
Abstract of “Pulse: Database Support for Efficient Query Processing Of Temporal

Polynomial Models” by Yanif Ahmad, Ph.D., Brown University, May 2009.

This thesis investigates the practicality and utility of mathematical models to represent continu-

ous and occasionally unavailable data stream attributes, and processing relational-style queries in a

stream processing engine directly on these models. We present Pulse, a framework for processing

continuous queries over stream attributes modeled as piecewise polynomial functions. We use piece-

wise polynomials to provide a compact, approximate representation of the input dataset and provide

query language extensions for users to specify precision bounds to control this approximation. Pulse

represents queries as simultaneous equation systems for a variety of relational operators including

filters, joins and standard aggregates. In the stream context, we continually solve these equation

systems as new data arrives into the system. We have implemented Pulse on top of the Borealis

stream processing engine and evaluated it on two real-world datasets from financial and moving

object applications. Pulse is able to achieve significant performance improvements by processing

queries directly on the mathematical representation of these polynomials, in comparison to standard

tuple-based stream processing, thereby demonstrating the viability of our system in the face of hav-

ing to meet precision requirements.

aaaaaa In addition to our primary contribution of describing the core design and architecture of

Pulse, this thesis presents a selectivity estimator and a multi-query optimizer to scale query pro-

cessing capabilities. Our selectivity estimator uses histograms defined on a parameter space of

polynomial coefficients for estimation, passing selectivities to our multi-query optimizer which may

then determine how to construct a global query plan that shares work across individual queries. We

evaluate these components on both a synthetic dataset and a financial dataset. Our experiments

show that our optimization mechanisms provide significant reductions in processing overhead, and

that our estimation algorithm provides an accurate and low overhead estimator for selective op-

erators, that can be enhanced by sampling, while also being a general technique that can handle

operators such as min and max aggregates, where sampling is known to be inaccurate.

Pulse: Database Support for Efficient Query Processing Of Temporal

Polynomial Models

by

Yanif Ahmad

B. Eng., Imperial College of Science, Technology and Medicine, UK, 2001.

Sc. M., Brown University, 2004.

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2009

c© Copyright 2009 by Yanif Ahmad

This dissertation by Yanif Ahmad is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Uğur Çetintemel, Director

Recommended to the Graduate Council

Date
Stanley B. Zdonik, Reader

Date
John Jannotti, Reader

Date
Samuel Madden, Reader

CSAIL, MIT

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Acknowledgments

Looking out of my office window, the snow-covered streets reminds me of an optimistic

feeling I had prior to starting graduate school – the promise of fun should I choose to dive

into it. My time at Brown has fulfilled that promise in so many more ways than I imagined,

and this is due in no uncertain terms to the wonderful colleagues, friends and family that I

have had the privilege of spending time with in these last years.

I would first and foremost like to thank my mentor and advisor, Uğur Çetintemel. Uğur

has been a source of unending support, motivation, inspiration and patience over the years,

in my eyes the model advisor. His amicable nature and sense of humor will always be a

constant reminder to take pleasure and enjoy research in light of its ups and downs. He

conveyed an invaluable lesson in the need to strike a balance between building future-facing

systems while grounding long term potential impact with the needs of today’s applications,

helping me realize the importance of taste and diversity as key elements of research. I truly

feel lucky to have had the opportunity to work with Uğur and look forward to collaborating

and continuing to learn from him in the future. Finally, no acknowledgment of Uğur could

be complete without reference to his football skills, and I am grateful for his push to start

the Brown CS Soccer Team whose intramural successes were one of the highlights of my

time at Brown. Thank you Uğur for all of your time and energy.

My thesis committee consisted of Stan Zdonik, John Jannotti and Sam Madden, each

of whom in their own ways have greatly enriched my experience at Brown, and have been

fantastic role models as researchers and provided critical insights over the years. I thank

them all for helping me grow as a researcher. Of those researchers with whom I have had

the opportunity to work closely, Stan has set the high bar for the kinds of goals any young

database researcher should seek to accomplish in a research career. I hope to be able to

reproduce the elegance and simplicity in designing database systems that I have witnessed as

part of Stan’s work during the Aurora/Borealis research meetings. Chatting in the hallways

with Stan frequently brought up a valuable reminder, that there are pursuits outside the

iv

academic confines in putting research ideas through its paces in industry.

I thank John for all of his efforts in our collaboration on the topics we pursued earlier

in my time as a PhD student on the SAND project. John continually amazed me with his

ability to grasp and find the holes in the details of my work, providing me with greater

appreciation of doing research online at the whiteboard and of having an example or two in

the back of my pocket. I am grateful John provided me the opportunity to be a Teaching

Assistant for his CS161 course on building high-performance systems, and for his continual

support over the years through numerous references for internships. Working with John

has provided me confidence in my abilities as a systems researcher, and I hope to continue

a side line of research collaborations in networks and distributed systems.

While he may not remember, I first met Sam during his job interview at Brown and

proceeded to ask him his secret to completing the PhD in four years. Now I do not remember

his answer (perhaps I would have graduated sooner if I had), but I recall being impressed

with Sam’s accomplishments on the TinyDB system and from that day on have often found

myself inspired by Sam’s research. I would like to thank Sam for his unsapping willingness

to attend meetings, as well as my thesis proposal and defense, as well as providing detailed

feedback on both this thesis research and document. I hope to continue to bounce ideas off

Sam and look forward to future research chats.

My collaborators in the New England area truly created an enriching academic environ-

ment, and in particular I would like to thank the members of the Brown Database Group,

and the Aurora/Borealis projects: Olga Papaemmanouil, Jeong-Hyon Hwang, Nesime Tat-

bul, Magda Balazinska, Bradley Berg, Jennie Rogers, Alex Rasin, Anurag Maskey, Mitch

Cherniack, and Mike Stonebraker. I would also like to thank Suman Nath and Sandeep Tata

for providing me the opportunity to intern at Microsoft Research and IBM Research respec-

tively, for their mentoring services and all of their efforts in our collaborations. Brown CS

TStaff and AStaff, especially Lori Agresti, Kathy Kirman, Jeff Coady and Max Salvas, were

extremely patient with all of my requests, I am extremely grateful for their responsiveness

and willingness to provide administrative support.

The PhD experience is so much more than the research and collaborations making up

the academics, it is an opportunity to meet many gifted and unique individuals who I have

the pleasure of naming as my friends. My time at Brown was made immeasurably richer

by Eric Koskinen and Vanessa Vigna, Peter Sibley, Gregoire Dooms and Julie Cailleau,

Manuel Cebrian, Luc Mercier, and Mert Akdere. In addition I would like to thank Daniel

Acevedo, Tudor Antoniu, Russell Bent, and Frank Wood for being wonderful officemates,

and the following for their companionship: Aris Anagnostopoulos, Sebastien Chan-Tin,

v

Jason Mallios, Liz Marai, Tomer Moscovich, Manos Renieris, Stefan Roth, Alex Zgolinski.

Finally and most importantly, I would like to thank my parents, Ali and Tahmina,

and my extended family, especially Tawhid, Tawfique and Taimor, for all of the help and

encouragement they have provided through the years. Without the doors they opened, I

could not have pursued this path so freely, and with such single-mindedness. Thank you.

vi

To my parents, Ali and Tahmina

vii

Contents

List of Figures xi

1 Introduction 1

1.1 Motivating Examples and Challenges . 4

1.2 Thesis Contributions and Outline . 6

2 Polynomial-Driven Query Processing 7

2.1 System Model . 7

2.1.1 Predictive Processing. 7

2.1.2 Historical Processing. 8

2.2 Data Stream Model . 8

2.2.1 Modeled Attributes. 8

2.2.2 Key attributes. 9

2.3 Selective Operators . 10

2.4 Aggregate Operators . 12

2.4.1 Min and Max Window Functions . 12

2.4.2 Sum and Average Window Functions 12

2.5 Continuous Segment Processing . 14

2.6 Enforcing Precision Bounds . 15

2.6.1 Query Output Semantics . 16

2.6.2 Query Inversion . 17

2.6.3 Split Functions . 18

2.7 Experimental Evaluation . 20

2.7.1 Operator Benchmarks . 20

2.7.2 Query Processing Performance . 23

2.7.3 NYSE and AIS Processing Evaluation 24

viii

2.7.4 Precision Bound Sensitivity Evaluation 27

3 Selectivity Estimation for Continuous Function Processing 29

3.1 Cost-Based Query Optimization . 29

3.1.1 Risk-Based Cost Models . 30

3.1.2 Multi-Query Optimizer Overview . 31

3.2 Segmentation-Oriented Selectivity Estimation 32

3.2.1 Dual Space Representation of Polynomials 33

3.2.2 Selectivity Estimation in the Dual Space 35

3.2.3 Query-Based Histogram Derivation 37

3.3 Histogram-Based Estimation of Intermediate Result Distributions 38

3.3.1 Filters . 41

3.3.2 Joins . 43

3.3.3 Aggregates . 45

3.3.4 Histogram-Based Selectivity Bounds 49

3.4 Experimental Evaluation . 50

3.4.1 Dataset Analysis . 51

3.4.2 Synthetic Dataset . 59

4 Adaptive Multi-Query Optimization with Segment Selectivities 62

4.1 Covered Sharing . 63

4.2 Union Sharing . 65

4.3 Ordering . 69

4.4 Processing Cost Model . 70

4.5 Detecting Optimization Opportunities . 72

4.5.1 Shared Operator Algorithm and Expression Adaptation Conditions . 72

4.5.2 Shared Instance Creation and Adaption Conditions 75

4.5.3 Reordering Conditions for Shared Operators 77

4.6 Collecting Query Statistics . 79

4.6.1 Cost model and collection mechanism 79

4.6.2 Adaptation conditions . 81

4.7 Condition Evaluation . 82

4.8 Experimental Evaluation . 83

ix

5 Related Work 89

5.1 Data Stream Management Systems . 89

5.2 Databases for Sensor Data Processing . 91

5.2.1 Model-Based Query Processing . 91

5.2.2 Querying Regression Functions . 92

5.2.3 Model-Driven Query Processing in Probabilistic Databases 92

5.2.4 Querying Time-Series Models . 93

5.3 Moving-object Databases . 93

5.3.1 Moving-object Indexes . 94

5.4 Constraint Databases . 94

5.4.1 Dedale . 94

5.4.2 Optimization queries . 95

5.5 Approximate Query Processing . 95

5.5.1 Stream Filtering . 95

5.5.2 Approximation in Stream Processing Engines 97

5.6 Selectivity Estimation . 98

5.6.1 Selectivity Estimation for Intermediate Result Cardinalities 98

5.6.2 Sampling-Based Selectivity Estimation 98

5.6.3 Handling Correlations and Functional Dependencies 99

5.7 Multi-Query Optimization . 100

5.7.1 Multi-Plan Optimization . 100

5.7.2 Sharing in Stream Processing Engines 101

5.7.3 Staged Databases . 101

5.8 Mathematical Software and Computer Algebra Systems 102

5.8.1 Mathematica and Maxima . 102

5.8.2 Matlab and Octave . 103

6 Conclusions 104

Bibliography 111

x

List of Figures

1.1 Query processing on continuous functions 4

2.1 Pulse transforms predicates in selective operators to determine a system of

equations whose solution yields the time range containing the query result. 8

2.2 A geometric interpretation of the continuous transform, illustrating predicate

relationships between models for selective operators, and piecewise composi-

tion of individual models representing the continuous internal state of a max

aggregate. 11

2.3 High level overview of Pulse’s internal dataflow. Segments are either given

as inputs to the system or determined internally, and processed as first-class

elements. 16

2.4 Microbenchmark for a filter operator with a 1% error threshold. 21

2.5 Microbenchmark an aggregate operator with a 1% error threshold. 22

2.6 Continuous-time and discrete processing overhead comparison for an aggre-

gate operator. 23

2.7 Microbenchmark for a join operator with a 1% error threshold. 24

2.8 Continuous-time and discrete processing overhead comparison for a join op-

erator. 25

2.9 Historical aggregate processing throughput comparison with a 1% error thresh-

old. 25

2.10 Continuous-time processing of the NYSE dataset, with a 1% error threshold. 26

2.11 Continuous-time processing of the AIS dataset, with a 0.05% error 26

2.12 Continuous-time processing of the NYSE data at 3000 tuples/second. . . . 28

3.1 Qualitative comparisons of query plans on a risk-cost space. 31

3.2 Selectivity estimation definition illustrations. 34

3.3 Bounding validity range correction factor. 36

xi

3.4 Parameter spaces of segments in the synthetic i) normal distribution, and ii)

uniform distribution . 51

3.5 Synthetic dataset generation parameters . 52

3.6 NYSE dataset characteristic parameters . 53

3.7 Segment parameter spaces for seven stocks from the NYSE dataset, stock ids

are: i) 12, ii) 3762 iii) 4878 iv) 6849 v) 6879 vi) 6973 vii) 8239. 54

3.8 Comparison of accuracy vs. performance tradeoff for histogram technique

and sampling on the NYSE dataset. 55

3.9 Absolute error differences between sampling at a variety of rates, and histogram-

based estimation using a large number of bins. 56

3.10 Estimation evaluation overhead for i) histogram-based and ii) sampling-based

techniques on the NYSE dataset. 57

3.11 Comparison of accuracy vs. performance tradeoff for histogram technique

and sampling on the synthetic dataset. 58

3.12 Absolute error differences between sampling at a variety of rates, and histogram-

based estimation using a large number of bins on the synthetic dataset. . . 59

3.13 Estimation evaluation overhead for i) histogram-based and ii) sampling-based

techniques on the synthetic dataset. 60

4.1 Cover-sharing example. 63

4.2 Union-sharing example. 67

4.3 State transition diagram for selecting sharing algorithm type. 73

4.4 Comparison of cover-shared and unshared execution at a variety of upper

bounds for query selectivities. 85

4.5 Processing cost differences between unshared and cover-shared execution for

query workloads with a variety of covering selectivities. 86

4.6 Processing cost comparison for union-sharing and other mechanisms in a 2-

operator chain, with varying selectivity configurations at each operator. Note

here high selectivity configuration implies selectivities close to 0.0, spread se-

lectivities indicates randomly chosen selectivities in [0.0, 1.0], and low refers

to selectivities near a value of 1.0. Additionally the upstream operator, A, is

cover-shared, and for this operator, the covering selectivity is roughly equiv-

alent for high and spread selectivity configurations. 87

6.1 Example polynomial type sampling function. 110

xii

Chapter 1

Introduction

With the emergence of sensor databases that are asked to manage significant volumes of

data sampled from physical processes, there has been much recent work in the database

community to address a variety of challenges prevalent in, but not limited to, sensor en-

vironments. Some of the eminent challenges includes handling noisy and uncertain data

[49, 54], handling node and network failures and the subsequent missing inputs in the data

stream [84, 86], and exploiting properties of the environment for query and communication

optimization [48, 31]. Many of the solutions to these challenges have used some form of

mathematical model to represent the values of attributes in database schemas, for example

probabilistic models to represent uncertainty and reduce network overhead during query

processing, as well as regression models to interpolate missing tuples.

There are numerous other uses for modeled attributes both internally to a database sys-

tem, and in terms of the functionality they can provide for end users. The database internals

application we consider in this thesis is that of using models for query processing, primarily

motivated in the context of the physical environments in which sensor networks operate,

and the continuous processes they monitor and query. The data attributes present in sensor

environments exhibit two key characteristics, they are continuous and they may have strong

dependencies on other attributes, for example time and space attributes. Our techniques

are generally applicable to any domain which exhibits similar characteristics. There has

been at best limited support for continuous attributes in existing database systems. The

models we consider for representing our data attributes account for these characteristics,

treating modeled attributes as continuous functions of a set of independent attributes.

Prior to diving into the nature of our models and our use for them, one question that

naturally arises is where do these models come from? We perceive two possibilities: the

1

2

models can be trained or learned from the raw inputs, or can be provided by domain experts.

The former has been the study of much recent work in the artificial intelligence and machine

learning communities [34, 12] and the integration of such learning techniques is a burgeoning

topic in the database community [51]. In our view the latter option, while this may place

a greater burden on the application developer, has been a long-standing limitation of a

database’s effectiveness as a tool in the domains and applications that heavily use sensor

data such as science and engineering.

Using these sensor data monitoring and analysis applications as an example, there is an

wealth of literature in the physical sciences developing and experimentally validating math-

ematical models that represent the behavior of attributes commonly sensed and processed

as part of sensor applications. To this day, this domain-specific knowledge has either been

used externally to the database system, or has been awkwardly, inefficiently and repeatedly

incorporated into the system through the use of stored procedures and other extensible

features of database systems. This concept underlies the overarching vision for this thesis.

There are large number of data modeling techniques, at a high-level based on calculus and

statistics, that have been developed across many disciplines of mathematics, science and

engineering. We view that there is a place for such techniques and the properties they

entail for attributes inside database systems, side-by-side with the relational algebra used

to declaratively manipulate attributes.

In turn database systems can bring several advantages to end users developing sensor

data monitoring and analysis applications. These features include providing a declarative

interface separating logical and physical concerns to support rapid development and proto-

typing without sacrificing on efficiency for compute-intensive tasks through under-the-hood

query optimization. Furthermore database systems have been strong proponents of shared-

nothing architectures for parallel, scalable query processing with the key being to scale

out rather than up. Finally database systems have highly tested, robust implementations

of key features for multi-user systems, particularly a well-defined concurrency model and

concurrency control, eliminating the need to reimplement this hard-to-get-right function-

ality across multiple applications. These features are integral to an effective tool for data

management.

This thesis represents an initial bottom-up approach to tackling our overarching vision,

where we develop a query processing framework called Pulse [4, 3] that is capable of han-

dling two specific types of mathematical models, polynomials and differential equations.

Due to the attributes’ continuous nature, representing each and every attribute value ex-

plicitly is not an option as is the case with discretized attributes. Rather our models are

3

expressed with a symbolic equation representation, and we use the same form internally

during query processing. Note this is in contrast to the high-level approach adopted by

works incorporating the aforementioned learning techniques and the underlying representa-

tion of uncertainty and probabilities required there. In these works the relational model can

be use to represent the model with the functionality required of these models implemented

using standard database operators on the relational representation. In our approach, we

are instead attempting to define and maintain the relational data model on top of a funda-

mentally different data representation.

Pulse is capable of applying operators based on the relational algebra to the native equa-

tion representation of these models, rather than on raw inputs or a discretized form of the

models. Modeled attributes provide two interrelated advantages for query processing. Our

query processor is capable of using attribute models to compactly and approximately repre-

sent data, and can then directly and efficiently perform processing to provide approximate

query results with much lower overheads, and thus higher performance, than processing raw

input data. Furthermore due to the continuous nature of the data and our models, they

eliminate application sensitivities to the discretization of the raw input data.

We have designed Pulse primarily for use in a stream processing context, where the com-

mon traits of stream applications include high-volume input data streams which are then

processed on-the-fly by continuous queries, to provide low latency and high throughput

results. Stream processing engines have become popular tools in several domains including

finance, network monitoring, environmental and infrastructure monitoring, real-time inven-

tory tracking and massively multiplayer games amongst many other applications. We refer

interested readers to the Aurora/Borealis, STREAM and TelegraphCQ projects [2, 1, 65, 18]

for more detailed information of the basic design, architecture and functionality provided by

stream processing engines. Several of these domains have immediate need for database sup-

port for domain-specific knowledge, for example financial applications operating on stock

market models. Our approach can also be applied to problems that naturally fit a streaming

model in domains that have thus not been considered by general stream processing engines,

for example scientific simulation, experimentation and validation applications, moving ob-

ject applications, and engineering design and testing applications. In the remainder of this

chapter we present two examples capturing the concept of processing relational queries

over mathematical models. We use these examples to state the aims of this thesis, before

outlining our specific contributions and how they accomplish the goals described.

4

1.1 Motivating Examples and Challenges

We now describe this fundamental concept of processing relational queries on mathemat-

ical representations of attributes, before presenting the system design challenges that this

form of query processing entails. As an example, consider a financial application driven by

stock prices. While we’ve primarily talked about sensor data thus far, we use this scenario

to illustrate that our techniques are applicable beyond the sensor environment. Financial

applications pose many different forms of queries on stock data to determine trading strate-

gies, and for illustrative purposes, consider a simple threshold condition on a stock price

that indicates whether or not to sell the stock:

select * from stocks where symbol = ’IBM’ and price < 125

In existing stream processing systems, stock feeds indicating trades made on the IBM

stock are continuously pushed into the system and processed through a continuous query

implementing the above logic. The stock price from IBM can be modeled as a continuous

function, for example for forecasting purposes. This is illustrated below for a piecewise

polynomial representation of the discrete stock price stream:

Figure 1.1: Query processing on continuous functions

In this example we would like to apply the threshold condition to the continuous function

representation of stock prices rather than the discrete results, and determine when the

function crosses the threshold. The same principle applies to join and aggregate operators

in addition to the filter operator that would be used to implement this threshold condition.

Note that in this diagram we have indicated that the result of such a query is itself a

continuous function rather than a discrete tuple. Having a closed-form approach enables

operator composition, for example we could apply an aggregate to the continuous function

following this filter operation. We return to the type of results produced at the edges of

the stream processor for downstream applications and clients in the next chapter when

5

describing the whole system model.

Given the above example we can begin to see some of the challenges posed for such a

query processor. At a high-level we can categorize the challenges into four sub-areas:

1. semantic issues, which include what kinds of models should we choose to support,

and how do their representations correspond to the set-oriented data model on top of

which we’ve based the relational calculus?

2. algorithmic issues, which cover that once we have decided on our model types, how

can we then apply relational operators directly to the model’s intrinsic representation,

treating the model as a first-class entity in the database system, and subsequently how

does query processing work?

3. architectural and optimization issues ranging from what abstractions can we

extract for putting together a general framework for processing models and what

novel model properties can we leverage for improving query processing efficiency?

4. usability issues, where given there are numerous existing tools for determining mod-

els, and clear advantages in declarative style programming as seen in database com-

munity experiences, how can we mesh these two factors together?

To emphasize a second critical component in our model-driven query processing, we

mentioned in that these models are approximations to the raw data in the above challenges.

Thus our query processor’s semantics should provide a well-defined approach to handling

this approximation both in terms of the processing it performs and the results it produces.

Furthermore, as we will see for both polynomial and differential equation models, error

handling provides opportunities for trading off the approximation provided in query results

and the system overhead in computing these results. The key to our approach lies in

assuming users are able to specify the precision they desire in query results, and then using

this precision specification to determine the approximation performed by each operator in

a query plan. We present a basic approach for allocating precision bounds to each operator

in the case of polynomial models, and extend this for numerical methods used to solve

differential equations, where the numerical methods themselves produce an approximation

to the intended model.

6

1.2 Thesis Contributions and Outline

This thesis presents the design of a stream processor for processing relational operators on

polynomial and differential equation datatypes. While there are many components to a

stream processing engine, we focus primarily on the query processor and query optimizer.

Chapter 2 presents the Pulse stream processor for attributes represented by a piecewise

polynomial datatype. In this system, data streams are made up of multiple piecewise

polynomials, one for every key value (for example, a piecewise polynomial for the ’IBM’

stock and another for the ’APPL’ stock). The first part of this chapter describes the

algorithms and implementation of relational processing for polynomials, cover filter, join

and aggregate operators. The second part focuses on the bound inversion algorithm to

handle precision bounds specified by users at the outputs. The key idea here is to determine

a precision bound at the inputs so that the query does not have to be processed on both the

discrete and polynomial representation to check the bounds. This system is implemented

and evaluated on top of the Borealis stream processing engine. We use two datasets, a

NYSE stock feed dataset and a naval vessel location dataset captured by the US Coast

Guard with the AIS tracking system.

Given the different nature of the query processing we perform in the above system,

we then consider the question of how to perform query optimization in this context. As

described in Chapter 3, one of the key challenges we perceive is that of selectivity estimation.

Selectivity estimators are used to predict the cost of running an alternative query plan

to the currently executing plan, since there are no measured selectivities available for the

computing the cost of the alternative plan. We present a selectivity estimator customized to

the polynomials we process that is based on maintaining histograms over the coefficients of

these polynomials. We then use this selectivity estimator in an actual optimizer, specifically

a multi-query optimization technique based on sharing common work. We present a plan-

based approach that finds operators that are compatible for sharing, and dynamically selects

groups of these operators to actually share based on a cost model. Our cost model represents

processing overhead and applies both the commonly used definition of overhead as a product

of selectivities and unit processing costs, as well as a notion of risk. This risk metric captures

that we are using a selectivity estimator, where our estimates can be erroneous and thus

should be considered to lie within a range of values, rather than being a single precise

averaged value.

Chapter 2

Polynomial-Driven Query

Processing

Continuous-time models provide two distinctive properties for use in query processing: they

facilitate random access to data at arbitrary points in time, and enable a compact repre-

sentation of the data as model parameters. In this section we present an overview of the

nature of the application types, data streams and queries we support.

2.1 System Model

In this section, we discuss two novel uses of models in the query execution model of a stream

processing engine in terms of both functionality and performance.

2.1.1 Predictive Processing.

In the predictive processing scenario, Pulse uses its modeling component to generate the

continuous-time models for unseen data values off into the future, processes these predicted

inputs, and generates predicted query results, all before the real input data becomes avail-

able from external sources. This style of predictive processing has important uses both from

the end-application perspective (e.g., a traffic monitoring application can predict conges-

tions at on road segments and send alerts to drivers) and system optimization perspective

(e.g., predictive results can mask I/O latencies, or network latencies in wide-area network

games by pre-fetching).

7

8

Query: SELECT * from A MODEL A.x = A.x+A.vt
JOIN B MODEL B.y = B.vt+B.at2

ON(A.x < B.y)

Transformation Description
A.x < B.y
A.x−B.y < 0 difference equation
A.x+A.vt− (B.vt+B.at2) < 0 substitute models
A.x+ (A.v −B.v)t−B.at2 < 0 factor time variable t

Figure 2.1: Pulse transforms predicates in selective operators to determine a system of
equations whose solution yields the time range containing the query result.

2.1.2 Historical Processing.

The second scenario is off-line historical data analysis that involves running a large number

of “parameter sweeping” or “what-if” queries (common in the financial services domain).

Applications replay a historical stream as input to a large number of queries with different

user-supplied analytical functions or a range of parameter values. The results are then

typically compared against each other and what was obtained in the past, to identify the

“best” strategy or parameters to use in the future. In historical processing, Pulse’s modeling

component is used to generate a continuous-time model of the historical stream that can

be stored and used as an input to all historical queries. Thus, the cost of modeling can be

amortized across many queries.

2.2 Data Stream Model

Pulse adopts the following assumptions on the uniqueness and temporal properties of data

stream attributes.

2.2.1 Modeled Attributes.

For predictive processing, Pulse supports declarative model specification as part of its

queries via a MODEL-clause, as shown in Figure 2.1. Query developers provide symbolic

models defining a modeled stream attribute in terms of other attributes on the same stream

and a variable t. For example in Figure 2.1, stream A has a modeled attribute A.x defined

in terms of coefficient attributes A.x and A.v. We allow the self-reference to attribute A.x

9

since we build numerical models from actual input tuples where the values of all coeffi-

cient attributes are known. In this example, the model A.x = A.x + A.vt represents the

x-coordinate a moving object as its position varies over time from some initial position. We

consider time-invariant piecewise polynomial models since they are often used for simple

and efficient approximation. The symbolic form of a general nth degree polynomial for a

modeled attribute a is: a(t) =
∑n

i=0 ca,it
i. To ensure a closed operator set, we restrict

the class of polynomials supported to those with non-negative exponents, since it has been

shown that semi-algebraic sets are not closed in the constraint database literature [57]. In

historical processing our modeling component computes coefficient attribute values inter-

nally.

Temporal attributes.. We assume each input stream S includes two temporal attributes,

a reference attribute denoting a monotonically increasing timestamp globally synchronized

across all data sources, and a delta attribute T . Pulse uses the reference timestamp’s mono-

tonicity to bound query state and delta timestamps for simplified query processing. Our

models are piecewise functions, that is they are made up of segments. Denoting r as a

reference timestamp and tl, tu as offsets, a segment, s ∈ S, is a time range [r+ tl, r+ tu), for

which a particular set of coefficients for a modeled attribute, {ci}, are valid (written as s =

([tli, t
u
i), ci) = ([tl, tu), c)i). In the remainder of this work, we drop the reference timestamp

r from our time ranges for readability. Thus, we can represent an attribute’s model over the

lifetime of an application as a sequence of segments: S = (([tl, tu), {c})i, ..., ([tl, tu), {c})j).
We adopt the following update semantics. For two adjacent input segments overlapping

temporally, the successor segment acts as an update to the preceding segment for the over-

lap, that is ∀i, j : [tl, tu)i ∩ [tl, tu)j 6= ∅ ∧ [tl, tu)i < [tl, tu)j ⇒ (([tli, t
l
j), ci), . . . , ([t

l, tu), c)j).

This captures the uniqueness properties of an online piecewise function, where pieces appear

sequentially.

2.2.2 Key attributes.

Pulse’s data streams contain exactly two other types of attributes, keys and unmodeled

attributes. Keys are discrete, unique attributes and may be used to represent discrete enti-

ties, for example different entities in a data stream of moving object locations. Unmodeled

attributes are constant for the duration of a segment, as required by our time-invariant

models. We omit details on the operational semantics of the core processing operators with

respect to key and unmodeled processing due to space constraints. Our general strategy is

to process these using standard techniques alongside the modeled attributes.

10

The underlying principle of our continuous-time processing mechanism is to take advan-

tage of the temporal continuity provided by the input streams’ data models in determining

the result of a query. The basic computation element in Pulse is a simultaneous equation

system that is capable of performing computation on continuous functions corresponding

to operations performed by the relational algebra. In this section we describe how we

construct these equation systems from our data models for core operators such as filters,

aggregates and joins, and how we are able to compose these equation systems to perform

query processing.

2.3 Selective Operators

Selective operators, such as stream filters and joins, produce outputs upon the satisfaction

of a predicate comparing input attributes using one of the standard relational operators

(i.e., <,≤,=, ! =,≥, >). We derive our equation system by transforming predicates in a

three step process. Consider the a predicate with a comparison operator R, relating two

attribute x, y as xRy. Our transformation is:
General form

1. Rewrite in difference form x - y R 0

2. Substitute continuous model x(t) - y(t) R 0

3. Factorize model coefficients (x-y)(t) R 0

We provide an example of these steps as applied to a join operator in Figure 2.1. The

above equation defines a new function, (x− y)(t), from the difference of polynomial coeffi-

cients that may be used to determine predicate satisfaction and consequently the production

of results. Note that we are able to simplify the difference form into a single function by

treating the terms of our polynomials independently. Depending on the operator R and

the degree of the polynomial, there are various efficient methods to approach the above

equation. In the case of the equality operator, standard root finding techniques, such as

Newton’s method or Brent’s method [13], solve for points at which (x− y)(t) = 0. We may

combine root finding with sign tests to yield a set of time ranges during which the predicate

holds. We illustrate this geometrically in Figure 2.2.

The above difference equation forms one row of our equation system. By considering

more complex conjunctive predicates, we arrive at a set of difference equations of the above

form that must all hold simultaneously for our selective operator to produce a result. That

is, given the following predicate and models: x1R1y1∧x2R2y2∧ . . .∧xpRpyp, where ∀i.xi =∑d
j=0 c

j
x,it

i, and ∀i.yi =
∑d

j=0 c
j
y,it

i, and cjx,i is the jth coefficient in a segment, we derive

11

Figure 2.2: A geometric interpretation of the continuous transform, illustrating predicate
relationships between models for selective operators, and piecewise composition of individual
models representing the continuous internal state of a max aggregate.

the following equation system:


c0x,1 − c0y,1 . . . cdx,1 − cdy,1
c0x,2 − c0y,2

. . .
...

...

c0x,p − c0y,p . . . cdx,p − cdy,p

 t


R1

R2

...

Rp

0

= Dt R 0 (2.1)

In the above equation, t represents a vector comprised of powers of our time variable

(i.e., [t, t2, t3, . . .]′). Thus the above equation system has a single unknown variable, namely

a point in time t. We denote the matrix D our difference equation coefficient matrix. Under

certain simplified cases, for example when R consists solely of equality predicates (as would

be the case in a natural or equi-join), we may apply efficient numerical algorithms to solve

the above system (such as Gaussian elimination or a singular value decomposition). A

general algorithm involves solving each equation independently and determining a common

solution based on intersection of time ranges. In the case of general predicates, for example

including disjunctions, we apply the structure of the boolean operators to the solution

time ranges to determine if the predicate holds. Clearly, Equation 2.1 may not have any

solutions indicating that the predicate never holds within the segments’ time ranges for the

given models. Consequently the operator does not produce any outputs.

Pulse uses update segments to drive the execution of our equation systems. Consider the

arrival of a segment, with time range [t0, t1). For a filter operator, we instantiate and solve

the equation system from the contents of the segment alone, ensuring that the solution for

12

the variable t is contained within [t0, t1) (for both point and range solutions). For a join, we

use equi-join semantics along the time dimension, specifically we execute the linear system

for each segment [t2, t3) held in state that overlaps with [t0, t1) (for each attribute used in

the predicate). In our solver, we only consider solutions contained in [t0, t1) ∩ [t2, t3).

2.4 Aggregate Operators

Aggregation operators have a widely varying set of properties in terms of their effects on

continuous functions. In this section we present a continuous-time processing strategy for

commonly found aggregates, namely min, max, sum, and average. At a high-level, we handle

min and max aggregates by constructing an equation system to solve when to update our

aggregate’s internal state, while for sum and average, we define continuous functions for

computing the aggregate over windows with arbitrary endpoints (i.e., continuous windows).

2.4.1 Min and Max Window Functions

The case of a single model per stream is trivial for min and max aggregates as it requires

computing derivatives on polynomial segments to determine state updates. We focus on

the scenario where a data stream consists of multiple models due to the presence of key

attributes. The critical modification for these aggregates lies in the right-hand side of the

difference equation, where we now compare an input segment to the partial state maintained

within the operator from aggregating over previous input segments. We denote this state as

s(t), and define it as a sequence of segments: s(t) = (([tl, tu), c)1, ([tl, tu), c)2..., ([tl, tu), c)n),

where each ([tl, tu), c)i is a model segment defined over a time range with coefficients ci.

For example with a min (or max) function, the partially aggregated model s(t) forms a

lower (or upper) envelope of the model functions as illustrated in Figure 2.2. Thus we may

write our substituted difference form as x(t) − s(t) R 0. This difference equation captures

whether the input segment updates the aggregated model within the segment’s lifespan. We

use this difference equation to build an equation system in the same manner as for selective

operators.

2.4.2 Sum and Average Window Functions

The sum aggregate has a well-defined continuous form, namely the integration operator.

However, we must explicitly handle the aggregate’s windowing behavior especially since

sum and average aggregate along the temporal dimension. To this end, we define window

13

functions, which are functions parameterized over a window’s closing timestamp to return

the value produced by that window. At a high level, window functions help to preserve

continuity downstream from the aggregate. We now describe how we compute a window

function for sums.

We assume a window of size w and endpoint t, and consider two possible relationships

between this window and the input segments. The lifespan of a segment [tl, tu) may either

match (or be larger than) the window size w, or be smaller than w. In the first case, we may

compute our window results from a single segment. Specifically, we claim that a segment

covering [tl, tu) may produce results for a segment spanning [tl+w, tu), since windows closed

in this range are entirely covered by the segment. We define the window function for this

scenario as:

wfsum(t) =
∫ t

t−w

d∑
i=0

cit
idt =

d+1∑
i=i

ci−1

i
ti (2.2)

which is parameterized by the closing timestamp t of the window. In the scenario where a

window spans multiple segments, we divide the window computation into three sub-cases:

i) segments [tl1, t
u
1) entirely covered by the window, ii) segments [tl2, t

u
2) overlapping with

head of the window t, and iii) segments [tl3, t
u
3) overlapping with the tail of the window

t − w. In the first sub-case, we compute the integral value for the segment’s lifespan

and denote this the constant C. In the second sub-case, we use the window function

defined in Equation 2.2, and refer to this as the head integral. For the third sub-case, we

apply an integral spanning the common time range of the segment [tl3, t
u
3), and window:∫ tl3

t−w
∑d

i=0 cit
idt. We refer to this integral as the tail integral. Note that for a given segment

tl3 is known and fixed. However we are still left with the term t−w in our formula, but can

leverage the window specification which provides a fixed value of w to express the result of

the integral, by expanding terms of the form (t−w)i for i > 0 by the binomial theorem. This

yields the following window function for windows spanning multiple segments: wfsum(t) =∫ tl3
t−w

∑d
i=0 cit

idt+ C +
∫ t
tl2

∑d
i=0 cit

idt

For every input segment [tli, t
u
i) at the aggregate, we compute and cache the segment

integral C, in addition to a function for the tail integral. This metadata is to be used

by windows functions produced by future updates arriving at the aggregate. Finally we

produce a window function for the input segment itself that spans all windows contained

in its time range by fetching segment integrals and tail integrals for the set of windows

[tl − w, tu − w). While the above discussion concerned a sum function, these results may

easily be applied to compute window functions for averages as wfavg = wfsum

w .

14

Operator Inputs State Implementation Outputs

Filter xi – D = [xi − ci]; {(t, xi)|DtR0}
solve DtR0

Join xi on left input order-based segment buffers, align xi, yi w.r.t t; {(t, xi, yi)|DtR0}
yi on right input Sx = {([tl, tu), sx)|tl > ty} D = [xi − yi];

Sy = {([tl, tu), sy)|tl > tx} solve DtR0

Aggregate xi state model, align xi, si w.r.t t {(t, si)|DtR0}
min, max S = {([tl, tu), s)|tl > tx − w} D = [xi − si];

solve DtR0

Aggregate xi segment final wfsum = ([tl, tu], wfsum)

sum, avg C =
∫ tu

tl

∑d
i=0 xit

i, wftail + C + wfhead

wftail =
∫ t

t−w

∑d
i=0 xit

idt

Aggregate xi per group state for f per group hash-based group-by, outputs for f ,
group-by, impl for f per group per group
function f

Table 2.1: Operator transformation summary.
Symbol definitions: xi, yi are polynomial coefficients for attributes x, y; t = [tl, tu) is the
valid time range for a segment; tx, ty denote the reference timestamps for the latest valid
times for attributes x, y; (t, x) is the segment itself as a pair of valid times and coefficients;
(t, sx)i is a segment of attribute x that is kept in an operator’s state; si are the coefficients
of these state segments.

Transformation Limitations.

Frequency-based aggregates are those that fundamentally depend on the number of tuples

in the input stream. Examples include count, frequency moments, histograms etc. Certain

aggregation functions can be viewed as mixed aggregates if they depend on both the content

and the frequency, for example a sum aggregate may have larger values for high rate data

streams (assuming positive numbers). Presently, our framework does not handle frequency

oriented aggregates, and can only handle mixed aggregates when their computation involves

all tuples in the relation (and thus all points on the continuous function) like sum and

average. Figure 2.1 summarizes Pulse’s selective and aggregate operator transforms.

2.5 Continuous Segment Processing

Pulse performs operator-by-operator transformation of regular stream query instantiating

an internal query plan comprised of simultaneous equation systems. Each equation system

is closed, that is it consumes segments and produces segments, enabling Pulse’s query

processing to use segments as a first-class datatype. However, depending on the operator’s

characteristics, an equation system may produce an output segment whose temporal validity

is a single point. This occurs primarily with selective operators involving at least one

equality comparison. The reduction of a model to a single point limits the flow of models

15

through our representation, since the remaining downstream operators can only perform

discrete processing on this intermediate result.

Once the processed segment reaches an output stream, we produce output tuples via a

sampling process. For selective operators, this requires a user-defined sampling rate. We

note that for an aggregate operator producing query results, there is no explicit need for

a application-specified output rate. This may be inferred from the aggregate’s window

specification, and in particular the slide parameter which indicates the periodicity with

which a window closes, and thus the aggregate’s output rate.

2.6 Enforcing Precision Bounds

To handle differences between our continuous-time models and the input tuples, Pulse

supports the specification of accuracy bounds to provide users with a quantitative notion

of the error present in any query result. We consider an absolute error metric and vali-

date that continuous-time query results lie within a given range of results produced by a

standard stream query. One validation mechanism could process input tuples with both

continuous-time and regular stream queries and check the results. However, this naive ap-

proach performs duplicate computation, offsetting any benefits from processing inputs in a

continuous form.

Our validation mechanism checks accuracy at the query’s inputs and completely elimi-

nates the need for executing the discrete-time query. We name this technique query inversion

since it involves translating a range of output values into a range of input values by ap-

proximately inverting the computation performed by each query operator. Some operators

that are many-to-one mappings, such as joins and aggregates have no unique inverse when

applied to outputs alone. However we may invert these operators given both the outputs

and the inputs that caused them, and rely on continuity properties of these inputs to invert

the output range. Query inversion maintains these inputs as query lineage, compactly as

model segments.

We use accuracy validation to drive Pulse’s online predictive processing. In this scenario,

Pulse only processes queries following the detection of an error. We note that accuracies

may only be attributed to query results if the query actually produces a result. Given the

existence of selective operators, an input tuple may yield a null result, leaving our accuracy

validation in an undefined state. To account for this case, we introduce slack as a continuous

measure of the query’s proximity to producing a result. We define slack as:

16

Figure 2.3: High level overview of Pulse’s internal dataflow. Segments are either given as
inputs to the system or determined internally, and processed as first-class elements.

slack = mint ‖Dt‖∞
s.t t ∈

⋂
[tl, tu)i ∀i.[tl, tu)update ∩ [tl, tu)i 6= ∅

Above, we state that we only compute slack within valid time ranges common with the

update segment causing the null (for stateful operators). Using the maximum norm ensures

that we do not miss any mispredicted tuples that could actually produce results. Following

a null any intermediate operator, Pulse performs slack validation, ignoring inputs until

they exceed the slack range. Thus Pulse alternates between performing accuracy and slack

validation based on whether previous inputs caused query results. Figure 2.3 provides a

high-level illustration of Pulse’s internal dataflow, including the inverter component that

maintains lineage from each operation and participates in both accuracy and slack bound

inversion.

2.6.1 Query Output Semantics

We briefly discuss the semantics of the outputs produced by continuous-time data process-

ing. While a complete discussion of the topic lies outside the scope of this paper, we make

several observations in the context of comparing and understanding the operational seman-

tics of a continuous-time processor in comparison to a discrete-time processor. Clearly, the

two modes of processing are not necessarily operationally equivalent on a given set of inputs.

They may differ in the following ways.

Observation 1: Pulse may produce false positives with respect to tuple-based processing. If

Pulse’s query results are not discretized in the same manner as the input streams, Pulse

may produce results that are not present under regular processing of the input tuples. For

17

example, consider an equi-join that is processed in continuous form by finding the intersec-

tion point of two models. Unless we witness an input tuple at the point of the intersection,

Pulse will yield an output while the standard stream processor may not, resulting in a

superset output semantics.

Observation 2: Pulse may produce false negatives with respect to tuple-based processing.

False negatives occur when the discrete-time query produces results but Pulsedoes not,

yielding a subset output semantics. This may occur as a result of precision bounds which

allow any tuple lying near its modeled value to be dropped. Any outputs that may otherwise

have been caused by the valid tuple are not necessary, and therefore omitted. Again the

difference in result sets arises from a lack of characterizing discretization properties.

2.6.2 Query Inversion

We describe query inversion as a two-stage problem, first as a local problem for a single

operator, and then for the whole query, leveraging the solution to the first problem operator

to produce an inversion data flow.

Bound inversion problem: given an output value and a range at an operator, what range

of input values produces these output values? This problem may have many satisfying input

ranges when aggregates and joins are present in the query. For example, consider a sum

aggregate, and the range [5, 10] as the output values. There are infinitely many multisets

of values that sum to 5, (e.g. the sets {4, 1} and {−1,−2, 8}). The fundamental problem

here is that we need to identify a unique inverse corresponding to the actual computation

that occurs (motivated by continuity for future bound validation). We use the following

two properties to perform this restriction:

Property 1: continuous-time operators produce temporal subranges as results. This ensures

that every output segment is caused by a unique set of input segments.

Property 2: modeled attributes are functional dependents of keys throughout the dataflow.

Each operator in our transformation preserves a functional dependency between keys and

segments by passing along the key values that uniquely identify a segment.

These properties ensure we are able to identify the set of input segments for operations

involving multiple segments (joins and aggregates) through segments’ time ranges and key

values. Providing we maintain the input keys and segments used to produce an intermediate

operator’s results (i.e., the lineage of a segment), we are able to identify the cause of each

output segment, making query inversion an issue of accessing lineage. We remark that

the cost of maintaining lineage is less prohibitive than with regular tuples due a segment’s

18

compactness (a full analysis of the lineage requirements lies outside this paper’s scope).

Given both the input models and the output models, solving the bound inversion prob-

lem then becomes an issue of how to apportion the bound amongst the set of input models.

We describe split heuristics in the next section to tackle this problem. Our run-time so-

lution to the bound inversion problem is dynamic and expressive, providing the ability to

adapt to changing data distributions. By considering both the input and output segments

during inversion, we are able to support different types of bounds including both absolute

and relative offset bounds.

Query inversion problem: given a range of values on each attribute at a query’s out-

put, what ranges of query input values produce these outputs? Query inversion determines

the appropriate context for performing bound inversion, given the query’s structure. In

particular we focus on addressing attribute aliasing, and attribute dependencies caused by

predicates, as shown in the following example. Consider the query (omitting windows and

precision bounds for readability):

select a, b as x, d from R join S

where R.a = S.a and R.a < S.d

Here, a new attribute x is declared in the results’ schema, and is an alias of the attribute

b. We must track this data dependency to support query inversion on error bounds specified

on attribute x, and refer to this metadata as bound translations. The second type of

dependency concerns query where-clauses. In this example, the attribute S.d is not part of

the query’s results, but constrains the results via its presence in a predicate. We track these

dependencies and refer to them as inferences. During the inversion process, we apportion

bounds to attributes such as S.d, inferring the values they may take. Pulse computes the

translation and inference metadata as part of the planning phase, and passes this metadata

to inverter operators which actually perform the computation for query inversion.

2.6.3 Split Functions

In this section, we present two heuristics for allocating value ranges of an operator’s output

attributes to its input attributes for both accuracy and slack bounds. Pulse supports the

specification of user-defined split heuristics by exposing the a function interface for the user

to implement, for an absolute error metric. We describe our heuristics in terms of the

function signature (simplified to a single modeled attribute a for ease of understanding):

19

{(ikp, [ila, iua]), ..., (ikq, [ila, i
u
a])} =

split(ok, oc, [ol, ou], {(ikp, ica) . . . , (ikq, ica)})

where (ikp, [ila, i
u
a]) are the bounds allocated to input attribute a for key p. Also, ok, oc

denote the keys and coefficients of the output segment, [ol, ou] the output bound, and

finally {(ikp, ica) . . . (ikq, ica)} the keys and coefficients of the input segments producing the

output. Note that the result of our split function includes both the set of input keys that

we split over, in addition to the bounds. Thus bounds are only allocated to the keys that

actually cause the output.

Equi-split: this heuristic assigns the output error bound uniformly across all input at-

tributes. Specifically, it implements the following split heuristic:

(ikp, [ila, i
u
a]) = [o

l

n ,
ou

n]

where a ∈ D(o), n = |{ikp . . . ikq}| ∗ |D(o)|,
D(o) = translations(o) ∪ inferences(o)

The above equation specifies the uniform allocation of a bound to each key and attribute

dependency.

Gradient split: this heuristic attempts to capture the contribution of each particular input

model to the output result. Formally, the heuristic computes:

(ikp, [ila, i
u
a]) = d(ica)

dt ∗ [ol∑
m∈I icm

, ou∑
m∈I icm

]

where a ∈ D(o)

D(o) = translations(o) ∪ inferences(o)
I = {(ikp, ica), . . . , (ikq, ica)}

The above equation specifies that each bound allocated is the product of the gradient of

a single segment with respect to the global segment of all input keys contributing to the

result.

Both of the above schemes are conservative in the sense that they preserve two-sided

error bounds, and ensure that the error ranges allocated on input attributes do not exceed

the error range of the output attribute. A more aggressive allocation scheme may reduce

two-sided error bounds to a one-sided error, for example in the case of inequality predicates,

thereby improving the longevity of the bounds. In general, the efficiency of validating

query processing is fundamentally an optimization problem and our current solution lays

the framework for further investigation.

20

2.7 Experimental Evaluation

We implemented Pulse as a component of the Borealis [1] stream processing engine. This

implementation provides full support of the basic stream processing operators including

filters, maps, joins and aggregates and extends our stream processor’s query language with

accuracy and sampling specifications. Pulse is implemented in 27,000 lines of C++ code

and adds general functionality for rule-based query transformations to Borealis, in addition

to specialized transformations to our equation systems. We note that Pulse requires a small

footprint of 40 lines in the core stream processor code base indicating ease of use other

stream processors. In these experiments, Pulse executes on an AMD Athlon 3000+, with

2GB RAM, running Linux 2.6.17. We configured our stream processor to use 1.5GB RAM

as the page pool for allocating tuples.

Our experiments use both a real-world dataset and a synthetic workload generator. The

synthetic workload generator simulates a moving object, exposing controls to vary stream

rates, attribute values’ rates of change, and parameters relating to model fitting. Our

real-world datasets are traces of stock trade prices from the New York Stock Exchange

(NYSE) [67], and the latitudes and longitudes of naval vessels captured by the Coast Guard

through the Automatic Identification System (AIS) [108].

2.7.1 Operator Benchmarks

Our first results are a set of microbenchmarks for individual filters, joins and aggregates.

We investigate the processing throughput for fixed size workloads from our moving object

workload generator, under a varying model expressiveness measured as the number of tuples

that fit a single model segment. The workload generator provides two-dimensional position

tuples with a schema: x, y, vx, vy denoting x- and y-coordinates in addition to x- and y-

velocity components.

Filter. Figure 2.4 demonstrates that the continuous-time implementation of a filter

requires a strong fit in terms of the number of tuples per segment, between the model and

the input stream. The continuous-time operator becomes viable at approximately 1050

data points per segment. This matches our intuition that the iterations performed by the

linear system during solving dwarfs that performed per tuple by an extremely simple filter

operation.

Aggregate. Figure 2.5 compares the continuous-time aggregate’s throughput for the

min function under varying model fit settings. We also illustrate the cost of tuple-based

processing at three window sizes for comparison. The window size indicates the number of

21

Figure 2.4: Microbenchmark for a filter operator with a 1% error threshold.

open windows at any point in time, and thus the number of state increments applied to each

tuple. This benchmark shows the continuous-time aggregate provides higher throughput

at approximately 120-180 tuples per segment for different windows. Thus we can see that

the model may be far less expressive (by a factor of 5x) for our processing strategy to be

effective. This improvement primarily arises due to the increased complexity of operations

per tuple performed by an aggregate, in comparison to linear system solving. Figure 2.6

illustrates the operator’s processing costs as window sizes vary from 10 to 100 seconds. Here

the cost of a tuple-based aggregate is clearly linear in terms of the window size, while the

cost of our segment-based processing remains low due to the fact we are only validating

the majority of tuples, and not solving the linear system for each tuple. We demonstrate

that Pulse outperforms tuple processing at window sizes beyond 30 seconds, and is able to

achieve a 40% cost compared to regular processing at a 100 second window.

Join. Figure 2.7 displays the throughput achieved by a continuous-time join compared

to a nested loops sliding window join as the number of tuples per segment is varied. The

join predicate compares the x and y positions of objects in our synthetic workload. Fig-

ure 2.7 shows that our join implementation outperforms the discrete join at 1.45 tuples per

segment for a window size of 0.1s. This occurs because a nested loops join has quadratic

complexity in the number of comparisons it performs, as opposed to the complexity of a

validation operation which is linear in the number of model coefficients. Figure 2.8 illus-

trates the difference in processing cost under varying stream rates, and clearly shows Pulse’s

22

Figure 2.5: Microbenchmark an aggregate operator with a 1% error threshold.

significantly lower overhead. The processing cost of our mechanism remains low while the

tuple-based cost increases quadratically (despite the linear appearance, we verified this in

preliminary experiments while extending to higher stream rates). We plan on investigating

this result with other join implementations, such as a hash join or indexed join, but believe

the result will still hold due to the low overhead of validation compared to the join predicate

evaluation.

Historical processing. Figure 2.9 presents throughput and processing cost results

from the historical application scenario. In these results, we present the cost of performing

model fitting, via an online segmentation-based algorithm [53] to find a piecewise linear

model to the input data, in addition to processing the resulting segments. We consider a

min aggregate, with a 60 second window, and a 2 second slide. Tuple processing reaches

a maximum throughput of 15,000 tuples per second before tailing off due to congestion in

the system as processing reaches capacity. In contrast, segment processing continues to

scale beyond this point, demonstrating that the data modeling operation does not act as a

bottleneck with this workload. The nested plot of modeling throughput, which executes our

model fitting operator alone, illustrates that this instead happens at a higher throughput

of approximately 40,000 tuples. This result indicates that data fitting is indeed a viable

option in certain cases, and that simplistic modeling techniques such as piecewise linear

models are indeed able to support high-throughput stream processing.

23

Figure 2.6: Continuous-time and discrete processing overhead comparison for an aggregate
operator.

2.7.2 Query Processing Performance

We extracted the NYSE dataset of stock trade prices from the TAQ3 data release for January

2006, creating workloads of various sizes for replay from disk into Pulse. The schema of this

dataset includes fields for time, stock symbol, trade price, trade quantity. In our experiments

on this dataset, we stream the price feed through a continuously executing moving average

convergence/divergence (MACD) query, a common query in financial trading applications.

The MACD query is as follows (in StreamSQL syntax):

select symbol, S.ap - L.ap as diff from

(select symbol, avg(price) as ap from

stream S[size 10 advance 2]) as S

join

(select symbol, avg(price) as ap from

stream S[size 60 advance 2]) as L

on (S.Symbol = L.Symbol)

where S.ap > L.ap

This query uses two aggregate operations, one with a short window to compute a short-term

average, and the other with a long window to compute a long-term average, before applying

a join operation to check for the presence of a larger short-term average.

24

Figure 2.7: Microbenchmark for a join operator with a 1% error threshold.

The AIS dataset contains geographic locations and bearings of naval vessels around the

coasts of the lower 48 states over a 6-day period in March 2006, totaling to approximately

6GB of data. We extracted a subset of the data for replay, with the following schema:

vessel id, time, longitude, longitudinal velocity, latitude, latitudinal velocity. We then use

the following query to determine if two vessels were following each other:

select Candidates.id1, Candidates.id2, avg(dist)

(select S1.id as id1, S2.id as id2,

sqrt(pow(S1.x-S2.x,2) + pow(S1.y-S2.y,2)) as dist

from S[size 10 advance 1] as S1

join S as S2[size 10 advance 1]

on (S1.id <> S2.id))[size 600 advance 10]

as Candidates

group by id1, id2 having avg(dist) < 1000

The above query continuously tracks the proximity of two vessels with a join operation

and computes the average separation over a long window. We then apply a filter to detect

when the long-term separation falls below a threshold.

2.7.3 NYSE and AIS Processing Evaluation

In this section we compare the throughput of the NYSE and AIS datasets and queries as

they are replayed from file.

25

Figure 2.8: Continuous-time and discrete processing overhead comparison for a join opera-
tor.

Figure 2.9: Historical aggregate processing throughput comparison with a 1% error thresh-
old.

26

Figure 2.10: Continuous-time processing of the NYSE dataset, with a 1% error threshold.

Figure 2.11: Continuous-time processing of the AIS dataset, with a 0.05% error

27

Figure 2.10 compares the throughput Pulse achieves while processing the NYSE dataset

in comparison to standard stream processing. In this experiment, we set error thresholds to

1% of the trade’s value. We see that the tuple-based MACD query tails off at a throughput

of approximately 4000 tuples per second. We ran no further experiments beyond this point

as the system is no longer stable with our dataset exhausting the system’s memory as

queues grow. In contrast the continuous-time processor is able to scale to approximately

6500 tuples per second, and similarly begins to lead to instabilities beyond this point. As

a further comparison, we plot the historical processing performance that represents the

throughput of processing segments alone (without modeling). This reflects performance

achieved following an offline segmentation of the dataset. Historical processing scales well

in this range of stream rates due to the lack of any validation overhead. Also note that

we achieve greater throughput than parity, due to lower end-to-end execution times for our

fixed workload, through the early production of results from sampling the linear models.

Figure 2.11 compares throughput in the AIS dataset, for an error threshold of 0.05%.

This plot illustrates that the original stream query tails off after a stream rate of 1100 tuples

per second, achieving a maximum throughput of approximately 1000 tuples per second. In

contrast, Pulse is able to achieve a factor of approximately 4x greater throughput with a

maximum of 4400 tuples per second. We note the lower stream rate in the AIS scenario

in comparison to the NYSE scenario, due to the presence of a join operator as the initial

operator in the query (the MACD query has aggregates as initial operators). The segment

processing technique reaches its maximum throughput without any tail off since it hits a

hard limit by exhausting the memory available to our stream processor while enqueuing

tuples into the system.

2.7.4 Precision Bound Sensitivity Evaluation

Figure 2.12 displays the end-to-end processing latency achieved by Pulse for the MACD

query on the NYSE dataset under varying relative precision bounds. The inset figure

displays the number of precision bound violations that occurred during execution on a loga-

rithmic scale. This figure demonstrates that Pulse is able to sustain low processing latencies

under tight precision requirements, up to a threshold of 0.3% relative error for this dataset.

The inset graph shows that as the precision bound decreases, there are exponentially more

precision violations. Beyond a 0.3% precision, the processing latency increases exponentially

with lower errors due to the queuing that occurs upon reaching processing capacity.

28

Figure 2.12: Continuous-time processing of the NYSE data at 3000 tuples/second.

In summary, our experimental results show that continuous-time processing with seg-

ments can indeed provide significant advantages over standard stream processing providing

the application is able to tolerate a low degree of error in the results. In certain scenarios

Pulse is capable of providing up to 50% throughput gain in an actual stream processing

engine prototype, emphasizing the practicality of the our proposed mechanisms.

Chapter 3

Selectivity Estimation for

Continuous Function Processing

In the previous chapter, we presented a system overview and the core query executor of the

Pulse stream processor. We demonstrated how Pulse is able to leverage both the compact

data representation provided by polynomial segments and user-defined precision bounds to

significantly improve query processing performance in comparison to standard tuple-based

processing techniques found in today’s stream processors. We now address the question of

how to improve Pulse’s scalability beyond the basic segment-oriented query executor, and

describe two additional components of our system. These are a query optimizer, designed

specifically to provide support for multi-query optimization in our context, and a selectivity

estimator that supports this query optimizer by capturing segment-based processing selec-

tivities through the use of various mathematical properties of our polynomial segments.

In this chapter, we start by introducing the problem of cost-based query optimization and

present an overview on the type of cost model and optimization technique we consider, be-

fore focusing on the first stage of this problem – deriving a selectivity estimator customized

to our equation systems.

3.1 Cost-Based Query Optimization

Both traditional database architectures and stream processing engines heavily utilize cost-

based query optimization techniques that at their core rely upon a cost model to capture

the desired optimization metric. In our work we consider a processing cost metric so that we

may reduce the processing overhead of queries by determining advantageous query execution

29

30

plans. The processing cost of a query is typically defined based on operators’ execution costs

and the cardinality of intermediate results, or rate of dataflow between these operators. This

latter term relies on the concept of selectivities, defined for an individual operator as the

ratio of the number of outputs to the number of inputs. We now briefly describe some of

the salient features of the cost model used as our objective function.

3.1.1 Risk-Based Cost Models

Pulse treats polynomial segments as first-class entities during query processing, where each

operator consumes and produces segments. This immediately leads to a different perspective

on the definition of operator selectivities. While we can still define selectivities abstractly

as the ratio of outputs to inputs, our selectivities are defined in terms of segments and

represents the segmentation resulting from both equation system solving and transformation

operations. Loosely speaking, an input segment gets further segmented downstream, but

may sometimes remain intact, for example when the entire segment satisfies an equation.

We refer to this latter case as subsumption.

One immediate consequence of segment-selectivities is that we must revisit standard

selectivity estimation techniques, re-evaluating how we can compute these selectivities from

data distributions. We present an overview of this issue below. Selectivity estimation

techniques by their nature are inaccurate for a variety of reasons, including their inability

to handle correlations and data dependencies present in the input dataset as a result of

adopting attribute independence assumptions. Due to these erroneous estimations, our

cost model adopts the notion that executing a plan is risky, in that the plan may impose a

different overhead than that determined by the optimizer. Pulse’s optimizer searches over

potential plans factoring in both costs and risks associated with query processing. Here, we

briefly discuss the relationship between risk and cost.

We can immediately make some intuitive qualitative comments on our objective func-

tion. Clearly we would like to evaluate plans that have both low cost and low risk, and

during our search for plans we would generally like to prune away plans with higher cost and

risk than the best known plan. Figure 3.1i. illustrates these two categories on a risk-cost

space in comparison to the best known plan as the low risk and high risk plans respectively.

The remaining categories are those plans that offer a tradeoff between cost and risk over

the best known plan.

Our objective function uses a weighted linear combination to represent the tradeoff

between two plans’ costs and risks, and defines a system parameter allowing a database

31

Figure 3.1: Qualitative comparisons of query plans on a risk-cost space.

administrator to customize the objective. This is represented algebraically as: objective =

(1− ρ)cost+ ρrisk, where ρ is the risk aversion factor. This risk aversion factor helps us to

define equivalent plans as those with equivalent objective values. The parameter lies in the

range [0, 1], and indicates a risk-agnostic objective when ρ → 0, or a cost-agnostic object

when ρ → 1. Figure 3.1ii. illustrates the effect of varying this parameter in terms of the

fraction of plans explored from the risk accepting and the risk avoidance categories.

3.1.2 Multi-Query Optimizer Overview

Our query optimizer focuses on the challenge of scaling the number of continuous-time

queries by detecting and sharing any work common across multiple queries. We present

the design of an adaptive optimization algorithm designed to apply to standing queries,

modifying these queries using localized heuristics that reduce processing overheads over

a sequence of multi-query transformations. Our algorithm executes periodically, collect-

ing statistics during this optimization period before making its decisions based on these

statistics at the end of the period. The algorithm makes it decisions by evaluating a set of

conditions that are heuristics derived from simplifications of our risk-based cost model. Each

condition is associated with a multi-query transformation that is applied upon triggering

the condition’s threshold.

These conditions rely heavily on operator selectivities in their definitions, leading to

the challenge of how to obtain these selectivities. One solution is an instrumentation-based

approach where we collect selectivities from running queries. However this does not help the

optimizer determine the costs of plans it would potentially like to run but do not currently

exist in the system. We describe a selectivity estimator to aid in costing non-existing plans.

32

Our selectivity estimator requires input stream distributions for attributes used in queries

as part of its computation, and in turn derives distributions for intermediate query results.

The basic technique we employ for selectivity estimation is to represent our polynomial

segments in the dual-space (a high-dimensional space representing polynomial coefficients),

and defines methods in the dual-space to compare polynomials and determine when they

intersect each other or exhibit a subsumption relationship. We extend these comparison

operators to apply to histogram bins, allowing us to derive intersection and subsumption

frequencies given the input polynomial distributions.

In the remainder of this chapter, we describe our selectivity estimation technique, start-

ing with our representation of a set of segments collected over an optimization period. Our

representation utilizes histograms and we next discuss how we can derive histograms based

on the computation performed by relational operators, enabling us to capture the distribu-

tions of any intermediate results in our query plans. We can use these intermediate result

distributions to compute cardinality and thus selectivity estimates.

The next chapter focuses on our multi-query optimization techniques. For this, we start

by describing the three adaptive optimization techniques supported, two modes of sharing

operators common across multiple queries, as well as an operator reordering technique.

We then present the full details of our processing cost model that factors in this set of

techniques, before describing the various adaptive conditions we use, as well as the query

modifications they entail.

3.2 Segmentation-Oriented Selectivity Estimation

There are many methods for estimating operators’ selectivities based on the characteristics

of the input data distributions and deriving the effects of operators’ functionalities upon

these distributions. Traditional methods include histograms, where a histogram of input

data is maintained over the base relations, and subsequently query operators are applied

to bin boundaries to model operators’ output distributions. Histogram-based estimation

techniques typically assume a uniform density within the bin, and consequently leverage

this to approximate query results when applying operators, to yield a selectivity estimate.

Histograms are intended to capture longer-term data distributions, and while in a stream

environment the data distribution might change over time, the basic assumption is that the

data distribution applies for long enough for optimization to be worthwhile. In this section

we focus on selectivity estimation for the predictive processing applications. Selectivity

33

estimation in our context boils down to determining intersection or subsumption of poly-

nomials with respect to the query, in our difference equations. Thus we need to define a

method for approximating the number of intersections or subsumptions, to determine the

resulting downstream segmentation (i.e. selectivity) of an input segment at an operator.

While determining intersections of polynomials can be done by testing for roots of their

difference, we need a mechanism that lets us approximate intersection counts between sets

of polynomials, for example for join operators.

The first part of this chapter describes our approach for computing this approximation of

the number of segments at any point within the query, and we start by describing our method

for representing polynomials which allows us to compare polynomials, and more importantly

allows us to compare the effects of applying relational operators on these polynomials.

3.2.1 Dual Space Representation of Polynomials

We consider a parameter space for our representation of large sets of polynomials, where

each polynomial is a point whose coordinates are given by the values of its coefficients. Thus

our parameter space has dimensions for our polynomials’ variables and degrees, defining a

high-dimensional space representing the universe of coefficient values. For example, given

the set of polynomials {x + y, x + x2 + x3}, where x and y are variables, our parameter

space has dimensions c0, x, y, x2, x3, and in this case, two coordinates c1 = (0, 1, 1, 0, 0)

and c2 = (0, 1, 0, 1, 1) representing the two polynomials respectively. The dimension c0

represents a constant term that can be added to any polynomial, for example the term 10

in x+x2 +x3 +10. As shown, the coordinates represent the coefficients of these polynomials

in terms of the parameter space’s dimensions. In the moving-object database literature this

parameter space is commonly referred to as the dual-space representation of polynomials

[88]. Note that constants are also points in the dual space, where only the first (zeroth)

coefficient has a non-zero value, while all other coefficients are constrained to have a zero

value.

We can immediately reason about intersecting and subsumed pairs of polynomials in the

dual space. Given the coordinates for a single polynomial, we can partition the dual space

into regions indicating other polynomials which this specific polynomial subsumes, based

on universally smaller or larger coefficient values. We refer to this as extremal subsumption.

For example in Figure 3.2i., the polynomial p1 has all of its coefficient values smaller than

p, while p2 has large coefficients, thus both of these are subsumed. However we cannot

determine whether p subsumes or intersects with polynomials in the shaded regions of the

34

Figure 3.2: Selectivity estimation definition illustrations.

dual space, such as p3 and p4 as shown in the diagram. We use this form of dual-space

partitioning to provide a coarse-grained filtering of potentially intersecting polynomials.

Now, the dual space represents the general form of a polynomial and does not include any

information regarding the variables’ domains. Given our inputs are piecewise polynomials,

we would like to leverage the extents of each piece’s variable domains to further limit the

set of intersecting polynomials. In our case we use the validity time ranges of a segment

(a 1-dimensional interval), while in the multivariate case, the valid variable domain is a

hypercube [92]. We can then apply the following reasoning to both cases.

For a given polynomial and a lower bound on the valid range (for example, the starting

timestamp of a segment), we can geometrically represent all other polynomials with the

same value at this specific timestamp as a hyperplane in the dual space. Conceptually, this

hyperplane uses constant values for the polynomials’ variables, and treats the coefficients

themselves as variables. For example, given a parameter space over variables {x, x2, x3},
a polynomial x + x2 + x3, with coordinate c = (c0, cx, cx2 , cx3) = (0, 1, 1, 1), and a lower

valid bound x = 2, we can define a hyperplane with equation 2cx + 4cx2 + 8cx3 = 14. In

the multivariate case, the lower valid bound would correspond to the lower extremal point

35

of the valid hypercube, yielding values for multiple variables. Note we obtain the constant

14 from the point known to satisfy the plane equation, that is the point at coordinate c.

To reiterate, this hyperplane represents all other polynomials with equivalent values for a

constant variable assignment, and we refer to this hyperplane as a polynomial contour. We

use this hyperplane as a building block for the estimation technique for each operator.

We can also define a second hyperplane by considering the upper validity bound (i.e.,

the ending timestamp of a segment). In turn this defines a subspace between the starting

timestamp’s hyperplane, and the ending timestamp’s hyperplane. This region indicates all

coefficients whose linear combination results in a value that is equivalent to some value

of our input polynomial, within this input’s valid time range. We denote this region as

the validity-subspace of a polynomial segment. Thus, two polynomials intersect only if

they mutually lie within the subspace defined by the hyperplanes for each polynomial. If

this property does not hold, the polynomials subsume each other within their respective

time ranges. This second step refines the previous parameter-space partitioning, leading to

precise intersection test for polynomial segments.

3.2.2 Selectivity Estimation in the Dual Space

So far we have described primitive properties for points in the dual space. We can also

represent long-term statistics about segments in the dual space, specifically as multidimen-

sional histograms of segments’ coefficients, gathered over a time window. The histogram

bins are hypercube regions in the dual space as defined by a bin’s boundaries. Each bin

maintains the total occurrence frequency of any polynomial with coefficients lying within

the hypercube region. We denote the minimal corner (i.e. the hypercube corner with the

minimal values of all coefficients), and the maximal corner as the extremal points of this

hypercube. We define the extremal subsumption regions in terms of these extremal points

of the histogram bin, as shown in Figure 3.2iii. Before we describe how we can use the

validity region containment test described above on histogram bins, we briefly return to

the challenge of selectivity estimation, and describe how this test can be used to determine

selectivities for various operator’s equation systems.

While the histograms aid in computing the number of solutions resulting from any single

operator, in order to derive histograms to perform selectivity estimation for a whole plan

of operators, we require estimates of the solution ranges themselves, in addition to the

number of solutions. For this purpose, we maintain an estimate of the inputs’ variable

domains for each histogram bin. In more detail, recall Pulse represents segments as a

36

triple of a reference timestamp, a starting offset, and an ending offset. In the predictive

processing mode, we assume a constant input segment length, as given by our adaptive

advance selection, implying that the ending offset of our input streams is bounded by this

advance value. We can then define an estimate of the valid time range of all segments at

the input streams as the lower bound of the starting offset, and the advance offset, and

assign this offset timestamp pair to each bin. During the histogram derivation process we

describe below, we will also derive solutions given this estimate of the input interval. Note

there may be multiple solutions to an operator so our algorithm is capable of handling a

list of solution intervals, and we note that at the inputs, we simply have a single element

list.

Figure 3.3: Bounding validity range correction factor.

In the same way that a valid time range defines two polynomial contours for a single

polynomial, the list of estimated intervals associated with a bin defines a set of polynomial

contour pairs. Strictly speaking, these contour pairs are defined with a uniform distribution

within the bin’s hypercube region (as given by the uniformity assumption within a histogram

bin), however we make a simplifying assumption by selecting a bounding pair of contours

at the bin’s extremal point. These contours define the validity region for a bin, as shown

in Figure 3.2ii. We also derive a simple metric to capture the degree of error present

by adopting this bounding contour rather than a uniformly distributed set of contours,

37

and refer to this as the correction factor for a estimated interval. Figure 3.3 illustrates a

geometric interpretation of the correction factor in 2-dimensions. Intuitively the correction

factor represents the average displacement of points within the bin to the point defining

the bounding contours. This average displacement is straightforward to compute as the

displacement from the bin’s centroid given uniformity assumptions. We choose a value of

1 as the initial correction factor, and derive correction factors depending on the operators

present in the plan as part of deriving histograms and estimated solutions.

3.2.3 Query-Based Histogram Derivation

Given our representation of polynomial distributions as multidimensional histograms over

the dual space, we consider the query expressions for which we are estimating selectivities,

and the histograms we need to support this estimation. We primarily consider conjunctive

filter predicates (i.e. range queries), join predicates, and min/max and sum aggregates.

This leads to several estimation operation types.

Range queries involve comparison operations applied between a single variable and a

constant that we allow to be composed with a conjunction operator. To support these con-

junctive predicates, we require histograms for all attributes involved in the predicate. We

first consider a single comparison operator, which involves an estimation operation between

a histogram bin and a constant represented as a point in the dual space. For simplicity,

and primarily to focus on the dual space estimation operations, we adopt the attribute

independence assumption. In our case, this independence assumption does not mean at-

tributes cannot be represented as polynomial functions of common variables. Rather, we

view the coefficients of the polynomials as independent, implying that for a given attribute,

the coefficients of this attribute are uniformly likely to appear with respect to the coeffi-

cients of any polynomials for other attributes. We can then use this uniformity property

across attribute histograms to compute both the derived histogram resulting from applying

the conjunctive predicate as well as its selectivity. Clearly this assumption may not hold

in certain cases where the polynomial coefficients are defined on equivalent input stream

attributes, for example x = x0 + vxt and y = vxt. In this case attributes x and y have com-

mon coefficients, vx, hence will be dependent attributes. Handling such cases, for example

with a static analysis of coefficient definitions, remains outside the scope of this thesis.

For stateful operators such as joins and aggregates, we derive the state in each case

from the inputs to that operator as a distribution itself. In the case of a join, ignoring the

effects of having update semantics, this turns out to be the actual input distribution itself

38

due to the fact that Pulse’s join is a natural join on the temporal dimension. We describe

how to derive the aggregate’s state below. In both cases we arrive at a state distribution

in addition to an input distribution, and subsequently apply estimation operations between

pairs of histogram bins, one from the state distribution, and the other from the input

distribution. For the join, we again allow conjunctive predicates and handle them in much

the same way between conjuncts as we do for filters. Thus the estimation operation for

the join requires histograms for all attributes present in the join predicate in addition to

any attributes used in output expressions. For example the query select R.a, R.c from

R join S on (R.a = S.a and R.b = S.b) requires histograms attributes for attributes

R.a,R.b, S.a, S.b as well as attribute R.c so that it may compute a derived histogram for

that attribute. For the aggregate, we the estimation requires histograms for all attributes

used as part of the argument to the aggregation function. For example the query select

sum(x) from R requires a histogram for attribute R.x, while the query select sum(x+y)

from R requires a histogram for both R.x and R.y.

3.3 Histogram-Based Estimation of Intermediate Result Dis-

tributions

We now return to the problem of detecting subsumption relationships using histogram bins.

We define two classes of primitives that we use throughout the histogram derivation process.

The first class of primitives are predicate properties for relating a bin b, its validity interval

s and a single polynomial c in the dual space:

subsumes(b, c, s, op) = extremal(b, c, op) ∨ validity(b, c, s, op)

extremal(b, c, op) = (∀i.[ci ≤ li] ∧ op =′>′) ∨ (∀i.[ui ≤ ci] ∧ op =′<′)

contained(c, b) = ∀i.[li ≤ ci ∧ ci ≤ ui]

The subsumes(b, c, s, op) predicate indicates if the coordinate c lies within either the

extremal region or validity region of bin b. The contained(c, b) predicate returns whether

the coordinate c lies within bin b’s hypercube region. We can define similar relationships

between a pair of bins b, b′ and a validity interval s for bin b:

39

subsumes(b, b′, s, op) = extremal(b, b′, op) ∨ validity(b, b′, s, op)

extremal(b, b′, op) = (∀i.[bi,u < b′i,l] ∧ op =′<′) ∨ (∀i.[b′i,u < bi,l] ∧ op =′>′)

overlaps(b, b′) = ¬(
∨
i[bi,u < b′i,l ∨ b′i,u < bi,l])

The subsumes(b, b′, s, op) predicate indicates if the bin b′ lies within the extremal region

or validity region of bin b according to the relationship specified by op. The overlap(b, b′)

predicate indicates whether the bin b′ overlaps with bin b (note this predicate also holds if

b′ is contained within b).

The second class of primitives correspond to two types volume computations for deter-

mining the volume of the subsumed region of a bin b, based on its relation to both a single

polynomial c, and another bin b′. Starting with the single polynomial case, we have:

V (b) =
n∏
i=1

bi,u − bi,l

Vsub,i(b, c, s) =

{
Vsub,v if overlaps(b, validity region(c, s))

0 otherwise

Vsub(b, c, s) =


V (b) if subsumes(b, c, s, op)

Vsub,i(b, c, s) if contained(c, b)

0 otherwise (note this considers a validity region around b, not c)

Vint(b, c, s) = V (b)− Vsub(b, c, s)

Note that for Vsub,i, when the single polynomial’s dual space coordinate lies within the

bin, we leverage symmetry properties to compute the subsumed volume. That is due to

the symmetric nature of validity subsumption between two coordinates, the set of points

subsumed by the polynomial’s coordinates are equivalent to the set of points that subsume

the same coordinate.

We consider two further subsumption primitives that arise when operating on hyper-

cube regions, namely that of when two hypercube regions overlap and subsumption volume

within a validity region. We refer to the first case as intra-bin subsumption. Informally,

intra-bin subsumption captures the extremal subsumption regions for each point within the

hypercube, with respect to the points contained within another bin. For intuition, in the

two-dimensional parameter space, this is:

40

Vsub,i(b1, b2) = V (b2 ∩ {subs(x, y) : (x, y) ∈ b1})

=
∫ x1,u

x1,l

∫ y1,u

y1,l

p1(x, y)× ((x− x2,l)(y − y2,l) + (x2,u − x)(y2,u − y))dxdy

= (x− x2,l)(y − y2,l) + (x2,u − x)(y2,u − y)

where the simplification for the last step occurs due to the uniformity assumption within a

bin. Generally, we can compute intra-bin subsumption as:

Vsub,i(b1, b2) = V (b2 ∩ {subs(x1 . . . xd) : (x1 . . . xd) ∈ b1})

=
∫
· · ·
∫ x1,i,u

x1,i,l

p1(x1, . . . , xd)× (
d∏
i=0

xi − x2,i,l +
d∏
i=0

x2,i,u − xi)dx1 . . . dxd

=
d∏
i=0

xi − x2,i,l +
d∏
i=0

x2,i,u − xi

The second primitive is needed due to the fact that with hypercube pairs, one bin’s

validity hyperplanes may intersect the other hypercube, indicating that the other hypercube

is partially subsumed. Thus we need to compute the volume resulting from the intersection

of a hyperplane and hypercube, depending on both the comparison operator and the relative

position of the two hypercubes. We leverage existing tools for computing volumes of convex

polytopes, such as polymake [36] or Vinci [16].

This leads to the following generalized subsumption volume computation method:

Vsub(b, b′, s, s′) =


V (b)V (b′) if subsumes(b, b′, s, op) ∨ subsumes(b′, b, s′, op)
Vsub,i(b, b′)Vsub,i(b′, b) if overlaps(b, b′)

Vsub,v(b, b′, s)Vsub,v(b′, b, s′) otherwise

Vint(b, b′, s, s′) = V (b)V (b′)− Vsub(b, b′, s, s′)

Note that the subsumption primitive in the first condition above does not hold for

partial subsumptions given validity volumes. Thus we only consider validity volumes when

both hypercubes partially subsume each other, and not the asymmetric case when one

subsumes the other but not vice-versa. We will now describe how these three primitive

subsumption methods on histogram bins are used to compute the selectivities of filters,

joins and aggregates.

41

3.3.1 Filters

Here, we define the estimation operation for a simple range predicate of the form x < c

where x is a modeled attribute, and then describe how we can use the derived histogram for

each of these expressions in computing the selectivity of a conjunctive predicate. We start

by computing estimate of the solution ranges arising in the presence of an intersection as

follows:

tderivb = solve
{[sl,su]}

[∑
i

wi(ri − ci) < 0

]
∩ tb

We simply use the centroid of the bin, r = {r1 . . . rn}, as a representative of all polyno-

mials within the bin, and solve the difference equation with coefficients {ri − ci}, i = 1 . . . d

to compute solutions, considering only those solutions contained in the bin’s estimated in-

put interval. Note that the coefficients {ci} correspond to a constant segment with value c.

These solutions are then used as the estimated intervals for any downstream derivation. Let

us define destb as the number of solutions obtained for bin b. We can compute the derived

frequency of a histogram bin as:

fderivb,s = fb,scf

(
Vsub(b, c, s) + dbestVint(b, c, s)

V (b)

)
Here, we see that the derived frequency is a product of the original frequency and correction

factor when considering subsumed segments, provided the subsumption satisfies the com-

parison operator. When the constant’s point is contained in the histogram bin, we consider

both the extremal and validity regions defined at the point, and compute the fraction of

the hypercube’s volume that overlaps with these subsumed regions. These contribute fb,scf
segments to the result, while the intersected regions contribute fb,scfdbest, with both scaled

by their respective volume fractions. Otherwise the constant’s point lies entirely within the

intersection region, and yields fb,sdestb cf segments during the statistics gathering window.

We can compute then operator’s segment selectivity for a histogram Hx as:

σx<c(Hx, c) =
1
F

∑
b∈bins(Hx)

∑
s∈S

fderivb,s

where F =
∑

b∈bins(Hx)

∑
s∈S fb,s is the total occurrence frequency for the histogram. The

above selectivity equation computes an estimate of the total number of output segments

42

per histogram bin as a product of the occurrence frequency of the bin, and the number of

solutions resulting from applying the operator to the bin’s representative, provided the bin

does not subsume the constant.

Finally we can compute a derived correction factor. Based on the description of the correc-

tion factor in Section 3.2.2, this turns out as:

enew = n · (r − p)

cderivf,b = enew/eold

where n is the hyperplane normal, r the bin centroid, p the known point on the hyperplane,

and eold the previous distance computed for the bin as a result of a derivation at an upstream

operator. Note the distance enew is maintained for each bin and solution to facilitate

correction factor derivation at a downstream operator.

We can then use the definitions of these properties to compute the equivalent properties

for a conjunctive predicate. Given our coefficient independence assumptions for different

attributes, we can keep a histogram for a conjunctive predicate simply as a set of per-

attribute histograms. We define a set C denoting the attributes used in a conjunctive

predicate, for example given a predicate x < c1 ∧ y < c2 ∧ z < c3, we have C = {x, y, z}.
The set C represents the individual attribute histograms we access to compute a derived

histogram. First, we compute the estimated solutions and correction factors for the derived

bin:

tderiv,conj,ab =
1∏

a′∈C−{a} F
deriv
a′

∑
{b1...bk}∈binsC−{a}

∏
i

fderiv,ai

bi

[
tderiv,ab

⋂
i

tderiv,ai

bi

]
∀a ∈ C

fderiv,conj,ab,s =

{
fderiv,ab,s if tderiv,conj,a 6= ∅
0 otherwise

∀a ∈ C

cderiv,conj,af,b =
1

|binsC−{a}|
∑

{b1...bk}∈binsC−{a}

∏
i

cderiv,ai

f,bi
∀a ∈ C

Above, in the derived histogram for the conjunctive predicate, we compute the aver-

age estimated solutions for each attribute’s bin by considering bin combinations for other

attributes and computing the average common solution amongst these bin combinations.

Note these bin combinations correspond to a joint distribution across the conjunctive pred-

icate’s attributes. We use the term binsC to refer to bin combinations for attributes in the

set C. We can then prune those bins with non-empty solutions. Finally, we compute each

43

attribute’s correction factor in a similar fashion to the estimated solutions, again by consid-

ering bin combinations and computing the average product of correction factors across these

bin combinations. For completeness we also describe how we can compute the selectivity of

the conjunctive predicate p applied to stream S:

σp(HS , p) =
∏

a∈attrs(p)

1
F

∑
bins(HS(a))

∑
s∈Sderiv,conj

a

fderiv,conj,ab,s

where the term attrs(p) refers to the attributes used in predicate p, HS(a) is the histogram

for attribute a (i.e. a projected histogram given all attributes on stream S) and F is the

total frequency of any attribute in HS . We must ensure that this frequency is equivalent for

all attributes by scaling the derived frequencies before the derived histogram can be used

downstream. This is done with the aid of a normalizing constant:

scale factor =
r

F deriva

which uses the intermediate result cardinality r = Fσp(HS , p).

3.3.2 Joins

We will now define the estimation operation for a comparison of two modeled attributes x, y

of the form x < y. We support predicates specified as conjuncts of this basic comparison

expression. We assume that histogram boundaries are aligned, otherwise this can easily

be done by considering the union of bin boundaries and scaling frequencies according to

the uniformity assumption within bins. We now derive histograms, estimated solutions and

correction factors for a join operation on two bins a, b from the left and right inputs of the

join operator respectively. We denote the input solutions for these bins as sa, sb respectively.

We start with the estimated solutions, stating that these can be computed by solving a

difference equation between the two centroids of the bins ra = {ra,i} and rb = {rb,i}, and

considering only those solutions common to both sets of input solutions:

tderiva,b = solve
{[sl,su]}

[∑
i

wi(ra,i − rb,i) ≤ 0

]
∩ (sa ∩ sb)

Next, we consider the derived histogram frequencies, which can be computed for a given

pair of bins and solutions as follows:

44

fderiva,b,sa,sb
= fafbcf,acf,b

(
Vsub(a, b, sa, sb) + destVint(a, b, sa, sb)

V (a)V (b)

) |tderiva,b |
topt

The above equation computes the derived frequency as a product of individual bin

frequencies, scaled according to the ratio of the subsumed volume and intersecting volume

between the two bins. Furthermore, we scale the derived frequency according to the input

segment rate given by the ratio of the length of the derived solution range and the length of

the optimization period topt. This is necessary due to the natural equality constraint on the

valid time ranges present in Pulse’s join, which implies that the segments collected on one

stream are not compared to the entire set of segments collected on the other, but instead

only compared to the number of segments sharing common valid ranges.

Next, we can compute the selectivity of the join predicate given two histograms Hx, Hy

for attributes x, y respectively:

σx<y(Hx, Hy) =
1

Fx + Fy

∑
a∈bins(Hx)

∑
sa∈S(a)

∑
b∈bins(Hy)

∑
sb∈S(b)

fderiva,b,sa,sb

where Fx =
∑

a∈bins(Hx)

∑
sa∈S(a) fa,sa and Fy =

∑
b∈bins(Hy)

∑
sb∈S(b) fb,sb

.

Finally we must also derive a correction factor for the new histogram bin, and do so as

follows:

enew,a = na · (ra − pa)

enew,b = nb · (rb − pb)

cderivf,a,b = enew,a/eold,a × enew,b/eold,b

Just as in the case of the filter’s selectivity estimator, na, nb are hyperplane normals,

ra, rb are bin centroids, pa, pb are known points on the hyperplane, and eold,a, eold,b are

distances computed for upstream correction factors. These are each defined for bins in

histograms Hx, Hy.

Finally, we support conjunctive predicates where each term of the predicate is a compar-

ison of two modeled attributes as described above. The derived histogram’s bin frequencies,

estimated solutions and correction factors can all be computed in an identical way as with

the filter operator. To recap this primarily involves considering bin-combinations of the de-

rived histograms for each comparison term, determining averages of solutions and correction

factors for those bins with common solutions, as well as scaling the respective frequencies

based on the most selective comparison expression.

45

3.3.3 Aggregates

Our method for computing aggregates’ segment selectivities performs two steps, the first is

to obtain an instantaneous distribution of the aggregate function applied to segments cor-

responding to different key values, and the second is to then consider temporal aggregation.

We describe these methods for both min,max aggregates and sum,avg aggregates.

Min/max aggregates

We begin by describing the contents of the instantaneous histogram derived following a

min or max aggregate. In this histogram, we would like each bin to capture the occurrence

frequency of the polynomials contained in the bin being the result of the aggregate, given

input frequencies per key value. Thus we must compute the frequency with which the

polynomials in a histogram bin dominate other polynomials according to whether we have a

min or a max function. These frequencies can be computed with our subsumption methods.

We consider a max aggregate, although the equations below can be trivially modified for a

min aggregate. We define the frequency of a bin in the instantaneous histogram for key k

as:

f instb,s (k) = fb,k(1−
∑

k′∈K
∑

bd∈dominated(b,bins(k′))
∑

s′∈S(bd) fbd,s′,k′Js ∩ s′ 6= ∅K
FK

)

whereK = keys−{k}, FK =
∑

k′∈K
∑

b∈bins(k′) fb,k′ . Also, the function dominated(b, bins(k′))

returns the set of bins (for key k′) dominated by the bin b and is computed as those bins

lying completely within the extremal region of defined by the centroid of bin b.

Once we have the instantaneous distribution, for temporal aggregation, we explicitly

leverage the constant advance that we use during predictive processing. We use this con-

stant advance to determine the number of input segments that would present in a window,

and given that our instantaneous distribution is derived from these inputs, we can derive

a distribution of the coefficients in a window as a product of the instantaneous distri-

bution. Note that this also relies on independence between the coefficients of sequential

segments. Thus the distribution of inputs to the temporal aggregation is a joint distribu-

tion Hw =
∏n
i=1Hinst = Hn

inst, where n = w/adv for window size w and constant advance

adv. However as we’ll see, we can avoid computing this joint distribution, which can be

expensive since its complexity O(binsn).

The critical functionality we capture as part of temporal max aggregation is the in-

clusion of constant segments resulting from an extremal instantaneous point lying within

46

the sliding window. We now describe how we compute the occurrence frequencies of these

segments, and add them to the derived histogram in addition to the relevant portions of

the instantaneous distribution. Based on our description of these constant segments, we

add these following the arrival of a new input segment to the aggregate that is smaller

than the window’s existing maximum, that also does not cause the removal of the window’s

maximum. Thus we can compute the constant segments’ frequencies based on computing

the probabilities of these two conditions over the window distribution. The probability of

the first event, where the addition of a segment does not cause the removal of the maximal

segment is as follows. We label this event r:

p(rb,s) = p(no extremal removal from b,s)

= p(∃i ∈ [2 . . . n].seg1 < segi)

= 1− p(∀i ∈ [2 . . . n].seg1 > segi)

= 1− (
∑
D

f instb,s /Fs)n−1

where D = dominated(b, bins(Hinst)). The probability of the second event, where the added

segment is dominated by any existing segment in the window, is labeled a below and can

be computed as:

p(ab,s) = p(no extremal append to b,s)

= p(∃i ∈ [2 . . . n].segn+1 < segi)

= 1− p(∀i ∈ [2 . . . n].segn+1 > segi)

= 1− (
∑
D

f instb,s /Fs)n−1

where D = dominated(b, bins(Hinst)). We can then compute the constant segments’ fre-

quencies as:

f constb,s =
∑

{b′∈bins:max(b′)∈[cl0(b),cu0 (b)]}

f instb′,s p(rb′,s)p(ab′,s)

In the above equation, we use the property that the value of the constant segment is equal

to the extremal value present in the window. Thus the frequency of a bin containing these

constant segment has contributions from numerous other bins according to the maximal

value, i.e. the maximal polynomial contour, associated with the bin.

47

Next, we describe our approach for computing the validity range of these constant

segments, so that we may assign estimated solution intervals to the bins corresponding to

these segments. We again use our independence assumption between sequential segments

and state that the validity range of the constant segment follows a geometric distribution,

corresponding to the number of segments added to the window prior to a new addition

dominating the existing maximum of a window. Furthermore, we can use the number of

segments present in a window under our constant advance assumption as an upper bound

on the number of segments considered added in this geometric distribution. We can then

state the following about the solution range of these constant segments, denoted tconstb,s :

tconstb =
1
n

n∑
i=1

(E[tb]× (i− 1)× adv)p(ab,s)(i−1)(1− p(ab,s))

Above E[tb] is the expected validity range of a constant segment given upstream derived

ranges from an input segment, and is defined as:

E[tb] =
∑
bins

Jdominates(b, b′)Kn+ (1− Jdominates(b, b′)K)mins∈S(b)(s)

Finally, the correction factor for both regular bins and constant segment bins is simply

the average correction factor of all bins contributing the maximal segment or constant.

cderivf,b,s = avg{b′∈bins:max(b′)∈[cl0(b),cu0 (b)]}cf,b,s

Sum aggregates

We now turn our attention to sum aggregates, and apply a similar process of deriving

an instantaneous distribution of the sum’s value and then consider temporal aggregation

over a sliding window. The instantaneous distribution can be computed by considering bin

combinations for different key values. For each combination, we compute the set of valid

ranges and track the extremal polynomials within each common range. We can compute

the summation of these extremal polynomials, and their frequency as follows:

f instb,s =
∑

{{b1...bk}∈binsk:}

fb∗
k∏
i=1

fbi,s
Fi

48

where b∗ = argmaxbi({fb1 . . . fbk}) and Fi =
∑

b∈bins(i) fb.

Once we have obtained the instantaneous distribution, we can then use this in conjunc-

tion with the description of a sum’s window function to derive the temporally aggregated

output distribution. Recall that in a sum’s window function we have three components:

a head segment, a tail segment, and fully enclosed segments that contribute constants to

the window’s result. We can model the distributions of each of these components using our

instantaneous distribution. Using the sequential segment independence assumption, both

the head and tail segment distributions are the instantaneous distribution. This leaves the

fully enclosed segments and the values they contribute. We capture this by considering the

distribution of the definite integral of n − 2 sequential segments (n segments per window,

except for the head and tail segment).

fCb,s =
∑

b∈bins(Hinst):
∑

s∈S [
∫

s

∑d
i=1 rit

idt]∈[cl0(b),cu0 (b)]

f instb,s

The above defines frequencies for an instantaneous integral distribution, from which we

derive the window integral distribution:

fC,wb,s =
∑

{{b1...bn−2}∈bins(HC)n−2:[
∑n−2

i=1

∑d
j=1 rj(bi)t

j]∈[cl0(b),cu0 (b)]}

fb∗
n−2∏
i=1

fbi
Fi

where b∗ = argmaxbi({fb1 . . . fbk}) and Fi =
∑

b∈bins(i) fb. Note that in the above equation

we use the term bins(HC)n−2 to denote the n − 2-way combinations of bins from the

histogram HC .

Subsequently we can derive the window distribution by combining with the integral

distribution of the head and tail segments. Note that in these distributions, the integration

operation simply transforms bins by dividing their respective coefficients with the degree of

the variable associated with the coefficient’s dimensions. Furthermore, in the case of the tail

segment, we actually have a negative integral distribution computed as Htail = HC −Hhead

where Hhead is the integrated head segment distribution. Furthermore, note that the head

and tail segments share the same estimated validity ranges due to their derivation from

the instantaneous distribution. Thus we can simply use these estimated solutions for the

derived histogram:

tderivb = tb

49

Also, the correction factor is again the average of all contributing bins.

cderivf,b,s = avgb∈bins(Hinst):
∑

s∈S [
∫

s

∑d
i=1 rit

idt]∈[cl0(b),cu0 (b)]cf,b,s

3.3.4 Histogram-Based Selectivity Bounds

In addition to selectivity estimations, as we shall see below, our optimizer’s cost model

attempts to use the risk involved in selectivity estimation as part of its choice of query

plan. We represent risk as a function of two selectivity bounds and compute these bounds

based on an extreme cardinality estimation technique presented in [14]. While the authors

consider the containment assumption for equi-joins in this work, the key idea we use is that

of computing selectivities based on assuming extremal skew between histogram bins rather

than scaling independently when computing selectivities and using this to bounds. We

primarily describe how we apply the technique to conjunctive predicates, and refer to the

above paper for how to address join graphs. We do not consider single attribute filters and

aggregate functions with a single attribute argument, since these simply propagate extremal

selectivities involved in the attribute used. We do not consider more complex aggregates

that use multiple attributes.

For conjunctive predicates, we define two properties σmin and σmax representing se-

lectivity bounds as follows. We assume we have both original fb,s and derived frequencies

fderivb,s for each individual comparison term in the conjunctive predicate. Let’s consider σmax
first, where we pick the comparison term with largest total derived frequency F derivmax . This

acts as an upper bound on the result cardinality if we ignore any other comparison terms

in the conjunctive predicate. The key idea is that we then pick histogram bins for other

terms with largest frequency within this result cardinality limit, and subsequently compute

the selectivity for these other terms using only the chosen bins.

As an example, consider the conjunctive predicate x < 100 ∧ y < 50 ∧ z < 10 posed on

a stream histogram of cardinality 1000. Furthermore, suppose the term x < 100 has the

largest derived frequency (i.e. is the least selective), with F derivmax = 400 as the upper bound

on the result cardinality. We sort the derived frequencies of attributes y and z, picking

bins in descending order of derived frequency such that the total frequency is F derivmax . Let

us denote this set of frequencies for attribute y as DFy = {fderiv1 , . . . , fderivn }, and similarly

DFz for attribute z. Now for each chosen bin, we also require their original frequencies and

denote these as OFy = {f1, . . . , fn} and OFz. We can then compute an upper bound on the

selectivity of the term y < 50 as
∑
DFy∑
OFy

and similarly for the term z < 10 as
∑
DFz∑
OFz

. Note

50

that these are overestimates due to the our greedy selection of bins in descending frequency

order. Finally we can compute our upper bound for the predicate as:

σmax =
F derivmax

F
×
∑
DFy∑
OFy

×
∑
DFz∑
OFz

We now present the general form of this selectivity bounds:

σmax(H, p) =
∏

a∈attrs(p)

∑
B f

deriv
b,s∑

B fb,s

where min
B⊂bins(H(a))

∑
B

fb,s s.t
∑
B

fderivb,s = R

and R = arg max
a∈attrs(p)

F deriv, a

Note that it is unlikely that we will find bins matching the constraint that their total

frequency sums to R. Instead we simply apply our greedy selection as described above until

we have at least met a sum of R, and simply scale the frequencies of the last bin chosen.

For σmin, we start with the comparison term with lowest total derived frequency, and

instead pick bins for other terms in ascending order of derived frequency.

σmin(H, p) =
∏

a∈attrs(p)

∑
B f

deriv
b,s∑

B fb,s

where max
B⊂bins(H(a))

∑
B

fb,s s.t
∑
B

fderivb,s = R

and R = arg min
a∈attrs(p)

F deriv, a

3.4 Experimental Evaluation

In this section, we present our experimental evaluation of our selectivity estimator, im-

plemented in the Pulse framework, on top of the Borealis stream processing engine. We

evaluate the selectivity estimator’s characteristics both in terms of accuracy and overhead

on synthetic datasets and an real-world workload based on the NYSE dataset seen in the

previous section. We compare our selectivity estimator to a simple sampling-based tech-

nique for estimation. These experiments are performed on a Intel Core 2 Duo T7700 2.4

GHz processor, 4GB RAM, running a Linux version 2.6.24 kernel. Note that we used the

summer 2008 release of Borealis, which is not designed for utilizing multiple cores.

51

i) ii)

Figure 3.4: Parameter spaces of segments in the synthetic i) normal distribution, and ii)
uniform distribution

Before we dive into the details of the evaluation, we briefly comment on the sampling

technique used as a comparison point. There is a large volume of literature in the database

community investigating sampling techniques, where these works are often diverse both in

terms of the underlying principles of the algorithms used for estimation, (e.g. wavelets [62],

sketching [33], etc.) and in terms of the kinds of queries considered, commonly including

sum and average aggregates, top-k queries, and so forth. We apply an extremely simple

form of sampling, where we sample the input stream and execute the query plan as is on the

sampled stream. We compare the cardinality of the result stream for a fixed size workload, to

the sample size to compute a selectivity estimate. Note that as we shall see in the following

sections, the queries used during selectivity estimation do not involve joins, hence we need

not apply more complex join sampling techniques. We now study how our parameter-space

histogram technique performs in comparison to such as sampling technique.

3.4.1 Dataset Analysis

We start with an analysis of the datasets used in these experiments, in particular looking

at the parameter space of the polynomial segments present in the datasets being processed.

We start with the synthetic dataset whose parameter spaces conform to the distribution

used to generate the dataset. We use two synthetic datasets, whose polynomials consist

of coefficients drawn from a normal distribution and a uniform distribution respectively.

Their parameter spaces are shown in Figure 3.4, which depicts a histogram of the parameter

space, using colors to represents the frequency of coefficients within each bin. Note that

the segments in our datasets are simple linear functions, hence the figures represent a two-

dimensional parameter space. The x-axis in these figures represent values of the coefficient

c0 while the y-axis represents values of a function f applied to the coefficient c1, where

52

Distribution Parameter Value Description
Uniform [l0, u0, l1, u1] [100, 200,−1, 1] Domain bounds for c0, c1
Normal [µ0, µ1] [150, 0] Mean values for c0, c1
Normal [σ0, σ1] [50, 1] Standard deviations for c0, c1

Figure 3.5: Synthetic dataset generation parameters

f(x) =


k − log (−x) if x < 0

0 if x = 0

log (x) + k otherwise

where k = min(log (x)|x > 0). The function f maps a two-sided wholly positive or wholly

negative exponential function passing through the origin into a linear function passing

through the origin, effectively allowing use to view positive and negative values of the c1
coefficient in a logarithmic scale.

Now we illustrate the parameter spaces for the NYSE dataset. This dataset consists of

the segments fit by an offline algorithm for the seven stocks with largest trading volume

during a one month period on the NYSE in January 2006. Their parameter spaces are

illustrated in Figure 3.7. The x- and y-axes in these figures are identical to those for the

synthetic dataset parameter spaces. The key property to note is that these distributions

are wide, and short – that is to say coefficient c0 ranges over a far larger domain than

coefficient c1, that is the stock prices are generally slow-changing. This is not unexpected

for a real world dataset, for example many physical properties such as temperatures, are

slow-changing. Note that we reproduced this property in our synthetic datasets, as can be

seen by the ranges of the c1 domain for both normal and uniform distributions in Table

3.5. Additionally, we note that several of these parameter spaces exhibit the presence of

frequency clusters along both the c0 and c1 dimensions. For example in Figure 3.7iii) there

are 6 apparent clusterings, three along the c0 dimension, each of which have similar clusters

at an offset along the c1 dimension. This suggests an oscillatory characteristic amongst the

segments.

NYSE Dataset

With these datasets in hand, we turn our attention to evaluating the accuracy and perfor-

mance of our estimator starting with the NYSE dataset. The query workload for which we

determine selectivities is comprised of single-attribute filter operations, where we detect if

the stock price crosses a threshold. For accuracy and performance metrics, we look at both

53

Distribution µ0 µ1 σ2
0 σ2

1

s12 77.657 -0.00832 16.636 0.0207
s3762 22.914 -0.00111 3.498 0.000257
s4878 27.002 -0.00294 0.293 0.00478
s6849 38.404 -0.000608 0.986 0.000601
s6879 70.537 16.350 16.958 136314.256
s6973 127.607 0.0267 3.463 2.472
s8329 37.466 0.00341 10.976 0.0314

Figure 3.6: NYSE dataset characteristic parameters

relative and absolute errors, and estimator execution times. We study two independent

variables influencing these accuracy and performance metrics. These are the actual selec-

tivity of the query, which is controlled by adjusting the threshold value used in the query,

as well as the binning scheme used by input stream histograms for derivation purposes.

Each binning scheme adopts a grid-based approach to picking bin boundaries, differing

exponentially in the bin widths along each dimension.

We illustrate three sets of results on the NYSE dataset. This starts with a takeaway

result depicting the accuracy achieved by our histogram technique and the overhead in

providing such a level of estimation accuracy, compared to the sampling technique. We

summarize that our experiments show a negative result, namely our estimation technique is

outperformed by a small but noticeable amount both in terms of accuracy and performance.

The remaining two results provide experimental details for our technique, comparing the

accuracy and performance metrics for varying query selectivities and bin widths.

Figure 3.8 compares the accuracy achieved and the overhead needed to produce the

estimate for our histogram-based technique to a histogram technique enhanced by two

sampling methods. The first sampling technique, referred to as segment sampling, randomly

samples the input stream prior to building a histogram on the resulting sample of segments.

This produces a histogram with fewer bins than simply building the histogram over the full

input stream of segments. The second sampling technique, bin sampling, constructs the

histogram as usual, but then applies a weighted sampling of the bins, to selectively include

a subset of the bins in the final histogram used for estimation. Note that the overhead

measured in this experiment is simply the computational overhead for the estimate, which

in the case of our histogram-based technique involves processing each bin, and for sampling,

applying query processing to each sample. It does not include the overhead of maintaining

and updating histogram bins, nor that of collecting samples. Each point on the histogram

54

i) ii)

iii) iv)

v) vi)

vii)

Figure 3.7: Segment parameter spaces for seven stocks from the NYSE dataset, stock ids
are: i) 12, ii) 3762 iii) 4878 iv) 6849 v) 6879 vi) 6973 vii) 8239.

55

Figure 3.8: Comparison of accuracy vs. performance tradeoff for histogram technique and
sampling on the NYSE dataset.

56

i) ii)

iii) iv)

v) vi)

vii)

Figure 3.9: Absolute error differences between sampling at a variety of rates, and histogram-
based estimation using a large number of bins.

57

curve corresponds to a particular binning scheme, averaged over a query workload whose

selectivities range from 0.1 to 1.0, and the seven stock symbols with parameter spaces seen

above. Points on the sampling curve correspond to varying sampling rates, also averaged

over our query workload and stocks.

This figure shows that sampling significantly enhances estimation for the histogram

method in the cases where the binning scheme uses a coarse grid, providing significantly

greater accuracy, i.e. lower absolute errors, for an equivalent estimation overhead. The

two sampling enhanced techniques differ amongst themselves at the finer-grained binning

schemes where bin sampling is able to provide the same level of accuracy with significantly

lower overhead, due to its more refined ability to prune bins from the histogram, and

subsequently provide retain more relevant bins in this histogram for estimation. We finally

remark, that while the histogram enhanced with bin sampling provides the best result in

terms of both accuracy and overhead, both of the other techniques are clearly capable of

providing low overall accuracy within a fairly small range of overheads.

Figure 3.10: Estimation evaluation overhead for i) histogram-based and ii) sampling-based
techniques on the NYSE dataset.

Figure 3.9 illustrates the difference in absolute errors for our selectivity estimates for

each stock’s dataset. In each plot, we compare the sampling method evaluated at a variety

of sampling rates to the binning scheme using the largest number of bins. Positive absolute

error differences indicate where our technique outperforms the associated sampling method.

Note these plots focus on the issue of accuracy in isolation and do not factor in the overhead

of performing the estimation. This figure illustrates the error for several query workload

selectivities, and is intended to highlight any sensitivities or biases in the estimator under

varying query selectivities. The primary note we make here is that the estimator is fairly

58

robust towards varying query workloads. In many of these figures, absolute errors start off

at low values, increase towards the midpoint of the selectivity domain, and finally decrease

as selectivity approaches a value of 1. This trend can be understood by considering the

primary source of error in our histogram-based technique, which is the approximation of an

individual segment’s valid hyperplanes by considering bin hyperplanes. Our technique incurs

greatest error when the majority of bins use these hyperplanes for selectivity estimation,

as opposed to pruning or subsumption directly performed by the hypercube corresponding

to histogram bins. This naturally occurs at the midpoint of the actual selectivity domain.

Figure 3.9vi) however does not follow such a trend, and in the behavior exhibited there

can be attributed to the selectivity estimates computed by our histogram-based technique.

For this particular stock’s parameter space, the choice of binning scheme results in highly

discretized set of selectivity estimates, essentially a step function. Thus at certain steps, our

estimator’s accuracy improves significantly, and the cause of such a step function is that the

binning scheme and the bin widths chosen result in a highly discretized parameter space with

few active bins. Subsequently, neighboring threshold values have the same impact in terms

of pruning or subsuming these few bins, leading to a step function for our histogram-based

estimates.

i) ii)

Figure 3.11: Comparison of accuracy vs. performance tradeoff for histogram technique and
sampling on the synthetic dataset.

Figure 3.10 shows the overhead in estimating selectivities using our histogram-based

technique as well as sampling. In Figure 3.10i) we have a line for each stock symbol, at

varying binning schemes. These binning schemes differ in the number of histogram bins

present in the domain of coefficient values, with each binning scheme containing twice as

many bins as the previous scheme. Given this number of available bins in the coefficient

59

value domain, the x-axis on this graph plots the number of bins actually used, that is the

coefficient values often sparsely populate their domain, hence not all bins end up contain-

ing any segments. The general trend here is that the overhead grows as a linear function

of the number of bins used. This matches our expected computational complexity arising

from looping over such bins, performing pruning, subsumption and intersection tests as the

main work during histogram derivation for a predicate. We notice the volatile nature of

these plots and remark that in our initial inspection, the source of such volatility appears to

arise from the choice of experimental setup parameters relating to the interaction between

various components of the Borealis framework (for example sleep times between loading a

query from a client, and initiating the estimation in the backend server process). This is

somewhat to be expected in experimenting and developing with complex systems, and we

view the analysis of such interactions beyond the scope of this thesis. Figure 3.10ii) displays

the overhead for sampling-based estimation, for a variety of sampling rates indicating the

fraction of the input workload used for estimation. The overhead exhibits a linear relation-

ship to the sampling rate that is to be expected, and can be explained by the fact that we

are processing a linear system of equations for each sampled segment. Note that due to the

different independent variables on these plots, it is difficult to directly compare overheads

for the two techniques, rather this must be done factoring in accuracies as shown in the

accuracy and overhead figure above (Figure 3.8).

3.4.2 Synthetic Dataset

i) ii)

Figure 3.12: Absolute error differences between sampling at a variety of rates, and
histogram-based estimation using a large number of bins on the synthetic dataset.

We now investigate these properties and metrics for the synthetic dataset with parameter

60

spaces shown in Figure 3.4, starting with our accuracy and tradeoff results. Figure 3.11i)

shows the accuracy achieved by the histogram-based technique, in its original form, and

enhanced with bin-sampling in comparison to the overhead of estimation for each method

for a normally distributed parameter space, while Figure 3.11ii) applies to a uniformly

distributed parameter space. Points in both diagrams are averaged over varying query

selectivities, and each point corresponds to a different binning scheme and sampling rate

of the histogram- and sampling-based lines respectively. These figures corroborate that

sampling-enhanced selectivity estimation dominates the histogram-based method, providing

both better accuracy with lower overheads. We notice the tighter clustering of points

towards the larger overhead values for the histogram-based method in both diagrams. We

also remark that the separation between the two lines in this comparison of tradeoffs appears

greater than that seen with the NYSE dataset. This is caused by the binning schemes all

utilizing a large number of bins, whereby almost every segment in the input workload is

binned into unique histogram bins.

i) ii)

Figure 3.13: Estimation evaluation overhead for i) histogram-based and ii) sampling-based
techniques on the synthetic dataset.

In Figure 3.12, we analyze the accuracy achieved by both techniques in more detail,

plotting the difference in absolute errors of the estimation techniques. Specifically, we

compute error differences between sampling at a variety of rates and the binning scheme

employing the smallest bin widths, for both normal and uniform parameter spaces. In both

plots we display error differences for set of queries with actual selectivities ranging from 0.1

to 1. The results shown here exhibit trends similar to those for the NYSE dataset, namely

that absolute errors are larger near in the central part of the selectivity range, and tail off

towards the upper extreme of this range. We also note that in terms of accuracy alone,

61

our estimator performs reasonably well on these synthetic datasets, with our histogram

technique proving advantageous even in comparison to sampling up to 40% for both normal

and uniform datasets at selectivities above 0.4. Indeed our technique is marginally worse

than an 80% sample rate in both cases.

Finally, Figure 3.13 illustrates the estimation overhead for the histogram-based tech-

nique for varying bin widths, and for sampling over several sampling rates. Both results

here exhibit similar trends to those from the NYSE dataset, namely that the histogram

estimator’s overhead is linear in terms of the number of bins actually populated in the his-

tograms, while the sampler’s overhead is linear in terms of the sample size. We note that in

Figure 3.13i) several of the binning schemes result in input histograms where each segment

is assigned to a unique bin. This again highlights the dependency of our technique on the

choice of binning strategies, and the difficulty in picking binning schemes.

Chapter 4

Adaptive Multi-Query

Optimization with Segment

Selectivities

With a selectivity estimation technique for our segment-based processing in hand, we can

now turn to the issue of developing a cost model for query processing to guide cost-based

query optimization. In this work, we focus on sharing and ordering mechanisms from the

many choices of query optimization techniques. Our reasons for doing so include the fact

that these techniques are two of the most common semantic optimization techniques at the

query level, and thus are significantly influenced by selectivities as defined in our query

processing context. In this section, we start with describing how ordering and sharing

techniques can be applied to our queries for performance optimization, before moving on

to describing a cost model representing the processing overhead and capturing the effects

of these optimization mechanisms on processing overhead. We then present adaptive query

optimization algorithms based on this cost model that monitors properties of the running

queries, to detect performance thresholds violations, and then performs a set of local query

adaptations to improve system performance.

In the following two sections, we consider two sharing techniques, one which relies

on using covering subexpressions for common query plan subtrees, denoted cover-sharing,

and another which eliminates duplicates between compatible (but independent) query plan

subtrees prior to processing the element. We refer to the later as union-sharing. Both of

these cases apply to query elements that are compatible in terms of their schemas, and

the attributes processed. The related literature [97] includes descriptions of compatible

62

63

expressions based on their signatures of input attributes used, and algorithms for finding

these compatibilities.

4.1 Covered Sharing

In more detail, given a set of compatible subexpressions across a set of queries, our cover-

sharing technique uses a covering subexpression that produces a superset of intermediate

results for all query elements preceding each compatible expression, all the way to the inputs.

Note that at query inputs, stream processing engines typically duplicate streams into each

query’s execution contexts (i.e. queues), much in the same way that traditional databases

use multiple scan operators while processing many queries unless explicitly optimized. Thus

covering all elements to the input streams allows us to eliminate this input duplication.

Figure 4.1: Cover-sharing example.

We’ll now present a simple example of cover-sharing. Figure 4.1 provides an illustration

of this example of a pair of cover-shared queries, outlining how two query plans can be

merged into a single one through the use of covering operators from the input streams. We

start with two separate operator chains in step i), and in step ii) we share the first operator

64

by computing a covering expression for the various predicates, and adding compensation

operators following the cover-shared operator. In step iii), as an abstract example, we

show the plan supposing we are able to share the second operator. This requires that the

compensation predicates are able to commute with the second operator. Note that in the

cover-sharing algorithm, all operators to the input stream A are also cover-shared.

The tradeoffs in utilizing a cover-sharing mechanism lies in the fact that the covering

expression is produces a superset of intermediate results, in addition to requiring com-

pensation operators downstream from the covering expression that are capable of filtering

this superset to the exact outputs generated by each individual query. Intuitively, if there

is not much overlap in the intermediate results produced by operators, the covering ex-

pression will eliminate much duplicate processing, while we still incur the overhead of the

compensation operators. We note here that there is no need to limit ourselves to a single

covering expression. In our system, we consider the use of multiple covering expressions

over various subsets of queries, leading to the problem of how to appropriately select both

the queries to cover as well as the covering expression itself. For example, given a set of

queries Q = {q1 . . . qn} that each have a compatible operator, we can divide the set Q into

m disjoint subsets {Q1 . . . Qm : Qi ⊂ Q}, where each subset Qi is processed by an instance

of the shared operator with its own covering expression. We refer to the set Qi as the set

of consumers for the shared instance, and m the sharing degree of the operator.

Covering Expression Computation. The final mechanism-related concern we describe

for cover-sharing is that of how to compute a covering expression for a given consumer set.

We primarily focus on conjunctive predicates found in filters and joins and return to this mo-

mentarily. We remark that aggregates are only compatible if they use the same aggregation

function with identical argument expressions, for example the aggregate expressions sum(a)

and sum(a+b) are not compatible. Now we return to the case of conjunctive predicates for

compatible operators. Note that by the definition of compatibility [97], the consumer set

must have a common set of attributes across each of their predicates. We focus on only the

comparison terms in the conjunction that refer to one of these common attributes. The re-

maining terms in any consumer’s conjunction is processed by that consumer’s compensation

operator.

In the case of both filters and joins, each of these common attributes will be compared to

a constant (e.g. x < 5) or another common attribute (in the same input stream for filters,

for example R.x < R.y, and potentially in different input streams for joins, such as R.x

< S.y). Constant comparisons can be handled in a straightforward manner provided we

have identical comparison operators – we simply find a subsuming constant. Thus for three

65

queries with constant comparisons x < 5, x < 7 and x < 20, we use the expression x <

20. To handle pairs of modeled attributes, we first identify if the same pairs are compared

across all consumers, using the same comparison operator. If this is the case, we simply find

a subsuming comparison expression. Otherwise we add a disjunction of the two comparison

terms.

For example consider the comparison terms x < y, 3x < 2y, 4x > y, and 3x > 3y, each

posed by a different query. The covering expression is the term:

(((x > 0 ∨ y > 0) ∧ x < y) ∨ ((x < 0 ∨ y < 0) ∧ 3x < 2y)) cover expr part i.

∨ (((x > 0 ∨ y > 0) ∧ 3x > 3y) ∨ ((x < 0 ∨ y < 0) ∧ 4x > y)) cover expr part ii.

We make two remarks for the above. First, the goal here is to minimize the number of

disjunctive terms added to the common expression between the original terms, since we solve

a separate equation system for each disjunction. The above covering expression actually

includes all the original terms so it may not seem clear how this simplifies evaluation.

The answer is as follows: the general structure above is that we add covering expression

identification terms, such as (x > 0 ∨ y > 0), for each original term. These should be

checked at the solution boundary to determine the covering expression. While this term

must be computed for segments that take on both positive and negative values, if either

the segment for x or y is entirely positive or negative, we can use boolean short-circuiting

to evaluate only one equation system. Thus in the above example we would only evaluate

one equation system for part i. of the covering expression and another for part ii. of

the covering expression. This is necessary since the two parts have opposing comparison

operators between attributes x and y.

Note that each cover-shared operator also keeps track of the compensation operators that

must execute to distinguish each consumer individually. A downstream operator can only

be implemented with a cover-sharing algorithm if these compensation operators commute

with the downstream operator. For example if the current shareable operator is a filter and

the downstream shareable operator is an aggregation, the downstream operator cannot be

implemented in cover-shared fashion since the filter’s compensation operators (which will

be filters themselves) cannot be pushed beyond any shared aggregate.

4.2 Union Sharing

The idea behind union-sharing is to perform ad-hoc, adaptive sharing at an arbitrary share-

able operator in the query plan. Assume we have a set of (potential) consumers {c1, . . . , cn}

66

currently executing a set of shareable operators in non-shared fashion. Furthermore, sup-

pose each consumer applies this non-shared operator to its unique set of inputs {I1, . . . , In}.
As suggested by its name union-sharing involves computing a union of the intermediate

inputs to each consumer, namely I =
⋃
Ik, k = 1 . . . n. The key is that applying this

union operator produces a superset of any single consumer’s intermediate inputs, that is

Ik ⊆ I, k = 1 . . . n. This superset is processed by both a shared covering operator, and then

a compensation operator for each consumer. In a similar fashion to cover-sharing, we also

consider selecting multiple shared instances as well as picking their associated consumer

sets, and requiring compensation operators to distinguish each query’s exact output set.

We draw our inspiration for the union-sharing technique from related work with on-the-

fly sharing for aggregate operators [55], adapting the techniques to work with polynomial

segments.

At a high-level, processing with a covering operator and a compensation operator is

similar to cover-sharing, but the key difference between the mechanisms is the use of a union

operator to construct an intermediate input superset, rather than covering each expression

upstream through to the input streams. Thus union-sharing creates a covering expression for

only a specific shareable operator, while every consumer continues to execute any upstream

operators independently. We now dive into more detail on this intermediate input superset

construction.

There are a few subtleties to applying a union operator for the purpose of sharing.

In the Borealis stream processor, tuples are copied into each individual query’s execution

context, hence simply applying a union produces duplicate tuples. We would like our

intermediate input superset to be duplicate-free, otherwise we would process essentially the

same input multiple times with the shared operator as result of copied inputs. Thus we apply

a duplicate elimination algorithm following this union, removing equivalent intermediate

results. We now provide intuition on the benefits of union-sharing before describing the

duplicate elimination algorithm.

The tradeoffs in union-sharing are also the cost of processing the shared operator over a

superset of results, and then distinguishing each query’s results with compensation opera-

tors. In comparison to the cover-sharing, union-sharing provides a more adaptive technique

that can be applied at arbitrary compatible operators with fewer changes to the running

individual queries and merged queries, rather than requiring all upstream operators to

be cover-shared. However union-sharing incurs the cost of explicitly performing duplicate

elimination, which is much simpler in the case of cover-sharing since this simply means

eliminating the aforementioned copy operation at the input streams. Figure 4.2 illustrates

67

Figure 4.2: Union-sharing example.

the concept of union-sharing, explicitly highlighting the points where both the union and

duplicate operators are applied, as well as the shared and compensation operators.

Duplicate Elimination and Data Sharing. We now return to the duplicate elimination

we perform, since this is custom to our context of processing polynomial segments. We

define duplicate segments as those that share both equivalent coefficients and valid time

ranges. Duplicates primarily occur due to subsumed segments following processing by any

operator. We can detect duplicates in a straightforward manner following a union operator

by maintaining a buffer based on the monotonic reference timestamp, and checking and

eliminating from the contents of this buffer periodically. The buffer can then be flushed

and any non-duplicate inputs can be processed by the shared instances downstream.

We also describe data sharing as an extended, aggressive form of duplicate elimination

to reduce the size of the intermediate input superset. One way to view data sharing is as

a dual to the query sharing described above. Data sharing uses the fact that our segments

are a compact representation of a set of tuples, and in particular our segments may exhibit

covering properties. We define covering as a two segments with equivalent coefficients, but

68

where one segment’s valid time range is a strict subset of the other.

Now one option for data sharing would be to decompose any set of covering segments

S (i.e. a set of segments where each member covers or is covered by another) into disjoint

segments. Each disjoint segment would be covered by multiple members of S, and we could

then share the processing of these members by instead processing the disjoint segment.

However as it turns out from a simple analysis, the increased segmentation from creating

disjoint segments is identical to the benefits of sharing, leading to no net gains. The anal-

ysis is straightforward, each covering set member that uses a disjoint segment can share

processing for that disjoint segment. However the creation of a disjoint segment also leads

to a residual segment for the covering set member, eliminating the benefit of sharing the

disjoint segment. Note that this residual must exist, otherwise two covering set members

are duplicates in the sense of equivalent coefficients and valid time ranges.

Instead the approach we use is semantic data-sharing, which requires extending the

shared operator and compensation operator’s algorithm. The idea again is to use covering

segments, but rather than decomposing these into disjoint segments, we produce the maxi-

mally covering segment m for the set S, as well as keeping tracking of the valid time range

for each member of S for use in compensation operators. The key idea here is that we use

the segment m to quickly detect when we need to perform no work for the covering set S.

For example consider a filter on m. If this filter does not produce a result for m, it will not

produce any results for the set S. However if it does produce a result for m, then we must

perform more work, at each compensation operator, to determine each individual result for

the set S. Thus we must maintain the valid time range for each member of S with m. This

technique also applies to joins and their predicates, providing we assume both filters and

joins apply predicates and maintain state on individual key values in the presence of keys.

Note for joins, this property also helps to ensure that the shared operator’s windows cover

those windows of the compensation operator.

Aggregates turn out to be more complex as a result of windows maintained over multiple

key values. We only consider min and max aggregates, and do not apply data sharing to

sum aggregates. Consider two segments a and b with the same key value k, where a covers

b, and a is an input to a shareable aggregate agg1, and b an input to agg2. Now suppose

we have a shared implementation of these two aggregates, and consider adding segment a

to the shared operator’s window. The problem lies in the fact that segments for another

key value may contribute to the window for agg2 in the difference of a and b’s valid time

ranges. This limits the properties we can conclude about the outcome of adding b to the

window for agg2 by considering a and the shared operator’s window.

69

In particular we can state the following. For a min aggregate, using covering segments

allows us to compute the minimal envelope at a shared operator, across all consumers of

that operator. Subsequently considering covering segment updates for a min aggregate

allows us to determine when the covering segment causes no state updates. However for

max aggregate, we can compute the maximal envelope across all consumers. In turn, this

allows us to determine when a covering segment updates state across all consumers, subject

to the consumer’s valid time range.

Summary. In summary, we use both duplicate elimination and data sharing to aggressively

reduce the size of the intermediate inputs to our shared operators. This handles both the

issue of copied tuples for multi-query optimization and exploits the fact that we have a

compact representation of data. Data sharing when applied simultaneously with query

sharing allows us to perform the following semantic optimizations. For filters and joins, we

can eliminate redundant processing by detecting when inputs produce no results for any

consumer. For min aggregates, we can detect when inputs produce no state updates for

any consumer, and for max aggregates we detect inputs that produce state updates for any

consumer.

4.3 Ordering

The basic idea in exploiting processing orders is that eliminating segments from processing

as early in the pipeline as possible reduces processor load, that can instead be spent working

on segments which produce outputs. The difficulties in determining a suitable order lies

in the large number of possible orders, and subsequently the large number of conditional

selectivity distributions. Since optimizers assume independence assumptions between at-

tributes, attribute dependencies late in the operator chain are incorrectly estimated, leading

to suboptimal plans in the presence of high degrees of correlation after the initial operator.

Prior work has studied this problem in the case of streamed filters [8], using monitoring

conditions that maintain an invariant property on operators’ selectivity-cost ratios, in a

single query’s evaluation order. Specifically, the conditions maintain that each operator

has a greater drop probability-to-cost ratio than any downstream operator. We leverage

the monitoring conditions developed in this work, integrating their execution with our

conditions for detecting sharing opportunities, and ensuring that any adaptations performed

provide a correct implementation of the query in the presence of shared work.

70

4.4 Processing Cost Model

Recall the high-level structure of our cost model as defined in Section 3.1.1 as consisting

of both processing cost and risk metrics. We define our processing cost and risk metrics as

c(est) and ∆c, denoting the cost as a function of the estimated selectivities, and the risk as

the extremal range of costs. We use these two terms in our objective, and define them as

follows:

cost =(1− ρ)c(est) + ρ∆c

c(est) =ccov(est) + cun(est) + cns(est)

ccov(est) =
∑

(e,Q)∈A

∑
(inst,S)∈inst(e)

σestup (e, inst)(ccv + σestcv (e, inst)
∑
q∈S

ccp)

cun(est) =
∑

(e,Q)∈B

σestup (e, union(e))(cun + cdup + σestdup ×
∑

(inst,S)∈inst(e)

ccv + σestcv (e, inst)
∑
q∈S

ccp)

cns(est) =
∑

(e,Q)∈C

σestup (e, op(e))ce

∆c =c(max)− c(min)

=ccov(max)− ccov(min) + cun(max)− cun(min) + cns(max)− cns(min)

where

σup(e, o) =
∑

m1∈in(b1)∧q(m1)∈q(b1)

. . .
∑

mk∈in(bk)∧q(mk)∈q(bk)∏
insti,a∈UA

σinsti,a
∏

(i,insti,b)∈UB

σdupi
σinsti,b

∏
j∈UC

σj

UA ={insti,a : i < e ∧ (i, Q) ∈ A ∧ (insti,a, Si,a) ∈ inst(i) ∧ insti,a ≺∗ o ∧ insti,a ≺∗ mmin}

UB ={(i, insti,b) : i < e ∧ (i, Q) ∈ B ∧ (insti,b, Si,b) ∈ inst(i) ∧ insti,b ≺∗ o}

UC ={j : j < e ∧ (j,Q) ∈ C ∧ j ≺∗ o ∧ j ≺∗ mmin}

≺∗=∪i∈{A,B,C} ≺i

≺ ((o,Q), (o′, Q′)) =

{
1 if o < o′∧((Q′ ⊆ Q ∧ o′ : {A, C}) ∨ (Q ⊆ Q′ ∧ o′ : B))

0 otherwise

In the above formalization, we define processing cost c(est) as a summation of three

terms representing the cost of query elements processed with a cover-sharing algorithm

71

(ccov), a union-sharing algorithm (cun), and finally elements that are not shared and ex-

ecute as normal (cns). Each of these three components range over the expressions and

consumer sets of query elements implemented with the associated algorithm, which are rep-

resented above as the sets A,B,C. Specifically A is the set of expressions and consumer

queries that are implemented with a cover-sharing algorithm, B the same for the union-

sharing algorithm, while C tracks the non-shared expressions. Throughout this section we

use the notation A (or B,C) to describe the set of expressions and consumer queries im-

plemented with cover-sharing, and A or (B, C) to state the type of algorithm used for a

specific expression and consumer query (i.e. i : A states an instance i is implemented in

cover-shared form). The shared implementations additionally allocate the consumer queries

amongst multiple instances, creating a second-level grouping of consumer queries that the

ccov and cun terms range over. The set of instances for an expression e is denoted by inst(e),

and consists of an instance element and assigned consumer query set pairs (inst, S).

Each of the three cost components ccov, cun, cns compute a processing cost as a product

of upstream selectivities and per-element costs. The per-element cost of a cover-shared im-

plementation includes the cost of the covering instance (ccv) and any compensation elements

(ccp), while a union-shared implementation includes the union and duplicate elimination el-

ements (cun, cdup) in addition to the covering and compensation elements. For non-shared

elements, the per-element cost is simply that of the original element.

The term σup(e, l) refers to the combined selectivity of all upstream elements from the

element l processing expression e. This indicates the fraction of the query’s inputs that a

specific element processes. We distinguish between the expression e and the element l since

there may be multiple elements processing the same expression, for example multiple shared

instances. The element l from which we compute upstream selectivities includes instances in

the case of cover-sharing (denoted as inst), the union operator for union-sharing, union(e),

and the non-shared operator op(e). The definition of σup is based on three sets UA, UB, UC
which refer to the set of upstream elements implemented in cover-shared, union-shared

and non-shared fashion respectively. The sets capture additional topological information to

represent the dataflow between element instances, through the relationships expressed by

the ≺∗ operator.

This operator defines a reachability relationship, where a ≺∗ b that states that an

element b is reachable (i.e. supports dataflow) from element a. We use the term ≺∗ to

denote the transitive closure of the operator ≺ that defines the relationship for neighboring

elements. The ≺ operator holds whenever the expression ordering relationship < holds (this

relationship is defined on the original query plans where there are no shared operators),

72

and the containment property on consumer sets shown in the definition of ≺ holds. This

containment property depends on the mechanism used for the element denoted by the second

operand, and requires the consumer set to be a subset of any upstream consumer set for

cover-shared and non-shared elements, and a superset in the case of union-shared elements.

The risk metric ∆c is defined as the range of possible costs, c(max)−c(min), associated

with a given plan that can arise due to inaccuracies present in selectivity estimation. In order

to compute this risk metric, we require upper and lower bounds on our selectivity estimates.

These bounds are used in computing upstream selectivities in place of average selectivities,

yielding cost bounds when combined when per-element costs. In the above formalization, we

omit explicitly defining these cost bounds for each term in the cost metric and only present

the definition for the upper bound on the cover-sharing algorithm (ccov(max)). Note that

these terms use the selectivity bounds σmax, σmin described in Section 3.3.4.

4.5 Detecting Optimization Opportunities

Given the above processing cost model, our algorithm executes as a monitoring algorithm,

where we periodically collect operator costs and input stream distributions over a time win-

dow, and subsequently evaluate a set of conditions that focus on specific parts of the cost

model to determine query adaptations. We present the monitored conditions with the view

of solving two problems, the first of which involves determining both the sharing algorithm

to use for each compatible expression and the global set of queries considered as consumers,

while the second finds a finer-grained grouping of queries for each expression and chosen

algorithm, and creates shared instances and covering expressions for each resulting query

group. We note that every adaptation described below must preserve the plan’s dataflow

integrity, specifically by ensuring a consumer set containment property holds between neigh-

boring elements following a move. This consumer set containment property states that for

every instance i of a shared operator o with consumer set Qo,i, any shared downstream

operator and its instances must have a consumer set that is a subset of Qo,i before and

after any adaptation. This property ensures that no shared instance of any query operator

is missing any inputs it would process in unshared fashion.

4.5.1 Shared Operator Algorithm and Expression Adaptation Conditions

The first set of monitoring conditions and adaptations we describe optimizes the algorithm

used for each compatible expression and query capable of sharing the expression. The

conditions for each expression and query pair depends upon the algorithm currently chosen

73

for the query’s upstream and downstream neighbors (from the compatible operator). Thus

we present our algorithm as a state machine, consisting of states defined on the shareable

operator and neighbors’ currently employed sharing mechanisms, and define transitions

between states as detecting when one mechanism becomes cheaper than the other.

Figure 4.3: State transition diagram for selecting sharing algorithm type.

Specifically our algorithm uses two separate state machines, or modes, with the active

mode depending on whether or not a shared mechanism is used for the upstream neighbor.

The states and transitions of the two modes are represented pictorially in Fig. 4.3. In this

diagram the triples representing the state label indicate the upstream operator’s sharing

state, the current operator’s sharing state, and the downstream operator’s sharing state.

Note these states includes a wildcard pattern ’?’ indicating the state matches any algorithm

type for the relevant neighbor, for example the state ({A,B},B,?) indicates that state applies

for an operator currently implemented with union-sharing, whose upstream neighbor may

74

either be cover-shared or union-shared, and whose downstream neighbor can be implemented

using any of the three algorithms. The critical aspects to note are that an operator can only

use cover-sharing when any of its upstream operators are also shared (or has no upstream

operators), and that the transitions monitored with an unshared upstream is simpler than

with a shared upstream.

The general form of the conditions tested prior to applying any sharing mechanism

transition shown in Fig. 4.3 is as follows. Consider a transition of the form x → y, for

a given expression and query q, where x : {A,B, C}, y : {A,B, C} − {type(x)}, and also

define X,Y, Z as the sets of queries implemented in the types corresponding to x, y and the

remaining type. Then the cost prior to, and following the transition can be defined as:

cond(x→ y) =

cost(X|Y, Z)− cost(X − {q}|Y ∪ {q}, Z)+

cost(Y |X,Z)− cost(Y ∪ {q}|X − {q}, Z)

cost(Z|X − {q}, Y ∪ {q})− cost(Z|X − {q}, Y ∪ {q})

Thus our condition is simply to determine whether or not the transition is advantageous,

that is whether or not it reduces our optimization objective. This involves checking cond(X →
Y) > 0. To evaluate the above condition, we can use a delta form based on expanding the

above terms with their definitions in the processing cost model. This delta form captures

local changes for each algorithm type assignment of x, y. We omit this delta form here for

readability purposes.

The cyclical transitions within a state (e.g. for the ({A,B}, A, !A), ({A,B}, A, A) and

({A,B}, B, ?) states in Fig. 4.3) indicate reordering transitions within the shared segment

of the query plan. In particular, we consider reordering the element to which the state

machine applies and its upstream neighbor. We return to these reordering conditions in

the next section. Furthermore, note that for simplicity we omit the instance transitions

described below in the next section. Instance transitions would add a cyclic arc at every

state shown, and would involve allocating the query associated with the state machine to a

different instance for executing the shared element.

The state machines shown describes the sharing mechanism used for a single query

element. Each shareable element and query pair in our system evaluates these transition

conditions to optimize the query element. Given that an element’s mode is dependent upon

the mechanism used for the upstream operator, whenever we apply a transition for a single

75

operator, we also update the active mode for any downstream neighbors. Furthermore, we

check for applicable transitions for each expression and query in topological order, thereby

ensuring that each state machine is in a stable active mode prior to applying transitions.

We argue that by performing per-expression-query adaptations, our algorithm allows for a

highly flexible configuration of multiple queries containing a sharing compatible expression.

For example we are able to execute a shared expression using both cover-sharing and union-

sharing mechanisms, with disjoint sets of queries using the two types of algorithms.

The algorithm described so far has the ability to adapt the sharing mechanism of an

element to use a different, existing, shared instance. In its current form, our algorithm is

unable to function from an initial state, where no shared instances execute and all elements

are unshared. To support bootstrapping shared instances, we use an additional condition

to monitor all unshared elements for a compatible expression, which when triggered tran-

sitions a set of unshared elements to execute through union-sharing, or cover-sharing if the

upstream element also executes in shared fashion. Note that we view this condition as a

completeness requirement, our optimizer should be able to handle any query plan as input.

We plan to consider a separate initialization algorithm as part of future work to accelerating

convergence, by determining a good initial plan to adapt.

4.5.2 Shared Instance Creation and Adaption Conditions

In the second level of sharing conditions, we define how we adapt instances of shared op-

erators, and their associated consumer sets. These conditions apply at the granularity of

instances and individual queries, and are instantiated once we have determined our initial

plan. We now describe three conditions that are based on a simplification of the objective

function to consider the contributions made by a single operator.

The first condition we describe considers the objective contribution of a single shared in-

stance j, yielding the equation below for operator i. In this section we describe the approach

for cover-shared instances. A similar method can be used for union-shared instances.

∑
q∈Q∧i∈q

σcvi,jc
cp
i,j + ccvi,j

This equation states that the (independent) cost of an instance is given by the product of

the covering operator’s selectivity (σi,j) and the cost of the compensation operator for each

member of the consumer set (ccpi,j), as well as the cost of the covering operator itself (ccvi,j).

The shared instance j lowers the objective value when compared to the non-shared case

76

when the following property holds:

∑
q∈Q∧i∈q

σcvi,jc
cp
i,j + ccvi,j <

∑
q∈Q∧i∈q

corigi

⇒ σcvi,j <

∑
q∈Q∧i∈q c

orig
i − ccvi,j∑

q∈Q∧i∈q c
cp
i,j

In this equation corigi refers to per-segment processing cost of the original non-shared

operator. The above equation yields a condition based on the selectivity of the covering

operator (σcvi,j), stating that it must be less than the term on the right-hand side for cover-

sharing to be advantageous in comparison to non-shared execution. We explain the right-

hand side as the difference between two terms: i) the ratio of the total original cost and

compensation operator cost, and ii) the ratio of the covering operator and compensation

operator costs. Note that this is relation to a given consumer set – if this condition does

not hold, there is no benefit in using a shared instance for any of the consumers allocated

to the instance. At this point we remove the instance from the system. We refer to this

condition as the lazy-instance condition since it determines when to remove instances lazily,

whenever they are no longer useful rather than when they are suboptimal.

Our second condition considers the contribution of a single consumer to a shared in-

stance’s objective value: σcvi,jc
cp
i,j+ccvi,j . A consumer benefits from shared processing provided

the following condition holds:

σcvi,jc
cp
i,j +

ccvi,j
|Qi,j |

< corigi ⇒ σcvi,j <
corigi − (ccvi,j/|Qi,j |)

ccpi,j

where Qi,j is the consumer set for the instance j of operator i. This condition states that

the covering operator’s selectivity must be less than the ratio to the cost benefit from using

a fraction of the covering operator instead of the original operator, and the compensation

operator cost. If this condition does not hold, we attempt to find another instance where

the operator can contribute positively. This requires estimating the selectivity change for

both the instance we are switching from, and the instance we consider switching to. If there

are no operators allocated to an instance following the switch, we remove that instance.

Furthermore if there are no instances resulting in lower system cost, we create a new sin-

gleton instance with the operator as its only constituent. We refer to this condition as the

lazy-consumer condition.

77

Unlike the lazy-instance and lazy-consumer conditions which attempt to ensure that

all instance-consumer allocations provide some reduction to the objective over non-shared

processing, our third condition focuses on aggressively minimizing the objective by ensuring

that certain consumers are continuously reallocated to the instances that best reduce the

objective. We refer to this condition as the eager-switch condition, and define its benefits

with the following equation:

∆obj = ∆insttarget + ∆instsource = (instnewtarget − instoldtarget)− (instoldsource − instnewsource)

Above, we state that applying an eager-switch condition changes the objective function

based on the cost changes of both the source instance and the target instance. The cost of

an instance is defined given the processing cost model in Section 4.4, and can be simplified

to one of ccov(est), cun(est) depending on the sharing algorithm being used. Since this

condition does not alter upstream operators, it can be rewritten in terms of the different

covering predicate selectivities and compensation predicate costs and risks. We omit the

derivation for readability purposes and simply present the condition as follows:

∆σ′cv1 c′cp1,sw(I ′S,1 +R′1)−∆σcv2 c
cp
2,sw(IS′,2 +R2) >

R2IS′,2 +R1IS,1 − (R′2IS′,2 +R′1I
′
S,1) + (R2c

cv
2 −R′1c′cv1)

where 1, 2 indicate the source and target instances respectively, S, S′ indicates the consumer

set before and after the switch for the instance associated with the term, Ik,j , I ′k,j the

instance cost for the consumer set k and instance j before and after the switch respectively,

and finally Rk, R′k the risk for instance k also before and after the switch. For example the

term I ′S,1 refers to the instance cost for the source instance before the switch, restricted

to the consumer set for the source instance after the switch (i.e. with the transitioning

consumer removed).

4.5.3 Reordering Conditions for Shared Operators

To the best of our knowledge, there has been limited work that investigates how to combine

adaptive reordering techniques with adaptive sharing techniques. The application of both

optimization techniques are not mutually compatible in their original forms, that is reorder-

ing cannot be applied regardless of the sharing configuration of the operator. The critical

aspect turns out to be the concept of consumer sets, and the consumer set containment

78

property we describe must remain invariant throughout adaptations. Consider an instance

j of operator i with consumer set Qi,j that is produces results for a downstream consumer

set Qi′,j′ where according to consumer set containment, we have Qi′,j′ ⊆ Qi,j . Reordering

instance j′ to be evaluated prior to j would violate the consumer set containment property,

unless we have a tighter property, where Qi′,j′ = Qi,j . This tighter property leads to our

concept of chained instances in shared queries that are capable of supporting reordering

because each element of the chain supports an identical consumer set.

We define A-chains and C-chains as sequences of elements that are implemented with a

cover-sharing mechanism, or are non-shared. A-chains may be tree-structured, that is an

instance with a given consumer set may feed multiple downstream instances that process

disjoint subsets of consumers. Note that tree-structured C-chains indicate that the query

developer has explicitly used a shared expression in the query plan. Reordering A-chains oc-

curs at the instance granularity, and must maintain the plan structure outside the reordered

elements. Thus any tree-structured A-chains must ensure the reachability relationship ≺∗

holds identically for any elements not involved in the reordering. This reachability preser-

vation also applies for C-chains but naturally applies to the non-shared query elements as

opposed to instances.

Our ordering conditions apply to sequential elements in either an A-chain or C-chain.

These conditions simply compare the covering instance or non-shared operator’s cost and

selectivity ratio, ensuring that following property holds:

ci
1− σi

>
cj

1− σj
where i is the upstream element in the chain and j the downstream. Also ci, cj refer to either

covering instance or non-shared processing cost, and σi, sigmaj to either covering instance

selectivity or non-shared selectivity depending on the type of chain under consideration. We

note that reordering can be useful for enlarging the set of beneficial sharing configurations,

by allowing compensation operations to be more costly. Finally, union-shared elements

cannot be trivially reordered due to the union performed and the subsequent arbitrary

consumer sets chosen by the covering instances. We consider the problem of reassigning

consumer sets upstream from union-shared elements outside the scope of this work, and

thus do not support their reordering.

79

4.6 Collecting Query Statistics

In addition to using a pure estimation-oriented approach to computing selectivities, Pulse is

capable of leveraging profiling and instrumentation techniques of actual executing queries,

for example in scenarios where the presence of data dependencies results in poor estimates,

and thus can improve selectivity estimates of any operations processing these attributes

downstream from the instrumentation point. Our query profiling mechanism focuses on the

issue of determining which internal streams to instrument for gathering attribute distribu-

tion statistics. Our strategy is to tie this decision in with the query optimization problem,

enabling us to balance the benefits attained from query optimization with the additional

overhead arising from instrumentation. At a high level, our solution focuses on finding and

instrumenting points within the query that are expensive, and difficult to model.

4.6.1 Cost model and collection mechanism

We capture the effects of gathering statistics in our cost model by considering a substitution

function φ, which replaces any estimated selectivities with measured selectivities:

80

φ(ccov(est), L) =
∑

(e,Q)∈A

∑
(inst,S)∈inst(e)

φσ(σestup (e, inst), L)× (ccv +
∑
q∈S

ccp)

φσ(σestup (e, o), L) =
∑

m1∈in(b1)∧q(m1)∈q(b1)

. . .
∑

mk∈in(bk)∧q(mk)∈q(bk)∏
insti,a∈UA

(1− li,a)σestinsti,a + li,aσinsti,a∏
(i,insti,b)∈UB

(1− li,b)σestdupi
σestinsti,b + li,bσdupi

σinsti,b

∏
i∈UC

(1− li)σesti + liσi

where li,a =

{
1 if ((i, a), σinsti,a) ∈ LA
0 otherwise

where li,b =

{
1 if ((i, b), σdupi

, σinsti,b) ∈ LB
0 otherwise

where li =

{
1 if (i, σi) ∈ LC
0 otherwise

and σi = measured selectivity for operator i.

To summarize the above changes to the cost model, we first describe the sets LA, LB, LC .

These represent the selectivities collected for those instances implemented in cover-shared,

union-shared and non-shared fashion respectively. For a cover-shared operator i, we have

the covering instance’s selectivity σinsti,a . For a union-shared operator i, we collect the

selectivity of the duplicate elimination operator σdupi
and the instance σinsti,b . Finally

for a non-shared operator i we simply collect that operator’s selectivity σi. Note that

we view these measured selectivities as averages collected over a time window. These

measured selectivities have limited use, namely that they do not aid in the derivation of

histograms downstream from the instrumentation point, and hence only impact downstream

path selectivities through the change at the collection point.

Next, we can define 0-1 decision variables li,a, li,b, li indicating if we collect selectivities

for a particular operator and instance. We define the set L as the set of these decision

variables. These decision variables are primarily used in the definition of path selectivities,

in the term φσ(σestup (e, o), L) above. In this term, we compute an upstream selectivity for

an instance o of the operator e as the products of individual path selectivities, summed

81

over the various paths arising due to the presence of union-sharing (given the union-shared

operators b1 . . . bk). Here our measured selectivities replace the estimated selectivities for

the instances or non-shared operators present in any path. We derive similar definitions of

cun, cns, c(max), c(min), σminup , σmaxup with similar substitutions of measured selectivities

but omit here for readability.

As we stated, L represents the set of measured selectivities. We can then incorporate

the function φ into a revised query optimization problem:

cost = min
L

(φ(c, L) + ccollect)ρφ(∆c, L)

where φ(∆c, L) = φ(c(max), L)− φ(c(min), L)

and ccollect = instrumentation cost

4.6.2 Adaptation conditions

We can derive the benefit of collecting a set of statistics L in comparison to not collecting

any statistics as:

∆cost = cρ∆c− (φ(c) + ccollect)ρφ(∆c)

= ρ(c∆c− φ(c)φ(∆c)− ccollectφ(∆c))

Due to the comparison to a query plan with no collected statistics, we refer to the above

benefit as the independent benefit. This independent comparison explicitly simplifies the

candidate instrumentation sets considered for collection, albeit at the expense of suboptimal

instrumentation.

Now, the above formulation represents the benefit of collecting statistics, but does not

indicate how to pick the set of operators L to instrument. One key issue here is that during

the selection of the set L, we do not actually have measured selectivities requiring us to

make assumptions on the impact of such measurements on the estimated selectivities. We

adopt a simple approach where we assume our estimated selectivities are unchanged after

gathering statistics, yielding φ̂(c) = c. This assumption allows us to simplify the goal of

gathering statistics to that of minimizing the risk involved in the chosen plan, and we can

now rewrite the independent benefit of instrumentation to our objective as:

82

∆ĉost = ρ(c∆c− φ̂(c)φ̂(∆c)− ccollectφ̂(∆c))

= ρ(c∆φ̂− ccollectφ̂(∆c)) where∆φ = ∆c− φ(∆c)

Clearly, we would like to maximize the above benefit, and observe that at a local opti-

mum we are unable to make further adaptations, represented as ∆ĉost < 0. This condition

allows us to derive the following property that any candidate for the set L should meet:

ρ
(
c∆φ̂− ccollectφ̂(∆c)

)
> 0⇒ ccollect

c
<

∆φ̂

φ̂(∆c)
The above property is based on comparing total query costs rather than at a sub-

query granularity that is amenable to continuous monitoring to drive adaptation. Assuming

constant collection costs, the left-hand side of the above relationship is a constant in the

presence of a fixed query plan. Note that we could ask the question what is the best query

plan that facilitates effective statistics collection, but we consider this issue beyond the

scope of this work.

Using the fact that we have derived a model of independent statistics collection where

the effects of statistics collection are compared to a query without any feedback, we can

derive a sub-query granularity condition by simply evaluating the right-hand term of the

above equation for various query elements (i.e. varying L), and comparing them to our

collection cost threshold. Computing the right-hand term on a per-element level still re-

quires computing selectivity products for the dataflow paths present in the query plan for

each element considered for statistics collection. We enable our conditions to reuse partial

selectivity products computed while varying L by memoizing these computations.

4.7 Condition Evaluation

To this point, we have described our motivation for designing and evaluating a set of mon-

itoring conditions on certain query properties, and applying a variety of localized query

adaptations following their satisfaction. These conditions may clearly affect each other,

since they alter the query structure and affect the metrics being monitored. To conclude

this section we describe an evaluation order that can handle these dependencies between

conditions by invalidating any dependent conditions prior to applying any query modifica-

tions.

We state that the dependency ordering for a single operator is as follows, and then

explain how we obtain this:

83

sharing algorithm ≺ lazy-instance ≺ lazy-consumer ≺ eager-switch ≺ feedback

Above the ≺ relationship states that the left-hand condition should be evaluated prior the

right-hand condition due to dependencies in the cost components used in the right-hand

condition. Note that any triggered conditions result in removal of any dependent conditions

for that optimization period. This is a simplifying, conservative evaluation, since in certain

cases these dependent conditions could be updated, but note that the evaluation of these

dependent conditions may also require significant recomputation of selectivity estimates.

Our sharing algorithm condition has all other condition types for the same operator and

instance as its dependents. The structural changes caused by switching types, such as adding

or removing plan elements for union-sharing, directly affects the localized cost model acting

as the foundation for the other conditions. The lazy-instance conditions determine when to

remove an instance, causing an lazy-consumer or eager-switch conditions for the consumer

set associated with that instance to become invalid. Finally all of the aforementioned

conditions that result in structural changes in the global query plan may invalidate any

feedback selection conditions for removed elements.

Finally recall that for a given operator or shared instance, the state machine driving our

sharing algorithm conditions matched against the upstream sharing mode, the monitored

sharing mode, and the downstream sharing mode. Thus changes in a given operator’s shar-

ing mode results in resetting the sharing algorithm conditions for these neighbors. However

we only update the neighbors’ sharing algorithm conditions and not any of their depen-

dents, since we do not actually change the state of the neighbors. Thus we can summarize

our condition evaluation order in two stages: i) a topological traversal of the multi-query

plan, and at each operator traversed ii) an evaluation of operator-specific conditions based

on the above condition dependency order.

4.8 Experimental Evaluation

We have also implemented our optimizer in Pulse, using Borealis as the underlying stream

processing engine. Our evaluation was performed on the same system setup as the selectivity

estimator, namely on a Intel Core 2 Duo T7700 2.4 GHz processor, 4GB RAM, running a

Linux version 2.6.24 kernel, with the summer 2008 release of Borealis. We now examine

the benefits of our optimization mechanism, comparing the cover sharing mechanism to

unshared query execution, when used to process queries of varying selectivities. The queries

84

considered here are a set of filters applying a threshold to stock prices in the NYSE dataset,

resulting in covering and compensation operators that are also filters. We performed these

experiments in batch fashion, that is the client enqueues all segments to be processed into

the system and we record the duration of execution until the operator’s queues have been

emptied.

Figure 4.4 displays the total processing time for the NYSE dataset for a single stock

symbol against the number of operators (identical to the number of queries) being processed.

These operators have thresholds chosen randomly from a uniform distribution whose upper

bound is indicated on each plot. These upper bounds correspond to thresholds yielding

query selectivities in the range 0.1 to 1. Given our particular query workload, these upper

bounds approximately correspond to the threshold used by the covering predicate, and thus

the selectivity of the covering predicate. The lower bound is set to the minimal value such

that all segments in the dataset are pruned by the bound. Figures 4.4i)-v), which correspond

to upper bound selectivities of 0.1-0.5 all exhibit cases where a cover-shared execution

outperforms the unshared equivalent. Beyond such selectivities, as seen in Figures 4.4vi)-

x), cover-sharing does not turn out to be advantageous to unshared execution, primarily due

to the additional cost of the covering operator, and its insufficient selectivity to overcome

this additional cost in terms of executing the compensation operators. We also observe

that at lower upper bound selectivities, the processing cost for cover-sharing tends to have

a much shallower gradient with increasing numbers of operators, with Figure 4.4i) having

an almost constant processing cost. This arises due to the fact that the covering operator

dominates the total processing cost, and the compensation operators, which is the only part

of the shared query that grows with the number of consumers, consumes a small fraction

of processing resources. We briefly remark on the volatility seen in these experiments.

In addition to the unpredictability arising from executing in an actual stream-processing

prototype, there are additional sources of noise arising from our instrumentation technique.

In particular, we remark that determining empty queues inside the engine requires gathering

statistics at the client, and in its current form in Borealis, this statistics collection method

proves to incur non-trivial overhead (approximately 200ms per probe). This limits the

rate at which we can poll for empty queues, which when combined with our desire not to

overburden the engine with continual polling, results in a precision of approximately 250ms

in determining the time instant at which queues are empty.

Figure 4.5 is a pivoted plot of the previous figure, whereby we compare the difference

in processing costs between the unshared and cover-shared execution mechanisms against

the upper bound selectivity of the query workload. Each line in the figure represents the

85

i) ii) iii)

iv) v) vi)

vii) viii) ix)

x)

Figure 4.4: Comparison of cover-shared and unshared execution at a variety of upper bounds
for query selectivities.

86

Figure 4.5: Processing cost differences between unshared and cover-shared execution for
query workloads with a variety of covering selectivities.

87

Selectivity configuration Upstream sharing mode Selectivity configuration
for operator B for operator A

High Spread Low
High Cover 34.27 23.82 1.32

Union 35.41 24.67 15.07
Unshared 30.73 19.26 13.87

Spread Cover 34.72 29.2 1.57
Union 35.64 30.94 14.46
Unshared 29.24 24.86 13.73

Low Cover 3.05 3.14 1.45
Union 20.14 19.08 14.52
Unshared 28.7 21.42 14.37

Figure 4.6: Processing cost comparison for union-sharing and other mechanisms in a 2-
operator chain, with varying selectivity configurations at each operator. Note here high
selectivity configuration implies selectivities close to 0.0, spread selectivities indicates ran-
domly chosen selectivities in [0.0, 1.0], and low refers to selectivities near a value of 1.0.
Additionally the upstream operator, A, is cover-shared, and for this operator, the covering
selectivity is roughly equivalent for high and spread selectivity configurations.

processing cost for a specific number of operators. The aim of this plot is to illustrate

sensitivity to the upper bound selectivity, and thus covering selectivity. There are several

trends to note here. First that the crossover selectivity, that is the selectivity beyond which

unshared execution is cheaper than cover-shared execution, is approximately 0.6 for any

number of operators. Based on the cover-shared cost model, this crossover selectivity should

be dependent on the number of consumers using a shared operator, where larger numbers

of shared operators should incur a higher crossover selectivity. In practice this crossover

selectivity turns out to be lower as seen in our experiments due to the increasing system

overheads of executing more complex queries, including scheduling and additional queuing

arising from a longer pipeline of operators. Next, the range of processing cost differences

over the selectivities show here is tends to be greater for a large number of consumers, than

for fewer consumers. This arises due to the cumulative benefits and costs of dropping inputs

to or processing inputs for increasing numbers of compensation operators.

Finally, Figure 4.6 displays a comparison of the processing costs for the union-sharing

technique to both unshared and cover-shared execution of 10 shared queries, where each

query is simply two filter operators connected as a chain. In this query, the upstream

operator is shared in cover-sharing fashion, while the downstream operator is implemented

using the technique stated in the table. Furthermore, we vary the predicates present in

88

both operators according to three simple configurations, first a high selectivity configuration

where predicates in all 10 queries are close to 1.0, spread selectivity configuration where

predicates have selectivities chosen uniformly randomly from [0.0, 1.0], and finally low

selectivity where all predicates have selectivity close to 0.0. The results in Figure 4.6 show

that in any situation where either operator A or B (i.e. the first or second shareable operator

in the chain respectively) have a low selectivity configuration, cover-sharing dominates the

other techniques, due to the fact that the covering predicate also has low selectivity.

Note that whenever both of the operators have either a high or spread selectivity con-

figuration, unshared execution tends to perform better than both cover- and union-sharing.

For cover-sharing, this is due to the corresponding high selectivity of the covering predicate

(i.e. the covering predicate’s selectivity will also be close to 1.0 in the case of a spread

configuration), indicating that the covering operator is unable to eliminate common unnec-

essary inputs for the compensation operators for B. However in the case of union-sharing,

this result arises from the relatively high cost of performing the union and duplicate elimi-

nation operations with respect to the entire query processing cost. We expect that as the

cost of the downstream query increases relative to these union and duplicate elimination

operations, union-sharing will outperform cover-sharing. Finally in the case where operator

B has low selectivity and where operator A has high or spread selectivity, we see that while

cover-sharing is the dominant technique, union-sharing significantly outperforms unshared

execution, that is it offers a processing technique that need not require wholescale changes

to the query plan, yet can still provide lower processing cost than either extreme of plan.

Chapter 5

Related Work

This thesis has been inspired by many pieces of work in the database community, ranging

from the stream processing engines as the context of our own query processor, moving-

object databases and constraint databases which have both used polynomial representations

of data, and selectivity estimation and multi-query optimization techniques for traditional

databases. Of particular note is the recent work on model-based databases, where we

have contributed query processing techniques over attributes modeled as polynomials. We

also discuss select mathematical software and computer algebra systems which provide the

mathematical expressiveness we would like to realize.

5.1 Data Stream Management Systems

There has been much recent interest in performing push-based query processing over a

sequence of continuously arriving input data. Stream processing engines have emerged

as a database architecture to support continuous queries over these data streams with

the key differences from traditional architectures including straight-through processing and

temporal constructs such as windows and punctuations. Much of the initial work focused

on architectural challenges in dealing with high-volume inputs, for example load shedding

techniques, and load management. We now briefly describe some of the major efforts in this

field primarily to provide background to the platform on which we’ve built our own query

processor and to reaffirm the advantages of model-based processing for stream applications.

Aurora, Borealis. The Aurora and Borealis [2, 1] projects are two stream processing

engines built by Brandeis, Brown and MIT to demonstrate the functionality and benefits of

89

90

stream processing engines in a single server and distributed configurations respectively. Au-

rora is a general purpose stream processor that implemented queries using a dataflow model

and provided several relational-style operators for users to express their queries. These op-

erators include the filters, maps, joins and aggregates we have considered for relational

processing in Pulse. The Borealis stream processor extended Aurora with key distributed

execution primitives, for example the ability to migrate operators across multiple hosts and

a general set of dynamic query modification operations. In turn these facilitated novel dis-

tributed algorithms for load management [94, 10], distributed load shedding [46, 9] and high

availability in the face of node and network failures. Pulse is built on top of the Borealis

stream processing engine as a custom dataflow graph and as such, is able to transparently

take advantage of the distributed execution supported by Borealis, including for example

distributing the solver load across multiple machines. Furthermore Pulse uses models to

significantly improve query processing performance by using a compact approximate data

representation, which can be considered an alternative technique to reducing overheads by

shedding load and providing a subset semantics in the results produced. The key point

here is that a numerically approximate technique provides a different result model than the

subset semantics, which may be more suitable for the continuous numerical attributes in

the domains that we target.

Stanford Data Stream Manager (STREAM). The STREAM [65] project from the

Stanford Database Group designed a stream processing engine that used a text-based query

language, known as Continuous Query Language (CQL), which included stream-oriented

extensions such as windows to SQL. In addition STREAM included a relational-style query

processor, an adaptive query optimizer with techniques such as adaptive reordering, and ap-

proximate query processing with sampling and summaries. Another key contribution of the

STREAM project included memory management techniques through a variety of scheduling

policies, shared processing and exploiting order constraints present in data streams.

As a predecessor to the work on the STREAM project, the TRAPP project [70] investi-

gated filtering techniques in a streaming environment. Stream filtering mechanisms [69, 48]

apply delta processing techniques to perform stateful query processing by establishing a

bound (or predictive model) between a data source and a data processor. This allows the

source to avoid sending updates, providing these updates adhere to the predictive model.

These techniques are similar to the functionality provided by our accuracy splitter com-

ponent, but do not consider processing issues for whole queries or computing with data

models.

91

TelegraphCQ. The TelegraphCQ stream processing engine [18] from the UC Berkeley

Database Group presented the design of a stream processing engine on top of the Post-

gres RDBMS, which, in contrast to the from-scratch designs of the Aurora and STREAM

projects, heavily utilized existing components of a database system to implement continuous

query processing. Some of the novel features of TelegraphCQ included its adaptive query

processing capabilities, for example with the use of Eddies [6] that dynamically route tuples

to query plan operators, thus allowing a per-tuple operator ordering. Also the project in-

vestigated query processing strategies for hybrid queries combining streamed and archived

data [19], for example using approximations of archived data to limited the cost of disk-

based access while performing continuous query processing [20].

These three stream processing engines provide just a sample of the recent work on the

topic, and other notable systems include NiagaraCQ [24], Gigascope [27], StatStream [98],

Nile [44], System S [37]. Additionally complex event processing systems have extended the

relational approach to provide support for pattern oriented queries, including SASE+ [93],

and Cayuga [30] amongst several other systems.

5.2 Databases for Sensor Data Processing

Given the wide range of potential applications of sensor networks, there has been much

recent interest in understanding how to best provide data management tools to query sen-

sor data. In particular, we focus on the topic of model-based databases in this section.

This topic is emerging as an umbrella for the many pieces of related works which look at

mathematical representations of sensor data. We limit ourselves to consider those works

relating to using piecewise polynomials as models, and briefly describe works using time

series as well. The time series literature is significantly more extensive in terms of consid-

ering queries outside the relational algebra, and additionally there have been several works

on other types of mathematical models that we omit here. To the best of our knowledge,

Pulse is the first framework to process continuous queries directly on piecewise polynomials

with simultaneous equation systems.

5.2.1 Model-Based Query Processing

Deshpande and Madden [32] present the MauveDB system which is capable of using user-

defined interpolation and regression functions to provide regular gridded access to the raw

data as a materialized view in the database system. The authors advocate the use of

standard query processing techniques on top of this gridded view, and present efficient

92

techniques to maintain this view upon changes to the underlying interpolation functions.

In contrast, rather than maintaining a gridded view using our polynomials and then ap-

plying standard relational operators to this view, we attempt to maintain a polynomial

representation throughout the query processing pipeline, treating polynomials as first-class

entities.

5.2.2 Querying Regression Functions

Neugebauer [66], and Lin and Risch [59] present interpolation techniques for base relations

in relational databases. Neugebauer presents techniques for optimizing embedded interpo-

lation functions that are essentially black-box interpolation functions in the query plan.

Following the construction of an interpolated relation via these embedded functions, query

processing proceeds using standard processing techniques. This is similar in principle to the

MauveDB approach described above. In contrast Pulse proposes an alternative approach

to query processing that can delay the interpolation later in the plan, providing significant

efficiency gains. Lin and Risch describe a novel selection operator that is assigned the re-

sponsibility of performing the interpolation, as well as an indexing technique over segments

to support such an operator. Their work does not discuss issues of delaying polynomial

evaluation with respect to other operators as in Pulse, and we consider the issue of in-

dexing orthogonal to the work presented here. There are a variety of indexing techniques

that Pulse could leverage, but we also remark that indexing may be less beneficial than in

traditional database scenarios due to the stream context we consider, and the typical high

index update costs.

More recently FunctionDB [92] investigated the use of multivariate polynomials to rep-

resent schema attributes, and presented both an equation solving approach and an ap-

proximation algorithm based on adapting a rasterization algorithm to effectively perform

hypercube space-filling of constraint solution regions. FunctionDB is the closest work to

our own, and supports a more general polynomial datatype than that presented in Pulse.

However it does not address the question of handling user-specified errors and leveraging

these throughout the query plan for trading off query accuracy and performance.

5.2.3 Model-Driven Query Processing in Probabilistic Databases

The BBQ system [31] uses multivariate Gaussians to represent a joint probability distribu-

tion over several attributes and supports a variety of probabilistic queries on such attributes.

The queries considered include range queries, point queries, and average aggregate queries.

93

Each of these query types either use a confidence interval and determines attribute values

corresponding to the interval, or yields a probability value corresponding to the desired

attribute values.

The issue of handling uncertain or probabilistic data can be considered orthogonal to

our work, indeed there have been several pieces of recent work looking to design a data and

query model for uncertain and probabilistic databases [28, 5, 11]. It is clear that models can

play an important role in this context given the abundance of statistical and probabilistic

techniques of representing data which use well-defined mathematical forms of probability

distributions such as Gaussian, Poisson, exponential and Levy distributions amongst many

others.

5.2.4 Querying Time-Series Models

Time series databases primarily focus on basic operations on a time-series datatype, and

consider datatype-specific queries such as similarity search and subsequence matching [35],

in addition to mining and analysis related queries [71, 83]. Time-series modeling techniques

include various segmentation algorithms used to capture time series as piecewise linear

models [82, 53]. Indeed, these approaches can be used internally by Pulse to construct

piecewise polynomials, given a standard data stream consisting of discrete tuples. However,

the query functionality typically considered in these mining and analysis works represents

a disjoint set of functionality from relational algebra and does not address the issue of how

to leverage temporal continuity in high-volume relational data stream processing.

5.3 Moving-object Databases

Moving object databases frequently leverage continuous-time models in the form of object

trajectories during spatio-temporal query processing. Here, query types commonly include

range search, range aggregation, spatial join [61] and nearest neighbor queries [96], and are

often implemented through a specialized index structure for each query type. A survey of

these indexes and access methods may be found in [64]. Tao et. al [85] exploit predictive

functionality to trade off result accuracy for communication cost for range queries. In a

stream processing context, the PLACE project [63] studies multi-query optimizations via

sharing, and the role of uncertainty in spatio-temporal queries.

94

5.3.1 Moving-object Indexes

There are several works addressing the challenge of designing appropriate indexing tech-

niques for trajectory data. The STRIPES index [73] maintains trajectories in the dual

space, by using a multidimensional quadtree defined on this dual space. Furthermore, to

handle the time dimension, the authors require that the objects issue periodic updates

which in turn is used to define the lifetime of the index structure. Thus STRIPES main-

tains a small number of indexes based on which objects have recently issued updates. The

PA-Tree [68] considers historical query processing of trajectory segments. This index uses

polynomials to approximate multiple segments, while tracking the maximum error in the

approximation. The authors then build the PA-Tree as a two-tiered parameter (i.e. dual)

space index over the coefficients of the polynomial approximations, with first tier providing

a low-dimensional approximation that can still be effectively indexed with R-trees. There

are numerous other works on trajectory indexing such as the MVR-Tree, TPR*-Tree [87],

SETI [17], etc. whose features are compared in the two works mentioned.

5.4 Constraint Databases

Constraint databases have provided inspiration for representing high-volume data streams

in a compact way, and for our formulation of continuous queries as linear systems. The con-

straint database model and query language is introduced in [52]. The related literature has

considered semi-algebraic constraints, demonstrating that such constraints are not closed

under certain aggregation operators. By limiting our polynomials to those with positive

integer powers, we ensure that we handle such aggregates in a closed manner.

5.4.1 Dedale

The DEDALE [41] project describes the implementation of a constraint database system

that operates on infinite sets of tuples, simplifying tuples via normalization before processing

via a constraint engine. DEDALE has also been applied to the problem of processing

queries over interpolated data [42]. However, constraint databases have enjoyed limited

popularity and use in today’s database systems. We believe the reasons for this include

the lack of extensive optimization techniques and cost models to aid in performing under-

the-hood query optimization. In comparison to Pulse, constraint databases do not address

stream applications and their high volumes of updates. Constraint databases were primarily

considered for use in spatial applications whereas we are targeting finance, science and

95

engineering applications.

5.4.2 Optimization queries

While not strictly falling under the topic of constraint databases, we also briefly describe re-

lated work by Gibas et. al. [39] on optimization queries in the context of relational databases.

In this work, the authors consider queries as an objective function and constraints placed on

attributes present in a relational database, that is the database contains the set of possible

solutions to the optimization problem. One class of objective functions considered is that

of a polynomial objective. The authors describe a query processing algorithm that intel-

ligently traverses an index based on the given query, and analyze the I/O performance of

their algorithm. In Pulse the constraints themselves are polynomials, and our work focuses

on the throughput of the system rather than I/O characteristics. Additionally our query

processing mechanism is based on equation systems rather than pruning a search space

through the use of solution bounds present in internal nodes in index structures.

5.5 Approximate Query Processing

The related literature on approximate query processing techniques is pertinent to the con-

text of our work given our view that piecewise polynomials provide an approximation to

the input data stream, and our desire to manage the propagation of errors during query

processing to uphold user-specified precision bounds. The literature on approximate query

processing is extensive, and we focus on more recent work addressing approximation for

stream processing.

5.5.1 Stream Filtering

Stream filtering is used to describe a delta processing technique, typically executing in

a distributed fashion, whereby a server maintains a set of objects, each according to a

user-specified precision bound. Data sources selectively send updates to these objects to

ensure the precision bound is met, while leveraging the ability to only send a small portion

of the full set of updates for performance gains, including communication and processing

overheads.

Olston and Widom present TRAPP [70] which investigates stream filtering for aggrega-

tion queries over a set of data objects, presenting an optimal algorithm to choose the update

tuples for min and max aggregates without selection, and approximation algorithms sums

96

and aggregates with selections. The work also discusses some of the challenges involved

with maintaining join-aggregate queries. Olston, Jiang and Widom [69] further investigate

stream filtering addressing the question of how to handle multiple aggregate queries placed

over different, but overlapping, sets of objects. They demonstrate the inefficiency of a sim-

ple uniform allocation strategy, presenting an algorithm that selects update rates for each

data source based on an optimization problem that can be represented and solved using

system of linear equations.

Jain et. al. [48] present a stream filtering algorithm that uses Kalman filters in a predic-

tive approach to stream filtering. Here both the database server and data sources maintain

a Kalman filter that is capable of providing predictions to a query processor to produce

results for the user. The Kalman filter at the data source mirrors that at the server, so

that it may reliably determine the effects of sending updates to the server, in terms of the

accuracy of the predictions generated. These updates are then communicated whenever

prediction accuracy drops below a user-specified precision bound. Unlike Pulse, this work

applies standard query processing techniques following the generation of predictions from

the Kalman filter, and does not consider how the relational algebra can be applied directly

to the mathematical representation of Kalman filters. Cheng et. al. [25] investigate stream

filtering in the context of entity-based queries (as opposed to numerical value-based queries

which are the norm in the literature), considering non-value based errors such as rank-based

errors and metrics defined in terms the fraction of false positive and negative query results.

In summary their work on rank-based errors relies on maintaining a buffer of entities that

exceeds the desired limit, which can be used to yield a ranked result set with error bounded

by the buffer size. Updates can then be communicated to ensure the buffer contains the

appropriate entities. Pulse is unable to support these types of queries and focuses primarily

on continuous numerical attributes through its choice of polynomials as a model. Entity-

based attributes require alternative models focusing on categorical data, such as classifiers

including SVMs, decision trees or neural networks. Shah and Ramamithram [81] present

a stream filtering technique assuming a query model of polynomial queries. Polynomial

queries compute an arithmetic expression over a set of data items (variables) using a poly-

nomial function. The authors argue that stream filtering systems should be concerned with

both the number of updates communicated and the number of bound computations. They

present an algorithm that uses a secondary (larger) bound at data sources to determine

when a primary bound is valid at the server. In certain specialized cases, Pulse would be

able to leverage this technique, however its goal is one of generality and Pulse is capable

of handling relational queries rather than those based on specific arithmetic structure. In

97

essence Pulse’s queries are sequences of polynomial queries, with constraints, and each stage

of the query processing would be able to leverage techniques presented here.

5.5.2 Approximation in Stream Processing Engines

Investigating approximation techniques in stream processing engines has been a popular

topic due to the high volumes of data that must be processed in stream applications, leading

to heavily overloaded systems where a natural approach is to consider shedding load, and

approximating query results.

The problem of load shedding in data stream processing, in simple terms, refers to

the question of how to selectively eliminate tuples from the input workload given that

this workload causes overload in the system. Tatbul et. al. [90] investigate random and

semantic approaches to this problem in the Aurora stream processing engine. This work

is further extended to handle nested aggregations [91] by applying load shedding to whole

windows rather than individual tuples, and also to the distributed case [89], to achieve

both processing and network overhead reductions, similar to stream filtering techniques

described above. Other examples of load shedding include the work by Babcock et. al. [7]

in the context of the Stanford STREAM project, and Reiss and Hellerstein [76] in the

TelegraphCQ project.

Das et. al. [29] present a study of error metrics for sliding window join algorithms, acting

as proponents for an archive metric which indicates the quality of a join result in terms of

the amount of work required to finish an incomplete join (and thus has to be archived

for processing later). This leads to the use of a MAX-subset metric which attempts to

defer processing for tuples so as to ensure the join result contains as many result tuples as

possible. The authors present several heuristics to obtain a MAX-subset result, as well as

discussing the hardness of the problem.

As an example of another popular subtopic in approximate stream processing, Dobra et.

al. [33] describe the use of pseudo-random sketch summaries of a data stream for processing

aggregate queries. Sketches are essentially a compressed form of a model, and these works

describe how aggregates can be computed directly from this model. More recent work

has expanded the use of sketching techniques to a variety of other query types including

join-aggregate queries [78], as well as for use in distributed settings [26]. Typically these

works consider sum, count and average aggregates, and the authors derive the error bounds

in their approximation through an analysis of the specifics of their sketching technique.

Despite the improved accuracy of approximation with this limited set of queries, Pulse’s

98

goal is that of generality, hence its choice of using polynomials which can be used in min

and max aggregates, as well as predicates. One interesting topic of future research would

be creating a hybrid query processor that is capable of leveraging multiple kinds of models,

for example these sketches to handle the relevant aggregation portion of the query.

5.6 Selectivity Estimation

There are many related works on selectivity estimation techniques, and we now present a

brief overview of those that inspired our own approaches. Earlier works on selectivity esti-

mation assumed independence between a relation’s attributes. Recently these approaches

have been found to provide underestimates to actual selectivities in the presence of correla-

tions and dependencies between the attributes. In the second subsection we describe works

targeted at addressing this problem.

5.6.1 Selectivity Estimation for Intermediate Result Cardinalities

Poosala et. al [75] present a variety of histogram techniques for estimating selectivities,

comparing the various histogram algorithms in terms of several metrics including storage

costs, and construction and maintenance costs. The takeaways from this work include

the advantageous use of sampling techniques during histogram construction, and the argu-

ment for the use of the MaxDiff histogram as the standard. Matias, Vitter and Wang [62]

present wavelet-based histograms for use in selectivity estimation. The authors apply a

wavelet decomposition to the cumulative distribution of the dataset, and build and main-

tain histograms over a subset of wavelet coefficients. These histograms can then be used

to efficiently reconstruct the cumulative distribution for both selectivity and approximate

query processing purposes. Bruno and Chaudhuri [14] present a technique for estimating

the selectivities of intermediate expressions based on using SITs (statistics on intermediate

tables) for subexpressions, and present an algorithm to select the subexpressions on which

they capture statistics. The algorithm presented uses a greedy heuristic comparing the rela-

tive difference between upper and lower bounds on selectivities for two successive operators

in a query plan.

5.6.2 Sampling-Based Selectivity Estimation

Much of the work in sampling-based estimation lies at the intersection of statistics and

databases. The literature in the statistics community is far more extensive on sampling

99

techniques, estimators and their mathematical properties, and the work in the database

community often leverages this literature at their intersection. We briefly outline several

earlier works on applying simple statistical techniques for estimation, before addressing the

question of how to actually perform sampling for estimation purposes.

Lipton et. al. [60] present a sampling technique for estimating cardinalities and selec-

tivities for selections and joins in relational databases. This work represents one of the

classical attempts at using sampling for estimation and contributed the idea that sampling

input relations and processing queries over samples can yield useful cardinality estimates.

Haas et. al. [43] present sampling-based estimators for the number of distinct values of

an attribute in a relation, which can be useful in query optimization for determining both

selection and join orderings. The estimator they present explicitly takes account of degree

of skew present in the distribution to reduce the variance in estimates.

However there are issues with basic approaches of processing queries on uniform-random

sampling on input relations for the case of joins and aggregations over selections, as shown by

Chaudhuri et. al. [23, 21]. To this end, a variety of of specialized query processing techniques

have been developed to support estimation through processing on samples [22, 58, 50, 95].

Pulse adopts the classical approach of histograms, investigating the use of sampling during

histogram construction alone. While the idea of sampling is clearly applicable to Pulse, the

issue lies in understanding how these specialized sampling techniques could be adapted to

work with polynomials, and incorporating the structure of the polynomials (through their

coefficients) into sampling techniques.

5.6.3 Handling Correlations and Functional Dependencies

Poosala and Ioannidis [74] compare the use of a multidimensional histogram and the singu-

lar value decomposition technique to explicitly approximate joint distributions that avoids

requiring independence assumptions. Briefly, their conclusions state the use of multidimen-

sional MaxDiff histograms outperform SVD techniques in terms of accuracy. In a follow-up

paper, Bruno and Chaudhuri [15] investigate the use of all available SITs to minimize

the number of independence assumptions made when evaluating conditional selectivities.

Getoor, Taskar and Koller [38] looked at the use of graphical models in selectivity estima-

tion, where the graphical models are able to both detect dependencies in the dataset and

represent the joint distribution of the attributes involved in a factorized manner accord-

ing to the structure of the graphical model. Ilyas et. al. [47] present the CORDS system

that is a data-driven method for detecting correlations between a relation’s attributes. The

100

technique presented is based on sampling attribute values and subsequently applying a

chi-squared analysis to the sample. CORDS additionally analyzes the number of distinct

values in a column to detect soft functional dependencies. At a high-level the goal here

is to recommend correlated or functionally dependent column groups on which the system

should maintain joint distribution statistics to reduce errors during selectivity estimation.

5.7 Multi-Query Optimization

Multi-query optimization has been applied to both the ad-hoc query processing found in

traditional databases, and to stream processing environments. Note that while these tech-

niques do not explicitly consider polynomial processing, our own technique is independent

of the underlying query processor thus allowing comparison to the existing work.

5.7.1 Multi-Plan Optimization

Multi-query optimization is a well-studied topic in the context of traditional relational

databases [72, 79], where many of these techniques involve analysis of plans for those queries

concurrently posed to the system. Roy et. al. [77] present a set of multi-query optimization

heuristics on the AND-OR DAG representation of a set of queries based on both the basic

Volcano [40] algorithm for MQO, as well as their own greedy heuristic. The greedy heuristic

selects an operator compatible for sharing one at a time, specifically the operator which

maximally reduces the total cost of all plans. The authors then present several optimizations

to further reduce the set of operators considered greedily based on several structural and

cost properties of the AND-OR graph and the cost model. Zhou et. al. [97] present a

solution to the MQO problem based on computing a good set of candidate subexpressions

to consider using during the optimization phase of query compilation. Their contributions

include both developing heuristics to efficiently determine this advantageous set of common

subexpressions, as well as efficiently pruning this set during query optimization. Their

technique requires no modification to existing query optimizers since they advocate simply

extending the candidate plan set with the materialized results of the common subexpression.

Our approach to multi-query optimization differs from these by focusing on adaptivity in

its design, and by integrating its sharing mechanism with other basic plan optimizations

such as reordering operators. As such we do not perform classical dynamic programming

on query plans, nor does our heuristic operate at the whole plan level. Rather, our design

applies a much finer-grained control, and consequently less drastic transitions of the query

plan during optimization phases, but is capable of optimizing more frequently.

101

5.7.2 Sharing in Stream Processing Engines

Due to the recent emergence of stream processing engines, multi-query optimization in the

stream context has not been investigated to the same depth as with classical databases.

The Aurora stream processing engine [2] provides support for expressing queries that are

directed acyclic graphs, where the end user is expected to provide the shared form of the

query themselves as common subexpressions. Krishnamurthy, Wu and Franklin [56] present

an adaptive sharing algorithm focusing on exploiting sharing opportunities between differ-

ing window specifications and for equivalent aggregates over different data partitions. The

second technique for sharing work amongst equivalent aggregates forms the basis for our

union-sharing technique which explicitly eliminates duplicates adaptively in the middle of

the query network, without requiring any upstream sharing. In our work, we need not

explicitly share work across different window specifications – this is one of the advantages

of maintaining a continuous state model, where we intrinsically gain the benefits of shared

windows given our polynomial representation. Furthermore our multi-query sharing tech-

nique novelly combines both cover-sharing and union-sharing using a set of simple heuristics

for both determining which type of sharing to use, and how to allocate consumers to shared

instances. Finally the key details of each algorithm are novel to our polynomial datatypes,

such as the duplicate elimination algorithm and computation of a covering expression.

5.7.3 Staged Databases

Staged databases [45] represent a philosophically different approach to multi-query opti-

mization, in that rather than applying a purely static plan-based approach, the authors

design a highly adaptive run-time approach to detecting sharing opportunities based on

operator micro-engines. This approach exploits “natural” sharing opportunities following

the generation of a query plan, rather than explicitly searching the space of possible plans

for shareable operators during query compile time. Pulsedoes not consider using such an

adaptive MQO approach. Note that while such techniques avoid potentially expensive op-

timizations during query compile time, in the case of stream processing engines it may be

advantageous to attempt more aggressive plan-based optimization give the relatively static

nature of continuous queries. Furthermore plan-based MQO approaches can apply transpar-

ently of the underlying execution environment, for example on shared-nothing distributed

stream processing engines.

102

5.8 Mathematical Software and Computer Algebra Systems

We now describe several related software systems from the symbolic and numerical math-

ematical computation community. In general these systems support a far wider range of

mathematical operations and in particular their symbolic systems are capable of applying

a greater range of equivalence and rewrite rules. Our position is that we do not wish to

reinvent the wheel when it comes to mathematical software, but clearly we would like to

leverage such systems while implementing queries that are both computationally intensive

and also access high-rate stream datasets. We describe two categories of software, symbolics

software and general purpose numerics software.

5.8.1 Mathematica and Maxima

We start by discussing the symbolic solving capabilities of these two mathematical software

systems. Mathematica [109] is capable of solving a large number of different ODE types with

its DSolve function, including first-order ODEs, linear second-order ODES, ODE systems

and generally higher-order linear ODEs. Additionally DSolve can handle a small subset of

PDEs including first-order linear and quasilinear PDEs, as well as a restricted form of a

linear second-order PDE.

Maxima [101] is an opensource computer algebra system that is capable of analyti-

cally solving ODEs with its ode2 method. The ODEs supported include linear, separable,

and homogeneous first-order ODEs as well as constant coefficient, exact, and linear ho-

mogeneous second-order ODEs, and those second-order ODEs that can be solved by the

variation of parameters method. Maxima also supports solving initial and boundary value

problems symbolically, as well as computing numerical solutions with a 4th order Runge-

Kutta method (the rk method). Other popular symbolic mathematical software includes

Sage [106], GiNaC [105] and Axiom [99].

We also briefly discuss Mathematica’s numerical solving capabilities through its NDSolve

method. This method supports both ODEs and a restricted class of PDEs. For its ODE

solver, Mathematica implements both an explicit and implicit Runge-Kutta method, with

the explicit solvers including methods of order ranging from 2 to 9. For its PDE solver,

Mathematica implements the method of lines which requires PDEs to have an initial value

problem specified in at least one dimension, with a numerical ODE integrator applied over

this dimension. The above feature set is only a partial description of those techniques most

relevant to this thesis. We refer the reader to the software documentation [] for details on

other methods.

103

5.8.2 Matlab and Octave

Matlab provides a suite of ODE solvers as described in [] for handling stiff and non-stiff

ODEs. The ode23 and ode45 solvers handle non-stiff equations through the use of Runge-

Kutta techniques, with the ode45 solver based on both a 4th and 5th order Runge-Kutta

method known as the Dormand-Prince method. We also note that the ode15s solver is

capable of handling differential algebraic equations. We consider extending our support for

differential equations to this as part of future work. Matlab also supports solving PDEs

with the finite element method, and we use this as our backend solver for the elliptic PDEs

described in our data model. The finite element method includes support for adaptive mesh

refinement.

Octave is an open-source alternative to Matlab that also includes an ODE solver. This

solver is based on the LSODE package [103]. Octave also supports differential algebraic

equations using the DASPK package. There is limited support for solving PDEs in Octave,

for example with the OctMesh [102] which acts as an Octave binding to the LibMesh library

[100]. An alternative approach to using a generic numerical mathematical software system

to solve PDEs is to use a library designed specifically for this purpose, for example the

deal.ii library [104].

Chapter 6

Conclusions

We have presented the Pulse framework for performing relational-style query processing

over data stream attributes modeled as piecewise polynomial functions of a time variable.

Pulserepresents queries as simultaneous equation systems for a variety of relational oper-

ators including filters, joins and standard aggregates. We use piecewise polynomials to

provide a compact, approximate representation of the input dataset and primarily consider

supporting predictive processing with these polynomials, where the polynomials are used

for extrapolation and subsequently validated against the actual data as it arrives into the

system. Given that our polynomial models are dataset approximations, we provide query

language extensions for users to specify precision bounds, and leverage these bounds during

validating predicted results with actual results. The key idea here is that we can perform

state-change processing where we only process queries if they significantly affect the result

according to user-specified bounds. We describe the precision bound inversion problem as

that of determining precision bounds at query inputs rather than outputs, and present a

set of heuristics to compute input precision bounds. We have implemented Pulse on top

of the Borealis stream processing engine and evaluated it on two real-world datasets from

financial and moving object applications. Our experimental results show that Pulse is able

to achieve significant performance improvements by processing relational queries directly

on the mathematical representation of these polynomials and exploiting precision bounds

in comparison to standard tuple-based stream processing.

The polynomial processing described in the first part of this thesis differs significantly

from standard approaches to relational query processing with its use of equation systems

solvers. Both standard databases and stream processing engines model and profile query

processing performance internally, and subsequently apply a wide range of optimization

104

105

techniques to improve processing performance. The second part of this thesis visits this

challenge in the context of our particular style of processing. We present the design of

a selectivity estimator that is capable of computing selectivities for relational operators

applied over piecewise polynomials, as well as a multi-query optimizer that uses these selec-

tivities to determine when it is advantageous to construct a global query plan that shares

work across individual queries. In summary, our selectivity estimator performs its work by

maintaining histograms on a parameter space of the polynomials sampled at runtime. We

then define histogram operations according to the processing performed by filters, joins and

aggregates on individual histogram bins in this parameter space. Next, our multi-query op-

timizer considers two types of sharing algorithms which differ in where they perform input

duplicate elimination prior to sharing work across multiple queries. Our sharing algorithm

is implemented as a set of heuristic conditions that locally adapt a global query based on

both statistics collected and selectivity estimates provided by our custom estimator, picking

the adaptations to apply in a greedy manner.

We implemented our selectivity estimator and query optimizer within the Borealis

stream processing engine, monitoring and manipulating queries prior to their execution

in Pulse. The experimental results gathered with this implementation have both posi-

tive and negative aspects. We compared our selectivity estimation technique to a simple

sampling-based technique for estimation. This comparison demonstrated a negative result,

whereby our histogram-based estimation is outperformed by the sampling technique both

in terms of accuracy and estimation overhead, for selective operators. Note that our tech-

nique still has several advantages over an approach such as sampling. Sampling is known to

perform poorly on min and max aggregates, indeed there is no known bound for the error

present in any estimate obtained via sampling. We believe our estimation technique will

clearly outperform sampling in this case. Furthermore we believe our technique can provide

additional benefits through its ability to provide both lower and upper bounding values on

selectivities, and that these bounds will turn out to be tighter than those obtained from

theoretical analysis of sampling-based estimation techniques. However a full investigation

of these claims lies outside the scope of this thesis, and as such is an immediate topic for

future work. The positive takeaway from our experimentation lies with the optimization

mechanisms and algorithm. We have demonstrated that a set of shareable operators can

benefit greatly from shared execution in the context of processing segments, on a real-world

dataset. This applies when a covering operator has moderately low selectivity, and thus is

likely to be applicable in actual queries posed by end-users.

While this thesis has solved critical functionality and scalability challenges for supporting

106

domain-specific knowledge through models expressed as polynomial functions in a stream

processing context, the long-term vision of rich, extensive, support for using models as

representations of data in a DBMS is still in its infancy in the current state-of-the-art,

especially in terms of being a recognizable and usable feature in actual deployed systems.

We outline a wide variety of topics for future investigation, ranging from the immediate to

the fundamental challenges at hand.

Unmodeled attribute support and key attribute scalability.

Pulse as has been described in this thesis, operates purely on modeled attributes, and does

not incorporate processing for attributes that are not associated with any model. We believe

supporting standard query processing techniques on such attributes side-by-side with Pulse’s

processing is a key usability requirement in garnering adoption of model-driven databases

in real-world applications. The main challenge in supporting unmodeled attributes is that

they may greatly increase the degree of segmentation present in the input workload, for

example the unmodeled attribute may take on many values within the valid time range of

a segment, and requiring that segment to be represented as multiple segments. There are

several simple approaches one could adopt to provide such functionality, for example tuples

could consist of both modeled and unmodeled attributes, and operators could be separated

into two parts depending on the type of attribute being processed. We could apply standard

operators to transform unmodeled attributes, passing through the modeled attributes, and

then apply Pulse’s operators to handle these. An alternative approach is to view unmodeled

attributes as constants within each segments valid time range, and then directly process

such constant segments as part of Pulse.

Key attributes can also potentially impose scalability challenges in addition to unmod-

eled attributes, depending on the size of the key’s attribute domain. Key attributes ef-

fectively define partitions for Pulse’s query processing in the case of selective operators,

and present a natural opportunity to exploit data parallelism in enabling multiprocessor

or distributed processing to scale system throughput. However aggregate operations may

wish to utilize models from all or groups of key values, creating data dependencies down-

stream from any parallel or distributed execution, complicating our efforts to scale the

system. We foresee opportunities in effectively handling distributed processing of general

filter-join-aggregate queries in Pulse, that will require novel, ideally incremental, processing

techniques exploiting our internal representation of queries as equation systems.

107

Database support for attributes modeled by differential equations.

We view the polynomials described so far as one type of model, and have described how to

support polynomials as a first-class datatype in Pulse. We now focus on challenges in provid-

ing database support for other model types, in particular looking at differential equations,

and how they may be represented as datatypes and processed with relational-style queries.

In a similar fashion to our polynomial segment data model, we envision allowing individual

attributes in a schema to be represented as differential equations, including both ODEs and

PDEs. In the case of ODEs, our system could support specification in two ways, first declar-

atively, as part of the query, as a linear differential equation y(n) = b(x) +
∑n

i=1 ai(x)y(i),

with the functions ai(x) limited to polynomials, and secondly as a user-defined function to

support more general non-linear ODEs. In the case of schema attributes represented by

PDEs, two common types of PDEs are: i) elliptic equations and ii) PDEs with IVPs in at

least one dimension. These correspond to the types of PDEs supported by Matlab [107] and

Mathematica [109], two popular mathematical software packages. The solution techniques

for the two PDEs are finite element methods, and finite difference methods respectively. As

a key point, we remark that philosophy is that our contribution is not intended to be in

advancing the state-of-the-art in numerical methods for solving PDEs, rather we want to

leverage existing tools to solve PDEs representing a single attribute, and then consider this

attribute in a relational data model, leaving us to focus on the interaction between query

processing and existing well-known numerical methods.

Given these attributes which may be represented as a differential equation, our approach

would require a differential equation solver as part of processing relational queries on such

attributes. ODE and PDE solvers commonly handle two types of constraints placed on so-

lutions, namely initial value problems and boundary value problems. Initial value problems

pose a constraint on the solution’s value at the lower boundary of the independent variable’s

valid range. We perceive a streaming nature to initial value problems, where a data stream

specifies the initial values. A differential equation solver would then compute a solution

for every input arriving on the data stream. Boundary value problems pose constraints on

both the lower and upper boundary values of the independent variables’ valid ranges. There

are a variety of different boundary conditions including Neumann conditions, Dirichlet con-

ditions and Cauchy conditions, each of which varies in the term they constrain between

combinations of the dependent variable’s value and derivative. Loosely speaking, boundary

conditions define interpolation problems, where the differential equation solution represents

dependent attribute values within the valid range. Intuitively boundary conditions arise in

historical query processing where we have a dataset at hand, and we wish to interpolate

108

while respecting the values witnessed in the dataset.

Query processing techniques for handling the various forms of and problems posed on dif-

ferential equations will encompass both analytical solutions and numerical approximations

to the ODE or PDE. We remark that the outputs of many differential equation solvers falls

into one of two basic types, symbolic expressions, which include exponential and trigono-

metric operators, and interpolating polynomials. Our query processor would need to be

extended to evaluate relational operators over symbolic expressions, where we may have

to handle operations combining both the symbolic form and the polynomial form. Fur-

thermore, in leveraging existing tools providing numerical methods for solving both ODEs

and PDEs, we believe that one key issue lies and in understanding the approximation pro-

vided by these techniques. The approximation should be captured in a revised error model,

and leverage query semantics in conjunction with the revised definition of errors to con-

trol the tradeoff between solving accuracy and performance. The key idea here is that

query-agnostic numerical methods are likely to generate solutions with unnecessarily high

numerical precision, and that this can be avoided at run-time by dynamically configuring

solver precisions based on user-specified tolerances and the continuous queries’ intermediate

results.

Expressive model types.

We believe that a major guiding principle in providing database support for other model

types is that these datatypes should not be black boxes, rather they should expose sufficient

semantics for query optimization, similar to enhanced abstract datatypes [80]. A critical

part of this direction would be to investigate the design of an extensible interface and how

that interface can support mechanisms for query optimization. One aspect of this challenge

is to determine how we may leverage mathematical properties of these datatypes in defining

query processing mechanisms and performing query optimization. For example, we consider

it critical to determine the feasibility of an analytical solution due to the significantly sim-

plified query processing and improved performance it provides, and envision accomplishing

this with the aid of a computer algebra system (CAS) integrated with our stream processor.

We have a few initial insights into a data type interface, which is designed around

two common properties of the aforementioned models. First we remark that each type of

model supports a sampling function that we may use to drive a numerical solver. Next,

we observe that numerical methods and solvers are predominantly iterative processes, and

that this iteration is often driven by the semantics of the model, rather than data flow.

Thus our abstraction decouples control flow from data flow to enable the iterative behavior

109

required to numerically evaluate models. Our framework exposes the following methods for

a datatype to implement (in C++ syntax):

union InputValue { Tuple; Window; }

union TimeValue { TimePoint; TimeRange; }

union SolutionValue { Point; Segment; }

model_solver:

void initModel(InputValue, TimeValue);

boolean hasSolutions();

pair<TimeValue, SolutionValue> getSolution();

SolutionValue getSolution(TimeValue);

boolean checkSolution(Segment, RelOp)

Segment finalModel(TimeValue);

As part of future work, we intend to investigate both conversion abstractions that allow

one model type to be cast to another, in addition to a modeling abstraction, where model

types may be built or learned incrementally, although it is unclear how much commonality

there is across types in these procedures. With this model-specific solving interface, we

are able to define a standard numerical query solver based on the evaluation of difference

predicates. Our general solver invokes the methods defined by each model type above, from

the following pseudocode:

query_solver:

void solve_unary_equation(input):

solver.init(input)

while (solver.hasSolutions())

solnTime, solnVal = solver.getSolution()

if (predicate(solnVal))

result = solver.final(solnTime)

emit(solnTime, result)

terminate()

void solve_binary_equation(inputA, inputB):

if solverA.hasDifference(solverB)

solve_unary_equation(

solverA.difference(inputA, inputB))

else

solverA.init(inputA), solverB.init(inputB)

while (solverA.hasSolutions())

110

solnATime, solnAVal = solverA.getSolution()

solnBTime, solnBVal = solverB.getSolution(solnATime)

if (predicate(solnAVal, solnBVal))

result = output_attribute(

solverA.final(solnBTime),

solverB.final(solnBTime))

emit(solnBTime, result)

terminate()

The above example shows symbolic manipulations with the hasDifference and difference

functions. We show a difference equation with two variables being solved as a difference

equation of one variable by computing a single model (segment) representing that differ-

ence. This solver also highlights other interesting challenges, including synchronization

(note solverB samples at the time value yielded by solverA) and solver termination poli-

cies. Solver termination concerns how an optimizer might take advantage of mathematical

properties to limit the solutions produced to exclude those that cannot be query results.

We assume the existence of an output attribute function above to apply any model trans-

formations corresponding to non-selective operators (such as a sum aggregate). Note our

interface is closed, that is our solver produces the same model type as its input.

initModel : set input segment as state
determine multiplicity of roots

hasSolutions : return if any roots remain
getSolution : return time range and segment

between last root and current root
checkSolution : check if entire segment

satisfies relational operator
finalModel : return input segment

Figure 6.1: Example polynomial type sampling function.

It is my hope that this thesis has conveyed the potential benefits of embracing math-

ematical representations of data at the core of a database management system, and the

tenets which have inspired the direction and execution of this research, namely that effec-

tive tools are built from extending the state-of-the-art both in terms of functionality and

expressiveness, and from providing such functionality in an high-performance, usable man-

ner to end users. I look forward to the opportunity to continue to design, architect and

prototype such systems in the future.

Bibliography

[1] Daniel Abadi, Yanif Ahmad, Magdalena Balazinska, Uğur Çetintemel, Mitch Cherniack,

Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Alexander Rasin, Esther Ryvkina,

Nesime Tatbul, Ying Xing, and Stan Zdonik. The design of the Borealis stream processing

engine. In Proc. of the Second Biennial Conference on Innovative Data Systems Research

(CIDR’05), pages 277–289, January 2005.

[2] Daniel J. Abadi, Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon

Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A new model and

architecture for data stream management. The VLDB Journal: The International Journal on

Very Large Data Bases, 12(2):120–139, August 2003.

[3] Yanif Ahmad and Uğur Çetintemel. Declarative temporal data models for sensor-driven query

processing. In Proc. of the Fourth International Workshop on Data Management for Sensor

Networks (DMSN’07), pages 37–42, September 2007.

[4] Yanif Ahmad, Olga Papaemmanouil, Uğur Çetintemel, and Jennie Rogers. Simultaneous

equation systems for query processing on continuous-time data streams. In Proc. of the 24th

International Conference on Data Engineering (ICDE’08), pages 666–675, April 2008.

[5] Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: Managing incomplete in-

formation with probabilistic world-set decompositions. In Proc. of the 23rd International

Conference on Data Engineering (ICDE’07), pages 1479–1480, April 2007.

[6] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query processing. In

Proc. of the 2000 ACM SIGMOD International Conference on Management of Data (SIG-

MOD’00), pages 261–272, May 2000.

[7] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggregation queries over

data streams. In Proc. of the 20th International Conference on Data Engineering (ICDE’04),

pages 350–361, March 2004.

[8] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom.

Adaptive ordering of pipelined stream filters. In Proc. of the 2004 ACM SIGMOD International

Conference on Management of Data (SIGMOD’04), pages 407–418, June 2004.

111

112

[9] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stonebraker. Fault-

tolerance in the Borealis distributed stream processing system. ACM Transactions on Database

Systems, 33(1):1–44, March 2008.

[10] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker. Contract-based load

management in federated distributed systems. In Proc. of the 1st Symposium on Networked

Systems Design and Implementation (NSDI 2004), pages 197–210, March 2004.

[11] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin Theobald, and Jennifer Widom.

Databases with uncertainty and lineage. The VLDB Journal: The International Journal on

Very Large Data Bases, 17(2):243–264, March 2008.

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[13] Richard P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood

Cliffs, NJ, 1973.

[14] Nicolas Bruno and Surajit Chaudhuri. Exploiting statistics on query expressions for optimiza-

tion. In Proc. of the 2002 ACM SIGMOD International Conference on Management of Data

(SIGMOD’02), pages 263–274, June 2002.

[15] Nicolas Bruno and Surajit Chaudhuri. Conditional selectivity for statistics on query expres-

sions. In Proc. of the 2004 ACM SIGMOD International Conference on Management of Data

(SIGMOD’04), pages 311–322, June 2004.

[16] Benno Bueller, Andreas Enge, and Komei Fukuda. Vinci: Computing volumes of convex

polytopes. http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Vinci.html.

[17] V. Prasad Chakka, Adam Everspaugh, and Jignesh M. Patel. Indexing large trajectory data

sets with seti. In Proc. of the First Biennial Conference on Innovative Data Systems Research

(CIDR’03), January 2003.

[18] Sirish Chandrasekaran, Amol Deshpande, Mike Franklin, and Joseph Hellerstein. Tele-

graphCQ: Continuous dataflow processing for an uncertain world. In Proc. of the First Biennial

Conference on Innovative Data Systems Research (CIDR’03), January 2003.

[19] Sirish Chandrasekaran and Michael J. Franklin. Psoup: a system for streaming queries over

streaming data. The VLDB Journal: The International Journal on Very Large Data Bases,

12(2):140–156, August 2003.

[20] Sirish Chandrasekaran and Michael J. Franklin. Remembrance of streams past: Overload-

sensitive management of archived streams. In Proc. of the 30th International Conference on

Very Large Data Bases (VLDB’04), pages 348–359, August 2004.

[21] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified sampling for

approximate query processing. ACM Transactions on Database Systems, 32(2):9, June 2007.

113

[22] Surajit Chaudhuri, Gautam Das, and Utkarsh Srivastava. Effective use of block-level sampling

in statistics estimation. In Proc. of the 2004 ACM SIGMOD International Conference on

Management of Data (SIGMOD’04), pages 287–298, June 2004.

[23] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. On random sampling over

joins. In Proc. of the 1999 ACM SIGMOD International Conference on Management of Data

(SIGMOD’99), pages 263–274, June 1999.

[24] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A scalable contin-

uous query system for internet databases. In Proc. of the 2000 ACM SIGMOD International

Conference on Management of Data (SIGMOD’00), pages 379–390, May 2000.

[25] Reynold Cheng, Ben Kao, Sunil Prabhakar, Alan Kwan, and Yi-Cheng Tu. Adaptive stream

filters for entity-based queries with non-value tolerance. In Proc. of the 31st International

Conference on Very Large Data Bases (VLDB’05), pages 37–48, August 2005.

[26] Graham Cormode and Minos Garofalakis. Approximate continuous querying over distributed

streams. ACM Transactions on Database Systems, 33(2):1–39, June 2008.

[27] Charles D. Cranor, Yuan Gao, Theodore Johnson, Vladislav Shkapenyuk, and Oliver

Spatscheck. Gigascope: high performance network monitoring with an sql interface. In Proc.

of the 2002 ACM SIGMOD International Conference on Management of Data (SIGMOD’02),

page 623, June 2002.

[28] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In Proc.

of the 30th International Conference on Very Large Data Bases (VLDB’04), pages 864–875,

August 2004.

[29] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join processing over

data streams. In Proc. of the 2003 ACM SIGMOD International Conference on Management

of Data (SIGMOD’03), pages 40–51, June 2003.

[30] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma, and

Walker M. White. Cayuga: A general purpose event monitoring system. In Proc. of the Third

Biennial Conference on Innovative Data Systems Research (CIDR’07), pages 412–422, 2007.

[31] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph Hellerstein, and Wei Hong. Model

driven data acquisition in sensor networks. In Proc. of the 30th International Conference on

Very Large Data Bases (VLDB’04), pages 588–599, August 2004.

[32] Amol Deshpande and Samuel Madden. MauveDB: supporting model-based user views in

database systems. In Proc. of the 2006 ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD’06), pages 73–84, June 2006.

[33] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Processing com-

plex aggregate queries over data streams. In Proc. of the 2002 ACM SIGMOD International

Conference on Management of Data (SIGMOD’02), pages 61–72, June 2002.

114

[34] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience Publica-

tion, 2000.

[35] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence matching

in time-series databases. In Proc. of the 1994 ACM SIGMOD International Conference on

Management of Data (SIGMOD’94), pages 419–429, May 1994.

[36] Ewgenij Gawrilow and Michael Joswig. Polymake: an approach to modular software design

in computational geometry. In Proceedings of the 17th annual symposium on Computational

geometry, pages 222–231, 2001.

[37] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo. Spade:

the system s declarative stream processing engine. In Proc. of the 2008 ACM SIGMOD

International Conference on Management of Data (SIGMOD’08), pages 1123–1134, June 2008.

[38] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation using probabilistic

models. In Proc. of the 2001 ACM SIGMOD International Conference on Management of

Data (SIGMOD’01), pages 461–472, May 2001.

[39] Michael Gibas, Ning Zheng, and Hakan Ferhatosmanoglu. A general framework for modeling

and processing optimization queries. In Proc. of the 33rd International Conference on Very

Large Data Bases (VLDB’07), pages 1069–1080, September 2007.

[40] Goetz Graefe and William J. McKenna. The volcano optimizer generator: Extensibility and

efficient search. In Proc. of the 9th International Conference on Data Engineering (ICDE’93),

pages 209–218, April 1993.

[41] Stéphane Grumbach, Philippe Rigaux, Michel Scholl, and Luc Segoufin. The DEDALE pro-

totype. In Constraint Databases, pages 365–382, 2000.

[42] Stéphane Grumbach, Philippe Rigaux, and Luc Segoufin. Manipulating interpolated data is

easier than you thought. In Proc. of the 26th International Conference on Very Large Data

Bases (VLDB’00), pages 156–165, September 2000.

[43] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. Sampling-based estimation

of the number of distinct values of an attribute. In Proc. of the 21st International Conference

on Very Large Data Bases (VLDB’95), pages 311–322, 1995.

[44] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G. Aref, Ann Christine

Catlin, Ahmed K. Elmagarmid, Mohamed Y. Eltabakh, Mohamed G. Elfeky, Thanaa M.

Ghanem, R. Gwadera, Ihab F. Ilyas, Mirette S. Marzouk, and Xiaopeng Xiong. Nile: A query

processing engine for data streams. In Proc. of the 20th International Conference on Data

Engineering (ICDE’04), page 851, March 2004.

[45] Stavros Harizopoulos and Anastassia Ailamaki. A case for staged database systems. In Proc.

of the First Biennial Conference on Innovative Data Systems Research (CIDR’03), 2003.

115

[46] Jeong-Hyon Hwang, Ying Xing, Ugur Çetintemel, and Stanley B. Zdonik. A cooperative, self-

configuring high-availability solution for stream processing. In Proc. of the 23rd International

Conference on Data Engineering (ICDE’07), pages 176–185, April 2007.

[47] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga. Cords:

Automatic discovery of correlations and soft functional dependencies. In Proc. of the 2004

ACM SIGMOD International Conference on Management of Data (SIGMOD’04), pages 647–

658, June 2004.

[48] Ankur Jain, Edward Y. Chang, and Yuan-Fang Wang. Adaptive stream resource manage-

ment using kalman filters. In Proc. of the 2004 ACM SIGMOD International Conference on

Management of Data (SIGMOD’04), pages 11–22, June 2004.

[49] Shawn R. Jeffery, Minos N. Garofalakis, and Michael J. Franklin. Adaptive cleaning for

rfid data streams. In Proc. of the 32nd International Conference on Very Large Data Bases

(VLDB’06), pages 163–174, September 2006.

[50] Shantanu Joshi and Christopher Jermaine. Materialized sample views for database approxi-

mation. IEEE Transactions on Knowledge and Data Engineering, 20(3):337–351, March 2008.

[51] Bhargav Kanagal and Amol Deshpande. Online filtering, smoothing and probabilistic mod-

eling of streaming data. In Proc. of the 24th International Conference on Data Engineering

(ICDE’08), pages 1160–1169, April 2008.

[52] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint query languages.

Journal of Computer and System Sciences., 51(1):26–52, 1995.

[53] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An online algorithm for

segmenting time series. In Proc. of the 2001 (ICDM’01), pages 289–296, November 2001.

[54] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Towards correcting input data

errors probabilistically using integrity constraints. In MobiDE ’06: Proceedings of the 5th

ACM International Workshop on Data Engineering for Wireless and Mobile Access, pages

43–50, June 2006.

[55] Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin. On-the-fly sharing for streamed

aggregation. In Proc. of the 2006 ACM SIGMOD International Conference on Management

of Data (SIGMOD’06), pages 623–634, June 2006.

[56] Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin. On-the-fly sharing for streamed

aggregation. In Proc. of the 2006 ACM SIGMOD International Conference on Management

of Data (SIGMOD’06), pages 623–634, June 2006.

[57] Gabriel M. Kuper, Leonid Libkin, and Jan Paredaens, editors. Constraint Databases. Springer,

2000.

116

[58] Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. Cardinality estimation

using sample views with quality assurance. In Proc. of the 2007 ACM SIGMOD International

Conference on Management of Data (SIGMOD’07), pages 175–186, June 2007.

[59] Ling Lin and Tore Risch. Querying continuous time sequences. In Proc. of the 24th Interna-

tional Conference on Very Large Data Bases (VLDB’98), pages 170–181, August 1998.

[60] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical selectivity

estimation through adaptive sampling. In Proc. of the 1990 ACM SIGMOD International

Conference on Management of Data (SIGMOD’90), pages 1–11, May 1990.

[61] Nikos Mamoulis and Dimitris Papadias. Slot index spatial join. IEEE Transactions on Knowl-

edge and Data Engineering, 15(1):211–231, January 2003.

[62] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based histograms for selectivity

estimation. In Proc. of the 1998 ACM SIGMOD International Conference on Management of

Data (SIGMOD’98), pages 448–459, June 1998.

[63] Mohamed F. Mokbel and Walid G. Aref. PLACE: A scalable location-aware database server

for spatio-temporal data streams. IEEE Data Eng. Bull., 28(3):3–10, 2005.

[64] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal access meth-

ods. IEEE Data Engineering Bulletin, 26(2):40–49, 2003.

[65] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur

Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query processing,

approximation, and resource management in a data stream management system. In Proc. of

the First Biennial Conference on Innovative Data Systems Research (CIDR’03), January 2003.

[66] Leonore Neugebauer. Optimization and evaluation of database queries including embedded

interpolation procedures. In Proc. of the 1991 ACM SIGMOD International Conference on

Management of Data (SIGMOD’91), pages 118–127, May 1991.

[67] Inc. New York Stock Exchange. Monthly TAQ, http://www.nysedata.com/nysedata/.

[68] Jinfeng Ni and Chinya V. Ravishankar. Indexing spatio-temporal trajectories with effi-

cient polynomial approximations. IEEE Transactions on Knowledge and Data Engineering,

19(5):663–678, May 2007.

[69] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over

distributed data streams. In Proc. of the 2003 ACM SIGMOD International Conference on

Management of Data (SIGMOD’03), pages 563–574, June 2003.

[70] Chris Olston and Jennifer Widom. Offering a precision-performance tradeoff for aggregation

queries over replicated data. In Proc. of the 26th International Conference on Very Large Data

Bases (VLDB’00), pages 144–155, September 2000.

117

[71] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern discovery in

multiple time-series. In Proc. of the 31st International Conference on Very Large Data Bases

(VLDB’05), pages 697–708, August 2005.

[72] Jooseok Park and Arie Segev. Using common subexpressions to optimize multiple queries.

In Proc. of the 4th International Conference on Data Engineering (ICDE’88), pages 311–319,

February 1988.

[73] Jignesh M. Patel, Yun Chen, and V. Prasad Chakka. Stripes: An efficient index for predicted

trajectories. In Proc. of the 2004 ACM SIGMOD International Conference on Management

of Data (SIGMOD’04), pages 637–646, June 2004.

[74] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without the attribute value

independence assumption. In Proc. of the 23rd International Conference on Very Large Data

Bases (VLDB’97), pages 486–495, August 1997.

[75] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita. Improved

histograms for selectivity estimation of range predicates. In Proc. of the 1996 ACM SIGMOD

International Conference on Management of Data (SIGMOD’96), pages 294–305, June 1996.

[76] Frederick Reiss and Joseph M. Hellerstein. Data triage: An adaptive architecture for load

shedding in telegraphcq. In Proc. of the 21st International Conference on Data Engineering

(ICDE’05), pages 155–156, April 2005.

[77] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible al-

gorithms for multi query optimization. In Proc. of the 2000 ACM SIGMOD International

Conference on Management of Data (SIGMOD’00), pages 249–260, May 2000.

[78] Florin Rusu and Alin Dobra. Fast range-summable random variables for efficient aggregate

estimation. In Proc. of the 2006 ACM SIGMOD International Conference on Management of

Data (SIGMOD’06), pages 193–204, June 2006.

[79] Timos K. Sellis and Subrata Ghosh. On the multiple-query optimization problem. IEEE

Transactions on Knowledge and Data Engineering, 2(2):262–266, June 1990.

[80] Praveen Seshadri. Enhanced abstract data types in object-relational databases. The VLDB

Journal: The International Journal on Very Large Data Bases, 7(3):130–140, August 1998.

[81] Shetal Shah and Krithi Ramamritham. Handling non-linear polynomial queries over dynamic

data. In Proc. of the 24th International Conference on Data Engineering (ICDE’08), pages

1043–1052, April 2008.

[82] Hagit Shatkay and Stanley B. Zdonik. Approximate queries and representations for large data

sequences. In Proc. of the 12th International Conference on Data Engineering (ICDE’96),

pages 536–545, February 1996.

118

[83] Jin Shieh and Eamonn J. Keogh. sax: indexing and mining terabyte sized time series. In

Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 623–631, 2008.

[84] Adam Silberstein, Alan Gelfand, Kamesh Munagala, Gavino Puggioni, and Jun Yang. Making

sense of suppressions and failures in sensor data: A bayesian approach. In Proc. of the 33rd

International Conference on Very Large Data Bases (VLDB’07), pages 842–853, September

2007.

[85] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Prediction and indexing of

moving objects with unknown motion patterns. In Proc. of the 2004 ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD’04), pages 611–622, June 2004.

[86] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias. Spatio-temporal

aggregation using sketches. In Proc. of the 20th International Conference on Data Engineering

(ICDE’04), pages 214–226, March 2004.

[87] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: An optimized spatio-temporal

access method for predictive queries. In Proc. of the 29th International Conference on Very

Large Data Bases (VLDB’03), pages 790–801, September 2003.

[88] Yufei Tao and Xiaokui Xiao. Primal or dual: which promises faster spatiotemporal search?

The VLDB Journal: The International Journal on Very Large Data Bases, 17(5):1253–1270,

August 2008.

[89] Nesime Tatbul, Ugur Çetintemel, and Stanley B. Zdonik. Staying fit: Efficient load shedding

techniques for distributed stream processing. In Proc. of the 33rd International Conference

on Very Large Data Bases (VLDB’07), pages 159–170, September 2007.

[90] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael Stone-

braker. Load shedding in a data stream manager. In Proc. of the 29th International Conference

on Very Large Data Bases (VLDB’03), pages 309–320, September 2003.

[91] Nesime Tatbul and Stanley B. Zdonik. Window-aware load shedding for aggregation queries

over data streams. In Proc. of the 32nd International Conference on Very Large Data Bases

(VLDB’06), pages 799–810, September 2006.

[92] Arvind Thiagarajan and Samuel Madden. Querying continuous functions in a database sys-

tem. In Proc. of the 2008 ACM SIGMOD International Conference on Management of Data

(SIGMOD’08), pages 791–804, June 2008.

[93] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over

streams. In Proc. of the 2006 ACM SIGMOD International Conference on Management of

Data (SIGMOD’06), pages 407–418, June 2006.

119

[94] Ying Xing, Stanley B. Zdonik, and Jeong-Hyon Hwang. Dynamic load distribution in the

borealis stream processor. In Proc. of the 21st International Conference on Data Engineering

(ICDE’05), pages 791–802, April 2005.

[95] Fei Xu, Christopher Jermaine, and Alin Dobra. Confidence bounds for sampling-based group

by estimates. ACM Transactions on Database Systems, 33(3):1–44, 2008.

[96] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate nearest neighbor queries

in road networks. IEEE Transactions on Knowledge and Data Engineering, 17(6):820–833,

June 2005.

[97] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang Lehner. Efficient

exploitation of similar subexpressions for query processing. In Proc. of the 2007 ACM SIGMOD

International Conference on Management of Data (SIGMOD’07), pages 533–544, June 2007.

[98] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data

streams in real time. In Proc. of the 28th International Conference on Very Large Data Bases

(VLDB’02), pages 358–369, August 2002.

[99] http://axiom.axiom-developer.org/. Axiom.

[100] http://libmesh.sourceforge.net. LibMesh.

[101] http://maxima.sourceforge.net. Maxima.

[102] http://octmesh.forja.rediris.es/. OctMesh.

[103] https://computation.llnl.gov/casc/odepack/. LSODE.

[104] http://www.dealii.org/. Axiom.

[105] http://www.ginac.de. Ginac.

[106] http://www.sagemath.org. Sage.

[107] The Mathworks, http://www.mathworks.com. Matlab.

[108] http://www.navcen.uscg.gov/enav/ais/default.htm. U.S. Coast Guard Navigation Center, Au-

tomatic Identification System.

[109] Wolfram Research, http://www.wolfram.com. Mathematica.

