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Recently, there has been significant interest in applications where high-volume, continuous data

streams need to be processed with low latency. Such applications include financial market moni-

toring, network monitoring, intrusion detection, call analysis, battlefield monitoring, asset tracking,

and ecosystem monitoring. Since these applications monitor real-time events, the value of a result

decays rapidly over time. Therefore, low-latency processing is a key requirement.

Stream processing systems enable efficient implementation of the aforementioned applications.

Currently, many such systems are geared toward distributed processing because a large number of

applications inherently involve geographically dispersed data sources and the processing capability

of a system improves as more servers are used. However, the more computation and communica-

tion resources, the higher the odds of failure. In stream processing, a failure prevents low-latency

processing because it blocks the flow of data streams. To make matters worse, it may also result in

losing data essential to producing correct results.

In this dissertation, we propose various techniques that realize both reliable and timely processing

of data streams in the face of server and network failures. We first discuss our basic recovery

approaches, while comparing them in terms of recovery speed, CPU and network utilization, as well

as their relationship to various recovery semantics. Next, we describe a fast recovery technique for

commodity server clusters. In this technique, operators on each server are backed up on different

servers and thus can be recovered in parallel. This technique assigns backup servers and schedules

checkpoints in a manner that maximizes the recovery speed. Finally, we discuss our approach

for Internet-scale stream processing. In this approach, multiple operator replicas send outputs to

downstream replicas, allowing each replica to use whichever data arrives first. To further reduce

latency, replicas run without coordination, possibly processing data in different orders. Despite this

relaxation, the approach guarantees that applications always receive the same results as in the non-

replicated, failure-free case. It also deploys replicas at locations that effectively improve performance

and availability. Our experimental results demonstrate the effectiveness of the approaches above.

These results were obtained from a server cluster at Brown University and a worldwide network

testbed called PlanetLab.
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Chapter 1

Introduction

This dissertation focuses on the problem of coping with slow or failed servers and networks in the

context of stream processing. In this chapter, we first introduce the area of stream processing

(Section 1.1). Next, we describe the challenges that motivated this dissertation (Section 1.2) and

highlight our contributions made in this dissertation (Section 1.3). Finally, we conclude this chapter

with a brief outline of this dissertation (Section 1.4).

1.1 Stream Processing

In recent years, we observed a new suite of applications that must process high-speed data streams

with low latency. For example, advances in wireless networking and miniaturization enabled various

applications that continuously monitor the physical world through small embedded sensors [137, 79],

location-sensing devices [66, 63, 108], and electronic tags [54]. These applications include sensor-

based environment monitoring (e.g., highway traffic monitoring [13], habitat monitoring [131], build-

ing monitoring [50], seismic activity monitoring [106]), RFID-based asset tracking [55], GPS-based

location tracking [92], military applications (e.g., platoon tracking, target detection), and medical

applications (e.g., real-time patient monitoring) [117, 133]. There are also other kinds of applica-

tions where data that diverse computer systems generate must be analyzed in near real time. These

applications include on-line financial data processing (e.g., real-time risk management, automated

trading) [147, 150], network monitoring [21, 83], software worm tracking, telephone call analysis [25],

and click stream analysis [144]. All of these applications require prompt processing of data streams

that continuously flow from various remote sources. For this reason, we call them stream processing

applications.

Stream processing applications usually have the following characteristics:

1. High and Variable Input Rates. Stream data rates can be very high. For example, in the

financial domain, some applications have to process more than 100,000 messages per second [1].

Furthermore, input rates often fluctuate in an unpredictable fashion as shown in Figure 1.1.

1
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Figure 1.1: Stream rate variations in network traffic traces

The figure plots data rate variations for three real-world traces [15]: a wide area packet traffic

trace (PKT), a TCP connection trace (TCP), and an HTTP request trace (HTTP).

2. Unbounded and Ordered Data. A data stream may have no end as the related data sources

continuously produce data. The order of a data stream may also be of semantic significance.

For example, if the elements of a data stream represent events of moving in certain directions,

the trajectory that the data stream represents can change depending on the order of the stream.

Another important characteristic is that we do not have control over the order in which data

elements arrive, within a data stream as well as across data streams.

3. Low-Latency Requirement. Stream data usually represents real-time events. Therefore, its

value quickly decays over time. In network monitoring, for instance, current information about

ongoing intrusion is more valuable than stale information about earlier attacks. Due to this

property of stream data, low latency is a key requirement in stream processing applications.

4. Imprecise Data. Stream data is often lost or even intentionally omitted. For example, an

object being monitored may move out of range of a sensor system. Furthermore, in high load

situations, it might be necessary to drop less important data, thereby trading off accuracy for

the timeliness of results. All of them lead to approximate answers.

5. Push-Based Processing. In a stream processing application, a number of data sources

continuously push data to the system for processing. On the other hand, client applications

passively wait for alerts or periodic updates that match their interest. For this reason, the

overall processing is done in a push-based fashion.

A question that arises at this point is whether or not traditional database management systems

(DBMSs), such as Oracle [46], IBM DB2 [121], and Microsoft SQL Server [45], can adequately
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Figure 1.3: Query Example

support stream processing applications. While these systems have been extensively used in diverse

commercial, civil, and academic applications, it is generally noted that they have limitations in the

stream processing domain. One main reason behind this is that these database management systems

are best suited to run one-time queries over finite data sets. In detail, these systems commonly em-

ploy the “process-after-store” (equivalently, “store-before-process” or “store-then-process”) model.

As illustrated in Figure 1.2(a), this model first stores data in a database and then, for each query sub-

mitted by a user, pulls the relevant data from the database. In this case, however, the database can

easily become the performance bottleneck if high-rate stream data enters the system for processing.

To efficiently facilitate stream processing applications while overcoming the limitations of tradi-

tional database management systems, several research prototypes (e.g., Aurora/Borealis [32, 2, 1],

STREAM [18, 99], TelegraphCQ [36, 94], Niagara [39]) and commercial products (e.g., Stream-

Base [128], IBM System S [75, 9], Gigascope [47], Coral8 [43], Amalgamated Insight [8]) have been
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developed. These systems commonly adopt a new “push-based, on-the-fly” processing model. In this

model, as Figure 1.2(b) shows, a potentially large number of queries are preserved in the system and

evaluated continuously over the stream data pushed from the sources. For this reason, we call such

queries Continuous Queries (CQs). As illustrated in Figure 1.3, continuous queries are typically

expressed as a network of operators that collectively transform input streams into output streams

that match the interest of client applications. The described systems are usually called Data Stream

Management Systems (DSMSs), Stream Processing Systems (SPSs), Stream Processing Engines

(SPEs), and continuous query processors, interchangeably.

Example. Figure 1.3 depicts a stream processing application that analyzes long-latency communi-

cation paths among servers in a wide area network. First, servers in the network ping each other

and report the latency readings in the form of data streams (see stream sources labeled “latency”).

These input streams are then merged at a Union operator (a) and the resulting stream is sent to a

Filter that passes only the readings whose latency values exceed 5 seconds (b). To identify latencies

resulting from network problems only (i.e., those certainly not caused by busy remote servers), a

Join operator correlates the report of slow paths with the report of server loads (d). These load

readings are initially sent from the participating servers (see stream sources labeled “load”) and

then merged at a Union (c) before being forwarded to the Join operator. The final Filter operator

categorizes slow paths according to the load levels and sends the results to client applications (e).

Many of the stream processing systems mentioned above are also geared toward distributed pro-

cessing [36, 41, 119, 75, 128, 43]. Distribution in this context is beneficial because stream processing

applications usually involve data sources spread over many remote locations and performing com-

putation (e.g., filtering, summarization) at such sources can significantly reduce the amount of data

to send across the network. In Figure 1.4, for example, Filter operators at stream sources selectively

send latency readings, thereby saving network bandwidth. Furthermore, clusters of inexpensive
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commodity servers are becoming more available. By making use of such machines, we can enhance

the overall processing capability in a cost-efficient manner.

Example. Figure 1.4 illustrates an example where the query in Figure 1.3 is distributed over

multiple servers (to reduce network usage, Filter operators are pushed to the stream sources). In

this example, servers run stream processing operators while receiving streams from data sources

or upstream servers and sending output streams to client applications or other servers for further

processing. As shown in Figure 1.4, each operator receives data through its input queues. If an

operator sends data to a remote server, it ensures data delivery by preserving its output data in an

output queue until the data arrives at the destination server.

To develop a full-fledged stream processing system, we need to address various challenges. These

challenges include:

• Query Model. Executing queries continuously over data streams, while taking the data

arrival order into account, requires a radical change from the relational query model adopted

in traditional database management systems. This is because the relational model relies on set-

based (i.e., unordered) operations on finite data. If these operations are applied to unbounded

data streams, they would either eternally wait for the non-existing end of input (e.g., Aggregate

operations) or keep infinitely growing internal states (e.g., Join operations). For this reason,

new query models tailored to stream processing have been developed [32, 99, 16]. The query

model of the Aurora/Borealis system is summarized in Section 2.2.

• Scheduling. As illustrated in Figure 1.4, a server in a stream processing system is usually

assigned multiple operators. Therefore, we need smart operator scheduling strategies that can

maximize the system performance according to application-specific criteria (e.g., throughput,

timeliness of results) [33, 17]. These strategies must consider resource constraints, such as

memory size.

• Load Shedding. In stream processing, busty inputs may increase the processing load beyond

the system capacity. In this case, the quality of service (particularly, the timeless of results)

can fall below acceptable levels. One solution to this overload problem is to selectively drop

stream data so that the result latencies decrease. Such load shedding techniques must be

light-weight and minimize the loss in accuracy [134, 136, 135, 19, 112, 127]

• Query Distribution. Distributed and parallel computing environments have been gaining

more popularity. To take advantage of these environments, we need to distribute queries over

multiple machines. In stream processing, load balancing is difficult since data streams usually

exhibit significant variations in their rates. Therefore, we need distribution strategies that can

avoid bottlenecks for the largest variations in input rates [148]. We also need ways to find the

query fragment (i.e., a subset of operators and data streams that interconnect them) migrating

which will have the largest benefit, relative to the migration cost [149]. In wide area networks,

query distribution also determines the routes of data streams. These routes, in turn, affect
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both performance (in terms of latency) and network cost. Therefore, query distribution should

be done in a manner that improves performance and decreases the network cost [3, 106].

• High Availability. A stream processing system can involve a large number of data sources,

client applications, and operators spread over diverse geographic locations. As the system

scale increases, the possibility of experiencing sever and network problems also increase. A

failed server blocks data streams and may lose data essential for processing. Furthermore,

computer networks are vulnerable to link congestion and may experience outages. Therefore,

we need techniques that can prevent the system from being disrupted by slow or failed severs

and networks. We continue this discussion in Section 1.2.

1.2 High-Availability Challenges in Stream Processing

Just like other software systems, a stream processing system can experience various problems. For

example, servers may become unavailable either due to unexpected failures or planned reboot. Com-

mon sources of such unexpected failures are administrative errors, non-deterministic errors in the

underlying software, exhaustion of system resources, and hardware malfunctions [60, 51]. Fur-

thermore, communication between servers can be interrupted due to network link congestions and

failures. In the case of network partition, a subset of servers can be completely isolated from the

rest of the network. Since continuous queries can run for an indefinite period, they are bound to

experience the problems above. Failures also tend to occur more frequently as the system scale

increases.

In stream processing, a failure can have the following negative impacts:

• A failure prevents low-latency processing. If a server fails, it can no longer receive/process data

and send the results to the next servers or client applications. Server overload, network link

congestion, network failures, and network partitions also block the flow of data streams. In

such cases, applications cannot receive timely results.

• A failure may result in losing data essential to producing correct results. As discussed in

Section 2.2.2, some stream processing operators maintain states. For example, to compute

the hourly average of stock prices per stock symbol, an operator usually remembers the sum

and count of stock prices for each stock symbol during each hourly window. To minimize the

processing overhead, operators typically keep their states in memory rather than slower disks.

If a server that runs such operators crashes, it loses the states of the operators and thus cannot

produce the same results as in the non-failure case.

The problems descried above are fatal in many stream processing applications. In financial

applications, such problems can lead to missed trading opportunities and consequent revenue losses.

For this reason, we need high-availability techniques that can allow client applications to always

receive the correct results with low latency, despite server overload, server failures, network link

congestion, and network failures.
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As summarized in Sections 6.1 and 6.2, a wide variety of high-availability techniques have been

developed for traditional database systems and distributed systems. These techniques commonly

replicate the state of computation (i.e., all of the data required for computation) on either durable

storage (e.g., a RAID disk array [40]) or an independently failing system component (e.g., a remote

server). These techniques can be categorized into two general approaches:

• Rollback recovery. This approach periodically suspends computation and copies the state

onto an independent location [52]. Between these periodic tasks, called checkpoints, this

approach logs the input to the computation. Upon failure, this approach loads the state of

the most recent checkpoint and reprocesses the logged input. In this way, the approach can

rebuild the pre-failure state of the computation. This approach has low runtime overhead, but

the recovery time gets longer as the checkpoint interval increases.

• The state machine approach. This approach replicates the computation on independent

machines [86, 115]. Because the replicas run in parallel and any of their outputs can be used

by others, a failure can cause little disruption to the processing. The resource usage, however,

increases in proportion to the degree of replication.

Similar to the approaches mentioned above, high-availability techniques for stream processing also

require some form of replication. To develop successful techniques, however, we need to consider the

requirements of stream processing applications and characteristics of the stream processing model.

Broadly speaking, the main challenge in realizing highly-available stream processing is to devise

solutions that fulfill the following requirements:

1. Minimal Disruption. The intrinsic real-time nature of stream processing requires high-

availability techniques that can always keep result latencies low. In other words, these tech-

niques must provide fast recovery and, during non-failure periods, must be non-disruptive to

regular processing.

2. Resource Efficiency. As pointed out in Section 1.1, stream data rates can be very high.

For this reason, many efforts in stream processing have centered on efficiently using system

resources [33, 17, 134, 136, 135, 19, 112, 127]. In general, high availability is achieved at the

expense of using additional resources due to its reliance on replication. Therefore, economic

use of resources ia a key requirement.

3. Adaptivity. One main characteristic of stream data is that its rate can significantly vary over

time. Such variations can affect the processing load of operators as well as idle CPU cycles

that can be used for the purpose of high availability. Furthermore, as an operator processes

more input data, the state of the operator and, in turn, the overhead of checkpointing the

operator can increase. To be successful, a high-availability technique must be able to adapt to

such changes.
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4. Scalable Design. A stream processing system can consist of a large number of components.

Therefore, high-availability techniques must be designed in a scalable fashion.

One challenge related with the first and second requirements above is to devise relevant recovery

semantics for different types of stream processing applications. Although many financial applications

require that any post-failure results be identical to those without failure, other applications (e.g.,

fire detection, theft prevention) may tolerate slightly different post-failure results as long as no data

is lost. For the latter applications, the less rigorous guarantee can be more advantageous than the

strict guarantee if achieving it leads to faster recovery, smaller disruption to regular processing, and

lower resource usage.

In the case of developing rollback recovery techniques for stream processing, one implication of

the first requirement above is that disk-based techniques [97, 84] are not appropriate. Although

these approaches have been extensively used in database management systems, they store data

on disks and rely on database transaction mechanisms to ensure database consistency. However,

disks have high latencies and the concept of a database transaction (i.e., a unit of work formed by

several operations on a database [122]) cannot be applied to never-ending data streams. For this

reason, a crucial challenge in this case is to checkpoint onto the memory of servers in a manner

that satisfies the aforementioned requirements. In particular, for the first requirement, checkpoints

must be done frequently and the duration of each checkpoint must be short. The reason is that

result latencies during failure and non-failure periods decrease as the checkpoint frequency increases

and the checkpoint duration decreases, respectively. One way of reducing checkpoint duration is

to perform checkpoints at a fine granularity. For instance, we need not checkpoint disconnected

operators together even if they run on the same server. Separately checkpointing them does not cause

any inconsistency problem because the operators have no dependency with each other. To expedite

recovery, we also need to schedule checkpoints while considering the characteristics of operators. The

cost of checkpointing an operator increases as the state size of the operator increases. On the other

hand, the higher the processing load, the larger the benefit of checkpoint. Note that a checkpoint

removes the recovery load (i.e., the amount of work to do during recovery) and the recovery load is

proportional to the processing load.

Applying the state-machine approach to stream processing also raises challenges. For example,

replicas of a non-deterministic operator (e.g., an operator that forwards whichever data arrives

first from multiple sources) can produce outputs in different orders. Because order has semantic

significance in stream processing (as described in Section 1.1), we need solutions that either force

non-deterministic replicas to run identically or reconcile the outputs of such replicas. Furthermore,

we require ways to switch between replicas without losing data even if replicas run at different

speeds.

Finally, there are challenges due to the characteristics of the target environments. In server

clusters, for example, we need high-availability techniques that can efficiently use CPU cycles. CPU

usage is a primary concern in these environments because the maintenance cost, including the cost

for space and electricity, can increase significantly as more servers are used. In wide area networks,
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one crucial challenge is to determine the geographic locations of replicas because these locations

determine the routes of data flows and, in turn, the network usage. Another challenge is to cope

with network problems, such as link congestion and failures. These problems complicate failure

detection and can significantly degrade performance (i.e., increase result latencies).

1.3 Contributions

We have been tackling the challenges described in Section 1.2. In this section, we introduce our basic

approaches for highly-available stream processing and customized solutions for two popular types of

computing environments, namely now ubiquitous commodity server clusters and the Internet. The

details of these techniques are presented in Chapters 3, 4, and 5.

1.3.1 Basic Approaches for Highly-Available Stream Processing

In stream processing, latency is a significant issue. Therefore, our early interest was laid in recovery

approaches where if a server fails, a different backup server immediately takes over the failed one.

The three developed approaches mainly differ in how the primaries (i.e., the servers that take the

role of query processing) and backups prepare for failures. In the first approach, called passive

standby, each primary delta-checkpoints its state onto a backup. Delta-checkpointing refers to

copying the difference between the primary’s current state and the state at the moment of the

previous checkpoint. The state of a primary indicates the data structures that the primary uses

for stream processing. In passive standby, a backup remembers the state of its primary as of the

last checkpoint. Thus, if the primary fails, the backup must bring its old state up-to-date by re-

processing the data that the primary consumed after the last checkpoint. Unlike passive standby,

active standby allows backups to receive inputs and run in parallel with primaries. Active standby

provides fast recovery because backups are always up-to-date. In upstream backup, primaries log

their output data while backups remain completely idle. If a primary fails, an empty backup rebuilds

the latest state of the primary using a subset of the logs at upstream servers.

With these three basic approaches, we also defined four recovery guarantees tailored to different

requirements of stream processing applications. In principle, the guarantee of precise recovery (i.e.,

the output produced with failure recovery is the same as the output without failure) incurs a higher

runtime overhead than other weaker recovery guarantees (e.g., no data is lost, but the output can

be different from the output without failure). We also analyzed the characteristics of stream pro-

cessing operators as well as their impact on recovery guarantees. Finally, using our Aurora/Borealis

prototype and a detailed simulator, we observed the unique advantages of our recovery approaches

in terms of CPU and network utilization and recovery speed.
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1.3.2 Highly-Available Stream Processing in Server Clusters

Server clusters are a popular form of shared-nothing computing architectures where commodity

servers are connected by fast local area networks. For these environments, we designed and im-

plemented a new parallel, checkpoint-based recovery technique where operators at each server are

backed-up on different servers. Because the backups are scattered over multiple servers, these servers

can perform recovery in parallel, thereby significantly reducing the recovery time. This technique is

also highly flexible in that each server can act as a backup for other servers, while still remaining a

primary.

For this parallel recovery framework, we also studied the problem of (1) grouping operators into

checkpoint units, (2) determining backup servers for these units, and (3) scheduling checkpoints.

To fully utilize parallelism during recovery, our solution determines backup servers and schedules

checkpoints in a manner that balances the recovery load over multiple servers. To further accelerate

recovery, it also groups operators and schedules checkpoints according to the characteristics (e.g.,

processing load, checkpoint cost) of operators. Using our simulator and Aurora/Borealis prototype,

we substantiated the effectiveness of our strategies for forming checkpoint units, assigning backup

servers, and scheduling checkpoints. We also experimentally demonstrated the impact of operators

and input data on the checkpoint cost and recovery speed.

1.3.3 Fast and Highly-Available Stream Processing over the Internet

The Internet is the worldwide, publicly accessible network of millions of academic, business, and

government networks. While this attractive environment can enable prompt analysis of tremendous

events occurring around world, it introduces new difficulties. In the Internet, for example, losing

access to remote servers is the norm rather than the exception. Furthermore, it is usually very

difficult to identify the real cause of a system error because there are many possibilities such as

server failures, network link congestion, and network failures. We observed that previous high-

availability techniques have limitations in this environment due to their reactive nature – backups

do not respond to a failure until they ensure that the failure indeed has occurred. In practice, it

may also take a long time for multiple servers to agree upon a failure [87, 114]. Until the moment

of agreement, the related processing may completely stop.

In contrast to these previous approaches, our approach replicates stream processing operators

at different locations and allow all of them to send data downstream. In this way, any downstream

processing can proceed by relying on the fastest input flow without being held back by slow or

interrupted ones. For this reason, our approach improves not only reliability but also performance,

sharply contrasting with previous approaches. It also can naturally mask failures and local conges-

tions even without detecting them.

One challenge in this work was to guarantee correctness while executing replicas without co-

ordination. The reason behind this is that synchronizing remote replicas can significantly delay

processing. Although replicas can run differently, our solution provides replication transparency, a
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guarantee that applications always receive the same results as in the non-replicated, failure-free case.

For this guarantee, we extended operators such that replicas of them always produce the same data,

but possibly in different orders, as long as they consume the same input data in any order.

For this Internet-scale replication-based framework, we also developed a strategy for managing

replicas. This strategy deploys replicas at locations that improve performance as well as availability,

while reducing the network communication cost. To efficiently cope with changes in system condi-

tions, the strategy also dynamically discards the least useful replicas or adds new replicas. To verify

the utility of this work, we conducted experiments over scores of machines on PlanetLab [107].

1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we set the ground for

this dissertation by providing an overview of stream processing and our Aurora/Borealis system. In

Chapter 3, we present our three basic approaches for highly-available stream processing and compare

them from various perspectives. Next, we present our customized solutions for server clusters and

the Internet in Chapters 4 and 5, respectively. We present related work in Chapter 6 and conclude

this dissertation in Chapter 7.



Chapter 2

Background

Our research on highly-available stream processing has been conducted in the context of two stream

processing systems, Aurora [32, 2] and its follow-on Borealis [1, 4]. These systems have been de-

veloped by researchers from Brandeis University, Brown University, and MIT since 2001. In this

chapter, we first provide an overview of the data, query, and quality of service models that these

systems commonly employed (Sections 2.1, 2.2, and 2.3). Next, we illustrate the architectures of

these systems (Section 2.4 and 2.5). Finally, we discuss the types of failures that can be considered

in stream processing (Section 2.6).

2.1 Stream Data Model

A data stream is defined as an append-only sequence of data elements. These data elements, often

also called tuples, can be generated continuously by various sources, such as sensors that measure a

particular kind of environmental condition (e.g., temperature) and computer programs that report

information of interest (e.g., bids/asks in the stock market). A data element is again composed of

attribute values. All of the data elements contained in a data stream have the same set of attributes.

We call such a set of attributes the type or schema of the stream. In this dissertation, the ith data

element of data stream S is denoted as S[i].

2.2 Query Model

As Figure 2.1 shows, queries in our Aurora and Borealis systems are defined as a boxes-and-arrows

dataflow diagram. Each box represents an operator and each arc represents a dataflow between two

operators. An operator can be connected to multiple downstream operators. All such splits send

identical tuples downstream and enable sharing of computation across different queries. A number

of streams can also be merged by an operator with multiple inputs. We call a collection of such

queries a query network.

12
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Figure 2.1: Query Network Example

Stream processing operators play the role of processing tuples and producing results of interest.

Because queries are expressed as combinations of them, they enable query optimization (if a query

can be expressed as multiple equivalent combinations, we choose the combination with the minimum

execution cost) as well as sub-query sharing. In this section, we summarize these operators. Further

details on the Aurora/Borealis operators are presented in [1].

2.2.1 Stateless Operators

A stateless operator performs its computation based on one input tuple at a time without holding

any state. Here, state refers to the data structures that an operator maintains for its computation.

Aurora and Borealis provide the following stateless operators:

• Filter is the equivalent of the selection operator in the relational algebra. Filter applies a

predicate to every input tuple and passes tuples that satisfy the predicate. Tuples that do not

satisfy the predicate are either dropped or forwarded on an optional second output stream.

Filter can have multiple predicates. In this case, it acts as a case statement. In other words, it

propagates each tuple on the output stream that corresponds to the first matched predicate. In

Figure 2.1, Filter operator σ4 evaluates its predicate for tuples (9:00:00, A-C, 50%), (9:00:01,

A-C, 40%), (9:00:02, A-B, 100%), (9:00:02, A-C, 10%), · · · . This operator forwards (9:00:00, A-

C, 50%), (9:00:01, A-C, 40%), (9:00:02, A-C, 10%) to operator µ5 because their load attribute

values are less than 100%. It sends (9:00:02, A-B, 100%) to operator µ6.

• Map extends the projection operator in the relational algebra. Map transforms input tuples

into output tuples by applying a set of functions to the tuple attributes. In Figure 2.1, Map
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operators µ5 and µ6 remove the load field from each input tuple and send the resulting tuple

downstream.

• Union merges a set of input streams (all with the same schema) into a single output stream.

Because this operator simply passes input tuples as they arrive, the output order depends on

the inter-arrival order of the input streams. In Figure 2.1, Union operator ∪2 merges streams

(9:00:00, B, 80%), (9:00:01, B, 90%), (9:00:02, B, 100%), · · · and (9:00:00, C, 50%), (9:00:01,

C, 40%), (9:00:02, C, 10%), · · · into (9:00:00, B, 80%), (9:00:01, B, 90%), (9:00:00, C, 50%),

(9:00:01, C, 40%), (9:00:02, B, 100%), (9:00:02, C, 10%), · · · .

2.2.2 Stateful Operators

In contrast to stateless operators, stateful operators produce each output tuple by processing a

collection of input tuples. We present the following representative operators:

• Aggregate applies an aggregate function such as sum, count, average, maximum, and minimum,

to sub-sequences of its input stream. Because data streams are potentially unbounded and

operators cannot hold infinitely many data items, we use finite windows over data streams.

A window on a data stream is defined over the ordering attributes of the stream or over the

arrival order of the stream. A sliding window is defined as a sequence of windows with the

same size but different starting values. The difference between the starting points of adjacent

windows is called the step size. For example, suppose that stream S has timestamp attribute

T and another attribute A. To get the average value of attribute A over the most recent one

minute every second, we need an Aggregate operator that computes the average value of A

over a sliding window with a size of one minute and a step size of one second.

The input stream of Aggregate can be partitioned into sub-streams using the “group by”

clause. In this case, a sliding window is defined on each sub-stream. A window starts when a

first tuple that falls into the window arrives. It is then closed after all the tuples that belong to

the window arrive, or when the window times out. The longest time a window can stay open

is specified by the “timeout” clause. Aggregate produces an output tuple whenever it closes a

window. For this, the operator must maintain a certain amount of information (usually some

form of summaries) for each open window. Such information collectively forms the state of

Aggregate. The state size of Aggregate is usually proportional to the number of open windows.

In Figure 2.1, Aggregate operator Max7 finds the maximum load value using a 2-second time

window that advances 1 second at each step. This operator uses the server identifier as the

group-by attribute. It produces (9:00:01, B, 90%) from (9:00:00, B, 90%) and (9:00:01, B,

50%). It generates (9:00:01, C, 50%) from (9:00:00, C, 50%) and (9:00:01, C, 40%).

• Join extends the join operator in the relational algebra. To deal with the unbounded nature

of data streams, it assumes a window on its two input streams. For example, suppose that a

Join operator with predicate P has input stream S1 ordered by attribute A and input stream
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S2 ordered by attribute B. Suppose also that the operator has a window w on the ordering

attributes. If tuple u from S1 and tuple v from S2 satisfy the condition |u.A− v.W | < w and

predicate P , the operator produces the concatenation of u and v as the output tuple. To find

such matching input tuples, Join must preserve recent input tuples. These tuples can be safely

discarded only if no future tuples can match with them. Therefore, the state of Join consists

of all the tuples that the operator keeps for its computation. The state size is proportional to

the product of the window size and input stream rates.

In Figure 2.1, Join operator 13 processes two input streams from ∪1 and ∪2 with a 1-second

time window. This operator concatenates tuples u from the first input stream and v from the

second input stream if both u and v belong to the same time window and the server identifer

attribute value of u and the destination identifer attribute value of v match. This operator

generates (9:00:00, A-C, 50%) from matching input tuples (9:00:00, A-C) and (9:00:00, C,

50%). It produces (9:00:01, A-C, 40%) from (9:00:01, A-C) and (9:00:01, C, 40%).

• BSort is an approximate sort operator. Because a complete sort is not possible over an infinite

stream with finite time and space, BSort uses a buffer of size n for sorting. In detail, BSort

inserts each input tuple in a buffer as it arrives. Whenever the buffer is full, the operator

removes, from the buffer, a tuple with the minimal value of the sort attribute and emits the

tuple as output. In this case, the output stream corresponds the sequence resulting from

executing n− 1 bubble sort passes. The state of BSort is proportional to the predefined buffer

size.

• Resample is used to align pairs of streams by interpolating missing values. Given two input

streams S1 and S2, this operator generates, for each tuple in S1, an interpolated value from S2

by applying an interpolation function F to a window defined on S2. In this case, the state of

this operator comprises all the tuples that are currently kept in the current window on input

stream S2.

• SQL-read and SQL-write operators, respectively, query and update relational database tables

for each input tuple. These database tables belong to the states of these operators.

2.3 Quality of Service

Aurora and Borealis continuously send query results to client applications. They also measure

the utility of the results based on a number of QoS functions. Because the resulting utility values

represent the usefulness of the results from the perspective of applications, these system can conduct

various optimizations in application-specific ways. Figure 2.2 illustrates the following representative

QoS functions:

• Latency-based QoS. This function maps result latencies to utility values such that as output

tuples get delayed, their utility degrades. The latency of an output tuple is defined as the
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Figure 2.3: Quality of Service (QoS)

We further group our primitive operators into two as, order-agnostic and order-sensitive. Order-
agnostic operators process input tuples one at a time and regardless of their tuple arrival order.
Filter, Map, Union, Read, and Update have this property. On the other hand, Aggregate, Join,
BSort, and Resample are order-sensitive. These operators require order on their input data streams
and can only be guaranteed to execute with finite buffer space and in finite time if they can assume
this ordering. Aurora does not restrict input streams to arrive in a specific order. Instead, order-
sensitive operators are allowed to require order specifications on their inputs which may allow some
bounded disorder [8]. Allowance for disorder complicates operators’ basic functionality. In this
thesis, we simply assume strict order specification for order-sensitive operators when order is relevant.
We also consider query networks with a subset of SQuAl operators. More specifically, we do not
consider BSort, Resample, Read, and Update. These operators, although they make SQuAl more
expressive and may be useful for some specific applications, are not used as commonly as the other
five operators.

2.1.4 Quality of Service Model

Most of Aurora optimizations are driven by a Quality of Service (QoS) model. Query results are
sent to external applications for which a number of QoS functions are defined (see Figure 2.2). For
each application, these functions relate a characteristic of the output to its utility (i.e., its usefulness
to the receiving application).

QoS in Aurora is captured by three piece-wise linear functions, along three different dimensions
(shown in Figure 2.3):

• Latency-based QoS: This function maps tuple latencies to utility values such that as tuples
get delayed, their utility degrades. Latency of a tuple is defined as the time difference between
when a tuple arrives at Aurora and when it is output from the system.

• Loss-tolerance QoS: This function maps the percent tuple delivery to a utility value and indi-
cates how averse an application is to approximate answers. The larger the percentage of output

Figure 2.2: Quality of Service

difference between the time when the last among the input tuples that contributed to the

output tuple entered the system and the time when the output tuple arrives at the application.

• Loss-tolerance QoS. If the overall processing load surpasses the processing capability, a

typical solution is to drop a faction of tuples in order to improve the timeliness of results.

The accuracy of the results, however, usually decreases as more tuples are dropped. The loss-

tolerance function maps the percentage of tuple delivery to a utility value. This value indicates

the application-specific usefulness of the approximate answers.

• Value-based QoS. This function shows which values in the output value space are most

important. For example, in an application that monitors patient heartbeats, extreme heart

rates are more important than normal rates and thus should be assigned high utility values.

Aurora and Borealis can schedule operators in a manner that maximizes the latency-based QoS

function [33]. In this case, they produce the most timely results. They can also make load shedding

decisions based on the loss-tolerance and value-based QoS functions [134].

2.4 The Aurora System

Aurora is a stream processing system that has been developed by researchers from Brandeis Univer-

sity, Brown University, and MIT since 2001 [2, 134, 33]. In 2003, the research prototype was also

commercialized into the StreamBase System [128]. Hereafter, we provide an overview of the system.

Figure 2.3 illustrates the architecture of Aurora as well as the flow of data and control between

its components. These components play the following roles:

• The catalog stores information about the query network, QoS functions, and run-time statistics

(e.g., selectivity and processing cost of each operator). Because this information is essential

for efficient system management, all the system components can access the catalog.
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• The router is responsible for forwarding tuples between run-time components. It can receive

tuples from data sources as well as box processors and then send them to the storage manager.

• The storage manager is responsible for efficient storage and retrieval of data. For operators to

immediately process tuples stored in their input queues, the storage manager maintains these

queues in an in-memory buffer pool. It also manages a persistent store to support ad hoc

queries.

• The scheduler determines the order of executing operators [32, 33]. It selects an operator with

tuples in its queues and feeds that operator one or more of the input tuples.

• The multi-threaded box processors, whenever invoked by the scheduler, execute the appropriate

operator module and then forwards the output tuples to the router so that the next processing

cycle begins.

• The QoS monitor continually monitors the system performance and triggers the load shedder

if it detects decrease in QoS.

• The load shedder is responsible for handling overload due to input bursts [134]. It obtains

system statistics and query network description from the catalog. In overload situations, it

modifies the running query network to bring the CPU usage down to an appropriate level.
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2.5 The Borealis System

Borealis is a distributed system that inherits the core stream processing functionalities from Au-

rora [1, 4] and communication capabilities from Medusa [23]. Borealis aims to achieve the following

objectives:

• Distributed Operation. The system can distribute queries over multiple available machines

in a manner that avoids performance bottlenecks and efficiently uses system resources.

• Scalability. The system can scale up and deal with increasing load and more queries with

the addition of new computation and network resources.

• Adaptivity. The system can cope with changing load and resource availability without dis-

rupting its operation.

• High Availability. The system can continue its operation in spite of server and network

failures.

2.5.1 The Overall Architecture

As Figure 2.4 illustrates, Borealis comprises the following components:
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• The QP has a few additional components (such as a Consistency Manager) that enable
fault-tolerant stream processing. We discuss their implementation in Chapters 4 and 5.

Other than the QP, a Borealis node has modules that communicate with their peers on
other Borealis nodes to take collaborative actions:

• The Availability Monitor monitors the state of other Borealis nodes and notifies the
query processor when any of these states change. The Availability Monitor is a generic
monitoring component that we use as part of the fault-tolerance protocols.

• The Load Manager uses local load information as well as information from other Load
Managers to improve load balance between nodes. We discuss the load management
algorithms in Chapters 6 and 7.

Control messages between components and between nodes go through a transport inde-
pendent Remote Procedure Call (RPC) layer that enables components to communicate in
the same manner whether they are local or remote. Calls are automatically translated into
local or remote messages. Communication is asynchronous. The RPC layer also seamlessly
supports remote clients that use different RPC protocols to communicate with Borealis.

3.5 Data Flow

In Borealis, applications can modify the query diagram at runtime and can request operators
to move between nodes. In this dissertation, however, we assume a static query diagram
deployed over a set of processing nodes. We ignore the steps involved in deploying or
modifying the query diagram and describe only the interactions between components during
stream processing.

The data flow is the continuous flow of tuples from data sources to client applications
going through the query diagram operators. The components involved in the data flow
are thus the data sources, the processing nodes, and the client applications that subscribe
to output streams. Figure 3-6 illustrates the data flow. (1) The data sources produce
streams and push them to processing nodes. (2) The nodes process their input streams
and produce streams of results that they push to other nodes for more processing, or (3)
to client applications. When a stream goes from one node to another, the nodes are called
upstream and downstream neighbors. More specifically, we use the following definition:

49

Figure 2.5: Borealis Node Architecture

• Borealis nodes perform the actual stream processing. Each node runs a number of stream

processing operators and collects various statistics, such as its load level and processing latency.

Each node also performs tasks to manage its load and ensure high availability. We present the

details of Borealis nodes in Section 2.5.2.

• The coordinator supervises Borealis nodes. It stores in the global catalog information about Bo-

realis nodes, the complete query diagram, and the current query deployment (i.e., assignment

of operators to nodes). The coordinator starts empty. As the administrator or the end-users

submit queries, the coordinator converts the query into an acyclic graph of operators and

deploys the operators. Currently, the communication between the coordinator and Borealis

nodes are done by an XML RPC scheme. This scheme uses XML descriptions to specify the

query network as well the query deployment.

• Stream sources continuously send data to Borealis nodes. They are usually physical devices

with sensing and communication capabilities or software programs.

• Client applications are computer programs that receive the results of stream processing and

then accordingly interact with humans or perform further tasks (e.g., trade stocks or actu-

ate machines). Borealis provides application programming interfaces and tools to help the

development of client applications.

• Borealis administration tools ease system maintenance. With visual interfaces, they help users

quickly define queries and system administrators monitor the current deployment and various

system conditions.
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2.5.2 The Architecture of a Borealis Node

Each Borealis node runs an autonomous stream processing engine, called query processor. As illus-

trated in Figure 2.5, a query processor has the following components:

• An administration interface handles all incoming requests. These requests are sometimes to

modify the local query fragment by creating operators and data streams between them (or

by discarding operators and streams). They may also ask the query processor to move some

operators to other remote query processors. In this case, the administration interface handles

the detailed steps of operator migration.

• A local catalog holds the current information about the local query fragment, including local

operators, streams, and subscriptions.

• The DataPath component routes tuples from sources and remote nodes to the query processor.

It also sends tuples to remote nodes as well as client applications.

• AuroraNode is the local stream processing engine. It receives tuples from DataPath, processes

them, produces outputs, and sends them back to DataPath. To perform the processing, Au-

roraNode instantiates operators and schedules their execution. Each operator receives tuples

from its input queues (one per input) and stores outputs in its output queues. AuroraNode

also collects statistics about the runtime performance, data rates of streams, CPU cost of

operators. These statistics are made available to remote nodes through the administration

interface.

In addition to the query processor, each Borealis node has the following modules:

• The availability monitor monitors the state of other nodes and notifies the query processor if

any of the states change. The availability monitor is a generic monitoring component for high

availability purposes.

• The load manager collects information about local and remote loads and balances the process-

ing load over nodes through operator migration.

2.6 Failure Models

In general, developing a high-availability technique begins with assuming failure models for system

components. How well these models correspond to real system failures significantly affects the utility

of the developed technique in a given setting. A stream processing system makes use of a number of

servers and network links connecting them. Therefore, we can consider the following failure models

in this context, as commonly done in other kinds of distributed systems.
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2.6.1 Server Failures

As discussed in Section 1.2, servers may become unavailable either due to planned reboot or un-

expected failures such as administrative errors, software bugs, exhaustion of system resources, and

hardware malfunctions. Types of server failures that are generally assumed are as follows:

• Fail-stop failures. A failed server stops execution and loses its volatile state (e.g., everything

that was in memory). Other servers in the system can easily detect the fail-stop failure of a

server [116].

• Crash failures. In this model, a failed server forever stops sending messages and responding

to any requests (e.g., a runaway computation). Crash failures may not be detectable by other

servers [116]. This model is a superset of, and thus more widely applicable than, the fail-stop

model.

• Byzantine failures. A failed server exhibits arbitrary behavior [88]. For example, erroneous

output by a server (e.g., due to a buffer overflow) is considered a Byzantine failure. Although

Byzantine failures are not studied in this dissertation, while left for future research, well-known

techniques for handling these failures exist [95]. Because this model is the most general of the

three, these techniques impose higher overheads than those for other failure models.

2.6.2 Network Failures

In general, communication channels are unreliable and can cause message losses, re-ordering, and

delays. The high-availability techniques in this dissertation count on reliable, in-order communica-

tion protocols like TCP for transferring data between servers. With TCP, data is always delivered

reliably and in order, but the delivery can incur arbitrary delays (in the case of network failures or

simply congestion) and connections can also fail permanently. Network failures, which cause mes-

sages to be arbitrarily delayed or TCP connections to go down, can occur in a local area network but

are more common in wide area networks. Network failures can sometimes cause network partitions,

where the entire system is split into two or more groups of components that cannot communicate

with those in other groups. In Chapter 5 of this dissertation, we explore solutions to handle network

failures in the Internet scale.



Chapter 3

Basic Approaches for

Highly-Available Stream

Processing

In stream processing, the failure of a single server can significantly disrupt or even halt the overall

processing. Such a failure indeed causes the loss of a potentially large amount of transient in-

formation and, perhaps more importantly, prevents downstream servers from making progress. A

distributed stream processing system therefore must incorporate a high-availability mechanism that

allows processing to continue despite server failures. In this chapter, we focus on approaches where

if a server fails, a backup server immediately takes over the operation of the failed one. Tightly syn-

chronizing a primary and a backup so that they always have the same state will incur high run-time

overhead. Hence, we explore approaches that relax this requirement, allowing the backup to rebuild

the state of the primary.

Because different stream processing applications have different high-availability requirements, we

define three types of recovery guarantees that address different needs:

1. Precise recovery hides the effects of a failure perfectly, except some transient increase in pro-

cessing latency. This guarantee is well-suited for applications that require the post-failure

output be identical to the output without failure. Many financial applications require this

strict guarantee.

2. No loss recovery avoids information loss without guaranteeing precise recovery. The output

produced after a failure is “equivalent” to, but not necessarily the same as, the output of an

execution without failure. The output may also contain duplicate tuples. To avoid information

loss, the system must preserve all the necessary input data for the backup server to rebuild

(from its current state) the primary’s state at the moment of failure. No loss recovery is thus

appropriate for applications that cannot tolerate information loss but may tolerate imprecise

22
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output caused by the backup server reprocessing the input somewhat differently than the

primary did. Example applications include those that monitor specific conditions in the world

(e.g., fire alarms, asset tracking). We show in Section 3.5 that this recovery guarantee can

be provided more efficiently than precise recovery in terms of runtime overhead and recovery

speed.

3. Gap recovery, our weakest recovery guarantee, addresses the needs of applications that oper-

ate solely on the most recent information (e.g., sensor-based environment monitoring), where

dropping some old data is tolerable for reduced recovery time and runtime overhead.

We define these recovery semantics more precisely in Section 3.2. Commercial database manage-

ment systems typically offer precise or gap recovery capabilities [42, 103, 111]. To the best of our

knowledge, no existing solution addresses no loss recovery or a similar weak recovery model.

In this chapter, we also investigate four recovery approaches that can provide one or more of the

above recovery guarantees. Since each approach employs a different combination of redundant com-

putation, checkpointing, and remote logging, they offer different tradeoffs between runtime overhead

and recovery performance.

We first introduce amnesia, a lightweight scheme that provides gap recovery without any runtime

overhead (Section 3.3). We then present passive standby and active standby, two process-pairs [24, 60]

approaches tailored to stream processing. In passive standby, each primary server periodically

reflects its state updates to its backup server. In active standby, backup servers process all tuples

in parallel with their primaries. We also propose upstream backup, an approach that significantly

reduces runtime overhead compared to the standby approaches while trading off recovery speed. In

this approach, upstream servers act as backups for their downstream neighbors by preserving tuples

in their output queues while the downstream neighbors process them. If a server fails, a recovery

server rebuilds the primary’s latest state by reprocessing the tuples logged at upstream servers. In

Section 3.4, we describe the details of these approaches with an emphasis on the unique design

challenges that arise in stream processing. Upstream backup and the standby approaches provide

no loss recovery in their simplest forms and can be extended to provide precise recovery at a higher

runtime cost, as illustrated in Section 3.5.

Interestingly, for a given high-availability approach, the overhead to achieve precise recovery can

noticeably change with the properties of the operators constituting the query network. We thus

develop in Section 3.2 a taxonomy of stream processing operators, classifying them according to

their impact on recovery semantics. Section 3.5 shows how we can use such knowledge to reduce

high-availability costs and choose the most appropriate high-availability technique in a given setting.

Finally, by comparing the runtime overhead and recovery performance for each combination of

recovery approach and guarantee (Section 3.6), we characterize the tradeoffs among the approaches

and describe the scenarios where each approach is most appropriate.
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Figure 3.1: Primary/Backup Pairs

3.1 Assumptions

In this chapter, we assume a network of stream processing operators (e.g., Map, Filter, Union,

Join, Aggregate) that receive input tuples through their input queues (one for each input stream)

and produce output tuples based on their execution semantics. We also assume that the system

distributes the query network over multiple servers, each of which runs a stream processing engine.

Figure 3.1 illustrates a query network distributed over three servers, S1, S2, and S3. In the figure,

streams are represented by solid line arrows whereas operators are represented as boxes labeled with

symbols denoting their functions. Since streams I1 and I2 send tuples from S1 to S2, S1 is said

to be upstream of S2, and S2 is said to be downstream of S1. We assume that the communication

network ensures order-preserving, reliable message transport (e.g., TCP).

To handle single fail-stop server failures, we associate each server Si with a backup server S′
i

that detects as well handles the failure of Si. We call Si a primary server. For S′
i, we use terms

such as “recovery server”, “backup server”, and “secondary server”, interchangeably. Each backup

server has its own stream processing engine and has the same query network fragment as its primary.

The state of a backup server, however, is not necessarily the same as that of the primary.

To detect failures, we assume that each backup server periodically sends keep-alive requests to

its primary and assumes that the latter failed if a few consecutive responses do not return within a

timeout period (for example, our prototype uses three messages with a 100 ms transmission interval,

for an average failure detection delay of 250 ms). If a backup server detects the failure of its primary

and if it has not received input data, it asks the upstream servers to send the data (in Figure 3.1,

I ′1 and I ′2 are used instead of I1 and I2, respectively). The backup server also starts forwarding
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its outputs to downstream servers (in Figure 3.1, O′ is used instead of O). We call this process of

responding to a failure failover.

If the backup server needs to reprocess some earlier input tuples to bring its state up-to-date, the

upstream servers must remember such required tuples. For this purpose, each stream to a remote

server has an output queue as a temporary storage (in Figure 3.1, I1 and I2 have output queues on

S1).

Finally, if a failed server comes back to life, it can assume the role of the backup. Another server

may also volunteer to do so. As we discuss in Section 3.4, each high-availability approach requires a

different amount of time for the new backup to coordinate with its primary to prepare for the next

failure.

3.2 High-Availability Semantics

In this section, we define three recovery types based on their effects as perceived by the servers

downstream from the failure. Since some operator properties facilitate stronger recovery guarantees,

we also classify operators based on their effects on recovery semantics.

3.2.1 Recovery Types

We assume that a query network fragment, Q, is given to a primary/backup pair. Q has a set of n

input streams (I1, I2, ..., In) and produces one output stream O. The definitions below can easily be

extended to query network fragments with multiple output streams.

Because the processing may be non-deterministic as we discuss in Section 3.2.2, executing Q over

the same input streams may each time produce a different sequence of tuples on the output stream.

We define an execution as a sequence of events (such as the arrival, processing or production of a

tuple) that occur while a server runs Q. Given an execution e, we denote with Oe the output stream

produced by e. We express the overall output stream after failure and recovery as Of � O′, where

f is the pre-failure execution of the primary and O′ is the output stream produced by the backup

after it takes over. Based on the notation, we define three recovery guarantees as follows:

• Precise Recovery. The strongest failure recovery guarantee, called precise recovery, com-

pletely masks a failure and ensures that the output produced by an execution with failure re-

covery is identical to the output produced by an execution e without failure (i.e., Of�O′ = Oe).

• No loss Recovery. A weaker recovery guarantee, called no loss recovery, ensures that failures

do not cause information loss. More specifically, it guarantees that the effects of all input tuples

are always forwarded to downstream servers despite failures. To achieve this guarantee, we

need to meet the following requirements:

1. Input preservation - The upstream servers must store in their output queues all tuples

that the backup needs to rebuild the primary’s state, from its current state. We refer to

such tuples as duplicate input tuples because the primary already has consumed them.
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Recovery Type Before Failure After Failure
Precise t1 t2 t3 t4 t5 t6 ...
Gap t1 t2 t3 t5 t6 ...
No loss
Repeating t1 t2 t3 t2 t3 t4 ...
Convergent t1 t2 t3 t′2 t′3 t4 ...
Divergent t1 t2 t3 t′2 t′3 t′4 ...

Figure 3.2: Examples of Outputs under Each Recovery Type

2. Output preservation - If a backup is running ahead of its primary, the backup must store

tuples in its output queues until all the downstream servers receive the corresponding

tuples from the primary. The tuples at the backup are then considered duplicate.

We use the configuration in Figure 3.1 to illustrate these concepts. We cannot discard tuples

in the output queues of I1 and I2 if S′
2 requires them to rebuild the state of S2. Similarly, if

S′
2 is running ahead of S2, S′

2 must preserve all tuples in the output queue of O′ until the

tuples become duplicate (i.e., until S3 receives from S2 the tuples resulting from processing

the same input tuples).

No loss recovery allows the backup to forward duplicate output tuples downstream. The char-

acteristics of Q determine the characteristics of such duplicate output tuples as well as the

properties of Of�O′. We distinguish three types of no loss recovery. In the first type, repeating

recovery, duplicate output tuples are identical to those produced previously by the primary.

With the second type, convergent recovery, duplicate output tuples are different from those

produced by the primary. The details of such situations are discussed in Section 3.2.2. Under

both recovery types, the concatenation of Of and O′ after removing duplicate tuples is identical

to an output without failure, Oe. Finally, the third type of recovery, divergent recovery, has

the same properties as convergent recovery regarding duplicate output tuples. Eliminating

these duplicates, however, does not lead to an output that is achievable without failure. Such

divergent recovery is caused by non-determinism in processing.

Because the execution of the backup can be different from that of the primary, duplicate output

tuples are not necessarily identical to those that the primary produced. We consider an output

tuple t at the backup to be duplicate if the primary has already processed all input tuples that

“affected” the value of t and forwarded the resulting output tuples downstream.

• Gap Recovery. Any recovery technique that does not ensure both input and output preser-

vation may result in information loss. This recovery type is called gap recovery.

Example. Figure 3.2 shows examples of outputs produced by each recovery type. With precise

recovery, the output corresponds to an output without failure: tuples t1 through t6 are produced in

sequence. With gap recovery, the failure causes the loss of tuple t4. Repeating recovery produces

tuples t2 and t3 twice. Convergent recovery generates different tuples t′2 and t′3 (compared to t2 and
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Arbitrary

Deterministic

Convergent-capable

Repeatible
Filter, Map,

Join (no timeout)

BSort, Resample,
Aggregate with time windows (no timeout)

Aggregate with count-based windows (no timeout)

Union, operators with timeout

Figure 3.3: Taxonomy of Aurora Operators

t3) after failure but then produces tuples t4 and following as in a failure-free execution. Finally,

divergent recovery keeps producing equivalent rather than identical tuples after the failure.

Propagation of Recovery Effects. The semantics above define the effects of failure and recovery

on the output stream of a query network fragment. These effects then propagate through the rest

of the query network until they reach client applications. Because precise recovery masks failures,

no side effects propagate. Gap recovery may lose tuples. Therefore, client applications may miss a

number of consecutive tuples after a failure. Because the query network may aggregate many tuples

into a single output tuple, missing tuples may also result in incorrect output values (e.g., a sum

operator may produce a lower sum). No loss recovery does not lose tuples but may generate duplicate

tuples. The final output stream may thus contain a burst of either redundant or incorrect tuples

(e.g., a sum operator downstream may produce a higher sum value). It is also possible, however,

that duplicate-insensitive operators (e.g., max) downstream can always guarantee correct results.

Finally, missing or duplicate tuples may have a permanent effect on operators with count-based

windows by shifting the window alignment points of those operators. In general, the recovery type

for each server must be chosen based on the applications’ correctness criteria and the characteristics

of the operators on the server and downstream.

3.2.2 Operator Classification

We distinguish four types of operators based on their effects on recovery semantics: arbitrary (in-

cluding non-deterministic), deterministic, convergent-capable, and repeatable. Figure 3.3 depicts the

containment relationship among these operator types and the classification of the Aurora/Borealis
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operators [2, 11]. The type of a query network is determined by the type of its most general operator.

An operator is deterministic if it produces the same output stream every time it starts from

the same initial state and receives the same sequence of tuples from each input. There are three

possible causes of non-determinism in operators: dependence on time (either execution time or

input tuple arrival times), dependence on the arrival order of tuples across different inputs (e.g.,

Union, which interleaves tuples from multiple streams), and use of non-determinism in processing

such as randomization (e.g., random filter, which randomly drops tuples for the purpose of load

shedding [2, 134]).

A deterministic operator is called convergent-capable if it leads to a convergent recovery when

it restarts from an empty internal state and re-processes the same input streams, starting from an

arbitrary earlier point in time. To be convergent-capable, an operator must rebuild its internal

state from scratch and update it on subsequent inputs in a manner that eventually converges to the

execution that would have existed without failure. Window alignment is the only possible cause that

prevents a deterministic operator from being convergent-capable. This is because window boundaries

define the sequences of tuples that an operator processes to produce an output tuple. Therefore, a

deterministic operator is convergent-capable if and only if its window alignments always converge to

the same alignment when restarted from an arbitrary point in input.

A convergent-capable operator is repeatable if it leads to a repeating recovery whenever it restarts

from an empty internal state and re-processes the same input streams, starting from an arbitrary

earlier point in time (the operator must produce identical duplicate tuples). A necessary condition

for an operator to be repeatable is for the operator to use at most one tuple from each input stream

to produce an output tuple. If a sequence of multiple tuples contributes to an output tuple, then

restarting the operator from the middle of that sequence may yield at least one different output

tuple. Aggregates are thus not repeatable in general, whereas Filter (which simply drops tuples that

do not match a given predicate) and Map (which transforms tuples by applying functions to their

attributes) are repeatable as they have one input stream and process each tuple independently of

others. Join (without timeout) is also repeatable because its windows defined on input streams have

alignments relative to the latest input tuple being processed.

In Sections 3.3, 3.4, and 3.5, we present approaches for gap recovery, no loss recovery, and

precise recovery, respectively. For each approach, we discuss the impact of the query network type

on recovery and analyze the tradeoffs between recovery time and runtime overhead. Table 3.1

summarizes the notation that we use.

3.3 Gap Recovery

The simplest approach to high availability is for each backup server to restart the failed query

network from an empty state and continue processing input tuples as they arrive. This approach,

called amnesia, produces a gap recovery for all types of query networks. In amnesia, the failure

detection delay, the rates of input streams, and the state size of the query network determine the
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p per-tuple processing time
d network transmission delay between servers
λ input rate
C size of checkpoint message
c size of queue trimming message
M checkpoint or queue trimming interval
D failure detection delay
r time to redirect input streams
nb ops number of operators in the query network
nb paths number of paths from input to output streams
∆ number of lost or redundant tuples
K delay before processing first duplicate input tuple
Q average number of input tuples to process during recovery
rec time time spent recreating the failed state (after failure detection)
bw overhead bandwidth consumed for high availability

bandwidth consumed for tuple transmission

proc overhead CPU cycles consumed for high availability
CPU cycles consumed for regular stream processing

Table 3.1: Summary of Notation

Query Network Type
Approach Repeatable Convergent-Capable Deterministic Arbitrary

Passive Standby Repeating Repeating Repeating Divergent
Upstream Backup Repeating Convergent Divergent Divergent
Active Standby Repeating Repeating Repeating Divergent

Table 3.2: Types of No Loss Recovery

number, ∆, of lost tuples. This approach imposes no overhead at runtime, as shown in Table 3.3.

We define recovery time as the interval between the time when a backup server discovers the

failure of its primary and the time it reaches the primary’s pre-failure state (or an equivalent state

for a non-deterministic query network). Recovery time thus measures the time spent recreating the

failed state.

Since amnesia does not recreate the lost state, while dropping tuples until the backup server is

ready to accept them, the recovery time is zero. It takes time r to redirect the inputs to the backup,

but when processing restarts, the first tuples processed are those that would have been processed

at the same time if the failure did not occur. For this reason, there is no extra delay due to failure

recovery.

3.4 No Loss Recovery Protocols

We present three approaches for no loss recovery, each one using a different combination of redundant

computation, checkpointing, and logging. We first present passive standby, an adaptation of the

process-pairs model with passive backup. Next, we introduce upstream backup, where upstream

servers in the processing flow serve as backup for their downstream neighbors by logging their

output tuples. Finally, we describe active standby, another adaptation of the process-pairs model
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rec time bw overhead proc overhead
Amnesia 0 0 0
Passive
Standby

K +Qp, where K = r+d; Q = Mλ
2 f1( 1

M , C) f2( 1
M , C)

Upstream
Backup

K + Qp, where K = r + d; Q =
|state|+ Mλ + 2dλ

f3( 1
M , c) f4( 1

M ,nb ops,nb paths)

Active
Standby

ε (negligible) 100% +
f3( 1

M , c)
100% + 2 ∗
f4( 1

M ,nb ops,nb paths)

Table 3.3: Recovery Time and Runtime Overhead of each High-Availability Approach

where each backup performs processing in parallel with its primary. We discuss active standby last,

because it relies on concepts introduced in upstream backup.

For each approach, we examine the recovery guarantees it provides, the average recovery time,

and the runtime overhead. We divide the runtime overhead into processing and communication (or

bandwidth) overhead. Table 3.2 shows the recovery types achieved by each approach. Table 3.3

summarizes their performance metrics.

3.4.1 Passive Standby

In passive standby, each primary periodically delta-checkpoints onto its backup so that the backup

can take over from the latest checkpoint when the primary fails. Here, delta-checkpointing refers to

copying the difference between the primary’s current state and the state at the time of the previous

checkpoint. The state of the primary consists of the states of input queues of operators, operators

themselves, and the output queues (one for each output stream to a remote server). Each checkpoint

message (a.k.a. state update message) thus captures the changes to the states of the operators

and queues on the primary since the last checkpoint message was composed. For each queue, the

checkpoint message contains the newly enqueued tuples as well as the last dequeue position. For

an operator, however, the content of the message depends on the operator type. For example, the

message is empty for stateless operators. On the other hand, the message stores, for an Aggregate

operator, some form of summaries (e.g., count, sum) and, for a Join operator, the actual tuples that

newly entered the operator’s state.

To reduce the suspension of processing, the composition of a checkpoint message is conducted

along a virtual “sweep line” that moves from left (upstream) to right (downstream). At every step,

an operator closest to the right of the sweep line is chosen and once its state difference is saved in the

checkpoint message, the sweep line moves to the right of the operator. The primary is free to execute

operators away from the sweep line both upstream and downstream because these concurrent tasks

do not violate the consistency of the checkpoint message. Indeed, executing operators to the left of

the sweep line is equivalent to executing them after checkpointing. Executing operators to the right

of the sweep line corresponds to executing them before the message composition.

Passive standby guarantees no loss recovery for the following reasons:

1. input preservation - each upstream primary preserves output tuples in its output queues until
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they are safely stored at the downstream backups. In Figure 3.1, for example, whenever backup

server S′
2 receives a checkpoint from S2, S′

2 informs upstream server S1 about the new tuples

that S2 has recently consumed. S1 discards only those acknowledged tuples from its output

queues.

2. output preservation - the backup is always “behind” the primary because its state corresponds

to the last checkpointed sate.

If a primary fails, the backup takes over and sends all tuples from its output queues to the

downstream servers. The backup also asks upstream primaries to start sending their output streams,

including the tuples stored in their output queues. When the failed server joins the system again, it

assumes the role of the backup. Because the new backup has an empty state, the primary sends its

complete state in the first checkpoint message.

Because the backup restarts from a past state of its primary, passive standby provides repeating

recovery for deterministic query networks and divergent recovery for others.

Recovery Time. Passive standby has a short recovery time because the backup holds a complete

and recent snapshot of the primary’s state. Recovery time is equal to K + Qp, where K is the

delay before the backup server receives its first input tuple, Q is the number of duplicate input

tuples it reprocesses, and p is the average processing time per input tuple. K is the sum of r (the

time to redirect input streams) and d (the time for the first tuple to propagate from the upstream

primaries). Q is on average half a checkpoint interval worth of input tuples. The average number,

∆, of duplicate tuples is close to Mλout, where M is the checkpoint interval and λout is the rate of

tuples on output streams.

Overhead. The bandwidth overhead under passive standby is inversely proportional to the check-

point interval and proportional to the size of checkpoint messages. The processing overhead consists

of generating and processing checkpoint messages (proportional to the bandwidth overhead). The

checkpoint interval (M) determines the tradeoff between runtime overhead and recovery time. Ta-

ble 3.3 summarizes these results.

3.4.2 Upstream Backup

In upstream backup, upstream servers act as backups for their downstream servers by logging tuples

in their output queues until all downstream servers completely process these tuples. In Figure 3.1,

for instance, server S1 serves as a backup for server S2. If S2 fails, S′
2 restores the lost state by

re-processing the tuples logged at S1. When a failed server rejoins the system, it assumes the role

of the backup server starting from an empty state. The system is then able to tolerate a new failure

without further delay.

The main difficulty of this approach is to determine the maximum set of logged tuples that

can safely be discarded despite the presence of non-deterministic operators and the many-to-many

relationship between input and output tuples.
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Figure 3.4: Communication between Servers in Upstream Backup

Figure 3.4 shows a typical communication sequence between servers S1 and S2 and client ap-

plication App. Each server produces and sends tuples downstream while storing them in its output

queues. Each server also periodically acknowledges receipt of input tuples by sending level-0 acks to

its upstream neighbors. When a server (e.g., S2) receives level-0 acks from downstream neighbors

(e.g., App), it notifies its own upstream neighbors (e.g., S1) about the earliest logged tuples (one

per S1’s output) that contributed to producing the acknowledged tuples (i.e., the oldest logged

tuples necessary to re-build its current state). Discarding only earlier tuples allows the system to

survive single failures. The notifications are thus called level-1 acks (denoted ACK(1, S, u), where S

identifies a stream and u identifies a tuple on that stream). Servers that output to client applications

use level-0 acks to trim output queues.

Upstream backup provides no loss recovery as follows:

• input preservation - upstream servers log all the tuples necessary for the backup to re-build

the primary’s state from an empty state.

• output preservation - the backup restarts from an empty state.

Queue Trimming Protocol

To avoid spurious transmissions, servers produce both level-0 and level-1 acks every M seconds. A

lower ack frequency reduces bandwidth utilization, but increases output queue size and recovery

time.

To compose level-1 acks, each server finds, for each output stream O, the latest output tuple O[v]

acknowledged at level-0 by all downstream neighbors. For each input stream I, the server maps O[v]

back onto the earliest input tuple I[u] that caused O[v]. This backward mapping is conducted by

a function cause((O, v), I) → (I, u), where (I, u) denotes the identifier of tuple I[u] and marks the

beginning of the sequence of tuples on I necessary to regenerate O[v]. We discuss the cause function

in the next section. The server performs these mappings for each output stream and identifies the
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cause((O, 123), I1) = (I1, 200)
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(a) The Filter produces S[500] from I[900]. Then, S1 receives acks from down-
stream neighbors and new tuples I1[901] and I2[257] from upstream neighbors.
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Filter

Union

S3

O
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cause((O, 188), I1) = (I1, 900)
cause((O, 188), I2) = (I2, 257)
cause((O, 187), I1) = (I1, 900)
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ACK(0, I1, 901)
ACK(1, I1, 200)

ACK(0, I2, 257)
ACK(1, I2, 100)

(b) S1 trims its output queue at (O, 50) while pushing new tuples O[187] and
O[188] downstream. S1 also maps the lowest level-0 ack received, (O, 123), onto
level-1 acks ACK(1, I1, 200) and ACK(1, I2, 100).

Figure 3.5: One Iteration of Upstream Backup

earliest tuple on each input stream that can now be trimmed. The server produces level-1 acks for

these tuples. Each upstream neighbor trims its output queues up to the position that corresponds

to the oldest tuple acknowledged at level-1 by all downstream neighbors.

Figure 3.5 illustrates one iteration of the upstream-backup algorithm on one server. In the

example, server S1 receives level-0 and level-1 acks from two downstream neighbors S2 and S3.

First, since both neighbors have sent level-1 acks for tuples up to O[50], S1 removes from its output

queue all tuples preceding O[50]. Second, since both S2 and S3 have sent level-0 acks for tuples up

to O[123], S1 maps O[123] back onto the first input tuples that caused it. S1 sends level-1 acks for

these tuples, identified with (I1, 200) and (I2, 100). In the example, S1 also receives tuples I1[901]

and I2[257] from its upstream neighbors and acknowledges the recept of them with level-0 acks.
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Mapping Output Tuples onto Input Tuples

We now discuss how servers compute the cause function, cause((O, v), I) → (I, u). This function

maps an arbitrary output tuple O[v] on stream O onto the earliest input tuple I[u] on input stream

I that has contributed to the production of O[v] (i.e., affected the value of O[v]). To facilitate

this mapping, we propose to keep track of the oldest input tuples that affect any computation, by

appending input-tuple indicators to tuples as they travel through operators on a server. For a tuple

O[v], these indicators, denoted with indicators(O, v), contain the identifiers of the oldest tuples on

input streams necessary to generate O[v]. We also call these indicators low watermarks. On any

stream, indicator values are monotonically non-decreasing.

When a tuple enters a server, its indicators are initialized to its identifier: e.g., indicators(I, u) =

{(I, u)}. Each operator uses the indicators of its input tuples to compute the indicators for its output

tuples. When it is first set up, each operator o initializes a watermark variable ω for each server-wide

input stream I that contributes to each input stream S of o (i.e., ω[I, S]← 0). As it processes tuples,

the operator updates each ω[I, S] to hold the corresponding indicator of the oldest tuple currently

in the state or, for stateless operators, that of the last tuples processed. When it produces a tuple

t, the operator iterates through all ω values and appends (I, ωmin) to indicators(t), where ωmin is

the minimum of all ω[I, ∗].
Some operators, such as Union, have multiple input streams but only a few of them actually

contribute to any single output tuple. These operators can reduce the number of indicators on

output tuples by appending only indicators for input streams that actually affected the output tuple

value. Thus, cause((O, v), I) refers to the indicator of O[v] that corresponds to stream I, or to the

indicator of the most recent preceding tuple affected by I, if O[v] was not affected by I. Note that

indicators are not sent to downstream servers.

Figure 3.5 shows an example of managing input-tuple indicators. In Figure 3.5(a), the Filter

produces S[500] from I1[900]. Hence, indicators(S, 500)={(I1, 900)}. In Figure 3.5(b), the Union

operator processes tuples S[500] and I2[257] to produce O[187] and O[188] respectively. Hence,

indicators(O, 187) = {(I1, 900)} and indicators(O, 188) = {(I2, 257)}. Therefore, cause((O, 188), I1)

= (I1, 900), cause((O, 188), I2) = (I2, 257), and cause((O, 187), I1) = (I1, 900). On the other hand,

cause((O, 187), I2) depends on the indicators of the tuples preceding O.

Upstream backup restarts from an empty state producing a repeating recovery for repeatable

query networks, a convergent recovery for convergent-capable query networks and a divergent recov-

ery for all others. These guarantees are weaker than those of the standby approaches.

Recovery Time. The time, K, to receive the first tuple is the same as for passive standby but

the recovery server may re-process significantly more tuples. It must re-process (1) all tuples that

contributed to the lost state, (2) a complete queue-trimming interval worth of tuples on average (due

to the periodic transmission of both level-0 and level-1 acks), and (3) some extra tuples that account

for the propagation delays of level-0 acks. The number, ∆, of redundant tuples is the product of

the number of tuples to reprocess (Q) and the query network selectivity minus the number of tuples

that remain as part of the query network state.



35

Overhead. Upstream backup has the lowest bandwidth overhead because queue-trimming mes-

sages, which contain only the tuple identifiers for streams crossing server boundaries, are significantly

smaller than checkpoint messages used by the other approaches. The processing overhead is also

small since operators keep track of the oldest tuple (and its indicators) on each of their input streams

that contributes to their current states. Furthermore, we can reduce the spatial and computational

overhead of managing indicators by processing them and appending them to tuples occasionally. In

general, the total overhead, as summarized in Table 3.3, is proportional to the number of operators

and the number of paths, where a path is a data flow connecting an input stream to an output

stream.

3.4.3 Active Standby

Active standby is another variation on the process-pairs model. In contrast to passive standby,

each backup server in active standby receives tuples from upstream neighbors and processes them in

parallel with the primary. The backup server, however, does not send any output tuples downstream.

It logs these tuples in its output queues instead.

The challenge of active standby lies in bounding the output queues on each backup, while ensuring

output preservation. Because the primary and backup may have non-deterministic operators, they

may have different tuples in their output queues. To identify duplicate output tuples, we add a

second set of input-tuple indicators to each tuple. For a tuple, O[v], this second set contains for each

input stream I, the identifier (I, u) of the most recent tuple that contributed to the production of

O[v]. We call these identifiers high watermarks. A tuple at the backup server is duplicate if it has a

lower-valued high watermark than a tuple at the primary. Indeed, this tuple results from processing

the same or even older input tuples. Each backup server thus trims all logged output tuples that

have a high watermark lower than the high watermarks of the tuples already received by downstream

servers. For high watermarks to be correct, we need to distinguish input-tuple indicators that travel

on different paths through a server.

Watermarks are never sent between upstream and downstream servers but they are sent be-

tween primary and backup servers, as illustrated in the following example. We use Figure 3.5 to

illustrate active standby but we assume indicators are high watermarks. When ACK(0, O, 125) and

ACK(0, O, 123) arrive, server S1 determines that O[123] is now acknowledged at level-0 by both

downstream neighbors. Since tuple O[123] maps onto input tuples identified with (I1, 200) and

(I2, 100), the set of identifiers {(I1, 200), (I2, 100)} is added to the queue-trimming message as the

entry value for O. When the backup server S′
1 receives the queue-trimming message, it discards

tuples u (from the output queue corresponding to O) for which cause((O, u), I1) returns a tuple

older than I1[200] and cause((O, u), I2) returns a tuple older than I2[100].

If the primary fails, the backup takes over by sending the logged tuples to all downstream

neighbors and continuing its processing. When the failed server rejoins the system as the new

backup, it starts with an empty state and becomes up-to-date with the new primary only after

processing sufficiently many input tuples. Active standby guarantees no loss recovery since:
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Passive standby
Q. network bw overhead proc overhead rec time
Deterministic none negligible none
Arbitrary none negligible none

Active standby
Q. network bw overhead proc overhead rec time
Deterministic none negligible r
Arbitrary determinants determinants r + f5(log. freq.)

Upstream backup
Q. network bw overhead proc overhead rec time
Repeatable f(k)∗size(tuple id)

size(tuple) negligible none

Convergent f(k)∗size(tuple id)
size(tuple) double negligible

Arbitrary determinants determinants negligible

Table 3.4: Added Overhead for Precise Recovery

• input preservation - each backup always receives what its primary receives.

• output preservation - each backup discards logged output tuples only when they become du-

plicate.

Because backups process tuples in parallel with primaries, active standby provides repeating

recovery for all deterministic query networks and divergent recovery for others.

Recovery Time. Because the backup continues processing during failure, it only needs to transmit

all duplicate tuples in its output queue to reach a state equivalent to that of the primary. Recovery

time is therefore negligible. The number, ∆, of redundant tuples is on average Mλout

2 + 2dλout for

each output stream. M determines the trimming interval for the backup’s output queues.

Overhead. Because all processing is replicated by the backup server, both proc overhead and

bw overhead are approximately 100%. The overheads are actually somewhat higher due to the pro-

cessing of input-tuple indicators and transmitting queue-trimming messages. Table 3.3 summarizes

these results.

3.5 Extensions for Precise Recovery

Our recovery approaches can achieve precise recovery for convergent-capable query networks, by

eliminating duplicate tuples during convergence. It is also possible, though much more costly, to

provide precise recovery for arbitrary networks. Table 3.4 summarizes the extra runtime overhead

and recovery time required for precise recovery.

3.5.1 Passive Standby

Passive standby provides repeating recovery for deterministic query networks. To make recovery

precise, before sending any output tuples, the failover server must ask downstream neighbors for the
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identifiers of the last tuples they received and then discard all tuples preceding the identified ones.

These requests can be made while the recovery server regenerates the failed state, thereby achieving

precise recovery without additional delay. Given a non-deterministic query network, passive standby

in its original form provides divergent recovery. One solution to enforce precise recovery in this case

is to hold the outputs of the primary (while keeping them in output buffers) until the next checkpoint

completes. In this solution, the backup always possesses a state that has generated all the output

tuples that the primary has sent downstream. Thus, the backup can achieve precise recovery by

removing duplicates in its output buffers and sending downstream the tuples remaining in the buffers.

This solution, however, causes bursty output and increases output latency.

3.5.2 Active Standby

Given a deterministic query network, active standby can provide precise recovery by asking down-

stream servers for the identifiers of the latest tuples they received. The delay imposed by this request

cannot be masked and thus extends the recovery time by r. For other non-deterministic query net-

works, precise recovery requires that both the primary and backup produce the same outputs. To do

so, whenever a non-deterministic operator executes, the primary collects information that enables

the backup to run the operator identically. We call such information determinants [52]1. Sending

determinants from primaries to backups affects both bandwidth and processing overhead. The fre-

quency of sending determinants affects the recovery time because non-deterministic operators on

the backup cannot run until they obtain appropriate determinants. The frequency also affects the

output latency since the primary cannot send tuples downstream until the backup receives all the

determinants related to the tuples.

3.5.3 Upstream Backup

In repeatable query networks, operators produce output tuples by combining at most one tuple

from each input stream. Input-tuple indicators therefore uniquely identify tuples and can serve

for duplicate elimination, offering precise recovery with negligible extra processing overhead. For

a convergent query network, the backup must be able to remove duplicate output tuples during

recovery. It achieves this by using the additional high watermarks as discussed in Section 3.4.3.

This approach thus doubles the processing overhead. In both cases above, the extra bandwidth

overhead is approximately f(k)∗size(tuple id)
size(tuple) , where f(k) is a function of the average number of input

streams (at a server) that contribute to an output stream. As in active standby, upstream backup

can provide precise recovery for more complex query networks by logging determinants from primary

to backup. Unlike active standby, these determinants are processed only when the backup takes over.
1The representation of a determinant depends on the operator type. For example, determinants for Union must
include the exact inter-arrival order of input tuples through multiple inputs.
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Parameter Meaning Default
λ input tuple arrival rate (tuples/s) 1000
D delay to detect the failure of a server (ms) 250
M queue-trimming/checkpoint interval (ms) 50
r time to redirect input streams (ms) 40
Tuple size of a tuple and size of a tuple id (bytes) 50, 8
Network bandwidth(Mbps) and delay(ms) 16, 5
Proc. Cost avg. processing time per input tuple (µs)

Filter — 10
Aggregate (Proc. Cost of Filter) ∗Window ∗ 1

Advance 100
Selectivity expected value of # of output tuples emitted

# of input tuples consumed 0.1

Table 3.5: Simulation Parameters and Their Default Values

3.6 Evaluation

We evaluate and compare the performance of our recovery approaches, based on our Aurora/Borealis

prototype and a detailed simulator. The simulator was written in C++ using the CSIM [96] library.

Table 3.5 summarizes the main simulation parameters. Some of the parameter values were obtained

from our Aurora/Borealis prototype. Each point in Figures 3.8 and 3.9 is the average of 25 simulation

runs, at least one simulated minute each. Because amnesia has no overhead and a zero recovery

time, while providing only gap recovery, we focus our evaluation on the other three approaches.

We first examine the overhead and recovery performance of each approach for no loss recovery

(Section 3.6.1). We then evaluate the added overhead of achieving precise recovery (Section 3.6.2)

and examine the effect of query network types and other query network properties on the performance

of each approach (Sections 3.6.3, 3.6.4, 3.6.5). Finally, we examine how performance changes as a

function of query network size (Section 3.6.6).

3.6.1 Runtime Overhead vs Recovery Time

We observe the runtime overhead and recovery time tradeoffs using results from our Aurora/Borealis

prototype. The first operator that we examined was an Aggregate that processed a wide-area TCP

packet trace [15]. The input rate of the operator was 2.0K tuples/sec on average. The operator

groups packets by source IP address while counting the number of packets using windows of 20

seconds that appear every 1 sec. The processing load of the operator was approximately 3% on our

AMD Sempron 2000+ CPU with 1GB main memory.

Figures 3.6 and 3.7 show the CPU and bandwidth costs of our recovery techniques for the

Aggregate operator. We can see that the CPU and network overhead of upstream backup is near

zero because the backup is idle during non-failure periods. The recovery time in this case, however,

is approximately 0.6 seconds since the backup during recovery has to reprocess 20 seconds (i.e., the

window size) worth of input tuples and processing 1 second worth of these tuples while fully utilizing

the CPU would take 0.03 seconds.

In contrast to upstream backup, active standby uses 100% more CPU and network resources
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Figure 3.6: CPU Overhead and Recovery Time
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Figure 3.7: Bandwidth Overhead and Recovery

because the backup receives/processes data as the primary. Despite this penalty, active standby

provides very fast recovery since the backup is always up-to-date.

Figures 3.6 and 3.7 also illustrate how the runtime overhead and recovery time of passive standby

vary as we change the checkpoint interval. Initially, the Aggregate operator was checkpointed every

10 seconds. The average recovery time in this case is 0.15 seconds because the backup is 5 seconds

stale on average and using the CPU only to reprocess 1 second worth of input tuples would take 0.03

seconds. As the checkpoint frequency increases (i.e., checkpoint interval decreases), the recovery

time decreases because the backup in general becomes more up-to-date. The runtime overhead,

however, increases as more changes in the primary’s state are sent to the backup.

As Figures 3.6 and 3.7 present, the cost of checkpointing a Join operator is not very sensitive to

the checkpoint interval. This is because the operator maintains an append only data structure in

its state and thus any element in the state is checkpointed at most once.

Figure 3.8 illustrates supplementary results that we obtained from our simulator. For this evalu-

ation, we assumed that an Aggregate with a window size of 100 ms and a step size of 10 ms consumes

10% of a server’s processing capacity. For other parameters, we used the default values.

The only tunable parameter for each approach is the communication interval. In upstream

backup and active standby, this interval corresponds to the queue-trimming interval. In passive

standby, it represents the checkpoint interval. Figure 3.8 shows the relation between recovery time

and bandwidth overhead as the communication interval varies from 25, to 50, 100, 150, and 200 ms.

In terms of the runtime overhead, upstream backup is the clear winner with an overhead close to

zero. Even with a 25 ms communication interval, the server transmits only one 8-byte tuple identifier

for every 25 tuples it receives, leading to an overhead of 0.64%. Upstream backup, however, has

the slowest recovery speed because it must recreate the complete state of the failed query network.

Compared to others, upstream backup’s recovery time is the most sensitive to the communication

interval. Frequent queue trimming reduces recovery time for a negligible added overhead until the

size of the query network and the time to redirect the input streams (r is 40 ms in our prototype)
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eventually limits the recovery speed. In all of the cases, upstream backup’s recovery time is relatively

short compared to the 250 ms failure detection delay.

Active standby has an overhead of at least 100% because the backup receives all input tuples in

parallel with the primary. Queue-trimming messages to discard output tuples from the backup make

the overhead slightly exceed 100%. The main advantage of active standby is that it has the fastest

recovery speed (i.e., it has a negligible recovery time). During recovery, the backup only needs to

resend half the queue-trimming interval worth of duplicate tuples stored in its output queues.

In terms of recovery speed, passive standby ranks between active standby and passive standby.

In passive standby, the backup already has a snapshot of the last checkpoint but must re-process, on

average, half the checkpoint interval worth of tuples. Passive standby’s overhead varies significantly

with the checkpoint interval because each checkpoint message contains the change in the query

network state since the last checkpoint. In Figure 3.8, the knee at the 100 ms communication

interval represents that the size of each checkpoint message does not grow if the interval gets longer

than 100 ms (due to the 100 ms window size of the Aggregate). The curve would be smoother for a

larger window size.

3.6.2 Cost of Precise Recovery

Figure 3.8 also presents the recovery time and runtime overhead of precise recovery. In passive

standby and active standby, precise recovery of convergent-capable query networks adds no runtime

overhead compared to no loss recovery. Precise recovery increases the runtime overhead of upstream

backup by slightly over 16% (equal to k∗size(tuple id)
size(tuple) , with k = 1 and size(tuple id)

size(tuple) = 8
50 = 0.16)

because watermarks are now sent downstream. The overhead thus still remains much lower than
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Query Network
Type

Result Upstream
Backup

Active
Standby

Passive
Standby

Repeatable Bw overhead (%) 0.64 100.96 101.27
Rec. time (ms) 47.62 1.80 45.88

Convergent- Bw overhead 0.64 100.96 111.55
capable Rec. time 69.86 0.07 48.88
Non- Bw overhead 1.28 101.91 101.90
deterministic Rec. time 50.92 1.82 47.24

Table 3.6: Effects of Query Network Type

that of the process-pair based approaches.

In upstream backup and passive standby, the precise recovery time is almost the same as the

no loss recovery time. For precise recovery, upstream backup must process additional offset indica-

tors. This, however, adds negligible delay. In all of the three approaches, backup servers must ask

downstream neighbors for the latest tuples they received. In upstream backup and passive standby,

this communication proceeds in parallel with the re-processing of tuples at the backup server. In

contrast, active standby cannot mask this delay, thus increases the recovery time by r (40 ms in

our prototype). In summary, all of the approaches can offer precise recovery for convergent-capable

query networks at a negligible extra cost.

3.6.3 Effects of Query Network Type on Recovery

We now examine the effects of query network types on the basic performance of no loss recovery.

Table 3.6 summarizes the recovery time and bandwidth overhead of each approach for a repeatable

Filter with selectivity 1.0, a convergent-capable Aggregate, and a non-deterministic Union that

merges two streams (500 tuples/second each) into a stream. Interestingly, the results show that

the type of the query network does not affect the overheads as well as the recovery times of the

approaches. In contrast, the size of the query network state and the rate and magnitude of the state

changes affect the overhead and recovery time of passive standby and the recovery time of upstream

backup. The reasons are as follows:

• Upstream backup and active standby use queue-trimming messages. The cost of managing

these messages (i.e., the overhead of these approaches) is determined by the relative rates of

these messages and tuples, rather than any other property of the query network. In Table 3.6,

the Union has a slightly higher overhead than others because it has two input streams at half

the rate each.

• The overhead of passive standby depends on the checkpoint frequency and the size of each

checkpoint message. The size of each checkpoint message is proportional to the magnitude

of changes in the query network state between consecutive checkpoints. In Table 3.6, the

Aggregate has the highest overhead because it has the greatest difference in state between

checkpoints.
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Window size (tuples) 100 200 300 400 500
PS overhead (%) 111.55 111.55 111.54 111.54 111.54
PS rec. time (ms) 48.9 51.7 54.6 60.0 63.9
UB rec. time (ms) 69.9 98.9 138.7 188.5 248.3

Table 3.7: Effects of Query Network State Size

Advance (tuples) 100 50 25 10 5
PS overhead (%) 102.6 103.6 105.6 111.6 121.5
PS rec. time (ms) 47.5 47.5 47.6 48.8 51.6
UB rec. time (ms) 62.6 61.4 61.3 69.9 83.8

Table 3.8: Effects of Rate of Query Network State Change

• The recovery speeds of passive standby and upstream backup are determined by the amount

of tuples that the backup must re-processes during recovery. In both approaches, the recovery

speed thus depends on processing complexity. In upstream backup, the number of tuples that

the backup must re-process is affected by the size of the query network state. For these reasons,

the Aggregate has the longest recovery time with these approaches, particulary with upstream

backup. In passive standby, the increase in recovery time is negligible compared to the stream

redirection delay.

• The recovery time of active standby is determined by the amount of tuples that the backup

transmits from its output queues during recovery. The amount of these tuples depends on the

queue-trimming interval and the output rate of the query network. In Table 3.6, the Aggregate

has a faster recovery speed than other operators because it has a ten times lower output rate

due to its 10 ms step size.

3.6.4 Size of Query Network State

We examine the effects of increasing the size of the query network state for an Aggregate operator

with increasing window size (100 to 500 tuples) and a constant 10-tuple step size. Table 3.7 shows

the resulting passive standby (PS) overhead and both passive standby and upstream backup (UB)

recovery times.

Increasing the size of the query network state does not necessarily increase the rate at which that

state changes. In this experiment, the overhead of passive standby remains constant at 112%. The

recovery time of passive standby due to reprocessing tuples (the part in excess of 40 ms) increases

by about a factor of three when the size of the state quintuples. This increase is due to the heavier

per-tuple processing cost (i.e., as the aggregate values are computed over larger numbers of tuples).

The increase in recovery time is more pronounced for upstream backup. The time spent reprocessing

tuples increases roughly linearly with the size of the state.
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3.6.5 Rate of Query Network State Change

We examine the impact of increasing the rate at which the state of a query network changes. For

this, we decrease the step size of an Aggregate operator from 100 ms to 5 ms (i.e., increase the

selectivity from 0.01 to 0.2). Table 3.8 shows the impact of increasing the update rate in the query

network state on the overhead of passive standby and the recovery times of passive standby and

upstream backup.

As expected, the overhead of passive standby increases with the magnitude of changes in query

network state. The step size of the Aggregate determines the number of tuples that the operator

produces during a checkpoint interval. This number increases from 1 to 20 as the step size decreases

from 100 to 5 ms. The increase in per-tuple processing cost (due to a smaller step size) slightly

prolongs recovery (visible for a step size of 10 tuples of less). Although one might expect the same

effect to cause a slight increase in the recovery time of upstream backup, we observe a decrease

instead. The reason is that upstream backup periodically updates the identifiers of the oldest tuples

on each input stream that contribute to the current query network state. When the state changes

more rapidly, the older tuples are discarded faster and recovery restarts from a later point. This in

turn results in a faster recovery. For a small enough step size, however, the added processing cost

dominates the recovery time. As the step size reaches 10 ms, the recovery time starts increasing.

In summary, the size of the query network state increases affects backup’s recovery time. On the

other hand, the rate and magnitude at which that state changes impacts the runtime overhead of

passive standby.

3.6.6 Effect of Network Size

Increasing the size and complexity of the query network translates into increasing the size of the

query network state, the rate at which this state changes, and the processing complexity. As an

example, Figure 3.9 shows the performance of each approach for a chain of 1 to 5 Aggregate operators

(with the parameter values from Table 3.5). Other configurations yield similar results.

As expected, increasing the number of operators increases the overhead of passive standby be-

cause the number of tuples that are produced inside or at the output of the query network increases.

Larger query networks also slightly increase recovery time for passive standby because the processing

complexity of each tuple increases. The recovery time of upstream backup increases rapidly as the

state of the query network increases with each extra Aggregate. It reaches 170 ms for 5 operators,

which is still relatively short compared to the 250 ms failure detection delay. Interestingly, even with

a larger query network, upstream backup still provides precise recovery at a fraction of the cost of

the other approaches.

3.6.7 Discussion

The results show that each approach poses a clear tradeoff between recovery time and processing

overhead. Active standby, with its high overhead and negligible recovery time, appears particularly
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well suited for systems where quick recovery justifies high runtime costs (e.g., financial services,

military applications).

Passive standby is the only approach that easily provides precise recovery for arbitrary query

networks. It is thus best suited for applications, such as patient monitoring and other medical

applications, that impose a somewhat lower load on the system but necessitate precise recovery.

Additionally, both in our prototype and simulator, we make the first servers in the system adopt the

passive-standby model since other approaches impose extra requirements on stream sources: active

standby requires that each source sends the stream to two different locations and upstream backup

requires that each source logs the tuples it produces. Passive standby can also withstand high load

situations by less frequent checkpoints (i.e., by trading off recovery speed).

Upstream backup provides precise recovery for most query networks with the lowest runtime

overhead but at the cost of a longer recovery. The recovery time of this approach, however, can be

significantly reduced by distributing the recovery load over multiple servers. In general, upstream

backup is appropriate when efficient resource usage is important, query stats are small, and moderate

recovery delays are tolerable.

3.7 Summary

In this chapter, we showed that the distributed and dataflow nature of stream processing applications

raises novel challenges and opportunities for high availability. We defined three recovery guarantees

and categorized operators based on their impact on the cost of providing these recovery guaran-

tees. Within this framework, we introduced three recovery approaches that provide the proposed

guarantees with different combinations of redundant processing, checkpointing, and logging.
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Using analysis and results obtained from our Aurora/Borealis prototype and a detailed simula-

tor, we quantitatively characterized the runtime overhead and recovery time tradeoffs among the

approaches. We also found that each approach covers a complementary portion of the solution

space. Active standby provides the fastest recovery but at a high cost. It is thus best suited for

environments where fast failure recovery (i.e., minimal disruption) justifies higher runtime costs.

Passive standby can easily provide precise recovery for arbitrary query networks. It can also balance

the recovery speed and resource usage by adjusting the checkpoint interval. Compared to these

approaches, upstream backup has a significantly lower runtime overhead but a longer recovery time

that depends mostly on the size of the query network state. This approach is thus appropriate for

an environment where failures are infrequent and moderate recovery delays are tolerable.



Chapter 4

Highly-Available Stream

Processing in Server Clusters

In this chapter, we devise a parallel recovery solution for server clusters. While the methods in

Chapter 3 mask a server failure by failing over to a dedicated server, our approach in this chapter

enables multiple servers to collectively take over the failed execution, realizing significantly faster

recovery. This approach also has low negative impact on regular processing because it uses idle

resources to conduct short-duration tasks for high availability.

To maintain backups spread over multiple machines, the developed technique uses checkpointing,

which periodically copies any change in state to the backups. The reason for using checkpointing

for server clusters is that checkpointing effectively works for a larger set of workload and usage

cases than other alternatives that are based on either replay or redundant parallel execution (see

Sections 4.1 and 4.6.3 for a detailed discussion). For example, checkpointing can gracefully deal

with situations where the processing load nearly reaches the system’s capability, whereas redundant

execution (i.e., active standby) always requires at least half the resources to be available and devoted

to high availability.

In this chapter, we tackle the following subproblems.

• Query Partitioning. Each server needs to partition its query graph into several subgraphs so

that each subgraph can be assigned a different backup server. Because we each time checkpoint

only one of these subgraphs, we call these subgraphs checkpoint units. We study the problem of

forming checkpoint units as well as preserving safety against failures while the system reforms

these units.

• Backup Assignment. We need an algorithm that finds an appropriate backup server for

each checkpoint unit. Our backup assignment algorithm balances the checkpoint load and

minimizes the expected recovery time.

• Checkpoint Scheduling. Because we rely on checkpointing for high availability, we need a

46
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method that determines the order and the frequency of checkpoints. Our scheduling algorithm

takes into account the characteristics of operators such as processing load and checkpoint cost.

In summary, our cooperative, fine-grained recovery approach has the following advantages.

1. Since the recovery load is distributed and balanced over multiple servers, the approach can

take advantage of parallelism during recovery. This significantly improves the recovery speed.

2. Each server checkpoints only a small fraction of its query graph at each step. Therefore,

compared to the previous techniques that checkpoint the entire state of a server, a checkpoint

defers processing for a much shorter duration.

3. Each server strives to fully use its spare CPU cycles (i.e., those left after regular processing)

to maximize the recovery speed.

4. If a server fails, each backup server takes over only a fragment of the query graph from the

failed server. After recovery, each server thus experiences only a small increase in its processing

load.

5. The framework is adaptive and does not require human administration (e.g., no primary/backup

designation).

The rest of this chapter is organized as follows. We devise our backup framework in Section 4.1

and discuss forming checkpoint units in Section 4.2. Next, we present algorithms for checkpoint

scheduling and backup assignment in Sections 4.3 and 4.4, respectively. In Section 4.5, we analyze

stream processing operators and design efficient delta-checkpointing techniques. We demonstrate

the experimental results in Section 4.6 and provide a summary of this chapter in Section 4.7. In

Section 4.8, we formally define some important terms used in this chapter.

4.1 Our Backup Model

Each high-availability method described in Chapter 3 has unique benefits in terms of resource usage,

recovery speed, recovery semantics, and the impact on regular processing. In this chapter, we focus

on checkpointing (i.e., passive standby) as the underlying high-availability method. As we argue

below, our choice is primarily due to the observation that checkpointing can effectively address a

larger set of workload and configurations than other alternatives:

• Despite its fast recovery speed, we do not use active standby for server clusters. This is because

it may not withstand high load situations that checkpointing can tolerate. In active standby,

backups must consume the same amount of resources as primaries. In contrast, checkpointing

requires far less resources because it each time copies only the difference between the current

state and the state at the time of the previous checkpoint. For example, to checkpoint an

Aggregate operator, we need to copy only the most recent summary value rather than all
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the summary values overwritten since the last checkpoint. Similarly, checkpointing need not

capture the values that newly entered but left the state of operators and the queues between

operators.

• We do not use upstream backup as the general high-availability approach for server clusters.

The reason is that it cannot not adequately support operators with large states. During

recovery, for example, the backup of an operator with a window size of 10 minutes must

re-process 10 minutes worth of input tuples.

The arguments above are experimentally demonstrated in Sections 4.6.2 and 4.6.3. As mentioned

in Section 3.6.7, checkpointing also has an advantage that it can easily handle non-deterministic

operators, whereas the other alternatives require complex solutions.

In this section, we state the assumptions behind our work. We also describe our recovery frame-

work as well as its operation during non-failure and failure periods.

4.1.1 Assumptions

• System Configuration. We assume that a large number of servers are grouped into logical

clusters (e.g., those of 5-20 servers) and study how the servers in each cluster can cooperate

with each other to achieve fast failure recovery.

• Communication. We assume that servers are connected with a fast, reliable network (e.g.,

gigabit LAN). The communication protocol guarantees robust message delivery and also pre-

serves message ordering. We do not consider network failures that isolate server clusters [22].

• Failure Model. We assume that all servers are subject to failure and a failed server stops

functioning (i.e., fail-stop). We also assume that a server failure is a rare event and thus aim at

protection against single server failures. It is generally acknowledged that a 1-safety guarantee

is sufficient for most real-world applications [62].

• Processing Load. We assume that the overall processing load is most of the time under

the system’s processing capability and well balanced over the servers [149, 148]. Based on

this assumption, we focus on developing techniques that can use idle CPU cycles for high

availability. We do not consider medium- to long-term overload situations because they in

general necessitate load shedding [134] to favor timeliness over correctness, contradicting the

principle of high availability.

4.1.2 The Basic Architecture

In distributed stream processing, stream operators are distributed over multiple servers in a scalable

manner [41, 120, 149]. We call the mapping between the operators and the servers that execute

them a query deployment plan. Formally, given a set of servers {Si}ni=1 and a query network Q (i.e.,
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Figure 4.1: The Backup Model

the union of all queries submitted), we denote a query deployment plan with {Qi}ni=1, where each

Qi represents the set of operators that server Si runs. We call Qi the query on server Si.

Once the system launches the query network, the query on each server can be viewed as a set of

connected subgraphs. In Figure 4.1, on server S1, a Filter (σ), a Map (µ) and an Aggregate (Σ) form

a subgraph u1. We call such a maximal connected subgraph a checkpoint unit. The reason behind this

is that we take such a subgraph as an atomic unit for checkpoint because checkpointing only part

of it would yield an inconsistent backup image. Notice that, for a chain where operator o1 outputs

to o2, checkpointing only o1 will leave (on the backup server) an image that would result from an

invalid execution where some recent output of o1 disappears without being fed into o2. Hereafter,

we specify the query deployment plan in terms of checkpoint units. In Figure 4.1, Q1 = {u1, u2, u3},
Q2 = {u4}, and so forth. Operators that belong to a checkpoint unit are called constituent operators.

We also regard that checkpoint units on the same server are independent (i.e., can be checkpointed

onto different servers at different times) because they have no interdependency with each other. A

backup assignment, a mapping between checkpoint units and their backup servers, is denoted by

{Qi,j : i 6= j, 1 ≤ i, j ≤ n}, where Qi,j is the set of checkpoint units that server Si executes and

server Sj backs up (i 6= j implies that a server cannot back up itself). In Figure 4.1, Q1,2 = {u1, u2},
Q1,3 = {u3}, and Q2,3 = {u4}. u′3 and u′4 are the backup images built by checkpointing u3 and u4

onto S3, respectively. Each shaded area Qi,j represents the collection of backup images that Sj

maintains for Si.

It should be noted that the formation of checkpoint units will significantly affect the behavior of
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our parallel recovery framework. We discuss this issue in Section 4.2.

4.1.3 No Loss Guarantee

Our parallel recovery framework masks a server failure by making other servers in the cluster col-

lectively rebuild the latest state of the failed server. For this model, we assume that a backup can

precisely repeat the pre-failure execution of its primary as long as it can obtain the input tuples

that the primary has processed since the last checkpoint. Providing this guarantee for all kinds of

stream processing operators including nondeterministic ones is discussed in Section 3.5.

In Figure 4.1, if S2 fails, the processing that involves u4 no longer continues. In this case, S3

has to take over the processing because it is the only server that possesses the backup image u′4 of

u4. In more detail, S3 has to set up a new connection S′ to feed its backup image u′4 and start

executing u′4 to recover the state of u4. To prevent data loss in this case, each backup image must be

able to obtain the tuples that the primary has processed since the last checkpoint. In other words,

if S2 processed tuple t100 after checkpointing u4 onto S3, u′4 on S3 must be able to receive that

tuple through S′. For this reason, each checkpoint unit has output queues, one for each output, to

retain such tuples (i.e., those that the downstream backups are currently missing). Those tuples

can be safely discarded when the downstream server processes them and checkpoints the effect onto

the backup server. In our current implementation, both output queues and backup images are built

in memory. This implementation can be extended to spill those components to disk under memory

contention.

4.1.4 Non-Failure Time Operation for High Availability

As stated in Section 4.1.1, we assume that each server has spare CPU cycles and uses them for high

availability purposes. An idle server (i.e., one that has no tuples to process at the moment) can

perform one of the following tasks:

• Capture: The server chooses a checkpoint unit and sends to the backup server a message

that captures the delta in the state (i.e., the difference between the current state and the state

at the time of the previous checkpoint). We use the terms capture and checkpoint message,

respectively, to refer to the task and the message that the task constructs.

• Paste: The server chooses one of the checkpoint messages that it received, and copies the

content of the message to the corresponding backup image. We call this task paste. Once a

paste finishes, the server notifies the sender of the checkpoint message (i.e., the primary server

of the checkpoint unit). This enables the next round of checkpoint for that unit.

In the rest of this section, we describe checkpoint tasks in detail. We discuss the problem of

scheduling them in Section 4.3.

Contents of a Checkpoint Message. If a server begins capturing a checkpoint unit at an idle

time, the input queues of the checkpoint unit (i.e., those of the constituent operators) are empty.
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For this reason, the server skips input queues and captures only the constituent operators and output

queues. The details of capturing stream processing operators are discussed in Section 4.5. It should

be noted that only a small part of each output queue needs to be captured. In Figure 4.1, for

example, if S2 acknowledged to S1 that it received t101, S1 needs to capture only t102 among the

tuples in the output queue of u3. With t102, the output queue of u′3 on S3 can guarantee that S′′,

a stream that will flow if S1 fails, will not miss any tuple.

Checkpoint vs. Processing. Once a capture task begins, the server defers stream processing

(i.e., only buffers arriving input tuples) until the capture ends. This is because (1) executing a

checkpoint unit while it is being captured might introduce inconsistency in the captured image (i.e.,

capture and processing conflict semantically) and (2) interrupting a capture to execute other units

will further suspend the checkpoint unit currently being captured. If an exceptional input burst

appears during a capture, it may be desirable to abort the ongoing capture and immediately resume

the processing to bound the growth of the latency. However, such an abortion is not always useful

because the change in state tends to grow over time (i.e., a later capture is usually more expensive).

In contrast to capture, paste can be interrupted to execute other operators. Notice that this task

on backup can be done in parallel with the execution of stream processing operators.

Once a capture finishes, a processing burst appears until the buffered input tuples are consumed.

Conceptually, the duration of capture (i.e., capture cost) implies the penalty of high availability

(i.e., the additional processing latency due to capture). Furthermore, both the capture cost and

the server’s processing load affect the duration of the processing burst as well as the checkpoint

interval. In practice, we can set a lower bound on the checkpoint interval to prevent checkpointing

too frequently (i.e., to trade off processing against high availability). We can also set an upper bound

that forces a checkpoint to bound the growth of recovery time (i.e., to trade off high availability

against processing).

4.1.5 Failure and Recovery

In our parallel recovery framework, each server Si is monitored by a designated server that period-

ically (e.g., every 100ms) pings Si. If Si does not respond for a timeout period (e.g., 300ms), the

server assumes that Si has failed and broadcasts this to the other servers in the cluster. Each of

these notified servers then searches for checkpoint messages from the failed server and pastes those

messages to the corresponding backup images. Next, each server finds the backup images that it

has maintained for the failed server and begins executing them as its new units, while redirecting

the input and output streams as described in Section 4.1.3. If these new units become up-to-date,

the server starts executing other units as well.

We use the term recovery to refer to the process during which the alive servers in the cluster

take the actions described above. When the servers collectively rebuild the latest state of the failed

server, we say that the cluster has recovered from the failure. Note that having recovered does

not necessarily imply being able to mask the next failure. This is because the system may not be

able to tolerate the next failure until it secures the checkpoint units taken over during recovery, by



52

checkpoints onto new backup servers. The period of instability refers to the amount of time, after

failure, until all checkpoint units are again protected. Finally, if the failed server comes back up, it

joins the system as a new member.

4.2 Formation of Checkpoint Units

As illustrated in Section 4.1.2, query deployment determines the formation of checkpoint units. We

start this section by showing that the load management principles for stream processing are also

beneficial to our parallel recovery framework. We then introduce a strategy that avoids managing

too many checkpoint units. Finally, we discuss preserving the safety guarantee while the system

reforms checkpoint units.

4.2.1 Impact of Load Management Principles

One principle of load management in stream processing is to distribute operators with highly cor-

related loads over different machines [149]. This is because placing them on the same machine will

make it more vulnerable to load spikes. Adjacent operators (i.e., those connected by data streams)

usually exhibit high load correlation. Therefore, unless they have very low processing load, we should

place them at different servers. Furthermore, operators with heavy processing load are usually split

into smaller pieces and distributed over multiple servers [41, 120] due to their negative impact on

load management (refer to [148] for quantitative analysis). For the two reasons above, each server

is likely to own many small-size operator chains (i.e., many fine-grained checkpoint units). This

is advantageous to our recovery framework because (1) more checkpoint units, in general, lead to

better backup distribution and (2) finer checkpoint units tend to have smaller capture costs (i.e.,

smaller disruption to processing). Note that checkpoint units with high capture costs can also be

split in order to lower the costs.

4.2.2 Merging Checkpoint Units

While having many checkpoint units is usually beneficial in terms of backup distribution, managing

too many checkpoint units may incur significant overhead. We address this problem by iteratively

merging checkpoint units with similar characteristics as long as the capture cost remains under a

threshold. In other words, we put all the operators that constitute those checkpoint units into a

new checkpoint unit, even though those operators do not form a connected graph. We use the

ratio of processing load over capture cost as the similarity metric. The reason behind this is that

our checkpoint scheduling strategy (described in Section 4.3) expedites recovery by more frequently

checkpointing units with high processing load and low capture cost. If we merge units that are dis-

similar in terms of the aforementioned ratio, we can no longer checkpoint them with the frequencies

that lead to the maximal recovery speed.
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4.2.3 Safety during Checkpoint Unit Reformation

Safety against failure has to be preserved even when the system reforms checkpoint units due to

operator splitting and migration. We achieve this by keeping the old backup images of the involved

checkpoint units, until the reformation completes and the newly formed checkpoint units are again

backed up. We describe the procedure for the following representative case. Suppose that an operator

ρ is migrated from server Sj to server Si and added (as a constituent operator) to a checkpoint

unit u on Si. In this case, the previous backup server S′
j for ρ has to keep its backup image ρ′ of

ρ until Si checkpoints the expanded version of u onto the backup server S′
i for u. This is because,

before the checkpoint, S′
j is only the server that possesses the backup image of ρ. S′

j can safely

remove its backup image ρ′ after S′
i receives the checkpoint message that captures u 3 ρ.

4.3 Checkpoint Scheduling

In our backup model, an idle server can perform either a capture task (i.e., among the units not

being checkpointed, choose one, compose a checkpoint message for that one, and send the message

to the appropriate backup server) or a paste task (i.e., among the checkpoint messages received,

choose one and copy the content of the message to the appropriate backup image). In this section,

we devise an algorithm that schedules such tasks in a manner that minimizes the expected recovery

time. We first discuss how we can find the capture task that will most reduce the expected recovery

time. Then, we describe how we choose the best from both capture and paste tasks. We conclude

this section discussing the key properties of our scheduling algorithm.

4.3.1 Choosing the Best Capture Task

A capture task first finds the difference between a checkpoint unit’s current state and its state at

the time of the previous capture and then sends the difference to the backup server. After this, the

backup server can freshen the backup image (i.e., reduce the amount of work to do during recovery)

by simply copying the delta received. However, as we describe below, the recovery time is heavily

dependent on how a server schedules capture tasks.

Figure 4.2 illustrates an example where server S1 checkpoints its units u1 and u2 onto S2, and

u3 onto S3 in a round-robin fashion. To ease illustration, we do not consider the paste tasks that S1

would perform and the capture tasks that S2 and S3 would do. We also ignore network latency and

assume that units on S1 have constant processing loads (in terms of CPU utilization): lu1(t) = 11%,

lu2(t) = 10%, and lu3(t) = 66.5% for all time t. Finally, we assume that those units have (1) constant

capture costs (in seconds): cu1(t) = 0.125, cu2(t) = 0.25, and cu3(t) = 0.125 for all time t and (2)

the same paste costs as capture costs: c′uk
(t) = cuk

(t) for k = 1, 2, 3. Notice that these costs are

the amounts of time that the CPU would take when it performs high-availability tasks in isolation.

The assumptions above are to ease illustration (refer to Sections 4.6.1 and 4.6.2 for the details in

real cases).
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S1

S2

S3

Figure 4.2: Recovery Time (Round-Robin)

S1

S2

S3

Figure 4.3: Recovery Time (Min-Max)

As described in Section 4.1.4, each capture (represented as a dark rectangle in Figure 4.2) defers

query processing. For this reason, a processing burst (represented as an empty rectangle) appears

after that. As mentioned before, the duration of such a burst, is a function of the capture cost

and the server’s processing load. For example, the duration of the burst after capturing u1 is
[capture cost][total load]

1−[total load] =
cu1(t)(lu1 (t)+lu2 (t)+lu3 (t))
1−(lu1 (t)+lu2 (t)+lu3 (t)) = 0.125·0.875

1−0.875 = 0.875 (seconds). The figure also

illustrates that each paste is deferred until its turn and, in contrast to captures, is interleaved with

query processing (refer to Section 4.1.4 and the stacks of grey and empty rectangles in the figure).

Figure 4.2 also demonstrates how the expected recovery time changes over time for various entities

such as units u1, u2, u3, segments Q1,2, Q1,3 and the query Q1 on server S1. We use the convention

that R∗(t) represents the expected amount of time to recover an entity ∗ if the primary for ∗ fails

at time t (the details are presented in Section 4.8.1). The figure shows that capturing u2 during

[5, 5.25] reduces Ru2(t) from 0.43 to 0.28 when it finishes at 5.25. Notice that when the capture is

about to complete, the expected amount of time to recover u2 is
∫ 5.25

1
lu2(τ)dτ = 0.43 because the

backup image u′2 on S2 has the state of u2 as of time 1. However, when the capture finishes at time

5.25, S2 receives a checkpoint message that captures u2 as of time 5. Therefore, if S1 fails, S2 will

take c′u2
(t) = 0.25 seconds to consume the checkpoint message and

∫ 5.25

5
lu2(τ)dτ ' 0.03 seconds to

replay the execution of u2 that occurred from time 5 to 5.25 on S1.

The capture task for u2 also reduces RQ1,2(t) by the same amount. This is because RQ1,2(t) =

Ru1(t) + Ru2(t) in the example, as u1 and u2 on S1 are backed up at S2. In contrast, the capture

task cannot reduce RQ1(t) (see the upper bound of the grey area). Notice that the system will

recover from S1’s failure only if both S2 and S3 recover segments Q1,2 and Q1,3, respectively.

Formally, RQ1(t) = max{RQ1,2(t), RQ1,3(t)}. However, capturing u2 ∈ Q1,2 does not reduce the

largest recovery load RQ1,3(t) on S3 (see in the figure that RQ1,3(t) > RQ1,2(t)). To reduce RQ1(t),

S1 at time 5 should have started capturing u3 ∈ Q1,3 (as in Figure 4.3) rather than u2 ∈ Q1,2.

Based on this observation, we design an algorithm that selects a task that will minimize the
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maximum recovery load among those spread over other servers. For this reason, we call our scheduling

algorithm “min-max”. In detail (also refer to Figure 1), each server Si looks for all checkpoint units

u ∈ Qi,j such that (1) u ∈ c-q and (2) RQi,j (t + cu(t)) = RQi(t + cu(t)), where c-q is a queue

that remembers the units that Si can checkpoint immediately (i.e., those not being checkpointed)

and t + cu(t) is the time when capturing u will complete. Condition (2) above implies that u’s

backup server will have the maximum recovery load when capturing u is about to finish. Among such

units, the server finds unit u∗ such that capturing it will most reduce the recovery time, relative to

the capture cost. As the metric for this, the server uses ∆Ru(t)
cu(t) for each checkpoint unit u, where

∆Ru(t) denotes the reduction in recovery time at the cost cu(t) of capturing u. We define ∆Ru(t) as∫ t

αu(t)
lu(τ)dτ−c′u(t), where αu(t) denotes the start time of the previous capture. In the definition of

∆Ru(t), the first and second terms represent the gain of reducing the recovery load (i.e., freshening

the backup image) and the penalty of consuming the checkpoint message, respectively. Notice that

our algorithm prefers checkpoint units with high processing load (see lu(τ) in the numerator of the

metric) and low checkpointing cost (see cu(t) and c′u(t) in the metric).

4.3.2 Capture vs Paste

In principle, a server conducts capture tasks to better prepare for the failure of itself and paste tasks

for the failure of others. To strike a balance between these goals, each server finds the task, whether

it is a capture or a paste, that will assist the segment with the largest recovery load. In detail,

server Si first computes RQi,j∗ (u∗, t), the expected recovery time for the moment when it finishes

capturing the best unit u∗ ∈ Qi,j∗ (details are presented in Section 4.8.2).

Then, for each backup segment Qj,i, it computes the expected recovery time for the moment

when it completely consumes the oldest pending checkpoint message from Sj (this FIFO order is to

abide by the decisions that Sj already made). Using u ∈ Qj,i to denote the unit captured in the

checkpoint message, we represent such expected recovery time as RQj,i(u, t) (again see Section 4.8.2

for the formal definition). If RQj,i
(u, t) > RQi,j∗ (u∗, t), we assume that backup segment Qj,i is less

prepared for failure than primary segment Qi,j∗ (i.e., the paste for u ∈ Qj,i is more urgent). The

server selects the best from capture and paste tasks based on this rationale.

4.3.3 The Complete Scheduling Algorithm

Algorithm 1 summarizes the min-max algorithm. Whenever a server forms a new checkpoint unit,

it pushes it into c-q (line 02). An idle server first finds the best capture task (lines 04-06). Next,

it attempts to find the paste task that is more effective than all others (including the best capture

task) (lines 07-11). Finally, it performs the best task found. If a capture task is chosen (lines 12-14),

the server composes a checkpoint message and sends it to the relevant backup server (lines 21-22).

If a paste task is chosen (lines 17-18), the server consumes the checkpoint message and then notifies

the completion of checkpoint to the primary (lines 26-27).
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Algorithm 1: Min-Max Scheduling (on server Si)

whenever server Si forms a checkpoint unit u ∈ Qi,j do1

c-q.push(u, i); // enqueue the unit2

whenever idle do3

C ← {(u, j) ∈ c-q : RQi,j (t + cu(t)) = RQi(t + cu(t))}4

find (u∗, j∗) ∈ C such that // find the best unit to capture5

∆Ru∗ (t)
cu∗ (t) = max{∆Ru(t)

cu(t) : (u, j) ∈ C}6

for each j (1 ≤ j ≤ n, j 6= i) do7

(u, ∆)← p-q[j].first() // oldest checkpoint msg from Sj8

if
(
RQj,i(u, t) > RQi,j∗ (u∗, t)

)
and9 (

u′ = null || RQj,i(u, t) > RQj′,i(u
′, t)

)
/* found the first or a better paste */ then10

(u′, j′,∆′)← (u, j, ∆) // remember the found paste task11

if (u′ = null) /* no paste is better than the best capture */ then12

capture(u∗, j∗); // do the best capture13

remove (u∗, j∗) from c-q;14

else15

// if there exists a paste better than the best capture16

paste(u′, j′,∆′) // do the best paste17

remove (u′,∆′) from p-q[j′];18

capture(u∗, j∗)19

begin20

copies into ∆ the recent change in u∗;21

Sj∗ .p-q[i].push(u∗,∆); // send ∆ to the backup22

end23

paste(u′, j′,∆′)24

begin25

copies ∆′ into u′;26

Sj′ .c-q.push(u, i); // notify the primary27

end28

4.3.4 Discussion

Our min-max algorithm selects the task that will most reduce the largest recovery load. Figures 4.2

and 4.3 show an example where our scheduling algorithm maintains the recovery time at a 30% lower

level than round-robin (in Section 4.6, we show the results from real test cases). The figures also

show that min-max takes a longer time than round-robin until it checkpoints each unit at least once

(we call such a period of time a checkpoint cycle). This is because min-max frequently checkpoints

units with high processing load and low checkpoint cost, yielding a non-uniform schedule. Figure 4.3

shows that the recovery time under min-max gradually increases until it eventually drops at the end

of a checkpoint cycle. This is because the backup images of uncheckpointed units get staler over

time.
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4.4 Dynamic Backup Assignment

In our parallel recovery framework, the recovery time depends on the checkpoint schedule as well

as on the backup assignment. For example, a server with too many backups can easily be the

bottleneck that delays the circulation of capture and paste tasks. If this happens, other servers

cannot efficiently use spare CPU cycles and thus will poorly prepare for failures. In this section,

we study how we can avoid this problem. We assume that servers with low backup load volunteer

to back up new checkpoint units as soon as they are formed in the system. Hereafter, we focus on

modifying the backup assignment to cope with varying system conditions introduced by operator

migration, changes in input rates, and other reasons.

4.4.1 Determining Backup Load Imbalance

In principle, our algorithm reassigns backups to assist the server whose failure will cause the longest

recovery. We call such a server the worst point of failure. We take this approach because (1) a

server usually becomes the worst point of failure due to unbalanced backup distribution and (2) it

is always advantageous to improve the worst-case disruption that a failure would cause. We use

Figure 4.4 to illustrate two typical cases of backup imbalance. We assume that S2 is the worst point

of failure and, to ease presentation, all the checkpoint units (i.e., those represented as dark small

rectangles) have the same processing load and checkpoint cost. Backup images are represented as

small dotted-line rectangles. Figure 4.4(a) shows the case where S2 has poorly assigned backups

(see that S1 backs up too much for S2). In this case, S2 can resolve the problem by transferring

part of S1’s backup responsibility to S3. Figure 4.4(b) shows another case where S2 maintains too

many backup images for others (see Q1,2 and Q5,2). In this case, S2 should not reassign backup

servers because it cannot handle the imbalance in backup load. Instead, a different server (say S5)

should balance the backup load for S2.

4.4.2 The Backup Reassignment Algorithm

Algorithm 2 summarizes our backup reassignment algorithm. At the end of epoch E (the period

required for every server to finish at least one checkpoint cycle), the servers in the cluster determine

the worst point of failure Si, based on the expected recovery times averaged over the epoch. We use

this periodic approach because (1) it is hard to know the recovery time in the average sense before

a checkpoint cycle ends (see Section 4.3.4) and (2) we should avoid changing backup assignment too

frequently. Note that checkpointing a unit onto a new backup server (i.e., a whole checkpoint) is

usually more expensive than an ordinary delta-checkpoint.

Server Si (the worst point of failure) first finds its segments Qi,j with the largest recovery load

and Qi,j with the smallest recovery load (note that RQi,j
(E) > RQi,j

(E) by definition). It also

finds another server Sk whose failure will result in the shortest recovery (line 02). If RQi,j
(E)<

RQk
(E), Si assumes that Sj is assigned too low backup load and accordingly balances the backup

load between Sj and Sj (lines 06-07; in Figure 4.4(a), Sj and Sj correspond to S1 and S3,
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Figure 4.4: Backup Reassignment

respectively). Otherwise (line 08), it assumes that it has too many backup images. Thus, it locates

a different server Sk that will effectively balance the backup load between Si and Sk (lines 10-11).

In Figure 4.4(b), Sk corresponds to S5. Si and Sk correspond to S2 and S4, respectively.

The move(j, j) phase in Algorithm 2 shows the details of reassigning backup servers. In the

algorithm, hu(E) denotes the total CPU cycles used for updating the backup image of unit u during

epoch E (we call this quantity the backup load of unit u). Similarly, hQi,j
(E) represents the backup

load of segment Qi,j . To balance the backup load, Si first computes the amount of backup load ∆h

to move from segment Qi,j to segment Qi,j (line 14). Then, it reassigns backup servers until the

amount of backup load transferred reaches ∆h (15-19). Note that this move phase only chooses

the new locations to put backup images. The first checkpoints after reassignment in fact create the

backup images.
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Algorithm 2: Backup Reassignment
whenever epoch E ends (On server Sī with the highest recovery time) do1

Find k, j, j such that2

RQi,j
(E) = maxn

j=1 RQi,j
(E)3

RQi,j
(E) = minn

j=1 RQi,j
(E)4

RQk
(E) = minn

k=1 RQk
(E)5

if RQi,j
(E) < RQk

(E) /* the backup load is unbalanced */ then6

move(j, j) // balance the backup load7

else8

// Sī has too many backup images9

find k = arg maxn
k=1

[
RQk,i

(E)−RQk,k
(E)

]
10

Sk.move(i, k) // let Sk balance the backup load11

Si.move(j, j)12

begin13

∆h←
Ri,j(E)−Ri,j(E)

Ri,j(E) hQi,j
(E) // backup load to transfer14

for each u ∈ Qi,j do15

if hu(E) ≤ ∆h /* found a checkpoint unit to reassign the backup */ then16

∆h← ∆h− hu(E) // update the backup load to move17

Qi,j ← Qi,j − {u} // reassign the backup server18

Qi,j ← Qi,j ∪ {u}19

end20

4.5 Delta Checkpointing

An efficient checkpointing mechanism will shorten the duration of capture and paste tasks. This

implies better runtime performance (because the disruption to processing will decrease) and faster

recovery speed (because more frequent checkpoints will be possible). In this section, we describe

how to implement efficient, operator-specific delta-checkpointing techniques based on the details of

operators. We also construct cost models relevant to these techniques. In Section 4.6, we demonstrate

that checkpoint costs can be estimated accurately relying on the cost models. We also show that

our min-max algorithm performs well due to such accurate cost estimations.

As described in Section 4.1.4, capturing a checkpoint unit requires incorporating the states of

constituent operators and, for each output queue, a round trip worth of tuples. The latter however

can be ignored safely by holding the checkpoint message until the downstream servers acknowledge

the receipt of the tuples. Thus, we can represent the cost cu(α) of capturing a checkpoint unit u

as
∑

ρ∈u cρ(α), where α is the start time of the capture task and cρ(α) is the cost of capturing the

internal data structure of a constituent operator ρ. Because stateless operators will not incur any

checkpoint cost, we design (and analyze) the delta-checkpointing methods for two representative

stateful operators, Aggregate and Join.
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4.5.1 Aggregate

Aggregate splits input stream I into substreams {I[g]}, one for each group-by value g. For each

substream I[g], it assumes windows (sets of tuples) of w seconds that appear every s seconds (we can

also define windows in terms of counts of tuples). Whenever a window expires, the operator outputs

an aggregated value computed from the tuples contained in the window. In more detail, for each

input tuple, the operator (1) reads (from the tuple) timestamp t and group-by value g. Next, the

operator (2) uses its “map” to quickly locate the list of windows associated with g (if none exists,

it creates a new list), and (3) determines if it needs to add new windows (e.g, if the timestamp t

of the tuple is 401.5 and the timestamp of the most recent window is 400, an Aggregate with step

size s of 1 second will add a window anchored at time 401). Then, the operator (4) iterates over the

windows in the list updating the summaries (e.g., counts, sums, or histograms) that those windows

maintain. Finally, it (5) closes expired windows while sending their summaries as output tuples.

Delta-Checkpointing. We use one dirty bit for each group-by value to mark those that have

appeared since the last checkpoint (we clear dirty bits at the end of capture). We also use one dirty

bit for each window to indicate whether or not it was created after the last checkpoint. To capture an

Aggregate, the primary server finds all the windows associated with group-by values with their dirty

bits on. Next, it copies into the checkpoint message (1) the entire content of each window with its

dirty bit on (full capture for new windows) and (2) only the summary of each window with its dirty

bit off (partial capture for updated windows). When the backup server consumes the checkpoint

message, it checks the captured window images in the message. For a fully-captured image, it creates

a new window from the image and associates the window with the appropriate group-by value (i.e.,

full paste). Otherwise, it copies the partial image onto the corresponding window that already exists

in the operator (i.e., partial paste).

Cost Model. We can represent the cost of capturing this operator as Cncf +Cucp, where Cn is the

number of windows created after the last checkpoint, Cu is the number of updated windows, and cf

and cp are the costs of fully and partially capturing a window, respectively. We can similarly define

the paste cost using per-window full/partial paste costs.

4.5.2 Join

Join has input streams I1 and I2. This operator searches for all pairs of input tuples (one from each

input stream) that (1) belong to the same window of size w and (2) match the predicate defined

for the operator. Whenever the operator finds such a pair of matching input tuples, it produces the

concatenation of them as an output tuple.

Delta-Checkpointing. Since the recent change in state is the tuples newly entered the window,

each checkpoint captures those tuples. It also captures the upper bound of the tuples that have left

the window so that the backup server can remove those tuples from the backup image.

Cost Model. The number of tuples that have entered the window since the last checkpoint

can be represented as (λ1 + λ2) min (t− α, w), where t is the current time, α is the start time
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of the last checkpoint, and λ1 and λ2 are the input rates (i.e., the number of input tuples per

second) of input streams I1 and I2, respectively. Therefore, the capture cost can be expressed as

(λ1c1 + λ2c2) min (t− α, w), where c1 and c2 are the cost of capturing a tuple from input streams

I1 and I2, respectively. We can similarly define the paste cost.

4.6 Experimental Results

In this section, we describe experimental results obtained from our Borealis prototype [22, 1] and a

detailed simulator. First, we describe how we set up the experiments (Section 4.6.1). Next, based

on the results from Borealis, we investigate how the cost of checkpointing varies depending on the

frequency of checkpoints (Section 4.6.2). We also demonstrate how our technique effectively reduces

the recovery time while being minimally intrusive to regular query processing (Section 4.6.3). Finally,

we present supplementary results obtained from the simulator (Section 4.6.4).

4.6.1 The Setup

In our experiments, we used a five server cluster where a 1GBps router interconnects servers with

an AMD Sempron 2800+ CPU and 1GB main memory. We used two different input streams. The

first (Type 1) is a wide-area TCP trace obtained from [15]. We extract the timestamp and the

source-IP address from each packet to form an input feed that runs at 2.0K tuples/sec on average.

As commonly observed, the trace has a widely varying stream rate (std = 0.7K tuples/sec) and its

source-IP addresses have a highly skewed distribution. The second (Type 2) is an artificial input

stream with a source-IP-address field that ranges uniformly from 0 to 99, with a constant stream

rate of 100 tuples/sec. These two input streams were designed to represent dissimilar loads.

Our test query consists of Aggregate operators each of which every second counts the number of

tuples for each source-IP address over a window of 10 seconds. We form a checkpoint unit for two

parallel Aggregates fed by a single input stream. On each server, we generate four checkpoint units

with input type 1 and another four checkpoint units with input type 2. It should be noted that we

use Aggregates since they are commonly implemented as described in Section 4.5.1 and therefore

allow us to obtain results with generality. In contrast, the implementation of Join varies drastically,

leading to significantly different processing loads for the same input. In Section 4.6.3, we show how

sensitive the recovery time is to processing load.

4.6.2 Checkpointing Costs

In this experiment, we vary the frequency of checkpoints and observe how the cost of checkpointing

an Aggregate operator varies both on primary and backup (Figure 4.5). As expected, when the

checkpoint frequency decreases (i.e., the interval increases), both the time to form a checkpoint

(capture cost) and the time to consume a checkpoint (paste cost) increase. This is because the state

of the primary will increasingly diverge from the state of the previous checkpoint. Notice that the
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Figure 4.5: Checkpoint Costs

curves for the type 1 Aggregate have jitters, showing how much the checkpoint cost may vary each

time due to the burstiness of real packet streams. The figure also shows that type 1 Aggregate has

a relatively lower checkpoint cost than type 2 Aggregate: although the checkpoint cost of type 1

Aggregate is approximately twice higher than the checkpoint cost of type 2 Aggregate, the type 1

Aggregate has a significantly higher processing load than the type 2 Aggregate due to its 20 times

higher input rate. The reason for the type 1 Aggregate to have a relatively lower checkpoint cost is

that it maintains relatively fewer windows as the group-by values have a very skewed distribution.

The curve labeled “aggr(input 1, estimated capture)” shows that we can accurately estimate the

checkpoint cost. Notice that this is important because our min-max algorithm operates on the basis

of cost estimations. In the experiment, the estimated per-window full and partial capture costs (in

Section 4.5.1, denoted as cf and cp) were 18.6 µsecs and 7.3 µsecs, respectively. We obtained these

estimated values by linear regression over a collection of triples [# new windows (Cn), # updated

windows (Cu), capture cost (Cncf + Cucp)]. The estimated per-window full and partial paste costs

(in Section 4.5.1, denoted as c′f and c′p) were 30.2 µsecs and 7.2 µsecs, respectively.

The figure also shows the bounded nature of operator states: all curves tend to plateau after a

10 second checkpoint interval mainly because the operator can contain at most a 10-second worth

of tuples. The curves for the type 2 Aggregate flatten out after a 1-second interval, as its input

creates at most 100 group-by values. The gradual increase of those curves between 1 and 10 seconds

accounts for the increase of new windows created after the previous checkpoint. Note that the type

1 Aggregate does not show such flattening (as it continuously observes new IP-addresses) until the

checkpoint interval surpasses the window size. The figure also shows that paste costs are usually

higher than capture costs because the backup allocates new windows (observe c′f > cf ).

Finally, the difference between aggr(input 1, paste) and aggr(input 1, replay) shows the benefit
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Figure 4.6: Recovery Time

of checkpointing over active standby. In particular, aggr(input 1, replay) shows how long the backup

has to run to make up-to-date the stale backup image used in the corresponding checkpoint case.

Checkpointing uses much fewer CPU cycles due to the reasons in Section 4.1 and the bounded nature

of operators as argued above.

4.6.3 Recovery Time and End-to-End Latency

In this experiment, we study how the expected recovery time and end-to-end latency change due

to checkpoints. We increase the stream rate of type 1 input uniformly from 0 (at time 0) to 2.0K

tuples/sec (at time 150) while fixing that of type 2 input at 100 tuples/sec. After time 150, type 1

input is fed as described in Section 4.6.1 and each server is utilized approximately 90% for processing.

We deployed a query network of 16 Aggregates on each of the five homogenous servers. On each

server, we formed one checkpoint unit int the “whole checkpointing” case and 8 checkpoint units

(as described in Section 4.6.1) in all the other cases. The checkpoint units were uniformly assigned

backup servers to avoid imbalance in backup load.

Figure 4.6 shows how the expected recovery time changes as the input rate increases. We can

see that active standby cannot withstand as the overall processing load increases beyond 50% of

the cluster’s computation capability (in the figure, backup processes start to fall behind after time

70 as they no longer can use the same amount of resources as primary processes). On the other

hand, checkpoint-based methods continue their operations. In general, recovery time is sensitive to

increase in processing load because (1) the recovery load increases and (2) fewer spare CPU cycles

can be used for high availability. Both round-robin and min-max exhibit significantly faster recovery
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Figure 4.7: End-to-End Processing Latency

speed than whole checkpointing because the recovery load is distributed over multiple servers. Min-

max achieves the fastest recovery speed by more frequently checkpointing Type 1 units than Type

2 units. The jitters in Figure 4.6 occur when Type 2 units eventually get checkpointed near the end

of a checkpoint cycle (refer to Section 4.3.4).

Figure 4.7 shows how the capture and paste tasks affect query processing. We do not present

the curve for active standby because its latency variation is similar to the latency variation without

any high availability method. Notice that, to be fair, we assumed a distributed adaptation of the

basic active standby model that can flexibly trade off processing against high availability in overload

situations. The figure also shows that fine grained checkpoint techniques disrupt regular processing

much less than the standard whole checkpointing approach. Each spike in latency is introduced

by either a capture or a paste task. In terms of the impact on latency, round-robin is similar to

min-max.

4.6.4 Scheduling and Backup Assignment

Figure 4.8 shows how recovery time changes as we increase the number of servers for combinations of

scheduling algorithms (round-robin and min-max) and backup assignment techniques (random and

balanced). This result was obtained from our detailed Borealis simulator. Round-robin scheduling

and random assignment are considered to be the baseline cases. We compare the more robust

algorithms, min-max (see Section 4.3) and balanced (See Section 4.4), with the baseline.

The first thing to notice is that since we only assign eight checkpoint units to each primary

server, the recovery time does not improve as the number of servers increases past nine. At nine, each

checkpoint unit can be backed up on its own server. When we fix the scheduling policy, the difference
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Figure 4.8: Scheduling & Backup Assignment Effects

between the random placement and dynamic placement is significant, yielding approximately 50%

improvement in recovery time. This demonstrates the penalty of a random distribution in that such

a distribution will not be balanced in general, and the overall recovery time is bounded by the worst

case recovery time across all servers. Moreover, the scheduling algorithm can do better in assigning a

checkpoint frequency when the backup servers are well balanced. This has the effect of also reducing

recovery time as the checkpoint intervals will get smaller. Notice that min-max improves recovery

time by only 25% with random, whereas it improves recovery time by 50% with balanced.

4.6.5 Effects of Different Query Networks

In this experiment, we study how the recovery time changes as we vary the mix of checkpoint

unit types. Figure 4.9 shows that adding type 2 checkpoint units increases the processing load,

the overall cost of checkpointing, and thereby the recovery time as well. At the far left with zero

type 2 checkpoint units, round-robin and min-max have the same recovery time. In this case, all

the checkpoint units are identical, so there is no advantage to be gained from a smarter scheduler.

However, as we add different kinds of checkpoint units, min-max effectively bounds the increase in

recovery time by less frequently checkpointing the newly added checkpoint units (recall that type

2 checkpoint units have higher checkpoint costs and lower processing loads than type 1 checkpoint

units). In general, min-max does a better job than round-robin as the difference between checkpoint

units increases.



66

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

type−2 units/server (4 type−1 units/server)

re
co

ve
ry

 ti
m

e 
(s

ec
)

 

 

(round−robin, random)
(min−max, random)
(round−robin, balanced)
(min−max, balanced)

Figure 4.9: Query Network and Recovery Time

4.6.6 Processing Load

Section 4.6.5 varied the processing load by adding type 2 checkpoint units. In this section, we vary

the procession load by varying the input rates. In order to effectively compare the results from

both experiments, it is worth noting that our default configuration (4 type 1 checkpoint units and

4 type 2 checkpoint units lies on the x-axis of Figure 4.9 at point for 4 type 2 checkpoint units. In

Figure 4.10, the same point occurs at 78.4% processing load (67.2% for the 4 type 1’s and 2.8% for

each type 2). Each load point on the x-axis here increases by 2.8%, thus, corresponding directly to

the number of type 2 checkpoint units on the x-axis of Figure 4.9.

The plotted points in Figures 4.9 and 4.10 correspond to the same situations except that we are

adding load in different ways. While adding load as in Figure 4.10 will always increase recovery time,

adding checkpoint units with state as in Figure 4.9 will have an additional negative effect because of

the increase in checkpoint costs. Note that each point in Figure 4.9 is higher than its corresponding

point in Figure 4.10 for this reason.

4.7 Summary

In this chapter, we studied a checkpoint-based solution that addresses the needs of distributed stream

processing through a parallel fine-grained backup and recovery approach that incurs low overhead

and yields short recovery time. The key idea is to sub-divide the query at a given server into units

that can each be backed-up on a different server. The approach has the advantage that each unit can

be checkpointed separately and independently, thereby spreading out the checkpoint burden over

time. It also reduces the overall recovery time because each unit can be rebuilt in parallel, making



67

67.2 70 72.8 75.6 78.4 81.2 84
0

0.5

1

1.5

2

2.5

3

3.5

average processing load (%)

re
co

ve
ry

 ti
m

e 
(s

ec
)

 

 

(round−robin, random)
(min−max, random)
(round−robin, balanced)
(min−max, balanced)

Figure 4.10: Processing Load and Recovery Time

the total recovery time equal to the recovery time of the slowest backup piece.

In this context, we studied how to distribute the backup load in order to minimize the expected

recovery time. We also showed how our min-max algorithm adapts to changes in system processing

load and performs significantly better than more standard approaches.

4.8 Formal Definitions of Terms used in Chapter 4

4.8.1 Formal Definition of Recovery Time

In this section, we formally define the expected amount of time to recover from a server failure.

Expected Time to Recover from a Server Failure

Let t denote the time when server Si fails. Then, we say that the cluster has recovered from the

failure of server Si if each peer server Sj has rebuilt, from its backup images, the states of the

corresponding checkpoint units on Si as of time t. In Figure 4.1, for example, the cluster has

recovered from the failure of S1 if S2 has rebuilt the states of u1 and u2 on S1 as of t and S3 has

rebuilt the state of u3 on S1 as of t as well. Therefore, we formally define the expected amount of

time to recover from the failure of server Si as:

RQi(t) = max
1≤j≤n,j 6=i

RQi,j (t) (4.1)

where RQi,j (t) is the amount of time that server Sj would take to rebuild, from its backup images,

the states of the corresponding checkpoint units on Si as of time t. Note that the definition uses

“max” because the recovery time is indeed determined by the slowest among the parallel recovery
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processes (i.e., a server failure is recovered only after all the other servers complete their recovery

tasks). It should also be noted that the definition of RQi,j
(t) can be formally expressed as:

RQi,j
(t) =

∑
u∈Qi,j

Ru(t) (4.2)

where Ru(t) is the amount of time that Sj would spend to rebuild the state of checkpoint unit u as

of time t. In Figure 4.2, RQ1(t) corresponds to the polyline that upper bounds the grey area at the

bottom. Note that RQ1(t) = max(RQ1,2(t), RQ1,3(t)) = max(Ru1(t) + Ru2(t), Ru3(t)).

Furthermore, we can define the expected time to recover from the failure of an arbitrary server

as RQ(t) = 1
n

∑n
i=1 RQi(t) assuming that each server has the same likelihood of failure. Finally, we

express the expected recovery time over period [a, b] as RQ[a, b] = 1
b−a

∫ b

a
RQ(t)dt.

Expected Time to Recover a Checkpoint Unit

Hereafter, we discuss how long it would take to recover a checkpoint unit u assuming that Si

possessed u until it failed at time t and Sj wants to rebuild the state of u as of t, using its backup

image u′. As described earlier, we denote such an amount of time with Ru(t). First, we note that

Sj might have a checkpoint message that is not yet completely copied back to the backup image u′.

We use γu(t) to represent the amount of time to complete this task (if there is no such message, then

γu(t) = 0). Second, we also note that the output queues at upstream servers would have buffered

tuples for u′. In Figure 4.1, for example, the output queue of u3 on S1 would retain such tuples for

u′4. We use δu(t) to denote the amount of time that Sj would take to consume those buffered input

tuples until it rebuilds the state of u as of t. Therefore, we get that:

Ru(t) = γu(t) + δu(t). (4.3)

In what follows, we define each of γu(t) and δu(t).

Expected Time to Consume a Checkpoint Message

In order to define γu(t) (the expected amount of time to consume the pending checkpoint message

formed from unit u), we first introduce related terms. Given unit u, let αu′(t) denote the last time

before t that Sj received a checkpoint message for the backup image u′. Also, let βu′(t) be the last

time before t that Sj began consuming a checkpoint message for u′. If αu′(t) ≤ βu′(t), then it is

sure that Sj has begun consuming the last checkpoint message for u′. In Figure 4.2, for instance,

αu′
1
(5) = 4.125 ≤ βu′

1
(5) = 4.63 and S2 at time 5 is consuming the checkpoint message for u′1. Note

that the condition will hold (even after the task finishes) until Sj receives a new checkpoint message

for u′1. In other words, if αu′(t) > βu′(t), then Sj must have a pending checkpoint message for u′

that it has not yet responded to. Therefore, we get that:

γu(t) =

cu′(αu(t)) if αu′(t) > βu′(t)

max(βu′(t) + cu′ (αu(t))
1−lQj

− t, 0)(1− lQj ) otherwise
(4.4)
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where αu(t) is the start time of the checkpoint that sent the checkpoint message to Sj at time

αu′(t), and cu′(α) is the amount of time that Sj would take to consume (during recovery without

being interleaved with regular processing) the checkpoint message that Si began forming for u at

time α. Note that the start time of checkpoint (i.e., αu(t)) determines the contents of the checkpoint

message and also the cost of consuming it (i.e., cu′(αu(t))). In the definition, cu′ (αu(t))
1−lQj

represents

the duration of the paste when interleaved with regular processing and therefore βu′(t) + cu′ (αu(t))
1−lQj

expresses when the paste task will end. max(βu′(t) + cu′ (αu(t))
1−lQj

− t, 0) represents how long it was

supposed to take to finish the paste task if interleaved with regular processing. 1− lQj
denotes the

relative difference between the case where the paste task fully uses the CPU and the case where the

paste task shares the CPU with regular processing.

Expected Time to Process Buffered Input Tuples

Once Sj consumes all the pending checkpoint messages, each backup image u′ at Sj will have the

image of u as of the time that the last checkpoint started (i.e., time αu(t)). To rebuild the image of

u as of t (i.e., the moment of failure), u′ then has to process input tuples preserved in the output

queues at upstream servers. We define the expected time to process such buffered input tuples as:

δu(t) =
∫ t

αu(t)

Ci

Cj
lu(τ)dτ (4.5)

where Ci and Cj are the processing capabilities of Si and Sj , respectively, and lu(τ) is the processing

load (the percentage of CPU cycles used per time unit) of unit u on Server Si at time τ . Therefore,
Ci

Cj
lu(τ) represents the percentage of CPU cycles that Sj would consume processing the tuples that

unit u on Si processed at time τ .

4.8.2 Expected Recovery Time after a Checkpoint

Expected Recovery Time after a Capture

We use RQi,j
(u, t) to denote the expected amount of time to recover Qi,j when capturing unit u

finishes. Using the definition of RQi,j (t) in Section 4.8.1, we get that RQi,j (u, t) =
∑

h∈Qi,j
Rh(u, t),

where Rh(u, t) represents the expected recovery time of unit h when capturing unit u ∈ Qi,j finishes.

Note that capturing u will reduce the recovery time of h iff h = u. Therefore, we get that:

Rh(u, t) =

Rh(t + ch(t))−∆Ru(t) if h = u

Rh(t + ch(t)) otherwise.

Note that ∆Ru(t) represents the reduction in recovery time due to capturing u (see Section 4.3.1)

and t + ch(t) represents the time when capturing u will finish.

Expected Recovery Time after a Paste

We use RQi,j
(u′, t) to denote the expected amount of time to recover Qi,j when the backup server

finishes a paste task for unit u. Using the definition of RQi,j (t) in Section 4.8.1, we get that



70

RQi,j (u
′, t) =

∑
h∈Qi,j

Rh(u′, t), where Rh(u′, t) represents the expected recovery time of unit h

when the backup server finishes a paste task for unit u ∈ Qi,j . Note that doing the paste task for u

(i.e., updating the backup image u′) will reduce the recovery time of h iff h = u. Therefore, we get

that:

Rh(u′, t) =


Rh(t + c′h(t)

1−lQ
j′

)− c′h(t) if h = u

Rh(t + c′h(t)
1−lQ

j′
) otherwise,

where lQj′ is the average processing load of the

backup server Sj′ of unit u and c′h(t)
1−lQ

j′
is the duration of the paste task if interleaved with regular

processing. Note that those expected recovery times are the best guesses about the future and the

actual recovery times may differ (e.g., if the primary server Si captures a unit in Qi,j , the recovery

time will change).



Chapter 5

Fast and Highly-Available Stream

Processing over the Internet

In this chapter, we consider stream processing in a macro-scale that spans diverse areas of the globe.

This will allow us to monitor various events occurring around the world and make smart decisions in

near real time. To realize correct and timely processing in such a setting, however, we must address

the following challenges:

1. As we use more servers, server failures are more likely to occur. A failed server cannot send

data and may lose data essential for processing.

2. Computer networks are vulnerable to link failures and congestion. Communication outages

sometimes last tens of minutes or more [35, 105].

3. A server can be overloaded due to unexpected surges of data streams [148] or by other appli-

cations that share the server. In this case, stream processing at subsequent servers also gets

delayed.

We observe that previous techniques for reliable stream processing [68, 69, 118, 22] cannot suc-

cessfully address the challenges above. These techniques commonly deploy, for each operator, k

replicas on independent servers to tolerate up to (k-1) simultaneous failures. In these techniques,

however, only one of the peer replicas can feed a downstream replica. If such a replica fails (or gets

overloaded/disconnected), the subsequent processing stalls until the downstream replica notices the

problem and acquires a new input connection from another functioning upstream replica.

To overcome the limitations of previous techniques, we propose a new approach where multiple

replicas send outputs to each downstream replica so that it can use whichever data arrives first. To

further expedite processing, our approach also allows replicas to independently process any available

data. This may cause multi-input replicas to produce outputs in different orders. Despite such

relaxation, our approach always delivers the results that non-replicated stream processing would

produce without failures. We call this guarantee replication transparency.

71
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Our approach uses more resources than previous approaches because all replicas send outputs

downstream. However, our approach has a distinct advantage of improving performance since it

always uses the fastest among multiple replicated data flows. Furthermore, the system naturally

remains resilient against local congestions. It is also always operational without detecting failures

and switching from failed replicas to functioning replicas.

The contributions made in this chapter are as follows:

1. We propose a new replication framework for fast and robust Internet-scale stream processing.

2. We define replication transparency as the key concept for our replication framework. We also

devise stream processing primitives for replication transparency.

3. We develop an algorithm for managing replicas. This algorithm improves both performance

and reliability, while efficiently using network resources.

4. We demonstrate the utility of our work through experiments on PlanetLab [107] and trace-

driven simulations.

The rest of this chapter is organized as follows. We give an overview of our replication framework

in Section 5.1 and design a semantic model for replicated stream processing in Section 5.2. In

Section 5.3, we devise stream processing primitives for our replication model. Next, we discuss

replica management in Section 5.4 and show experimental results in Section 5.5. We provide a

summary of this chapter in Section 5.6.

5.1 Background

In this section, we first illustrate examples that describe how replication can improve both the perfor-

mance and availability of a distributed stream processing system (Section 5.1.1). Next, we describe

the assumptions behind our work (Section 5.1.2) and our replication framework (Section 5.1.3).

Finally, we stress the specific problems tackled in this chapter (Section 5.1.4).

5.1.1 Motivating Examples

Figure 5.1 depicts a scenario where we are interested in finding long-latency communication paths

among a subset of PlanetLab servers [107]. These servers ping each other every second. If a server

detects another server that does not respond in a second, the former reports this in the form of a

data stream. In Figure 5.1, server A reports that communication path A-C has been slow or down

since 9:00:00 and that also A-B became so at 9:00:02. However, such a round trip delay might have

appeared because the remote server slowly reacted to the ping message due to performing other

important tasks. Therefore, we want to identify latencies resulting from network problems only (i.e.,

those certainly not caused by busy remote servers). In the example, the Join operator 13 correlates

the report of slow paths with the report of remote servers’ load readings, based on timestamp as
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Figure 5.1: Non-Replicated Stream Processing.
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Figure 5.2: Replicated Stream Processing



74

well as server ID. The subsequent Filter σ4 categorizes slow paths according to the load readings

and then Maps µ5 and µ6 drop the load field values from the tuples from σ4.

Impact of Slow Streams. As illustrated in Figure 5.1, a slow stream delays all processing down-

stream from it and may even delay the processing of other timely streams. In the example, the

processing of a timely tuple (9:00:00, A-C) is delayed at 13 as its matching tuple (9:00:00, C, 50%)

arrives late. Tuple (9:00:00, C, 50%) was first hindered on the way to Union ∪2 due to a network

problem. In Figure 5.1, (9:00:00, C, 50%) arrives at ∪2 after (9:00:02, B, 100%), a tuple generated

even two seconds later than (9:00:02, C, 50%).

Benefits of Replication. 13 in Figure 5.1 is a stateful operator (i.e., the production of an output

tuple usually involves multiple input tuples). For this reason, the pace of its operation is determined

by the slowest input flow. As Figure 5.2 illustrates, replicating input flows allows the operator to

obtain input tuples at earlier times (through the fastest among the replicated input flows) than in

the non-replicated case. In the example, replicas ∪2,1 and ∪2,2 both send their outputs to 13,2 in

parallel. Therefore, 13,2 can use whichever tuple arrives first from ∪2,1 and ∪2,2, while eliminating

duplicates (i.e., tuples whose copies already arrived at the operator through other stream replicas; see

those lined-through). This type of replication can reduce the average and variance of result latencies.

It also allows the system to continue its operation despite network link congestion, network failures,

and server failures (even without detecting such problems).

5.1.2 Assumptions

In this chapter, we make the following assumptions:

• System. We assume the Internet as the substrate for stream processing. We assume that the

network has abundant computation and communication resources.

• Communication. We assume that the network layer runs a reliable, in-order, point-to-point

message delivery protocol such as TCP.

• Failure Model. We assume fail-stop server/network failures. We do not consider Byzantine

failures where faulty components can behave in arbitrarily erroneous ways.

• Query. We assume that queries are translated into a directed acyclic graph of operators. In

this chapter, we consider five representative stream processing operators, namely Filter, Map,

Union, Aggregate, and Join.

5.1.3 The Basic Architecture

To manage the system in a scalable fashion, we group servers into logical clusters each of which

comprises tens of servers. For each cluster to autonomously handle queries that span distant stream

sources and applications, each cluster includes servers at diverse locations rather than those only

within a small area. For this reason, clusters may overlap significantly with each other in terms of

their geographic coverage. Hereafter, we focus on replicating operators within a logical cluster.
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As illustrated in Figure 5.2, our approach guarantees fast and reliable processing by making

multiple replicas feed each downstream replica (observe that replicas ∪2,1 and ∪2,2 both send data to

the second input of 13,2). To achieve reliable processing with unstable stream sources, we introduce

entry points, which serve as the starting points for reliable stream processing (see e1, e2, and e3 in

Figure 5.2). Entry points buffer input tuples from external stream sources until they safely arrive

at the downstream replicas. They also replicate input tuples at other peer entry points to improve

availability. Finally, entry points have well-synchronized clocks [109] and can timestamp input tuples

on behalf of unsynchronized stream sources.

5.1.4 Problem Statements

To complete the replication framework described above, we need to address the following research

challenges.

1. What execution semantics should we consider for replicated stream processing?

We take the position that replication must be transparent to users. In other words, we want

to guarantee that replicated processing (with failures and delays) always produces the results

that would appear without replication and failures. We discuss the details in Section 5.2.

2. How should we extend processing primitives for replication transparency?

A simple way to ensure replication transparency would be to identically execute peer replicas.

As shown in Section 5.5, however, such an approach introduces extra delays. Therefore, we let

replicas run differently as long as replication transparency is achievable. To produce correct

results, we also need to remove duplicates, as shown by lined-through tuples in Figure 5.2. In

Section 5.3, we design primitives that remove duplicates in a non-blocking fashion.

3. How should we manage replicas?

As demonstrated in Section 5.5, the deployment of replicas can significantly affect the network

cost, performance (in terms of the average result latency), and availability (in terms of the

probability that the system delivers results to client applications within a certain latency).

In Section 5.4, we discuss managing replicas in a manner that improves performance and

availability, while efficiently using network resources.

5.2 Replication Transparency

The central notion behind this work is replication transparency. Under this guarantee, each client

application always receives the same results as in the ideal non-replicated scenario where the system

is completely free from failures and delays. Because timestamps of tuples are usually used as essential

elements for processing [2], replication transparency also requires the timestamps to represent the

precise times when the tuples would be generated in the ideal non-replicated scenario. Our goal in

this chapter is to deliver such results to client applications as soon as possible, by use of replication.
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The definition of replication transparency is specified only in terms of the results to client appli-

cations. A natural question at this point is how we should instrument operator replicas to produce

such results in the end. We first take the position that each operator replica must generate the

tuples that would appear in the ideal non-replicated scenario. We, however, let each replica run

independently, while processing any available data. As demonstrated in Section 5.5, this relaxation

expedites processing, compared to previous approaches that execute replicas identically at distant

servers. This, however, causes multi-way operators, such as Union and Join, to generate tuples in

a random order. In Figure 5.2, replicas ∪2,1 and ∪2,2 produce outputs in different orders for this

reason.

Despite the complications above, we achieve replication transparency as follows:

1. We merge stream replicas into a non-duplicate stream using a non-blocking filter. In our

replication framework, each operator replica receives inputs from multiple upstream replicas.

An operator such as a count aggregate, however, may produce incorrect results if it processes

duplicate tuples. Furthermore, processing duplicates would waste CPU cycles. In Section 5.3.2,

we devise non-blocking filters that eliminate duplicates from disordered stream replicas. In

Figure 5.2, the second duplicate filter of 13,2 merges two stream replicas into a non-duplicate

stream that again contains the same tuples as its input streams. Because the input streams

of the filter have different orders and because the filter operates in a non-blocking fashion, the

output of the filter has a new different order.

2. We sort disordered streams only when necessary. Order-sensitive applications and operators,

such as those with count-based windows, must process inputs in the order of the ideal non-

replicated scenario. In Section 5.3.3, we discuss the details of sorting streams. Because sorting

introduces delays, we sort streams only when necessary. In other words, we bypass the sorting

phase for order-insensitive operators and applications.

3. We redesign operators so that they can produce, from disordered input streams, the output tuples

that would appear in the ideal non-replicated scenario. The output stream need not be ordered,

because downstream replicas can handle disorder. We call this property of operators replica

consistency because it guarantees that replicas always produce consistent output streams from

consistent input streams. We say that two streams are consistent if they contain the same

tuples regardless of internal order. In Sections 5.3.4 through 5.3.6, we devise non-blocking

implementations of Filter, Map, Union, and Join and a blocking implementation of Aggregate.

All these operators guarantee replica consistency.

The arguments above state that we can achieve replication transparency by eliminating dupli-

cates, minimally sorting data streams, and making every operator ensure replica consistency. Replica

consistency can be defined formally as follows:

Definition 1. Infinite streams S and S′ are consistent (denoted by S ≡ S′) if they contain the same

tuples regardless of internal order. Specifically, S ≡ S′ if there exists a permutation µ : N → N such

that S[i] = S′[µ(i)], where S[i] denotes the ith tuple in stream S.
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Definition 2. (Replica Consistency) Let o(S1, S2, · · · , Sn) denote the set of all possible output

streams that operator o with n inputs can generate from input streams S1, S2, · · · , Sn. Then, we say

that operator o guarantees replica consistency if any possible output streams O ∈ o(S1, S2, · · · , Sn)

and O′ ∈ o(S′
1, S

′
2, · · · , S′

n) are consistent (i.e., O ≡ O′) for any consistent input streams Si and S′
i

(i.e., Si ≡ S′
i, 1 ≤ i ≤ n).

It should be noted that a query guarantees replica consistency if all of its constituting operators

guarantee replica consistency. Theorem 1 formally states this property.

Theorem 1. Let Q denote a query with n inputs and one output. If all the constituent operators

of Q guarantee replica consistency, Q also guarantees replica consistency (i.e., R(S1, S2, · · · , Sn) ≡
R′(S′

1, S
′
2, · · · , S′

n) for any replicas R and R′ of Q and any input streams {Si}ni=1 and {S′
i}ni=1 such

that Si ≡ S′
i).

Proof: If Q contains only one operator, trivially Q guarantees replica consistency. Otherwise,

denote the terminal operator of Q as o (i.e., o produces the output stream of Q). Then, for each input

j (1 ≤ j ≤ m) of operator o, let Qj be the query that consists of operators upstream from j. For a

replica R of Q, let Rj(S1, S2, · · · , Sn) denote an arbitrary sequence of tuples that can appear on j if R

processes input streams S1, S2, · · · , Sn. Since each Qj has less operators than Q (note that o /∈ Qj ⊆
Q), by the induction hypothesis, we get that Rj(S1, S2, · · · , Sn) ≡ R′

j(S
′
1, S

′
2, · · · , S′

n) for another

replica R′ of Q and input streams {Si}ni=1 and {S′
i}ni=1 such that Si ≡ S′

i (1 ≤ i ≤ n). Since o also

guarantees replica consistency, the replicas of o in R and R′ produce consistent output streams as they

receive consistent input streams {Rj(S1, S2, · · · , Sn)}mj=1 and {R′
j(S

′
1, S

′
2, · · · , S′

n)}mj=1, respectively.

As a result, we get that R(S1, S2, · · · , Sn) ≡ R′(S′
1, S

′
2, · · · , S′

n). 2

Theorem 1 can be generalized for a query with multiple outputs by forming sub-queries consisting

of operators upstream from each output and applying the theorem to such sub-queries. In Section 5.3,

we discuss extending operators so that they can guarantee replica consistency.

5.3 Extension for Replication Transparency

In this section, we devise the processing primitives for replication transparency. In Section 5.3.1,

we introduce punctuations because many of our primitives use them. Next, we discuss filtering out

duplicates in Section 5.3.2 and sorting streams in Section 5.3.3. In Sections 5.3.4 through 5.3.6, we

extend stream processing operators for replica consistency. Any operator, including a user-defined

one, can be safely used in our replication framework if it guarantees replica consistency.

5.3.1 Management of Punctuations

In our approach, either stream sources or their downstream entry points timestamp tuples using

well-synchronized clocks. They also periodically send special values, called punctuations [141, 22].

Punctation p in input stream S guarantees that the timestamp of any subsequent tuple in S will be
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Algorithm 3: Duplicate Filtering
whenever tuple t arrives from stream replica Si ∈ {Sj}kj=1 do1

if t.timestamp > max punctuation then2

count[t][i]← count[t][i] + 1;3

if count[t][i] > max count[t] then4

output(t);5

max count[t]← count[t][i];6

whenever punctuation p arrives from any stream replica do7

if p > max punctuation then8

output(p);9

max punctuation← p;10

remove all count[t][∗] such that t.timestamp ≤ p;11

larger than p. All streams in the system can also satisfy this property if each operator forwards p

as soon as it receives p via all its inputs. This is because an operator in that situation will always

receive tuples with timestamps larger than p. This implies that, in the ideal non-replicated scenario,

the operator would process all these tuples after time p, and thus the timestamps of all later output

tuples must be larger than p.

5.3.2 Duplicate Filtering

As pointed out in Section 5.2, we use duplicate filters to eliminate duplicate tuples from stream

replicas. Duplicate filters must deal with disorder and multiple occurrences of the same tuple

in each stream replica. They also should not block the data flow. Algorithm 3 describes the

operation of our duplicate filter. For tuple t from stream replica Si, we first check if t satisfies the

condition in line 2. Otherwise (i.e., if t.timestamp ≤ max punctuation), t is a duplicate because the

filter received the current maximum punctuation (max punctuation) from a stream replica before.

This implies that the filter already received, from the same stream replica, all tuples t′ such that

t′.timestamp ≤ max punctuation.

Next, the filter uses a variable count[t][i] to remember how many times it received tuple t from

stream replica Si (line 3). If the filter received t from Si more times than any other stream replica,

it passes t to the operator as a non-duplicate (line 5). Otherwise (i.e., if ∃Sj such that count[t][i] ≤
count[t][j]), t is a duplicate because the filter already received a corresponding tuple from Sj . Lines

7-11 describe that, whenever a new punctation arrives, the filter can safely remove count variables

for all the known duplicate tuples. The life time of each count variable is thus bounded by the

punctuation interval.

The following theorem proves the correctness of Algorithm 3.

Theorem 2. Let D(Si)k
i=1 denote the set of all output streams that duplicate filter D can produce

from stream replicas {Si}ki=1. If {Si}ki=1 are consistent, any O ∈ D(Si)k
i=1 is also consistent with

them (i.e., O ≡ Si, 1 ≤ i ≤ k).
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Proof: Since {Si}ki=1 are consistent, all of them commonly contain an arbitrary tuple t the same

number of times (say m). It suffices to prove that D passes t, m times in any case. (1) if m = 0, D

cannot pass t since none of the streams {Si}ki=1 contains t. (2) If m > 0, without loss of generality,

suppose that D receives the mth t from S1 before it receives the mth t from Sj (2 ≤ j ≤ k). Since

this implies that D has not yet received punctuation p ≥ t.timestamp from any stream replica, t must

satisfy the condition in line 2. Since it also implies that count[t][1] > count[t][j] (2 ≤ j ≤ k), t must

satisfy the condition in line 4. Therefore, D must pass t to the operator. This also must be the mth

output of t because, by the induction hypothesis, D must have passed t, (m−1) times before this. D

then sets both count[t][1] and max count[t] to m. Since count[t][j] ≤ max count[t] = m(2 ≤ j ≤ k),

D will filter out t afterwards . �

5.3.3 Sorting Streams

If a stream S feeds an order-sensitive operator/application, we sort S using punctuations. We first

insert each tuple from S into a sorted list L. This list contains tuples in the order of increasing

timestamps. If multiple tuples have the same timestamp, we enforce a unique ordering, for example,

by regarding these tuples as byte arrays and radix-sorting them. Whenever a punctuation p arrives

from stream S, we remove tuples {t ∈ L : t.timestamp ≤ p} from L, while passing them, in the

sorted order, to the next operator/application. This sorting phase each time observes the entirety

of the tuples in S up to a punctuation p and passes them in a unique order. Therefore, it allows all

peer replicas to process inputs in the same order, with extra delays that depend on the punctuation

interval. This sorting phase is described in Algorithm 6 as part of an order-sensitive operator (refer

to lines 1-6).

In the rest of this section, we discuss extending operators for replica consistency.

5.3.4 Stateless Operators and Replica Consistency

Stateless operators are those that produce each output tuple based on only the last input tuple.

Filter forwards each input tuple if the tuple satisfies a pre-defined predicate. Map converts each

input tuple into a different tuple. Union merges two or more streams into a single output stream.

Each stateless operator naturally guarantees replica consistency because it processes each tuple

deterministically, regardless of the input order. In detail, all replicas of a Filter must pass a tuple if

it satisfies the predicate. All replicas of a Map must identically convert each input tuple and replicas

of a Union must forward each input tuple. Therefore, our replication framework uses the stateless

operators as they are. Filter, Map, Union are all non-blocking. Union is nondeterministic because,

as demonstrated by ∪2,1 and ∪2,2 in Figure 5.2, its output order can vary depending on the arrival

order of tuples across its input streams.
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Algorithm 4: Join
whenever tuple t1 arrives at input I1 do1

for each t2 ∈ B2 such that |t1.timestamp− t2.timestamp| < w ∧ P (t1, t2) do2

output(t1 ⊗ t2);3

B1.add(t1);4

whenever punctuation p1 arrives at input I1 do5

B2.remove ({t2 ∈ B2 : p1 − t2.timestamp > w});6

* Inputs to I2 are processed symmetrically

5.3.5 Extending Join for Replica Consistency

Join has two inputs I1 and I2, window size w, and predicate P . For any input tuples t1 from I1 and

t2 from I2, it outputs the concatenation t1 ⊗ t2 of them if they (a) belong to the same time window

(i.e., |t1.timestamp − t2.timestamp| < w) and (b) satisfy predicate P (i.e., P (t1, t2) holds). Here,

we do not consider the extra features, called slack and timeout, of Join that handle disorder and

silence [2]. This is because our approach tackles these issues by use of punctuations, while expediting

processing through replication.

We implement Join as illustrated in Algorithm 4. Lines 1-4 output the concatenation of matching

input tuples, while using Bi to buffer the tuples entered input Ii. The timestamp of t1⊗ t2 is set to

max(t1.timestamp, t2.timestamp), which is the time when the tuple would be produced in the ideal

non-replicated scenario. Lines 5-6 discard the buffered tuples that will no longer be used. Any tuple

t2 ∈ B2 that satisfies the condition in line 6 cannot match with any tuple t1 that will arrive at I1.

This is because t1.timestamp− t2.timestamp > p1 − t2.timestamp > w.

This Join implementation is non-blocking because it produces each output tuple as soon as it

obtains both constituent input tuples. It guarantees replica consistency because, for each pair of

matching input tuples, it produces the concatenation of them exactly once, regardless of the inter-

arrival order of the input streams. Similar to Union, Join is nondeterministic and may introduce

disorder.

5.3.6 Extending Aggregate for Replica Consistency

Aggregate [2] splits input stream I into substreams {I[g]}g∈G , where G is the set of groups and

I[g] is a subsequence of I that contains tuples belonging to group g. For each substream I[g], this

operator forms windows (sets of tuples) based on either timestamps or the count of tuples. If a

window expires, Aggregate produces an output tuple computed from the tuples in the window. For

the reasons described in Section 5.3.5, we do not consider slack and timeout.

For replica consistency, Aggregate must form and close windows uniquely, despite disorder in the

input stream.

Aggregate with Time Windows. In this case, each group g forms windows of w seconds every

s seconds. Therefore, for input tuple t, we can determine the set of windows W(t.timestamp) that
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Algorithm 5: Aggregate with Time Windows
whenever tuple t arrives do1

for each window w ∈ G(t).W(t.timestamp) do2

w.update(t);3

whenever punctuation p arrives do4

for each g ∈ G do5

for each w ∈ g.windows such that w.expir time ≤ p do6

g.windows.remove(w);7

output(w.get summary());8

Algorithm 6: Aggregate with Count-based Windows
whenever tuple t arrives do1

L.insert(t); // sorted list2

whenever punctuation p arrives do3

while L 6= ∅ ∧ L.first().timestamp ≤ p do4

agg count windows(L.first());5

L.remove first();6

agg count windows(t)7

begin8

count++;9

for each window w ∈ G(t).W(count) do10

w.update(t);11

if w.expir count ≤ count then12

g.windows.remove(w);13

output(w.get summary());14

end15

t belongs to. For example, when w = 10 (sec) and s = 5 (sec), we get W(9:00:43) = {[9:00:35,

9:00:45), [9:00:40, 9:00:50)}. Lines 1-3 in Algorithm 5 uniquely form windows regardless of the input

order. Then, lines 4-8 use punctuations to find the windows that cannot contain more tuples. This

allows Aggregate to produce the same output tuples from any consistent input stream.

Aggregate with Count-based Windows. This operator uses, for each group g, a window of w

tuples that skips s tuples whenever it moves. Because this operation is order-sensitive, we sort input

stream as described in Section 5.3.3 (lines 1-6 in Algorithm 6). After this, the operator forms and

closes windows (lines 7-15) using the count of input tuples.

The two implementations above are blocking because they wait for punctuations to assure that

they obtained all the required tuples. With time windows, we can minimize the delay by making

stream sources or their entry points produce punctuations at expiration times of windows. With

count-based windows, the delay depends on the punctuation interval.
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Algorithm 7: Replica Deployment (for query Q)

for i = 1 to kmax do1

deploy(Q);2

deploy(Q)3

begin4

for each operator o ∈ Q do5

C← {s ∈ S : load(s) + load(o) < α · capacity(s) ∧6

min(latency(s, s′)) > dmin,∀s′ ∈ S(o)};7

Find s∗ ∈ C such that ∀s ∈ C8

costs∗(in(o) ∪ out(o)) ≤ costs(in(o) ∪ out(o));9

s∗.deploy(o);10

end11

5.4 Management of Replicas

As demonstrated in Section 5.5, the deployment of replicas affects both result latencies and resource

usage. In this section, we discuss managing replicas to improve performance and availability, while

efficiently using network resources. In Section 5.4.1, we discuss deploying replicas initially in a

resource-efficient fashion. In Section 5.4.2, we devise an algorithm that reduces the resource usage

to a target level, while striving to minimize degradation in performance and availability. For this,

the algorithm finds and then discards the least useful stream/operator replicas (i.e., those that make

the smallest contribution to the downstream processing upto client applications). In Section 5.4.3,

we consider reviving garbage-collected replicas to cope with changes in system conditions.

5.4.1 Deployment of Replicas

As illustrated in Section 5.1.3, our replication framework forms logical clusters each of which com-

prises servers at diverse locations. Servers in the same cluster elect a coordinator for them. In this

subsection, we discuss how the coordinator of cluster S should deploy a predefined number (kmax) of

replicas for each operator. Our strategy strives to minimize the overall network cost similarly to op-

erator placement approaches in the non-replicated context [3, 106]. In our replication framework, for

a collection of stream replicas R, the network cost of R, cost(R), is defined as the sum of individual

stream replicas’ network costs. Formally, cost(R) =
∑

S∈R cost(S) where cost(S) denotes the cost

of stream replica S. cost(S) is in turn defined as rate(S) · latency(S) where rate(S) and latency(S)

are the data rate and the network latency of stream replica S, respectively. This bandwidth-delay

product is based on the idea that the longer data stays in the network, the more resources it tends

to use. An optimal deployment under this metric also tends to choose fast network links, thereby

accomplishing low-latency processing.

The Replica Deployment Algorithm. Algorithm 7 describes our replica deployment strategy.

Each of the kmax deployment phases creates, for each operator o in query Q, a new replica on a

server that minimally increases the network cost. For a new replica, it first finds good candidate
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servers C (lines 6-7). Such a server s must not be busy (line 6). load(s) and load(o) are the

current load of server s and the expected load of the new replica of o, respectively. capacity(s)

is the processing capacity of server s. With α < 1, the condition in line 6 checks if s is likely to

have enough available CPU cycles even if it runs the new replica. A good candidate server s also

must have a low risk of falling into the same network partition with any s′ of servers S(o) that

currently run replicas of o. To ensure this, the heuristic in line 7 uses network latencies to ensure

that replicas are always deployed on sufficiently distant servers. In several test cases, it turned out

that 30ms to 70ms is a good range for the minimum latency dmin between peer replicas. After

finding candidate servers C, the coordinator chooses the server s∗ that will minimize the network

cost of the input streams in(o) and output streams out(o) of the new replica (lines 8-9). Specifically,

in(o) denotes all possible input streams from the replicas directly upstream from any replica of

o, and out(o) denotes all possible output streams to the replicas directly downstream from any

replica of o. In line 9, costs(in(o) ∪ out(o)) represents the network cost of these input and output

stream replicas, provided that server s runs the new replica. Formally, costs(in(o) ∪ out(o)) =∑
S∈in(o) rate(S) · latency(S.source, s) +

∑
S∈out(o) rate(S) · latency(s, S.destination). Finally, the

coordinator deploys the new replica on s∗ (line 10).

Discussion. Our strategy above strives to find, phase-by-phase, the deployment that will minimally

increase the network cost while providing the desired availability level. It is, however, hard to find the

optimal deployment in the first phase because the data rate of each stream and the processing load

of each operator are not yet known (these statistics are available in the later phases). The network

cost also changes over time as the data rates and latencies of streams vary. For this reason, we

use an approach that initially deploys replicas aggressively and dynamically garbage-collects/revives

them afterwards.

5.4.2 Garbage Collection

Our replica deployment algorithm creates kmax replicas for each operator. Between kmax upstream

replicas and kmax downstream replicas, it also creates k2
max stream replicas. Although kmax is

usually set to a small number (say 4 or 5 at most) in practice, using all of k2
max stream replicas

would waste system resources. Furthermore, faster operator replicas and those that feed many

downstream replicas would have a higher impact on processing than others. Thus, we use a strategy

that periodically discards the least useful stream and operator replicas. This is to reduce the

resource usage, while minimally degrading performance and availability. To maintain the minimum

fault-tolerance level, however, we ensure that at least kmin replicas of each operator survive.

The Garbage-Collection Algorithm. Algorithm 8 illustrates our garbage-collection strategy.

Periodically, the coordinator computes the current overall network cost. If the cost is higher than a

target utilization level θ (line 1), it finds the group of least useful replicas, relative to the network cost

paid for them (lines 2-3). It then asks the related servers to discard them (line 4). dependents(S)

in line 2 finds the group of replicas that must be discarded together with stream replica S. For

example, if an operator replica o has only one output stream S, removing S will make o useless
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Algorithm 8: Garbage Collection (for stream replicas R)

whenever
∑

S∈R cost(S) > θ do1

C← {dependents(S) : S ∈ R} − {∅};2

Find a collection of stream replicas D∗ ∈ C such that utility(D∗)
cost(D∗) ≤

utility(D)
cost((D) ,∀D ∈ C;3

discard(D∗);4

dependents(S)5

begin6

return dependents(S, ∅);7

end8

dependents(S, D)9

begin10

D.add(S);11

D← dependents(S.source,D);12

if D = ∅ then13

return ∅;14

else15

return dependents(S.destination,D);16

end17

dependents(o,D)18

begin19

if |C(o;D)| < kmin then20

return ∅;21

if need to remove(o,D) then22

for each S ∈ in(o) ∪ out(o)−D do23

D← dependents(S, D);24

if D = ∅ then25

return ∅;26

return D;27

end28

and therefore necessitates removing all the input streams of o as well. In this case, dependents(S)

must contain the input streams of o. Given replicas D to discard, lines 09-17 check if removing

stream replica S will require removing its source replica (line 12) or destination replica (line 16) for

the reason above. Lines 13-14 handle the case where we cannot remove S because we would have

fewer than kmin operator replicas if S was removed (see also lines 20-21). Lines 18-28 are to check

an operator replica o. Lines 20-21 are to keep at least kmin operator replicas (in line 20, C(o;D)

represents the number of replicas of o if we remove replicas in D). Line 22 checks if removing replicas

in D will make operator replica o useless and thus require removing o. If so, the algorithm visits the

input and output streams of o while recursively applying the algorithm (lines 23-26). If removing

such streams leads to having fewer than kmin replicas for some operator (line 25), it decides not to

remove any streams (line 26).
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Measuring the Utility of Each Replica. As shown above, our garbage-collection algorithm

considers the utility of each stream. Intuitively, we define utility as the impact of a replica on the

data flow towards applications. To compute this, our heuristic first uses duplicate filters to measure

the contributions of stream replicas to the next operator. Specifically, each duplicate filter gives, for

each input tuple, weights 1
1 , 1

2 , 1
3 , · · · to its input stream replicas based on how early they deliver

the tuple (the fastest replica gets the highest weight each time). These weights, however, do not

capture the impact after the next operator. Thus, our heuristic periodically computes the utilities

of stream/operator replicas from applications to more upstream replicas. Specifically, for a group

of stream replicas {Si}ki=1, utility(Si), the utility of Si, is computed as w(Si)Pk
j=1 w(Sj)

utility(o) where

w(S) is the accumulated weight of stream S and utility(o) is the utility of the operator replica o

that {Si}ki=1 commonly feed. utility(o) is set to 1 if o is an application. Otherwise, it is computed

as
∑

S∈out(o) utility(S) where out(o) denotes the output streams of o.

Discussion. As described above, our garbage-collection algorithm victimizes replicas with high cost

and small contribution to downstream processing. Replicas of the opposite kind are likely to survive

over time. Such surviving replicas are in general those with high popularity (i.e., those eventually

connected to a large number of applications), those upstream, and those along fast data flows.

5.4.3 Adaptation to Changes

Our garbage-collection algorithm saves resources while striving to preserve the latency guarantee.

If failures or local congestions occur, however, the surviving replicas may experience unexpected

delays. We solve this problem by reviving garbage-collected replicas. In detail, if an operator replica

observes delays longer than a threshold (say 10 seconds) across its input streams, it first finds

garbage-collected input streams that connect to functioning upstream replicas. If there is such one,

it revives the stream replica. Otherwise, it revives a garbage-collected upstream operator replica

and acquires a new connection from that one. If the problem persists, we can either create more

upstream replicas, revive/create peer replicas that could replace the hindered replica, or simply

discard the hindered one.

If the coordinator finds that the current network cost is lower than the target level θ, it can also

assist hindered replicas as described above.

5.5 Experimental Results

In this section, we present various results that substantiate the utility of our work. In Section 5.5.1,

we describe how we set up the experiments and simulations. Then, we present results obtained from

our prototype (Sections 5.5.2 through 5.5.4) and a trace-driven simulator (Sections 5.5.5 and 5.5.6).
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Figure 5.3: Borealis-R Visualizer (Latency)

Figure 5.4: Borealis-R Visualizer (Network Cost)
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5.5.1 The Setup

In all of our experiments, we assumed a system configuration where servers are grouped into clus-

ters each of which consists of 30 servers. Thus, for our prototype, we chose 30 distant PlanetLab

servers [107] that reliably communicate with others. The results obtained, however, varied each time

because the servers were used intensively by many users. To compare various approaches under an

identical condition, we also conducted simulations. Our prototype and simulator use the same source

code except for the communication component. To send tuples and invoke remote procedures, our

prototype uses TCP sockets. On the other hand, the simulator makes local calls while emulating

network delays based on a trace. We obtained this trace by recording actual network delays between

100 PlanetLab servers every 10 seconds for a month starting from February 13, 2007. Figures 5.3

and 5.4 display the visualizer of our prototype.

Our experiments, except that in Section 5.5.4, used the query illustrated in Figure 5.2, while

adding Filters and applications after the Joins. To easily detect data loss, however, we used stream

sources that periodically generated tuples. We also made the Filters always pass their inputs. In

detail, each server ran two kinds of stream sources, one that reported the server’s CPU load and

the other that reported the latencies of connections to other servers. Such input streams were first

merged at Unions, one for each input type, and the subsequent Joins correlated load and latency

readings. For the experiments in Sections 5.5.2 and 5.5.4, stream sources generated input tuples

every half a second and 1 millisecond, respectively. In the other experiments, input tuples were

generated every 10 seconds. Joins in Sections 5.5.2 and 5.5.4 used time windows of half a second

and 100 milliseconds, respectively. In other cases, the window size was set to 10 seconds.

Given the query above, we deployed replicas. In Sections 5.5.2 and 5.5.4, we manually did the

task. In other cases, the coordinator first obtained statistics on network delays between servers and

the data rates of streams through a test run. Then, it deployed operators in a non-replicated fashion,

using the spring relaxation algorithm [106]. This was to start with the best operator placement that

has the lowest network cost. After this, the coordinator replicated operators and streams, according

to the chosen replication method.

5.5.2 Comparison of Techniques for Reliable Stream Processing

In this experiment, we compare our replication technique with previous high-availability techniques.

For this, we manually placed ∪1,1 at WISC, ∪2,1 at Purdue, and 13,1 at OSU (see Figure 5.5).

In Figure 5.6, the curve labeled “no replication” represents how the latency, without replication,

varied over time at the output of 13,1. The latency of a tuple was defined as the difference between

the wall-clock time and the timestamp of the tuple (i.e., the time when the tuple would be produced

in the ideal non-replicated scenario, equivalently the earliest time when the tuple could be generated).

In this experiment, we crashed the stream processing engine at WISC at time 60. After that, 13,1

did not produce any output because it no longer received tuples from ∪1,1. In contrast, other

curves show that reliability techniques indeed provide protection against failures. The curve labeled
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∪2,1

∪1,1

��3,1

Figure 5.5: Experimental Setup

“replication” shows how our replication technique behaved when we added replicas ∪1,2 and ∪2,2 at

Purdue and WISC, respectively. In this case, despite the failure at WISC, the processing continued

relying on ∪1,2 and ∪2,1 at Purdue. After the failure, however, the latency increased because 13,1

no longer benefited from replication. In Figure 5.6, “synchronization” shows the performance of a

previous technique that always enforces an identical execution between primaries and backups. The

details of this approach is presented in Section 3.5 of this dissertation and [68]. In this technique,

each primary sends extra information, called determinants, to the backup so that the backup can

mimic the processing of the primary. For Unions, we used the inter-arrival order of input tuples to

generate determinants. This method introduces extra delays because primaries must hold output

tuples until backups acknowledge the recept of determinants. Checkpoint-based techniques [68, 69]

also show similar behavior because primaries hold outputs until one round of checkpoint finishes.

After the failure, the latency dropped since ∪1,2 and ∪2,1 at Purdue no more had synchronization

partners.

Finally, “deterministic” shows the variation of latency under a method that runs peer replicas

(e.g., ∪1,1 and ∪1,2) identically by feeding the replicas in the same order [22]. As described in

Section 5.3.3, sorting streams introduces extra delays because tuples are held until a relevant punc-

tuation arrives. We can reduce extra delays by more frequently producing punctuations. The pace

of 13,1, however, is eventually determined by the slowest input flow.

In summary, the figure shows that our technique improves both performance and reliability

because it always benefits from the best among multiple replicated data flows. On the other hand,

previous approaches degrade performance because they identically run replicas at distant servers,

thereby introducing extra delays. In previous approaches, the failure of a server also disrupts the

processing until the downstream servers notice it and switch to another upstream server (observe
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Figure 5.6: Comparison of Reliability Techniques

operators no degree of replication
replication 1 2 3 4

Union 0.7 1.1 1.8 2.7 3.5
(1.43x) (2.57x) (3.86x) (5.00x)

Filter 0.8 1.2 1.9 2.8 3.6
(1.38x) (2.37x) (3.50x) (4.50x)

Aggregate 2.3 2.7 3.6 4.4 5.2
(1.17x) (1.57x) (1.92x) (2.26x)

Join 9.5 10.3 10.8 11.6 12.3
(1.08x) (1.14x) (1.22x) (1.29x)

Table 5.1: CPU cost of a Replica (% CPU cycles)

the failover latencies in Figure 5.6).

5.5.3 Impact of Replication on Latency

Figure 5.7 shows how the end-to-end latency at an application varies over time depending on the

degree of replication. In this experiment, each server ran three stream processing engines and used

each of them for a different degree of replication. For example, the curve labeled “kmax=3” shows

the latency results obtained from the engines that collectively deployed 3 replicas for each operator

as described in Algorithm 7. The figure shows that the average as well as the variance of latency

decrease as we deploy more replicas. This is because each operator in the system is provided more

replicate input flows and thus can benefit from better ones.



90

0 1 2 0 1 2 0 1 2 3
0

0.5

1

1.5

2

2.5

3

time (hour)

en
d−

to
−

en
d 

la
te

nc
y 

(s
ec

)
k

max
 = 1 k

max
 = 2 k

max
 = 3

 

 

latency (per tuple)
latency (10−min average)

Figure 5.7: Impact of Replication on Latency

5.5.4 CPU cost for Replications

Using our prototype, we also measured the CPU cost for replication, using AMD Sempron 2800+

CPUs. In this experiment, we fed 1K tuples/sec to each input of the operators. The operators were

instrumented to output 1K tuples/sec as well. Specifically, the Filter always passed input tuples

after evaluating the predicate and the Aggregate computed the count of input tuples using a window

of 10ms that slid every 1 ms. The Join matched each input tuple with 100 input tuples on the other

input, but produced only one output tuple every 1 ms as the result of predicate evaluation.

For each operator type, we first fixed the degree of replication (kmax) to 4 and gradually added

replicas until approximately half the cycles of a CPU were used. After this, we decreased the degree

of replication from 4 to 1, while finding the per-replica CPU cost by dividing the CPU usage by the

number of replicas. We also measured the CPU cost for the non-replicated case. Table 5.1 summaries

the results. The “no replication” column shows that each operator has a different processing cost.

Each row of the table shows that the CPU cost per replica increases as we add more input/output

stream replicas. This increase in the CPU cost corresponds to the overheads of removing duplicates

as well as sending and receiving tuples via stream replicas. Finally, the table shows that the per-

replica CPU cost increases at a different pace for each operator. The Join operator has the lowest

growth rate because the processing cost itself dominates the cost of using more stream replicas.

5.5.5 Impact of Replica Deployment

Figure 5.8 shows the impact of replica deployment using results from our simulator. For the results,

we ran the simulator for a month in simulation time. Then, we plotted the latency distribution for

all the output tuples that appeared at 10 different applications. In both figures, kmax represents

the degree of replication. The ratios within parentheses represent the relative bandwidth usage

and network cost, respectively, compared to those in the non-replicated case (i.e., kmax=1). In
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Figure 5.8: Impact of Replica Deployment

Figure 5.8(a), kmax = 4 (11.37x, 22.10x) illustrates the case where we replicated each operator at 4

random places and, as a result, consumed 11.37 times higher bandwidth and incurred 22.10 times

higher network cost.

In all of the cases, the relative bandwidth usage was less than k2
max. This is because there were

(1) k2
max stream replicas between kmax upstream operator replicas and kmax downstream operator

replicas and (2) kmax stream replicas between a stream source and kmax downstream replicas, and

between kmax upstream replicas and an application.

As defined in Section 5.4.1, the network cost is a bandwidth-delay product. Because we started

from an optimal, non-replicated deployment, stream replicas added later had longer delays than the

previous ones. For this reason, the network cost ratio is usually higher than the bandwidth ratio.

Figure 5.8 shows that deploying replicas using Algorithm 7 (labeled “min-cost”) provides a better
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Figure 5.9: Impact of Garbage Collection

latency guarantee than deploying replicas at random servers (labeled “random”). In the random

deployment case, there were latencies beyond 16 seconds even though a 13.39 times higher network

cost was paid. In the min-cost case, the latency was always smaller than 1 second for a smaller

network cost (10.99x). This is because our deployment algorithm finds, among the servers that are

likely to achieve the desired availability level, those that minimally increase the network cost.

5.5.6 Impact of Garbage Collection

As described in Section 5.4.2, keeping all stream replicas may waste resources without any gain in

performance and reliability. In this experiment, for each kmax value, we first achieved the latency

guarantee in Figure 5.8(b) by running Algorithm 7. In Figure 5.9, the first bar for each kmax value

represents the network cost in this case (labeled “static min-cost”). Then, we tested how much

network cost could be saved through garbage collection without degrading the latency guarantee.

The second bar for each kmax value represents the network cost after garbage collection. Thus, the

difference between the first two bars in each case represents the network cost of the streams that did

not contribute to performance and reliability. Figure 5.9 also shows that, as the degree of replication

increases, only a smaller portion of stream replicas are useful. We also tested the case where replicas

react to changes in system conditions as described in 5.4.3 (labeled “garbage-collection / revival”).

In this case, we can more aggressively garbage-collect replicas because those garbage-collected can

be reused whenever necessary.
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5.6 Summary

Today’s applications often require service level agreements (SLAs) on the latency of results. If the

network is unable to deliver results within these SLAs, we can consider this as a failure. In this

chapter, we introduced a replication-based approach that can cope with both fail-stop failures and

unacceptable latencies. The central notion behind the approach is to replicate operators and let them

flow outputs downstream in parallel. In this way, any replica in the system can use whichever data

arrives first from upstream replicas. Therefore, the system naturally achieves low-latency processing

as well as robustness against server and network problems.

For this replication framework, we also devised processing primitives that, despite the compli-

cations introduced by replication, can provide the same semantic guarantee as those devised for

non-replicated scenarios. In particular, these primitives allow running replicas differently to avoid

the overhead of previous approaches. They also merge stream replicas into a non-duplicate stream.

If such a stream feeds order-sensitive operators/applications, our primitives can sort the stream to

restore the order that would appear in the non-replicated scenario.

Another contribution made in this work is a strategy for managing replicas at distant servers. Our

strategy improves performance and availability in a manner that efficiently uses network resources

and copes with changes in system conditions.

Finally, we presented results obtained from our prototype as well as a detailed simulator. These

results demonstrate how our approach can overcome the limitations of previous approaches in the

Internet. They also show that, when resources allow, our replication technique is both feasible and

correct.



Chapter 6

Related Work

In this chapter, we survey previous research efforts that are related to highly-available stream pro-

cessing. We first summarize high-availability techniques developed for traditional database manage-

ment systems (Section 6.1) and distributed systems (Section 6.2). Next, we present various problems

addressed in the context of stream processing, including deploying operators at diverse geographic

locations and achieving high availability (Section 6.3).

6.1 High Availability in Database Management Systems

A computer system, like any other mechanical or electrical device, is subject to failure. There are a

variety of causes of such failures, including disk crash, power outage, and software errors. Therefore,

an integral part of a database management system is a recovery scheme that can detect failures and

lead the system to a state that would have existed if the failure did not occur. Research on failure

recovery in database management systems can be dated back to early 70’s [49, 30]. In this section,

we review traditional disk-based rollback recovery techniques (Section 6.1.1), the process-pair ap-

proach (Section 6.1.2), persistent queues (Section 6.1.4), high-availability techniques for distributed

database systems (Section 6.1.3) and workflow systems (Section 6.1.5).

6.1.1 Disk-Based Rollback Recovery

In addition to hardware failures and software bugs, a database management system can experience

transaction failures for various reasons, including violation of integrity constraints and deadlocks.

If such a failure occurs, the state of the database may no longer be consistent. Therefore, we need

recovery schemes that can ensure the atomicity of transactions (i.e., either all operations or none of

each transaction are reflected in the database). Techniques to ensure such atomicity are generally

classified into the following approaches:

• Shadow paging uses two page tables, the shadow page table to keep the state as of the time

when a transaction begins and the current page table to maintain the state that the transaction

94
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manipulates [93]. The former (the latter) becomes the new page table if the transaction aborts

(commits).

• In log-based schemes [61, 97], all updates are logged on stable storage (e.g., RAID [40]) so that,

if a failure occurs, the system can restore the state of the system to a previous consistent state

by undoing these logs. The system can reduce the number of log records that the system must

process during recovery, by conducting checkpoints. A checkpoint saves a consistent state of

the system on stable storage.

An advanced log-based recovery technique, called ARIES [97], has been widely used in database

products, including IBM DB2 [121] and Microsoft SQL Server [45]. Recovery in Oracle [46] is

described in [84].

As pointed out in Section 1.2, the aforementioned recovery techniques for database management

systems are not appropriate for stream processing. The reason behind this is that they store data on

disks with high overhead and the concept of database transactions is not applicable to the continuous

stream processing model.

6.1.2 Process-Pair

In addition to the methods in Section 6.1.1, database systems often protect data from server failures

by replicating data from a source database, called the primary, to a target database, called the

standby. This model is frequently called the process-pair model [24, 60]. Process-pair has several

variants that differ in runtime overhead and recovery speed. In the cold-standby variant, the primary

periodically transmits a log of operations to the standby and, based on the log, the standby asyn-

chronously performs the operations. Although logs of operations are commonly used, the primary

can also checkpoint its state to reduce the amount of logs to process during recovery. In contrast

to cold-standby, hot-standby makes the primary and standby perform all operations synchronously

(i.e., perform every update before sending the result to the client). Hot-standby favors recovery

speed over runtime performance. Cold-standby has the opposite characteristics.

The process-pair model is widely adopted in many existing database systems, including IBM

DB2 HADR (High Availability Disaster Recovery) [73], Oracle 10g/DataGuard [111] and MS SQL

2005’s Database Mirroring [104]. Oracle 10g/DataGuard is one such facility built on top of Oracle

Streams [103]. DataGuard supports three recovery modes: maximum protection (MPR), maxi-

mum availability (MAV), and maximum performance (MPE). MPR synchronously applies the same

update to multiple machines as part of the same transaction, providing precise recovery. MPE asyn-

chronously transmits redo logs to the standby, providing gap recovery only. MAV switches between

MPR and MPE based on the accessibility of the standby. In Chapter 3, we developed variants of the

process-pair model, namely passive standby, active standby, and upstream backup, while taking into

account the requirements of stream processing applications. These techniques can provide precise

recovery as well as a new less rigorous recovery type called no loss recovery. Compared to precise

recovery, no loss recovery can be achieved with a lower runtime cost and faster recovery speed. The
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three developed recovery techniques also have different characteristics in terms of recovery speed

and resource usage.

6.1.3 High-Availability Techniques for Distributed Database Systems

Recovery techniques in Section 6.1.1 also have been extended for distributed database systems. A

distributed database system consists of a collection of sites, each of which maintains a local database

system and also can participate in the execution of a global transaction (i.e., a transaction that

accesses data in several sites) [59, 140]. To ensure atomicity of global transactions despite server and

network failures, distributed database systems usually use the two-phase commit protocol [91, 58, 98].

This protocol is invoked when all the sites that have been related to a global transaction inform

the completion of the transaction. The two phases of the protocol are the voting phase, in which

the transaction coordinator checks whether or not each of the related sites is ready to commit, and

the decision phase, in which the coordinator informs the sites of its decision (commit or abort) on

the global transaction. The two-phase commit protocol may lead to situations where the fate of a

transaction cannot be determined until a filed site recovers. The three-phase commit protocol reduces

the probability of blocking [124]

Although the process-pair approach in Section 6.1.2 can protect a system from server failures, a

distributed database in a wide area setting needs to deal with network failures and a large number

of simultaneous server failures. For this, techniques that replicate databases at different remote

locations have been proposed. These replication techniques can be classified into two categories:

eager replication and lazy replication. Eager replication keeps all replicas exactly synchronized by

updating all the replicas as part of one atomic transaction [56, 57]. This approach always leads

to serializable execution and thus prevents concurrency anomalies. Eager replication, however, in-

creases transaction response times because it adds extra updates and messages to each transaction.

In contrast to eager replication, lazy replication trades off availability against consistency. In lazy

replication, only one replica is updated by the originating transaction and updates to other repli-

cas propagate asynchronously, typically as a separate transaction for each node. If replicas have

inconsistent states, the system reconciles the states [81, 142, 139]. These replication approaches are

prohibitive in Internet-scale stream processing because the notion of database transactions cannot

be applied and the state of an operator replica can change too rapidly due to high input rates. For

this reason, our replication approach in Chapter 5 concurrently executes operator replicas instead

of propagating updates between operator replicas.

6.1.4 Persistent Queues

Bernstein et al. developed a fault-tolerance mechanism for transaction requests between clients and

servers [26]. Making use of persistent queues, their approach ensures that each server processes each

request exactly once and that a client processes each reply at least once. This work, however, is not

appropriate in stream processing because it relies on transactional semantics and stores messages on
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stable storage before they are get processed. Our entry points in Chapter 5 are similar to persistent

queues in that they preserve input tuples from stream sources. Unlike persistent queues, entry points

preserve tuples in their local memory as well as the memory of other entry points until the tuples

are processed by downstream operators.

6.1.5 High Availability in Workflow Systems

High availability has been also studied in the context of workflow management systems (WFMSs).

In a workflow system, such as IBM WebSphere MQ [65, 74], data travels through several execution

steps that collectively accomplish a business goal [5, 67]. These workflow systems usually mask

server failures by using standby machines. Many solutions commit the results of each execution

step while storing messages on stable storage that both the primary and standby can access. To

achieve fault tolerance in a scalable fashion, some workflow systems log messages on processing

nodes rather than a central storage [6]. A variation of the process-pairs approach is used in the

Exotica workflow system [80]. Instead of checkpointing process states, Exotica logs messages between

workflow components. This approach is similar to upstream backup in that the system state can be

recovered by reprocessing the logs. In general, high-availability techniques for workflow systems are

not directly applicable to stream processing because they rely on transactional semantics which is

not applicable to the stream processing context.

6.2 High-Availability Techniques in Distributed Systems

A large number of techniques have been developed to add reliability and high availability to dis-

tributed systems. In this chapter, we summarize two representative research fields in the area,

namely rollback recovery and group communication.

6.2.1 Rollback Recovery

Techniques in this category treat a distributed system as a collection of application processes that

communicate through a network. These techniques periodically checkpoint the states of these ap-

plications on stable storage [52]. Upon a server failure, application processes restart from the saved

states, thereby reducing the amount of lost computation. These rollback recovery techniques form,

as the result of recovery, a global (i.e., system-wide) consistent state in which if a process’s state

reflects a message receipt, then the state of the sender reflects sending that message. The next two

paragraphs summarize these techniques.

Early rollback recovery techniques achieve fault tolerance by use of checkpoints. These checkpoint-

based techniques can be categorized as follows:

• Uncoordinated checkpointing allows each process to take checkpoints independently [110, 27,

145]. This approach requires, upon a failure, rolling back application processes to earlier



98

checkpoints until a global consistent state is formed. This cascaded rollback is a major disad-

vantage of uncoordinated checkpointing. In uncoordinated checkpointing, a process may also

take useless checkpoints that will never be part of a global consistent state.

• In coordinated checkpointing, processes coordinate their checkpoints in order to save a global

consistent state. Coordinated checkpointing simplifies recovery (since processes only need

to restart from their most recent checkpoints) and reduces storage overhead. This approach,

however, causes large latency because a global checkpoint must be enforced before any message

is sent to the outer world. Techniques in this category ensure global consistency by periodically

making all processes take checkpoints before sending any application message [132, 38, 85, 82,

48].

• Communication-induced checkpointing piggybacks protocol-specific information on each appli-

cation message so that the receiver process can determine whether or not it should take a

forced checkpoint to prevent past checkpoints from being useless [101, 146, 64]. In addition to

these forced checkpoints, each process can autonomously take local checkpoints (e.g., when its

state is small and thus incurs a small checkpoint overhead). Because this approach does not

require globally coordinated checkpoints, it can scale up with a large number of processes.

Log-based rollback recovery combines both checkpointing and logging of non-deterministic events

(e.g., receipt of messages and hardware interrupts). Conceptually, log-based rollback recovery relies

on piecewise determinism, an assumption that all nondeterministic events that a process executes

can be identified and, by replaying these events during recovery in the exact original order, a process

can recreate its pre-failure state [129]. Because this approach can recover a system up to the point

of failure (beyond the most recent set of consistent checkpoints), it is particularly attractive for

applications that frequently interact with the outside world. Log-based rollback recovery has the

following three variants:

• Pessimistic logging saves each nondeterministic event on stable storage before the effects of

the event can be seen by other processes or the outside world [77]. Due to this restriction,

pessimistic logging degrades failure-free performance. To reduce this penalty, some protocols

rely on special hardware [31] or log each message on the volatile memory of the sender [77].

• Optimistic logging asynchronously stores nondeterministic events on stable storage (i.e., first

keeps these events in a volatile memory and then periodically flushes them to stable storage).

Upon a failure, this approach thus can cause orphan processes (processes whose states depend

on nondeterministic events that are not yet logged). Optimistic logging techniques roll back

these orphan processes until no such processes remain. For this, they track causal dependencies

between processes during failure-free execution [129, 76, 123, 125]. Causal dependencies are

also used to log events before their effects are seen by the outside world.

• Causal logging has the failure-free performance advantages of optimistic logging while retaining

most of the recovery advantages of pessimistic logging. Causal logging ensures that each
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nondeterministic event that causally affects a process is always stored on either stable storage

or the volatile log of the process [53, 7]. To achieve this, processes piggyback causal information

on application messages and update their logs based on these messages.

The rollback recovery techniques above are related to our passive standby technique in Chapter 3

and the parallel recovery technique in Chapter 4. In principle, our techniques build a virtual backup

storage on the memory of many servers, save logs on the sender processes, and conduct asynchronous

checkpoints. In stream processing, data streams that connect operators represent the dependencies

between operators. Therefore, without any complicated mechanism, groups of operators that are

independent of each other can be easily found. Taking advantage of this property, our technique in

Chapter 4 conducts fine-grained checkpointing, thereby significantly reducing the duration that a

checkpoint blocks regular processing. Furthermore, the technique constructs a distributed backup

framework that can parallelize recovery. This technique also distributes backups and schedules

checkpoints in a manner that maximizes the recovery speed.

6.2.2 Reliable Group Communication

In distributed systems, it is often necessary that communication within a group of remote processes

be reliable. For example, an application may require that every message is delivered to either all

members of a process group or to none at all. In addition, it is also generally required that all

messages are delivered in the same order to all processes. These two conditions above collectively

define the atomic multicast guarantee. Atomic multicast is particularly useful in distributed database

systems because it enables all the sites update their local databases in an identical way despite site

crashes and network failures. The Isis [28], Horus, Ensemble [29], and Spread [10] toolkits provide

generic group membership and atomic multicast functionalities. The Paxos algorithm achieves

distributed consensus in a fault-tolerant manner [89, 90]. This capability is beneficial to failover-

based recovery techniques because it allows a group of replicas to easily agree upon the health

of each member. Our replication technique in Chapter 5 does not require group communication

protocols. This is because it allows each replica to process whichever data arrives first from multiple

upstream replicas. This technique protects the system from failures even without detecting failures

and switching between replicas.

6.3 Stream Processing

Research on stream processing has begun to address the limitations of traditional database man-

agement systems in meeting the requirements of stream processing applications. This research has

centered on investigating new techniques to provide low-latency processing of high-rate data streams.

In this section, we first present a variety of stream processing systems developed and discuss issues

that these systems aim to address (Section 6.3.1). Next, we summarize strategies for placing op-

erators over diverse geographic locations (Section 6.3.2). Finally, we contrast our techniques for



100

highly-available stream processing with others (Section 6.3.3).

6.3.1 Stream Processing Systems

Tapestry [138] was one of the first systems that introduce the notion of stateful continuous queries.

Tapestry, however, did not yet adopt the “on-the-fly” processing model in the sense that it still

stores and indexes data in databases before running continuous queries. Although Tapestry has an

advantage that it requires only small changes to a regular database management system, it does not

scale well with the rate of the input streams and the number of continuous queries. In Tapestry,

users submit continuous queries that identify some documents of interest. The users are then notified

when such documents are inserted into the repository.

Tribeca [130] was an early stream processing system for network monitoring applications. Tribeca

queries are expressed using a specific dataflow-oriented query language. Because queries can have

only one input stream, Tribeca cannot support Join operations. Tribeca provides windowed Aggre-

gates. It also supports other operators that split and merge streams. These operators are similar to

Group-By and Union, respectively.

NiagaraCQ [39] focused on scalable continuous query processing over XML documents. Nia-

garaCQ aimed to support millions of simultaneous queries by dynamically grouping them according

to their structural similarities. NiagaraCQ merges new queries into existing groups as they arrive.

It can also reform groups in a manner that shares computation. In this way, NiagaraCQ can reduce

resource usage and improve throughput. As part of the NiagaraCQ project, Tucket et al. proposed

punctuations. Punctuations are special elements of a data stream that specify the end of a subset

of tuples in the stream [141]. Puctuations are originally devised to adapt traditional blocking oper-

ators (e.g., Sort, Aggregate) and unbounded stateful operators (e.g., Join) to the context of stream

processing. Our replication framework in Chapter 5 uses punctuations of its own style to eliminate

duplicate tuples and ensure replica consistency.

TelegraphCQ [36] is one of the earliest systems that continuously process incoming data without

first storing it. To adapt to varying conditions, groups of query modules can be connected together

with an Eddy [16], which intercepts tuples as they flow between modules and makes routing decisions.

TelegraphCQ also views stream processing as a Join operation between a stream of data and a stream

of queries [37]. When a new query arrives, its predicate is used to probe the data. An incoming

tuple can also be joined with relevant queries.

The STREAM project explored many aspects of stream processing, including a new data model

and query language for streams [11], operator scheduling [17], resource management [19, 127], ap-

proximation [14], and distributed operation [102, 20]. The STREAM prototype supports continuous

queries over both streams and stored relations [12]. To achieve this, STREAM supports three types

of operators: stream-to-relation, relation-to-stream, relation-to-relation.

The Aurora project [2] also proposed a new data model and processing architecture for stream

processing. In Aurora, users express queries directly as boxes-and-arrows diagrams where boxes and

arrows represent operators and streams, respectively. The Aurora project addressed the problems of
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efficiently scheduling operators [33] and shedding load in overload situations [134]. Borealis [1, 41]

is a distributed stream processing system that builds upon Aurora. It borrowed communication

capabilities from Medusa [23]. Borealis can generate revision tuples that correct the value of earlier

tuples [113] and support time travel where a running query can go back in time and reprocess some

data. Other problems such as operator placement [3], distributed load management [149, 148], and

fault-tolerant distributed stream processing [22, 68, 69, 70, 71] are also studied in the context of

Borealis.

Gigascope [47] is a stream processing system specially designed to support network monitoring

applications. This system provides a query definition language, called GSQL, as well as a suite of

user-defined operators. These operators enable Gigascope to leverage custom software modules that

already exist. In Gigascope, queries are compiled into C and C++ modules and then linked to the

runtime system. Gigascope performs data reduction (e.g., aggregation, selection) at data sources

before sending the data to downstream components. Gigascope aims at efficient stream processing

through sampling [44, 78] and real-world deployments [47].

In addition to the prototypes mentioned above, several commercial stream processing products

have been developed. These systems include StreamBase [128], IBM System S [75, 9], Coral8 [43],

Amalgamated Insight [8].

6.3.2 Operator Placement

A crucial issue in distributed stream processing is to determine the location to run each operator.

The placement of operators affects both performance (in terms of result latencies) and network

usage.

Srivastava et al. studied the problem of placing operators in a sensor network [126]. This work

assumes that data is first collected by low-capability devices and then processed through a hierarchy

of nodes with increasing computation power and network bandwidth. In order to reduce network

bandwidth consumption, this system pushes operators to upstream nodes. This work defines the

execution cost of an operator based on the processing load of the operator and the processing

capability of the node that runs the operator. An operator has a larger execution cost as it is

placed on a node with less processing power. This work strive to minimize the total cost of a query

execution plan. This cost combines the execution cost of the query and the transmission costs of

the related network links.

Ahmad and Uğur Çetintemel proposed a method to deploy operators in a wide area environ-

ment [3]. This work models the cost of a network link based on the amount of data transmitted as

well as the transmission latencies. This work then determines the locations of the operators with

the optimization goal of minimizing the total network cost.

Pietzuch et al. also studied the problem of operator placement in a wide area setting [106].

They developed a stream-based overlay network, called SBON, that maintains a virtual cost space

where the distance between two nodes represents the network overhead of routing data between

these nodes. SBON determines the placement of operators first in the virtual space using a spring
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relaxation algorithm. This algorithm assumes that stream sources and client applications are fixed

at specific locations whereas operators can move freely. By using network latency as the spring

extension factor and data rate as the spring constant, the algorithm finds the locations in the virtual

space that minimize the energy of the spring system (i.e., minimize the network usage). After this,

the algorithm maps the locations in the virtual space to physical nodes and then places operators

on those nodes.

Similar to the operator placement approaches above, our replica deployment approach in Chap-

ter 5 also puts replicas at locations that minimize network usage. Our approach, however, considers

the relationship between different locations to reduce the risk that replicas fall into the same net-

work partition (while simultaneously isolated from the rest of the network). Our approach also can

dynamically discard the least useful replicas to save network resources and can add more replicas

and to cope with varying system conditions.

6.3.3 High Availability in Stream Processing

Most of the high-availability techniques developed for stream processing are based on failover [118,

68, 22, 69]. In these techniques, if a server fails, a group of pre-dedicated backups take over the

failed execution.

Three general failover-based approaches is presented in [68] and Chapter 3 of this dissertation:

in passive standby, each primary periodically checkpoints (i.e., copies only the change that occurred

in its state since the last checkpoint) onto its backup; in active standby, each backup also receives

and processes input data in parallel with its primary; in upstream backup, each primary logs its

output data so that if a downstream primary fails, a backup can rebuild the lost state from scratch

by reprocessing the logged data.

The passive standby approach was extended for local area clusters in [69] and Chapter 4 of this

dissertation. The reason behind this was that passive standby can withstand high load situations

while gracefully degrading the recovery speed. The developed technique partitions the query at

each server into smaller pieces and backs them up onto different servers. Based on these distributed

backups, the technique can parallelize recovery, thereby significantly reducing the recovery time.

The active standby approach guarantees faster recovery than passive standby in low load situ-

ations where all the backups can use the same amount of resources as the primaries. Shah et al.

developed a technique, called Flux, that falls into the active standby approach [118]. Flux accom-

plishes loss-free and duplication-free failure/recovery semantics by use of sequences numbers assigned

to tuples. Similar to our active standby technique in Chapter 3, Flux allows loose coupling between

replicas where one replica can go ahead of the other and vice-versa, resulting in more opportunities

to overlap their execution. In contrast our active standby technique, however, Flux cannot sup-

port divergent and convergent-capable operators. Balazinska et al. studied a variant of the active

standby approach that can deal with network failures and partitions [22]. The developed solution

yields tentative results when inputs are not available by a predefined time bound. If the deferred

inputs become available, it starts sending correct revisions. This solution, however, increases output
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latencies during failure-free periods because it forces operator replicas to run identically by sorting

input streams to them. In contrast, our active standby technique in Chapter 3 and replication

technique in Chapter 5 allow operator replicas to run differently while keeping them consistent with

each other.

The third failover-based approach, called upstream backup, incurs very low overhead during

failure-free periods because the backups remain idle. However, it may take a long time to recover

large state queries. For example, recovering an Aggregate with a window size of 10 minutes requires

re-processing 10 minute worth of tuples. This approach is thus beneficial when queries have small

states, resources are scarce, and failures are very rare.

Recently, Murty and Welsh presented a high-level vision of a dependable architecture for Internet-

scale sensing [100]. They proposed a replication technique that allows replicas to arbitrarily diverge

and then reconciles results from such replicas by finding a representative value (such as the median).

In contrast, our approach in [70, 71] and Chapter 5 of this dissertation makes replicas produce the

same tuples, possibly in different orders. Based on this property, our approach guarantees that

applications always receive the same results as in the non-replicated, failure-free case.



Chapter 7

Conclusion

In this dissertation, we presented our various techniques for highly-available stream processing.

These techniques were motivated by the following observations:

• A failure in stream processing can have a fatal impact because it blocks downstream data flows

and may result in losing data essential for processing.

• The larger the system, the higher the risk of having a faulty component.

The main challenge throughout our work was to develop resource-efficient and scalable fault-

tolerance techniques that can consistently realize low-latency delivery of correct results. In this

chapter, we summarize our contributions to date (Sections 7.1, 7.2, and 7.3) and describe future

research directions (Section 7.4).

7.1 Basic Approaches for Highly-Available Stream Process-

ing

In Chapter 3, we devised three approaches where a failed server can be taken over quickly by another

server. These approaches commonly deploy, for each operator, k replicas on independent servers to

mask up to (k−1) simultaneous fail-stop server failures. They, however, differ in how they coordinate

replicas to prepare for failures. In detail,

• Active standby executes all peer replicas in parallel, while allowing one of them to feed down-

stream replicas.

• In passive standby, only one of multiple peer replicas runs and periodically checkpoints its

state onto the other passive replicas. Although the state of a replica includes any data that

the replica maintains, each checkpoint copies only the difference between the active replica’s

current state and the state at the time of the previous checkpoint.

104
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• In upstream backup, active replicas log output data so that, if a downstream replica fails, an

empty replica can use the logged data to rebuild the latest state of the failed one.

For each of these approaches, we also devised a specific solution that guarantees precise recovery

(i.e., the output with failure is always identical to that without failure) and other solutions that

provide less rigorous recovery guarantees (e.g., no data is lost, but the output can differ from that

without failure) at lower costs. Using a detailed simulator and our Aurora/Borealis prototype,

we showed that these recovery techniques have very different performance characteristics and also

identified the scenarios where each of them is most advantageous. The results are as follows:

• Active standby provides the fastest recovery at the highest cost. Therefore, it is desirable

when failures are relatively frequent, applications require very low latency at all times, and

the system has a large amount of idle resources.

• Upstream backup incurs the lowest overhead, but are not suitable for large-state queries. For

this reason, it is advantageous when failures are rare, resources are very scarce, and queries

have small states.

• Passive standby can strike a balance between performance and recovery speed by adjusting

the checkpoint interval. Thus, it is beneficial when failures are relatively rare, applications

can tolerate moderate latencies, and the system has slightly more resources than necessary for

regular processing.

7.2 Highly-Available Stream Processing in Server Clusters

In Chapter 4, we developed a technique that realizes highly-available stream processing in commodity

server clusters. The reason behind this was that such server clusters increasingly gained popularity

due to their favorable price/performance ratio. For these environments, we adopted the passive

standby approach because it can flexibly trade off between resource usage and recovery speed –

less frequent checkpoints save resources, but, at the same time, the older the checkpoint the longer

the recovery time. Other alternatives do not have such flexibility – active standby always requires

k times more resources and upstream backup cannot accelerate recovery even if idle resources are

available.

Under passive standby, our work focused on maximizing the recovery speed and minimizing

disruption by checkpointing using idle CPU cycles. The main idea was to group servers into logical

clusters and back up each server using others in the same cluster. Because individual operators on

a server are backed up on different servers, they can be recovered in parallel. In this approach, a

server failure is not fully recovered until all the other servers complete recovery. Therefore, each

server determines the backups for its operators in a manner that balances the recovery load over the

other servers. Whenever a server is idle, it begins the checkpoint that will most reduce the recovery

load, relative to the CPU cost of checkpoint. This gain/cost ratio favors (i.e., causes to checkpoint

more frequently) small-state operators with high processing load.
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Through simulations and experiments on a server cluster at Brown University, we demonstrated

the effectiveness of our backup assignment and checkpoint scheduling strategies. For these experi-

ments, we used various workloads generated from real packet traces. We learned that:

• The distribution of recovery load over multiple servers significantly affects the recovery speed.

If a server is assigned too much recovery load, it cannot as quickly complete its recovery as

others. In this case, the overall recovery is slow, because it cannot take the full advantage of

parallelism during recovery. We observed that, for this reason, randomly determining backup

servers leads to poor recovery performance. On the other hand, our backup assignment strategy

effectively improves the recovery speed.

• Our min-max checkpoint scheduling can accelerate recovery by a factor of two compared to

round-robin for a real workload. This is because min-max scheduling finds the most beneficial

checkpoint each time. Such prioritization tends to more frequently choose operators with high

processing load and low checkpoint cost. We also found that the difference in recovery speed

grows as operators have more different characteristics.

• Checkpointing a subset of operators each time suspends the regular processing for a much

shorter duration than checkpointing all of the operators that a server runs. In this case, the

result latencies are kept at a lower level.

• The recovery time is very sensitive to the input data rate. As an operator processes more

input data, in general, both the state size and processing load of the operator increase. In

this case, each checkpoint needs to transfer more data and less CPU cycles are available for

checkpointing. Consequently, the checkpoint period as well as the recovery time can increase

super-linearly with the input rate.

7.3 Fast and Highly-Available Stream Processing over the

Internet

In Chapter 5, we discussed a replication-based approach for both fast and reliable Internet-scale

stream processing. The Internet environment allows us to monitor various events occurring around

the world and to make smart decisions in near real time. In this environment, however, previous

techniques have limitations because a replica can receive data from only one of many upstream repli-

cas. If the upstream replica fails (or its connections stall or fail), the processing gets delayed until

downstream replicas notice the problem and acquire new input connections from another function-

ing upstream replica. To avoid such disruption, the developed approach creates multiple operator

replicas at different geographic locations and lets them send outputs to each downstream replica.

This replication-based approach can improve performance as well as availability because replicas

can always use whichever data arrives first from multiple upstream replicas. To further reduce

latency, replicas run without coordination, possibly processing data in different orders. Despite



107

this relaxation, our approach guarantees that applications always receive the same results as in the

non-replicated, failure-free case.

For this replication-based framework, we also developed a strategy for managing replicas. Because

it is in practice difficult to predict the future behavior of each operator, our strategy initially creates

a predefined number of replicas at different locations and then gradually discards the least useful

stream/operator replicas. When replicas are initially deployed, the system chooses locations that

not only minimize the network cost, but also keep low the risk that peer replicas fall into the same

network partition. To periodically find the least useful replicas, the system keeps track of the impact

of each stream/operator replica on the subsequent processing up to client applications. If a replica

observes delays in its input, it addresses the problem by creating more upstream replicas.

We demonstrated the utility of this work through experiments on PlanetLab, a worldwide network

testbed. Our experimental results show that:

• Our replication framework can further reduce the average and variance of result latencies (i.e.,

improve performance and availability, respectively) as it uses more network resources. This

sharply contrasts with previous solutions. In these solutions, adding more replicas generally

does not improve performance because the regular processing relies on only one replica out of

each group of peer replicas.

• Our replica deployment strategy outperforms random deployment because it selects locations

that efficiently improve both performance and availability.

• Our garbage-collection technique can significantly save network resources while keeping latency

low. This is because it removes the replicas that make the smallest contribution to downstream

processing.

7.4 Future Directions

Our study on highly-available stream processing opens several research directions. We intend to

study the following topics in the future:

• Understanding the Nature of Failures. Our previous research assumed that server failures

are rare and independent. To prevent peer replicas from falling into the same network partition,

we used a heuristic that considers network delays between servers. We expect that detailed

statistics on server failures, link congestion and failures, network partitions, and their causes

(e.g., power outages, human operator errors, and software bugs) would provide a new insight

into the problem domain. To obtain such statistics, we plan to monitor PlanetLab using our

prototype and consult other sources including data centers and failure data repositories [34].

• Relaxed Fault-Tolerance Semantics. Until now, we focused on approaches that ensure the

processing of all of the input data despite failures. There are, however, situations where such
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efforts are impractical. In sensor networks, for example, power constraints make it advanta-

geous to send some form of summaries (e.g., samples, histograms) rather than the base sensor

readings. In this context, while replication would still be the main means to improve reliability,

we need to balance two conflicting goals – maximizing the quality of results and minimizing

the resource usage. Interestingly, feeding replicas the same approximate data (e.g., the same

samples) would not be a good idea, because feeding them different data and consolidating their

outputs would yield better results (e.g., those with a higher entropy). This raises questions,

such as “Would feeding each of many replicas less information be better than feeding each

of fewer replicas more information?”, “Should we uniformly or non-uniformly feed replicas?”,

“What would be the optimal routes for replicated streams?”, “How can we consolidate the

outputs of peer replicas?”, and “How confident can we be about approximate results?”

• Byzantine Failures. As stream processing gains more popularity, we can envision situations

where many custom-operators developed by various vendors and individual programmers are

deployed in real applications. In such cases, the security vulnerabilities or bugs of these

operators can cause catastrophic damage to the system. Just like the related work in other

contexts [88, 143], a key idea would be to compare the outputs of either homogeneous replicas to

handle non-deterministic failures, or heterogeneous replicas (e.g., those from different vendors

or different versions from the same vender) to mask even deterministic failures. In stream

processing, however, sophisticated optimization techniques (e.g., allowing replicas to process

data in different orders) make it difficult to identify faults. To expedite data flow, optimistic

approaches (i.e., those that process data as early as possible and address problems later) are

preferable to pessimistic ones (i.e., those that defer processing until the input data is verified).

• Hybrid Fault-Tolerance. Our research to date used only one of the three fault-tolerance

approaches for each specific scenario. It would be interesting to consider a technique that

can apply a different approach to each operator to benefit from the unique advantages of the

approaches – the recovery speed of active standby, the flexibility of passive standby, or the

resource efficiency of upstream backup. To adapt to changes in system conditions, this hybrid

technique should be able to seamlessly switch between different approaches.
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