
Abstract of “Multilabel Classification over Category Taxonomies” by Lijuan Cai,

Ph.D., Brown University, May 2008.

Multilabel classification is the task of assigning a pattern to one or more classes or

categories from a pre-defined set of classes. It is a crucial tool in knowledge and

content management. Standard machine learning techniques such as Support Vector

Machines (SVMs) and Perceptron have been successfully applied to this task. How-

ever, many real-world classification problems involve large numbers of overlapping

categories that are arranged in a hierarchy or taxonomy. This poses a challenge to

learning algorithms as they ignore the class hierarchies thereby losing valuable infor-

mation.

In this thesis, we propose to systematically incorporate prior knowledge on category

taxonomy directly into the learning architecture. We present two methods, hierarchi-

cal SVM learning and hierarchical Perceptron learning. Both methods take a ranking

view of the multilabel problem by focusing on ranking category relevances. In the

hierarchical SVM, the hierarchical learning problem is expressed as a joint large mar-

gin formulation that simultaneously learns the discriminant functions of each class.

As the resulting optimization problem can be prohibitively large, we also present

a variable selection algorithm to efficiently solve it. In the hierarchical Perceptron

method, the construction of weight vectors and the update rule are made to capture

the category taxonomy. Both methods can leverage kernel techniques, work with

arbitrary directed acyclic graph taxonomy, and be applied to general settings where

categories can be characterized by attributes. We also present an automatic approach

to learn a taxonomy if one isn’t available. Our approach is adapted from the hier-

archical agglomerative clustering algorithm. The learned hierarchy can then be used

in existing hierarchical classification approaches. Extensive experiments demonstrate

the performance advantage of our approaches.

Multilabel Classification over Category Taxonomies

by

Lijuan Cai

B. Eng., Computer Science and Engineering, Nanjing University of Aeronautics and

Astronautics, 1997

M. Eng., Computer Science, Nanjing University, 2000

M. Sc., Computer Science, Brown University, 2003

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2008

c© Copyright 2008 by Lijuan Cai

This dissertation by Lijuan Cai is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Thomas Hofmann, Director

Recommended to the Graduate Council

Date
Chad Jenkins, Reader

Date
Gregory Shakhnarovich, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Acknowledgements

To begin, I would like to give my deepest gratitude to Thomas Hofmann, my advisor.

He introduced me to the main topic of the dissertation and advised me on most of my

research work. I have been constantly amazed by his vision, knowledge, and energy.

His support over all these years in academics and research has been an invaluable

resource for me.

I am profoundly indebted to Gregory Shakhnarovich, who has worked with me

closely for over a year. He has provided me countless guidance and encouragement,

both in research and in many aspects of life. I have been impressed by his intuition,

insight, and depth of thinking.

I am very grateful to Chad Jenkins for valuable discussion and advice. He has

been very approachable and motivating.

It has been a great pleasure for me to study in the Computer Science department

of Brown University. I thank the faculty for offering an excellent and friendly intellec-

tual environment. I would like to especially thank Tom Doeppner, Amy Greenwald,

Meinolf Sellmann, John Hughes, Eli Upfal, Roberto Tamassia, and Andy van Dam.

Tom and Amy have helped me a great deal in my job search. I also thank the technical

and administrative staff for their help.

I wish to thank all my colleagues and friends, in particular Joel Young, Stuart

Andrews, Massimiliano Ciaramita, Ioannis Tsochantaridis, Yasemin Altun, David

Gondek, Ying Xing, Jue Yan, Ye Sun, Zheng Li, Olga Karpenko, Song Zhang, Ya

Jin, Danfeng Yao, Micha Elsner, Xiaofei He, Lili Ma, and Mengqiao Xu.

Finally I want to specially thank my father Jinchang Cai, my mother Xingdi Yan,

my sister Limin Cai, my husband Thomas Liang, and my son Dustin Liang. They

have supported me immensely all the way along. To me, their love makes this world

beautiful and warm. This dissertation is dedicated to my grandmother who deceased

iv

two decades ago. Her unconditional love in my childhood had shaped me and has

always inspired me.

v

Contents

List of Tables ix

List of Figures xi

List of Notation xiii

1 Introduction 1

1.1 The problem . 1

1.2 Our approach . 4

1.3 Thesis organization . 6

2 Background 7

2.1 Binary classification . 8

2.1.1 Problem setting . 8

2.1.2 Binary Perceptron . 8

2.1.3 Binary SVMs . 9

2.2 Multiclass classification . 10

2.2.1 Problem setting . 10

2.2.2 Multiclass Perceptron . 11

2.2.3 Multiclass SVM . 12

3 Utilizing known taxonomies 13

3.1 Problem of multilabel classification over hierarchies 13

3.2 Class attributes . 14

3.3 Loss functions . 17

vi

4 Hierarchical Support Vector Machines 21

4.1 Flat multilabel SVM . 21

4.2 Hierarchical multilabel SVM . 22

4.2.1 Primal program . 22

4.2.2 Dual quadratic program . 26

4.3 Optimization algorithm . 29

4.3.1 General strategy . 29

4.3.2 Variable selection strategy . 30

4.3.3 Implementation details . 33

4.4 Taxonomy-derived regularizer . 35

4.5 Related work . 39

5 Hierarchical Perceptron 42

5.1 Flat multilabel Perceptron . 42

5.2 Online hierarchical multilabel Perceptron 44

5.2.1 Primal form . 44

5.2.2 Dual form . 45

5.2.3 Convergence . 47

5.3 Batch hierarchical Perceptron algorithms 49

5.3.1 Averaged hierarchical Perceptron 49

5.3.2 Minover hierarchical Perceptron 50

5.4 Related work . 51

6 Automatic hierarchy learning 53

6.1 Introduction . 53

6.2 Hierarchy generation algorithm . 54

6.3 Related work . 59

7 Experiments 61

7.1 Data sets . 61

7.1.1 Synthetic data . 62

7.1.2 WIPO-alpha set . 62

7.1.3 Newsgroup . 65

7.1.4 OHSUMED . 65

vii

7.1.5 ENZYME . 67

7.2 Experimental setup . 68

7.3 Evaluation measures . 69

7.4 Results with hierarchical SVM . 71

7.4.1 Hierarchical SVM versus flat SVM 71

7.4.2 Comparison with Divide-and-Conquer SVM 81

7.4.3 Using random hierarchy . 83

7.5 Results with hierarchical Perceptron 86

7.5.1 Hierarchical Perceptron algorithms 87

7.5.2 Hierarchical Perceptron versus Hieron 90

7.6 Results with automatic hierarchy learning 94

7.7 Summary of results . 95

8 Conclusions 99

8.1 Contributions . 99

8.2 Future directions . 103

A Exemplary calculation of additional regularizer 106

A.1 For taxonomy in Figure 4.5 . 106

A.2 For general perfect trees of depth 2 108

Bibliography 111

viii

List of Tables

7.1 Summary of the WIPO-alpha multiclass corpus. 63

7.2 Summary of the WIPO-alpha multilabel corpus. 64

7.3 Summary of the subsampled WIPO-alpha corpus. 64

7.4 Summary of the OHSUMED corpus. 66

7.5 10-fold cross-validation results on synthetic data. 71

7.6 Performance comparison of flat SVM and hierarchical SVM on multi-

class WIPO-alpha collection. 72

7.7 Performance comparison of the flat SVM and the hierarchical SVM on

the multi-class WIPO-alpha corpus with subsampling. 75

7.8 SVM experiments on the multilabel WIPO-alpha corpus. 76

7.9 SVM experiments on the multilabel WIPO-alpha corpus with subsam-

pling. 77

7.10 Performance comparison of the flat and hierarchical SVMs on News-

group collection. 78

7.11 Performance comparison of the flat and hierarchical SVM on the H

subtree of OHSUMED corpus. 79

7.12 SVM experiments on OHSUMED with subsampling. 80

7.13 Performance comparison of the flat and hierarchical SVMs on EN-

ZYME corpus. 80

7.14 Comparison of the flat SVM, Divide-and-Conquer SVM, and hierar-

chical SVM on the multilabel WIPO-alpha corpus 82

7.15 Comparison of the flat SVM, Divide-and-Conquer SVM, and hierar-

chical SVM on Newsgroup data. 82

7.16 Performance comparison of the flat SVM, Divide-and-Conquer SVM,

and hierarchical SVM on subsampled OHSUMED set. 82

ix

7.17 Performance of the hierarchical SVM with random hierarchies on a

section of the multiclass WIPO-alpha corpus. 84

7.18 Performance of the hierarchical SVM with random hierarchies on News-

group data. 84

7.19 Experiments of Divide-and-Conquer SVM using random hierarchies on

Newsgroup data. 85

7.20 Performance omparison of averaged Hieron and averaged Perceptron

on the Newsgroup data. 92

7.21 Performance comparison of the online flat and hierarchical Hieron and

Perceptron on the Newsgroup data. 92

7.22 Comparison of the averaged Hieron and averaged Perceptron on the

multiclass WIPO-alpha data. 93

7.23 Performance comparison of the averaged flat Perceptron and the aver-

aged hierarchical Perceptron with the automatically generated hierar-

chy on multiclass WIPO-alpha collection. 94

7.24 Performance comparison of the averaged flat Perceptron and hierarchi-

cal Perceptron with the automatically generated hierarchy on News-

group collection. 95

x

List of Figures

1.1 Part of the IPC classification hierarchy. 3

2.1 Maximum-margin separating hyperplane. 9

3.1 An example of taxonomy-derived class attributes and the correspond-

ing discriminant function. 17

3.2 Hierarchical loss between two sets of categories. 19

4.1 Illustration of margin and penalty for the flat multilabel SVM. 22

4.2 Illustration of margin and penalty for the hierarchical multilabel SVM. 25

4.3 A 2-dimensional dataset with 9 classes in a 2-level tree taxonomy. . . 26

4.4 Flat and hierarchical SVM solutions on training data in Figure 4.3 . . 26

4.5 A taxonomy comprising two perfect trees of depth 2 38

6.1 The distance matrix, along with the dendrogram and hierarchy, gener-

ated by Algorithm 8 on a 90% subset of Newsgroup corpus. 58

7.1 Part of the IPC classification hierarchy rooted at section D which con-

tains a total of 160 main groups. Only classes and subclasses for D03

are shown. 63

7.2 Class taxonomy of Newsgroup corpus. 65

7.3 Distribution of the number of positive classes per document and distri-

bution of the depths of classes for the N subtree of OHSUMED corpus. 67

7.4 Histogram of the hierarchical loss on D section of the multiclass WIPO-

alpha corpus. 73

7.5 Performance on two sections of WIPO-alpha with varying trade-off

parameter C. 74

xi

7.6 Optimization process of the hierarchical SVM on D section of the multi-

class WIPO corpus. The objective of the dual problem is defined in

Equation (4.14). 74

7.7 Flat and hierarchical SVM on section D of the multilabel WIPO-alpha

data, with varying training set size. 77

7.8 Performance comparison of the hierarchical SVM and Divide-and-Conquer

SVM with random hierarchies on D section of the multiclass WIPO-

alpha corpus. 86

7.9 The flat and hierarchical Perceptron algorithms on the E section of the

multilabel WIPO-alpha corpus. 87

7.10 The flat and hierarchical Perceptron algorithms on the abridged news-

group set. 88

7.11 Results of the Minover flat and hierarchical Perceptron learning on the

multilabel WIPO-alpha corpus. 89

7.12 The Minover flat and hierarchical Perceptron on subsampled collection

of the multilabel WIPO-alpha corpus. 90

7.13 A taxonomy automatically generated on one percent of the Newsgroup

corpus. 96

A.1 A taxonomy comprising two perfect trees of depth 2 106

xii

List of Notation

x input pattern . 8

X input space . 8

D training set . 13

n number of trainig examples . 13

Y set of all categories . 13

q the number of classes . 13

P(Y) power set of Y . 13

y a category . 13

Y set of classes . 13

F discriminant function . 14

g ranking function from X to Sq . 14

Sq the set of permutations of ranks 1 to q . 14

V set of all nodes in a directed acyclic graph . 14

Λ(y) attribute vector for class y . 15

s length of class attribute vectors. Λ(y) ∈ Rs . 15

wr weight vector associated with r-th attribute . 15

w stacked weight vector . 15

Φ(x, y) joint feature representation . 15

anc(y) set of all ancestor nodes of y, including y itself . 16

Wy functioning weight vector of class y . 17

anc(Y) set of all ancestor nodes of classes in Y . 18

△(Y, Ŷ) loss between two sets of classes . 18

△(y, y′) loss between two classes .19

Yi the set of correct categories for instance i . 21

Ȳi the set of negative categories for instance i . 21

xiii

δΦi(y, ȳ) Φ(xi, y)−Φ(xi, ȳ) . 24

αiyȳ

dual variable associated with instance i, a positive class y, and a neg-

ative class ȳ . 27
Θ(α) dual objective . 27

△x maximal loss .28

△t top loss . 29

Hiyȳ an auxiliary variable used for variable selection .31

ψi the quantity used for selecting subspace to optimize 32

O the set of interior nodes .35

l the number of interior nodes . 35

A a matrix that is determined by taxonomy and class attributes 36

u a vector function of class weight vectors . 37

xiv

Chapter 1

Introduction

1.1 The problem

Pattern classification is the task of assigning patterns, or instances, to a predefined

set of classes, or categories. It covers a broad range of applications such as document

classification, optical character recognition, and image recognition. Relevant appli-

cation domains include information retrieval, natural language processing, computer

vision, and computational biology, where categories may represent concepts as diverse

as document categories, word senses, visual object classes, or protein functions. Take

document classification, a classical pattern classification problem, as an example. The

classes are generally topics discussed in documents while patterns or instances refer

to documents. Document classification is a crucial and well-proven instrument for or-

ganizing large volumes of textual information. Comprehensive classification systems

have been developed and maintained by librarians since the 19th century and are in

widespread use today. The advent of the Web and the enormous growth of digital

content in intranets, databases, and archives, have further increased the demand for

categorization. In the face of the pace and complexity of this process, manual cat-

egorization often lacks economic efficiency and automatic tools are indispensable to

supplement human efforts.

In most cases, the use of statistical or machine learning techniques has been proven

to be successful in this context, since it is typically more feasible to induce categoriza-

tion rules based on example documents than to elicit such rules from domain experts.

1

2

The wide range of methods applied to this problem include nearest neighbor classifiers

[72], neural networks [56, 44, 66], generative probabilistic classifiers [36, 31, 35], and

– more recently – boosting [55] and Support Vector Machines (SVMs) [29], to name

just a few. Extensive experimental comparisons (e.g. [29, 73, 6]) have evidenced that

among the methods available today, SVMs are among the best in their classification

accuracy and can therefore be considered the state-of-the art in pattern classification.

A potential drawback of traditional classification methods is that they treat the

category structure as ‘flat’ and that they do not consider relationships between cat-

egories, which are commonly expressed in concept hierarchies or taxonomies. Such

structures, however, are the preferred way in which concepts, subject headings, or

categories are arranged in practice. Taxonomies offer clear advantages in supporting

tasks like browsing, searching, or visualization. They are also easier to maintain and

alleviate the manual annotation process. This is witnessed by the fact that many

real world classification systems have complex hierarchical structures. This includes

traditional systems like Dewey or Library of Congress subject headings, the Inter-

national Patent Classification (IPC) scheme (approx. 69,000 patent groups) [68], the

Medical Subject Headings (MeSH) [43] maintained by NIH, the Gene Ontology (ap-

prox. 17,000 terms to describe gene products) [13], as well as Web catalogs created

by Yahoo! [70], the Open Directory Project (DMOZ) (approx. 590,000 categories for

Web pages) [47] or LookSmart, to name some of the most important ones.

In many cases, since categories are often not mutually exclusive, instances are

assigned to more than one category. This leads to large scale multilabel classification

problems. The categories are typically organized in hierarchies or taxonomies, most

commonly by introducing superordinate concepts and by relating categories via ‘is-

a’ relationships. Multiply connected taxonomies are not uncommon in this context.

An example of class hierarchies is given in Figure 1.1. It depicts a small part of the

taxonomy over IPC categories. A patent document can belong to multiple classes. For

example, a document with title “method and apparatus for continuous cross-channel

interleaving” is assigned to both class H 04 K 001 and class H 04 L 001.

We believe that taxonomies encode valuable domain knowledge, which learning

methods should be able to capitalize on, in particular since the number of training

3

H: Electricity

H 04 K 001:

Secret

communication

H 04 K 003:

Jamming of

communication

H 04 L 001:
Arrangements for
detecting or
preventing errors in
the information
received

H 04 L 005:

Arrangements

affording multiple

use of the

transmission path

H 01: Basic
electric

elements

H 02: Generation,
conversion, or
distribution of
electric power

H 03: Basic
electronic

circuitry

H 04: Electric
communication

technique

H 05: Electric
techniques not

otherwise

provided for

H 04 K: Secret communication;

jamming of communication

H 04 L: Transmission

of digital information.

H 04 M: Telephonic

communication

Figure 1.1: Part of the IPC classification hierarchy.

examples for individual classes may be very small when dealing with tens of thou-

sands or more classes. In many applications, the training data can be expensive to

collect. This is sometimes due to the nature of applications (e.g. costly biological

experiments or highly-trained experts are needed), and sometimes due to the general

observation that the labeling process becomes harder as the number of classes grows

and the classes become more and more specific. It is therefore important for auto-

matic classification system to take advantage of all information available. Hierarchy

is one valuable source of domain knowledge. The potential loss of useful information

by ignoring class hierarchies has been pointed out before and has led to a number of

approaches that employ different ways to exploit hierarchies [41, 65, 23].

One intuitive way to exploit hierarchy is to use a divide-and-conquer strategy [31,

23, 52, 10]. Usually one or more local classifiers are trained independently for each

node in a taxonomy. During evaluation, instances are first classified on the top level

and then successively lower levels in the taxonomy. The outputs of these local clas-

sifiers are combined to form predictions. This is a special case of output coding [21].

The main disadvantage of divide-and-conquer methods is that the local classifiers are

combined in a particular way (e.g. greedy decision or Bayes-optimal label assignment)

that is not reflected in the learning of the classifiers.

4

1.2 Our approach

In our work, we take the so-called big bang approach [59], in which a single classifier is

learned with all its parameters fitted together. Thus the way our classifier is learned

is consistent with the way they are used and a more accurate discrimination may be

derived.

In this thesis, we present a new approach for systematically incorporating domain

knowledge about the relationships between categories into the Perceptron learning

and SVM classification architecture. The work has been published in [26], [4], and

[5]. Our approach is based on two ways of encoding class taxonomy. First, we view

the hierarchy as a way to naturally decompose the classifier parameters, which in

our case are the prototypes, or weight vectors of each class. The prototype of a class

is composed of contributions from all its ancestors in a taxonomy. Through this

we tie the learning across categories. The motivation is that by pooling together

instances of individual classes for parameter estimation at higher levels of a taxon-

omy, a more robust classifier will be obtained. This in spirit is very similar to the

hierarchical shrinkage model [41] in which the parameters that are decomposed are

class-conditional word probabilities. Second, we adapt the standard 0/1 loss func-

tion to weigh misclassification errors in accordance with the taxonomy structure. By

considering the degree of “proximity” among categories, the hierarchical loss is more

precise in capturing the user experience and hence the performance of classification

systems. For example, given a document about soccer game, a misclassification into

volleyball game is more tolerable than that into Latin music. In addition, if the

automatic classification is to aid humans in labeling instances, a low hierarchical loss

means that it is easier for humans to find the correct class.

We then incorporate the taxonomy encodings into two learning algorithms: Sup-

port Vector Machines (SVM) and Perceptron, yielding the two new algorithms of

hierarchical SVM and hierarchical Perceptron. In multi-label classification, a pattern

can be assigned to more than one category. We take a ranking view of the learning

problem, i.e. the focus is to rank the category relevance correctly. In hierarchical

SVM, the learning problem is formulated as a joint large margin problem that learns

the discriminant functions for each class at the same time. Unlike in the flat SVM,

these discriminant functions are coupled. The objective function also includes a term

5

that upper bounds a taxonomy-based loss. The resulting dual program can be quite

large. We thus propose a variable selection algorithm to efficiently solve it. To our

best knowledge our work is the first contribution for SVM-based hierarchical cate-

gorization that is not based on a greedy, decision tree-like classification scheme, but

rather optimizes a common objective jointly over all parameters. In Perceptron learn-

ing, the construction of weight vectors and the update rule are modified to reflect the

taxonomy. Both the hierarchical SVM and the hierarchical Perceptron work with

any taxonomy that can be represented as a Directed Acyclic Graph. Furthermore,

they can both take advantage of the power of kernel functions. The experiments have

shown the merits of our hierarchical approach.

It has been shown in our work and many others that exploiting given taxonomies

can improve the classification accuracy. One question to then ask is whether flat

classification is our only choice if no taxonomy is present. It is reasonable to assume

there is still an underlying structure over the classes. We thus propose an algorithm

to automatically generate a hierarchy from training data, which is then used in ex-

isting hierarchical classification methods. The hierarchy generation is modified from

agglomerative clustering algorithm and produces a two-level hierarchy. Our exper-

iments have shown that it improved classification performance for our hierarchical

Perceptron and the Hieron algorithm [19].

In summary, our major contributions are

1. Two methods to represent taxonomy knowledge. One is to directly encode struc-

ture in the scoring function used to rank categories. The other is a taxonomy-

based loss function between categories that is motivated by real applications.

2. Incorporating the taxonomy representations into two learning architectures,

leading to our hierarchical SVM algorithm and hierarchical Perceptron algo-

rithm. We developed an efficient variable selection algorithm for the optimiza-

tion problem in the hierarchical SVM.

3. An algorithm to automatically learn a hierarchy that can then be used with our

hierarchical algorithms or with many other hierarchical methods.

4. Empirical evaluation on several datasets with both standard metrics and a few

hierarchical ones we proposed. We have also run hierarchical algorithms with

6

random hierarchies to investigate the impact of hierarchy and the stability of

classification algorithms.

1.3 Thesis organization

The rest of the thesis is organized as follows. We outline the general background on

SVM and Perceptron in Chapter 2. In Chapter 3 we formalize our learning problem

and introduce the two ways of representing taxonomy knowledge. In Chapter 4 we

formulate the hierarchical SVM learning problem in terms of a joint large margin

problem, for which we derive an efficient training algorithm. In Chapter 5 we propose

a hierarchical Perceptron algorithm that exploits taxonomies in a similar fashion. The

algorithm for automatic hierarchy learning is presented in Chapter 6. In Chapter 7

we discuss the experimental results. The conclusions are in Chapter 8.

Chapter 2

Background

This chapter outlines the Perceptron and Support Vector Machine (SVM) algorithm

that the thesis work is based on. The Perceptron algorithm goes back to Rosenblatt

in 1950s and still is an active research area. SVMs, introduced in early 1990s, have

been a significant advance in machine learning research. The Perceptron is known for

its simplicity and speed while SVMs are known for their performance and theoretic

guarantees. The majority of work on Perceptron and SVM has focused on binary

classification, in which there are only two possible classes. A growing interest in

multiclass and multilabel classification has been witnessed in recent years. We use

multiclass classification to refer to the scenario in which there are multiple classes

and each pattern is relevant with exactly one class. We use multilabel classification

for the scenario in which there are multiple classes and each pattern can be relevant

with one or more classes. Some literature uses different terms for these two scenarios,

such as single-label multiclass classification and multi-label multiclass classification

respectively. However, this thesis will use the terms of multiclass and multilabel

classifications.

The Perceptron and SVM learning for both binary and multiclass classification

will be described in this chapter. The (flat) multilabel algorithms will be introduced in

Sections 4.1 and 5.1 where more context is provided. Note the multiclass algorithms

are special cases of their respective multilabel algorithms.

7

8

2.1 Binary classification

2.1.1 Problem setting

We denote an instance, such as a document, by x ∈ X , where X is the input space.

We employ the popular vector space model [53] and assume X ⊆ Rd. We denote

the set of all classes by Y and a single class by y. In case of binary classification

Y = {−1, 1}. Pattern classification is one type of supervised learning, in which a

labeled training set (or sample) is given. Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
denote the training set for binary classification. It is assumed that (xi, yi) pairs

are drawn i.i.d. from an unknown but fixed distribution p(x, y) over X × Y . The

discriminative learning methods, which both Perceptron and SVMs are, aim at solving

classification directly. That is, to learn a mapping from the input space to the output

space, i.e. f : X → Y . The mapping is called classifier. It is typical to define

a classifier via a linear discriminant function F : X → R that is linear in x. The

score that a discriminant function predicts for an instance indicates the confidence of

assigning the instance to class 1. The classification rule then is to assign an instance

to class 1 if the discriminant function predicts a score that is greater than 0 and to

class −1 otherwise. Both the binary Perceptron and SVMs use discriminant function

and classification function defined as

F (x) = 〈w,x〉+ b and f(x) = sign(F (x)) (2.1)

respectively. The hyperplane defined by w and b, i.e. 〈w,x〉 + b = 0, separates the

input space into the positive halfspace and the negative halfspace.

2.1.2 Binary Perceptron

Rosenblatt’s Perceptron [49] will be introduced in this section. The algorithm initial-

izes w and b to be zero. It then cycles through all training instances repeatedly, one

at a time, until all instances are correctly classified. At each iteration, for current

instance class pair (xi, yi), the algorithm predicts its class with the current classifier:

ŷi = f(xi) = sign(〈w,xi〉+ b) . (2.2)

9

Figure 2.1: The solid and empty circles represent positive and negative instances
respectively. The solid lines represent hyperplanes. The figure on left shows the
maximum-margin separating hyperplane while the figure on right shows another sep-
arating hyperplane on the same data. The grey lines are used to emphasize the
margin.

If yi 6= ŷi, i.e. a mistake is made, then an update step is performed on the classifier:

w← w + yixi, b← b+ yi (2.3)

The step moves the discriminant function value of xi towards the correct direction

of yi. A training set is called linearly separable if there exists a linear classifier that

can classify all training instances correctly, i.e. ∃ w∗ s.t. yi(〈w∗,x〉 + b) > 0 for i =

1, . . . , n. The Perceptron algorithm is guaranteed to converge with every instance

correctly classified if the training data is linearly separable [45].

2.1.3 Binary SVMs

In contrary to Perceptron, in which it suffices to find any hyperplane that separates

the training data correctly, the goal of SVMs is to find a maximum-margin separating

hyperplane. Figure 2.1 shows an example of maximum-margin separating hyperplane,

which is the hyperplane that has the largest distance, or margin, to the training set.

The margin of a hyperplane with respect to a data set is defined by

γ = min
i

yi(〈w,xi〉+ b)

‖w‖ , (2.4)

where ‖w‖ =
√

wTw is the two-norm of w. Note scaling w and b with the same

non-zero constant does not change the value of γ. Without the normalization term

‖w‖, the margin defined in Equation (2.4) could be made arbitrarily large. SVMs

are derived from the principle of risk minimization. A small error (or risk) on the

training data is no guarantee that the classifier will generalize well on unseen data.

10

There are a number of generalization bounds (e.g. in [17] and [64]) which show that

assuming all other variables remain the same, with high probability the larger the

margin is, the smaller risk bound that classifier will have on the whole population of

data. Thus the goal of SVMs is to maximize γ in Equation (2.4). After several steps

of equivalent conversions, this problem takes the standard norm minimization form

of SVM.

min
w,b

1

2
‖w‖2 (2.5a)

s.t. yi(〈w,xi〉+ b) ≥ 1 ∀i (2.5b)

If the training data is not linearly separable, there are also soft margin SVMs to deal

with it. Here we formulate the 1-norm soft margin SVM as below.

min
w,b,ξ

1

2
‖w‖2 + C

∑

i

ξi (2.6a)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 ∀i (2.6b)

The slack variables are denoted by ξi and C is a given constant controlling the trade-

off between maximizing the margin and minimizing the training error. The margin

maximization and kernel techniques (which will be briefly presented in Section 4.2.2)

make SVMs one of the most powerful classification algorithms. Empirical results have

shown leading performance of SVMs on a large number of tasks.

2.2 Multiclass classification

2.2.1 Problem setting

The goal of multiclass classification is to map an instance to a class from a set of

q classes. Let Y = {1, 2, . . . , q}. There are essentially two types of philosophies

in addressing the multiclass problem. One is to combine multiple binary learning

algorithms into a multiclass classifier. The other is to directly generalize binary

learning algorithms to deal with multiple classes. The algorithms introduced here are

of the second type.

Let us introduce a weight vector wy for each class 1 ≤ y ≤ q. Following [14]

11

Algorithm 1 Multiclass Perceptron

Inputs: training data {xi, yi}ni=1.

1: Initialize wy ← 0, ∀ y.
2: repeat

3: for all training instance i do

4: ŷi = argmaxq
y=1〈wy,x〉

5: if ŷi 6= yi then

6: wyi
← wyi

+ xi.
7: wŷi

← wŷi
− xi.

8: end if

9: end for

10: until all instances are correctly predicted

and [16], the discriminant function takes the form of Fy(x) = 〈wy,x〉 and the predic-

tion is made using the following Winner-Take-All rule.

f(x) =
q

argmax
y=1

〈wy,x〉 (2.7)

One can view wy as the prototype of class y. Thus the inner product between wy

and an instance x measures the similarity between the class and the instance. The

classification rule in Equation (2.7) then predicts the class that achieves the highest

similarity score with an instance. If introducing a bias term by for each class, one

could arrive at a more general form of linear discriminant: F ′
y(x) = 〈wy,x〉 + by.

However, this makes solving the optimization problem in multiclass SVM considerably

more difficult. Moreover, the bias terms can always be approximated by adding an

additional feature to all instances with the feature value always being 1.

2.2.2 Multiclass Perceptron

In [16] a family of multiclass online algorithms that generalize binary Perceptron have

been proposed. Here we introduce the most straightforward one, which is also the

foundation of our hierarchical Perceptron algorithm.

The multiclass Perceptron algorithm is described in Algorithm 1. The key change

from binary Perceptron is the update rule. In the multiclass Perceptron, if the pre-

dicted class is wrong, then the weight vector of the correct class is moved towards

the current instance, while that of the predicted class is moved away from the current

12

instance. One can show that the multiclass Perceptron in Algorithm 1 will converge if

the training data can be separated by a linear classifier of the form in Equation (2.7).

2.2.3 Multiclass SVM

There are multiple formulations that generalize binary SVMs to handle the multi-

class classification. Here we outline the one in [14]. The (functional) margin in the

multiclass setting is defined as

γ ≡ min
i
γi where γi ≡ 〈wyi

,xi〉 −max
y 6=yi

〈wy,xi〉 (2.8)

The margin for each instance is defined as the difference between the score of the

correct class and the maximal score of any incorrect class. The goal of maximizing

the margin leads to

min
{wy}

q
y=1,ξ

1

2

q
∑

y=1

‖wy‖2 + C
∑

i

ξi (2.9a)

s.t. 〈wyi
,xi〉 −max

y 6=yi

〈wy,xi〉 ≥ 1− ξi ∀i (2.9b)

ξi ≥ 0 ∀i (2.9c)

The constraints in Equation (2.9b) can be rewritten as a set of linear constraints

〈wyi
,xi〉 − 〈wy,xi〉 ≥ 1− ξi ∀i, y 6= yi (2.10)

Therefore the multiclass SVM becomes a quadratic program.

Chapter 3

Utilizing known taxonomies

3.1 Problem of multilabel classification over hier-

archies

This section formulates the problem of multilabel classification over taxonomies that

we address. The same as the multiclass problem setting in Section 2.2.1, an instance

is denoted by x ∈ X ⊆ Rd, the set of all categories by Y = {1, . . . , q}, and a

category by y ∈ Y . Furthermore we denote a label set by Y ⊆ Y and the power

set of Y by P(Y) = {Y |Y ⊆ Y}. In multilabel classification, a pattern can be

relevant with multiple categories. Therefore the training set is denoted by D =

{(x1, Y1), (x2, Y2), . . . , (xn, Yn)} ⊆ X × P(Y).

The majority of methods in literature specify a taxonomy to be a tree structure. In

our work we define a taxonomy to be a directed acyclic graph (DAG) since DAGs are

broader than trees and are commonly used in real life (e.g. Web catalogs created by

Yahoo! [70] and by DMOZ [47]). The taxonomies in previous work usually appear in

two types: only the leaf nodes (or minimal elements in DAGs) are classes (e.g. [40, 23,

19]); or any node in a taxonomy represents a class (e.g. [50, 10]). The examples of the

former type of taxonomies include the IPC scheme [68] and the Enzyme Classification

(EC) system [46] while those of the latter type include MeSH [43] and the Yahoo! [70]

directory. In this work we specify the classes to be minimal nodes in a DAG. In some

cases one wants to express that patterns belong to a super-category, but to none of

the terminal categories. we suggest to model this by formally adding one terminal

13

14

node to each inner node, representing a “miscellaneous” category; this avoids the

problem of partial paths.

Formally, a taxonomy is a Directed Acyclic Graph (V , E) with nodes V ⊇ Y such

that the set of terminal nodes equals Y , formally Y = {y ∈ V : ∄v ∈ V, (y, v) ∈ E}.
Note that we do not assume that a taxonomy is singly connected (tree or forest), but

allow for converging nodes. The directed edges indicate “is-a” relationships between

nodes. For example, class country music is a type of music. So concepts in a

taxonomy become increasingly specialized along the directed path from a root to a

terminal node.

In multilabel learning, the aim is to find a mapping f : X → P(Y), based on a

sample of training pairs in D. A popular approach as suggested, for instance by [54], is

to actually learn a ranking function over the categories for each pattern, g : X → Sq,

where Sq is the set of permutations of ranks 1 to q. In order to get a unique subset of

labels, one then needs to address the additional question on how to select the number

of categories a pattern should be assigned to. This can be achieved, for example, by

the set size prediction method presented in [24].

It is common to define the ranking function g implicitly via a scoring function F :

X ×Y → R, such that g(x)(y) < g(x)(y′) whenever F (x, y) > F (x, y′), i.e. categories

with higher F -values appear earlier in the ranking (for ease of presentation we ignore

ties). Notation g(y) is used when clear from context.

3.2 Class attributes

The same as in the multiclass classification in Section 2.2, we introduce a weight

vector wy for every class. We will refer to the stacked vector of all weights by w =

(wT
1 , . . . ,w

T
q)T . We can then define a linear discriminant function for flat classification

F (x, y;w) ≡ 〈wy,x〉 . (3.1)

Following [16, 15, 14] we have not included bias terms for categories. One can

also introduce explicit bias terms by for every class, but this would complicate the

presentation and lead to further complications in the optimization algorithm. We thus

restrict ourselves to this simpler setting. One way to approximate bias terms is to

augment each instance with an extra feature whose value is always 1. The additional

15

dimensions in weight vectors thus approximate bias terms. Another way to view the

discriminant function is that wy represents the prototype vector of class y and the

inner product in Equation (3.1) measures the similarity between a class prototype and

an instance. In the multiclass classification, an instance is then assigned to the class

with the most similar class prototye (see the Winner-Take-All rule in Equation (2.7)).

We would like to extend Equation (3.1) to cases where classes are not just arbitrary

numbers, but can be characterized by attribute vectors Λ(y) ≡ (λ1(y), . . . , λs(y))
T ∈

Rs. This should be carried out in a way that recovers the flat setting as a special

case of an orthogonal attribute representation with s = q and λr(y) = δyr, i.e. a case

where each class is interpreted as a binary attribute of its own. To that extent, we

propose to redefine a more general version of the scoring functions F as

F (x, y;w) ≡ 〈w,Φ(x, y)〉 , (3.2)

where w is a weight vector and Φ(x, y) = Λ(y)⊗x is the joint feature representation.

Here ⊗ is the Kronecker product, i.e. Φ(x, y) ∈ Rd·s is a vector containing all products

of coefficients from the first and second vector argument. Writing out Φ(x, y), one

gets

Φ(x, y) =













λ1(y) · x
λ2(y) · x
. . .

λs(y) · x













. (3.3)

One can interpret w in Equation (3.2) in terms of a stacked vector of individual weight

vectors, i.e. w = (wT
1 , . . . ,w

T
s)T , where wr ∈ Rd is the weight vector associated with

the r-th attribute.

If λr(y) = δry the joint feature representation simply reduces to

Φ(x, y) =



















...

0

x

0
...



















← occupying the (d(y − 1) + 1)-th through dy-th positions, (3.4)

16

making

〈w,Φ(x, y)〉 =



















...

wy−1

wy

wy+1

...



















T 

















...

0

x

0
...



















= 〈wy,x〉 . (3.5)

This is conceptually similar to the Kesler construction [22]. Notice when λr(y) = δry

Equation (3.2) indeed reduces to the formulation in Equation (3.1).

It is a straightforward consequence of the linearity of Equation (3.2) to show that

one can re-write F as an additive decomposition as follows:

F (x, y;w) =









w1

...

ws









T 







λ1(y)x
...

λs(y)x









=
s
∑

r=1

λr(y)〈wr,x〉 . (3.6)

The general idea is that the notion of class attributes will allow generalization to take

place across (similar) categories and not just across training examples belonging to

the same category.

How are we going to translate the taxonomy information into attributes for cate-

gories? The idea is to treat the nodes in the taxonomy as properties that a subset of

categories share. Formally, we define

λv(y) =







tv(y), if v ∈ anc(y)

0, otherwise ,
(3.7)

where tv(y) ≥ 0 is the attribute value for category y with respect to node v. We

denote by anc(y) the set of ancestor nodes of y in the taxonomy including y itself

(for notational convenience). In the simplest case, tv(y) can be set to a constant,

like 1, such that tv(y) becomes an indicator function. Other choices for tv(y) are, for

example, setting all tv(y) equal to a constant for nodes v at the same depth in the

taxonomy. Equation (3.7) leads to an intuitive decomposition of the scoring function

F into contributions from all nodes along the paths from a root node to a specific

terminal node. Hence Equation (3.2) becomes

F (x, y;w) =
∑

z: z∈anc(y)

λz(y)〈wz,x〉, (3.8)

17

9 10

6 7 8

1 2 3 4 5

Figure 3.1: Taxonomy with 5 categories and a total of 10 nodes. The decomposition
of the discriminant function for category 2 is depicted as an example.

An illustrating example is depicted in Figure 3.1.

If we define

Wy =
∑

z:z∈anc(y)

λz(y)wz , (3.9)

we can rewrite Equation (3.8) as

F (x, y;w) =

〈

∑

z: z∈anc(y)

λz(y)wz , x

〉

= 〈Wy,x〉 . (3.10)

Note that Wy consists of a linear combination of weight vectors of ancestor nodes and

functions as the weight vector or prototype associated with class y. We therefore name

w the weight vector or the node weight vector and W the class weight vector. Owing

to how we define taxonomy-based class attributes, the weight vectors of nearby classes

in the taxonomy tend to be more similar since they share many common ancestors.

Meanwhile the weight vectors of distant classes tend to be less similar. This is intuitive

as we would expect the prototype of class volleyball game to be more similar to

that of soccer game than to that of country music.

3.3 Loss functions

A standard loss function for the multi-label case is to use the symmetric difference

between the predicted and the actual label set, i.e. to count the number of correct

18

categories missed plus the number of incorrect categories that have been assigned,

△0(Y, Ŷ) ≡ |Y ⊖ Ŷ |.
Yet, in many applications, the actual loss of a predicted label set relative to the

true set of category labels will depend on the relationship between the categories. As a

motivation we consider the generic setting of routing items based on their membership

at nodes in the taxonomy. For instance, in a news routing setting, readers may sign-

up for specific topics by selecting an appropriate node, which can either be a terminal

node in the taxonomy (e.g. the category “Soccer”) or an inner node (e.g. the super-

category “Sports”). Note that while we assume that all items can only be assigned to

terminal nodes of the taxonomy, customers may prefer to sign-up for many categories

en bloc by selecting an appropriate super-category.

We assume that there is some sign-up volume sv ≥ 0 (e.g. the number of users

that subscribe to node v) for each node as well as costs c− of missing a relevant item

and c+ for assigning an irrelevant item. For any label set Y , define anc(Y) ≡ {v ∈
V : ∃y ∈ Y, v ∈ anc(y)}. Now we can quantify the loss in the following manner:

△H(Y, Ŷ) = c−
∑

v∈anc(Y)

sv + c+
∑

v∈anc(Ŷ)

sv − (c− + c+)
∑

v∈anc(Y)

∩anc(Ŷ)

sv (3.11)

Note that only nodes in the symmetric difference anc(Y)⊖ anc(Ŷ) contribute to the

loss. In the following we will simplify the presentation by assuming that c− = c+ = 1.

Then, by further setting sv = 1 (∀v ∈ V) one gets

△H(Y, Ŷ) = |anc(Y)⊖ anc(Ŷ)| . (3.12)

Intuitively, this means that one colors all nodes that are on a path to a node in Y

with one color, say blue, and all nodes on paths to nodes in Ŷ with another color,

say yellow (see Figure 3.2). Nodes that have both colors (blue+yellow=green) are

correct, blue nodes are the ones that have been missed and yellow nodes are the ones

that have been incorrectly selected; both types of mistakes contribute to the loss

proportional to their volume.

During training, this loss function is difficult to deal with directly, since it involves

sets of labels. Rather, we would like to work with pairwise contributions, e.g. involving

terms

△H(y, y′) = |anc(y)⊖ anc(y′)| . (3.13)

19

anc(Y) ⊖ anc(Ŷ) = anc(Y)⊖ anc(Ŷ)

Figure 3.2: Hierarchical loss between two sets of categories. Let Y = {2, 3}, Ŷ =
{1, 4}, and therefore anc(Y)⊖ anc(Ŷ) = {1, 2, 3, 4, 7, 8}.

In singly connected taxonomies Equation (3.13) is equivalent to the length of the

(undirected) shortest path connecting the nodes y and y′, suggested by [65]. It is

reasonable to assume that confusing classes that are “nearby” in the taxonomy is less

costly or severe than predicting a class that is “far away” from the correct class. In

order to relate the loss between label set pairs and the loss between label pairs, we

state the following proposition:

Proposition 1. For any Y, Ŷ ⊆ Y satisfying Y 6⊆ Ŷ and Ŷ 6⊆ Y ,

|anc(Y)⊖ anc(Ŷ)| ≤
∑

y∈Y −Ŷ

ŷ∈Ŷ −Y

|anc(y)⊖ anc(ŷ)|

Proof. We first show

anc(Y)⊖ anc(Ŷ) ⊆
⋃

y∈Y −Ŷ

ŷ∈Ŷ −Y

anc(y)⊖ anc(ŷ) (3.14)

Pick an arbitrary element, z, from set anc(Y) − anc(Ŷ). By definition, there exists

an element y ∈ Y such that z ∈ anc(y) and for any element r̂ in Ŷ , z 6∈ anc(r̂). We

thus have y ∈ Y − Ŷ . Since Ŷ 6⊆ Y , there must exists at least one element ŷ that is

in the set Ŷ − Y . Therefore, we know

∃y ∈ Y − Ŷ , ŷ ∈ Ŷ − Y, such that z ∈ anc(y)− anc(ŷ) .

As a consequence, z ∈ ⋃y∈Y −Ŷ ,ŷ∈Ŷ −Y anc(y)⊖ anc(ŷ). We thus proved

anc(Y)− anc(Ŷ) ⊆
⋃

y∈Y −Ŷ

ŷ∈Ŷ −Y

anc(y)⊖ anc(ŷ)

20

Similarly, we can prove anc(Ŷ)−anc(Y) ⊆ ⋃y∈Y −Ŷ ,ŷ∈Ŷ −Y anc(y)⊖anc(ŷ). Therefore

Equation (3.14) holds. We thus have

∣

∣

∣anc(Y)⊖ anc(Ŷ)
∣

∣

∣ ≤

∣

∣

∣

∣

∣

∣

∣

⋃

y∈Y −Ŷ

ŷ∈Ŷ −Y

anc(y)⊖ anc(ŷ)

∣

∣

∣

∣

∣

∣

∣

≤
∑

y∈Y −Ŷ

ŷ∈Ŷ −Y

|anc(y)⊖ anc(ŷ)|

For learning with ranking functions g, we translate this into

△H(Y, g) =
∑

y∈Y,ŷ∈Y−Y
g(y)>g(ŷ)

|anc(y)⊖ anc(ŷ)| . (3.15)

We look at every pair of categories where an incorrect category comes before a correct

category in the order defined by g and count the symmetric difference of the respective

ancestor sets as the corresponding loss.

Chapter 4

Hierarchical Support Vector

Machines

In this chapter, we will first introduce the flat multilabel SVM, then propose our

hierarchical SVM formulation and the optimization algorithm, rewrite our hierarchical

multilabel SVM in another set of variables to analyze its taxonomy-dependent way

of regularization, and examine related work.

4.1 Flat multilabel SVM

We generalize the multiclass SVM formulation in Section 2.2.3 to a multilabel for-

mulation similar to that in [24]. For a given set of correct categories Yi we denote

the complement by Ȳi = Y − Yi. Following [24] we then approximate the separation

margin of w with respect to the i-th example as

γi(w) ≡ min
y∈Yi,ȳ∈Ȳi

〈wy,xi〉 − 〈wȳ,xi〉 . (4.1)

Note that the correct ranking of classes requires a positive margin. A correct ranking

is one in which any relevant class is ranked higher than any irrelevant class. Figure 4.1

(a) and (b) show two scoring schemes that are both correct rankings. Assuming for

now that the training data can indeed be correctly classified by some weight vector

w, we can apply the maximum margin principle to determine the weight vector w∗

21

22

Figure 4.1: Illustration of margin and penalty for the flat multilabel SVM. The vertical
axis represents the compatibility score F associated with the classes. For convenience,
let the score difference of neighboring classes along F axis be 1. The class on top
of the vertical line is the one that has the highest compatibility score. The relevant
classes are class A and B while the irrelevant ones are class C and D. The leftmost
column depicts the classes and corresponding loss. Figure (a) and (b) show two
correct rankings while (c) and (d) show two incorrect rankings.

by achieving optimal separation

w∗ = argmax
w:‖w‖=1

min
i
γi(w) . (4.2)

This is equivalent to minimizing the norm of the weight vector w while constraining all

(functional) margins to be greater than or equal to 1. A multilabel soft-margin SVM

formulation can be obtained by introducing slack variables ξi’s. Thus the soft-margin

multilabel flat SVM is defined as

min
{wy}

q
y=1,ξ

1

2

q
∑

y=1

‖wy‖2 + C
n
∑

i=1

ξi (4.3a)

s.t. 〈wy,xi〉 − 〈wȳ,xi〉 ≥ 1− ξi , (∀i, y ∈ Yi, ȳ ∈ Ȳi) (4.3b)

ξi ≥ 0, (∀i) . (4.3c)

Figure (4.1) (c) and (d) show two scoring schemes in which slack variables become

non-zero.

4.2 Hierarchical multilabel SVM

4.2.1 Primal program

A shortcoming of the flat multilabel SVM in Equation (4.3) is that the categories are

treated as flat. We have proposed in Chapter 3 two methods of encoding a taxonomy.

23

One is to derive class attributes from a taxonomy and utilize them to tie learning

across classes. The other is hierarchical loss functions that depend on the relation

of classes. The problem that needs to be addressed next is how to modify the SVM

formulation to take advantage of the taxonomy encodings.

Although we have derived specific hierarchical loss function △H in Section 3.3, we

would like to work with general loss functions △ : Y ×Y → R, where △(y, ŷ) denotes

the loss of predicting ŷ when the true class is y. We only assume that △(y, y) = 0

and that △(y, ŷ) > 0 for y 6= ŷ.

Now with the introduction of class attributes, as in Equation (3.2), the discrimi-

nant function becomes F (x, y;w) ≡ 〈w,Φ(x, y)〉. We can then define the margin to

be

γi(w) ≡ min
y∈Yi,ȳ∈Ȳi

〈Φ(xi, y)−Φ(xi, ȳ),w〉 . (4.4)

Assuming the training data can indeed be correctly classified by some weight

vector, the hard margin problem in Equation (4.2) now expands to

max
w,γ

γ (4.5a)

s.t. ‖w‖ = 1 , (4.5b)

〈w,Φ(x, y)−Φ(x, ȳ)〉 ≥ γ (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.5c)

The constraint in Equation (4.5c) can be rewritten as

〈w
γ
,Φ(xi, y)−Φ(xi, ȳ)〉 ≥ 1 , (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.6)

Since ‖w‖ = 1 in Equation (4.5b), the objective function in Equation (4.5a) can be

transformed to

γ =
γ

‖w‖‖w‖ =
∥

∥

∥

γ

w

∥

∥

∥
=

1

‖w

γ
‖ . (4.7)

Now it becomes clear that Equation (4.5) is identical to

min
w,γ

∥

∥

∥

∥

w

γ

∥

∥

∥

∥

(4.8a)

s.t. ‖w‖ = 1 (4.8b)

〈w
γ
,Φ(x, y)−Φ(x, ȳ)〉 ≥ 1 , (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.8c)

24

Note that w

γ
is also a weight vector and it defines the same classifier as w. By using

w

γ
as the optimization variable, the constraint ‖w‖ = 1 can be removed. Therefore

we arrive at the following norm-minimization form of the hard margin SVM that

incorporates joint feature representation:

min
w

1

2
‖w‖2 (4.9a)

s.t. 〈w,Φ(xi, y)−Φ(xi, ȳ)〉 ≥ 1 , (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.9b)

In our hierarchical SVM algorithm, we suggest the penalty ξi be scaled propor-

tionally to the loss associated with the violation of the desired margin. Putting these

ideas together yields our hierarchical multilabel SVM:

min
w,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξi (4.10)

s.t. 〈w, δΦi(y, ȳ)〉 ≥ 1− ξi
△(y, ȳ)

, (∀i, y ∈ Yi, ȳ ∈ Ȳi)

ξi ≥ 0, (∀i) ,

where δΦi(y, ȳ) ≡ Φ(xi, y)−Φ(xi, ȳ)..

This formulation generalizes the flat multilabel SVM. The same as in flat multil-

abel SVM, the efforts are put into correctly ordering each pair of positive and negative

labels. Different from the flat SVM, the margin violations involving an incorrect class

will be penalized in accordance with the associated loss. The higher the loss, the more

severe the penalty will be. Figure 4.2 shows this distinction. We can also use a set size

prediction mechanism such as the one in [24] to convert the category ranking into an

actual multi-label assignment. The size prediction function is learned from training

data to predict, for any instance, the number of correct labels or the threshold value

to select positive classes.

Comparing our hierarchical SVM formulation in Equation (4.10) with the binary

SVM in Equation (2.6), one finds that the two formulations appear similar although

they address different learning problems. Indeed, we can view δΦi(y, ȳ) (∀i, y ∈ Yi, ȳ ∈
Ȳi) as a positive instance casted in the joint feature space. A binary discriminant in

the joint space corresponds to a multilabel category-ranking classifier in the input

space. The multilabel learning problem in the input space turns out to be almost a

25

Figure 4.2: Illustration of margin and penalty for the hierarchical multilabel SVM.
The notations, classes, and ranking schemes are the same as those in Figure 4.1. The
pairwise hierarchical loss used is half the distance between classes in the taxonomy.
In particular, note how the ξi value in (d) differs from its counterpart in Figure 4.1
due to the involvement of the hierarchical loss.

binary classification problem in the joint input-output space, except δΦi(y, ȳ)’s for

the same instance xi are tied by sharing a common slack variable ξi.

In the special case of multiclass learning with q = 2, the learning problem reduces

to binary classification. If using 0/1 loss and indicator class attributes λr(y) = δry,

then the constraints in Equation (4.10) only involve the difference vector v ≡ w1 −
w2. Moreover it is easy to see that the penalty on ‖w‖ implies that the optimal

weight vector fulfills w1 = 1
2
v and w2 = −1

2
v. Hence, one can equivalently minimize

the norm ‖v‖, showing that the q = 2 case can indeed reduce to the binary SVM

classification.

Here we discuss a concrete example to enhance understanding of the hierarchical

SVM learning. Figure 4.3 depicts an artificial data set together with its category tax-

onomy. The two-dimensional data are assigned to nine categories which are organized

into a two-level hierarchy. The learned weight vectors for both the flat SVM and the

hierarchical SVM, in the same coordinate system as the data, are shown in 4.4. In the

hierarchical learning, we note the weight vector of a parent node gives a direction that

the child nodes share and then the weight vectors of these child nodes articulate the

difference among them. In the flat SVM whose solution is depicted in Figure 4.4(a),

the weight vector associated with a class is used directly and solely in the scoring

function of the class. In contrary, in the hierarchical SVM whose solution is depicted

in Figure 4.4(b), each weight vector is associated with a node in the taxonomy; the

weight vector of a node that corresponds to a class has to be combined with the

weight vectors of all its ancestor nodes, in a form of weighted sum, to contribute to

26

0 2 4 6 8 10

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6
7

8

9

(a) data (b) taxonomy

Figure 4.3: A 2-dimensional dataset with 9 classes in a 2-level tree taxonomy. Node 1,
2, and 3 share a common parent node numbered 123. The same numbering convention
applies to the other two branches under the root.

−4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8w

9

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

w
6

w
1

w
123

w
8

w
2w

456w
5

w
9

w
4

w
3

w
7

w
789

(a) flat SVM solution (b) hierarchical SVM solution

Figure 4.4: Flat and hierarchical SVM solutions on training data in Figure 4.3. The
flat SVM solution is in Figure (a) and the hierarchical in Figure (b).

the scoring function of the class. We did not provide the learned weight vector for

the root node of the taxonomy because it would always be 0 as long as its attribute

value is identical across all classes. In fact this is true for for any node which is an

ancestor for all terminal nodes in a taxonomy. This phenomenon is determined by

the optimization problem of the hierarchical SVM itself.

4.2.2 Dual quadratic program

In this section we derive the dual quadratic program (QP) of the above cost-sensitive

formulation of large margin learning with class attributes. To that extent one first

27

forms the Lagrangian function

L(w, ξ,α, ζ) =
1

2
‖w‖2 + C

n
∑

i=1

ξi −
n
∑

i=1

ζiξi

−
n
∑

i=1

∑

y∈Yi

∑

ȳ∈Ȳi

αiyȳ

(

〈δΦi(y, ȳ),w〉 − 1 +
ξi

△(y, ȳ)

)

(4.11)

Computing derivatives of L with respect to the primal variables results in

∇wL = 0 ⇐⇒ w(α) ≡
n
∑

i=1

∑

y∈Yi,ȳ∈Ȳi

αiyȳδΦi(y, ȳ) , (4.12)

∇ξL = 0 ⇐⇒ ζi = C −
∑

y∈Yi,ȳ∈Ȳi

αiyȳ

△(y, ȳ)
. (4.13)

Since ζi ≥ 0, Equation (4.13) reduces to a loss function weighted box constraint.

Plugging in the optimality equation for w and exploiting Equation (4.13), one arrives

at the dual objective

Θ(α) =
n
∑

i=1

∑

y∈Yi
ȳ∈Ȳi

αiyȳ −
1

2

∑

i,j

∑

y∈Yi
ȳ∈Ȳi

∑

r∈Yj

r̄∈Ȳj

αiyȳαjrr̄〈δΦi(y, ȳ), δΦj(r, r̄)〉 . (4.14)

The solution to the dual QP is thus characterized by

α∗ ≡ argmax
α

Θ(α) s.t. αiyȳ ≥ 0 (∀i, y ∈ Yi, ȳ ∈ Ȳi) ,
∑

y∈Yi
ȳ∈Ȳi

αiyȳ

△(y, ȳ)
≤ C (∀i) .

(4.15)

Note that in Equation (4.14)

〈δΦi(y, ȳ), δΦj(r, r̄)〉 = 〈Λ(y)−Λ(ȳ) , Λ(r)−Λ(r̄)〉〈xi,xj〉 . (4.16)

Herein one can simply replace the inner products 〈xi,xj〉 by corresponding kernel

functions like in the standard SVM classification. Thus data can be mapped to a

space of very high dimension yet classification can be solved efficiently, with little

extra efforts. Furthermore note the right hand side of Equation (4.16) can be further

expanded into

〈δΦi(y, ȳ), δΦj(r, r̄)〉
= (〈Λ(y) , Λ(r)〉+ 〈Λ(ȳ) , Λ(r̄)〉 − 〈Λ(y) , Λ(r̄)〉 − 〈Λ(ȳ) , Λ(r)〉) 〈xi,xj〉 . (4.17)

28

The dual program depends on class attribute vectors only in terms of their inner

products. Therefore one can also replace 〈Λ(y),Λ(ŷ)〉 with a a kernel function so as

to leverage the power of kernel or to cope with cases where the class attributes are

not given but the similarity between classes is available.

It is straightforward to observe that 1
n

∑

i ξi yields an upper bound on the training

loss of the resulting classifier measured by △ in the following sense. We define the

maximum loss as

△x(Y, g) ≡ max
y∈Y,ȳ∈Ȳ :g(y)≥g(ȳ)

△(y, ȳ) . (4.18)

If there is no (y, ȳ) pair that is mistakenly ranked, the right hand side of Equa-

tion (4.18) takes the value 0. So maximal loss is the biggest pair-wise loss among

mis-ranked positive label and negative label pairs. The maximal loss over a set of

examples is defined as

△x(F, {xi, Yi}ni=1) ≡
1

n

n
∑

i=1

△x(Yi, g(xi;F)) . (4.19)

Proposition 2. Denote by (ŵ, ξ̂) a feasible solution of the QP in (4.10). Then
1
n

∑n

i=1 ξ̂i is an upper bound on the empirical maximal loss △x(F (; ŵ), {xi, Yi}ni=1).

Proof. Since ŵ and ξ̂ satisfy constraints in Equation (4.10),

ξ̂i ≥ max{0 , max
y∈Yi
ȳ∈Ȳi

{△(y, ȳ)(1− 〈δΦi(y, ȳ), ŵ〉)}} . (4.20)

Clearly, if there are no negative categories that have compatibility scores higher

than or equal to those of any positive categories, then the maximal loss is 0 and

ξ̂i ≥ 0.

If there is any pair of positive label and negative label (y, ȳ) that satisfies F (xi, y; ŵ) ≤
F (xi, ȳ; ŵ), then by Equation (4.20) ξi ≥ △(y, ȳ). This holds for any mis-ranked label

pairs.

By definition of △x, we have ξi ≥ △x(F,xi, Yi). Applying this inequality to every

instance proves the proposition.

Note that to minimize (an upper bound on) the loss in Equation (3.15), we could

simply assign one slack variable ξiyȳ for every triplet of instance, positive label, and

29

negative label. This leads to a dual program similar to Equation (4.15) except the

second set of constraints become
αiyȳ

△(y,ȳ)
≤ C (∀i, y ∈ Y, ȳ ∈ Ȳ). We have not explored

this variant.

In many cases, especially in the multiclass case, users are particularly interested

in the quality of the category that is ranked the highest by the learned classifier. We

therefore also define the top loss △t as

f(x) ≡ argmax
y∈Y

F (x, y) , (4.21)

△t(F,xi, Yi) ≡







0 if f(xi) ∈ Yi ,

maxy∈Yi
△(y, f(xi)) otherwise,

(4.22)

△t(F, {xi, Yi}ni=1) ≡
1

n

n
∑

i=1

△t(F,xi, Yi) . (4.23)

The function f(x) always predicts the category that achieves the top compatibility

score. If f(xi) is in the set of correct categories Yi, the top loss will be 0. Otherwise,

△t takes the maximum loss between the predicted label and any positive label. In the

special case of multiclass learning, the top loss becomes the loss between the correct

class and the predicted class. If △ is 0/1 loss, the top loss then becomes the one

error [54], which is the percentage of predicted classes being wrong. It is clear from

the definitions of the two losses that the maximal loss is always an upper bound of

the top loss. Therefore the following proposition holds as well.

Corollary 1. Denote by (ŵ, ξ̂) a feasible solution of the QP in Equation (4.10).

Then 1
n

∑n

i=1 ξ̂i is an upper bound on the empirical top loss △t(F (; ŵ, {xi, Yi}ni=1).

4.3 Optimization algorithm

4.3.1 General strategy

The dual QP in Equation (4.15) can become quite large in practice, since the number

of α-variables equals
∑n

i=1 |Yi||Ȳi|. In particular the scaling with q, the number of

categories, is problematic when compared, for instance, to standard (binary) SVMs.

Inspired by the SMO algorithm [48], we propose to exploit two properties of the dual

problem in order to design a more efficient optimization algorithm.

30

First, note that the upper bound constraints in the dual problem Equation (4.15)

factorize over the instance index. By this we mean that the second set of constraints

in Equation (4.15) do not couple dual variables αiyȳ and αjrr̄ belonging to different

training instances i and j. This can be exploited in an optimization procedure which

iteratively performs subspace optimization over all dual variables αiyȳ belonging to

the same training instance. This will in general be a much smaller QP, since it freezes

all αjrr̄ with j 6= i at their current values. This idea has also been successfully applied

in the multiclass SVM optimization algorithm proposed in [14]. However, since class

attribute vectors Λ(y) are in general not orthogonal, we can not use the fix point

method proposed in [14].

Secondly, we expect the number of active constraints at the solution to be rela-

tively small, since only a small fraction of category pairs will typically fail to achieve

the required margin. As with SVMs, this is not a necessity, but for classification

problems that can be solved with reasonable accuracy, this sparseness property can

be observed empirically (cf. Chapter 7). We propose to exploit the expected sparse-

ness by employing a variable selection strategy for the dual problem. Equivalently,

this corresponds to a cutting plane algorithm for the primal QP. Intuitively, we will

identify the most violated margin constraint with index (i, y, ȳ) and then add the

variable αiyȳ to the optimization problem. This means that we start with extremely

sparse (i.e. small) problems and only successively increase the number of variables in

the active set. This general approach to deal with large linear or quadratic optimiza-

tion problems is also known as column generation [20]. In practice, it is often not

necessary to optimize until final convergence, which adds to the attractiveness of this

approach.

4.3.2 Variable selection strategy

Since we use an iterative approach for optimization, which selects one dual variable at

a time for inclusion in the sparsified optimization problem, it is important to develop

a sensible strategy for selecting those variables. In particular, we would like to utilize

a heuristic which focuses on those constraints that are most severely violated. In

order to implement this idea, we need to quantify the extent to which constraints

are violated. For that purpose, we generalize the approach of [14] for which we will

31

present a simplified derivation in the sequel.

Let

Hiyȳ ≡△(y, ȳ) (1− 〈δΦi(y, ȳ),w(α)〉) . (4.24)

Remember w(α) ≡∑n

i=1

∑

y∈Yi,ȳ∈Ȳi
αiyȳδΦi(y, ȳ) from Equation (4.12). Positive val-

ues of Hiyȳ correspond to violations of the requested (functional) margin of 1. Given a

feasible solution α of the dual QP problem in Equation (4.15), the necessary and suf-

ficient conditions for α to be an optimal solution (by Karush-Kuhn-Tucker theorem,

e.g. in [17]) are

ξi ≥ Hiyȳ, (∀i, y ∈ Yi, ȳ ∈ Ȳi) (4.25a)

ξi ≥ 0 , (∀i) (4.25b)

αiyȳ {Hiyȳ − ξi} = 0 , (∀i, y ∈ Yi, ȳ ∈ Ȳi) (4.25c)

ζiξi = 0 , (∀i) , (4.25d)

where ζi = C −∑y∈Yi,ȳ∈Ȳi

αiyȳ

△(y,ȳ)
is given in Equation (4.13). Equation (4.25c) and

(4.25d) are derived from KKT complimentary conditions.

Via Equation (4.25a) and (4.25b), we get

ξi ≥ max

(

max
y∈Yi,ȳ∈Ȳi

Hiyȳ , 0

)

(4.26)

From Equation (4.25c) and (4.25d), we have that

ξi = min
y∈Yi,ȳ∈Ȳi:

αiyȳ>0

Hiyȳ (4.27)

when ζi = 0 and

ξi = min



 min
y∈Yi,ȳ∈Ȳi:

αiyȳ>0

Hiyȳ , 0



 (4.28)

when ζi > 0. We let the quantity miny∈Yi,ȳ∈Ȳi:αiyȳ>0Hiyȳ be 0 if all dual variables

related to xi are zeros.

32

We now define the following quantities for every instance:

li ≡ max

(

max
y∈Yi,ȳ∈Ȳi

Hiyȳ , 0

)

(4.29)

ui ≡















min y∈Yi,ȳ∈Ȳi:
αiyȳ>0

Hiyȳ if ζi = 0

min

(

min y∈Yi,ȳ∈Ȳi:
αiyȳ>0

Hiyȳ , 0

)

if ζi > 0 .
(4.30)

Therefore from Equation (4.25) we have

ξi = ui ≥ li, (∀i) (4.31)

The following score, ψi, is hence used for selecting subspaces.

ψi ≡ li − ui . (4.32)

It can be shown that Equation (4.25) holds if and only if ψi = 0 (∀i). Therefore, we

have the proposition as below.

Proposition 3. Given a feasible solution α of Equation (4.15), α is an optimum if

and only if ψi = 0 for all i = 1, . . . , n.

Proof. First we show that if α is an optimum then ψi = 0 (∀i). Since α is an optimum,

Equation (4.25) is true. From the deduction above, we arrive at Equation (4.31):

ξi = ui ≥ li (∀i).
On the other hand, by definitions of ui and li we have either

case I: if αiyȳ = 0 (∀y ∈ Yi, ȳ ∈ Ȳi), then li ≥ 0 and ui ≤ 0; or

case II: if there exists some ŷ ∈ Yi and ˆ̄y ∈ Ȳi such that αiŷ ˆ̄y > 0, then li ≥ Hiŷ ˆ̄y and

ui ≤ Hiŷ ˆ̄y.

In either cases, li ≥ ui (∀i).
Since both ui ≥ li and li ≥ ui have to be true, we conclude li = ui and therefore

ψi = 0 (∀i).
Next we show that if ψi = 0 (∀i) in a given feasible solution α, then α is an optimal

solution. To this purpose, we only need to show Equation (4.25) holds. Given that

ψi = 0 for all instances, we let ξi ≡ li = ui. Then we have

ξi = li ≥ Hiyȳ (∀i, y ∈ Yi, ȳ ∈ Ȳi) , (4.33)

ξi = li ≥ 0 , (4.34)

33

by definitions of li in Equation (4.29). For any αiyȳ > 0, we know Hiyȳ ≤ li = ui ≤
Hiyȳ by definitions of li and ui, and therefore ξi = li = Hiyȳ. It is true then

αiyȳ(Hiyȳ − ξi) = 0 (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.35)

In order to prove Equation (4.25d), suppose ζi > 0. Then by Equation (4.30), ui ≤ 0

if ζi > 0. Because 0 ≤ li = ui ≤ 0, we get ξi = li = 0. Thus we have

ζiξi = 0 (∀i, y ∈ Yi, ȳ ∈ Ȳi) (4.36)

Equation (4.33), (4.34), (4.35), and (4.36) show Equation (4.25) is true when

ψi = 0 (∀i) for a feasible α.

Proposition 3 justifies a selection strategy that selects training pattern for which ψi

is maximal. Intuitively ψi measures how strongly the margin constraint γi(w) ≥ 1−ξi
is violated for the current solutions w = w(α). Once we have selected the i-th

example we select the class pair y ∈ Yi, ȳ ∈ Ȳi for which Hiyȳ is maximal and add the

variable αiyȳ to the optimization.

Moreover, the following proposition sheds some light on why it is reasonable to

work on the reduced problem.

Proposition 4. Given a set of selected variables S ⊆ {(i, y, ȳ) : i = 1, . . . , n, y ∈
Yi, ȳ ∈ Ȳi} and an optimal solution α∗ of the dual QP over the reduced problem,

i.e. the problem where implicitly αiyȳ = 0 for all (i, y, ȳ) 6∈ S. Then α∗ is an optimal

solution to the full QP in Equation (4.15) if and only if ψi = 0 for all i = 1, . . . , n.

Proof. Since α∗ is an optimal solution to the reduced problem over S, α∗ (with

αiyȳ = 0 for (i, y, ȳ) 6∈ S) is a feasible solution to the full problem. The proposition

can then be proved by using results of Proposition 3.

More details on convergence and sparseness of a more general class of algorithms

can be found in [62].

4.3.3 Implementation details

The previous discussion immediately leads to an optimization algorithm. Pseudo-

code is shown in Algorithm 2. The sets Si’s keep track of the selected constraints

34

Algorithm 2 Hierarchical Multilabel SVM. The optimization algorithm uses variable
selection and subspace optimization.

Inputs: training data {xi, Yi}ni=1, tolerance ǫ ≥ 0

1: initialize Si = ∅, αiyȳ = 0, ∀ i, y ∈ Yi, ȳ ∈ Ȳi.
2: repeat

3: compute Hiyȳ from (4.24) and Equation ψi from Equation (4.32)
4: select î = argmaxn

i=1 ψi

5: if ψî > ǫ then

6: select (ŷ, ˆ̄y) = argmaxy∈Y
î
,ȳ∈Ȳ

î
Hîyȳ

7: expand working set: Sî = Sî ∪ {(ŷ, ˆ̄y)}
8: solve reduced QP over {αîyȳ : (y, ȳ) ∈ Sî} [8a]

solve reduced QP over
⋃n

i=1{αiyȳ : (y, ȳ) ∈ Si} [8b]
9: reduce working set: Sî = Sî − {(y, ȳ) : αîyȳ = 0}

10: end if

11: until ψî ≤ ǫ

for each training pattern. In step 4 and 6 the next constraint is selected. For the

optimization in step 8 one can use any standard QP solver. In order to guarantee

convergence in a finite number of steps, one would need to optimize over all selected

variables in step (8b). However, in practice we propose to use a variant based on step

(8a) which only optimizes over the subspace of the variables in Sî, i.e. the active dual

variables belonging to the selected training instance. In order to carry out step (8a),

we have used the LOQO optimization package [63] in our experiments. The tolerance

ǫ specifies the termination criterion based on the maximal optimization violation,

although in practice one might use other heuristics to stop the training process, if

one is only interested in an approximate solution.

Finally, note that one can keep track of the quantities Hiyȳ and incrementally

update their values after each optimization step, since only the αiyȳ parameters for

the selected i-th training instance change, while the other dual variables remain frozen

at their current values. Introducing these auxiliary variables prevents the undue

computational load of naively evaluating the variable selection criterion.

35

4.4 Taxonomy-derived regularizer

In the section, we will view the hierarchical SVM formulation from a different an-

gle. We will transform the hierarchical SVM formula into one with the standard

class weight vector notation, and show that indeed the hierarchical SVM employs a

taxonomy-derived regularizer.

To remind the reader, the discriminant function for the hierarchical SVM is

F (x, y;w) =
∑

z:z∈anc(y)

λy(z)〈wz,x〉 = 〈Wy,x〉 where Wy =
∑

z:z∈anc(y)

wz .

We call wv (v ∈ V) a node weight vector and Wy (y ∈ Y) a class weight vector.

Although wv’s are sufficient to describe the hierarchical SVM formula, it is of con-

ceptual importance to represent the hierarchical SVM in terms of classical class weight

vectors since this is what is used in standard SVMs as well as in the flat multilabel

SVMs.

We define the set of all interior nodes by O = V − Y = {o1, o2, · · · , ol}. Thus the

hard-margin hierarchical SVM in Equation (4.9) can be rewritten as

min
w

1

2

(

∑

y∈Y

‖wy‖2 +
∑

o∈O

‖wo‖2
)

(4.37a)

s.t. 〈Wy,xi〉 − 〈Wȳ,xi)〉 ≥ 1 , (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.37b)

Next, we will replace the node weight vector variables (wy’s and wo’s) in the

objective function with class weight vectors (Wy’s). Substituting

wy =
Wy −

∑

o∈O∩anc(y) λo(y)wo

λy(y)
(4.38)

36

into the objective function, we have

G ≡
∑

y∈Y

‖wy‖2 +
∑

o∈O

‖wo‖2

=
∑

y∈Y

∥

∥

∥

∥

∥

Wy −
∑

o∈O∩anc(y) λo(y)wo

λy(y)

∥

∥

∥

∥

∥

2

+
∑

o∈O

‖wo‖2

=
∑

y∈Y









1

λy(y)2
‖Wy‖2 − 2

∑

o∈O∩anc(y)

λo(y)

λy(y)2
〈Wy,wo〉+

∑

o,o′:
o∈O∩anc(y)
o′∈O∩anc(y)

λo(y)λo′(y)

λy(y)2
〈wo,wo′〉









+
∑

o∈O

‖wo‖2

=
∑

y∈Y

1

λy(y)2
‖Wy‖2 −

∑

o∈O

〈

∑

y:
o∈anc(y)

y∈Y

2
λo(y)

λy(y)2
Wy,wo

〉

+
∑

o∈O









1 +
∑

y:
o∈anc(y)

y∈Y

λo(y)
2

λy(y)2









‖wo‖2

+
∑

o,o′:
o6=o′

o∈O
o′∈O

























∑

y:
o∈anc(y)
o′∈anc(y)

y∈Y

λo(y)λo′(y)

λy(y)2













〈wo,wo′〉













(4.39)

Let wO = (wT
o1
, . . . ,wT

ol
)T be the stacked weight vectors of all interior nodes. Let

A be a matrix of l rows and l columns, with

Akt =



















1 +
∑

y:
ok∈anc(y)

y∈Y

λok
(y)2

λy(y)2
if k = t

∑

y:
ok∈anc(y)
ot∈anc(y)

y∈Y

λok
(y)λot (y)

λy(y)2
if k 6= t

(4.40)

The matrix A depends on the number of descendent classes that two interior nodes

share. Let

Ã ≡ A⊗ Id×d (4.41)

be a matrix of size ld by ld, where Id×d is an identity matrix of size d by d. Note d is

the dimension of feature space.

37

Let u(W) = (uT
1 , . . . ,u

T
l)T be a vector of length ld, where the component vector

is defined as

uk =
∑

y:ok∈anc(y), y∈Y

λok
(y)

λy(y)2
Wy (4.42)

Note uk equals a linear combination of weight vectors of classes that are descendents

of node ok.

With Ã and u introduced, the quantity G in Equation (4.39) can be written as

G =
∑

y∈Y

1

λy(y)2
‖Wy‖2 − 2u(W)TwO + wT

OÃwO . (4.43)

For a given W, equation (4.43) is an unconstrained quadratic convex function of

wO, with minimum value

G∗ =
∑

y∈Y

1

λy(y)2
‖Wy‖2 − u(W)T Ã−1u(W) , (4.44)

which is achieved at

w∗
O = Ã−1u(W) (4.45)

By definition of Ã, Ã−1 = A−1⊗ Id×d. Thus the hierarchical SVM in equation (4.37)

can be rewritten in a form parameterized by Wy’s. We therefore arrive at the following

equivalent quadratic program.

min
W

1

2

(

∑

y∈Y

1

λy(y)2
‖Wy‖2 − u(W)T Ã−1u(W)

)

(4.46a)

s.t. 〈Wy −Wȳ,xi〉 ≥ 1 (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (4.46b)

In Equation (4.46), matrix Ã only depends on the class attribute vectors and the

taxonomy, so it is a given matrix for given optimization problem.

Compared to the flat SVM, the hierarchical SVM (Equation (4.46)) has an extra

term −u(W)T Ã−1u(W) to minimize, which couples the weights of classes depending

on how they are located in the taxonomy. Therefore, the hierarchical SVM encourages

similarity or dissimilarity between class weight vectors based on the class locations in

the given taxonomy.

38

1

2 3

7 8 9 10

4

5 6

11 12 13 14

Figure 4.5: A taxonomy comprising two perfect trees of depth 2. Node 1, 2, 3, 4, 5, 6
are interior nodes and 7, 8, 9, 10, 11, 12, 13, 14 are leaf nodes

In the more general case, the class attributes can be arbitrarily defined. The above

deduction still holds for cases where any class is not represented by any other class

node, that is λy′(y) = 0 if y 6= y′. Equation (4.40) and (4.42) will be the same except

that the sum is now over all y’s instead of just the y’s under particular interior nodes.

To get a clearer view of how hierarchical SVM ties the weight vectors of classes,

here we give a concrete example for the taxonomy depicted in Figure 4.5. The hier-

archy comprises two perfect trees in which all leaf nodes are at the same depth and

all interior nodes have the same number of child nodes. To simplify the discussion,

we assume

λz(y) =







λ if z ∈ anc(y)

0 otherwise
.

Then

u(W)T Ã−1u(W)

=
1

λ2
(
‖W7 + W8 + W9 + W10‖2

3× 7
+
‖W7 + W8‖2

3
+
‖W9 + W10‖2

3

+
‖W11 + W12 + W13 + W14‖2

3× 7
+
‖W11 + W12‖2

3
+
‖W13 + W14‖2

3
) . (4.47)

The details of computation for this hierarchy as well as for general perfect tree of

depth 2 are in Appendix A. Note for any vectors of fixed norms, their summation

has the largest norm if the vectors point to the same direction. In this example we

observe the closer two classes are in the taxonomy, the harder the hierarchical SVM

learning tries to make their class prototype vectors similar to each other.

By the same deduction, the soft-margin hierarchical SVM in Equation (4.10) can

39

be rewritten as

min
W,ξ

1

2

(

∑

y∈Y

1

λy(y)2
‖Wy‖2 − u(W)T Ã−1u(W)

)

+ C

n
∑

i=1

ξi (4.48a)

s.t. 〈Wy −Wȳ,xi〉 ≥ 1− ξi
△(y, ȳ)

(∀i, y ∈ Yi, ȳ ∈ Ȳi) , (4.48b)

ξi ≥ 0, (∀i) . (4.48c)

The discussion above comparing the flat SVM and the hierarchical SVM still holds.

4.5 Related work

A considerable number of approaches have been proposed on hierarchical classifica-

tion [23, 31, 10], based on various classical learning methods such as neural networks,

probabilistical models and SVMs. Many approaches for hierarchical classification use

a divide-and-conquer strategy to first classify instances on a coarse level and then

on successively finer levels. While this offers advantages in terms of modularity, the

local optimization of (partial) classifiers at every inner node is unable to reflect a

more global objective.

Koller and Sahami [31] employed this strategy in conjunction with probabilistic

classifier (naive Bayes [35] and slightly less naive versions thereof), which are trained

at each split node in the hierarchy. The classification decision is thus decomposed into

a number of local routing or refinement decisions in the taxonomy. In addition, [31]

proposes feature selection at every refinement level and they show that locally only a

small number of discriminative features may be sufficient to achieve reasonable classi-

fication accuracy. Follow-up work on the feature selection aspect has been performed

by Mladenik and Grobelnik [42]. The downside of this approach is the use of a less

competitive classifier, naive Bayes, together with an independent training process for

each refinement classifier. The latter may lead to suboptimal discrimination, since

the classifiers are finally operated in a specific architecture that combines their out-

puts. Even more severe are the disadvantages of the greedy decision process, which

does not allow to recover from incorrect routing decision made at higher levels of the

hierarchy. Improved non-greedy techniques have been investigated by Charkabarti et

al. [12].

40

Divide-and-conquer strategies in conjunction with SVM classifiers have been pro-

posed by Dumais and Chen [23] and by Sun and Lim [58]. Again, classifiers are

trained independently and their outputs are combined by integrating scores along

each path. In [23] a sigmoidal transformation is applied to derive estimates of pos-

terior probabilities. These probabilities are then either thresholded independently or

combined multiplicatively and then thresholded. In [58] a heuristic is developed to

select training instances for training each refinement classifier. [23] also use a feature

selection strategy similar to [31].

Hierarchical neural networks architectures have been utilized by Ruiz and Srini-

vasan [52] as well as by Weigend, Wiener, and Pedersen [66]. In both approaches

a quite aggressive feature selection and/or dimension reduction step is necessary in

order to reduce the number of input weights in the neural network. The training of

networks at different levels is again performed independently using back-propagation,

leading to the same problems that were mentioned above.

In the context of naive Bayes classification, McCallum et al. [41] have proposed

the use of shrinkage, a particular form of smoothing, to derive improved estimates

of parameters for the class conditional distributions. The hierarchy is thus used

to overcome sparseness problems in parameter estimation and not in a divide-and-

conquer manner. Toutanova et al. [61] have developed an improved Expectation

Maximization algorithm that refines the technique of [41]. The main downside of this

line of work is that naive Bayes classifiers are often not competitive and the gain from

using the hierarchy is often less than the loss in accuracy suffered relative to more

competitive methods like SVMs.

[9] introduces a loss function, called the H-loss, specifically designed to deal with

the case of partial and overlapping paths in tree-structured taxonomies. [10] has pro-

posed B-SVM, which also uses the H-loss and uses a decoding scheme that explicitly

computes the Bayes-optimal label assignment based on the H-loss and certain condi-

tional independence assumptions about label paths. The loss function we proposed

exploits the taxonomy in a different way from H-loss, partly because we always con-

vert partial path categories to complete path categories. Our loss function is inspired

by real applications like routing and subscription to a taxonomy. Thus misclassifica-

tions are penalized along all ancestors that miss relevant patterns or include irrelevant

41

ones. In H-loss, however, if punishment already occurs to a node, its descendents are

not penalized again. In addition, our loss function works with arbitrary taxonomy,

not just trees.

[19] presents an online algorithm for multiclass hierarchical classification. It de-

composes the weight vectors into contributions of taxonomy nodes in the same way

that we do. However, it only deals with trees. Their method employs a conservative

update rule: when a pattern is wrongly classified, then the weight vectors associ-

ated with the correct class and the wrong class and some of their ancestors will be

updated; the update coefficient is determined by solving a quadratic optimization

problem where a hierarchical loss is imposed.

[51] applies the Maximum-Margin Markov Networks [60] to hierarchical classifica-

tion where the taxonomy is regarded as Markov Networks. They propose a simplified

version of H-loss that decomposes into contributions of edges so as to marginalize the

exponential-sized problem into a polynomial one. In our methods, learning occurs on

taxonomy nodes instead of edges. We view the taxonomy as a dependency graph of

“is-a” relation.

Finally, we would like to point out that our method is a natural generalization of

the multiclass SVM formulation proposed in [14, 67]. We employ the category ranking

approach proposed in [54] to deal with the additional challenge posed by overlapping

categories, i.e. the multi-label problem. Our work is a particularly interesting special

case of a more general learning architecture presented in [62].

Chapter 5

Hierarchical Perceptron

The Perceptron algorithm and Support Vector Machines possess different strengths.

As seen in Chapter 4, training a Support Vector Machine requires solving a large and

complex quadratic optimization problem. Although SVMs generalize better than Per-

ceptron, it is usually slower than the Perceptron algorithm. The Perceptron algorithm

also naturally fits into the online learning paradigm in which training examples are

encountered one at a time and correction to the discriminant function is made before

receiving the next example. The Perceptron algorithm is therefore memory efficient

since it processes one example at a time. Another advantage is that the Perceptron

algorithm is very easy to understand and implement.

In this chapter, we first describe the flat multilabel Perceptron, then generalize

it to our online hierarchical Perceptron, present two batch variants of the online

hierarchical Perceptron, and give related work.

5.1 Flat multilabel Perceptron

We extend the multiclass Perceptron in Algorithm 1 to Algorithm 3 to deal with mul-

tilabel learning. In multilabel classification, a pattern can be relevant with multiple

classes. In step 4, (ŷ, ˆ̄y) is selected to be the pair of positive and negative classes

that achieves the multilabel margin γi(w) for the i-th instance, as defined in Equa-

tion (4.1). If the margin is not greater than 0, it indicates that there are errors in the

ranking. The current discriminant function is then updated by adding the current

42

43

Algorithm 3 Flat Multilabel Perceptron

Inputs: training data {xi, Yi}ni=1; maximal number of epochs κ.

1: Initialize wy ← 0, ∀ y.
2: for num = 1 to κ do

3: for all training instance xi do

4: (ŷ, ˆ̄y) = argminy∈Yi,ȳ∈Ȳi
〈wy,xi〉 − 〈wȳ,xi〉

5: if 〈wŷ,xi〉 − 〈wˆ̄y,xi〉 ≤ 0 then

6: wŷ ← wŷ + xi.
7: wˆ̄y ← wˆ̄y − xi.
8: end if

9: end for

10: if no update is performed in current epoch then

11: terminate with a satisfactory solution
12: end if

13: end for

instance to wŷ and subtracting the current instance from wˆ̄y.

In Perceptron learning, an update strategy is called conservative if an update

to the discriminant function can only be made if the current hypothesis makes a

mistake on the current instance. An update strategy for multilabel Perceptron is

called ultraconservative [15] if it is not only conservative, but it also leaves the weight

vectors of classes that are not in the error set of the current instance intact. The

error set of instance xi is defined as [15]

Ei ={y | y ∈ Yi ∧ ∃ȳ s.t. 〈wy,xi〉 − 〈wȳ,xi〉 ≤ 0}
∪{ȳ | ȳ ∈ Ȳi ∧ ∃y s.t. 〈wy,xi〉 − 〈wȳ,xi〉 ≤ 0} . (5.1)

It means that Ei contains all classes that are mis-ranked for instance xi by the current

classifier. The flat multilabel Perceptron in Algorithm 3 is an ultraconservative algo-

rithm. In fact, it falls into a family of ultraconservative online algorithms presented

in [15].

When a set of training data is given in advance, the traditional way that the

Perceptron algorithm uses it is by making a number of passes over the whole training

set. Each pass is called an epoch. The maximal number of epochs is denoted by κ in

Algorithm 3.

44

Algorithm 4 Online hierarchical multilabel Perceptron algorithm in primal form

Inputs: training data {xi, Yi}ni=1, maximal number of epochs κ.

1: Initialize w← 0.
2: for num = 1 to κ do

3: for all training instance xi do

4: (ŷ, ˆ̄y) = argminy∈Yi,ȳ∈Ȳi
〈w, δΦi(y, ȳ)〉

5: if 〈w, δΦi(ŷ, ˆ̄y)〉 ≤ 0 then

6: w← w +△(ŷ, ˆ̄y)δΦi(ŷ, ˆ̄y)
7: end if

8: end for

9: if no update is performed in current epoch then

10: terminate with a satisfactory solution
11: end if

12: end for

5.2 Online hierarchical multilabel Perceptron

5.2.1 Primal form

To remind the reader, we encode a taxonomy in two ways. One is taxonomy-derived

class attributes, which are manifested in the structure of the stacked weight vector w

and in the joint feature representation Φ(x, y). The other is the taxonomy-based loss

function. The goal of online hierarchical multilabel Perceptron is to extend the flat

algorithm to incorporate the two encodings. We propose to do so by Algorithm 4.

To remind the readers, δΦi(y, ȳ) ≡ Φ(xi, y)−Φ(xi, ȳ), where Φ(xi, y) is the joint

feature representation of instance xi and class y, and 〈w,Φ(xi, y)〉 is the scoring

function of class y. In Algorithm 4, the selection of (ŷ, ˆ̄y) pair is modified according

to the multilabel margin defined in Equation (4.4), which uses class attributes. The

pair is composed of the relevant class that has the lowest compatibility score and the

irrelevant class that has the highest score. A positive margin for a pattern indicates

a correct ranking of all categories while a non-positive one indicts errors. The class

attributes are also used in the update rule in step 6. In addition, the amount of

update is scaled by the loss involved. So the more severe the incurred loss is, the

more aggressive the update to the current classifier is. This strategy is also employed

in [15]. In the special case of indicator class attributes and 0/1 loss, step 6 in the

online hierarchical Perceptron algorithm can be verified to reduce to the update step

45

in the flat multilabel Perceptron.

To better understand the update rule, let us expand the update vector to

△(ŷ, ˆ̄y)δΦi(ŷ, ˆ̄y)

=△(ŷ, ˆ̄y)
(

Λ(ŷ)⊗ xi −Λ(ˆ̄y)⊗ xi

)

=△(ŷ, ˆ̄y)
(

(λ1(ŷ)− λ1(ˆ̄y))x
T
i , (λ2(ŷ)− λ2(ˆ̄y))x

T
i , · · · , (λs(ŷ)− λs(ˆ̄y))x

T
i

)T
. (5.2)

Therefore the update to the stacked weight vector can be decomposed to a set of

updates to individual weight vectors as

wz ← wz +△(ŷ, ˆ̄y)
(

λz(ŷ)− λz(ˆ̄y)
)

xi (∀z = 1, · · · , s) . (5.3)

To simplify discussion, suppose the following hierarchical attribute vector is used.

λz(y) =







1 if z ∈ anc(y)

0 otherwise
(∀ y ∈ Y , z ∈ V) (5.4)

Then Equation (5.3) becomes

wz ←



















wz +△(ŷ, ˆ̄y)xi if z ∈ anc(ŷ) \ anc(ˆ̄y)

wz −△(ŷ, ˆ̄y)xi if z ∈ anc(ˆ̄y) \ anc(ŷ)

wz otherwise

. (5.5)

Only the weight vectors of those nodes that are predecessors of ŷ or ˆ̄y but not

both will be updated. Other nodes are left intact. This strategy is also used in [19]

for online multiclass classification. The more severe the loss is incurred, the more

dramatic the update will be. Although our algorithm uses the mere loss function

as the update coefficient, the experiments show that it performs competitively with

the considerably more complicated technique employed in [19]. Moreover, step 6 of

Algorithm 4 not only updates the scoring functions of the two classes in question,

but also spreads the impact to other classes sharing affected ancestors with them.

Therefore, the hierarchical Perceptron is not ultraconservative.

5.2.2 Dual form

In the online hierarchical Perceptron algorithm, the stacked weight vector is ini-

tialized to 0. The update rule changes the current weight vector only by adding

46

Algorithm 5 Online hierarchical multilabel Perceptron algorithm in dual form

Inputs: training data {xi, Yi}ni=1, maximal number of epochs κ.

1: Initialize αiyȳ = 0, ∀ i, y ∈ Yi, ȳ ∈ Ȳi.
2: for num = 1 to κ do

3: for all training instance xi do

4: (ŷ, ˆ̄y) = argminy∈Yi,ȳ∈Ȳi
〈w(α), δΦi(y, ȳ)〉

5: if 〈w(α), δΦi(ŷ, ˆ̄y)〉 ≤ 0 then

6: αiŷ ˆ̄y ← αiŷ ˆ̄y +△(ŷ, ˆ̄y)
7: end if

8: end for

9: if no update is performed in current epoch then

10: terminate with a satisfactory solution
11: end if

12: end for

△(ŷ, ˆ̄y)δΦi(ŷ, ˆ̄y) whenever the margin of xi (achieved at (ŷ, ˆ̄y)) is not greater than

0, i.e. the category ranking for instance xi is wrong. Hence the weight vector can be

written as

w(α) =
n
∑

i=1

∑

y∈Yi

∑

ȳ∈Ȳi

αiyȳδΦi(y, ȳ) (αiyȳ ≥ 0 ∀i, y ∈ Yi, ȳ ∈ Ȳi) , (5.6)

where
αiyȳ

△(y,ȳ)
equals the number of times that the category ranking of instance xi is

predicted incorrectly, with (y, ȳ) being the most wrongly ordered relevant class and

irrelevant class pair. Note
∑n

i=1

∑

y∈Yi

∑

ȳ∈Ȳi

αiyȳ

△(y,ȳ)
is the total number of updates

performed. With the dual parameterization, we can replace all occurrences of w, the

primal variable, with α, the dual variable in Algorithm 4. This leads to the dual form

of online hierarchical Perceptron in Algorithm 5. Since in Algorithm 5,

w(α), δΦi(y, ȳ)〉 =
n
∑

j=1

∑

r∈Yj

∑

r̄∈Ȳj

〈δΦj(r, r̄), δΦi(y, ȳ)〉

=
n
∑

j=1

∑

r∈Yj

∑

r̄∈Ȳj

〈Λ(r)−Λ(r̄),Λ(y)−Λ(ȳ) 〉 〈xi,xj〉 , (5.7)

the training data are only used in inner product form. This means that we can again

utilize kernel functions in place of the inner products to learn non-linear discriminant

functions efficiently.

47

5.2.3 Convergence

The hierarchical Perceptron in Algorithm 4 will stop if all instances are predicted cor-

rectly. This means that the algorithm converges to a correct solution. Proposition 5

below shows that the online hierarchical Perceptron algorithm converges in a finite

number of steps as long as a correct solution exists. The proposition also gives an

upper bound on the number of update steps that are needed before convergence.

Proposition 5. Let {xi, Yi}ni=1 be a training set. Set R ≡ maxi ‖xi‖, △min ≡
miny 6=ŷ△(y, ŷ) > 0, △max ≡ maxy 6=ŷ△(y, ŷ), P ≡ maxy ‖Λ(y)‖. Assume that a

weight vector w∗ exists with ‖w∗‖ = 1 that predicts correct rankings on all training

data with a margin

γ = min
i

(

min
y∈Yi,ȳ∈Ȳi

〈w∗, δΦi(y, ȳ)〉
)

> 0 .

Then the online hierarchical Perceptron algorithm will not make more than
(

2△maxRP

△minγ

)2

update steps.

Proof. Denote the weight vector after the t-th update by w(t) and let w(0) = 0. At

the t-th update step, the instance under investigation is denoted by x(t−1) and the

pair that achieves the margin for the current instance by (y(t−1), ȳ(t−1)). Since an

update is performed, we know

〈w(t−1) , Φ(x(t−1), y(t−1))−Φ(x(t−1), ȳ(t−1))〉 ≤ 0 . (5.8)

We prove the proposition by bounding ‖w(t)‖ from above and below. This tech-

nique is due to Novikoff [45] for binary Perceptron convergence proof. First we com-

pute the lower bound. Applying the update rule,

〈w(t),w∗〉 =
〈

w(t−1) +△(y(t−1), ȳ(t−1))
(

Φ(x(t−1), y(t−1))−Φ(x(t−1), ȳ(t−1))
)

, w∗
〉

=〈w(t−1),w∗〉+△(y(t−1), ȳ(t−1))
〈

w∗ ,
(

Φ(x(t−1), y(t−1))−Φ(x(t−1), ȳ(t−1))
)〉

Since w∗ obtains a margin of γ on the entire training set,

〈w(t),w∗〉 ≥ 〈w(t−1),w∗〉+△(y(t−1), ȳ(t−1))γ ≥ 〈w(t−1),w∗〉+△minγ .

48

By induction,

〈w(t),w∗〉 ≥ 〈w(0),w∗〉+ t△minγ = t△minγ .

Because ‖w∗‖ = 1,

‖w(t)‖ ≥ 〈w(t),w∗〉 ≥ t△minγ (5.9)

In the next step, we compute the upper bound of ‖w(t)‖.

‖w(t)‖2 =
∥

∥w(t−1) +△(y(t−1), ȳ(t−1))
(

(Φ(x(t−1), y(t−1))−Φ(x(t−1), ȳ(t−1))
)∥

∥

2

=‖w(t−1)‖2 + ‖△(y(t−1), ȳ(t−1))‖2‖Φ(x(t−1), y(t−1))−Φ(x(t−1), ȳ(t−1))‖2

+ 2△(y(t−1), ȳ(t−1))
〈

w(t−1) , Φ(x(t−1), y(t−1))−Φ(x(t−1), ȳ(t−1))
〉

≤‖w(t−1)‖2 + 4△2
maxR

2P 2

The last inequality is due to Equation (5.8) and

‖Φ(x(t−1), y(t−1)) − Φ(x(t−1), ȳ(t−1))‖2

=‖x(t−1)‖2 ‖Λ(y(t−1))−Λ(ȳ(t−1))‖2

≤R2
(

‖Λ(y(t−1))‖2 + ‖Λ(ȳ(t−1))‖2 − 2〈Λ(y(t−1)),Λ(ȳ(t−1))〉
)

≤R2
(

‖Λ(y(t−1))‖2 + ‖Λ(ȳ(t−1))‖2 + 2‖Λ(y(t−1))‖‖Λ(ȳ(t−1))‖
)

≤4R2P 2 .

Again by induction, we get the upper bound

‖w(t)‖2 ≤ 4t△2
maxR

2P 2 . (5.10)

Finally combining Equations (5.9) and (5.10) we arrive at

t2△2
minγ

2 ≤ ‖w(t)‖2 ≤ 4t△2
maxR

2P 2 . (5.11)

Hence

t ≤
(

2△maxRP

△minγ

)2

. (5.12)

49

Algorithm 6 Averaged hierarchical Perceptron algorithm

Inputs: training data {xi, Yi}ni=1, maximal number of epochs κ.
1: Initialize α0

iyȳ = 0, ∀ i, y ∈ Yi, ȳ ∈ Ȳi

2: l← 0
3: for num = 1 to κ do

4: for all training instance xi do

5: l← l + 1
6: (ŷ, ˆ̄y) = argminy∈Yi,ȳ∈Ȳi

〈w(αl−1), δΦi(y, ȳ)〉
7: αl ← αl−1

8: if 〈w(αl−1), δΦi(ŷ, ˆ̄y)〉 ≤ 0 then

9: αl
iŷ ˆ̄y
← αl

iŷ ˆ̄y
+△(ŷ, ˆ̄y)

10: end if

11: end for

12: if no update is performed in current epoch then

13: break the loop.
14: end if

15: end for

16: L← l
17: output: α← 1

L

∑L

k=1 αk

5.3 Batch hierarchical Perceptron algorithms

In the previous section, we presented a hierarchical Perceptron for online learning.

For batch learning, in which the entire training set is given in advance, we could use

the online algorithm directly. However, with some modifications, better-performing

batch algorithms can be obtained. In this section, we present two batch hierarchi-

cal Perceptron algorithms: the averaged hierarchical Perceptron algorithm and the

Minover hierarchical algorithm.

5.3.1 Averaged hierarchical Perceptron

The averaged hierarchical Perceptron differs from the online algorithm only in how

the final classifier is constructed. The online hierarchical Perceptron takes the last

weight vector while the averaged hierarchical Perceptron takes the average of all

weight vectors generated by the training process. Discussion of hypothesis averaging

can be found in [8].

The dual form of averaged hierarchical Perceptron is given in Algorithm 6. Notice

50

the weight vector produced at the l-th step can be recovered by

wl =
n
∑

i=1

∑

y∈Yi

∑

ȳ∈Ȳi

αl
iyȳδΦi(y, ȳ) (5.13)

and thus step 17 implies taking average of weight vectors of all steps.

In implementation, directly applying Algorithm 6 would be impractical, since α

generally is a vector of large size and L such vectors have to be kept. Instead, we

only keep track of the updates and build the final classifier from these updates alone.

This is based on the observation that successive αl’s are very similar to each other.

In fact they only differ by at most one vector component in Algorithm 6.

In detail, at each step l, we keep track of the instance examined and the label

pairs that are selected. We refer to them by il and (ŷl, ˆ̄yl) respectively. We also keep

track of the update that is performed. Define

τ l =







△(ŷl, ˆ̄yl) if 〈w(α(l−1)) , δΦil(ŷ
l, ˆ̄yl)〉 ≤ 0

0 otherwise
. (5.14)

Therefore, the final averaged weight vector can be computed by

w =
1

L

L
∑

l=1

wl

=
1

L

L
∑

l=1

l
∑

k=1

τ kδΦik(ŷ
k, ˆ̄yk)

=
1

L

L
∑

l=1

(L+ 1− l)τ lδΦil(ŷ
l, ˆ̄yl) . (5.15)

With this method we reduce the memory cost from Ω(Lnq) (each α takes Ω(nq)) to

O(L).

5.3.2 Minover hierarchical Perceptron

The Minover hierarchical Perceptron takes advantage of the batch setting by using

a greedy search for updates that is the most “beneficial”. The algorithm is called

Minover because it uses minimum-overlap rule [32]. The Minover Perceptron uses the

instance that most violates the desired margin to update the separating hyperplane.

51

Algorithm 7 Minover hierarchical Perceptron algorithm

Inputs: training data {xi, Yi}ni=1, maximal number of epochs κ.

1: Initialize αiyȳ = 0, ∀ i, y ∈ Yi, ȳ ∈ Ȳi

2: for num = 1 to κn do

3: (̂i, ŷ, ˆ̄y) = argmini,y∈Yi,ȳ∈Ȳi
〈w(α), δΦi(y, ȳ)〉

4: if 〈w(α), δΦî(ŷ, ˆ̄y)〉 > 0 then

5: terminate with a satisfactory solution
6: else

7: αîŷ ˆ̄y ← αîŷ ˆ̄y +△(ŷ, ˆ̄y)
8: end if

9: end for

Using the minimum overlap selection rule effectively speeds up the convergence and

yields sparser solutions.

The algorithm is given in Algorithm 7. Observe that selecting a worst triplet in

step 3 requires calculating compatibility scores for all instances with all classes, and

this step is performed for each iteration. Since the update at step 7 only affects a

single dual variable, we suggest to use the same technique as in Section 4.3.3 to reduce

computational cost. Essentially, we introduce auxiliary variable

Tiyȳ ≡ 〈w(α), δΦi(y, ȳ)〉 (∀i, y ∈ Yi, ȳ ∈ Ȳi) . (5.16)

The variables Tiyȳ’s are initialized to 0 and incrementally updated whenever step 7 is

performed.

T
(new)
iyȳ =

n
∑

j=1

∑

r∈Yj

∑

r̄∈Ȳj

α
(new)
jrr̄ 〈δΦj(r, r̄), δΦi(y, ȳ)〉

=
n
∑

j=1

∑

r∈Yj

∑

r̄∈Ȳj

α
(old)
jrr̄ 〈δΦj(r, r̄), δΦi(y, ȳ)〉+△(ŷ, ˆ̄y)〈δΦî(ŷ, ˆ̄y), δΦi(y, ȳ)〉

=T
(old)
iyȳ +△(ŷ, ˆ̄y)〈δΦî(ŷ, ˆ̄y), δΦi(y, ȳ)〉 (5.17)

5.4 Related work

Our hierarchical Perceptron is a big bang approach that learns all parameters simulta-

neously. In nature, it is different from the divide and conquer hierarchical approaches.

52

Perhaps what is the most similar to our hierarchical Perceptron is the Hieron algo-

rithm proposed in [19]. Moreover, small modifications to the Hieron algorithm have

been propsed in [38] to make Hieron more practical. The key difference between

our hierarchical Perceptron and the Hieron algorithm lies in the update rule. The

Hieron algorithm solves a quadratic program at each update step to determine the

update quantity. The quadratic program aims at minimizing the distance between

new and old weight vectors while constraining a desired margin to be achieved. This

optimization problem has an analytic solution that facilitates learning. Our update

rule, however, is quite simple and straightforward. Empirical results have shown that

our hierarchical Perceptron algorithm performs competitively with the Hieron algo-

rithm. In addition, the Hieron algorithm is proposed only for multiclass classification

that uses a tree taxonomy. Our work provides a framework to work with multilabel

classification and arbitrary DAG taxonomy. Our hierarchical Perceptron can also

incorporate any class attributes and loss functions.

Chapter 6

Automatic hierarchy learning

In Chapter 4 and 5, we have presented two algorithms that can take advantage of

given category hierarchies. A natural question that arises is whether the flat algo-

rithms are the only choices when no category hierarchies are given. To use hierarchical

algorithms, both ours and what have been proposed in other works, hierarchies over

classes need to be provided. In this chapter, we propose an approach that automati-

cally generates class hierarchies. The approach is based on agglomerative clustering

and the hierarchy generated takes shape of a two-level tree. The generated hierarchy

can then be used by existing hierarchical classification methods.

6.1 Introduction

Learning a class hierarchy from a set of instance and label set pairs is an unsupervised

task. One may instantly link this task with the common task of data clustering, in

particular hierarchical clustering in which a binary tree is constructed. The goal of

clustering is to partition a data set into subsets, so that the data in each subset is

compact. Data clustering is a common technique used in areas like machine learning,

data mining, and bioinformatics.

Data clustering algorithms are generally divided into two paradigms: partitional

or hierarchical. Partitional clustering algorithms such as K-means finds all clusters at

once. The hierarchical clustering algorithms, on the other hand, iteratively produce

new clusters based on previously determined clusters. The hierarchical algorithms

53

54

therefore establish clustering solutions in the form of trees called dendrograms. Hi-

erarchical clustering algorithms are thus of more interest to us, since they provide

a view of data points in different levels of granularity, a characteristic desired in an

automatic hierarchy learning method.

The hierarchical clustering algorithms usually fall into two types: agglomerative

or divisive. Agglomerative clustering algorithms start by assigning each object to an

individual cluster and then successively merge pairs of clusters until at the end there

is only one cluster encompassing all objects. Divisive algorithms do the reverse by

starting from a cluster of all objects and dividing established clusters into smaller

pieces successively. There are also algorithms such as constrained agglomerative clus-

tering that combine the agglomerative and divisive approaches [74]. The traditional

view is that divisive algorithms are inferior to agglomerative algorithms with respect

to cluster quality. Recent research, however, has demonstrated that divisive cluster-

ing algorithms can be as effective as agglomerative algorithms [74]. In our work, the

agglomerative clustering algorithm is used since it is more readily available.

6.2 Hierarchy generation algorithm

To cluster a set of q objects, the hierarchical agglomerative clustering starts by as-

signing each object to a cluster of its own. At each step, a pair of clusters (which

are often cluster pairs with lowest inter-cluster distance or highest inter-cluster sim-

ilarity) is selected and merged into one cluster. Thus at each step, the number of

clusters decreases by one. After q − 1 steps, all objects are merged into one cluster.

The results can be represented as a dendrogram in which a link indicates merging of

two clusters [22].

To use the hierarchical agglomerative clustering algorithm to our purpose, several

choices need to be made.

Objects to be clustered One option is to regard each class as an object to be

clustered. The class can, for example, be characterized by its centroid. Another

option is to view each instance as an object. So the starting point of hierarchical

agglomerative clustering in our task is an intermediate clustering solution, in which

each cluster corresponds to a category and the instances assigned to a cluster are

55

those that are relevant with the corresponding category. We take the first option,

since it significantly reduces the computational cost of agglomerative clustering, in

terms of both space and time.

Distance metric between objects We dictate the merging policy to pick the pair

of clusters that has the shortest distance among all pairs of current clusters. To

determine the distance between two clusters of objects, one generally needs to first

have a distance metric over object pairs. In our case, the object is centroid vector.

We use the Euclidean distance, which is also used in [37] and [71]. The Euclidean

distance between c ∈ Rd and c′ ∈ Rd is defined as

d(c, c′) =
√

(c− c′)T (c− c′)
=
√

〈c, c〉+ 〈c′, c′〉 − 2〈c, c′〉 . (6.1)

From Equation (6.1), one observes that the Euclidean distance only depends on the

inner products of object vectors. Thus the distance metric can be kernelized and a

clustering in an implicit space of higher dimension can be computed efficiently.

Distance metric between clusters There are several techniques to determine the

distance between clusters of objects, based on the distance between objects. The most

common ones are single linkage, complete linkage, and average linkage. The single

linkage measure determines the distance between two clusters to be the minimum

distance between all element pairs, with one element from one cluster and the other

from the other cluster. In contrary, the complete linkage measure takes the maximum

distance. The average linkage is a compromise between the single linkage and the

complete linkage. It takes the average of distances between corresponding element

pairs. For two cluster C and C′ the average link distance is defined as

d(C, C′) =
1

|C||C′|
∑

c∈C

∑

c′∈C′

d(c, c′) . (6.2)

Our algorithm used average linkage since it is generally the most robust among the

three [22].

With the decisions made, we arrive at the hierarchical agglomerative clustering

procedure as described in Algorithm 8. The link at level t is denoted by lnt and the

merging distance of a link lnt is denoted by m(lnt), which is the distance between the

two clusters that lnt merges.

56

Algorithm 8 Automatic Hierarchy Learning.

Inputs: D = {xi, Yi}ni=1, in which xi ∈ X ⊆ Rd and Yi ⊆ Y = {1, · · · , q}

1: Compute class centroids ck ←
P

i:k∈Yi
xi

P

i:k∈Yi
1

for k = 1, · · · , q
2: {Hierarchical agglomerative clustering}
3: Initialize q clusters such that Ck ← {ck} for k = 1, · · · , q.
4: B ← {C1, C2, . . . , Cq}
5: for t = 1 to q − 1 do

6: (Ĉ, Ĉ′)← argminC,C′:C∈B,C′∈B,C6=C′ d(C, C′)
7: merge Ĉ and Ĉ′ into a new cluster Cq+t.

8: m(lnt)← d(Ĉ, Ĉ′)
9: B ← B \ {Ĉ, Ĉ′}

10: B ← B ∪ {Cq+t}
11: end for

12: {Calculate inconsistency coefficients}
13: for t = 1 to q − 1 do

14: S ← {m(lnt)}
15: for each cluster C that link lnt merges do

16: if C is not a leaf cluster then

17: ln← the link that C corresponds to
18: S ← S ∪ {m(ln)}
19: end if

20: µ(S)← sample mean of S
21: σ(S)← sample standard deviation of S

22: IC(lnt) = m(lnt)−µ(S)
σ(S)

23: end for

24: end for

25: {Form a hierarchy}
26: m←

Pq−1
t=1:IC(lnt) 6=0

IC(lnt)
Pq−1

t=1:IC(lnt) 6=0
1

27: Determine a flat clustering by cutting off links with inconsistency coefficient below
m

28: Build a hierarchy with the clustering outcome as the first level and individual
classes as the second level.

57

The dendrogram output by the hierarchical agglomerative clustering is a binary

tree that is generally very tall. It is complicated yet lacks structure. Ideally we prefer

a balanced tree. We propose to use inconsistency coefficient [28, 27] to cut off some

links and derive a two-level hierarchy. The inconsistency coefficient, as computed in

Algorithm 8, characterizes a link by comparing its distance to those of neighboring

links. If the merge is consistent, then the link will likely have a merging distance that

is close to those of the two clusters that the link fuses, and thus the link will have a

low inconsistency coefficient. If the inconsistency coefficient is high, then it indicates

that the merging distance varies considerably from those of its constituent clusters,

and a natural separation of clusters is likely to occur at this point.

We use the mean of non-zero inconsistency coefficients in a dendrogram as the

threshold to cut links off the dendrogram (or one may imagine removing the links

from the dendrogram). Any link whose inconsistency coefficient is above the threshold

will be cut off the dendrogram. If a link is cut, any links that build on top of it is

also cut. A concrete example will be given below in Figure 6.1. After this stage, the

dendrogram is partitioned into a set of continuous dendrogram pieces. All classes

that are still connected form a flat cluster. The inconsistency coefficient is thus used

to determine the number of clusters. Data points within each cluster are expected to

be consistent.

We can hence build a two-level hierarchy with the classes as leaf nodes and the

flat clusters produced after the dendrogram cut-off as the first level nodes. An edge

in the hierarchy indicates that a class belongs to a flat cluster. Indeed our algorithm

is a special case and one can generalize it to employ other flat clustering algorithms

to determine a two-level hierarchy.

Figure 6.1 depicts a hierarchy produced by Algorithm 8 from a 90% subset of the

Newsgroup data. It is a meaningful structure and is not far from the actual hierarchy

in Figure 7.2. Actually the automatic hierarchy differs from the actual one only in

that it replaces the RELIGION node with two nodes and the POLITICS node with

two. The cluster separation (corresponding to rectangles in Figure 6.1(b)) appear

consistent with the distance matrix in Figure 6.1(a). To use existing hierarchical

classification algorithms, an unsupervised learning stage can first be performed to

establish a class hierarchy and then hierarchical classification can be carried out.

58

(a) (b)

x

x

x

x

x

x

(c)

Figure 6.1: The distance matrix, along with the dendrogram and hierarchy, generated
by Algorithm 8 on a 90% subset of Newsgroup corpus. Figure (a) illustrates the
distance matrix in which the darker the color is, the shorter the distance is between
two corresponding classes. The classes in Figure (a), from left to right, or from
bottom to top, are the same sequence of classes from bottom to up in Figure (b).
Figure (b) depicts the dendrogram that is generated. The horizontal axis denotes the
merging distance. Figure (c) illustrates the generated hierarchy. The crosses mark
the links that are cut, among which the single biggest cross marks the link whose
inconsistency coefficient is above the threshold. The 7 flat clusters are indicated by
braces and brackets. The generated hierarchy has 7 nodes in the first level and 15
nodes in the second level.

59

6.3 Related work

Applying data clustering techniques to pattern classification (mainly document clas-

sification) has been previously studied. Some works are concerned with clustering

words so that a considerably more compact feature representation is derived, with

only a minor loss in classification accuracy. For instance, [1] employs distributional

clustering, a probabilistic soft clustering method, to effectively cluster words into

groups. This way the number of features is aggressively reduced while the decrease in

accuracy is only a few percentage points. This methods enables scalability of classi-

fication models to larger data sets. Similarly, [57] applies the information bottleneck

method to cluster words in a way that preserves information about classes. By using

the word clusters as features in place of words themselves, the dimension of features is

significantly reduced. [57] reports that while the training data is small, the accuracy is

actually improved. In contrast, some other works are concerned with clustering doc-

uments to boost classification performance. For instance, [3] uses the probabilistic

latent semantic indexing to estimate cluster-dependent document probabilities. By

incorporating these probabilities as additional features and using Boosting algorithm

to select the most relevant features, classification performance is improved. A similar

approach is taken in [33]. A hard clustering algorithm is applied to both labeled and

unlabeled data and cluster assignments are used to augment feature representation.

Our task of automatically generating class hierarchies based on clustering techniques,

however, has been rarely studied. The work on existing hierarchical classification

algorithms almost exclusively uses hierarchies that are provided with corpora.

There have been many works on organizing a collection of documents into a hi-

erarchy [2, 71]. Different from our work, the goal is often to visualize data and

facilitate navigation. A major emphasis on these works is labeling the clusters. Our

work, on the other hand, focuses on organizing classes into a balanced hierarchy that

summarizes class proximity. Our goal is to improve the classification performance

with the automatically learned hierarchy rather than the hierarchy itself. Examples

of producing hierarchies over documents include [2], in which a dendrogram is first

built through a divisive hierarchical clustering and then the dendrogram is converted

to a tree with a specified branching factor. To split a cluster, a linear discriminant

function is used that calculates the projection of centered documents to the direction

60

of maximal variance. This discriminant function is also employed to find significant

features to describe clusters. To establish a tree with the specified branching factor,

a sequence of splits is fused into one split step that divides one cluster into multiple

child clusters. A different approach is taken in [71]. First flat clusters of documents

are constructed through the self organizing map method. The hierarchy is gener-

ated by successively finding clusters with current largest supporting class similarity

and then including their neighboring clusters as child clusters. So varying values of

branching factors naturally appear in the established hierarchy.

[37] also presents a method to generate a class hierarchy based on the hierarchical

agglomerative clustering algorithm. Our work differs from [37] mainly in the meth-

ods that transfer a dendrogram to a shorter hierarchy with branching factors that are

not exclusively 2. We use inconsistency coefficients to cut off links while [37] uses a

heuristic idea based on sudden increase of merging distance. Experiments are con-

ducted in [37] with the divide-and-conquer hierarchical SVM while our experiments

(see Chapter 7) are with our hierarchical Perceptron and the Hieron algorithm (both

are big bang methods). A linear discriminant projection step is proposed in [37] that

appears beneficial to the empirical success of the method in [37]. In this step, the

Fisher discriminant analysis is performed so that all documents are transformed into

a space with fewer dimensions than the original space. The distance metric used for

agglomerative clustering is then computed in this new space. In our experiments,

adding this step yields neither improvements in hierarchy quality nor better classifi-

cation performance.

Chapter 7

Experiments

In this chapter we describe the experiments that we have performed to verify the

empirical advantages of the hierarchical methods proposed in previous chapters. To

remind the reader, we presented the hierarchical SVM in Chapter 4 with its primal

formulation in Equation (4.10) and dual formulation in Equation (4.15). Several

variants of the hierarchical Perceptron are described in Chapter 5. The automatic

hierarchy learning algorithm is proposed in Chapter 6 with the algorithm summarized

in Algorithm 8. In addition to comparing these approaches with their flat counter-

parts, we have also evaluated them against two other hierarchical approaches. We

start the chapter with a description of experimental methodology and setups. Then

we present experimental results. Finally we summarize our findings.

7.1 Data sets

The five corpora described below are used in our experiments. The synthetic data are

generated artificially and it employs a perfect tree taxonomy. The WIPO-alpha col-

lection, Newsgroup set, and OHSUMED corpus are all composed of text documents,

but of different natures: patent documents, newsgroup posts, and medical documents

respectively. The first two data sets use tree taxonomies with classes denoted by leaf

nodes all at the same level. The OHSUMED corpus, however, uses a complicated

structure in which branches have various depths and classes can be represented by

partial paths. ENZYME is a biological data set with protein sequences as instances.

61

62

The taxonomy is a balanced tree and the categories for classification only appear at

the leaf level.

7.1.1 Synthetic data

A first set of experiments has been conducted on a simple synthetic data set. We

start with a tree structure and a given number of features. Random weight vectors are

generated for each node, using the same multivariate normal distribution for nodes

at the same depth. The covariance matrices of the normal distributions are diagonal

and the variances decrease with depth. The weight vector for each category equals

the sum of the weight vectors along the path from the root to the category. Data

points are randomly generated according to a multivariate normal. A data point x

is assigned to those categories y for which F (x, y;w) > 0. The data point is only

accepted if the number of relevant categories is less than
√
q. The way the artificial

data is generated assures that weight vectors of nearby categories are closer than

that of distant categories, simulating a property that we expect to be relevant for

real-world taxonomies.

7.1.2 WIPO-alpha set

The World Intellectual Property Organization (WIPO) published the WIPO-alpha

collection in 2002 [69]. The patent documents in the collection are classified according

to a standard taxonomy known as International Patent Classification (IPC) [68]. IPC

categories are organized in a four-level hierarchy, i.e. sections, classes, subclasses and

groups (main groups and subgroups). Part of section D is illustrated in Figure 7.1

for concreteness. Another example showing part of section H is given in Figure 1.1.

The categories in our experiments refer to main groups that are all leaves at the

same depth in the hierarchy. Each document is labeled with one primary category

as well as any number of secondary categories. Predicting the primary categories

is therefore a multiclass categorization problem while predicting both types of cate-

gories forms a multi-label corpus. We have performed independent experiments on

taxonomies under the 8 top-level sections. Document parsing was performed with the

Lemur toolkit [7]. Stop words were removed. Stemming was not performed. Word

63

D: Textiles; Paper

D01: Natural or
artificial threads or
fibres; Spinning

D02: Yarns; Warping
or Beaming; ...

D03: Weaving

D04: Braiding; Lace
Making; Knitting; ...

D06: Treatment of
Textiles; ...

D05: Sewing;
Embroidering; Tufting

D07: Ropes; ...

D21: Paper; ...

D03C: Shedding mechanisms;
Pattern cards or chains; Punching
of cards; Designing patterns

D003D: Woven fabrics;
Methods of weaving;
Looms

D003J:Auxiliary weaving
apparatus; Weavers’ tools;
Shuttles

Figure 7.1: Part of the IPC classification hierarchy rooted at section D which contains
a total of 160 main groups. Only classes and subclasses for D03 are shown.

section
Number of Number of Number of Number of

classes instances features nodes

A 694 10,962 73,188 781
B 1,172 14,690 51,470 1,320
C 852 16,245 178,202 9,26
D 160 1,710 18,077 188
E 230 3,027 17,802 264
F 675 6,685 26,914 758
G 470 10,302 55,663 537
H 403 11,629 46,210 455

Table 7.1: Summary of the WIPO-alpha multiclass corpus. Properties of sub-
collections under each top level node (called section) are given.

counts from title and claim fields are used as document features.

Table 7.1 and 7.2 summarize the properties of the sub-collections under each top-

level section, for the multiclass and the multilabel WIPO-alpha corpus respectively. A

document is counted for classification under a section if the document has a relevant

category located in the subtree rooted at the node representing this section.

To investigate the effect of the training size, we have furthermore subsampled

the data. In particular, three samples (or all available documents, if the category

possesses less than three training documents) are randomly picked for each category.

If an instance is assigned multiple classes, then a random correct class is used for

sampling purpose. We refer to this as subsampled WIPO-alpha corpus. Table 7.3

summarizes the subsampled multiclass and multilabel corpora.

64

section
No. of No. of No. of classes No. of No. of
classes instances per instance features nodes

A 846 15662 1.44 147,757 948
B 1514 17626 1.48 65,975 1,723
C 1152 14841 2.11 204,486 1,264
D 237 2194 1.53 24,056 286
E 267 3586 1.34 21,577 306
F 862 8011 1.45 33,605 980
G 565 12944 1.29 81,862 649
H 462 13178 1.35 55,188 520

Table 7.2: Summary of the WIPO-alpha multilabel corpus. Note the data subset
under a given section is larger than that in the multiclass context since secondary
classes are now also taken into account to determine if an instance is included in
the subset. The number of classes per instance is macro-averaged number across
corresponding instances.

section
No. of instances No. of instances

in multiclass corpus in multilabel corpus

A, sampled 1,781 1,935
B, sampled 3,033 3,355
C, sampled 2,212 2,491
D, sampled 391 464
E, sampled 600 634
F, sampled 1,729 1,936
G, sampled 1,228 1,340
H, sampled 1,084 1,149

Table 7.3: Summary of the subsampled WIPO-alpha corpus.

65

comp.graphics

comp.sys.ibm.pc.hardware

comp.windows.x

comp.os.ms-windows

comp.sys.mac.hardware

talk.politics.guns

talk.politics.mideast

talk.politics.misc

alt.atheism

soc.religion.christian

talk.religion.misc

rec.sport.baseball

rec.sport.hockey

rec.autos

rec.motorcycles

computers politics religionsports vehicles

Figure 7.2: Class taxonomy of Newsgroup corpus.

7.1.3 Newsgroup

The Newsgroup collection is composed of Usenet articles drawn from 20 discussion

groups [30], with 1, 000 articles per group. We construct a two level hierarchy from

15 groups as suggested by [41]. Compared to IPC, this is a very small category tree

with 5 top level nodes and 15 terminal nodes. The 5 top nodes together with their

children are illustrated in Figure 7.2. We used the Lemur toolkit [7] for indexing and

removing stop words. No stemming of words was performed. After removing words

that occur only once, the data set consists of 2.37 million word occurrences with a

vocabulary size of 63, 315.

7.1.4 OHSUMED

The OHSUMED corpus is the 1987 portion of the OHSUMED collection [25] that has

also been used for the TREC9 filtering track. The collection consists of short doc-

uments with titles and abstracts from MEDLINE, a national bibliographic database

covering medicine and related fields. Each document has been manually indexed

with MeSH (Medical Subject Headings) terms [43]. This corpus involves 4, 904 MeSH

terms. After removing stop words and words that occurred in fewer than 10 docu-

ments, we are left with 54, 708 documents with a vocabulary of 19, 066 words.

The MeSH terms are arranged from the most general to most specific ones in an

11-level hierarchy. The articles are indexed with the most specific MeSH terms that

66

subtree
Number of Number of Number of classes

classes instances per instance

A 719 15617 2.34
B 208 4797 1.68
C 2523 30237 3.52
D 2471 24769 4.38
E 964 23939 2.29
F 266 5207 1.94
G 1363 20743 1.87
H 154 6248 1.35
I 194 4263 1.74
J 67 1485 1.25
K 24 618 1.48
L 80 1996 1.37
M 63 1752 1.47
N 488 8627 2.37
Z 35 735 1.12

Table 7.4: Summary of the OHSUMED corpus.

are available. In the experiments, we used the MeSH tree of 2003, which organizes

22, 568 MeSH headings. The MeSH headings used in the OHSUMED corpus covers

only a subset of all available headings. Those MeSH terms that do not appear in the

OHSUMED corpus are simply ignored. The OHSUMED articles are labeled with the

MeSH terms. However, a term can correspond to multiple positions in the hierarchy.

Our strategy is to regard the tree locations as categories and include all the locations

that match a term as labels for a document with that term.

This set differs from WIPO-alpha and Newsgroup set not only in terms of the

document nature but also of the taxonomy complexity. The branches of the tree have

various depths, the number of child nodes of an internal node can be very different,

and the categories can virtually be at any level of the hierarchy.

Due to the large size of this data set, we have divided the hierarchy into sub-

hierarchy, each being a subtree rooted at a top-level node. There are 15 top-level

nodes representing concepts such as anatomic terms for node A, diseases for node

C, and drugs and chemicals for node D. Table 7.4 summarizes the properties of the

subtrees and the data subset corresponding to these subtrees, which are all instances

67

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9+

Number of classes

F
ra

c
ti

o
n

 o
f

In
s
ta

n
c
e
s

0

0.1

0.2

0.3

0.4

2 3 4 5 6 7

Depth of classes

F
ra

c
ti

o
n
 o

f
c

la
s

s
e

s

Figure 7.3: Distribution of the number of positive classes per document (left), and
distribution of the depths of classes (right) for N subtree of OHSUMED corpus.

with at least one relevant label located in a specified subtree. We observe that the

number of classes per document varies from 1.12 to 4.38. To take a closer look, we

pick subtree N and depict in Figure 7.3 the distribution of the number of classes

per document and the distribution of the depths of classes in this subtree. We use

the N subtree as an example since it is in the middle range among all subtrees in

terms of both the total number of categories and the average number of categories

per document. Figure 7.3 shows more than half of the documents in the sub-collection

have two or more relevant classes. The number of positive classes for instances can

vary considerably. The distribution of depths of classes shows classes are located at

a variety of levels in the sub-taxonomy. Depth 4, which is the middle level of the

sub-taxonomy, accommodates the greatest number of classes.

7.1.5 ENZYME

The ENZYME corpus was compiled and processed by Rousu et. al. [50]. The instances

are protein sequences and the categories are the reactions that the proteins catalyze.

The category taxonomy is a subset of the Enzyme Classification system [46]. The

taxonomy consists of 236 nodes (including two nodes that are ancestors of every

class) organized in a three-level hierarchy tree. The classes are the 172 leaves of the

hierarchy. The data set was divided into 7700 protein sequences for training and 1755

sequences for testing [50].

68

7.2 Experimental setup

In synthetic data, WIPO-alpha set, Newsgroup, and ENZYME corpus, the tax-

onomies are trees with categories at the same depth of the tree. Taxonomy-derived

attributes are employed in our hierarchical approaches. For comparison purpose,

tv(y) in Eq. (3.7) is set to 0 for the root node (that is an ancestor of every class)

and otherwise 1/
√
depth where depth is the depth of the tree and is defined as

depth ≡ maxy |anc(y)| − 1. This scaling is used for mathematical convenience, since

it implies that 〈Λ(y),Λ(y)〉 = 1 and we therefore get that

〈Φ(x, y),Φ(x, y)〉 = 〈Λ(y),Λ(y)〉〈x,x〉 = 〈x,x〉 . (7.1)

This is also to facilitate fair comparison between the flat and hierarchical SVM clas-

sification since, in the former case, Φ(x, y) can be viewed as in Equation (3.4) and

hence 〈Φ(x, y),Φ(x, y)〉 equals 〈x,x〉 as well. The category taxonomy of OHSUMED

collection is a quite unbalanced tree. To deal with it, we let tv(y) = 0 if y is the root

and otherwise tv(y) = 1/
√

depth(y), where depth(y) = |anc(y)| − 1 is the depth of

class y. Thus 〈Λ(y),Λ(y)〉 = 1 still holds for all classes.

The particular hierarchical loss function that is used in the experiments on all data

sets except OHSUMED is △h(y, ŷ) = 1
2
|anc(y) ⊖ anc(ŷ)|, which equals half the loss

function defined in Equation (3.13). We use the 1
2

coefficient due to historical reason.

Note in case of a tree structure △h is half the (undirected) distance from one class

to another. On the OHSUMED set, the depth of categories can vary considerably.

This phenomenon could be because some categories represent broader concepts while

some represent narrower ones, or because some sub-structures are articulated in more

detail and thus occupy more levels than others. For this reason, we use a normalized

loss function for hierarchical learning on OHSUMED set.

△h̄(y, ŷ) =
1

2

(|anc(y) \ anc(ŷ)|
|anc(y)| − 1

+
|anc(ŷ) \ anc(y)|
|anc(ŷ)| − 1

)

(7.2)

This loss function can be understood as half of the weighted distance between two

categories. The edges on the path from y (ŷ) to the deepest common ancestor of y and

ŷ are weighted by 1 over the depth of y (ŷ). By summing these edge weights up, the

normalized hierarchical loss is obtained. Note in Equation (7.2) |anc(y)|−1 equals the

depth of y. If all classes are at the same depth, then the normalized hierarchical loss

69

△h̄ reduces to △h. The normalized hierarchical loss is used in hierarchical learning

on OHSUMED set. In the evaluation step, however, the hierarchical loss △h is still

used since it is easier to visualize.

In all experiments, except those on ENZYME corpus, a linear kernel is used, since

it has computational advantages during optimization while achieving competitive

performance compared to other more complicated kernels such as polynomial kernel

and RBF kernel in the context of text categorization [29]. A length-4 subsequence

kernel was used on ENZYME corpus [51].

Moreover, document vectors are normalized to be of unit length, ‖xi‖2 = 1, as a

preprocessing step. The test performance was often computed using cross-validation

and macro-averaging. The tolerance parameter ǫ in Algorithm 2 is set to 0.01 or

0.1. [14] points out that the choice of ǫ = 0.1 achieves a good tradeoff between

running time and generalization performance. Following the heuristics utilized in

SVMlight [29], C is set to 1 if not otherwise specified (remember that input vectors

are normalized to unit length). Our experiments show this is a good choice.

7.3 Evaluation measures

The measures we used include one-accuracy, average precision, ranking loss, maxi-

mal loss, top loss and parent one-accuracy. The first three are standard metrics for

(flat) multilabel classification problem [54, 24]. In a hierarchical system, it is often

also desirable to take into account the label relations encoded in the taxonomy. To

accommodate this we also develop the other three metrics.

The output of our learning algorithms is a weight vector w. The corresponding

compatibility function is F (x, y;w) = 〈w,Φ(x, y)〉. Let f be the classifier that always

predicts the highest ranked label, i.e. f(x;w) = argmaxy F (x, y;w). If documents

are only allowed a single label, the classification system will naturally predict the one

in which it has the greatest confidence. The test is performed on S = {xi, Yi}ni=1.

One-accuracy (acc) measures the empirical probability of the top-ranked label

being relevant to the document. Let [.] be 1 if the predicate inside holds and 0 if not.

acc(f, S) =
1

n

n
∑

i=1

[f(xi) ∈ Yi] . (7.3)

70

Average precision (prec) measures the quality of label rankings. Precision is cal-

culated at each position where a positive label occurred, as if all the labels ranked

higher than it, including itself, are predicted as relevant. These precision values are

then averaged to obtain average precision. Formally,

prec(F, S) =
1

n

n
∑

i=1

1

|Yi|
∑

y∈Yi

|{r : r ∈ Yi, F (xi, r) ≥ F (xi, y)}|
|{r : r ∈ Y , F (xi, r) ≥ F (xi, y)}|

. (7.4)

Ranking loss is defined in [54] as

rloss(F, S) =
1

n

n
∑

i=1

|{(y ∈ Yi, ȳ ∈ Ȳi) : F (xi, y) ≤ F (xi, ȳ)}|
|Yi||Ȳi|

. (7.5)

Ranking loss measures the average fraction of positive label and negative label pairs

that are misordered.

Maximal loss, denoted by △x, and top loss, denoted by △t were introduced in

Chapter 4.2.2. Maximal loss takes the maximum from the losses incurred by all mis-

ranked positive and negative labels. Top loss is the loss suffered from the top-ranked

label. Both of them are upper bounded by the averaged slack variable value that is

part of the optimization objective in the dual formulation of the hierarchical SVM.

In the experiments these two metrics are measured by the hierarchical loss function

△h defined in Section 7.2. In the context of multiclass classification only one label

is needed from the classifier. The users are generally more concerned with the loss

caused by this single label than by any other misordered labels. In the experiments,

therefore, we generally evaluate top loss for the multiclass cases and maximal loss for

the multilabel cases.

A misclassification can be weighed differently, depending on how far away the

predicted label is from the correct labels. A misclassification to a sibling category

is presumably less problematic than a misclassification to a very different category.

For this reason we also evaluate parent one-accuracy (pacc), which measures the one-

accuracy at the category’s parent node level. Let P(y) denote the immediate parent

node of y. Then

pacc(f, S) =
1

n

n
∑

i=1

[∃y ∈ Yi s.t. P(f(xi)) = P(y)] . (7.6)

71

fan- dep- acc (%) prec (%) △x-loss rloss (%) pacc (%)
out th F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

3 3 88.5 91.4 86.4 89.2 1.63 1.39 3.30 2.24 91.7 94.3

6 2 93.7 93.4 87.0 88.8 1.32 1.22 3.09 2.31 95.3 96.6

Table 7.5: 10-fold cross-validation results on synthetic data. “F-SVM” is abbreviation
of the flat SVM while “H-SVM” is abbreviation of the hierarchical SVM. “Fan-out”
refers to the fan out factor of each interior concept, “depth” refers to the depth of
the tree, “acc” refers to the accuracy, “prec” refers to the average precision, “△x-
loss” refers to the taxonomy-based maximal loss, “rloss” refers to the ranking loss,
and “pacc” refers to the parent accuracy. There are 20 features and 200 examples.
C = 10, 000. Bold face is used to mark better performance.

Assume two algorithms have similar accuracy. If a misclassification occurs, the algo-

rithm with higher parent accuracy is then more likely to assign an instance to the true

category’s siblings, than to assign it to a class that is farther away from the correct

class. An algorithm with a higher parent accuracy is thus favored, for instance, when

used as an automatic categorization tool to assist human experts.

7.4 Results with hierarchical SVM

This section summarizes our experiments of comparing the flat SVM, the hierarchi-

cal SVM, and a divide-and-conquer SVM that exploits a hierarchy. We have also

compared the latter two methods when a random hierarchy is used.

7.4.1 Hierarchical SVM versus flat SVM

In this section we compare the hierarchical SVM with the flat SVM on all five corpora.

Synthetic data

Table 7.5 summarizes the performance of 10-fold cross-validation. It is close to hard-

margin separation since C is set to 104 here. We observe that the hierarchical SVM

consistently excels on all runs with respect to almost all considered measures except

one-accuracy. This also holds for various other C’s that we used. The performance

72

section acc (%) prec (%) △t-loss pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

A 42.3 42.9 51.7 53.2 1.24 1.15 61.5 65.0

B 33.2 33.8 41.5 43.1 1.54 1.41 57.3 62.2

C 35.5 35.1 44.8 44.6 1.32 1.23 61.5 65.6

D 41.8 42.8 52.3 54.4 1.20 1.08 65.4 69.1

E 34.7 34.3 44.8 46.3 1.38 1.30 62.7 64.2

F 31.2 32.4 40.6 42.9 1.47 1.33 57.6 63.3

G 41.0 41.2 50.3 51.1 1.32 1.26 60.6 63.0

H 43.0 43.1 54.2 55.2 1.12 1.07 63.3 66.2

Table 7.6: Performance comparison of flat SVM (F-SVM) and hierarchical SVM (H-
SVM) on multi-class WIPO-alpha subtrees rooted at various section codes. Notations
are the same as in Table 7.5. ǫ = 0.1 for runs on section A, B, C, F, G, and H and
ǫ = 0.01 for experiments on sections D and E which are smaller.

gains are not huge but the performance advantage of using hierarchical SVM is clear

and steady.

Multiclass WIPO-alpha set

Table 7.6 compares the performance of the flat SVM and the hierarchical SVM with

respect to all 8 sections. When dealing with a specific section, only documents with

their main category in the section in question are taken into account. Three-fold

cross-validation has been performed for all runs. We observe that hierarchical SVM

outperforms the flat SVM in terms of △t-loss in all cases. This can be attributed to

the fact that it explicitly optimizes an upper bound on the △t-loss of a training set

as well as to the specific hierarchical form of the discriminant function. Moreover,

hierarchical SVM in most cases also produces higher accuracy, precision, and parent

accuracy.

In Table 7.6, the relative improvements on the taxonomy-derived loss △t are

generally much higher than those on the one-accuracy measure. Figure 7.4 gives an

example of misclassification counts related to each hierarchical loss value. In addition

to making larger amount of correct predications, the hierarchical SVM makes more

low-cost misclassifications and less high-cost misclassification. This way the overall

hierarchical loss is effectively reduced.

73

50

90

130

170

210

250

0 1 2 3

Hierarchical loss
M

is
c

la
s

s
if

ic
a

ti
o

n
 c

o
u

n
ts F-SVM

H-SVM

Figure 7.4: Histogram of the hierarchical loss on D section of the multiclass WIPO-
alpha corpus. The solid column corresponds to the flat SVM while the shaded column
corresponds to the hierarchical SVM. The height of a column indicates the number
of misclassifications that incur a specific hierarchical loss. When loss equals 0, the
columns correspond to the number of correct classification. The numbers are from
one run of three-fold cross-validation.

As mentioned in Section 7.2, the trade-off coefficient C in the hierarchical SVM

is set to 1 by default. Our experiments show this is a good choice. Figure 7.5 depicts

the one-accuracy and top loss of the investigated algorithms for varying values of C.

It appears that C = 1 leads to a decent performance and that the hierarchical SVM

always achieves a lower top loss.

Figure 7.6 is an example of how the optimization process of the hierarchical SVM

evolves over time as more and more variables are selected. For that purpose we define

the active dual variable ratio as
∣

∣{αiyȳ|y ∈ Yi ∧ ȳ ∈ Ȳi ∧ αiyȳ > 0}
∣

∣

∑

i |Yi||Ȳi|
. (7.7)

We observe that in the beginning iterations, the variable selection strategy almost

always adds a new dual variable in each iteration. When the active set reaches a

reasonable size, the growth of the active set sizes slows down and more efforts are

focused on optimizing the variables that are already in the set. In all our experiments

on WIPO-alpha, the learned solutions were very sparse, usually with an active ratio

in the range of [0.005, 0.1].

Our method of adding one or zero dual variable each time into optimization also

leads to sparser solutions and faster convergence, when compared to strategies such

74

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

C

A
cc

ur
ac

y

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

C

A
cc

ur
ac

y
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

C

ta
xo

no
m

y−
ba

se
d

lo
ss

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

C
ta

xo
no

m
y−

ba
se

d
lo

ss

on section D on section E

Figure 7.5: Performance on two sections of the multiclass WIPO-alpha with varying
trade-off parameter C. Solid lines correspond to the flat SVM and dashed lines
correspond to the hierarchical SVM. Here the “taxonomy-based loss” refers to the
top loss.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

iterations

A
ct

iv
e

du
al

 v
ar

ia
bl

e
ra

tio

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

iterations

D
ua

l o
bj

ec
tiv

e

Figure 7.6: Optimization process of the hierarchical SVM on D section of the multi-
class WIPO corpus. The objective of the dual problem is defined in Equation (4.14).

75

as the one in [14] that consider all variables belonging to the same instance in the

subspace optimization. Since the active set increases slowly in our case and since

we restrict optimization to the variables in the active set, our method needs more

subspace optimizations, but needs to solve significantly smaller QPs in every iteration.

To show how the computational complexity works out in a realistic example, we have

trained the hierarchical SVM on the D section of WIPO-alpha with both optimization

strategies. Our approach takes about 2,200 seconds with a final fraction of 4.6%

non-zero dual variables. Without maintaining an active set, the learning has taken

about 42,200 seconds with a larger active ratio of 4.9%. The sparser solution can be

explained by the conservative manner of constructing the active set in our approach.

data acc (%) prec (%) △t-loss pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

A, sampled 10.6 11.7 17.3 20.5 2.12 1.87 34.9 43.2

B, sampled 9.56 11.3 14.7 18.9 2.25 1.99 36.5 45.6

C, sampled 12.1 13.3 18.1 20.7 1.90 1.69 45.4 53.0

D, sampled 19.7 20.5 27.2 30.9 1.71 1.54 48.9 57.3

E, sampled 10.2 11.4 17.3 20.6 2.01 1.82 40.5 48.3

F, sampled 13.1 14.5 19.4 22.8 2.02 1.75 40.8 50.5

G, sampled 12.4 13.6 18.9 22.4 2.09 1.87 35.2 43.5

H, sampled 14.8 15.7 22.6 25.0 1.81 1.66 42.0 48.0

Table 7.7: Performance comparison of the flat SVM and the hierarchical SVM on
the multi-class WIPO-alpha corpus with subsampling. The notations are the same
as those in Table 7.5. The parameter ǫ was set to 0.1 for ‘A, sample 3’, ‘B, sample
3’, and ‘C, sample 3’, and 0.01 otherwise.

To examine the effect of the training set size, three-fold cross-validation has been

performed on subsampled data. Table 7.7 shows that the hierarchical SVM outper-

forms the flat SVM. Moreover, the performance gains are more significant in the

scenario with fewer training documents. Note that all measures on all runs have been

improved. This demonstrates that the hierarchical formulation, which couples cate-

gories through the weight vectors of common ancestors, is particularly useful when

operated on small training sets, since it allows more reliable estimates for weight vec-

tors associated with higher-level nodes by effectively pooling observation in a manner

similar to [41].

76

section acc (%) prec (%) △x-loss rloss (%) pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

A 53.8 54.2 56.0 57.3 1.66 1.34 9.09 3.85 70.3 73.5

B 37.3 37.8 40.8 42.5 2.08 1.76 12.6 5.38 59.9 65.0

C 45.3 45.4 45.5 45.9 2.10 1.68 10.1 4.95 67.8 73.3

D 47.3 48.6 52.7 55.0 1.82 1.45 11.7 7.35 67.7 71.6

E 38.7 38.7 44.9 46.5 1.99 1.63 12.7 7.44 63.7 66.2

F 36.6 37.6 41.3 43.4 2.07 1.69 11.6 5.13 59.7 65.0

G 47.2 47.2 52.3 52.8 1.73 1.50 10.5 5.46 64.9 67.0

H 48.7 49.2 55.1 56.2 1.63 1.34 8.25 4.15 66.5 69.6

Table 7.8: SVM experiments on the multilabel WIPO-alpha corpus. Each row is
on categories under the specified top level node (i.e. section). The results are from
random 3-fold cross-validation. Better performance is marked in bold face. Notations
are the same as in Table 7.5.

Multilabel WIPO-alpha set

Table 7.8 summarizes the SVM performance on the multilabel WIPO-alpha corpus

across the sections. The hierarchical SVM significantly outperforms the flat SVM in

terms of hierarchical maximal loss, ranking loss, and parent accuracy in each indi-

vidual setting. Moreover, the hierarchical SVM often produces higher classification

accuracy and average precision with gains being more moderate. To see if the im-

provement is statistically significant, we conducted 10-fold cross-validation on section

E and then paired permutation test. The achieved level of significance is less than

0.08 for one-accuracy, and less than 0.005 for the other four measures.

An important assumption of the hierarchical SVM is that the closer two classes are

in the taxonomy, the more similar their class prototypes are. To see if this assumption

is consistent with the data, we measure on the D section the cosine values of the angles

between class centroids, which can be viewed as a rough estimate of class prototypes.

We find that the closer two classes are in the given taxonomy, the smaller the angle

between them tend to be. The average cosine values among class pairs with distance

2, 4, and 6 in the taxonomy are 0.21, 0.18, and 0.16 respectively. This agrees with

our assumption.

In addition, in the subsampled corpus we randomly sampled 3 documents from

77

section acc (%) prec (%) △x-loss pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

A, sampled 14.8 16.3 16.8 20.5 2.71 2.28 39.3 47.3

B, sampled 12.4 14.0 14.0 17.9 2.78 2.39 40.1 48.6

C, sampled 14.8 16.3 15.6 18.2 2.79 2.23 46.6 58.1

D, sampled 19.4 21.3 24.0 27.3 2.58 2.06 49.3 56.3

E, sampled 14.4 15.2 19.9 22.4 2.66 2.19 45.2 50.4

F, sampled 13.4 14.9 16.6 20.2 2.74 2.25 41.5 51.1

G, sampled 11.4 12.4 14.9 18.4 2.75 2.40 35.1 41.9

H, sampled 15.1 16.2 19.2 22.6 2.67 2.12 40.2 48.4

Table 7.9: SVM experiments on the multilabel WIPO-alpha corpus with subsampling.
Three documents or less are sampled for each category.

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

sample number per category

pe
rf

or
m

an
ce

 (
%

)

flat acc
hier acc
flat pacc
hier pacc

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

45

50

sample number per category

pe
rf

or
m

an
ce

 (
%

)

flat prec
hier prec
flat rloss
hier rloss

Figure 7.7: Flat and hierarchical SVM on section D of the multilabel WIPO-alpha
data, with varying training set size. A small number of documents are sampled from
each category for training purpose. The learned classifiers are tested on all remaining
documents. This is repeated 10 times for each sampling number. The bars depict
sample standard deviation. In this figure “flat” refers to the flat SVM while “hier”
refers to the hierarchical SVM.

78

t
acc (%) prec (%) △t-loss pacc (%)

F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

1 17.1 16.8 34.6 34.8 1.43 1.43 40.0 40.1

5 38.1 38.0 54.7 55.3 0.955 0.942 66.5 68.0

10 49.8 49.5 64.6 65.1 0.750 0.743 75.1 76.2

15 54.1 53.6 68.1 68.4 0.669 0.668 78.9 79.5

20 58.7 58.1 71.6 71.7 0.591 0.594 82.1 82.6

all 84.8 84.5 90.7 90.6 0.204 0.206 94.8 94.9

Table 7.10: Performance comparison of the flat and hierarchical SVMs on Newsgroup
collection. t is the number of documents sampled from each class for training. The
last row is by 10-fold cross-validation with all data.

each category to simulate the situation where data are only available in small quan-

tities. The results in Table 7.9 show that the hierarchical SVM outperforms the flat

SVM in all cases. The relative gains are somewhat higher than for the complete

training set. Figure 7.7 demonstrates how the performance gains vary with the size

of training data. We observe that hierarchical SVM excels in all runs. The gains

appear to be slightly larger when the training set is smaller, except for one-accuracy.

Newsgroup set

We conduct 10-fold cross-validation on this set and find the performance of the hi-

erarchical SVM is about the same as the performance of the flat SVM. Hierarchical

SVM couples the weight vectors of nodes through their common ancestors. The closer

two categories are in the taxonomy, the harder the hierarchical approach pushes their

weight vectors to be similar. We hypothesize that this can be especially useful when

the training data are sparse. In the newsgroup data, each category has 1, 000 docu-

ments. Therefore we perform subsampling. We randomly sample t documents from

each category and evaluate the learned classifier on all remaining documents. The

process was repeated 10 times and the measures were macro-averaged. Table 7.10

shows the results.

We observe that the performance difference between the two approaches is mild.

However, the tendency is relatively stable. The hierarchical SVM always excels in

parent accuracy. When the data are sparse, the hierarchical loss is usually also lower.

79

subtree acc (%) prec (%) △x-loss rloss (%) pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

H 48.2 47.0 56.3 55.4 2.26 2.16 11.3 8.8 54.1 53.2

Table 7.11: Performance comparison of the flat and hierarchical SVM on the H subtree
of OHSUMED corpus. C = 1 and ǫ = 0.1.

An interesting phenomenon is that the hierarchical model almost always produces

higher average precision while the flat one always achieves a higher accuracy. This

indicates that although the hierarchical SVM is not as good in predicting the correct

label, it does tend to rank the correct category higher.

OHSUMED corpus

Experiments have been conducted on taxonomies formed by each top level node along

with all nodes below it and the corresponding instances. The results show that the

hierarchical SVM almost always beats the flat SVM in terms of ranking loss and the

hierarchical maximal loss. However, in most cases, the hierarchical SVM produces

lower one-accuracy, average precision, and parent accuracy. As an example, table 7.11

shows the 3-fold cross-validation outcome on H sub-taxonomy, which is indicative of

the overall tendency.

The subsampling experiments, however, show different results. We randomly sam-

pled two documents (or all available documents if the category possesses less than two

documents) from each category as training data. Performance measures are evaluated

on all the remaining documents. The performance measures over 10 repetitions are

then averaged. The results are summarized in Table 7.12. We note that the hierarchi-

cal SVM outperforms the flat SVM in most cases, when the training data are scarce.

The average precision, hierarchical maximal loss, and ranking loss are improved in all

settings, with the improvement of ranking loss particularly significant.

ENZYME data

This is a multiclass set in which each instance is assigned to exactly one class. The

results in Table 7.13 show that the hierarchical loss, a measure particularly suited

to capture the performance of a hierarchical classification system, is improved by

80

subtree acc (%) prec (%) △x-loss rloss (%) pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

A, sampled 30.5 34.2 35.7 38.1 4.80 4.37 15.7 9.6 36.1 40.7

B, sampled 32.2 33.8 39.6 41.5 4.71 4.22 18.6 11.7 37.6 39.1

C, sampled 41.2 45.0 41.1 43.4 4.48 4.26 13.8 7.6 46.6 50.7

E, sampled 25.5 28.7 28.8 30.8 4.75 4.43 19.2 13.0 29.9 33.6

F, sampled 26.0 27.6 28.7 29.9 4.24 4.03 25.6 19.5 29.8 31.6

G, sampled 21.0 24.1 25.1 25.2 4.76 4.40 21.1 12.7 26.2 29.9

H, sampled 17.3 18.1 25.1 25.9 3.65 3.37 27.7 21.6 22.4 24.0

I, sampled 19.0 19.8 24.4 25.1 4.36 4.02 30.2 24.0 24.1 25.3

J, sampled 30.3 30.5 38.7 39.8 2.88 2.60 28.7 21.9 39.5 39.0
K, sampled 23.4 26.2 33.5 36.0 2.47 2.35 45.1 41.1 30.8 31.2

L, sampled 16.3 16.4 24.5 25.0 3.67 3.46 36.5 29.2 22.5 23.0

M, sampled 25.0 25.6 35.3 36.1 2.72 2.36 28.9 23.0 36.3 37.0

N, sampled 16.8 18.4 19.1 20.1 5.21 5.00 29.7 21.5 20.9 22.8

Z, sampled 16.4 16.2 26.3 26.9 3.19 2.93 41.8 34.9 30.7 29.5

Table 7.12: SVM experiments on OHSUMED with subsampling. Each row is on
categories under the specified top level node. Two or less than two documents are
randomly drawn from each category for training. Performance is evaluated on all
remaining documents. The results are averaged over 10 such repetitions. C = 1 and
ǫ = 0.1. Experiments on sub-taxonomies rooted at D top-level nodes are too large to
finish.

acc (%) prec (%) △x-loss rloss (%) pacc (%)
F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM F-SVM H-SVM

34.2 33.6 44.3 43.7 1.94 1.84 13.2 11.6 38.3 40.4

Table 7.13: Performance comparison of the flat and hierarchical SVMs on ENZYME
corpus. ǫ = 0.01. Notations are the same as those in Table 7.5.

81

the hierarchical SVM. Compared the flat SVM, the hierarchical SVM also reduces

the ranking loss and increases the one-accuracy at parent level. However, at the

same time the hierarchical SVM achieves lower one-accuracy and average precision.

So unlike the WIPO-alpha corpus in which the hierarchical SVM outperforms the

flat SVM on almost all measures, the ENZYME set steadily favors the hierarchical

SVM with respect to the hierarchical measures and ranking loss while favoring the flat

SVM with respect to one-accuracy and average precision. The performance difference,

compared to that on WIPO-alpha data, is also smaller.

In [50], the best 0/1 accuracy is 14.5% while ours is 34.2%. But this performance

difference is likely due to the fact that they consider partial paths and multiple labels,

although this in fact is a multiclass corpus with classes only at terminal levels of the

tree taxonomy.

7.4.2 Comparison with Divide-and-Conquer SVM

In this section, we compare the hierarchical SVM with an intuitive and common

construction of hierarchical classifiers that use divide-and-conquer techniques [31].

The latter builds a classifier at each interior node of a given taxonomy that learns

to distinguish among its child nodes. To make a prediction, the method starts from

the root and the classifier at a node routes the further decision to one of its child

nodes; the terminal node that is reached at the end is the predicted class. Since we

use the flat SVMs as the local classifiers, we call this method Divide-and-Conquer

SVM (DNC-SVM).

The training process of DNC-SVM follows the procedure below.

1. For each interior node in the taxonomy, gather all training data that have at

least one relevant label that is a descendent of the node in question. This set

of data is then used as training data for the node.

2. The categories of the classifier at each interior node are its child nodes. If an

instance has a category that is a descendent of a child node, then it is assigned

to the child node. In multilabel data set, it is possible that an instance belongs

to multiple children of a node.

3. Train a flat SVM at each node with the training data constructed as above.

82

section
acc (%) pacc (%)

F-SVM DNC-SVM H-SVM F-SVM DNC-SVM H-SVM
D 41.8 38.5 42.8 65.4 67.1 69.1

E 34.7 30.6 34.3 62.7 61.5 64.2

H 43.0 40.9 43.1 63.3 65.2 66.2

Table 7.14: Comparison of the flat SVM, Divide-and-Conquer SVM, and hierarchical
SVM on some sections of the multiclass WIPO-alpha corpus.

t
acc (%) pacc (%)

F-SVM DNC-SVM H-SVM F-SVM DNC-SVM H-SVM
1 17.1 16.3 16.8 40.0 44.2 40.7
5 38.1 32.9 37.8 66.5 67.3 68.0

10 49.8 44.9 49.5 75.1 75.4 76.2

15 54.1 49.8 53.6 78.9 79.5 79.5

20 58.7 55.0 58.1 82.14 82.16 82.6

all 84.8 84.1 84.5 94.8 95.0 94.9

Table 7.15: Comparison of the flat SVM, Divide-and-Conquer SVM, and hierarchical
SVM on Newsgroup data with different subsampling. t is the number of documents
sampled from each category for training, with evaluation being performed on all
remaining documents. Performance over 10 repetitions is macro-averaged and given
in the table. The last row corresponds to 10-fold cross-validation.

subtree acc (%) pacc (%)
F-SVM DNC-SVM H-SVM F-SVM DNC-SVM H-SVM

H, sampled 17.3 13.0 18.1 22.4 18.8 24.0

I, sampled 19.0 14.9 19.8 24.1 22.8 25.3

J, sampled 30.3 26.8 30.5 39.5 35.1 39.0
K, sampled 23.4 27.0 26.2 30.8 33.4 31.2
L, sampled 16.3 14.8 16.4 22.5 22.4 23.0

M, sampled 25.0 21.8 25.6 36.3 35.9 37.0

Z, sampled 16.4 8.7 16.2 30.7 43.6 29.5

Table 7.16: Performance comparison of the flat SVM, Divide-and-Conquer SVM, and
hierarchical SVM on subsampled OHSUMED set. Each row is on categories under the
specified top level node. Two or less than two documents are randomly drawn from
each category for training. Performance is evaluated on all remaining documents.
The results are averaged over 10 such repetitions. C = 1 and ǫ = 0.1.

83

Since DNC-SVM does not produce a ranking of categories, measures such as

average precision and ranking loss are not applicable. In empirical evaluation we

have used one-accuracy and parent one-accuracy. We have conducted experiments

on Newsgroup data and a few small to medium-sized subtrees of WIPO-alpha and

OHSUMED collection. The results are summarized in Tables 7.14, 7.15, and 7.16.

The results show that on WIPO-alpha and Newsgroup data, DNC-SVM leads to a

higher parent one-accuracy than the flat SVM. This could be explained by the fact

that DNC-SVM directly optimizes the classification accuracy at interior node. This

is especially clear in Newsgroup corpus since it has only two levels of hierarchy. How-

ever, on the same corpora, DNC-SVM gives significantly lower one-accuracy than the

flat SVM (often about 10% worse). It suggests that when the parent node is classified

correctly, DNC-SVM has a lower rate of correctly predicting the leaf node than the

flat SVM. Different from the WIPO-alpha and Newsgroup corpora, the OHSUMED

set uses a taxonomy in which branches have various lengths and classes could be

partial paths. On the subsampled OHSUMED set, the DNC-SVM not only almost

always achieves worse one-accuracy than the flat SVM as baseline, but also frequently

reaches lower parent one-accuracy than the flat SVM.

Table 7.14, 7.15, and 7.16 also show that the hierarchical SVM generally outper-

forms the DNC-SVM in terms of one-accuracy. In many cases, the relative improve-

ments are on the scale of 10%. The hierarchical SVM also often outperforms the

DNC-SVM in terms of parent one-accuracy. Although the DNC-SVM occasionally

can yield accuracy that is significantly better than the flat SVM (for instance, see

the parent one-accuracy in the t = 1 row of Table 7.15 and that in the last row of

Table 7.16), so can it yield significantly worse accuracies. Meanwhile, although the

accuracy gains of the hierarchical SVM over the flat SVM are relatively modest, the

tendency that the hierarchical SVM outperforms the flat SVM is stable.

7.4.3 Using random hierarchy

In this section, we empirically evaluate the effect of using a random hierarchy. This

is designed to verify the value of a true hierarchy and how the hierarchical SVM and

DNC-SVM react to erroneous or noise-abundant class hierarchy.

The experiments are carried out on WIPO-alpha and Newsgroup sets. We let

84

method acc(%) prec(%) pacc(%)
F-SVM 41.82 52.27 65.45
H-SVM 42.81 54.42 69.13

H-SVM random 39.72± 0.52 49.2± 0.42 63.85± 0.53

Table 7.17: Performance of the hierarchical SVM with random hierarchies on the D
section of the multiclass WIPO-alpha corpus. “H-SVM” refers to the hierarchical
SVM with the actual true hierarchy. The last line gives sample mean and standard
deviation of performance of the hierarchical SVM with 30 random hierarchies. The
number of nodes at successive tree depths (in increasing order) is 1, 7, 20 and 160.

method
t = 20 all

acc(%) prec(%) pacc(%) acc(%) prec(%) pacc(%)
F-SVM 58.74 71.58 82.14 84.82 90.73 94.79
H-SVM 58.07 71.74 82.57 84.45 90.63 94.92

H-SVM rand1 57.59 70.80 81.47 84.43 90.43 94.58
H-SVM rand2 57.85 70.92 81.27 84.25 90.18 94.58
H-SVM rand3 57.70 70.86 81.24 84.46 90.48 94.58
H-SVM rand4 57.65 70.78 81.34 84.19 90.26 94.37
H-SVM rand5 57.82 71.12 81.52 84.65 90.63 94.64

Table 7.18: Performance of the hierarchical SVM with random hierarchies on News-
group data. Notations and experimental settings are the same as in Table 7.15. Each
of the last five rows gives results of the hierarchical SVM using a random hierarchy.

a random hierarchy have the same depth and the same number of nodes at each

tree level as the true hierarchy. But the edges between nodes at adjacent depths are

uniformly randomly generated and each interior node is made sure to have at least

one child node.

Table 7.17 gives the performance average of the hierarchical SVM over 30 random

hierarchies on an exemplary section of WIPO-alpha corpus. It shows that using

random hierarchy in the hierarchical SVM leads to worse performance than both the

flat SVM and the hierarchical SVM with the actual hierarchy. The small sample

standard deviation demonstrates that the actual hierarchy is an unlikely point in

the random hierarchy distribution. The results suggest that the actual hierarchy

contains useful information and our hierarchical SVM is able to take advantage of the

information.

85

method acc(%) pacc(%)
F-SVM 58.74 82.14

DNC-SVM 54.96 82.16

DNC-SVM rand1 52.56 77.57
DNC-SVM rand2 52.87 77.08
DNC-SVM rand3 55.13 78.69
DNC-SVM rand4 52.34 76.71
DNC-SVM rand5 52.88 77.90

Table 7.19: Experiments of Divide-and-Conquer SVM using random hierarchies on
Newsgroup data, with t = 20. The last five rows employ the same 5 random hierar-
chies as in Table 7.18.

Table 7.18 gives the results on Newsgroup set with five random hierarchies. We

again observe the loss of classification performance by using random hierarchies, com-

pared to the flat SVM or the hierarchical SVM with true hierarchies. The difference,

however, is small. Moreover, we find that the performance decrease is smaller when

more training data are available. This suggests that the influence imposed by a

wrong hierarchy can be offset by using a larger set of training data. In the hierar-

chical SVM, when training data are sparse, more reliable estimates of class weight

vectors are expected by pooling together instances from classes according to a class

hierarchy. When the hierarchy itself is wrong, the procedure is misled and wrong

smoothing occurs.

In addition, we have conducted experiments of the DNC-SVM with the same 5

random hierarchies on Newsgroup data. The results are summarized in Table 7.19.

Figure 7.8 depicts the performance change of the hierarchical SVM and DNC-SVM

when using random hierarchies on the D section of WIPO-alpha corpus. We observe

that on both datasets the degradation of classification performance in DNC-SVM

via using random hierarchies is considerably more severe than that in the hierarchi-

cal SVM. Indeed the DNC-SVM algorithm itself relies on the class taxonomy to a

greater extent than the hierarchical SVM. In DNC-SVM, a greedy decision process

is employed, which means a misclassification that happens at a higher-level node can

not be recovered by classifications at lower-level nodes. When classes are randomly

assigned to super-nodes, it is likely that super-nodes become heterogenous within

86

30

32

34

36

38

40

42

44

F-SVM H-SVM DNC-
SVM

H-SVM
rand

DNC-
SVM
rand

a
c
c
 (

%
)

55

57

59

61

63

65

67

69

F-SVM H-SVM DNC-
SVM

H-SVM
rand

DNC-
SVM
rand

p
a
c
c
 (

%
)

(a) (b)

Figure 7.8: Performance comparision of the hierarchical SVM and Divide-and-
Conquer SVM with random hierarchies on D section of the multiclass WIPO-alpha
corpus. We use “H-SVM” to indicate the hierarchical SVM with the true hierar-
chy, “DNC-SVM” to indicate the Divide-and-Conquer SVM with the true hierarchy,
“H-SVM rand” to indicate the hierarchical SVM with random hierarchies, and “DNC-
SVM” to indicate the Divide-and-Conquer SVM with random hierarchies. The per-
formance sample mean and standard deviation of “H-SVM rand” and “DNC-rand”
are computed over the same 30 random hierarchies that are used in Table 7.17.

themselves while they present no clear decision boundary between them. Thus clas-

sification at higher-level becomes more difficult, yet any misclassification becomes

final due to DNC-SVM’s greedy decision rule. The hierarchical SVM, on the other

hand, is an all-together approach in which all parameters are learned simultaneously.

Although a random taxonomy misleads learning, the weight vector of an erroenous

interior node is not used by itself, but rather is always used together with other weight

vectors that are along a same path from a class to a root. Therefore the hierarchical

SVM is less susceptible to wrong or noisy taxonomies. The experiments demonstrate

the robustness advantage of the hierarchical SVM.

7.5 Results with hierarchical Perceptron

In Chapter 5 three slightly different versions of hierarchical Perceptron algorithms

have been proposed. The algorithms employ the same weight decomposition and

update strategies, but differ in which variables are picked for update and how the

final classifier is constructed. In this section, the hierarchical Perceptron algorithms

87

29

30

31

32

33

34

35

36

online averaged Minover

a
c

c
 (

%
)

F-PERC

H-PERC

35

36

37

38

39

40

41

42

43

44

online averaged Minover

p
re

c
 (

%
)

F-PERC

H-PERC

0

2

4

6

8

10

12

14

16

18

online averaged Minover

rl
o

s
s

 (
%

)

F-PERC

H-PERC

54

56

58

60

62

64

66

online averaged Minover
p

a
c

c
 (

%
)

F-PERC

H-PERC

Figure 7.9: The flat and hierarchical Perceptron algorithms on the E section of the
multilabel WIPO-alpha corpus. Three-fold cross-validation has been performed. The
algorithms are allowed to run till convergence. We use “H-PERC” to indicate the
hierarchical Perceptron algorithms and “F-PERC” to indicate the flat Perceptron
algorithms.

will first be compared with their flat counterparts and among themselves. They

will then be compared with the Hieron algorithm [19] which is also a hierarchical

Perceptron-like algorithm.

7.5.1 Hierarchical Perceptron algorithms

Figure 7.9 gives an example of the performance of the three hierarchical Perceptron

algorithms on the multilabel WIPO-alpha corpus. Figure 7.10 shows results on an

88

80

81

82

83

84

85

86

online averaged Minover

a
c

c
 (

%
)

F-PERC

H-PERC

87.5

88

88.5

89

89.5

90

90.5

online averaged Minover
p

re
c

 (
%

)

F-PERC

H-PERC

0

1

2

3

4

online averaged Minover

rl
o

s
s

 (
%

)

F-PERC

H-PERC

91

92

93

94

95

96

online averaged Minover

p
a

c
c

 (
%

)

F-PERC

H-PERC

Figure 7.10: The flat and hierarchical Perceptron algorithms on the abridged news-
group set, with 10-fold cross-validation. Under the condition that κ = 100, the
Minover Perceptrons converged but not the online Perceptrons or averaged Percep-
trons.

89

abridged version of the Newsgroup set.1 All three variants of the hierarchical Percep-

tron outperform their corresponding flat algorithms with respect to the ranking loss

and parent one-accuracy. The one-accuracy and average precision measures are im-

proved in most cases as well. In addition, the Minover Perceptron algorithms usually

achieve similar performance as the other two variants with lower active dual variable

ratio. For instance, in experiments depicted in Figure 7.10, on average the solution

of the Minover hierarchical Perceptron has 3.0% non-zero dual varaibles while the

solution of the online hierarchical Perceptron has 3.8%.

Figure 7.11: Results of the Minover flat and hierarchical Perceptron learning on the
multilabel WIPO-alpha corpus. The four columns, from left to right, depict one-
accuracy for the Minover flat and hierarchical Perceptron, and average precision for
the Minover flat and hierarchical Perceptron.

Figure 7.11 depicts the performance of the Minover hierarchical Perceptron algo-

rithm on the multilabel WIPO-alpha corpus. We allow the Perceptron to run until

convergence. It takes significantly less time than SVM but reaches lower perfor-

mance. We observe that the Minover hierarchical Perceptron performs better than

the Minover flat Perceptron in all runs.

1The abridged set keeps all documents from the original data set except empty documents and
documents that are identical but are assigned different classes (in this case only one class is
randomly picked and kept). A small fraction of the Newsgroup articles are actually posted to
multiple newsgroups. This is how the latter situation arises. If duplicate instances that are
assigned to different classes are not removed, the Minover Perceptron algorithm would then
cycle through the duplicate instances forever without making any progress.

90

6 8 10 12 14 16 18
6

8

10

12

14

16

18

flat Perceptron one accuracy (%)

hi
er

ar
ch

ic
al

 P
er

ce
pt

ro
n

on
e

ac
cu

ra
cy

 (
%

)

8 10 12 14 16 18 20
8

10

12

14

16

18

20

flat Perceptron average precision (%)

hi
er

ar
ch

ic
al

 P
er

ce
pt

ro
n

av
er

ag
e

pr
ec

is
io

n
(%

)

15 20 25 30 35

15

20

25

30

35

flat Perceptron ranking loss (%)

hi
er

ar
ch

ic
al

 P
er

ce
pt

ro
n

ra
nk

in
g

lo
ss

 (
%

)

20 25 30 35 40 45 50 55
20

25

30

35

40

45

50

55

flat Perceptron parent one accuracy (%)hi
er

ar
ch

ic
al

 P
er

ce
pt

ro
n

pa
re

nt
 o

ne
 a

cc
ur

ac
y

(%
)

Figure 7.12: The Minover flat and hierarchical Perceptron on subsampled collection
of the multilabel WIPO-alpha corpus.

Figure 7.12 compares the flat and hierarchical Minover Perceptron on the subsam-

pled multilabel WIPO-alpha corpus. Each three-fold cross-validation on a random

subset of documents under one section constitutes one sample in the figure, with each

section contributing 3 samples. We observe the hierarchical approach helps with one-

accuracy most times. It always significantly improves average precision, ranking loss

and parent accuracy, with the gains on the first two metrics particularly large.

7.5.2 Hierarchical Perceptron versus Hieron

The Hieron algorithm is proposed for multiclass classification where classes are or-

ganized in trees [19]. The major difference between Hieron and our hierarchical

Perceptron algorithms lies in the update rule. In Hieron, an update step is performed

to minimize a distance between the new weight vector and the current weight vector

while making sure a hierarchical margin is satisfied for the current instance. Let xi

be the current instance, yi be the correct class of xi, and ŷi be the predicted class for

91

xi. In our notation, the analytic solution of Hieron’s optimization problem is

τ ≡
max

(

0 , 〈w(α),Φi(yi, ŷi)〉+
√

△(yi, ŷi)
)

|anc(yi)⊖ anc(ŷi)| ‖xi‖2
(7.8)

and the update to the current classifier is

w(new) = w(old) + τΦi(yi, ŷi) . (7.9)

A batch Hieron algorithm is also proposed in [19]. It not only takes the average of

all generated discriminant functions as the final learned classifier in the same way as

our averaged hierarchical Perceptron does, but also uses a hinge loss defined in [19]

to pick variables to update. Due to the former, we call the algorithm the averaged

Hieron algorithm for convenience.

Since our multiclass data sets (WIPO-alpha, Newsgroup, and ENZYME) all nat-

urally have their categories in leaf nodes, we modify Hieron algorithms’ classification

rule so that it predicts only among leaf nodes. Note in our work, we have used half

the distance between categories as the hierarchical loss. The Hieron algorithm has

been modified to use our hierarchical loss, instead of the distance between categories

proposed in [19]. This change only scales Hieron’s solution weight vectors by 1/
√

2,

whether it is averaged Hieron or online Hieron. Therefore, this minor modification

does not change the learned classifiers of Hieron.

We have first conducted a set of experiments on the Newsgroup set with different

subsampling ratio. Table 7.20 summarizes the performance of the averaged flat and

hierarchical Perceptron as well as that of the averaged flat and hierarchical Hieron.

Table 7.21 compares the online Hieron and the online Perceptron on the Newsgroup

corpus with 10-fold cross validation. We made the following observations.

1. As demonstrated in [19], the averaged algorithm usually performs significantly

better than the online algorithm. This applies to both Hieron and Perceptron

algorithms.

2. Our hierarchical Perceptron can often improve one-accuracy by exploiting the

hierarchy. But the hierarchical Hieron often leads to lower one-accuracy than

the flat Hieron.

92

t Measure FaHieron HaHieron FaPERC HaPERC

10

acc(%) 35.2 34.9 36.2 38.2

prec(%) 50.3 52.7 51.4 54.9

△t-loss 1.08 0.98 1.05 0.96

pacc(%) 57.0 67.5 59.2 65.4

20

acc(%) 46.8 44.5 46.1 47.7

prec(%) 60.7 61.5 59.9 63.2

△t-loss 0.83 0.79 0.85 78.7

pacc(%) 70.0 76.3 69.3 73.6

all

acc(%) 63.4 62.5 64.9 67.2

prec(%) 74.7 75.9 76.0 78.7

△t-loss 0.52 0.50 0.49 0.46

pacc(%) 84.9 87.7 85.7 87.0

Table 7.20: Performance comparison of the averaged Hieron and averaged Perceptron
on the Newsgroup data. κ = 20. We use “FaHieron” to indicate the averaged
flat Hieron, “HaHieron” to indicate the averaged hierarchical Hieron, “FaPERC”
to indicate the averaged flat Perceptron, and “HaPERC” to indicate the averaged
hierarchical Perceptron.

Measure FoHieron HoHieron FoPERC HoPERC

all

acc(%) 29.5 36.4 34.7 39.9

prec(%) 54.4 58.7 58.2 62.4

△t-loss 1.24 1.06 1.13 1.01

pacc(%) 46.7 57.1 52.0 58.9

Table 7.21: Performance comparison of the online flat and hierarchical Hieron and
Perceptron on the Newsgroup data. We use “FoHieron” to indicate the online flat
Hieron, “HoHieron” to indicate the online hierarchical Hieron, “FoPERC” to indi-
cate the online flat Perceptron, and “HoPERC” to indicate the online hierarchical
Perceptron.

93

section Measure FaHieron HaHieron FaPERC HaPERC

D

acc(%) 35.0 33.4 34.6 37.3

prec(%) 45.2 45.4 45.3 49.1

△t-loss 1.39 1.25 1.39 1.19

pacc(%) 59.0 63.3 59.1 66.4

E

acc(%) 27.4 26.5 27.4 29.2

prec(%) 36.8 37.4 36.9 39.6

△t-loss 1.62 1.46 1.62 1.42

pacc(%) 55.4 59.3 55.0 60.6

Table 7.22: Comparison of the averaged Hieron and averaged Perceptron on the
multiclass WIPO-alpha data. κ = 20. Refer to Table 7.20 for abbreviations.

3. Our hierarchical Perceptron often achieves better one-accuracy, average preci-

sion, and hierarchy-induced loss than the hierarchical Hieron, although a much

simpler update rule is employed in the hierarchical Perceptron. The perfor-

mance difference can be significant.

4. The hierarchical Hieron algorithm does not appear to achieve more performance

gains against the flat Hieron than our hierarchical Perceptron algorithm against

the flat Perceptron algorithm.

5. The hierarchical SVM (results in Table 7.10) significantly outperforms the hi-

erarchical Perceptron and Hieron algorithms, although the performance gains

of the hierarchical SVM over its flat counterpart are less significant than those

of the hierarchical Perceptron or Hieron.

The observations made on the Newsgroup corpus also apply to WIPO-alpha data.

Table 7.22 shows results on two smallest sub-taxonomies of the WIPO-alpha corpus.

Through experiments on the Newsgroup and WIPO-alpha data, we have seen

that our hierarchical Perceptron algorithms are quite competitive with respect to

Hieron, a considerably more complicated Perceptron-based hierarchical method. Our

hierarchical Perceptron algorithm is able to take advantage of hierarchies to achieve

performance gains that are on the same scale as Hieron. Our hierarchical Perceptron

often outperforms the hierarchical Hieron.

94

section acc (%) prec (%) △t-loss pacc (%)
FaPERC HaPERCa FaPERC HaPERCa FaPERC HaPERCa FaPERC HaPERCa

D 34.6 34.9 45.3 47.3 1.39 1.36 59.1 59.2

E 27.4 27.6 36.9 38.1 1.62 1.57 55.0 55.8

G 34.2 33.9 43.4 44.4 1.51 1.50 54.5 55.1

H 33.8 34.4 45.5 47.6 1.33 1.29 55.9 57.8

Table 7.23: Performance comparison of the averaged flat Perceptron (FaPERC) and
the hierarchical Perceptron with the automatically generated hierarchy (HaPERCa)
on WIPO-alpha collection. In all experiments, κ = 20.

7.6 Results with automatic hierarchy learning

Our experiments show that when used in the hierarchical SVM, the hierarchy auto-

matically learned from the training data actually causes slight performance decrease,

compared to the flat SVM. The results on WIPO-alpha and Newsgroup show that

the top loss and average precision can occasionally be slightly improved. But in most

situations, the hierarchical SVM with an automatic hierarchy loses to the flat SVM

with respect to most measures. The relative performance decrease is usually less than

1%.

However, the experiments with the hierarchical Perceptron and Hieron demon-

strate that using the automatically generated hierarchy often boosts performance over

the flat algorithms. Tables 7.23 and 7.24 summarize the results on the WIPO-alpha

and Newsgroup collections of the hierarchical Perceptron with the automatically gen-

erated hierarchy. Experiments with the Hieron algorithm show similar performance

comparison results and are not detailed here. In Table 7.23 and 7.24 the average

precision, taxonomy-based loss, and parent one-accuracy are improved in all runs.

The relative improvements of these metrics are usually in the range of one to five

percentage point. This shows that a better ranking of classes is obtained by using

automatic hierarchies. More often than not, the one-accuracy is also improved by

using an automatically generated hierarchy. Table 7.24 also shows that when more

data are available, the performance improvements of the hierarchical Perceptron with

the automatically generated hierarchy over the flat Perceptron become smaller.

When compared to the hierarchical Perceptron with true taxonomies (see Ta-

bles 7.20 and 7.22 for experimental results), the hierarchical Perceptron with the

95

t acc (%) prec (%) △t-loss pacc (%)
FaPERC HaPERCa FaPERC HaPERCa FaPERC HaPERCa FaPERC HaPERCa

10 36.2 36.9 51.4 53.4 1.05 1.01 59.2 62.2

20 46.1 47.7 59.9 62.7 0.85 0.79 69.3 72.9

all 64.9 65.3 76.0 77.2 0.49 0.49 85.7 85.3

Table 7.24: Performance comparison of the averaged flat Perceptron (FaPERC)
and averaged hierarchical Perceptron with the automatically generated hierarchy
(HaPERCa) on Newsgroup collection. In all experiments, κ = 20.

automatically generated hierarchy always achieves worse taxonomy-based loss and

parent one-accuracy. This is because these two metrics are evaluated according to

the true taxonomies. In some cases, using the automatically generated hierarchy can

lead to better one-accuracy and average precision than using the actual hierarchy.

We believe the empirical success of H-PERCa is because the automatically gen-

erated hierarchy captures some of the relations among classes in the true hierarchy.

The automatically generated hierarchy usually contain more interior nodes than the

actual hierarchy. For example, the number of nodes at each level of the D subtree of

IPC hierarchy is 1, 7, 20, and 160, respectively. The automatically generated two-

level hierarchy, however, contains 115 nodes at the first level and 160 nodes at the

second level. So our hierarchy generation algorithm tends to be more conservative

when pairing classes under a common ancestor. Figure 7.13 illustrates a taxonomy

learned on 1% of the Newsgroup collection. We find that among the classes that

our algorithm do place as siblings, for example in Figure 7.13 and Figure 6.1, it is

more frequently that they are actually close in the true taxonomy than that they are

distant.

7.7 Summary of results

We have empirically evaluated the algorithms proposed in the thesis and two other

hierarchical algorithms on five data sets with respect to multiple classification metrics.

The experimental results are summarized as follows. First, our hierarchical algorithms

generally improve the hierarchical metrics (i.e. hierarchical loss and parent one-

accuracy) and ranking loss against the flat algorithms. Experiments show that the

96

Figure 7.13: A taxonomy automatically generated on one percent of the Newsgroup
corpus. The name of classes are prefixed with the name of its ancestor in the true
taxonomy.

improvements are statistically significant. Whether the one-accuracy and average

precision are boosted appear to depend on the category taxonomy and the data. Our

hierarchical algorithms are particularly suited to cases in which the training data are

sparse. Secondly, the performance gains of the hierarchical Perceptron over the flat

Perceptron are higher than those of the hierarchical SVM over the flat SVM, while

the SVMs usually achieve considerably better performance than the Perceptrons.

Thirdly, compared to two other hierarchical classification approaches, our approaches

either perform in the scale or perform better, with respect to classification metrics.

When used with random hierarchies, our hierarchical approaches also perform more

stably than a greedy divide-and-conquer method. Finally, our hierarchy learning

algorithm, when used with the hierarchical Perceptron algorithms, is able to improve

its classification performance with respect to most metrics over the flat Perceptron.

It is also true with the Hieron algorithm.

We have used five benchmark data sets in the experiments. The data sets contain

synthetic vectors, documents of various nature, and protein sequences. The category

taxonomies range from perfect trees with classes all at leaf level to unbalanced trees

with classes at any level of the taxonomies. Multiple metrics are employed to evaluate

97

various aspects of a classifier.

Experiments on five data sets show that, with few exceptions, the hierarchical

SVM leads to better hierarchical loss and ranking loss than the flat SVM. Parent

one-accuracy is also improved on all data sets except on OHSUMED. Moreover, av-

erage precision is usually boosted by the hierarchical SVM on the synthetic data,

WIPO-alpha, Newsgroup, and subsampled OHSUMED corpora. One-accuracy is the

measure that is hardest to improve. We argue that it is because the flat SVM directly

optimizes an upper bound on classification accuracy. Still, on the WIPO-alpha and

subsampled OHSUMED sets, the hierarchical SVM algorithm usually achieves higher

one-accuracy than the flat SVM. The experiments also show that the training set

size matters. This is especially evidenced on the OHSUMED set. Experiments on

the subsampled OHSUMED set show that the hierarchical SVM excels in almost all

cases. However, on the complete OHSUMED data, only ranking loss and hierarchical

loss are usually improved by the hierarchical SVM. Furthermore, subsampling experi-

ments on WIPO-alpha and Newsgroup show greater performance gains when training

data are scarcer.

The comparison with DNC-SVM shows that although DNC-SVM can occasionally

produce much greater performance gains, the hierarchical SVM is considerably more

stable and improves classification performance consistently. Furthermore, we observe

that the hierarchical SVM is more resistant to errors in the class hierarchy than DNC-

SVM via experiments using random hierarchies. The clear performance difference

between the hierarchical SVM with the actual hierarchy and the hierarchical SVM

with random hierarchies underscores the value of the true hierarchy.

We have presented three versions of the hierarchical Perceptron algorithm. Empir-

ical results show that they usually beat their flat counterparts, by larger margin than

the hierarchical SVM does. Comparison with Hieron shows that the performance of

the hierarchical Hieron and the hierarchical Perceptron are on the same scale, with

the hierarchical Perceptron often performing modestly better than the hierarchical

Hieron. The performance gains of these two algorithms over their flat counterparts

are on the same scale as well.

The experiments show that the automatic hierarchy learning algorithm we pro-

posed work well with the hierarchical Perceptron and the hierarchical Hieron. The

98

two learning algorithms with the automatically generated hierarchy usually beat their

flat counterparts, although the improvements are usually less significant than those

using the true hierarchies.

Chapter 8

Conclusions

Multilabel classification is the task to assign instances to a predefined set of classes,

in which one instance can be assigned to one or more than one classes. Multilabel

classification is a crucial instrument for organizing information and has been studied

for decades. A potential drawback of traditional multilabel classification methods is

that they do not take into account of the relationship between classes. However, many

real world classification systems employ taxonomies to organize categories. The goal

of this thesis is to take advantage of valuable domain information that is represented in

category taxonomies. When predefined category taxonomies are given, we proposed

two algorithms, the hierarchical SVM and the hierarchical Perceptron, to exploit

the taxonomies. When no taxonomies are given, we proposed an algorithm to learn

taxonomies automatically from the training data, and then the learned taxonomies

can be used with existing hierarchical classification algorithms. This way hierarchical

classification algorithms can be applied to multilabel classification tasks in general.

In the rest of this chapter, we summarize our contributions and then discuss some

directions for future work.

8.1 Contributions

In this thesis, we have proposed two approaches to encode taxonomy knowledge, as

described in Chapter 3. One is to directly encode taxonomy structure in the scor-

ing function used to rank categories. We introduced hierarchical class attributes to

99

100

achieve this. The goal of this approach is to “smooth” weight vector estimates by

tying learning across categories according to the class taxonomy. The other approach

is a novel taxonomy-based loss function between overlapping categories that is mo-

tivated by real applications. We argue that the hierarchical loss is well suited in

capturing performance of a hierarchical classification system.

We have then incorporated the taxonomy representation into two learning archi-

tecture, yielding the hierarchical SVM (in Chapter 4) and the hierarchical Perceptron

(in Chapter 5). The hierarchical SVM is a large margin architecture for hierarchi-

cal multilabel categorization. It extends the strengths of Support Vector Machine

classification to take advantage of information about class relationships encoded in a

taxonomy. The parameters of the model are fitted by optimizing a joint objective. A

variable selection algorithm has been presented to efficiently deal with the resulting

large quadratic program. The hierarchical Perceptron algorithm couples the discrim-

inant functions according to the given hierarchy and employs the hierarchical loss

to scale its update. Our methods work with arbitrary, not necessarily singly con-

nected taxonomies, and can be applied more generally in settings where categories

are characterized by attributes and relations that are not necessarily induced by a

taxonomy.

When no class taxonomy is provided, we proposed a two-stage approach to first

learn a class taxonomy automatically from the training data and then apply existing

hierarchical classification algorithms. To this end, we presented a hierarchy learning

algorithm that is modified from the hierarchical agglomerative clustering algorithm

(in Chapter 6). The outcome of the hierarchy learning algorithm is a coarse and

conservative two-level tree structure.

We draw the following conclusions from extensive empirical evaluation.

• The hierarchical SVM is a state-of-the-art hierarchical classification algorithm.

SVMs are generally regarded as among the most competing classification algo-

rithms. The flat SVM that the hierarchical SVM is based on and compared to

also shows leading performance in empirical evaluation [14]. Comparison with

the Maximum Margin Markov Network hierarchical classification (H-M3) [50]

(in Section 7.4.1), although preliminary, shows that the hierarchical SVM can

101

perform comparably with other state-of-the-art hierarchical classification algo-

rithms. Our hierarchical SVM runs on medium-sized data (with up to thousands

of classes and tens of thousands of instances), which is also on the same scale

as H-M3 can handle. Although Hieron [19], another hierarchical classification

algorithm, usually achieves higher performance gains by exploiting category tax-

onomy (in Section 7.4.1 and 7.5.2), the hierarchical SVM always significantly

outperforms Hieron.

• The hierarchical SVM is a better choice than the flat SVM if one cares more

about hierarchical measures than about the flat measures. Experiments in Sec-

tion 7.4.1 demonstrates that the hierarchical SVM almost always improves the

hierarchical measures and ranking loss over the flat SVM. This can be attributed

to the fact that the hierarchical SVM explicitly optimizes an upper bound on the

taxonomy-induced loss of the training data as well as the hierarchical form of

the discriminant function. In many cases, the hierarchical SVM also produces

higher one-accuracy and average precision. It might appear disappointing at

first sight. However, be reminded that the flat SVM has a natural advantage in

terms of one-accuracy since it directly optimizes an bound on the one-accuracy

of training data. The observation that the hierarchical SVM is as competitive

as the flat SVM in terms of one-accuracy and average precision is already a

strength of the hierarchical SVM.

• The hierarchical SVM is more stable than DNC-SVM, a divide-and-conquer

hierarchical classification algorithm. Section 7.4.2 shows that although DNC-

SVM occasionally can yield accuracies that are significantly better than the flat

SVM, so can it frequently yields significantly worse accuracies. In contrary,

the hierarchical SVM consistently improves over the flat SVM. Moreover, we

investigate the impact of random class hierarchies on the learning algorithms

(in Section 7.4.3). When using random hierarchies, classification accuracies of

both the hierarchical SVM and DNC-SVM decrease, since learning was mis-

led by wrong hierarchies. However, the performance decrease is considerably

more severe in DNC-SVM than in the hierarchical SVM. We think this is be-

cause in DNC-SVM, a erroneous hierarchy makes classification much harder at

higher-level nodes and any misclassification at any taxonomy level is final in

102

DNC-SVM due to its greedy decision rule. On the other hand, the hierarchical

SVM is a big-bang method that learns all parameters together. In the hierar-

chical SVM, classification only happens at terminal nodes and weight vectors of

interior nodes are always used with other weight vectors due to our weight de-

composition method. Thus misrepresented interior node poses smaller influence

to the hierarchical SVM. Therefore we conclude that the hierarchical SVM is

less sensitive than DNC-SVM to noises in taxonomies. This property makes the

hierarchical SVM more amenable to automatically learned taxonomies, which

are naturally going to be noisy relative to the true but unknown taxonomy.

• The hierarchical Perceptron is a highly competitive online hierarchical learning

algorithm. On one hand, the hierarchical Perceptron performs on the same

scale as Hieron [19], a more sophisticated hierarchical online algorithm (in Sec-

tion 7.5.2. Often the hierarchical Perceptron performs better than Hieron. On

the other hand, the hierarchical Perceptron usually improves all classification

measures over the flat Perceptron (in Section 7.5.1). That the hierarchical Per-

ceptron achieves more performance gains than the hierarchical SVM might be

due to the fact that Perceptron is a less powerful learning algorithm than SVM

and therefore it is easier to improve the decision boundary produced by Per-

ceptron than an already optimized one produced by SVM. Therefore, in the

scenario of online hierarchical classification, the hierarchical Perceptron is a

strong candidate.

• Our algorithms are especially suited to cases where training data are scarce.

We have conducted sub-sampling experiments in which models are trained on

a randomly sampled subset of all training data, for the hierarchical SVM (in

Section 7.4.1), for the hierarchical Perceptron (in Section 7.5.1), and the hierar-

chical Perceptron with the automatically learned taxonomy (in Section 7.6). Re-

sults show that the performance gains of our algorithms are more significant in

the scenario with fewer training data. This demonstrates that our approaches,

which couples categories through the weight vectors of common ancestors, is

particularly useful when operated on small training sets, since it allows more

reliable estimates for weight vectors associated with higher-level nodes by ef-

fectively pooling instances of their descendent classes. Hence, our hierarchical

103

algorithms are particularly attractive to classification scenarios where training

data are difficult or costly to collect.

• In cases where class taxonomies are unknown, classification performance can

be boosted by exploiting automatically learned taxonomies. Our work is among

the pioneering research on hierarchical classification with automatically learned

taxonomies. Empirical evaluation (in Section 7.6) demonstrates that the hi-

erarchical Perceptron and Hieron benefit from the automatic hierarchy, in the

sense that they outperform their corresponding flat algorithms. We think this

is because the learned taxonomy captures some of the relations among classes

in the true taxonomy. This is also because the taxonomy learned via our algo-

rithm is conservative, by only pairing classes that show strong coherence, and

thus makes less mistakes in predicting siblings. With an automatic hierarchy

generation algorithm, hierarchical learning algorithms can then be applied to

flat classification tasks as well. This leads to improved classification perfor-

mance when combining our hierarchy learning algorithm with the hierarchical

Perceptron or Hieron algorithm.

In this dissertation, we have presented two highly competitive hierarchical classi-

fication algorithms and demonstrated the value of using automatically learned tax-

onomy in classification. The study on hierarchical learning is still in its early stage

and is a promising area.

8.2 Future directions

In this section, we list several future directions that one could go based on our work.

Generalizing our models We proposed the hierarchical loss between label sets in

Equation (3.12). However, this loss is hard to deal with directly since it in-

volves sets of classes. Thus we approximated it with pairwise hierarchical loss.

One direction of future work is to reformulate the hierarchical SVM and the

hierarchical Perceptron to directly work with losses between label sets.

In this work, we employed a less general form of linear discriminants (for ex-

ample, see Section 2.2.1). We restrict the linear discriminant to always pass

104

origin by not allowing direct modelling of bias terms. This is due to several

reasons, with the major one being that it is more difficult to efficiently solve

the resulting large optimization problem in the hierarchical SVM if bias terms

are introduced, since it couples the dual variables associated with different in-

stances in a data-dependent fashion. One future direction is to generalize the

hierarchical SVM to directly incorporate bias terms and solve it efficiently.

In some classification applications short descriptions of categories are available.

These descriptions can serve as attributes of the classes. Class similarities thus

derived can be plugged into the hierarchical SVM or Perceptron algorithm,

yielding a new method of exploiting category description in classification task.

Encoding taxonomy In this dissertation, we proposed two methods to encode class

taxonomy knowledge: the taxonomy-derived class attributes and hierarchical

loss. Another method to examine is adjusting the input kernel (kernel between

instances) in accordance with class taxonomy. We believe that two classes

that are very close in the class hierarchy tend to have their data also close

in the inherent feature space, while two classes that are distant in the class

hierarchy tend to have their data also far away in the inherent feature space.

The inherent feature space, summarized by the input kernel in this space, can

be learned by adjusting the input kernel with the class taxonomy. For example,

one can employ the kernel alignment technique [18] to find a linear combination

of candidate input kernels that optimally aligns the class kernel induced by the

combined input kernels and the class kernel induced by the taxonomy. Then the

learned input kernel can be used with any kernelized algorithm such as SVM

and Perceptron.

Using hierarchical classification when class taxonomy is unknown When

class taxonomy is unknown, one could take a two-stage approach to first con-

struct a taxonomy and then apply hierarchical classification. In Chapter 6, we

proposed an algorithm to learn class taxonomy automatically. It is based on

hierarchical agglomerative clustering. One direction to go is to modify other

clustering algorithms to learn class hierarchy. Currently our learned taxonomy

only contains two levels of nodes. More complicated taxonomy can be learned

105

by exploring more sophisticated approaches.

Another direction is to explore one-stage approaches to learn class taxonomy

and hierarchical classifiers at the same time. For example, we can modify the

hierarchical SVM to achieve this purpose. The idea is to pick the taxonomy

that maximizes the achieved margin. If not considering hierarchical loss, the

hierarchical SVM utilizes the taxonomy information only through the class ker-

nel: L(c, c′) = 〈Λ(c),Λ(c′)〉. A class kernel is good in the sense that it increases

the separation margin. So following similar steps as those in [34], the learning

problem becomes

min
L

max
α

Θ(α, L) =
n
∑

i=1

∑

y∈Yi,ȳ∈Ȳi

αiyȳ

− 1

2

∑

i,j

∑

y∈Yi

ȳ∈Ȳi

∑

r∈Yj

r̄∈Ȳj

(αiyȳαjrr̄〈xi,xj〉 [L(y, r) + L(ȳ, r̄)− L(y, r̄)− L(ȳ, r)]),

s.t. αiyȳ ≥ 0 (∀i, y ∈ Yi, ȳ ∈ Ȳi) (8.1a)
∑

y∈Yi,ȳ∈Ȳi

αiyȳ ≤ C (∀i) (8.1b)

s.t.L � 0 (8.1c)

L ∈L (8.1d)

It is not sufficient to simply maximize the separation margin, which may lead to

degenerate or poor solutions. Instead different criteria have been proposed in the

literature. The two most popular ones involve maximizing the margin subject

to (i) a constraint on the trace of the kernel matrix [34] or (ii) a constraint on

the radius of the smallest enclosing sphere, the so-called radius-margin bound

[11]. These constraints characterize the set L in Equation (8.1d).

Equation (8.1) can be converted to a Semi-definite Program (SDP) and thus

solved by a SDP software package. The steps are similar to [34]. Due to the

complexity of SDP, the cost can be prohibitive for even a small data set. Thus

efficient optimization or approximation is desired.

Appendix A

Exemplary calculation of

additional regularizer

In this appendix we calculate uT Ã−1u, the additional regularizer in Section 4.4, for

two example taxonomies. One is the taxonomy in Figure 4.5. The other is general

perfect tree of depth 2. To simplify the discussion, we assume

λz(y) =







λ if z ∈ anc(y)

0 otherwise

A.1 For taxonomy in Figure 4.5

Figure 4.5 is replicated here in Figure A.1 for readers’ convenience.

1

2 3

7 8 9 10

4

5 6

11 12 13 14

Figure A.1: A taxonomy comprising two perfect trees of depth 2. Node 1, 2, 3, 4, 5, 6
are interior nodes and 7, 8, 9, 10, 11, 12, 13, 14 are leaf nodes

106

107

Matrix A defined in Equation (4.40) takes value

A =

























5 2 2 0 0 0

2 3 0 0 0 0

2 0 3 0 0 0

0 0 0 5 2 2

0 0 0 2 3 0

0 0 0 2 0 3

























.

Hence

A−1 =

























3/7 −2/7 −2/7 0 0 0

−2/7 11/21 4/21 0 0 0

−2/7 4/21 11/21 0 0 0

0 0 0 3/7 −2/7 −2/7

0 0 0 −2/7 11/21 4/21

0 0 0 −2/7 4/21 11/21

























.

u =
1

λ

























W7 + W8 + W9 + W10

W7 + W8

W9 + W10

W11 + W12 + W13 + W14

W11 + W12

W13 + W14

























By LU decomposition,

A−1 = LU =

























1 0 0 0 0 0

−2/3 1 0 0 0 0

−2/3 0 1 0 0 0

0 0 0 1 0 0

0 0 0 −2/3 1 0

0 0 0 −2/3 0 1

























×

























3/7 −2/7 −2/7 0 0 0

0 1/3 0 0 0 0

0 0 1/3 0 0 0

0 0 0 3/7 −2/7 −2/7

0 0 0 0 1/3 0

0 0 0 0 0 1/3

























108

Therefore

uT Ã−1u = uT (A−1 ⊗ Id×d)u = uT ((LU)⊗ Id×d)u

= uT (L⊗ Id×d)(U ⊗ Id×d)u =
(

(LT ⊗ Id×d)u
)T

((U ⊗ Id×d)u)

We obtain

(LT ⊗ Id×d)u =
1

λ

























1
3
(W7 + W8 + W9 + W10)

W7 + W8

W9 + W10

1
3
(W11 + W12 + W13 + W14)

W11 + W12

W13 + W14

























(U ⊗ Id×d)u =
1

λ

























1
7
(W7 + W8 + W9 + W10)

1
3
(W7 + W8)

1
3
(W9 + W10)

1
7
(W11 + W12 + W13 + W14)

1
3
(W11 + W12)

1
3
(W13 + W14)

























Finally

u′H−1u =
1

λ2
(
‖W7 + W8 + W9 + W10‖2

3× 7
+
‖W7 + W8‖2

3
+
‖W9 + W10‖2

3

+
‖W11 + W12 + W13 + W14‖2

3× 7
+
‖W11 + W12‖2

3
+
‖W13 + W14‖2

3
) .

A.2 For general perfect trees of depth 2

The following proof is on a single perfect tree with depth 2. As seen in the previous

section, trees in a forest do not overlap or interact with one another in the computa-

tion. So u′Ã−1u over a forest is the juxtaposition of uT Ã−1u values over individual

trees.

For a perfect tree with depth 2 such as any tree in Figure 4.5, number the nodes

from root to leaves by increasing positive integer. Denote the outgoing degrees of any

109

interior node by ρ. Thus

A =



















ρ2 + 1 ρ ρ ρ . . . ρ

ρ ρ+ 1 0 0 . . . 0

ρ 0 ρ+ 1 0 . . . 0

.

ρ 0 0 0 . . . ρ+ 1



















(A.1)

is a ρ+ 1 by ρ+ 1 matrix.

A result on inverse of partitioned matrix is that given A(m×m), B(m×n), C(n×
m), D(n× n) and that D and (A−BD−1C) are nonsingular, then [39]
(

A B

C D

)−1

=

(

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)

Using this rule, we have

A−1 =

(

ρ+1
ρ2+ρ+1

− ρ

ρ2+ρ+1
e′

ρ

ρ2+ρ+1
e ρ2

ee
′

(ρ2+ρ+1)(ρ+1)
+ I

ρ+1
,

)

(A.2)

where e is ρ×1 matrix of all ones, and I is identity matrix of ρ×ρ. LU decomposition

gives

A−1 = LU

=



















1 0 0 . . . 0

− ρ

ρ+1
1 0 . . . 0

− ρ

ρ+1
0 1 . . . 0

.

− ρ

ρ+1
0 0 . . . 1



















×



















ρ+1
ρ2+ρ+1

− ρ

ρ2+ρ+1
− ρ

ρ2+ρ+1
. . . − ρ

ρ2+ρ+1

0 1
ρ+1

0 . . . 0

0 0 1
ρ+1

. . . 0

.

0 0 0 . . . 1
ρ+1



















(A.3)

Define
∑

Wo ≡
∑

y:y∈Y,o∈anc(y) Wy. Therefore

u =
1

λ

(

(
∑

W1)
T , (
∑

W2)
T , . . . , (

∑

Wρ+1)
T
)T

Remember node 1 is the root with node 2, . . . , ρ+ 1 being its child nodes.

(LT ⊗ Id×d)u =
1

λ

(

1

ρ+ 1
(
∑

W1)
T , (
∑

W2)
T , . . . , (

∑

Wρ+1)
T

)T

(A.4)

(U ⊗ Id×d)u =
1

λ

(

1

ρ2 + ρ+ 1
(
∑

W1)
T ,

1

ρ+ 1
(
∑

W2)
T , . . . ,

1

ρ+ 1
(
∑

Wρ+1)
T

)T

(A.5)

110

Therefore

u′Ã−1u =
1

λ2

(

1

(ρ+ 1)(ρ2 + ρ+ 1)
‖
∑

W1‖2 +

ρ+1
∑

o=2

1

ρ+ 1
‖
∑

Wo‖2
)

(A.6)

Bibliography

[1] L. Douglas Baker and Andrew K. McCallum. Distributional clustering of words

for text classification. In W. Bruce Croft, Alistair Moffat, Cornelis J. van Ri-

jsbergen, Ross Wilkinson, and Justin Zobel, editors, Proceedings of SIGIR-98,

21st ACM International Conference on Research and Development in Informa-

tion Retrieval, pages 96–103, Melbourne, AU, 1998. ACM Press, New York, US.

[2] D. Boley. Hierarchical taxonomies using divisive partitioning. Technical Report

TR-98-012, Department of Computer Science, University of Minnesota, Min-

neapolis, 1998.

[3] L. Cai and T. Hofmann. Text categorization by boosting automatically extracted

concepts. In Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 182–189, 2003.

[4] Lijuan Cai and Thomas Hofmann. Hierarchical document categorization with

support vector machines. In Proceedings of the Conference on Information and

Knowledge Management (CIKM), 2004.

[5] Lijuan Cai and Thomas Hofmann. Exploiting known taxonomies in learning

overlapping concepts. In 20th International Joint Conference on Artificial Intel-

ligence (IJCAI), 2007.

[6] A. Cardoso-Cachopo and A. L. Oliveira. An empirical comparison of text catego-

rization methods. In Proceedings of the 10th International Symposium on String

Processing and Information Retrieval (SPIRE), number 2857 in Lecture Notes

in Computer Science, pages 183–196. Springer Verlag, 2003.

111

112

[7] Carnegie Mellon University Center for Intelligent Information Retrieval. The

lemur toolkit for language modeling and information retrieval. URL, 2004.

http://www-2.cs.cmu.edu/ lemur/.

[8] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-

line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–

2057, 2004.

[9] N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni. Incremental algorithms

for hierarchical classification. In Advances in Neural Information Processing

Systems, 2005.

[10] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Hierarchical classification: Com-

bining bayes with svm. In Proceedings of the 23rd International Conference on

Machine Learning, 2006.

[11] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee.

Choosing multiple parameters for support vector machines. Machine Learning,

46(1–3):131–159, 2002.

[12] S. Charkabarti, B. Dom, R. Agrawal, and P. Raghavan. Unsing taxonomy, dis-

criminants, and signatures for navigating in text databases. In Proceedings of

the 23rd Conference on Very Large Databases (VLDB), pages 560–573, 1997.

[13] The Gene Ontology Consortium. Gene Ontology: tool for the unification of

biology. Nat Genet, 25:25–29, 2000.

[14] K. Crammer and Y. Singer. On the algorithmic implementation of multi-class

kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,

2001.

[15] Koby Crammer and Yoram Singer. A family of additive online algorithms for

category ranking. Journal of Machine Learning Research, 3:1025–1058, 2003.

[16] Koby Crammer and Yoram Singer. Ultraconservative online algorithms for mul-

ticlass problems. Journal of Machine Learning Research, 3:951–991, 2003.

113

[17] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-

chines and Other Kernel-based Learning Methods. Cambridge University Press,

March 2000.

[18] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz Kandola. On

kernel-target alignment, 2001.

[19] Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical classifi-

cation. In Proceedings of the 21st International Conference on Machine Learning

(ICML), 2004.

[20] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear program-

ming boosting via column generation. Machine Learning, 46(1–3):225–254, 2002.

[21] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,

1995.

[22] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification

(2nd Edition). Wiley-Interscience, November 2000.

[23] S. T. Dumais and H. Chen. Hierarchical classification of Web content. In Proceed-

ings of the 23rd ACM International Conference on Research and Development

in Information Retrieval (SIGIR), pages 256–263, 2000.

[24] André Elisseff and Jason Weston. A kernel method for multi-labelled classifi-

cation. In Proceedings of the Neural Information Processing Systems conference

(NIPS), pages 681–687, 2001.

[25] W. R. Hersh, C. Buckley, T. J. Leone, and D. H. Hickam. Ohsumed: An interac-

tive retrieval evaluation and new large test collection for research. In Proceedings

of the 17th ACM-SIGIR Conference on Research and Development in Informa-

tion Retrieval, pages 192–201, 1994.

[26] Thomas Hofmann, Lijuan Cai, and Massimiliano Ciaramita. Learning with tax-

onomies: Classifying documents and words. In Workshop on Syntax, Semantics,

and Statistics, Neural Information Processing (NIPS), 2003.

114

[27] R. V. Hogg and J. Ledolter. Engineering Statistics. MacMillan, 1987.

[28] The Math Works Inc. Statistics toolbox user’s guide, 2007.

[29] T. Joachims. Text categorization with support vector machines: learning with

many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Pro-

ceedings of the 10th European Conference on Machine Learning (ECML), number

1398, pages 137–142. Springer Verlag, 1998.

[30] Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm with

TFIDF for text categorization. In Douglas H. Fisher, editor, Proceedings of

ICML-97, 14th International Conference on Machine Learning, pages 143–151,

Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US.

[31] D. Koller and M. Sahami. Hierarchically classifying documents using very few

words. In Proceedings of the 14th International Conference on Machine Learning

(ICML), 1997.

[32] Werner Krauth and Marc Mézard. Learning algorithms with optimal stability in

neural networks. Journal of Physics A., 20(745):L745–L752, 1987.

[33] A. Kyriakopoulou and T. Kalamboukis. Text classification using clustering. In

Proceedings of the ECML-PKDD Discovery Challenge Workshop, 2006.

[34] Gert Lanckriet, Nello Cristianini, Peter Bartlett, Laurent Ghaoui, and Michael

Jordan. Learning the kernel matrix with semidefinite programming. Journal of

Machine Learning Research, 5:27–72, 2004.

[35] D. D. Lewis. Naive (Bayes) at forty: The independence assumption in infor-

mation retrieval. In Proceedings of the 10th European Conference on Machine

Learning (ECML), pages 4–15, 1998.

[36] D. D. Lewis and M. Ringuette. A comparison of two learning algorithms for

text classification. In Proceedings of the Third Annual Symposium on Document

Analysis and Information Retrieval, pages 81–93, 1994.

115

[37] Tao Li, Shenghuo Zhu, and Mitsunori Ogihara. Hier-

archical document classification using automatically gener-

ated hierarchy. Journal of Intelligent Information Systems.

http://springerlink.metapress.com/content/wu5lr58j1547787j/fulltext.pdf,

to appear as a regular paper.

[38] Yaoyong Li and Kalina Bontcheva. Hierarchical, perceptron-like learning for

ontology-based information extraction. In Proceedings of the 16th international

conference on World Wide Web, pages 777–786, 2007.

[39] Helmut Lutkepohl. Handbook of matrices. John Wiley and Sons, 1996.

[40] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text clasifica-

tion by shrinkage in a hierarchy of classes. In Proceedings of the International

Conference on Machine Learning (ICML), pages 359–367, 1998.

[41] Andrew K. McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y.

Ng. Improving text classification by shrinkage in a hierarchy of classes. In

Jude W. Shavlik, editor, Proceedings of ICML-98, 15th International Conference

on Machine Learning, pages 359–367, Madison, US, 1998. Morgan Kaufmann

Publishers, San Francisco, US.

[42] D. Mladenić and M. Grobelnik. Feature selection for classification based on

text hierarchy. In Proceedings of the Conference on Automated Learning and

Discovery, 1998.

[43] National Library of Medicine. Medical subject headings. URL, 2004.

http://www.nlm.nih.gov/mesh/meshhome.html.

[44] H. T. Ng, W. B. Goh, and K. Low. Feature selection, perception learning and a

usability case study. In Proceedings of the 20th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 67–73,

1997.

[45] A. Novikoff. On convergence proofs for perceptrons. In Proceeding of the Sym-

posium on the Mathematical Theory of Automata, volume 12, pages 615–622,

1963.

116

[46] Nomenclature Committee of the International Union of Biochemistry and

In consultation with the IUPAC-IUBMB Joint Commission on Biochemical

Nomenclature (JCBN) Molecular Biology (NC-IUBMB). Enzyme nomen-

clature – recommendations of the nomenclature committee of the interna-

tional union of biochemistry and molecular biology on the nomenclature

and classification of enzymes by the reactions they catalyse. URL, 2006.

http://www.chem.qmul.ac.uk/iubmb/enzyme/.

[47] Open Directory Project. dmoz. URL, 2004. http://www.dmoz.org.

[48] J. C. Platt. Fast training of support vector machines using sequential minimal

optimization. In Advances in Kernel Methods - Support Vector Learning, pages

185–208. MIT Press, 1999.

[49] Frank Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[50] Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor. Kernel-

based learning of hierarchical multilabel classification models. Journal of Ma-

chine Learning Research, 7:1601–1626, 2005.

[51] Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor. Learn-

ing hierarchical multi-category text classification models. In 22nd International

Conference on Machine Learning (ICML), 2005.

[52] M. E. Ruiz and P. Srinivasan. Hierarchical text categorization using neural

networks. Information Retrieval, 5(1):87–118, 2002.

[53] G. Salton. Developments in automatic text retrieval. Science, 253:974–980, 1991.

[54] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text

categorization. Machine Learning, 39(2/3):135–168, 2000.

[55] R. E. Schapire, Y. Singer, and A. Singhal. Boosting and Rocchio applied to text

filtering. In Proceedings of 21th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR), pages 215–223,

1998.

117

[56] H. Schütze, D. A. Hull, and J. O. Pedersen. A comparison of classifiers and

document representations for the routing problem. In Proceedings of 18th An-

nual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR), pages 229–237, 1995.

[57] N. Slonim and N. Tishby. The power of word clusters for text classification. In

23rd European Colloquium on Information Retrieval Research, 2001.

[58] A. Sun and E.-P. Lim. Hierarchical text classification and evaluation. In Inter-

national Conference on Data Mining (ICDM), pages 521–528, 2001.

[59] Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In

ICDM, pages 521–528, 2001.

[60] Benjamin Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov

networks. In Proceedings of Neural Information Processing Systems conference

(NIPS), 2003.

[61] K. Toutanova, F. Chen, K. Popat, and T. Hofmann. Text classification in a hier-

archical mixture model for small training sets. In Proceedings of the Tenth Inter-

national ACM Conference on Information and Knowledge Management (CIKM),

2001.

[62] I. Tsochantardis, T. Hofmann, T. Joachims, and Y. Altun. Support vector ma-

chine learning for interdependent and structured output spaces. In Proceedings

of the 21st International Conference on Machine Learning (ICML), 2004.

[63] R. J. Vanderbei. LOQO: An interior point code for quadratic programming.

Optimization Methods and Software, 11:451–484, 1999.

[64] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September

1998.

[65] K. Wang, S. Zhou, and S. C. Liew. Building hierarchical classifiers using class

proximity. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stan-

ley B. Zdonik, and Michael L. Brodie, editors, Proceedings of VLDB-99, 25th

International Conference on Very Large Data Bases, pages 363–374. Morgan

Kaufmann Publishers, San Francisco, US, 1999.

118

[66] A. S. Weigend, E. D. Wiener, and J. O. Pedersen. Exploiting hierarchy in text

categorization. Information Retrieval, 1(3):193–216, 1999.

[67] J. Weston and C. Watkins. Multi-class support vector machines. Technical

Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, Uni-

versity of London, 1998.

[68] World Intellectual Property Organization. International patent classification.

URL, 2001. http://www.wipo.int/classifications/en/.

[69] World Intellectual Property Organization. Wipo-alpha sataset. URL, 2003.

http://www.wipo.int/ibis/datasets.

[70] Yahoo! Corporation. Yahoo! web site directory. URL, 2004.

http://www.yahoo.com.

[71] Hsin-Chang Yang and Chung-Hong Lee. A text mining approach on automatic

generation of web directories and hierarchies. Expert Systems with Applications,

27(4):645–663, 2004.

[72] Y. Yang. Expert network: Effective and efficient learning from human decisions

in text categorization and retrieval. In Proceedings of 17th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR), pages 13–22, 1994.

[73] Y. Yang and X. Liu. A re-examination of text categorization methods. In Pro-

ceedings of the 22nd Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 42–49, 1999.

[74] Ying Zhao and George Karypis. Hierarchical clustering algorithms for document

datasets. Data Mining and Knowledge Discovery, 10(2):141–168, 2005.

