent. Parent-child swap is derived by combining

child promotion and demotion.

• Subtree migration. In this case the subtree of a node nj migrates under its sibling node

nk (Figure 4.4(c)). Node nj remains with no children, while the subtree of nj increases by

the subtree of nk. Subtree migration can be derived from the two primitive rules, by first

promoting all the children of nj under ni and then demoting the same nodes under nk.

• Sibling swap. Here, two siblings nk and nj swap positions. This will change the root node

of their subtrees, as shown in Figure 4.4(d). Sibling swap can be expressed as promoting the

children of nj under ni, and then demoting them under nk and performing the same for the

children of nk.

Table 4.2 shows how these optimizations rules are created from the primitive ones1. Similar tree

optimizations were also used by previous work [14, 55].

4.3.2 Directed optimization rules

Our experimental results showed that localized optimizations are very powerful for specific met-

rics, allowing XPORT to converge very close to optimal network configurations. Specifically, most

additive metrics we implemented (e.g., average latency, bandwidth consumption) where optimized

using only local optimization rules. However, we discovered that bottleneck metrics were more prone

to local optimum. To avoid local optimum and efficiently optimize bottleneck metrics, we allowed

1(In Table 4.2 ’→’ indicates the ordering between operations; ‘*’ indicates that the operation will be performed
repeatedly for all nodes whose parent is specified as the first parameter. The naming of nodes refers to their
position in the original unit).

28

XPORT to apply a specific set of non-localized optimization rules, called directed optimization rules.

These rules involve nodes from different optimization units and they aim to re-utilize network areas

with good performance. XFlow utilizes the available network statistics and based on them nodes

can identify these promising non-local operations. In this section, we describe our approach.

Statistics management XPORT nodes maintain certain local and aggregated statistics which they

selectively disseminate to discover alternative neighborhoods that could improve the performance.

XPORT relies on the definition of the system cost metrics, i.e., on the semantics of the aggregation

functions (i.e., MAX, SUM, etc), in order to determine: (i) which nodes may be interested in

the statistics, and (ii) which statistics could be of potential interest. Moreover, it creates filter-

based routing paths on top of the existing overlay tree that forward the useful statistics from their

producers only to the interested consumers. The statistics propagation process runs with a frequency

that reflects the workload and network changes of the specific application.

Statistics selection Each node stores a local metric and its cost metric. It periodically dissemi-

nates these statistics and informs its peers about the performance of its neighborhood (i.e., the path

to the root or its children). Specifically, the local metric reveals the node’s resource utilization (e.g.,

processing load) or its immediate neighbors’ properties (e.g., latency to its parent), while the aggre-

gated node cost provides a performance measure of the path leading to the node (or of the links to

its children). Table 4.3 shows which value each node will forward (Disseminated Statistics column),

which dependents only on the aggregation function used for the definition of the node cost. The

table shows that each node forwards statistics of constant size (O(1)) and this size is independent

of the number of profiles as well as the number of nodes.

Selective dissemination Nodes are interested only on network components (links, paths, nodes)

that perform better than their own local neighborhood. Table 4.3 shows the predicates used by

each node ni to filter out non-informative statistics (Filters column). XPORT uses the aggregation

semantics to automatically customize these filters. Additive functions imply that the node cost will

be higher than the local metric, thus the lower-bound filter is their local metric. For example, for

the node latency case, ni receives statistics about paths with less latency than its latency to its

parent (i.e., its local metric). In the case of the MIN function, the node cost provides the lowest

value ni is interested in; ni will receive statistics about links and paths with higher bandwidth than

the capacity of its own path to the root.

Furthermore, XPORT distributes statistics only to nodes that may affect the global system cost.

Table 4.3 shows the conditions that should hold in order for a node to receive any statistics from its

peers. These conditions are agnostic of the actual optimization metric and depend on the aggregation

29

Node Disseminated Filters System Condition
Aggregation Statistics Aggregation

SUM node cost <node cost SUM
MIN node cost= system cost ±δ

MIN local metric >node cost SUM
node cost MIN node cost = system cost ±δ

Table 4.3: Statistics filtering and dissemination per node.

functions that evaluate the node and system cost. For example, if the optimization metric is the

average node latency, then every node can improve the system cost by reducing its own latency. On

the other hand, in order to minimize the maximum node latency, we would forward statistics only

to the node with the highest dissemination latency c, (or with small difference ±δ from the worst

response time).

Statistics routing XPORT uses the structure of its tree to distribute its statistics. It avoids

flooding the network by constructing predicate-based routing paths that filter out unwanted statistics

as early as possible. For example, we avoid forwarding load information of the most loaded node.

To construct these filtering paths, nodes propagate their statistics filters (Table 4.3) to their parent.

Each node aggregates the filters of its children in each tree and propagates the aggregated filter

upstream towards the root. This allows nodes to be aware of the interests of their descendants and

selectively route filtered statistics to the interested nodes.

Directed operations

XPORT considers a set of specific directed operations that allows nodes (or subtrees) to be migrate

to different optimization units, as well nodes to swap their positions in the dissemination tree.

Specifically:

• Child move. This rule moves ni along with its subtree under new parent nk outside ni’s

optimization unit.

• Subtree move. This rules moves all children of a node ni under a new parent nk in a different

optimization unit.

• Node swap. This rule swaps two nodes ni and nj in different optimization units. Node ni

becomes the parent of nj ’s children and vice versa for the nj .

30

4.3.3 Evaluating global cost changes

Our optimization framework uses a tree-oriented cost model to estimate the benefit of each potential

optimization rule. With the knowledge of the semantics of the aggregation functions and optimiza-

tion rules, the system derives and automatically collects the required state and statistics. In this

section, we describe the details of our approach.

We start our section by providing the general equations that estimate the cost benefit of an op-

timization rule. We start with some definitions and continue with our metric-independent equations

for the cost benefit.

Definition 1. Let costi be the cost of node ni. The dependence set Di of ni is the set of nodes

whose cost is affected by a change in costi. In particular, Di includes the nodes in the subtree of ni

(respectively the nodes of the path from ni to the root) when costi is calculated as aggregation over

path (respectively aggregation over children). We refer to members of Di as the dependents of ni.

For example, for aggregation over path, an increase on the latency of the link between ni and

its parent will increase the path latency of all nodes in its subtree. Similarly, for aggregation over

children, a change on a child’s profile could affect the outgoing bandwidth consumption of the nodes

on its path to the root, as they may need to forward different data messages downstream.

If XPORT uses only one level of aggregation, i.e., there is no aggregation for calculating the node

cost, the dependence set of a node may include all nodes in the network. Since, in this case, the

node cost is defined as a local metric, XPORT limits, whenever possible, the dependence set based

on the definition of this metric. For example, if the local metric is defined as a function of the profile

of ni, then the dependents of ni are the nodes of its path, since a change in this profile could affect

only these nodes.

Definition 2. The dependence set cost cost(Di) of ni is the aggregation of costj , nj ∈ Di, over Di,

using the system cost function. We denote a change of costi that affects cost(Di) as ∆cost(Di), and

the new dependence set cost as cost′(Di).

For example, if the system cost function is MIN, then

cost(Di) = min
j∈Di

{costj}.

Let Ui denote the set of nodes in the optimization unit of ni and Si denote the set of nodes in

the last level of this unit, when the node cost is an aggregation over path (e.g., nodes of Level 3 in

Figure 4.2). For an aggregation over children, Si is the root of the optimization unit. We refer to

the union of the dependents of all nodes in Si as the dependence set, Li, of ni’s unit. Intuitively,

31

Symbol Definition
costi cost metric of ni

Di dependents of ni

cost(Di) dependence set cost of ni

Ui nodes in optimization unit of ni

Si nodes in the last level of the optimization unit of ni

Li dependents of the optimization unit of ni

bi benefit of an optimization rule in the optimization unit of ni

childreni children of ni in the dissemination tree
c current system cost
gi minimum local metric for ni

hi(j) cost of dependent nj relative to ni

Table 4.4: Model Terminology

this is the set of nodes that do not belong in the optimization unit of ni but may be affected by any

optimization rule applied on its unit.

Finally, we denote ∆costi the cost change of ni, cost′i its new cost value, and bi the benefit of an

optimization rule with respect to the system cost. We provide now the equations that quantify the

cost benefit of a rule in the optimization unit of ni.

Additive functions Consider the case where the system cost is the SUM of the costs of all nodes.

Then, bi is the sum of the cost change of only the nodes affected by the optimization rule, i.e., nodes

inside the unit and the dependents of the unit:

bi =
∑

j∈Ui

(cost′j − costj) +
∑

k∈Si

∆cost(Dk) (4.1)

If the AVERAGE function is used, then bi is divided by the number of nodes in the system. This

general equation holds for every optimization rule. However, depending on the rule, many of its

terms are zero, so simpler equations can be obtained. Examples of these equations are given in

Table 4.5.

Child demotion (cost′k − costk) + ∆cost(Dk)
Child promotion (cost′j1 − costj1) + ∆cost(Dj1)

Subtree promotion
∑

k∈childrenj
∆cost(Dk) +

∑

k∈childrenj
(cost′k − costk)

Subtree migration
∑

k∈childrenj
∆cost(Dk) +

∑

k∈childrenj
(cost′k − costk)

Sibling swap
∑

s∈childrenk∪childrenj
∆cost(Ds) +

∑

s∈childrenk∪childrenj
(cost′s − costs)

Table 4.5: Simplified cost equations for local optimizations and an additive (SUM) system cost
function.

Bottleneck functions We assume that the system cost function is MIN. Then ni estimates the

new minimum cost across all nodes. This can be computed by aggregating only the new cost of the

32

affected nodes and the minimum cost of all nodes not affected by the optimization rule. If c denotes

the current system cost, then the benefit of the rule is:

bi = c− min
j∈Ui,k∈Si

{cost′j , cost
′(Dk), min

m/∈Ui,m/∈Li

{costm}} (4.2)

where cost′(Dk) = cost(Dk) + ∆cost(Dk). To estimate the minimum cost of all nodes not affected

by the optimization rule state of constant size is required at every node. We will provide details in

the Section 4.3.3.

Holistic functions. In this case ni calculates the new cost of every affected node and estimates

the difference with the current cost, using its estimations for the new cost of all nodes. Thus, for

the VARIANCE function:

bi = c−
1

|V | − 1

∑

j∈V

(cost′j − cost′)2

= c−
1

|V | − 1
{
∑

j∈Ui

(cost′j − cost′)2+

∑

j∈Li

((costj + ∆costj)− cost′)2+

∑

j /∈Ui,j /∈Li

(costj − cost′)2}

(4.3)

where cost′ is the average node cost after the optimization rule and V is the set of nodes.

Extending the optimization unit

We mentioned earlier that the scope of the optimization unit and the optimization rule set of XPORT

can be extended. Here, we describe the impact of these extensions to the way XPORT quantifies

the benefit of every optimization rule. Obviously, increasing the size of the optimization unit will

simply increase the number of terms in Equations 4.1, 4.2 and 4.3, adapting them to include the

extra nodes.

Defining new optimization rules is simple from the user perspective. The user simply defines

which optimization rules will be combined along with the desired parameters. From the system

perspective, defining a new optimization rule requires the definition of the equation that quantifies

its impact. This equation can be derived by aggregating, using the system cost aggregation function,

the equations for each of the optimization rules that define the composite one. For example, it

is straightforward to see that, for the subtree promotion, the equation is simply the sum of the

equations for the promote child operation, over all children of node nj . For more complicated

composite optimization rules, like sibling swap, more compact equations will be derived, as many of

33

their terms cancel out. Providing compact equations implies less traffic during optimization, due to

the smaller state exchanged among nodes in the optimization unit.

Evaluating node cost changes

In order to quantify the benefit of an optimization rule we need to estimate its impact on its unit’s

nodes and dependents of the unit. If the system cost is calculated by additive or bottleneck functions,

then the impact on the cost metric of the dependents equals to the impact on their aggregated cost,

i.e., the dependence set cost (based on Equations 4.1 and 4.2). XPORT strives to incur the minimum

communication overhead when estimating these cost changes. It allows communication among nodes

of the same unit and avoids any metadata exchange with nodes lying outside the optimization unit.

Instead, nodes maintain state for the dependents of their unit. We refer to this metadata as the

transformation state.

XPORT exploits the semantics of the aggregation functions to identify both the minimum state

required and to derive generic equations that quantify the cost change of the dependents of their

unit. We provide the details of our approach in the following paragraphs, for different types of

node cost functions. We note that if no aggregation is used for defining the node cost, XPORT

uses a brute-force approach for evaluating the impact of optimization rules. It calculates the new

cost metric of all the dependents of the unit and uses Equations 4.1, 4.2 and 4.3 to quantify the

result of an optimization rule. This approach may incur high communication overhead, as the metric

definition does not include any aggregation function and XPORT’s optimizations can not be applied.

Thus, application designers should refrain from defining optimization metrics that do not adhere to

the structured rules of our definition grammar.

Additive node cost functions. For the purpose of illustration, we focus on the case of the SUM

function and an aggregation over path to the root. An example metric is path latency. Our results

are similar for the case of the AVERAGE function and aggregation over children. In this case, a

change of a node’s cost (i.e., path latency to the root) will incur the same change on the costs of all

its dependents (i.e., every node in its subtree). Given this, we describe the different cases of system

cost functions, when the cost of ni changes by ∆costi. Note that for the additive and bottleneck

functions we need to compute the change of the dependence set cost of a node ni, while for the

holistic functions we need to estimate the cost change of each dependent of ni.

1. Additive system cost functions. Since each dependent’s cost change is ∆costi, the total change

of the dependence set cost for the SUM system cost function is :

∆cost(Di) = ∆costi × |Di|

34

Thus, node ni needs to maintain only the size of its dependence set.

2. Bottleneck system cost functions. In this case, the system cost function is either MIN or MAX.

Thus, we are only interested in the change on the minimum (or maximum) node cost among

the dependents. Since every dependent will have the same cost change, ∆costi, then:

∆cost(Di) = ∆costi

Moreover, based on Equation 4.2, every node simply needs to maintain an estimation of the

current system cost and its dependence set cost.

3. Holistic system cost functions. For the holistic functions, the cost change of every dependent

is defined as:

∆costj = ∆costi

For this case, every node stores an estimation of the current system cost, as well as the cost

of every peer in the system.

Given these equations, node ni can estimate the benefit of an optimization rule using Equa-

tions 4.1, 4.2 and 4.3.

Bottleneck node cost functions We focus here on the MIN aggregation function, for the purpose

of illustrating our ideas. Our results can be easily extended for the MAX function. Again, we assume

that an aggregation over path is used for the definition of the node cost and the local metric of a

node is measured over the link to its parent. An example metric is the bandwidth bottleneck of

a node, i.e., the minimum bandwidth capacity over all links on its path. Here on, we will refer to

this bandwidth capacity as the bottleneck value of the node, and the link with this capacity as the

bottleneck link. For simplicity, we will present our approach with respect to this metric.

Changing the bandwidth capacity of a link may affect the bandwidth bottleneck of the down-

stream nodes that have this as their bottleneck link. Consequently, a change of the cost of ni may

affect the cost of every dependent nj (i.e., all nodes in its subtree). The impact (if any) depends on

the links lying between the nodes ni and nj , since there may be similar bottlenecks between them.

The following definition allows us to identify these links.

Definition 3. The cost of a dependent nj of ni relative to ni, hi(j), is the aggregation of the local

metrics of all nodes lying on the path connecting ni and nj, using the node cost function. Moreover,

the aggregation of ni’s local metric and hi(j),∀nj ∈ Di, is referred to as the minimum local metric

of ni, gi.

35

For the bandwidth bottleneck metric, hi(j) is the minimum bandwidth capacity link between ni

and its descendant nj , while gi is the minimum bandwidth capacity of the links in the subtree of ni,

including the local value of ni.

Each node maintains the above metric for all its dependents. In the case of additive functions,

we can reduce the amount of state by storing only the unique hi(j) values along with the occurrence

frequency for each distinct value:

Ti = {(λ, α)}, where λ = |{nj |nj ∈ Di, hi(j) = α}|.

We mentioned in the previous section, that in order for a node to estimate the impact of an

optimization rule on the system cost it needs to know the minimum cost of all system nodes minnet,

except the ones affected by an optimization rule. This implies that every node needs to maintain

the minimum cost of all nodes that do not belong to its dependents set.

We now describe the equations based on which ni can calculate a change in its dependence set

cost, when its cost change is ∆costi.

1. Additive system cost functions. We assume again the system cost function is SUM and we

are interested in the total cost change over all the dependents. We distinguish two cases; one

where the cost of ni decreases and one where it increases. For the first case, the cost change

is:

∆cost(Di) =







∆costi × |Di| gi ≥ costi

γ otherwise

where

γ =
∑

(λj ,αj)∈Ti,αj≥cost′
i

(cost′i −min{costi, αj})× λj

In the first case, all the links in ni’s subtree have bandwidth capacity higher that ni’s path to

the root. Hence ni and its dependents share the same bottleneck link and since it is replaced

by an even worst link the cost of all of them is affected that same, i.e., ∆costi. The second

option refers to the case where some dependents had a different bottleneck value before we

applied the optimization rule, but are expected to share the same bottleneck link with ni after

the optimization rule is applied. The term γ identifies these nodes and aggregates their total

cost change. These are the nodes that their links connecting them to ni have a bandwidth

capacity higher than then new bottleneck value of ni. For all the other dependents there is

not cost change and are not included in the equation.

36

In the second case, where costi increases, the cost change on the dependent set cost is:

∆cost(Di) =







∆costi × |Di| gi > cost′i

ω otherwise

where

ω =
∑

(λj ,αj)∈Ti,αj≥cost′
i

∆costi × λj +
∑

(λ′

j
,α′

j
)∈Ti,α′

j
<cost′

i
and α′

j
>costi

(α′
j − costi)× λ′

j

The first terms covers the case where all the links in ni’s subtree have higher bandwidth than

the old and the new bottleneck link of ni. Hence, all dependents will have the same cost

change as ni, since they share the same bottleneck link. In the case that only a subset of the

dependents belong in the above category, we use the term ω two calculate the impact on two

different sets of dependents. The first one includes the dependents that connect to ni through

links with higher bandwidth then the new bottleneck link of ni. Thus, the total cost change of

them is the same as for ni. The second set includes the nodes that shared the same bottleneck

link with ni before the optimization rule. However, after this link was replace with the new

one (with higher bandwidth capacity), their new bottleneck link is a link between ni and the

dependent and has a lower capacity than then new bottleneck link of ni.

Given this value of ∆cost(Di), ni uses Equation 4.1 to estimate the benefit of an optimization

rule. Thus, the state required is the size of the dependence set and the set Ti.

2. Bottleneck system cost functions. For the bottleneck functions, we are interested in the mini-

mum change across all the dependents. We distinguish again two cases; one when the cost of

node ni decreases and one when it increases. For the first case, the impact on the dependence

set cost is:

∆cost(Di) =



















∆costi gi ≥ costi

cost′i − gi gi > cost′i

0 otherwise

The first term refers to the case where ni and all its dependents share the same bottleneck

link. Since we assume that this value decreases, these nodes will experience the same decrease

on their bottleneck value. The second term refers to the case where some dependent(s) has a

different bottleneck link than ni after the optimization rule. This happens when there exists

a worse link between this dependent and ni. However after the optimization rule, another

link with lower bandwidth capacity is connecting ni with the root of the tree, affecting the

bandwidth bottleneck of the dependent as well. The third term refers to the case where the

37

bottleneck value of all dependents is not effected. This occurs when there exists a link between

any of the dependents and ni with a worse bandwidth than then new bottleneck value of ni.

Similarly, if costi increases, then the impact on the dependent set cost is:

∆cost(Di) =



















∆costi gi > costi and gi > cost′i

gi − costi gi > costi and gi ≤ cost′i

0 otherwise

The first term refers to the case where ni and its dependents share the same bottleneck link

before and after we apply the optimization rule. This occurs when all the links between every

dependent and ni have higher capacity from the new and the old bottleneck link of ni. The

second term covers the case where there exists a link between some dependent and ni that

has a higher bandwidth capacity compared with the old bottleneck link of ni, however, after

this bottleneck value of ni increases, this link becomes the new bottleneck link for some of

the dependents. Finally, the third term refers to the case where bottleneck links of all the

dependents lie within ni’s subtree. Since the bandwidth bottleneck of ni increases, it could

not affect the “worst” link of any of the dependents. Thus, none of the dependents’ bottleneck

value changes.

3. Holistic system cost functions. Similarly for the holistic functions, we distinguish two cases;

one when the costi decreases and one when it increases. For the first case, the cost change of

the node is:

∆costj =



















∆costi gi ≥ costi

γ′ gi ≤ costi and hi(j) ≤ cost′i

0 otherwise

where

γ′ = cost′i −min{costi, hi(j)}

In the first term, ni and the dependent nj share the same bottleneck link, so their cost is

affected by the same amount ∆costi. The second option refers to the case, where the dependent

has a different bottleneck value before the optimization rule, but shares the same bottleneck

link with ni after the optimization rule. Hence, its bottleneck link was lying between ni and nj

before the optimization rule, while after we apply the rule it will be one of the links connecting

ni to the root. In all the other cases, there is no impact on nj , i.e., there is a link between ni

and nj that has lower bandwidth than the link between ni and the root.

In the second case, where costi increases, the impact on nj ’s cost is:

38

∆costj =



















∆costi hi(j) ≥ cost′i

hi(j)− costi hi(j) ≤ cost′i and hi(j) ≥ costi

0 otherwise

In the first case, the links between ni and nj have a higher bandwidth capacity than the old

and the new bottleneck value of ni, i.e., the bottleneck link lies on the path connecting ni to

the root and so the impact on nj is the same as the impact on ni. In the second case, nj has a

different bottleneck link than ni, because there is a link between them with less capacity than

the new increased bottleneck value of ni. For all the other cases, there is no impact on nj ’s

cost.

4.3.4 Multi-metric cost functions

XPORT can create multi-metric overlay trees by defining either the node cost or the local

metric of a node as a combination of multiple metrics. For both of these cases, the individ-

ual metrics used in the definition of the combined metric are calculated independently. For

example, let us assume an application defines the local metric of a node as the product of its

incoming data rate and its latency to its parent. Each node will be customized to collect the

required state and statistic for each of these metrics independently. Hence, nodes will measure

latency and data rate on their link to their parent. Each node will combine these metrics,

based on the application-specified function (the product in the specific example), to obtain the

final local metric. In the same way, if the node cost is defined as the product of its latency

to the root and its incoming rate, then each node will evaluate the latency to the root as a

one-level aggregation metric and multiple it with the incoming rate, which could be defined as

a local metric.

Moreover, for multi-metric node costs, the optimization procedure handle every metric inde-

pendently. For each optimization rule, the node calculates the effect of the optimization rule

on its dependents separately for each individual metric. It then combines these metrics to

derive the final impact on its dependents’ costs. In the previous examples, nodes will evaluate

the impact on a node’s latency from its parent (or on its latency from the root) and also

quantify the impact of the optimization rules on the incoming data rate of each affected node.

Based on these metrics, we evaluate the impact on the node’s cost by combining them using

the function provided by the application (in this example we multiple the new values). Since

there are no restrictions on the combination functions, the total benefit of an optimization rule

39

is calculated based on Equation 4.3, i.e., each node uses its estimation of the new costs for

every affected node, calculates the new system cost and compares it with the current system

cost value.

4.3.5 Statistics approximation

In the previous section, we argued that maintaining state for the dependents of the optimization

unit of ni (e.g., dependence set cost) allows ni to quantify the benefit of an optimization rule.

In order for ni to calculate this state, its peers need to periodically broadcast some metadata.

This metadata includes the cost and local metric of each node. For the additive and bottleneck

system cost functions, ni needs to collect this data only from its dependents, while in the case

of the holistic functions, it needs to know the cost of every node in the system. To reduce the

high overhead of these broadcasts, we vary their frequency.

XPORT broadcasts the cost of nodes that have higher impact on the system cost more fre-

quently. Each node ni is assigned a weight wi depending on this impact and broadcasts its

metadata in broadcast phases. During each phase, only a subset of the nodes will send their

metadata, depending on their weight. Node ni participates in the broadcast phases with

period:

wi × p (4.4)

where p > 1 is a predefined constant.

The weight of a node depends on the node cost function. We distinguish two cases; the first

one refers to the additive functions. In this case, the larger the dependence set of a node is,

the more nodes it can affect if its own local metric changes. To reflect a node’s impact on

the system cost, we set the weight of ni to be wi = |V |
|Di|

. An example metric is a node’s path

latency. In this case, changes on the links closer to the root affect more nodes than the links

closer to the leaf nodes.

The second case is for the bottleneck functions. Here, the closer the local metric of ni is to the

cost of its dependents, the more likely it is to become their new bottleneck value (assuming no

drastic changes on the local metrics of the nodes). Thus, we set the weight of ni to wi = li−gi,

where gi represents the minimum (or maximum) bottleneck value of all the dependents of ni

and li its local metric. An example metric is the bandwidth bottleneck of a node, where a

change on a link’s capacity could potentially affect the bandwidth of all its descendants.

40

4.4 Run-time functionality

In this section, we describe the run time functionality of XPORT. We start by describing

the basic system architecture. We then describe the details of the distributed optimization

protocol.

Node architecture

The high-level architecture of an XPORT node is shown in Figure 4.5. Applications customize

two main system components. The first component is the data/profile handler that is respon-

sible for storing, indexing and maintaining profiles as well as matching them against incoming

data messages. The optimizer identifies and applies network optimization rules on the basis

of application-specified performance criteria and constraints. The tree optimization rules to

be performed are given to the connection manager, which establishes and manages the node’s

connections with its parent and children. Both the optimizer and the profile/data handler

communicate with the node’s router, which handles all the data and metadata communica-

tion. P r o f i l e , d a t aH a n d l e rP r o f i l e s O p t i m i z e rC o s t @ r e l a t e d &T r a n s f o r m a t i o n s t a t eA ppli cati on C o n n e c t i o n M a n a g e rR o u t e r N et workO p t i m i z a t i o ns t a t e c
P r o f i l e s / D a t a

Figure 4.5: XPORT’s high-level node architecture.

Node State

Each node maintains four state types: profile-based, cost-based, transformation, and optimiza-

tion state. The profile-based state includes the profiles the node receives from its children and

clients, and the merged profile it derives from them. Thus, the size of the profile-related state

for node ni is O(|childreni|). This state resides in the profile/data handler. The cost-based

state includes the local metric value of the node and its cost. This state is of constant size,

O(1). The transformation state refers to the data every node has to maintain in order to

participate in the optimization process. This state allows nodes to quantify the cost benefit

41

of their local optimization rules. Optimization state refers to the information nodes need to

exchange with their neighbors during optimization and resides in the optimizer. Optimization

and transformation state and their size estimations are given in Table 4.6.

Aggregation T Size O Size
Type I |Di| O(1) |Di| O(1)

costi, cost′i O(1)
Type II |Di| O(1) |Di| O(1)

Ti O(|Di|) hi(j), j ∈ Di O(|Di|)
costi, cost′i O(1)

Type III cost(Di) O(1) cost(Di) O(1)
c O(1) costi, cost′i O(1)

Type IV cost(Di) O(1) cost(Di) O(1)
gi O(1) gi O(1)
c O(1) costi, cost′i O(1)

Type V costj , j ∈ V O(|V |) costi O(|1|)
c O(1) cost′i O(1)

Type VI costj , j ∈ V O(|V |) costi, cost′i O(1)
hi(j), j ∈ Di O(|Di|) hi(j) O(|Di|)

Table 4.6: Transformation state (T) and optimization state (O) for node ni (V : set of nodes).

4.5 Network optimization protocol

As mentioned in Chapter 3, the local search heuristic used by XPORT follows the principles of a hill-

climbing local search. Our optimization process identifies and applies the best network optimization

across all possible optimizations of all units in the tree. This best network optimization rule will

reorganize the structure of the dissemination tree. Our results revealed that this approach can yield

significant improvements. Although this heuristic is quite prone to local optimum, our directed

optimizations allowed XPORT to converge to network topologies with near-optimal performance.

During tree reorganization, nodes maintain their old connections while they establish their new

connections. This approach allows the nodes to keep receiving data from the current tree during

optimization periods. To ensure the correctness of tree reorganization and avoid losing messages,

however, care must be taken regarding when the nodes should switch to the new sub-tree. One

solution is to wait until all connections are set up and then use a distributed protocol to make

the switch in a coordinated fashion, starting from the root of the new sub-tree and proceeding

downstream.

XPORT implements an alternative approach that is based on the use of sequence numbers and

a TCP-like window-based message request and retransmit scheme implemented at the application

42

level. In this approach, each message injected to the system is assigned a unique monotonically-

increasing sequence number by the root. Nodes simply cache the messages they receive until they run

out of space. Whenever a node establishes a new connection (either during reorganization or after

a disconnection/failure), it requests from its parent the messages that it has not yet received, which

it can determine on the basis of the sequence numbers it has seen. If the parent node does not have

those messages in its cache, it will forward the request to its own parent and the process will iterate.

This approach not only eliminates the need for coordinated switching but also allows XPORT to

deal uniformly with other problematic cases such as failures and temporary disconnections.

Simulated annealing

To show the effectiveness of our heuristic we compared it with another widely-used local search

heuristic, simulated annealing. This approach has been shown to generate very efficient solutions

for hard problems. The algorithm is illustrated in Figure 4.6. It starts from a random configuration

C0 and an initial temperature T0. In the inner loop, a new configuration newC is chosen randomly

from the neighbors of the current configuration C. If the cost of newC is smaller than that of C,

the transition will happen. Otherwise, the transition will take place with probability of e−∆Cost/T .

(With the decrease of T this probability would be reduced.) Meanwhile, it also records the minimum

cost configuration that has been visited. Whenever it exits the inner loop, the current temperature

would be reduced. Based on previous related work [55], we select the parameters as follows: (1) T0 =

2× cost(C0); (2) frozen : T < 0.001 and minC unchanged for 10 iterations; (3) equilibrium = 64×

|N |; (4) reduceTemp = T ← 0.95T ; (5) RandomRule(C): randomly choose one of the optimization

rules of the configuration C.

begin
C ← C0; T ← T0; minC ← C;
while !frozen do

while !equilibrium do
newC ← RandomRule(C);
∆Cost← cost(newC)− cost(C)
if ∆Cost ≤ 0 then C ← newC;
else C ← newC with probability e−∆Cost/T ;
if cost(C) < cost(minC) then minC ← C;

T ← reduceTemp(T);
return minC;

end

Figure 4.6: Simulated annealing algorithm.

43

Concurrent optimization rules

A related issue is the choice of the number of optimization units that can be optimized concurrently.

Strictly serializing optimization rules is easier to reason about and implement, as we do not need to

consider potentially negatively interfering concurrent optimization rules across multiple optimization

units. At the same time, serialization often slows down the convergence rate to a minimal cost

configuration.

We now discuss how XPORT facilitates multiple concurrent optimization rules by reasoning

about the scope and semantics of the optimization rules. This reasoning is based on the notion of

independence for optimization units and optimization rules.

Definition 4. The optimization units of ni and nj are independent if

(Ui ∪ Si) ∩ (Uj ∪ Sj) = ⊘.

Definition 5. Let transi and transj denote optimization rules of the optimization units of ni and

nj, respectively. Furthermore, let trans seti and trans setj be the set of nodes affected topologically

(i.e., have a different parent or different children set) by transi and transj, respectively. We say

that transi and transj are independent if the optimization units of ni and nj are independent, or

(trans seti ∩ trans setj) = ⊘

XPORT allows two optimization rules to be applied in parallel during the same optimization

period if they are independent. This ensures that these optimization rules can both be defined

correctly on their overlapping optimization units.

Identifying which optimization rules can be parallelized is the first step for supporting concurrent

optimization rules. The second step involves quantifying the cost effect of these optimization rules

when applied in parallel. In order to decide the best combination of rules, their impact will have to

be compared with the impact of applying only one of the two optimization rules.

If two optimization rules are applied on independent units, then they cannot negatively interfere

with each other. Otherwise, one of the optimization rules might potentially affect the cost of some

of the nodes in the other optimization unit. Thus, we need a way to quantify the benefit of parallel

independent optimization rules when their corresponding optimization units overlap. We denote

this benefit as bij and estimate it as follows.

Additive functions. Assuming the system cost function is SUM, then, if the two units are in-

dependent, the total benefit is the sum of the benefit of each optimization rule. For overlapping

44

units, the total benefit is calculated in the same way since each node’s change affects its dependents

equally. Thus:

bij = bi + bj .

Bottleneck functions. If the two units are independent and the system cost function used is

MIN, then the total benefit is:

bij = min{bi, bj}.

When the units overlap, assuming that ni is in a higher level in the tree than nj , the total benefit

of the parallel optimization rules is:

bij = c− min
m∈Uj ,k∈Sj

{cost′j + x, cost′m + x, cost′(Dk),minnet}

where cost′(Dk) = cost(Dk)+∆cost(Dk) and x is the cost increase of nk’s first ancestor that belongs

in the unit of ni but not the unit of nj . Also we define minnet as :

minnet = min
y/∈Ui,y /∈Si,y /∈Uj ,y /∈Sj

costy

Holistic functions. Similarly, if the system cost aggregation function is the variance, then:

bi = c−
1

|V | − 1

∑

j∈V

(cost′j − cost)2

= c−
1

|V | − 1
{

∑

m∈Uj

(cost′m − cost)2+

∑

k∈Lj

((costm + ∆costm + x)− cost)2+

∑

m/∈Uj ,m/∈Lj

(costm − cost)2}

4.6 Performance evaluation

We implemented an initial XPORT prototype [43] in Java. For experimentation purposes, we also

built an RSS feed dissemination application using the XPORT API and deployed it across the

PlanetLab testbed. For this application, XPORT automatically builds an overlay tree, where the

root of the tree polls the RSS sources and forwards only new items into the tree. Using XPORT for

disseminating the requested feeds allows RSS sources to receive HTTP requests only from the root

instead of each individual client. Thus, the bandwidth requirements of hosting an RSS feed decreases.

Moreover, since XPORT alleviates the load that would have been presented by many clients, it is

reasonable for the root to poll the RSS source more frequently that any one of the clients would have

45

as traditional RSS clients. In combination with XPORT’s push-style distribution, the end result is

that clients receive more timely updates while presenting less load on the RSS source. FeedTree [51]

possesses a similar structure, though it is unable to perform XPORT’s wide variety of optimizations.

We studied XPORT’s performance through real-world RSS data and results from simulation,

prototype-based LAN emulation and deployment on the PlanetLab testbed. In our PlanetLab

experiments, we used dissemination trees with up to 200 randomly chosen PlanetLab sites. For our

prototype-based LAN emulation, we used up to 200 nodes, but artificially controlled the network

latency and bandwidth capacities between nodes. We obtained these metrics from actual PlanetLab

measurements, but “replayed” these conditions for multiple experiments in order to obtain repeatable

results.

We also created 100 clients and attached them randomly to the XPORT nodes. Each client picks

its profile from a set of 700 RSS feeds using the Zipf distribution, with the skew parameter set to

0.97. The total size of RSS feeds was around 19MB and the average RSS feed size was 27.7KB.

For the experiments, we set our optimization period to two minutes. This choice is a compromise

between rapid adaptivity to network changes and minimizing optimization traffic. The minimal

practical interval depends on the metrics being optimized. For example, it takes longer to assess

available bandwidth than latency.

We have used XPORT to implement distribution trees that optimize a variety of metrics including

total path latency, variance of path latency, average bandwidth consumption, bandwidth bottleneck,

and total received redundant data and maximum network latency. Our experiments demonstrate

XPORT’s flexibility and effectiveness, as it manages to improve each of these metrics significantly

through its local optimization rules.

In our experiments we study three different variations of our optimization framework:

• XPORT-local uses only local optimization rules,

• XPORT-directed uses only directed optimization rules and

• XPORT-hybrid uses both types of rules.

4.6.1 Convergence

In our first set of experiments, we study the convergence properties of XPORT. Ideally, we would like

to have a system that converges to the optimal configuration using a small number of optimization

steps. To measure the efficiency of our approach, we identified the optimal topology for certain

metrics and compared its performance with the best configuration achieved by XPORT. The results

46

1 0 0 01 5 0 02 0 0 02 5 0 03 0 0 03 5 0 04 0 0 04 5 0 0

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0 2 4 0 0 0T i m e (m s e c)T ot al net workl at ency(msec) X P O R T � l o c a l O p t i m a l

Figure 4.7: Convergence to the optimal for the total network latency.

show that XPORT can achieve near-optimal performance for most of our metrics and within small

number optimization steps.

To demonstrate the efficiency of our optimization rules and our hill-climbing optimization local

search (i.e., at each step, we apply the best optimization rule), we compared XPORT with the

performance of the simulated-annealing local search, as described in Figure 4.6. We compared

XPORT to two variations of the simulated annealing approach:

• SA-local, where the function RandomRule(C) picks a random rule from the set of local opti-

mizations.

• SA-hybrid, where the function RandomRule(C) picks a random rule from the set of local and

directed optimizations.

Average network latency

Figure 4.7 shows the sum of the network path latencies of 40 PlanetLab sites. This is an example of

an aggregation using additive functions for both the node and system cost. We compare XPORT’s

performance with the optimal tree, which is the star topology when no constraints are imposed and

assuming the triangle inequality and lack of congestion. In this topology, all the nodes are connected

directly to the root of the tree. XPORT starts with a random tree and continuously applies local

optimization rules. The figure shows that XPORT starts with lower performance than the star

topology and after a small number of optimization rules our tree converges to the optimal tree.

We also run experiments demonstrating the scalability of our system and its ability to converge to

optimal configurations for large networks. Figure 4.8 shows the average network latency for different

47

4 95 05 15 25 35 45 55 6

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z eA veragenet workl at ency(msec) O p t i m a l X P O R T ¹ l o c a l

Figure 4.8: Convergence to the optimal for the average network latency.

20 40 60 80 100 120 140 160 180 200
XPORT-hybrid 16.6 39.6 61.1 83.6 103.8 124.9 151.3 174.7 188.7 210.7

Table 4.7: Number of network transformations for optimizing the average network latency.

network sizes. The results were obtained from our LAN emulation and show the average performance

achieved over fifty (50) different runs, where at each run XPORT is initialized to a different random

tree. The optimal was obtained by the Dijkstra algorithm. The results show that XPORT is able

to converge very close to the optimal configuration for all network sizes. Note that for this metric,

local optimizations are sufficient to converge to the near-optimal configurations. Table 4.7 shows the

number of optimization rules applied by XPORT before it converged to the results of Figure 4.8.

We also tried to optimize XPORT for the network latency, but under certain constraints; we

applied restrictions on the number of children each node could have in the XPORT tree (referred as

fanout). Table 4.8 shows the results for this metric for a network of 20 nodes. When no constraints

are imposed, XPORT can converge to the optimal solution. As the constraints become tighter, fewer

optimization rules can be applied and smaller improvement is achieved.

Redundant data

We also implemented a metric that measures the total redundant data received by the nodes. This is

a sum of the amount of data each node receives that matches the profiles of its descendants but not

the interests of its directly connected clients. An application might want to minimize superfluous

data to eliminate disincentives to joining a cooperative system. This is an example of a metric

where no aggregation is defined for the node cost. We used this metric to demonstrate XPORT’s

convergence to the optimal solution using only local optimizations and also to show the effectiveness

48

Metric f t Performance
Total path latency 2 5 3229ms

6 8 3036ms
10 12 2670ms
∞ 14 1691ms (0.02% off the optimal)

Redundant incoming data 2 4 1088KB
6 7 461KB

10 8 304KB
∞ 11 0KB (optimal)

Table 4.8: Performance for different constrained metrics (t: number of optimizations, f : fanout
constraint).

of our optimization rules.

02 0 04 0 06 0 08 0 01 0 0 01 2 0 01 4 0 01 6 0 01 8 0 02 0 0 0
1 2 3 4 5 6 7 8 9 1 0 1 1T i m e (O p t i m i z a t i o n s t e p s)R ed und antd at a(KB)

X P O R T á l o c a l 5 t r a s f o r m a t i o n s X P O R T á l o c a l 4 t r a s f o r m a t i o n sX P O R T á l o c a l 3 t r a s f o r m a t i o n s

Figure 4.9: Convergence to the optimal for the average superfluous incoming data.

For this metric we used our RSS feed application on 40 PlanetLab sites. Figure 4.9 shows

three different cases for this metric, one when all five composite optimization rules are applied and

two where the optimizer used only four and three composite optimization rules. We first remove

the promote subtree optimization rule and then the parent-child swap optimization rule from our

optimization. The results reveal that in the first case XPORT converged to the optimal solution

(where the total redundant data is zero for every node) after applying 11 optimization rules, while for

the other two cases the system cost improves but could not converge to the optimal case. Promote

subtree is the most beneficial optimization rule because it allows our tree to converge to the star

topology. XPORT managed to improve its performance, even in the absence of this optimization

rule. Moreover, the larger the set of optimization rules, the better performance XPORT achieves.

We also implemented a constrained version of this metric, by defining constraints on the fanout

49

of the nodes. Table 4.8 shows the results for the constrained metric. Similar to previous constrained

metrics, when no constraints are imposed, XPORT can converge to the optimal solution. However,

the tighter the constraints we express, the fewer optimization rules can be applied and smaller

improvement is achieved.

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 b
an

dw
id

th
 c

on
su

m
pt

io
n

(K
B

/n
od

e)

Time (optimization periods)

No constraints
Latency constraint=300ms
Latency constraint=200ms

Figure 4.10: Convergence to the optimal for the average bandwidth consumption under various
latency constraints.

Bandwidth consumption

We studied also metrics where a node’s cost is aggregated over its children’s local metrics. An

example metric is the average outgoing bandwidth over all nodes, where the bandwidth consumption

of a node is defined as the sum of the incoming data of its children. For this metric, we run

experiments with path latency constraints on every node. This metric includes the CPU time for

processing and matching the incoming messages and is implemented as an aggregation over path.

We run our experiments on 100 nodes in our LAN emulation environment. Although a better

metric might be network utilization, in which the costs of a transmission is multiplied by the number

of links in the transmission, it would be difficult to establish an optimal benchmark to compare our

tree with. The optimal topology for this case is again a topology where all nodes with a client

profile are directly connected to the root, because each message is emitted by a broker exactly once.

Figure 4.10 shows XPORT’s performance when no constraints are imposed and two cases where the

path latency threshold is set to 300ms and 200ms. In the first case, XPORT converges to the optimal

configuration, using again only local transformations. However, when latency constraints exist, the

root cannot accept direct connections from all nodes with a client attached, as that would increase

its own CPU latency and the path latency of its descendants, violating the constraint. Although

XPORT cannot converge to the optimal network configuration, more relaxed constraints allow the

50

system to perform closer to the optimal case, as more nodes are allowed to connect to the root of

the tree.

Bandwidth bottleneck

We also run experiments trying to maximize the bandwidth bottleneck. This metric is an aggregation

that uses the bottleneck function MIN for the node and system cost. Every node calculates its

bottleneck bandwidth, which is the minimum capacity of a link between any two of a broker’s

ancestors. The system cost is the minimum bottleneck bandwidth over all brokers. The goal of

XPORT is to maximize this cost.

From our experiments, we discovered that this metric was very sensitive to local optimum and we

had to adjust our optimization approach in order to provide network configurations with performance

close to the global optimum. Figure 4.11 compares XPORT with the optimal topology for different

network sizes. XPORT was initialized to a random initial tree and its optimization rules were

continuously applied until it converged. We repeated the experiments fifty times starting each run

from a different initial tree and we show the average performance it converged to over all 50 runs.

The figure shows the difference between the performance of the optimal topology and XPORT.

Localized transformations were only able to improve the bandwidth bottleneck by up to 10-15%,

but eventually XPORT converges to a local optimum. Directed optimizations (combined or not

with the local ones) can lead to the global optimum for small network sizes and they can achieve an

improvement around 60% from the initial configuration. However, as the network size increases to

more than 60 nodes directed rules still converge to local optimum.

02 04 06 08 01 0 01 2 0
2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k S i z e%diff erencef romopti mal

(b and wid thb ottl eneck) I n i t R a n d o m T r e e X P O R T � l o c a lX P O R T � d i r e c t e d X O R T � h y b r i d

Figure 4.11: Convergence to the optimal for the bandwidth bottleneck metric and a random initial
tree.

51

Figure 4.12 shows the number of optimizations applied in order to achieve the convergence results

of Figure 4.11. The graph reveals that as we increase the network size XPORT is unable to discover

beneficial directed optimizations and escape the local optimum. Thus, in a larger network, XPORT

converges much faster to a local optimum.

02 04 06 08 01 0 01 2 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
t ransf ormati ons

(b and wid thb ottl eneck) X P O R T C d i r e c t e d X O R T C h y b r i d X P O R T C l o c a l

Figure 4.12: Number of network transformations for optimizing the bandwidth bottleneck metric
and a random initial tree.

One interesting result we obtained for the bandwidth bottleneck metric is that the optimization

rule that yields most of the improvement is the directed swap. Figure 4.13 shows how XPORT-hybrid

compares to the optimal when we remove the swap optimization from the available rules and when

directed swap is allowed. Based on the results, directed swap can increase XPORT’s performance

by up to 25%.

01 02 03 04 05 06 07 08 09 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e%diff erencef romth eopti mal
(b and wid thb ottl eneck) X P O R T x h y b r i d (n o s w a p) X O R T x h y b r i d (w i t h s w a p)

Figure 4.13: Impact of directed swap operations for optimizing the bandwidth bottleneck.

52

In order to avoid convergence to local optimum, we applied the following heuristic. Instead of

starting from a random initial tree, we configured XPORT to create a best-effort tree for its initial

configuration. In this case, when a node joins the tree it picks as a parent the available node that

maximizes its bandwidth consumption. We run 50 different experiments, changing every time the

order in which nodes join the system. Figure 4.14 shows the difference between the optimal and

the average performance XPORT can achieve for the two different initial trees. The results show

that starting with the best-effort tree, XPORT can converge to a configuration within 0-7% from

the optimal. Moreover, as we increase the network size the performance does not degrade (as in

the case of an random initial tree) but it constantly provides configurations that do not perform

more than 7% compare to the the optimal. Hence, our simple heuristic allowed XPORT to achieve

near-optimal performance.

01 02 03 04 05 06 07 08 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k S i z e%diff erencef romopti mal
(b and wid thb ottl eneck) X P O R T ® h y b r i d (r a n d o m i n i t t r e e) X P O R T ® h y b r i d (b e s t i n i t t r e e)

Figure 4.14: Convergence to the optimal for the bandwidth bottleneck and different initial trees.

We were able to understand better the above result after we visualized the structure of the

optimal tree and the topologies provided by XPORT. In the optimal tree a small number of nodes

with high bandwidth connections to the root of the tree have a very high number of children. At

the same time the vast majority of the nodes have very few, most often zero, children. We can

think of the optimal network as a network of clusters connected with high-bandwidth links, while

the topology of each cluster is a near-start topology. On the other side, when XPORT is initialized

to a random tree, it creates trees with small fanout and high height. As the network size increases,

nodes joining the system last have a large set of nodes they can be as their parent, resulting in long,

unbalanced paths. A best-effort tree corrects this topology and initializes XPORT to a network

that resembles that of the optimal topology. Nodes tend to cluster around the existing nodes with

the highest available bandwidth. During optimization, directed swap operations, identify which

53

low bandwidth links should be replaced with better ones and lead XPORT close to the optimal

configuration.

Figure 4.15 shows the optimization rules applied for the results shown Figure 4.14. In most of

the cases, starting from the best-effort tree required more optimizations in order for XPORT to

converge. This is explained from the fact that XPORT escapes local optimum and thus, continuous

to consider alternative optimization rules. XPORT applies around 40% more optimizations but also

converges to configurations that perform up to 70% better than in the case of a random initial tree.

01 02 03 04 05 06 07 08 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
t ransf ormati ons (b and wid thb ottl eneck) X P O R T ê h y b r i d (r a n d o m t r e e) X P O R T ê h y b r i d (b e s t t r e e)

Figure 4.15: Number of network transformations for optimizing the bandwidth bottleneck and for
different initial trees.

As the next step, we studied how important directed optimizations are when the best-effort tree

is used as XPORT’s initial tree. Figure 4.16 compares the average performance achieved by our

three XPORT variants with the optimal cost, over 50 different runs for different network sizes. One

important observation is that, although XPORT is initialized to the best-effort tree, this configura-

tion performs around 50-60% worse than the optimal. Local optimizations improve the performance

by up to 30%, however they lead to networks that are 20-25% worse that the best possible. Using

directed optimizations allows for an extra 20% improvement on the performance and XPORT con-

verges to the a global optimal (for small networks) or to a configuration that is only 10% worse than

the optimal. For this metric, localized transformations do not provide a significant improvement

and XPORT relies solely on the directed ones, whenever available. Hence, XPORT-directed and

XPORT-hybrid have similar performance.

Figure 4.17 shows the number of optimization rules required to achieve the results of Figure 4.16.

XPORT-directed and XPORT-hybrid apply almost the same number of transformations. They

require more optimizations steps than XPORT-local, however they converge to a considerably better

configuration. Moreover, as network size increases less optimizations are required. The important

54

01 02 03 04 05 06 07 0
2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e%diff erencef romopti mal

(b and wid thb ottl eneck) I n i t i a l b e s t & e f f o r t t r e e X P O R T & l o c a lX P O R T & h y b r i d X P O R T & d i r e c t e d

Figure 4.16: Convergence to the optimal for the bandwidth bottleneck and a best-effort initial tree.

02468
1 01 21 41 61 82 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
t ransf ormati ons

(b and wid thb ottl eneck) X P O R T Z l o c a l X P O R T Z h y b r i d X P O R T Z d i r e c t e d

Figure 4.17: Number of network transformations for optimizing the bandwidth bottleneck metric
and a best-effort initial tree.

observation here is that across all network sizes XPORT does not require more than 20 optimization

rules in order to discover the optimal configuration.

Figure 4.18 compares XPORT’s local search with the simulated annealing search. When only

local optimization rules are allowed both approaches cannot converge to the optimal configuration.

The simulated annealing converges to configuration that is around 10% off the optimal. XPORT’s

performance is worse, being 15-23% from the optimal. However, when directed optimizations are al-

lowed, both approaches converge to the optimal solution. Table 4.9 shows the number of optimization

steps required by these heuristics. While XPORT needs less than 80 optimization rules to discover

the optimal, the simulated annealing approach requires thousands of random reconfigurations.

We also studied the bandwidth bottleneck metric under fanout constraints that limit the children

55

051 01 52 02 5
1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0N e t w o r k s i z e%diff erencef romth eopti mal

(b and wid thb ottl eneck) S i m u l a t e d a n n e a l i n g � h y b r i d X P O R T � h y b r i dS i m u l a t e d a n n e a l i n g � l o c a l X P O R T � l o c a l

Figure 4.18: Convergence to the optimal for XPORT and simulated annealing and the bandwidth
bottleneck metric.

10 20 30 40 50 60
XPORT-local 1.56 3.5 3.2 3.84 3.5 3.92

Simulated annealing-local 9,234 11,4545 50,232 62,7676 93,535 118,334
XPORT-hybrid 3.16 7.24 10.42 14.12 13.62 71.3

Simulated annealing-hybrid 18,721 45,1256 99,591 132,567 198,456 234,932

Table 4.9: Number of network transformations for XPORT and simulated annealing and the band-
width bottleneck metric.

of every broker to a constant number. These results are from our prototype-based LAN emulation

on 40 nodes. Figure 4.19 shows that XPORT identifies critical portions of the tree and after every

optimization rule increases the minimum bottleneck bandwidth in the system.

We start with a maximum fanout of two, a very restrictive constraint, and relax the constraint to

six, ten and infinite fanout. The results reveal that the stricter the constraints, the fewer optimization

rules XPORT can perform. For example, when the fanout is set to two, XPORT cannot improve

beyond two optimization periods. When the fanout is set to six and ten, the system improves for

three and four periods, respectively.

Maximum network latency

Finally, we studied the convergence property for the maximum network latency metric. Similar to

the bandwidth bottleneck, this metric was also prone to local optimum. Figure 4.20 compared the

three XPORT variants with the optimal configuration. In this metric, a combination of local and

directed optimization appears to be very important in order to achieve good performance. Only

when directed optimizations are used, XPORT is not able to perform well and is stuck in a local

optimum. Localized optimizations are more effective. However, only when we combine directed and

56

2 0 02 5 03 0 03 5 04 0 04 5 05 0 05 5 06 0 06 5 07 0 0

0 1 2 3 4 5 6 7T i m e (O p t i m i z a t i o n s t e p s)B and wid thb ottl eneck(KB/ sec) X P O R T Å l o c a l n o c o n s t r a i n t s f a n o u t = 1 0 f a n o u t = 6 f a n o u t = 2

Figure 4.19: Bandwidth bottleneck under fanout constraints.

02 04 06 08 01 0 01 2 01 4 01 6 01 8 02 0 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e%diff erencef romopti mal
(maxi mumnet workl at ency) X P O R T ö d i r e c t e d X P O R T ö l o c a l X P O R T ö h y b r i d

Figure 4.20: Convergence to the optimal for the maximum network latency.

local optimization rules we maximize XPORT’s performance. It converges to the optimal network

for small networks and within 20% from the optimal for networks with size between 100-200 nodes.

Figure 4.21 shows the number of optimization rules applied in average. Considering only local-

ized or directed optimization rules does not allow XPORT to discover possible optimizations and

convergence to local optimum. By using both types of rules XPORT converges close to the optimal

with a small overhead on the number of required reconfigurations.

Figure 4.22 compares XPORT with the simulated annealing approach. XPORT performs closer to

the optimal than simulated annealing, even when using only the localized optimizations. Moreover,

when directed rules are also used it converges to the optimal. Similar performance is observed

for XPORT as we increase the number of available nodes, while simulated annealing decreases the

57

05 01 0 01 5 02 0 02 5 03 0 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
t ransf ormati ons

(maxi mumnet workl at ency) X P O R T) d i r e c t e d X P O R T) l o c a l X P O R T) h y b r i d

Figure 4.21: Number of network transformations for optimizing the maximum network latency.

01 02 03 04 05 06 07 08 0

1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0N e t w o r k s i z e%diff erencef romopti mal
(maxi mumnet workl at ency) S i m u l a t e d a n n e a l i n g X P O R T f l o c a l X P O R T f h y b r i d

Figure 4.22: Convergence to the optimal for XPORT and simulated annealing for the maximum
network latency metric.

performance as the network size increases.

4.6.2 Adaptivity

While creating a star topology is optimal for the previous cases, it is not an optimal solution in terms

of the resources required from the root node. To demonstrate this, we run experiments optimizing

the total path latency metric and included the CPU time for processing and matching the incoming

messages on every node on this path. The more profiles a node must match and the higher its fanout,

the greater CPU latency that messages will observe when traveling through that broker. In the case

of the star topology, the root of the tree has the overhead of matching the incoming messages to the

profiles of every node. In the case of XPORT’s chosen tree, this processing overhead is distributed

58

02 0 0 04 0 0 06 0 0 08 0 0 01 0 0 0 01 2 0 0 01 4 0 0 0

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0T i m e (m s e c)T ot al pathl at enc y(msec) S t a r t o p o l o g y X P O R T � l o c a l

Figure 4.23: System adaptivity for the dissemination and processing latency.

across multiple nodes.

We started with a random tree on 20 PlanetLab sites, which is outperformed at the beginning

by the star topology. This difference is due solely to network delays. Invoking the optimizer at

this point would allow XPORT to reconfigure a random tree to match the performance of the star

topology. In this experiment we invoke the optimizer only after the root node has fetched the RSS

feeds and completed their dissemination. When the root starts fetching the RSS feeds requested, the

total path latency increases for both trees as shown in Figure 4.23. However, the increase is much

higher in the case of the star topology, as all matching is performed by the root node. As a result,

the random tree begins to outperform the star tree. Moreover, when the optimizer starts, XPORT

adapts to the loaded nodes in the system, and after a number of local optimization rules, obtains a

tree that outperforms the original, unloaded random tree. XPORT creates trees that avoid highly

loaded nodes, continually moving subtrees to less loaded parents.

4.6.3 Optimization Scope

In this section we study the impact of the optimization unit’s size on the performance of XPORT.

The results in this section are based on a simulation. We simulated three variants of XPORT-local,

each using an optimization unit of different size. The first one uses a unit with size up to three levels

(node, children, grandchildren). In this case we use the optimization rules described in Section 4.3.1.

The second variant uses a unit of up to four levels. To exploit the scope of this unit we added four

more local optimization rules:

• promote subtree 3 levels up: it promotes a node’s subtree under its grandparent,

59

• demote child 3 levels down: it demotes a node (and its subtree) under one of its siblings’

children,

• swap grandparent-child: it swaps a grandparent with one of its grandchildren and

• demote subtree 3 levels down: it demotes a node’s subtree (but not the node itself) under one

of its siblings’ grandchildren.

Finally, we simulated a variant with an optimization unit of up to five levels. In this case, we

extended the set of local optimizations with the following rules:

• promote subtree 4 levels up: it promotes a node’s subtree under its grand-grandparent,

• promote node 4 levels up: it promotes a node under its grand-grandparent,

• demote child 4 levels down: it demotes a node (and its subtree) under one of its siblings’

grandchildren,

• swap parent-grand-grandchild: it swaps a parent with one of its grand-grandchildren and

• demote subtree 4 levels down: it demotes a node’s subtree (but not the node itself) under one

of its siblings’ grand-grandchildren.

We studied XPORT’s convergence when optimizations with different scope are used. We only

utilize local optimizations and the metric we used is the average network latency. Note that this

metric can converge to the optimal by utilizing only local optimization rules. In the next paragraphs

we refer to the XPORT variants we compare based on the scope of the rule it utilizes. Hence,

“Level=4” refers to the case where only rules with scope of four levels are used, while “Level=3&4”

implies that the optimization uses the rules defined over three levels and the rules defined over four

levels.

Figure 4.24 shows the impact of the new optimization rules we defined on XPORT’s performance.

We note that in all the cases XPORT performs almost the same to the optimal (only 0.6% worse than

the optimal in the worst case). The first observation is that as the network size increases XPORT

performance slightly degrades. However its distance from the optimal is less that 1%. Extending

the scope of our unit and defining more optimization rules seems to have a small impact as the

performance improves only by 0.1-0.4%. Extending the scope of the unit above 4 levels does not

allow for more improvement.

Figure 4.25 shows the number of optimizations required for convergence. Extending the optimiza-

tion unit seems to have small benefit on the number of applied rules. As the network size increases,

60

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 72 06 01 0 01 4 01 8 0N et work si ze
% d i f f e r e n c e f r o m o p t i m a l(a v e r a g e n e t w o r k l a t e n c y)

L e v e l = 3 L e v e l = 3 & 4 L e v e l = 3 & 4 & 5
Figure 4.24: Convergence to the optimal for the average network latency and optimization units of
different size.

more optimizations with larger scope can be applied reducing the required reconfigurations by 10

moves in average.

Figures 4.26 and 4.27 reveal the importance of fine-grained optimization rules. When rules

defined over a smaller scope are removed from our system, XPORT cannot converge to the optimal.

In the contrary, the more coarse-grained the network transformations, the worse XPORT performs.

5-level rules yield a performance that is 20-85% off from the optimal, depending on the network

size. For smaller networks the performance is worse, as the trees do not have enough levels to apply

the 5-level optimization rules. When 4-level rules are used the performance is better, but still is

around 10% that the optimal. Only when these rules are combined with the 3-level rules can yield

comparable to optimal performance, as shown in Figure 4.27.

4.6.4 Network traffic

Figure 4.29 shows the average maintenance traffic and the optimization traffic for optimizing different

metrics in a network of 40 nodes. Maintenance traffic is the data each node exchanges with its parent

and children, to calculate its own cost. This state is exchanged in specific time periods (maintenance

period). Optimization traffic is the data needed to estimate the cost of candidate optimization rules

and it’s size depends on the optimization metric. This state is exchanged between nodes within

the same optimization unit during an optimization period. Intuitively, the optimization state is a

measure of the optimization overhead.

The results reveal that the maintenance traffic is low and similar for all metrics. Note that, for

the redundant data metric there is no maintenance traffic. This is because this metric requires only

61

05 01 0 01 5 02 0 02 5 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
t ransf ormati ons

L e v e l = 3 L e v e l = 3 & 4 L e v e l = 3 & 4 & 5
*

Figure 4.25: Number of network transformations for optimizing the average network latency and
using optimization units of different size.0 2 0 4 0 6 0 8 0 1 0 0 1 2 02 06 01 0 01 4 01 8 0N et work si ze

% d i f f e r e n c e f r o m o p t i m a l(a v e r a g e n e t w o r k l a t e n c y)

L e v e l = 3 L e v e l = 4 L e v e l = 5
Figure 4.26: Impact of optimizations with small scope for optimizing the average network latency.

one level of aggregation, as the node’s cost is defined as a local value. Thus, nodes do not need to

request any information from their parents or children to calculate their costs.

The optimization traffic, while higher in most cases than the maintenance traffic (per period),

has an acceptable size. It is interesting to examine the difference in the traffic required by different

metrics. In the case of the total path latency metric, each node in the network is essentially a critical

node. Thus, all nodes check for possible optimization rules of their optimization units. This implies

that all nodes in the system will exchange data within their optimization units.

On the other hand, while optimizing bottleneck bandwidth, only the nodes that are affected

by the link with the minimum bandwidth capacity attempt to transform their optimization units.

Thus, only those optimization units that contain the bottleneck edge will exchange data. As a result,

62

0 5 1 0 1 5 2 02 06 01 0 01 4 01 8 0N et work si ze
% d i f f e r e n c e f r o m o p t i m a l(a v e r a g e n e t w o r k l a t e n c y)

L e v e l = 3 & 4 L e v e l = 5 & 3 L e v e l = 4 & 5
Figure 4.27: Impact of combining optimizations with different scope for optimizing the average
network latency.

the average traffic per node is much smaller. The cases of bandwidth consumption and redundant

incoming data are yet different. In both of these cases, the cost of each node depends on its profile

and the merged profile of its children. Thus, the dependence set of a node is smaller, and so fewer

nodes exchange state during optimization.

Statistics Approximation

We now study the tradeoff between traffic improvement and system performance when approximating

statistics. For this purpose, we ran experiments where the optimization goal is to minimize the

variance of the path latencies across all the nodes in the system to ensure service fairness. We

also ran another version of the algorithm where statistics on the node cost and local metrics are

approximated. We expect that the more frequently nodes broadcast their cost values, the better

cost estimations they can compute, leading to more effective optimization rules and thus faster

convergence. Of course, if nodes broadcast their costs more frequently, the maintenance traffic will

be higher.

The results in Figure 4.30 and 4.30 clearly demonstrate this tradeoff. We ran our experiments

using 100 nodes in the LAN emulation environment and computed the variance when all nodes

participate in every broadcast phase. In this case, the tree converged to its final configuration after

15 optimization rules. The average bandwidth consumption was approximately 2KB per node per

period. We used the same tree topology and ran the approximated statistics version, where the

participation of every node in the broadcast phase is defined by Formula 4.4, where wi = |V |
|Di|

. In

the experiments, we also varied the period parameter p. The results reveal that even for small period

63

01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 0
B a n d w i d t hc o n s u m p t i o n L a t e n c y B a n d w i d t hb o t t l e n e c k R e d u n d a n t d a t aO p t i m i z a t i o n M e t r i c sT raffi cpernod e(i nb yt es) M a i n t e n a n c e (b y t e s / M) O p t i m i z a t i o n (b y t e s / P)

Figure 4.28: Maintenance and optimization traffic (S = Maintenance period, P= optimization
period).

05 0 01 0 0 01 5 0 02 0 0 02 5 0 0

p = 1 p = 2 p = 3S t a t i s t i c s P e r i o dT raffi cpernod e(b yt es/ sec) X P O R T X P O R T � A p p r o x

Figure 4.29: Improvement on network traffic due to statistics approximation.

values (p = 1), approximation reduces the maintenance traffic by 97%. At the same time, it takes 20

optimization rules for the approximated approach to converge to a configuration with a cost value

that is approximately only 7% more than that of the non-approximated case. The results for larger

period values reveal similar benefits.

64

00 . 0 50 . 10 . 1 50 . 20 . 2 5

p = 1 p = 2 p = 3S t a t i s t i c s P e r i o dP erf ormanceDiff erence(%)

Figure 4.30: Impact of statistics approximation on performance when optimizing the path latency
variance. The percentage values indicate relative differences over the non-approximated case

051 01 52 02 53 03 5

p = 1 p = 2 p = 3S t a t i s t i c s P e r i o dN umb erof t ransf ormati ons

Figure 4.31: Impact of statistics approximation on convergence time when optimizing the path
latency variance. The percentage values indicate relative differences over the non-approximated
case

65

Chapter 5

Supporting Distributed Stream

Processing Applications

While dissemination-based applications allow for simple profiles types (such as basic predicates)

many large-scale applications require the specification of more sophisticated stateful profiles, e.g.,

“give me only those news items that don’t look like any I have received during the last two days”.

Therefore, to support applications with advanced processing requirements, we provide a “native”

profile language that consists of stream-oriented operators [7, 42] which can perform filtering and

merging, as well as complex time-window based aggregation and correlation over data streams.

As such, users can express continuous stream processing queries as their profiles using either a

graphical data-flow notation or a textual notation, both of which are already supported by Aurora

and Borealis [6]. To efficiently support and optimize these stream-based queries, we designed and

implemented XFlow, an ISM system that can be easily customized to support application-specific

processing logic, performance expectations, and constraints.

XFlow builds on top of our generic dissemination infrastructure and extends it with stream pro-

cessing functionality. It provides an extensible system for distributing and optimizing stream process-

ing queries. It creates, maintains and optimizes an overlay network, given dynamic stream sources,

clients with stream-oriented queries and application-specific performance expectations. The network

consists of multiple, potentially overlapping dissemination trees, created dynamically depending on

the degree of stream sharing. XFlow employs a unique combination of operator migration, replica-

tion and partitioning, and progressively refines the processing of the queries, the structure of the

overlay trees, as well as the statistics collection process, to meet the desired objectives.

66

XFlow maintains the key feature of our infrastructure: it relies on localized state and interactions

to reduce the global system cost. It utilizes and extends our basic aggregation-based metric definition

model that allows us to rely only on localized, aggregated, network and workload statistics. Nodes

distribute their queries on their neighborhood as well as on specific promising network regions which

they discover through dissemination of these statistics. One of our key results is that even simple

aggregations of statistics are sufficient to achieve efficient operation with low overhead, as well as

allow XFlow to avoid local optimum and converge to near-optimal configurations. Moreover, we

employ probabilistic statistics dissemination techniques that manage to keep the network traffic

within constant bounds independent of the number of queries and nodes with low performance

degradation. This characteristic allows for high scalability and efficiency.

XFlow relies on our basic publish-subscribe model for its underlying communication. As men-

tioned in Section 2.2, this model effectively decouples sources and destinations over geography and

time: sources publish their data without knowing where and when he consumers will access them

and consumers subscribe their processing queries without knowledge of specific sources. It is the re-

sponsibility of the system to collect the data and process the queries and distribute the results to the

clients, while meeting application-specific performance expectations. This flexible, loosely-coupled

architecture allows for scalable dissemination of high stream volumes to large number of consumers

and robustness in the presence of high query subscription/unsubscription rate.

One of the key features of XFlow is that it uses the underlying publish-subscribe model to also

decouple the query operators. XFlow treats operators as regular stream sources and consumers —

each operator subscribes to the stream generated by its upstream operator in the data flow and also

publishes the stream it produces. This approach unifies and simplifies the overall system model while

at the same time facilitating (i) the sharing of intermediate processing results and (ii) light-weight

dynamic query modifications, such as adding, removing, migrating, and replicating operators.

From an operational perspective, XFlow creates, maintains and optimizes an overlay mesh that

consists of multiple, potentially overlapping publish-subscribe dissemination trees, in principle one

for each source. XFlow extends our basic generic cost model to reflect this new network topology:

it can express performance metric for multi-tree overlays. XFlow uses a set of optimization rules

that modify the placement and execution of the query operators to reduce the system cost and meet

constraints. These rules apply operator distribution operations, which include migration, replication

and partition.

The main contributions of XFlow are the following:

• It uses a novel architecture that tightly integrates stream processing and our basic publish-

subscribe stream routing model. The system consists of multiple, potentially overlapping

67

overlay trees, for data collection, processing, and result dissemination.

• It provides a generic cost model that can express a range of cost metrics and constraints for

evaluating the overhead and efficiency of user queries as well as various resource utilization

metrics. The model relies on statistics aggregation in order to reduce the required state and

network traffic.

• We describe a generic distributed query optimization framework that uses local, aggregated

state and dynamically modifies the structure of the overlay as well the placement and processing

of the operators through a set of migration, partition and replication operations. To the best

of our knowledge, XFlow is the first system to allow this combination of query optimizations.

• We introduce a metric-independent statistics selection and dissemination mechanism that uti-

lizes the semantics of the cost functions to identify available network resources. Based on

this approach, we can carefully target our optimization towards low-cost, promising network

regions and avoid local optimum.

The rest of the chapter is structured as follows. We describe the system model of XFlow in

Section 5.1. We introduce our cost model in Section 5.3 and describe our generic optimization in

Section 5.4, while we present our experimental results in Section 5.5.

5.1 System model

XFlow consists of an overlay network of cooperating brokers (or nodes), providing stream routing and

stream-based query processing services (e.g., [7, 42]). External data sources reside outside system

boundaries and publish data streams according to a well-defined global schema. Clients are also

external and are eventual consumers of query results: they subscribe their interests expressed in

terms of stream-oriented continuous queries on the global schema. Each external source and client

has a proxy running on a broker, acting on behalf of its corresponding entity. In the rest of the

discussion, we use node and broker, interchangeably.

5.1.1 Publish-Subscribe model

XFlow uses a uniform publish-subscribe mechanism for disseminating all data flows in the system.

One implication is that each query operator publishes its output stream(s), while subscribing to its

input stream(s). As operators also publish data, we refer to them as internal sources. Both external

and internal sources are assigned system-wide unique identifiers and have well-defined schemas. The

global schema is the union of external and internal schemas.

68

F i l t e rF 3
F i l t e rF 1A g g rA 2

Q 1
T 1 T 2T 3

A g g rA 1
S A S B F i l t e rF 4 Q 3Q 2S A

S B
I n t e r n a ls o u r c e V i r t u a ln o d e s o ft h e s a m eb r o k e r

(a) (b)F 1
Figure 5.1: XFlow system model.

XFlow creates multiple overlay publish-subscribe dissemination trees, potentially one for each

internal or external source. Each source publishes its stream to an overlay tree that distributes

its data to the subscribed consumers (i.e., operators or external clients). Hence, nodes hosting

clients or operators that are interested in a stream must join its corresponding dissemination tree.

Figure 5.1(a) shows a network of three trees: T1 and T3 publish the external sources’ streams SA

and SB respectively, while T2 publishes the output of the internal source F1.

5.1.2 Source registration

When a source (internal or external) is first registered, it forwards its stream’s schema to the reg-

istration service (referred to as bootstrap node). For an external source, the bootstrap is contacted

through its proxy. The bootstrap picks a broker as the root broker for that stream based on its

topological distance to the source, the available bandwidth of the broker and the expected data

volume. This broker will be the root of the tree that disseminates the source’s stream. Upon receipt

of the first subscription for the data stream, the root broker will activate the data source, which in

turn starts publishing its data streams. The functionality of the bootstrap can be easily distributed

across multiple nodes to improve the availability and scalability.

5.1.3 Query registration

Clients also pick one XFlow node to host their proxy. To subscribe, the client’s host contacts the

bootstrap and requests a list of the streams published by both external and internal sources. Users

can inspect the streams’ schemas and define their queries on any collection of external or internal

sources. This allows for intermediate results to be shared by multiple queries. For example, in

69

(c)

F4

SA
SB

T1 T2

n2

F3A1

n5

T3

n1

A2

F1

n4

n6

n3

Figure 5.2: Distribution of queries in Figure 5.1

Figure 5.1(b) query Q2 uses the output of operator F1 of query Q1. Following the model of the

Aurora/Borealis [6, 16] and Yahoo!Pipes [5], XFlow allows users to browse the deployed query net-

work in order to identify shared interests with existing queries and reuse already running processing

operators. However, XFlow can be easily extended to incorporate techniques for automatic detection

of sharable computations [40].

The bootstrap also informs the client’s host about the tree(s) publishing its query’s input(s).

The host joins each of these trees, by selecting as parent one of the existing nodes in the tree.

The choice of the parent depends on the application’s performance expectations and constraints,

e.g., for latency-sensitive applications it will be the closest node while for applications with fanout

restrictions we would pick the node with the smallest number of children. Once the host joins the

tree, it requests the query’s input streams published by that tree. We refer to this request as the

profile of that node and is extracted from the selection predicates of the query. This profile is

forwarded upstream to the root, creating a reverse routing path to the node. Using the routing

tree created, a node can route streams published through this tree only to descendants interested in

receiving them.

5.1.4 Stream processing model

User profiles are expressed as directed, acyclic data-flow graphs of stream-oriented operators (e.g., [7]),

operating over the global schema. XFlow has a built-in set of standard windowed operators (filters,

unions, aggregates, joins) and also allows for arbitrary user-defined functions to be linked as opera-

tors. An example of three simple queries is shown in Figure 5.1(b). When a client subscribes a query,

70

S P E Q u e r yM a n a g e r S t a t i s t i c sM a n a g e rC o n n e c t i o nM a n a g e rR o u t e r P u b / S u bM a n a g e r O p t i m i z e r
Q u e r y L a y e r

N e t w o r k L a y e r
Q u e r i e sD a t a S t r e a m s

D a t a S t r e a m s

Q u e r y P l a n
P r o f i l e s O p e r a t o r o p e r a t i o n s

M e t r i c s D e f i n i t i o n s
O p e r a t o r s

Figure 5.3: XFlow node architecture.

the operators of the query get subscribed to their input streams. This is done along the upstream

to downstream direction, in an order that is consistent with a topological sort of the operators in

the query plan.

While the external source and client proxies are “pinned” to the brokers with which they first

registered, the query operators are free to roam. All operators of a given query are initially assigned

to the same broker; however, as we describe below, operators may be relocated, partitioned or

replicated over time as part of the optimization process.

Figure 5.1(b) and 5.2 shows three queries and a possible distribution of their operators across

the network. Q1’s operators are distributed across two trees. F1’s host, n1, joins tree T1, to receive

stream SA, and publishes its output to tree T2. Hence, n4, the host of A2, joins T2. Node n5, the

host of Q2, joins also T2. Moreover, it joins T3 and subscribes to stream SB . Finally n6, hosting F4,

joins tree T3.

5.1.5 Node architecture.

The architecture of an XFlow node is shown in Figure 5.3 and reveals how we integrated the pub-

sub model with a stream processing system (SPE). Query plans are parsed by the query manager

and sent to the SPE for execution. Profiles are extracted and pushed to the pub/sub manager

which contacts the bootstrap and requests the trees publishing the streams specified by the profile.

Nodes join trees through the connection manager which maintains the connections with each node’s

parents and children. The router delivers input streams to the SPE and output streams to clients

or downstream nodes in the trees. It also routes any maintenance data required by the connection

manager as well as any profile updates sent by the pub/sub manager. The optimizer is the extensible

71

component in our architecture. Application designers can specify their own performance criterion

(see details in Section 5.3), and XFlow customizes its functionality based on these metrics. Using data

on the query and the overlay network, obtained from the statistics manager, it identifies operations

on the queries that improve the cost metrics and sends any query changes to the query manager.

5.1.6 Benefits of our model

A distinguishing feature of XFlow is its support for dynamic creation of multiple overlapping dis-

semination trees and for optimizations across multiple trees. In [37, 44] it was shown that multiple

trees enable better network utilization and reduce redundant transmissions by having clients become

part of only those trees that publish relevant data. Furthermore, XFlow treats query operators as

stream subscribers and publishers. In contrast to existing systems, i.e., Borealis [6], our model

decouples operators, i.e., an operator does not require any state regarding the location of its up-

stream/downstream operators in the query network. This allows XFlow to handle a large the number

of dynamic operator changes as changes do not require updating any state regarding their neighbors

in the query network. Moreover, XFlow goes beyond centralized implementations of the pub-sub

semantics, as in [34, 39, 45], and realizes this model through dynamic creation of multiple network

trees.

5.2 Tree management.

In principle, XFlow creates one tree per each source (internal or external). This basic approach

may seem unwieldy, as each source and operator will have its own tree. In practice, we employ

simple techniques to control the number of trees. First, we allow the definition of super-operators

that combine multiple connected operators in a single unit. A single tree is created for each super-

operator, as the constituent operators will not publish data. Moreover, we expect that many overlay

trees will be entirely local to a single node at the network level; for example, in the case when an

operator and its upstream parent operator are located on the same node.

Second, sources can be assigned to already existing trees, reducing the number of trees. For

example, streams requested by highly overlapping sets of subscribers can be published through the

same tree, while streams can be periodically reassigned across root brokers, adapting to membership

changes. A simple heuristic could be to discover, using bloom filters, trees that involve the same set

of nodes and merge them. The problem of effectively grouping data sources and mapping them to

a given set of trees has been studied in [8, 44] and is beyond the scope of this paper. For simplicity

of exposition, we assume that this grouping is already done and use source to mean collections of

72

01. system cost:= aggregate (aggregation function, node cost, BROKERS) |
aggregate (aggregation function, query cost, QUERIES)

02. node cost:= aggregate (aggregation function, operator cost, LOCAL OPERATORS)|
aggregate (aggregation function, local stats)

05. query cost:= aggregate (aggregation function, operator cost, QUERY OPERATORS)|
aggregate (aggregation function, local stats)

06. operator cost:= aggregate (aggregation function, local stats, operator set)
07. operator set:=UPSTREAM OPERATORS|DOWNSTREAM OPERATORS
09. local stats:= path latency|incoming data rate|operator selectivity, node load...
10. constrained metric:=(constraint metric, operator, threshold)
11. constrained metric:= system cost|node cost|query cost|operator cost
12. operator:= < | > | ≤ | ≥ | 6=
13. aggregation function:= MIN|MAX|SUM|AVERAGE

Figure 5.4: XFlow grammar

sources.

Finally, one network-level optimization we perform is to have any two pairs of brokers commu-

nicate through only a single TCP connection, independently of the number trees in which they are

neighbors. These connections create an overlay mesh on top of which “logical” trees are built sharing

the overlay links of this mesh. Hence, the cost of creating a tree is small, since nodes will set up

connections with their peers only the first time they need to connect on some tree.

5.3 Cost definition model

The cost model of XFlow extends our basic cost model defined in Chapter 3 along two non-trivial

dimensions. First, it incorporates high-level metrics that can express the efficiency of user queries

as well the processing overhead on the network nodes. Finally, we express and optimize metrics and

constraints across a general network of multiple trees,, whereas our basic model addresses the case

of a single tree. Based on our model, XFlow can be customized for different optimization metrics.

In contrast to existing solutions [9, 45] that focus on specific metrics, our cost model can express a

variety of performance measures through a sequence of statistics aggregation steps. We note here

that generic cost models where also proposed in [39]. However, they use a less expressive model that

simply sums network link costs. A summary of our model is shown in Figure 5.4. In this section,

we describe XFlow’s cost model in detail.

73

5.3.1 Optimization metrics and constraints

Distributed stream processing systems are often evaluated by query-related QoS targets [6] as well

as resource utilization metrics [9, 45]. The former refers to performance of queries (e.g., response

latency), whereas the latter addresses the in-network processing overhead (e.g., bandwidth consump-

tion). Our cost model is designed to express both metric types.

To facilitate the expression of a broad spectrum of metrics, nodes evaluate a set of built-in local

statistics for the overlay links they maintain, e.g., link latency/bandwidth capacity, as well as their

local operators, e.g., input/output rates, selectivity, processing costs. Application designers can

combine these statistics and define optimization metrics and constraints.

QoS metrics XFlow expresses the performance of a query based on the performance of its opera-

tors. Specifically, we define the query cost as an aggregation of its operator costs, where the system

cost is an aggregation of the query costs. Applications can use the aggregation functions shown in

Figure 5.4 and customize XFlow for various metrics, e.g., average query output latency, query load,

query throughput.

XFlow users may define the operator cost based on (i) local statistics or (ii) the aggregation

of network statistics. The former case captures metrics like the operator’s processing latency or

its load. The latter expresses network-related metrics, such as response latency, which includes

the dissemination delay for fetching the input stream from its producer plus its processing latency.

Nodes aggregate statistics of the network links connecting an operator to its neighbors in the query

plan, that is the location of (i) its upstream operator or (ii) its immediate downstream operator. If

there exist multiple upstream or downstream operators, we define the cost of each one independently

and average the costs.

The maximum query latency is an example of upstream aggregation: an operator’s latency is the

sum of the link latencies on the path to its upstream operator plus its processing latency. A query’s

latency is the sum of its operators’ latency (QUERY OPERATORS).

operator latency= aggregate(SUM, latency, UPSTREAM OPERATOR) + processing latency

query latency= aggregate(SUM, operator latency, QUERY OPERATORS)

system cost= aggregate(MAX, query latency, QUERIES)

Resource utilization metrics XFlow allows also the definition of metrics that measure the

resource utilization of nodes. We refer to such metrics as the node cost and can be defined based on

74

(i) the local statistics or (ii) the aggregation the local operators’ cost. In this case the system cost

is the aggregation of the node costs. An example is the processing load of a node, which is the total

load of its locally executed operators (LOCAL OPERATORS). Based on this, we define below the

system cost as the maximum processing load across all nodes:

node load= aggregate(SUM, operator processing load, LOCAL OPERATORS)

system cost= aggregate(MAX, node load, BROKERS)

Another example is the outgoing bandwidth consumption of a node. This is the data the local

operators publish (outgoing rate) plus the data it forwards in the network as part of the dissemination

trees. Hence, the total bandwidth consumption across all brokers is expressed as:

node out rate = aggregate(SUM, operator output rate, LOCAL OPERATORS)

+ forwarding rate

system cost = aggregate(SUM, node out rate, BROKERS)

Constraints Using our cost model, applications can express constraints for queries-related and

resource utilization metrics. They can define cost metrics for operators, queries or nodes and specify

bounds on them, e.g., maximum node load, maximum query response latency, etc. For example, they

can express constraints to guarantee sufficient bandwidth capacity on the overlay links connecting an

operator with its input producer. This is crucial for applications with high input rates. The capacity

between two operators is the minimum available bandwidth of the network links connecting them:

operator capacity = aggregate(MIN, bandwidth, UPSTREAM OPERATORS)

operator capacity ≥ operator input rate

5.3.2 Statistics collection

XFlow nodes are customized to collect and aggregate statistics required for the evaluation of the

performance metrics and constraints. To reduce the statistics traffic, nodes evaluate partial results

and collaborate in order to derive the final cost metrics. Specifically, depending on the definition

for operator cost, (i.e., upstream/downstream aggregation), each node on the path connecting two

operators evaluates the required local statistic on the link to its parent/children in the dissemination

tree and aggregates this with the aggregated metric of its parent/children respectively to derive its

75

final cost value. For example, to measure the latency to the root of a tree, a node measures the

link latency to its parent and adds that to the latency of the parent to the root (which it receives

periodically from its parent).

Based on this aggregation model, each node ni maintains only two statistical values for every

dissemination tree in which it participates:

• the local statistic value, li, (e.g., latency to parent) and,

• the aggregation of network statistics, φi (e.g., latency to root).

Hence, our cost model requires state of constant size per node, which considerably improves the

scalability of the system.

5.4 Distributed optimization

As mentioned in Chapter 3, the goal of the optimization process is to minimize the application-

specified system cost and, through a set of optimization rules, adapt to time-varying network or

workload conditions. In XPORT these rules modify the in-network distribution and implementation

of the subscribed stream-based queries. We refer to these rules as query-based optimization rules.

Its unique characteristic is that it employs a metric-independent model that dynamically combines

operator migration, replication, and partition and can uniformly handle a variety of cost metrics.

Our framework does not rely on global information and has low communication overhead. Each

node maintains aggregated information for its own “neighborhood” and periodically distributes its

operators across its neighbors. We refer to these operations as localized optimizations.

To avoid local optimum, we also utilized non-local optimizations, following the basic model de-

scribed in Chapter 3. Hence, we selectively distribute certain aggregated statistics to any potentially

interested nodes and allow them to consider specific directed optimizations. These operations con-

sider only network nodes that demonstrate a good performance and their resources could be used to

improve the system performance. In the rest of the section, we describe our optimization framework

in detail.

5.4.1 Query optimization rules

Nodes distribute their operators across their neighbors in the trees, i.e., its parents and its descen-

dants up to k-levels in each tree, where k is a system parameter. We denote as nk
i a node ni that is

included in tree Tk, and Figure 5.5 shows the neighborhoods of ni in two trees, T1 and T2.

76

... ...

sub2
k

n2
jn1

j n1
k

sub2
jsub1

ksub1
j

n2
i

n1
p

n1
i

n2
p

n2
k

ni

T1 T2

Figure 5.5: Optimization area of ni in XFlow

We distribute query operators with two types of operations: (i) operator placement operations,

which migrate operators to alternative locations and (ii) operator execution operations, which change

the implementation of operators by replicating or partitioning them across multiple nodes.

Operator placement and migration

Operator placement modifies where an operator is executed. For a given operator, we reduce the

space of the candidate network locations by considering only nodes in the optimization area of its

current host. Although at each step we consider a small number of alternative locations, we can

gradually migrate operators to a different network area than that of their original hosts. As an

example, if improving the query latency is our performance goal, operators are continuously placed

one level higher in the tree, i.e., closer to their upstream operators, as that would reduce the network

latency of their input tuples. Moreover, if an application aims to reduce bandwidth consumption,

operators with selectivity less than one (e.g., filters) migrate closer to their upstream operators,

while if the selectivity is more than one (e.g., joins), they are pushed closer to the downstream

operators. This process reduces the overhead of forwarding tuples to the network.

We exploit our underlying publish-subscribe model to dynamically reroute data flows to the new

locations of the operators. More specifically, the new host of the operator subscribes to the inputs

of the operator by joining the trees that publish these streams (if not already part of the them).

If the operator is also an internal source, then the new host publishes the operator’s output to the

root of the corresponding tree.

77

Operator replication and partitioning

The primary goal of replication and partitioning is to parallelize operator execution to utilize idle

available resource in the broker network.

Replication Replication is applied to operators that subscribe to multiple trees. Instead of collect-

ing all streams and executing the operator on a single node, replication exploits processing resources

of multiple trees. The goal is to process each input stream independently on each tree and combining

the results to construct the final output. To implement this, a replica is created for each of the trees

the operator receives input from. Each replica will receive one of the inputs of the original operator.

To guarantee correctness, a final operator, receives the outputs of all replicas and produces the final

result. The publish-subscribe network easily routes stream flows from the replicas: they publish

their outputs through a tree, and the final operator’s host subscribes to them by joining these trees.

Depending on the semantics of the replicated operator, we need to use a different implementation

for the final operator. For example, for filters we merge the already filtered outputs of our replicas

using a union operator, while for count operators, the final operator sums the replicas’ results.

In our current implementation we used feed processing operators similar to the operator set in

Yahoo!Pipes [5]. The set of operators along with the operators used for their replicas and final

operators are shown in Table 5.1.

Operator Replica Operator Final Operator
count count sum
filter filter union

rename rename union
copy copy union
split split union

truncate truncate union
union union union
unique unique unique

Table 5.1: Implementation of operator replication and partition.

Replication for the count operator is shown in Figure 5.6. A union operator precedes the count

merging streams A1 and A2 into stream A. We count the attribute x, thus, after replication, we

apply the count independently on A1 and A2 and carry the results in the c attribute of their replicas’

outputs A′
1 and A′

2. We sum the c value from both streams (after we merge them) in order to get

the final result.

The benefits of replication primarily depend on the location of the replicas. For example, if

improving the query latency is our objective, then placing the replicas in Figure 5.6 on the same

node as the original operator will not decrease latency. To increase the benefit, nodes can migrate

78

o2o1

n2
p

before

n1
p

n1
i

U

A

count(A.x)

A2A1

n1
p n2

p

after

o1
o2

n2
i

U

A′

sum(A′.c)

count(A1.x) count(A2.x)
A′2A′1

Figure 5.6: Operator replication.

after

n1
p

n4
k

stream
splitter

U

A′

n3
j A2

count(A1.x)

A1

count(A2.x)

o1

n2
i

sum(A′.c)

before

n2
i

n1
p

o1

A

count(A.x)

Figure 5.7: Operator partition.

the replicas inside their optimization area. Since each replica corresponds to a different tree, a node

can place the replica on its neighbors on this tree, i.e., its parent, one of its children or siblings. Note

that we do not require all replicas of an operator to be migrated, only the ones that can further

improve performance.

Replication can also increase the opportunities for optimization. Replicas are single input oper-

ators that can be handled independently by our framework. Thus, they are more flexible to migrate

as they affect fewer nodes and trees than operators with multiple inputs and multiple subscriptions.

For example, each replica can be migrated closer to its own data source, reducing the network latency

of queries.

Operator Partition Partition is applied on the input stream of an operator. It splits the stream

into two flows and each sub-flow is processed by a different replica of the operator, thereby exploiting

79

data parallelism. The output of the replicas are processed by a final operator which produces the

final results. Its type depends on the original operator, similarly to the case of replication. Replicas

created due to stream partitioning can be migrated inside the optimization area. The hosts of the

replicas join the trees providing their inputs and the publish-subscribe network routes the output

streams published by the replicas to the location of the final operator.

Partition is shown in Figure 5.7 for the count operator. Node n1
p splits stream A and publishes

two sub-streams A1 and A2. These streams are routed to the two replicas and their outputs are

merged and processed by the final operator. For this example, we assume that node ni participates in

trees T3 and T4 and it places the replicas on some instances of its neighbors nj and nk on these trees.

Partition is used to reduce the processing requirements of the original host and move a portion

of the processing to another node. Each replica is an independent operator that processes half of

the initial stream. Moreover, assuming a selectivity less than one for the replicas, the incoming rate

of the final operator is also lower than that of the initial stream, thus the processing overhead of its

host node is decreased.

5.4.2 Local optimizations

XFlow applies the above optimization operations in the scope of its local neighborhood. Hence,

nodes may migrate their operators (or replicas) to their parents, children or siblings across trees.

The main advantage of this approach is that we reduce the search space of candidate locations for an

operator by considering only nodes within its network neighborhood. Furthermore, non overlapping

neighborhoods can be optimized locally and concurrently.

Although at each step we consider a small network region, XFlow can gradually migrate operators

to arbitrary network areas. Our experimental results reveal that for certain types of metrics this

local search is scalable and effective, as it incurs very small network traffic and can converge to near-

optimal configurations. For example, for non-constrained additive metrics, like average network

latency, or total bandwidth consumption, our optimizations can migrate all queries close to their

external sources.

5.4.3 Directed optimizations

XFlow utilizes the available network statistics and allows nodes to identify promising non-local

operations. These operations focus on specific low cost network areas and we refer to them as

directed optimizations. In this section, we describe our approach.

80

Statistics management

XFlow nodes maintain certain local and aggregated statistics which they selectively disseminate

to discover alternative neighborhoods that could improve the performance. XFlow relies on the

definition of the system cost metrics, i.e., on the semantics of the aggregation functions (i.e., MAX,

SUM, etc), in order to determine: (i) which nodes may be interested in the statistics, and (ii)

which statistics could be of potential interest. Moreover, it creates filter-based routing paths on top

of the existing overlay trees that forward the statistics from their producers only to the interested

consumers. This statistics propagation process should run with a frequency that reflects the workload

and network changes of the specific application.

Statistics selection In Section 5.3.2, we mentioned that each node ni stores a local value, li,

and an aggregated value, φi, for every tree in which it participates. It periodically disseminates

these statistics and informs its peers about the performance of its neighborhood. Specifically, the

local value li reveals ni’s resource utilization (e.g., processing load) or its neighbors’ properties (e.g.,

latency to its parent), while the aggregated value φi provides a performance measure of the path

leading to ni (or of the links to its children). Each node forwards statistics of constant size (O(1))

for each tree is participates. The size of these statistics is independent of the number of queries and

operators as well as the number of nodes and only depend on the number of dissemination trees.

Selective dissemination XFlow distributes statistics only to nodes that may affect the global

system cost. Table 5.2 shows the conditions that should hold in order for a node to receive any

statistics from its peers. These conditions are agnostic of the actual optimization metric and depend

on the aggregation functions that evaluate the query and system cost. For example, if the optimiza-

tion metric is the average query latency, then every node can improve the system cost by reducing

the processing or network delay of all the queries it hosts. On the other hand, in order to minimize

the maximum query latency, we would forward statistics only to the nodes that process the query

with the highest response time, c, (or with small difference ±δ from the worst response time).

Furthermore, nodes are interested only in information on network components (links, paths,

nodes) that perform better than their own local neighborhood. Table 5.2 shows the predicates used

by each node ni to filter out non-informative statistics. XFlow uses the aggregation semantics to

automatically customize these filters. Additive functions imply that the aggregated value will be

higher than the local value, thus the lower-bound filter is their local value. For example, for the

query latency case, ni receives statistics about paths with less latency than its latency to its parent,

li. In the case of the MIN function, the aggregated metric φi provides the lowest value ni is interested

81

Operator Disseminated Statistics Query System Condition
Aggr Statistics Filters Aggr Aggr
SUM (li, φi) < li SUM SUM

MIN MIN (φi = c± δ)
MIN (li, φi) > φi SUM SUM

MIN MIN (φi = c± δ)
- li < li SUM -

MAX - (li = c± δ)

Table 5.2: Statistics dissemination per node. (c: system cost)

in; ni will receive statistics about links and paths with higher bandwidth than the capacity of its

own local path to the root, φi.

Probabilistic dissemination In order to reduce the statistics emitted in the network, we deploy

a probabilistic-based technique for selecting only a subset of the available information. Specifically

each node propagates the statistic of k nodes (we refer to them as top-k) which are picket based on

the lottery scheduling algorithm [53]. Each node’s value is assigned a number of tickets proportional

to its “utility”. This utility value depends on the semantic of the optimization metric. For example,

nodes with less load or latency will be given more tickets, thus having higher probability of “win-

ning” the lottery and forwarding their statistics. The algorithm guarantees no zero probability for

selecting any statistic. Our experiments revealed that this approach keeps the statistic traffic within

constant bounds, independently of the number of queries and nodes, while it incurs low performance

degradation.

Statistics routing XFlow uses the structure of its network to distribute its statistics. It avoids

flooding the network by constructing predicate-based routing paths that filter out unwanted statistics

as early as possible. For example, we avoid forwarding load information of the most loaded node. To

construct these filtering paths, nodes propagate their statistics filters (Table 5.2) to their parents.

Each node aggregates the filters of its children in each tree and propagates the aggregated filter

upstream towards the root. This allows nodes to be aware of the interests of their descendants and

selectively route filtered statistics to the interested nodes. Since our overlay network consists of

inter-connected trees, every participating node is guaranteed to receive the statistics.

Directed operations

Our framework uses the collected statistics to discover specific low-cost neighborhoods. We catego-

rize them into intra-tree and inter-tree neighborhoods.

82

Intra-tree neighborhoods Dissemination trees connect nodes that receive and process the same

data stream. Our statistics distribution process allows nodes to discover which of these nodes have

better cost metrics, e.g., better path to the stream producer, less processing load, or less outgoing

bandwidth consumption. Hence, each node considers migrating its operators (or its replicas) to a

peer that receives its input stream through an alternative path with better performance. Another

benefit of directed optimizations inside a tree is that overlay paths with good performance are

re-utilized, improving the resource utilization metrics.

Inter-tree neighborhoods XFlow nodes also receive statistics regarding nodes, links and paths

that reside outside their dissemination trees. Thus, they can exploit any network component with

low cost by incorporating them in their own trees. To achieve this, they consider migration of their

operators to any node with lower cost and connect them to the tree through one of the existing

nodes. To reduce the number of candidate locations each node has to consider, we check only the

top-k nodes with the least cost.

5.4.4 Evaluating global cost changes

Our optimization framework includes a generic cost model that quantifies the expected benefit of an

operation with low overhead. We exploit the fact that our localized operations affect only a subset

of the nodes and operators, and we evaluate the impact on the cost metrics of only the affected

entities. For the purposes of illustration, we will describe our approach with respect to the query-

oriented metrics and the SUM and MIN aggregation functions. Similar results can be obtained for

the node-oriented metrics and the AVG and MAX functions in a straightforward manner.

We start by providing the dependencies among nodes, operators and queries. We assume a set

of queries Q. Each query qi ∈ Q consists of a set of operators and let O be the total set of operators.

Let also Ei be the set of queries that include operator oi ∈ O. We denote the local metric of node

ni as li. Any optimization rule that involves this node could affect its local metric (e.g., adding an

operator increases its processing load). We denote such changes as ∆(ni : li → li +δ). The cost of an

operator oi ∈ O, oci, is defined by aggregating the local metrics of some nodes (e.g., latency of the

nodes to the upstream operator). This cost could change due to changes on the local metrics (e.g.,

increase on the link latency) or changes on the set of nodes (e.g., placing the operator on another

node.) The following definition identifies which non-local operators and queries (that do not reside

on this node) may be affected by a change on a node’s local metric.

Definition 6. (DEPENDENT OPERATORS) The dependent operators of node ni is the set of

operators, Di, whose cost metrics depend on ni’s local metric, li:

83

Symbol Definition
li local metric of ni

oci cost of operator oi

qci cost of query qi

Oi operators executed on ni

Zi the set of queries including operators in Oi

Ei the set of queries including operator oi

Di dependent operators of node ni

Gi dependent queries of node ni

Fα affected nodes from optimization ruleα
bα benefit of optimization rule α

Table 5.3: Model terminology

1. If the cost of an operator is defined as an upstream aggregation, then Di is the set of the first

operators reached by ni’s paths to the leaves of every tree ni participates and every tree in

which it publishes data.

2. If the cost of an operator is defined as a downstream aggregation, then Di is the set of first

operators reached by ni’s path to the root of every tree ni participates.

Definition 7. The dependent queries of ni is the set of queries, Gi, that include at least one

dependent operator of ni. In particular: Gi = ∩oj∈Di
Ej.

Let us consider the query plan and its distribution in Figure 5.8, where the cost of an operator

is its latency (i.e., upstream aggregation). Then D2 = {o4}, as changes on the latency between n2

and n3, affects the output latency of o4.

Each optimization rule α affects a set of nodes Fα: migration has an impact on the origin and

destination nodes, while replication and partition affect the origin node and the nodes where the

replicas are placed. Changes on a node ni ∈ Fα could change the cost of all dependent queries

as well as the cost of queries that include any operator executed on these nodes. Let Oi be the

set of operators executed on ni and Zi the set of queries including an operator in Oi. XFlow does

not evaluate the new cost of every dependent query, but instead quantifies the impact of their cost

changes on the global system cost, expressed by the query dependence cost.

Definition 8. (QUERY DEPENDENCE COST) The query dependence cost, c(Gi), of a query

dependent set Gi, is the aggregation of the cost of every query qj ∈ Gi, using the aggregation

function that defines the system cost.

For example, if the query cost and the system cost are defined based on the SUM function (i.e.,

we aggregate operators’ and queries’ cost with the SUM function), then:

84

o4
q2

o1

o3

o2SA

SB

q1
SA

o2

o3

SB

o4

n1 n3

n2

n4

n5

o1

Figure 5.8: Example of operator distribution.

c(Gi) =
∑

qm∈Gi

qcm =
∑

oj∈Di

∑

m∈Ej

qcm. (5.1)

Our cost model tries to estimate the change on the query dependence cost. In what follows, we

illustrate the detail of this approach. The following property identifies the effect of an operation on

the system cost, based on the query dependence cost.

Property 1. (SYSTEM COST EFFECT) Assume the system cost is defined based on the SUM

function. Given a query optimization rule α, the expected change of the system’s performance is the

following:

bα =
∑

ni∈Fα

(
∑

qm∈Zi

∆qcm + ∆c(Gi)). (5.2)

If the system cost is defined based on the MIN function, then:

bα = min
ni∈Fα

{ min
qm∈Zi

{qcm + ∆qcm}, c(Gi) + ∆c(Gi),

min
qm /∈Zi,qm /∈Gi

{qcm}} − c (5.3)

where c is the current system cost.

In the following section we discuss how we can evaluate the above equations.

Query cost changes

We begin this section by evaluating the change on the dependent operators of a node and continue

with the derivation of the change on query costs and the query dependence cost. We first focus

on the case where the operator cost is defined based on the MIN function (i.e., we aggregate local

metrics of neighbors using the MIN function). In this case, whether a node can affect an operator’s

85

cost depends on the rest of the nodes on the path to the upstream (or downstream operator). We

capture this in the following definition.

Definition 9. (CRITICAL VALUE) Let ni be a node. If the cost of operators is defined based on

the MIN function, then the critical value of a dependent operator oj ∈ Di, w.r.t. ni, hi(oj), is the

minimum local metric of all nodes on the path between ni and the current location of oj.

To explain this, we use the example in Figure 5.8, and let us assume that the cost of an operator

is the minimum latency to its upstream operator. This is an upstream aggregation, thus n2 has

o4 as its dependent. The local metric of each node is the latency to its parent and h2(o4) is the

minimum latency of all nodes connecting n2 and n5.

Property 2. (OPERATOR COST EFFECT) Assume a change ∆(ni : li → li + δ) that triggers a

change ∆ocj on the cost of a dependent operator oj ∈ Di. If the operator cost is defined based on

the SUM function, then ∆ocj = δ, while if it is defined based on the MIN function, then ∆ocj = λ,

where λ = min{li + δ, hi(j)} −min{li, hi(j)}.

To explain the above, we assume in Figure 5.8 that the operator’s cost is its output latency.

Hence, we aggregate the link latencies between nodes n5 and n3 to get the latency of operator o4. If

the latency between n4 and n2 increases, then the latency of o4 will have the same increase. If the

operator cost is the minimum latency to its upstream operators, then the cost of o4 is the minimum

latency of the links between n5 and n3. A change on the latency between n4 and n2, will change

the cost of o4 by λ. The λ parameter identifies the difference between the new minimum latency

between nodes n5 and n3 and their current latency. This parameter can be further simplified under

certain conditions as shown in Table 5.4. For instance, if the node with the minimum latency is

the same node for all the dependent operators, and we only decrease further its latency, then every

dependent operator will experience the same cost change.

Changes on the cost of an operator oi ∈ O will affect the cost, qcj , of any query qj ∈ Ei. The

following property describes how changes on the cost of operators can be translated to changes on

the queries’ costs.

Property 3. (QUERY COST-EFFECT) Assume a change ∆(oi : oci → oci + δ) that triggers

a change ∆qcj on the cost of a query qj ∈ Ei. If the cost of a query is defined based on the

SUM function, then ∆qcj = δ and if is defined based on the MIN function, then ∆qcj = τ , where

τ = min{βi(j), (oci + δ)} − qcj and βi(j) = minom∈Pj ,om 6=oi
{ocm}.

Assume the query cost is the sum of its operators’ latencies. Then, in Figure 5.8, decreasing

the latency of o2 will decrease the cost of q1 and q2. If the query cost is defined as the minimum

86

li change Conditions λ

δ < 0 minoj∈Di
{hi(j)} ≥ li δ

δ > 0 minoj∈Di
{hi(j)} ≥ li δ

δ > 0 hi(j) ≥ (li + δ) δ

Table 5.4: Change on operator cost ocj upon change on local metric li (ocj uses the MIN aggregation
function).

latency of all its operators, then decreasing o2’s latency might create a new cost for q2, depending

on o4’s latency. The τ parameter takes into account the minimum cost of all query operators except

o2 (that is value βi(j)) and identifies the change on the query cost. Once we have evaluated the cost

changes on dependent queries, we evaluate the new value for the query dependence cost, based on

Definition 3.

Benefit evaluation steps

The above properties allow us to estimate the benefit of a given query optimization rule. First,

we evaluate the change on the cost of the migrated operator (or replica) by aggregating the local

metrics for its potential new neighbors. The aggregation function and the set of neighbors depend

on the definition of the operator cost (upstream or downstream aggregation). Given a change on

the operator cost, we quantify the impact on their query costs based on the query effect property.

In the next step, we estimate any changes on the local values of the affected nodes, based

on the definition of the local metric. Since the local metric is a function on local statistics, we

evaluate the new local metric based on the local statistics of the affected nodes. For example, if

the local metric is the node’s processing load, and we migrated an operator to the node, then we

add on the destination node’s load the expected processing load of that operator, as estimated by

its current host’s statistics. Depending on these changes, our protocol uses the operator and query

cost-effect properties to evaluate the impact on the dependent queries of these nodes and the new

query dependence cost. Based on this impact, we use Equation 5.2 or 5.3 to evaluate the benefit of

the query optimization rule.

5.4.5 Query optimization protocol

Periodically, every node evaluates the benefit of all query optimization rules on its local operators.

For each operator, it considers all possible migrations, replications and partitions (the last two oper-

ations are combined with the possible replica migrations). The most effective of all pairs (operator,

optimization rule) is sent to the root of the tree. The roots of all trees collaboratively identify the

best rule which is applied by the host of the operator.

87

Oper Aggr SUM MIN
Query Aggr |Zi| O(|Q|) hi(oj),∀oj ∈ Oi O(|O|)

SUM |Gi| O(|Q|) hi(oj),∀oj ∈ Di O(|O|)
|Ej |, ∀oj ∈ Di O(|O|)

c(Gi) O(1)
MIN system cost O(1) system cost O(1)

c(Gi) O(1) c(Gi) O(1)
βi(j),∀qj ∈ Zi O(|Q|) hi(oj),∀oj ∈ Oi O(|O|)

Bj ,∀oj ∈ Di O(|O|) βi(j),∀qj ∈ Zi O(|Q|)
hi(oj),∀oj ∈ Di O(|O|)

Bj ,∀oj ∈ Di O(|O|)

Table 5.5: Optimization state for ni (Bj = {(βj(m), ocj)|qm ∈ Ej}).

Dynamic operator modifications

Our system adopts the “pause-drain-resume” approach to migrate or change the execution of state-

less operators. When a node decides to modify an operator, its pauses the data flow to that operator,

and starts buffering any incoming tuples. The operator executes any remaining tuples and after the

operation is applied the node resumes the data flow. To handle migration of stateful operators we

adopt solutions proposed in the literature [56].

Optimization state

Table 5.5 shows the state nodes need to maintain for the different functions for aggregating the

operator and query costs. This state is derived based on Equations 5.2 and 5.3 and the operator and

query cost-effect properties. For example, to use the operator effect property for the MIN function,

nodes need to know the critical value of their local and dependent operators. By maintaining

this state we reduce the communication overhead during the optimization process. Note that this

state is common for any query optimization rule and independent of the actual performance metric.

Moreover, it depends in most cases on the dependent entities of a node and not on the global set of

nodes, queries or operators in the system.

The query manager of a node ni maintains also information about the set of local operators, e.g.,

their cost and the root brokers publishing their inputs. This operator-related state has size O(|Oi|).

Nodes also need some information about the trees they participate, e.g. the cost of each virtual

node they own, its profile in each tree and the profiles of each of its children per tree. This state is

of size O(|Ti|), where Ti is the set of trees in which ni participates.

88

Optimization traffic

During optimization, nodes exchange statistics with their neighbors in the optimization unit. This

is the information required from our protocol to evaluate the changes on the local metrics of the

affected nodes and on the operators to be migrated, replicated or partitioned. This state depends on

the definition of our cost metrics. For example, for the query latency metrics defined in Section 5.3,

nodes need to know the latency of the candidate locations from the upstream operators. Thus, they

collect the local metrics from the nodes connecting the candidate location to the location of the

upstream operators.

Periodically, nodes exchange data in order to calculate their local state. To minimize this main-

tenance traffic, nodes gather and calculate this information in a hierarchical fashion. They aggregate

the state from their children and push the result to their parents across the trees. For example, to

maintain the size of the downstream dependent operators, nodes aggregate the number of operators

in their subtrees and forward the sum to their parents.

Batch-executing multiple optimization steps

Although applying a single query optimization rule per optimization period will improve performance

over time, considering multiple rules could speed up convergence to better configurations. To this

end, we allow multiple rules to be applied during a single period, e.g., migrating multiple operators.

We use a standard best-first-search-like algorithm for identifying an effective set of query op-

timization rules. At each step, we consider all possible rules for each operator on the node and

evaluate their benefits. The best rule that does not violate any constraint is selected, and, given the

new configuration defined by this rule, we reevaluate the benefit of distributing another operator

from the remaining ones. We continue by picking the best combination of the (now two) query opti-

mization rules, continue this best-first search iteratively, and stop after a tunable but fixed number

of steps.

5.5 Performance evaluation

We have implemented an initial prototype of XFlow in Java and studied its performance on the

PlanetLab testbed. We used a network of up to 200 nodes participating in four dissemination trees.

Thus, our networks consist of up to 800 node instances. The workload includes 900 queries with

input streams chosen from a set of 700 real-world input streams using a Zipf distribution with the

skew parameter set to 0.97. Each input stream is an RSS feed pulled with frequency that creates

an average stream rate of 3.2KB/sec.

89

Operator Description
count counts the number of items in a feed
filter blocks items that match a filtering rule

rename renames item attributes
copy copies item attributes
sort sorts items based on an ordering rule
split splits a feed into two identical copies

truncate limits the number of items that pass through it
union merges two feeds together
unique combines items containing identical strings

Table 5.6: RSS feed processing operators.

Our queries are composed by a set of operators, similar to the operators of Yahoo!Pipes [5], a

centralized feed aggregator that lets users mashup data sources. The operators may union, split, sort

or filter the RSS feeds with a variety of conditions. The operators used are described in Table 5.6.

Each query takes as input a random RSS feed (or two for the union operator) and applies a chain of

five processing operators. An example query unions two input feeds, filters them based on a string

in the title, sorts the results by date, truncates them and returns the top-k items.

The external RSS sources are assigned randomly to the four root brokers while the clients are

hosted by the remaining brokers. Grouping sources into four trees allows more nodes to connect to

the same tree leading to larger neighborhoods. We assign clients to the remaining brokers randomly,

when no constraints are defined. Otherwise, we use an assignment that respects the constraints.

Depending on the inputs of their local queries, nodes subscribe to the proper tree and pick as their

parent a random node in the tree that respects the constraints.

We used our prototype to implement three query distributions, each one optimizing a different

metric which are: (i) average query latency, (ii) maximum processing load across all nodes and (iii)

total bandwidth consumption. These metrics were defined in Section 5.3. Our experiments demon-

strate XFlow’s effectiveness, as it manages to improve these metrics significantly over a sequence of

local and directed optimization rules.

5.5.1 Extensibility and effectiveness

We start our discussion by demonstrating that our operator placement framework can optimize

efficiently different metrics. We examined four alternative placement approaches.

• CLIENT-STAR assigns operators to the location of their client and their hosts connect directly

to the root brokers, creating a star topology for every dissemination tree.

• CLIENT-TREE assigns the operator to the host of the client, however, these hosts connect to

90

the trees through a random member of the tree. CLIENT-STAR is also the initial configuration

for XFlow.

• SOURCE places operators to the root brokers publishing their input stream. The root brokers

process all the queries what have as input their publishing streams and forward the results to

the clients through direct, unicast connections to the client hosts.

• GLOBAL applies a greedy strategy that considers all existing queries in the order they were

registered to the system and places each after an exhaustive search over all possible placements.

This requires global knowledge of the query set and workload and is infeasible in practice but

it gives a target upper bound for the performance of our algorithms. For each metric, we used

a different implementation of GLOBAL.

We compare these approaches with two variations of XFlow:

• XFlow-local uses only localized optimization rules

• XFlow-directed uses only directed optimization rules and

• XFlow-hybrid uses both localized and directed rules

Our results show that, although the best placement depends on the optimization metric, XFlow con-

sistently performed very close to the best placement regardless of the performance metric. Further-

more, we show that certain metrics can converge to the optimal placement by using only localized

operations, while for the rest of the metrics, directed optimizations allow XFlow to achieve the

optimal configuration or reach one that performs better than GLOBAL.

Bandwidth consumption

Figure 5.9 shows the total bandwidth consumption for varying number of queries and 100 nodes.

In these experiments each query is a chain of five filter operators for which we manually set the

selectivity to be uniformly distributed in [0,1]. The best performance in this case is achieved by

placing operators with selectivity less than one close to the sources. This approach eliminates input

tuples close to their sources reducing the amount of data forwarded in the network. Thus, both

SOURCE and GLOBAL place the operators on the root brokers and represent the optimal placement.

CLIENT-STAR consumes more bandwidth since all input tuples are forwarded to the clients for

processing. CLIENT-TREE performs worse, because input tuples are forwarded to their clients

through multiple hops. However, XFlow manages to continuously refine the operator placement

by using only its local optimizations (XFlow-local). It converges to a distribution that requires low

91

05 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 03 0 0 0 03 5 0 0 0

1 0 0 3 0 0 5 0 0 7 0 0 9 0 0N u m b e r o f q u e r i e sT ot alb and wid th consumpti on(KB)
C L I E N T l T R E E X F l o w l l o c a lC L I E N T l S T A R S O U R C E / G L O B A L (O p t i m a l)

Figure 5.9: Convergence to the optimal for the total bandwidth consumption.

bandwidth consumption, i.e., over time, it moves almost all operators to the root brokers, performing

the same as GLOBAL.

 0

 320

 0 30 60 90 120 150
Time (min)

 200

 280

 40

 80

 120

 160

GLOBAL (optimal)

XFlow−local

 240

CLIENT−TREE

A
ve

ra
ge

 q
ue

rr
y

la
te

nc
y

(in
 m

se
c)

Figure 5.10: Convergence to the optimal for the average query latency.

Query latency

Figure 5.10 shows the average query output latency for 500 queries deployed on 100 PlanetLab

sites. The query response latency includes only the network latency incurred due to the operators’

placement on different network location. In this case, network latency refers to the dissemination

92

time for distributing streams from producers (external sources or internal operators) to consumers

(external clients or internal operators).

We compare XFlow’s performance with the optimal in which each node has one overlay link to

the root broker that publishes the input stream of its operators. This is provided by the GLOBAL

as well the CLIENT-STAR placements. In these cases, assuming network latency dominates pro-

cessing latency and no constraints on the node load, we execute each query on the root and forward

the results the client. This reduces the query latency as input tuples do not travel in the network.

CLIENT-TREE uses multiple overlay links to connect an operator to its source, hence, its perfor-

mance is worse. Figure 5.10 shows that XFlow converges very close to the optimal configuration

after a number of migrations, which incrementally move our operators closer to the root of each tree.

05 01 0 01 5 02 0 02 5 03 0 03 5 04 0 0

C L I E N T �T R E E S O U R C E C L I E N T �S T A R X F l o w G L O B A LA veragequeryres
ponsel at ency(msec)

(net work& processi ngl at ency) N = 5 0 N = 1 0 0 N = 1 5 0

Figure 5.11: Average network and processing latency.

We also studied the query response latency when processing times are also included in the evalu-

ation of the query response latency. The results for different network sizes are shown in Figure 5.11

for 500 queries. The more operators a node must process and the higher its fanout in the tree,

the greater the processing latency that feeds observe when traveling through that node. For the

GLOBAL case, we assign operators to the node with the lowest latency from the root broker pub-

lishing their input. To reduce further the network latency, we assign clients to the same node as

their queries, so that output results are not forwarded in the network.

CLIENT-TREE has the highest latency as queries receive their inputs through random paths to

the roots, possibly with multiple network hops. The latency increases with the network size, as more

nodes participate and the random paths tend to have more hops. SOURCE and CLIENT-STAR

create a star topology. Hence, the processing latency at the roots of the trees is high, since they

have to filter the incoming tuples for each of their children. As the network size increases, the fanout

93

05 01 0 01 5 02 0 02 5 03 0 0

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0T i m e (s e c)A veragequeryr
esponsel at ency(msec) C L I E N T Ø T R E E X F l o w Ø l o c a l X F l o w Ø h y b r i d G L O B A L

Figure 5.12: Average query response latency when maximum node load is restricted to five (5) CPU
cycles per time unit

of the roots, and thus the processing latency, increases. SOURCE has worse performance, since the

roots perform all the processing.

Our performance is comparable to GLOBAL, and significantly outperforms all the other practical

approaches. It incrementally migrates operators and improves the latency by up to 75% for the case

of 150 nodes, by placing operators on brokers with smaller network and processing latency. Our

protocol applies around 160 migrations, replacing an average of 17 operators at each optimization

step.

Constrained metrics

One way of achieving the benefits of pushing all operators closer to the sources, without saturating

the processing resources of the root brokers and the nodes close to them, is by adding constraints

on the maximum load of the nodes. These constraints will prevent operators from migrating to the

root brokers. Moreover, nodes limit their fanout in the tree, as a large fanout would increase the

overhead of processing and matching incoming tuples going to downstream nodes. Thus, trees with

height higher than one will be constructed. We created such a network by imposing a upper bound

of five (5) CPU cycles per time unit on the processing load of each node. Figure 5.12 shows the

average output latency of 500 queries on 100 PlanetLab nodes. In this case, not all operators are be

migrated to the root since this would violate its upper load limit.

We also used this constrained metric to demonstrate the effectiveness of directed optimization.

94

3 0 0 03 5 0 04 0 0 04 5 0 05 0 0 05 5 0 06 0 0 06 5 0 07 0 0 0

0 5 1 0 1 5 2 0 2 5T i m e (O p t i m i z a t i o n s t e p s)T ot alb and wid th consumpti on(KB)
X F l o w � l o c a l (n o c o n s t r a i n t s) X F l o w � l o c a l (l o a d < = 5)X F l o w � l o c a l (l o a d < = 1 0) S O U R C EC L I E N T � T R E E

Figure 5.13: Total bandwidth consumption under constraints on the processing load of each node.

Figure 5.12 shows that, when only local migrations are applied, XFlow can improve over its ini-

tial placement, provided by CLIENT-TREE, but is outperformed by GLOBAL. This is because

our optimization converges to local optimum: nodes cannot migrate their profiles to a better net-

work region because their neighbors cannot accept any new operators without violating their load

constraint. However, when directed optimizations are used (XFlow-hybrid) nodes do not rely only

on their neighbors for gradually improving the system’s performance. Network statistics dissem-

inated by their peers informs them about the performance of other nodes, i.e., their latency and

load. Hence, XFlow directly migrates operators to nodes with less load and better location. These

directed operations allow our system to converge to a configuration that outperforms GLOBAL.

Figure 5.13 shows the total bandwidth consumption when we set the load constraints to 5% and

10% of the node’s CPU cycles and when no constraints exist. Our system incrementally improves

its performance in all cases. In the absence of constraints, all operators end up being executed at

the root brokers. However, when constraints exist, many operators cannot move to higher levels, as

this would lead to a violation of the load constraint.

Processing load

We also studied the maximum processing load across all nodes for 500 queries. For this metric,

placing all operators on the root brokers (SOURCE) leads to worse performance, as it utilizes all the

resources from the root brokers. CLIENT-TREE and CLIENT-STAR distribute the load across all

nodes that host a client. However, they perform worse than XFlow and GLOBAL which places every

95

051 01 52 02 53 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0T i m e (o p t i m i z a t i o n s t e p s)M axi mumnod el oad

(cpucycl esperti meuni t) C L I E N T R T R E E X F l o w R l o c a l X F l o w R d i r e c t e dG L O B A L O p t i m a l

Figure 5.14: Maximum node load with local and directed optimizations.

new query at the least loaded node. For this metric, we also computed the OPTIMAL placement

using an exhaustive search of the solution space.

Figure 5.14 shows that XFlow converges to the OPTIMAL when directed optimizations are used

over 500 queries and 100 nodes. If only localized optimizations are applied, XFlow can improve its

optimization metric but converges to a local optimum. However, by using the network statistics, the

most loaded node can easily discover less loaded nodes and migrate part of its local processing, reach-

ing eventually the optimal resource allocation. Moreover, as network size increases (Figure 5.15),

XFlow performs even better, since more nodes are available for distributing the processing. In all

the cases, we converge to the OPTIMAL and outperform GLOBAL.

02 04 06 08 01 0 01 2 0

S O U R C E C L I E N T oT R E E C L I E N T oS T A R X F l o w od i r e c t e d G L O B A LM axi mumnod el oad
(cpucycl esperti meuni t) N = 5 0 N = 1 0 0 N = 1 5 0

Figure 5.15: Maximum processing load for different network sizes.

96

01 02 03 04 05 06 07 08 09 01 0 0

X F l o w ¢ C l i e n t X F l o w ¢ R o o t X F l o w ¢ G r e e d y%i mprovementf romi ni ti al pl acement N = 5 0 N = 1 0 0 N = 1 5 0

Figure 5.16: Improvement of maximum load for different initial placements.

5.5.2 Effect of initial placement

We use the maximum load metric to study the effect of the initial placement of operators. Figure 5.16

shows the improvement we can achieve compared with the system’s performance when we initially

place the operators:

• on the clients’ hosts (XFlow-Client),

• on the root brokers (XFlow-Root) and

• on the least loaded node (XFlow-Greedy).

XFlow significantly improves the maximum load for all cases. Our protocol migrates as many oper-

ators as possible from the root brokers and distributes the processing overhead across the network.

XFlow-Client and XFlow-Greedy demonstrate smaller improvements as we already start with a good

initial placement. The improvement is higher for the XFlow-Root case since maximum load for the

initial performance is already very low (see Figure 5.15). However, even in the case of XFlow-Greedy,

we manage to improve the performance by 28% when the network size increases to 150 nodes, by

utilizing better the available nodes in the system.

5.5.3 Probabilistic statistics

We also used the maximum load metric to evaluate the effect of our probabilistic statistics dissem-

ination. Figure 5.17 shows the progress of our optimization over 100 nodes when we propagate all

statistics (k=100) and the cases where only the top-40 and top-80 values are sent. These values are

picked as described in Section 5.4.3. The results show that limited statistics do not incur significant

97

performance degradation as XFlow is able to reach a configuration with performance close to that of

OPTIMAL. This fact reveals that the our statistic dissemination approach is able to identify useful

statistics for the system’s performance. The probabilistic dissemination degrades the performance

by at most 10% from the optimal. One the other hand, it manages to decrease the overhead of

disseminating these statistics by up to 85% (for network sizes of 200 nodes) (see Figure 5.20). The

trade-off between convergence to the optimal and optimization overhead depends on the specific

expectations and requirements of the application. However, these results demonstrate that XFlow

provides the necessary mechanisms for exploring those two metrics simply by set the k parameter

in the system configuration.

051 01 52 02 53 03 5
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0T i m e (o p t i m i z a t i o n s t e p s)M axi mumnod el oad

(cpucycl esperti meuni t) X F l o w ë d i r e c t e d (k = 1 0 0) X F l o w ë d i r e c t e d (k = 8 0)X F l o w ë d i r e c t e d (k = 4 0) O p t i m a l

Figure 5.17: Optimization of maximum node load with probabilistic statistics.

5.5.4 Scalability

Due to our aggregation model, XFlow nodes to maintain and exchange state of small size. This

allows our system to be highly scalable with the number queries and nodes in our network. We

demonstrate XFlow’s scalability in Figure 5.18 which shows the traffic incurred for the maximum

processing load metric. This traffic includes optimization traffic, the maintenance traffic (described

in Section 5.4.5), and the statistic disseminated to support directed optimizations ((Section 5.4.3).

This traffic is a measure of the optimization overhead.

Figure 5.18 shows that XFlow scales with respect to the query set since the network traffic remains

constant with the number of queries. Figure 5.19 shows the total network traffic for increasing

number of nodes. Larger networks require statistics to be disseminated to more nodes, increasing

the traffic with the number of nodes. However, even in this case the maintenance and optimization

traffic do not increase and the overhead incurred by statistics dissemination. To reduce this overhead

98

05 01 0 01 5 02 0 02 5 0

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0N u m b e r o f q u e r i e s
A veraget raffi c

(b yt et ransf erpernod e) M a i n t e n a n c e O p t i m i z a t i o n S t a t i s t i c s

Figure 5.18: Overhead for different number of queries.

05 01 0 01 5 02 0 02 5 03 0 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
A veraget raffi c

(b yt et ransf erpernod e) M a i n t e n a n c e O p t i m i z a t i o n S t a t i s t i c s

Figure 5.19: Overhead for different network sizes.

we propagate statistics using the probabilistic technique described in Section 5.4.3. Figure 5.20

compares the cases where all statistics all disseminated and when only the top-20 and top-40 are

selected. The experiments reveal that the probabilistic dissemination keeps the statistics traffic

independent of the number of nodes. Hence, XFlow’s overhead is independent of the number of

queries and nodes, demonstrating the scalability and efficiency of our approach.

Finally, Figure 5.21 shows the average optimization, maintenance and statistics data sent per

node for all the metrics we implemented. The results reveal that XFlow has very small overhead: it

requires less than 240Bytes in the worst case, while the optimization traffic remains below 90Bytes.

More specifically, for the query latency, each virtual node periodically sends its latency from

the root of the tree to its children, in order for them to evaluate their own latency. Similarly for

99

05 01 0 01 5 02 0 02 5 03 0 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0N e t w o r k s i z e
A veraget raffi c

(b yt et ransd erpernod e) S t a t i s t i c s T o p z k s t a t i s t i c s (k = 2 0) T o p z k s t a t i s t i c s (k = 4 0)

Figure 5.20: Overhead reduction from probabilistic statistics.

05 01 0 01 5 02 0 02 5 03 0 0

O p t i m i z a t i o n M a i n t e n a n c e S t a t i s t i c s
A veraget raffi c

(b yt et ransf erpernod e) L a t e n c y M a x i m u m L o a d B a n d w i d t h c o n s u m p t i o n

Figure 5.21: Network traffic for different metrics.

bandwidth, virtual nodes send their input rates to their parent in the tree. In the case of maximum

load, nodes calculate their processing cost locally. However, data is exchanged in order for nodes

to evaluate their local state, e.g., the maximum load of their subtree and the maximum load in the

network apart from their subtree.

During optimization, for the query latency metric, nodes collect only the latency of all candidate

locations for their operators or replicas; while for the maximum load metric, nodes need to know the

current load of the candidate locations. Hence, the traffic for these cases is low. However, for the

bandwidth consumption metric, nodes exchange the profiles of their neighbors, the profiles of their

children, and statistics on the input rates of their streams. This information is required in order for

a node to evaluate how the output rate of the candidate location will be affected.

100

4 0 0 04 2 0 04 4 0 04 6 0 04 8 0 05 0 0 05 2 0 05 4 0 05 6 0 05 8 0 0

1 3 5 7 9 1 1 1 3 1 5 1 7T i m e (O p t i m i z a t i o n s t e p s)T ot alb and wid th consumpti on
(KB)

m i g r a t i o n r e p l i c a t i o n r e p l i c a t i o n & m i g r a t i o n

Figure 5.22: Impact of operator replication and migration for the total bandwidth consumption.

5.5.5 Operator replication and partition

We now study our operator execution rules. In this section we examine first replication and then

focus on operator partitioning. We allow our operators to be replicated or partitioned only once.

Replication

Figure 5.22 shows the improvement on bandwidth consumption when replication is used for 500

queries. We compare three cases in which we apply: (i) migration, (ii) replication, and (iii) migration

and replication together. The improvement achieved with migration is very limited, since moving an

operator to another node in one tree might not yield any benefit, as this node may not be subscribed

to the second tree. When only replication is used, the performance is better. However, since no

migration rules are allowed, these replicas are not reallocated and the bandwidth consumption can

not improve further. Not surprisingly, best results are obtained when replication and migration are

used together. In this case, XFlow will try to migrate our replicas closer to the sources, if this

reduces the data forwarding. Since these replicas take input from a single tree, it is easier to identify

a beneficial migration.

Operator partition

Figure 5.23 shows results for the operator partition case when we try to improve the maximum load

for 500 queries and 150 nodes. Migrating an operator incurs some benefits, however, since the load

of a query depends on its input rate, reducing this rate will reduce its load as well. Partitioning

an operator can achieve this, as now half of the input rate is processed by each replica. Moreover,

101

2 32 42 52 62 72 82 93 0

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9T i m e (O p t i m i z a t i o n s t e p s)
M a xi m umnod el oad

(cp uc ycl esperti me uni t) m i g r a t i o n p a r t i t i o n p a r i t i o n & m i g r a t i o n

Figure 5.23: Impact of operator partition and migration for the maximum load across nodes.

when migration is allowed, these replicas can move independently in their respective trees, utilizing

more processing resources and improving performance.

102

Chapter 6

Related Work

This chapter outlines the research that is relevant to the design and implementation of an extensible

stream dissemination and processing system.

6.1 Extensibility

Supporting extensibility in systems engineering has often been a key research goal for the benefits

brought via modularity and software reuse. In the database community, concepts such as extensi-

bility and declarative specifications have long been the norm as a result of pioneering works such as

System R [11] and Starburst [52]. Indeed, the generalization process need not be restricted to the

domain of large DBMSs, perhaps best exemplified by GiST [32]. Moreover, recent efforts from the

networking community, such as MACEDON [48], Click [36], P2 [41] and IFLOW [38] provide exam-

ples of systems promoting the advantages of extensibility. Below we describe the most representative

extensible systems in the area of data management and networking.

GiST Hellerstein et al. [32] introduced an index structure, called a Generalized Search Tree (GiST),

which is a generalized form of an R-tree. GiST provides a framework generalizing the problem of

implementing search indices in a database. The framework includes a template indexing structure

that allows domain experts (e.g in computer vision, bioinformatics, or remote sensing) to easily

customize a database system to index their content. This package unifies a number of popular

search trees in one data structure (i.e., R-trees, B+-trees, hB-trees, TV-trees, Ch-Trees, ranked

B+-trees), eliminating the need to build multiple search trees for handling diverse applications. In

addition to unifying all these structures, GiST provides both data and query extensibility. To make

GiST work, users have to figure out what to represent in the keys and provide the implementation

103

of four methods for the key class that help the tree do insertion, deletion, and search.

In many ways, our work draws its inspiration from GiST, striving to apply the same design prin-

ciples to distributed data dissemination applications. In XPORT, applications designers are asked

to provide the methods implementing the main message matching and dissemination functionality.

Our goal is to provide a generalized framework that can be easily customized by domain experts to

provide collection, processing and dissemination of their application-specific data types.

MACEDON The goal of MACEDON (Methodology for Automatically Creating, Evaluating, and

Designing Overlay Networks) [48] is to facilitate the research and deployment of overlay algorithms.

To this end, MACEDON consists of three related pieces: (a) a common overlay network API by

which any MACEDON-created overlay implementation may be used, (b) a domain-specific C++ like

language to describe an overlay’s behavior from which real operating code can be generated and (c) a

software engine that implements common features and functionality of overlay algorithms, providing

a performance-tuned system that can be employed by any MACEDON-specified overlay. As a result,

MACEDON allows algorithm designers to focus their attention on the algorithm itself and less

on tedious implementation details. The use of a common, yet extensible, API allows application

developers to create a single implementation capable of executing over any overlay algorithm.

CLICK Click [36] is an open, extensible, and configurable router framework. It provides a

modular architecture for processing packets in routers using a flow-based configuration specification.

Click’s building blocks are packet processing modules. To build a router configuration, the user

connects a collection of modules into a graph; packets move from element to element along the

graphs edges. To extend a configuration, the user can write new modules or compose existing ones

in new ways, much as UNIX allows one to build complex applications directly or by composing

simpler ones using pipes.

P2 P2 [41] uses a high-level declarative language to express overlay networks in a highly compact

and reusable form. Applications submit to P2 a concise logical description of an overlay network,

and P2 executes this to maintain routing data structures, perform resource discovery, and optionally

provide forwarding for the overlay. P2 is intended to greatly simplify the process of selecting,

implementing, deploying and evolving an overlay network design. It is using a declarative logic

language for specifying overlays and it employs a dataflow framework at runtime for maintaining

overlays instead of the more conventional finite state machine approach. P2 automatically compiles

the declarative specification of the overlay into a dataflow program and can compile multiple overlay

specifications into a single dataflow.

104

IFLOW IFLOW [38, 39] is a self-management middleware for developing applications for dis-

tributed processing and dissemination of data flows. IFLOW allows applications to express their

own performance goals and employs extensible networking monitoring mechanisms to configure and

adjust the runtime system behavior. However, their framework expresses utility metrics only as the

sum of link costs and they assign stream flows to network edges based on a centralized, exhaus-

tive search of the solution space. Our cost model is more expressive and supports a superset of

the optimization metrics considered in IFLOW. Furthermore, we use a decentralized approach that

incrementally improves the global cost based on simple, localized views of the network conditions.

Although all the above systems promote the notion of extensibility, to the best of our knowledge,

we have yet to see extensible architectures capable of generalizing over the core dissemination and

distributed stream processing functionality and optimization objectives. Moreover, our tree-based

dissemination architecture allowed us to design a well-defined and structured cost model that relies

on tree-related semantics and thus, is able to apply more specific optimizations (network transfor-

mations, operator migrations) than any generally structured overlay construction framework.

6.2 Publish-Subscribe systems

Much work has focused on publish subscribe systems including XNet [24, 25], YFilter [29] and

ONYX [30] for XML messages and SIENA [20] and GRYPHON [13] for relational data. These

systems focus on optimizing specific metrics, e.g., bandwidth usage [25, 20], efficiency of profile

matching [13, 20, 29]. Moreover, they commonly support subscriptions with only predicate-based

filters over individual events, so they cannot express complex stream-processing queries across mul-

tiple messages and streams as XFLOW.

SIENA One of the fist implementations of a distributed content-based publish/subscribe system is

the Scalable Internet Event Notification Architecture (SIENA) [18]. SIENA is a multi-broker event

notification service that is targeted at Internet-scale deployment. SIENA investigates the publish

subscribe model for relational data. An event consists of a set of typed attributes. Subscriptions are

conjunctions of event filters, which are predicates over the event attributes. A subscription matches

an event if and only if all event filters in the subscription hold when evaluated with respect to the

event. SIENA is a promising approach for a large-scale middleware but the topology of the overlay

network of event brokers is static and must be specified at deployment time. The efficiency of the

content-based routing will therefore depend on the quality of the overlay network topology. Having

105

a static topology is not feasible for a large-scale system, that may involve thousands of event brokers

running at geographically dispersed sites.

Gryphon The Gryphon project at IBM Research [13] led to the development of an industrial-

strength, reliable, content-based event broker. It is a publish/subscribe middleware implementation

that provides a redundant, topic-based and content-based multi-broker publish/subscribe service.

Gryphon is based on an information flow model for messaging. An information flow graph (IFG)

specifies the exchange of information between information producers and consumers. A logical IFG

is mapped onto a physical event broker topology. The topology mapping is statically defined at

deployment time, although more recent work includes dynamic topology changes due to failure and

evolution. Gryphon’s overlay network of event brokers is static and it is defined in configuration

files at deployment time. This makes it difficult for the middleware to adapt to changed network

conditions.

YFilter YFilter [29] aims to provide fast, on-the-fly matching of XML encoded data to a large

number of interest specifications, and transformation of the matching XML data based on client-

specific subscriptions. In YFilter, subscriptions are written in a subset of XQuery and are treated as

continuous queries, i.e., they will be continuously applied to all incoming messages. These subscrip-

tions, along with the XML messages, are provided as the input to a message broker. The output of

the broker is a stream of XML messages to be delivered to users or applications whose interests are

satisfied. These XML messages can be the original incoming messages or the customized messages

transformed from the incoming ones based on the individual query specifications. To produce the

output XML messages, YFilter constructs execution plans for all the queries. When processing

a message, the runtime system of YFilter matches all queries with the message, extracts message

components for the matched queries, and organizes the extracted components in an intermediate

format for efficient translation into customized output messages.

YFilter focuses on improving the matching overhead on each message broker. However, their

approach is centralized. All XML messages and XPATH queries are sent to a central location, where

the YFilter is deployed and identifies efficiently the final destinations of each incoming message.

XPORT allows application designers to define their own structures for storing and indexing sub-

scriptions, thus YFilter’s approach can be easily incorporated to allow for efficient message matching

and fast forwarding.

ONYX ONYX [30] studies Internet-scale data dissemination that delivers XML-encoded doc-

uments from multiple publishing sites to millions of subscribers based on the subscribers’ data

106

interests. The system explores the idea of content-based routing of documents in distributed dis-

semination systems trying to enhance such data dissemination with advanced services such as stateful

publish/subscribe and QoS. ONYX employs a network of message brokers that collaboratively pro-

vide high scalability and high functionality. Each message broker in this network runs a YFilter [29]

instance to filter and transform messages. In addition, each broker contains a routing component to

efficiently forward messages to the downstream brokers that are interested in the messages. Inter-

estingly, the routing component is also built on YFilter technology.

While ONYX addresses the problem of distributed XML-based dissemination, it operates over a

static overlay network. Brokers are initially connected through a spanning tree, which is not adapted

during run time. XPORT’s generalized optimization can support dissemination and transformation

XML messages, while it can adapt the structure of the network to reflect the most current workload

and network conditions.

XNet XNet, an XML-based data dissemination system, uses the XTrie [24] indexing structure for

efficiently filtering XML documents based on XPath expressions, and the XRoute [25] protocol for

routing XML messages to interested parties. The XTrie index structure offers several features that

make it especially attractive for large-scale publish/subscribe systems. It is designed to support

effective filtering based on complex XPath expressions, and both ordered and unordered matching

of XML data. Finally its matching algorithm is able to reduce the number of unnecessary index

probes as well as avoid redundant matchings, thereby providing extremely efficient filtering. It takes

advantage of subscription similarities to “aggregate” them in the routing tables, and hence minimize

the space requirements and increase the filtering speed at the routers. XPORT can easily exploit

the advantages of both XTrie and XRoute by using them for its message indexing and matching

respectively.

Our infrastructure provides an abstraction over the matching functionality of publish-subscribe

systems and it is able to support both the XPath and relational profiles. In addition, it supports

a superset of the optimization metrics considered by the approaches described above. Finally, it

allows the distributed execution and continuous optimization of complex stream-based queries by

integrating its extensible publish subscribe model with stream processing functionalities.

6.3 Application-level multicast

Several approaches were proposed to build application-level multicast. The general strategy is to

construct an information dissemination tree that has the multicast group members as leaf nodes. In

107

contrast with our generalized framework for building application-level dissemination overlays, the

approaches described below focus on optimizing specific metrics.

Scribe Scribe [22] is a large-scale event notification infrastructure built on top of Pastry [50].

Scribe uses Pastry to manage multicast groups associated with a topic. Each topic forms a multi-

cast tree depending on the subscribers interested in the topic. Scribe takes advantage of Pastry’s

locality properties so that the multicast tree is optimized with respect to a proximity metric. Pas-

try’s randomization properties ensure that the multicast tree remains well-balanced. Scribe supports

three main operations, which are (1) creating a topic, (2) subscribing to a topic, and (3) publish-

ing a message on a topic. The lack of content-based filtering of publications in Scribe limits the

expressiveness of subscriptions and makes Scribe unsuitable as a general-purpose publish-subscribe

middleware.

SplitStream SplitStream [21] is a high-bandwidth content distribution system based on end-

system multicast. It distributes the forwarding load among all the participants, has increased ro-

bustness to node failures, and is able to accommodate participating nodes with different bandwidth

capacities. The key idea in SplitStream is to split the content into k stripes and to multicast each

stripe using a separate tree. Peers join as many trees as the stripes they wish to receive and they

specify an upper bound on the number of stripes that they are willing to forward. The challenge is

to construct this forest of multicast trees such that an interior node in one tree is a leaf node in all

the remaining trees and the bandwidth constraints specified by the nodes are satisfied. This ensures

that the forwarding load can be spread across all participating peers.

Bullet Bullet [37] is a system for high bandwidth data dissemination (i.e., multimedia streaming

and content distribution) for large-scale distributed systems. It uses a scalable and distributed

algorithm that enables nodes spread across the Internet to self-organize into a high bandwidth

overlay mesh consisting of multiple overlay trees. Each Bullet node transmits a disjoint set of data

to each of its children, with the goal of maintaining uniform representativeness of each data item

across all participants. The level of disjointness is determined by the bandwidth available to each of

its children. Bullet then employs a scalable and efficient algorithm to enable nodes to quickly locate

multiple peers capable of transmitting missing data items to the node. Their approach increases

the system’s throughput by enabling clients to receive different data segments from multiple parents

in the mesh. Our system model for supporting stream processing applications relies on the similar

key idea: nodes are organized in an overlay mesh consisting of multiple overlay dissemination trees.

Each node receives data from multiples tree increasing the throughput and the robustness of the

108

system.

Bayes An application-level multicast solution is Bayeux [57]. Bayeux is based on the Tapestry [54].

Its algorithm is similar to Scribe’s in the sense that it uses an overlay routing layer to build a tree

for a multicast topic. However, in Bayeux, a subscription message is routed all the way to the

root of the multicast tree. The root node updates its membership list for the topic and replies

with a tree message destined for the new subscriber. The tree message then creates state at the

forwarding nodes along its path and ensures that the new subscriber becomes part of the multicast

tree. Bayeux’s approach is less scalable because the root node has to keep membership information

about all nodes belonging to a multicast group. In addition, group membership management is more

costly as subscription messages are routed to the root node and trigger tree messages. To alleviate

the problem of the root node becoming a bottleneck, a scheme for partitioning the multicast tree is

suggested so that the load can be shared among several roots.

Multicast over CAN A multicast mechanism over CAN is presented in [47]. The strategy

adopted is different from the previous approaches since no tree is constructed in the overlay network.

Instead, a separate content-addressable network within the global CAN is formed that only contains

the multicast group members. To publish a message to the group, the multicast CAN is flooded

with the publication so that all group members receive it. The flooding algorithm takes advantage

of the structure of the n-dimensional coordinate space of CAN node IDs to minimize the delivery

of duplicate messages. However, a comparison has shown that this scheme is less efficient than

tree-based multicast approaches [23].

Overcast Several application-level multicast schemes, such as Overcast [35], exist that do not rely

on a distributed hash table. Instead, a scalable and reliable single-source multicast service is provided

by directly building a multicast tree out of Overcast nodes that are distributed in the network. A

new node joins the multicast tree by first contacting the root node. It recursively obtains a list of

children and then computes a proximity metric in order to find an optimal location for itself in the

tree. This adds a higher overhead to joining a multicast group compared to DHT-based multicast.

Moreover, Overcast optimization goal is to maximize the bandwidth availability which can be easily

expressed through our framework’s grammar.

109

6.4 Distributed stream processing

Our framework is directly relevant to distributed stream processing. In general, these systems are

designed and evaluated in small-scale cluster environments, thus, they do not address scalable and

adaptive data collection and distribution. They also lack extensibility in terms of the optimiza-

tion metrics they support. Finally, none of these systems allows for operators to be replicated or

partitioned. Below we described the most representative approaches.

SBON A Stream-Based Overlay Network (SBON) [45] is an infrastructure that manages and op-

timizes stream queries from multiple applications. SBON performs an operator placement decision,

creating a mapping of operators to physical overlay nodes. This mapping should make efficient use

of network resources, for example, by filtering data close to the sources. The SBON uses a decen-

tralized algorithm for network-aware operator placement called Relaxation placement, which finds

a solution in two steps. First, an unpinned operator in a query is placed using a spring relaxation

technique in a virtual metric latency space. After that, the solution is mapped to actual physical

overlay nodes. The function minimized by this approach is the data rate-latency product. This

product is the amount of data in transit in the network and thus a measure for global network

usage.

SAND SAND [9], proposes a set of approaches or in-network placement of stream processing

operators. Operators are placed either at the consumer side, at the producer side, or in-network

on a DHT routing path between the two endpoints, depending on the bandwidth usage of a query.

Applications can also specify delay constraints on the placement path in the DHT. Our approach of

performing operator placement is more general than SAND because placements are not tied to DHT

routing paths or to a specific optimization metric. Moreover, previous work [46] has shown that

DHT routing paths can lead to inefficient candidate sets for operator placement. This is because

DHT routing tables are optimized for minimizing hop count and not for delay or bandwidth usage.

Borealis Borealis [6] is a distributed stream-based processing system that inherits core stream

processing functionality from Aurora [7] and distribution capabilities from Medusa [12]. Borealis

includes a optimization framework that includes three levels of collaborating optimizers. At the

lowest level, a local optimizer runs at every site and is responsible for scheduling messages to be

processed as well as deciding where in the locally running diagram to shed load, if required. A

neighborhood optimizer also runs at every site and is primarily responsible for load balancing the

resources at a site with those of its immediate neighbors. At the highest level, a global optimizer is

110

responsible for accepting information from the end-point monitors and making global optimization

decisions. Although Borealis supports run-time operator migration (but not operator replication or

partitioning), it currently avoids the operator placement problem by supporting only pre-defined

operator locations with pinned operators in the network. This leaves the burden of efficient operator

placement to the system administrator, which is infeasible for a dynamic, large-scale system with

thousands of queries.

Medusa Medusa [12] is a distributed mechanism for managing load in a federated system. Its

mechanism is based on private pairwise contracts negotiated offline between participants. Contracts

set tightly bounded prices for migrating each unit of load between two participants and specify the

set of tasks that each is willing to execute on behalf of the other. Medusa provides a simple and

lightweight runtime load management using price pre-negotiation while maintaining good system-

wide load balance properties. The load transfer mechanism is simple: a participant moves load to

another if the local processing cost is larger than the payment it would have to make to another par-

ticipant for processing the same load. Although their load management mechanism is motivated by

federated distributed stream processing, it also applies to other federated systems such as Web ser-

vices, computational grids, overlay-based computing platforms, and peer-to-peer systems. However,

Medusa’s approach while appropriate within a single data center, it may leads to poor performance

on a wide-area network, in which communication latencies can dominate processing costs.

PIER PIER (Peer-to-peer Information Exchange and Retrieval) is a distributed query engine

based on overlay networks. It employs a generic data flow engine which supports a set of relational

query processing operators. It includes multi-hop, in-network algorithms for join, aggregation, and

query/result dissemination. PIER can support both traditional query trees and DAGs, as well as

cyclic graphs representing recursive queries. In addition to a “boxes and arrows” data-flow interface,

PIER also provides a simple SQL interface and support for continuous query variants of SQL. PIER

aims to build an Internet-scale querying system on top of a routing network given by a DHT, where

operators are placed randomly. Although random distribution of operators has good load-balancing

properties, it may cause large query delays when operators are placed at nodes distant from both

producers and consumers.

6.5 Continuous adaptive optimization

Closely related to our work are approaches that use the concept of local transformations to perform

continuous adaptive optimizations of the dissemination tree [14, 49, 55]. Below we describe the most

111

representative of these.

Zhou et al. [55] construct a dissemination tree that optimizes fidelity, a metric that captures the

dissemination efficiency in terms of the satisfaction of coherence requirements, taking into account

both the communication and processing cost incurred during dissemination. The performance of the

dissemination tree is continuously monitored and its structure adapts to changing conditions through

a set of localized tree transformations. In this work the localized transformations are designed for

specific metric of the system, which can be expressed in our generalized framework.

OMNI OMNI [14] (Overlay Multicast Network Infrastructure) consists of a set of nodes organized

into an overlay providing the multicast data delivery backbone that distributes data to a set of end-

hosts. It employs a distributed iterative scheme that constructs good data distribution paths on the

OMNI. Their scheme allows a multicast service provider to deploy a large number of nodes without

explicit concern about optimal placement. Once the capacity constraints of the nodes are specified,

OMNI organizes them into an overlay topology, which is continuously adapted with changes in

the distribution of the clients as well as changes in network conditions. OMNI optimizes the end-

to-end latency delivered on the multicast trees, and thus, their iterative network transformations

are designed for a specific metric, as opposed to the general optimization framework of XPORT.

Moreover, their metric can be easily expressed through the grammar and aggregation model of

XPORT.

AMMO AMMO [49] (Adaptive Multi Metric Overlays) provides a framework for constructing

adaptive multi-metric overlay networks. An application specifies its performance criteria using a

metric function, performance constraints and constraint priorities. The metric function assigns a

metric weight to an edge and is used to guide overlay transformations once the overlay has does not

satisfy the application constraints. Their metric-independent framework focuses on minimizing the

sum of a performance metric defined over all the overlay edges of the dissemination tree. Compared

to AMMO, XPORT’s model is more extensible, since we allow a wider variety of cost functions and

a generic means to combine them.

112

Chapter 7

Conclusions

This dissertation introduces general-purpose, extensible solutions designed to support a wide range

of stream processing and dissemination applications. It is motivated by the observation that these

applications often exhibit diverse logic and performance requirements, yet they all require common

facilities, which include construction of an overlay network, routing and processing logic, and mem-

bership management. In contrast to existing approaches that provide custom, point solutions to

point applications, we introduce a generic infrastructure that provides these core functionalities and

can be easily extended for a broad spectrum of target applications.

Our basic infrastructure can be customized to support diverse profile management logic, stream

types, and performance targets. This is achieved through a set of methods that encapsulate

application-specific data types and behavior and a declarative cost model for defining the desired

performance metrics. We proposed a novel, generic, metric definition model that relies on the ag-

gregation of cost metrics defined over the system entities (e.g., nodes, overlay links/paths). This

model allows for the uniform specification of many commonly used performance measures, as well

as new ones, through combinations of different aggregation functions and metrics.

Based on the desired performance goals, the system progressively refines its performance using

metric-independent decentralized algorithms. A key feature of our approach is that it relies on

localized state and interactions to reduce the global system cost. Our framework utilizes the metric

definition model that allows us to rely only on localized, aggregated, network and workload statistics.

Nodes apply our optimization algorithms on their neighborhood as well as on specific promising

network regions which they discover through dissemination of these statistics. One of our key

results is that even simple aggregations of statistics are sufficient to achieve efficient operation with

low overhead, as well as allow our approach to avoid local optimum and converge to near-optimal

113

configurations.

Based on our generic infrastructure, we designed two extensible systems which achieve a clean

separation between the “plumbing” and “application” and enable the uniform support of disparate

dissemination and monitoring applications. In the next paragraphs, we summarize the conclusions

for each of these systems.

7.1 XPORT: Extensible Profile-driven Stream Dissemination

Profile-driven dissemination applications match the content of generated streams against the clients

subscriptions and identify the network routes connecting the data sources to their subscribers. Ex-

ample applications include multi- player online games, multicast-based content distribution and web

feed dissemination. To support these applications, we designed and developed XPORT, a generic

publish-subscribe distributed stream dissemination system. The system consists of an overlay-based

dissemination tree, which connects data sources with the interested parties and provides content-

based stream routing functionality.

In the context of XPORT, we studied network optimizations, which refine the structure of the

dissemination tree by modifying the overlay connections among the system nodes. This set of op-

timizations includes pre-defined primitive network transformations as well as application-defined

composite transformations obtained through the composition of the primitive ones. We apply these

optimizations on each node’s localized neighborhood as well as across non-local network areas that

demonstrate good performance. Using XPORT, we built a peer-to-peer RSS feed dissemination

service and a multi-player networked game, both of which can be optimized for a variety of metrics

including total path latency, variance of path latency, average bandwidth consumption, bandwidth

bottleneck, and total received redundant data. We evaluated XPORT by deploying its prototype

on the PlanetLab testbed. These experiments allowed us to verify our systems flexibility and effec-

tiveness, as it managed to improve each of these metrics significantly. XPORT was able to converge

to network topologies that perform very close to the optimal configuration, while incurring low

optimization overhead.

7.2 XFlow: Extensible Stream Processing

To support a broad spectrum of Internet-scale monitoring applications, we designed XFlow, an

extensible, highly-scalable and adaptive framework for distributing and optimizing stream processing

queries. XFlow leverages our generic metric definition model in order to express measures that

114

evaluate the efficiency of user queries and the utilization of the system resources. It creates and

optimizes an overlay network of multiple overlay dissemination trees, given dynamic stream sources,

clients with stream-oriented complex queries and application-defined QoS and resource-utilization

expectations and constraints.

XFlow progressively refines the placement and execution of the operators, the structure of the

underlying overlay network, as well as the statistics collection process, to meet the desired objectives.

This generic optimization framework relies on localized state and interactions in order to reduce

the global system cost. The optimizations are guided by a set of operator distribution operations

(migration, replication, partition) and use aggregated, network and workload statistics. Nodes apply

these operations on their neighborhood, as well as on specific network regions which they discover

through dissemination of statistics. Moreover, we employ probabilistic techniques for disseminating

statistics, keeping the network traffic within constant bounds independently of the number of queries

and nodes and allowing for high scalability and efficiency. We developed an initial prototype of XFlow

and evaluated its performance on the PlanetLab testbed. Our experiments showed that XFLOW

can significantly improve various QoS and resource utilization metrics with low overhead and it

managed to consistently avoid local optimum and converge to near-optimal configurations.

7.3 Future directions

This thesis proposes abstractions that support application-specific performance targets and profile-

management logic. While these solutions facilitate the design of extensible distributed stream dis-

semination and processing systems, there exist many more applications that could benefit from a

clean separation of application logic and data management. Emerging applications, such as feed-

based mash-ups and scientific collaborative systems, require domain-specific processing logic. These

demands are currently satisfied through user-defined functions. One immediate research direction is

to support the distributed implementation of such user-defined processing operators. This extension

introduces new challenges since operator distribution techniques, such as replication and partition,

are tightly coupled with the operators semantics. One approach would be to define semantic-agnostic

optimizations by providing a hinting interface through which users can specify relevant properties

of their operators, for example, how their functions can be parallelized.

Our infrastructure employs optimization protocols that deliver exact query results. However,

producing approximate query answers to improve performance can provide more flexible systems

and services. For example, systems with limited bandwidth, memory or processing resources could

benefit from strategic in-network placements of load-shedding and projection operators which discard

115

stream tuples or unnecessary tuple attributes, respectively. Here, the main challenge is to design

a generic utility-aware cost model that expresses the trade-offs between the desired degree of the

approximation of results and the performance expectations of the application.

An interesting future direction is to combine the two different types of optimization rules dis-

cussed in this thesis, i.e., network and query optimizations. Both XPORT and XFlow operate over

the same goal that is to improve the system cost. However, they follow different approaches to

achieve that. XPORT changes the structure of the dissemination tree, while XFlow changes the

deployment and implementation of the query operators. It would be interesting to explore the

benefits and trade-offs of combining these approaches. The main challenge here is the amount of

state required to support both types of optimizations. The straightforward approach is to main-

tain the state required by each type of optimization rules independently. However, we believe the

state of both optimizations can be more efficiently combined. Both approaches rely on the same

fundamental idea: we identify the system components affected by the optimization and maintain

information about their cost metrics. Whenever possible, we aggregate this information to reduce

the optimization state. It would be interesting to abstract over these commonalities and identify

the state required for both optimization types. This will allow a system to gain the benefits of both

systems, while maintaining a low optimization traffic and maintenance cost.

116

Bibliography

[1] Akamai, http://www.akamai.com/.

[2] Distributed intrusion detection, http://www.dshield.org.

[3] Distributed monitoring framework, http://dsd.lbl.gov/dmf.

[4] Earth scope, http://www.earthscope.org.

[5] Yahoo pipes, http://pipes.yahoo.com/pipes/.

[6] Daniel Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack, Jeong-

Hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Alexander Rasin, Esther Ryvkina, Nesime

Tatbul, Ying Xing, and Stan Zdonik. The design of the Borealis stream processing engine.

In Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research (CIDR),

2005.

[7] Daniel Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A new model and architecture

for data stream management. In VLDB journal, 2003.

[8] Micah Adler, Zihui Ge, James F. Kurose, Don Towsley, and Stephen Zabele. Channelization

problem in large scale data dissemination. In Proceedings of the 9th International Conference

of Network Protocols (ICNP), 2001.

[9] Yanif Ahmad and Ugur Cetintemel. Network-aware query processing for stream-based applica-

tions. In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB),

2004.

[10] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient

overlay networks. In Proceedings of the 17th ACM Symposium on Operating Systems Principles

(SOSP), 2001.

117

[11] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran, Jim Gray,

Patricia P. Griffiths, W. Frank King III, Raymond A. Lorie, Paul R. McJones, James W.

Mehl, Gianfranco R. Putzolu, Irving L. Traiger, Bradford W. Wade, and Vera Watson. System

R: Relational approach to database management. ACM Transactions on Database Systems,

1(2):97–137, 1976.

[12] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker. Contract-based load man-

agement in federated distributed systems. In Proceedings of the 2005 ACM SIGMOD Interna-

tional Conference on Management of Data(SIGMOD), 2005.

[13] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, and Jay Nagarajarao. An efficient

multicast protocol for content-based publish-subscribed systems. In Proceedings of the 19th

International Conference on Distributed Computing Systems (ICDCS), 1999.

[14] Suman Banerjee, Christopher Kommareddy, Koushik Kar, Samrat Bhattacharjee, and Samir

Khuller. Construction of an efficient overlay multicast infrastructure for real-time applications.

In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communica-

tions Societies (INFOCOM), 2003.

[15] Jason Campbell, Phillip B Gibbons, and Suman Nath. IrisNet: an internet-scale architecture

for multimedia sensors. In Proceedings of ACM Multimedia, 2005.

[16] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman,

Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring Streams A New Class of

Data Management Applications. In Proceedings of the 28th International Conference on Very

Large Data Bases (VLDB), 2002.

[17] Antonio Carzaniga, David S. Rosenblum, and Alexander L.Wolf. Challenges for distributed

event services: Scalability vs. expressiveness. In In Proceedings of Engineering Distributed

Objects (EDO), 1999.

[18] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of a

wide-area event notification service. ACM Transactions on Computer Systems, 19(3):332–383,

August 2001.

[19] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. A routing scheme for

content-based networking. In Proceedings of the 23rd Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), Hong Kong, China, 2004.

118

[20] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content-based network. In Pro-

ceedings of the 2003 ACM SIGCOMM Conference, pages 163–174, 2003.

[21] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony I. T. Row-

stron, and Atul Singh. Splitstream: High-bandwidth multicast in cooperative environments.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP), pages

298–313, 2003.

[22] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. Scribe: A large-

scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected

Areas in Communication (JSAC), 20(8), October 2002.

[23] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron, Marvin Theimer,

Helen Wang, and Alec Wolman. An evaluation of scalable application-level multicast built using

peer-to-peer overlays. In In Proceedings of INFOCOM, 2003.

[24] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev Rastogi. Efficient filtering

of XML documents with xpath expressions. VLDB Journal, 11, 2002.

[25] Raphaël Chand and Pascal Felber. Scalable protocol for content-based routing in overlay net-

works. In Proceedings of the 2nd IEEE International Symposium on Network Computing and

Applications (NCA), 2003.

[26] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael Franklin, Joseph Hellerstein,

Wei Hong, Sailesh Krishnamurthy, Sam Madden, Vijayshankar Raman, Fred Reiss, and Mehul

Shah. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In Proceedings

of the 1st Biennial Conference on Innovative Data Systems Research (CIDR)), 2003.

[27] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A Scalable Continuous

Query System for Internet Databases. In Proceedings of the 2001 ACM SIGMOD International

Conference on Management of Data(SIGMOD), 2000.

[28] Yogen K. Dalal and Robert M. Metcalfe. Reverse path forwarding of broadcast packets. Com-

munications of the ACM, 21(12):1040–1047, 1978.

[29] Yanlei Diao and Michael J. Franklin. Query processing for high-volume XML message brokering.

In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB), pages

261–272, 2003.

119

[30] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an Internet-scale XML dissemi-

nation service. In Proceedings of the 30th International Conference on Very Large Data Bases

(VLDB), pages 612–623, 2004.

[31] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The

Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[32] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search trees for

database systems. In Proceedings of the 21st International Conference on Very Large Data

Bases (VLDB), pages 562–573, 1995.

[33] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A Case for End System

Multicast. In Proceedings of ACM Sigmetrics, pages 1–12, 2000.

[34] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philipe Selo, and

Chitra Venkatramani. Design, implementation and evaluation of the linear road benchmark of

the stream processing core. In Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data(SIGMOD), 2006.

[35] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and James W. O’Toole,

Jr. Overcast: Reliable multicasting with an overlay network. In Proceedings of the 4th Sympo-

sium on Operating Systems Design and Implementation (OSDI), 2000.

[36] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click

modular router. ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

[37] Dejan Kostic, Adolfo Rodriguez, Jeannie R. Albrecht, and Amin Vahdat. Bullet: High band-

width data dissemination using an overlay mesh. In Proceedings of the 19th ACM Symposium

on Operating Systems Principles (SOSP), pages 282–297, 2003.

[38] Vibhore Kumar, Zhongtang Cai, Brian F. Cooper, Greg Eisenhauer, Karsten Schwan, Mohamed

Mansour, Balasubramanian Seshasayee, and Patrick Widener. Implementing diverse messaging

models with self-managing properties using iflow. In 3rd IEEE International Conference on

Autonomic Computing (ICAC), 2006.

[39] Vibhore Kumar, Brian F. Cooper, Zhongtang Cai, Greg Eisenhauer, and Karsten Schwan.

Resource-aware distributed stream management using dynamic overlays. In ICDCS, 2005.

[40] Richard Kuntschke, Bernhard Stegmaier, Alfons Kemper, and Anglelika Reiser. StreamGlobe:

Processing and sharing data streams in grib-based P2P infrastructures. In Proceedings of the

31th International Conference on Very Large Data Bases (VLDB), 2005.

120

[41] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and

Ion Stoica. Implementing declarative overlays. In Proceedings of the 20th ACM Symposium on

Operating Systems Principles (SOSP), pages 75–90, 2005.

[42] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar,

Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query processing, ap-

proximation, and resource management in a data stream management system. In Proceedings

of the 1st Biennial Conference on Innovative Data Systems Research (CIDR), 2003.

[43] Olga Papaemmanouil, Yanif Ahmad, Ugur Cetintemel, John Jannotti, and Yenel Yildirim.

XPORT: Extensible profile-driven overlay routing trees (demonstration). In Proceedings of the

2006 ACM SIGMOD International Conference on Management of Data(SIGMOD), 2006.

[44] Olga Papaemmanouil and Ugur Çetintemel. Semcast: Semantic multicast for content-based

data dissemination. In Proceedings of the 21st International Conference on Data Engineering

(ICDE), pages 242–253, 2005.

[45] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and

Margo Seltzer. Network-Aware Operator Placement for Stream-Processing Systems. In Pro-

ceedings of the 22nd International Conference on Data Engineering (ICDE), 2006.

[46] Peter Pietzuch, Jeff Shneidman, Jonathan Ledlie, Matt Welsh, Margo Seltzer, and Mema Rous-

sopoulos. Evaluating DHT-Based Service Placement for Stream-Based Overlays. In Proceedings

of the 4th International Workshop on Peer-to-Peer Systems (IPTPS), 2005.

[47] Sylvia Ratnasamy, Mark Handley an d Richard Karp, and Scott Shenker. Application-Level

Multicast Using Content-Addressable Networks. In Proceedings of 3rd International Workshop

on Networked Group Communication (NGC), 2001.

[48] Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan Kostic, and Amin Vahdat. MACE-

DON: Methodology for automatically creating, evaluating, and designing overlay networks. In

Proceedings of the 1st Symposium on Networked Systems Design and Implementation (NSDI),

pages 267–280, 2004.

[49] Adolfo Rodriguez, Dejan Kostic, and Amin Vahdat. Scalability in adaptive multi-metric over-

lays. In Proceedings of the 24th International Conference on Distributed Computing Systems

(ICDCS), pages 112–121, 2004.

121

[50] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and rout-

ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), pages 329–350, November 2001.

[51] Daniel Sandler, Alan Mislove, Ansley Post, and Peter Druschel. Feedtree: Sharing web mi-

cronews with peer-to-peer event notification. In Proceedings of the 4th International Workshop

on Peer-to-Peer Systems (IPTPS), Ithaca, New York, February 2005.

[52] Peter M. Schwarz, W. Chang, Johann Christoph Freytag, Guy M. Lohman, John McPherson,

C. Mohan, and Hamid Pirahesh. Extensibility in the starburst database system. In Proceedings

of the International Workshop on Object-Oriented Database Systems (OODBS), pages 85–92,

1986.

[53] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible Proportional-Share

Resource Management. In OSDI, 1994.

[54] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.

Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal

on Selected Areas in Communications, 22(11), 2004.

[55] Yongluan Zhou, Beng Chi Ooi, Kian-Lee Tan, and Feng Yu. Adaptive reorganization of

coherency-preserving dissemination tree for streaming data. In Proceedings of the 22nd In-

ternational Conference on Data Engineering (ICDE), 2006.

[56] Yali Zhu, Elke R. Rundensteiner, and George T. Heineman. Dynamic plan migration for con-

tinuous queries over data streams. In Proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data(SIGMOD), 2004.

[57] Shelley Q. Zhuang, Ben Y. Zao, Anthony D. Joseph, Randy H. Katz, and John D. Kubiatowicz.

Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination. In

Proceedings of the 11th International Workshop on Network and Operating Systems Support for

Digital Audio and Video, 2001.

122

