
Abstract of “Sharing Secrets for Fun and Profit” by Mira Belenkiy, Ph.D., Brown University, May

2008.

Electronic cash is an important tool for preserving on-line privacy. It allows a user to make purchases

without revealing his identity to the merchant and prevents banks from monitoring the transactions

of all their users. In this thesis, we use secret sharing techniques to extend electronic cash.

We examine the problem of fair exchange that lets a user atomically exchange an electronic coin

for some digital good or service. While all fair exchange protocols require the help of a trusted third

party, in an optimistic protocol, the trusted party becomes involved only if something goes wrong.

We construct the first optimistic fair exchange protocol for exchanging a single electronic coin for a

digital good or service. We use secret sharing to extend the protocol to allow a user to efficiently

exchange multiple electronic coins for multiple goods and services in one atomic transaction. We

also show how a user can pay a single electronic coin for multiple goods or services, which need not

be delivered atomically.

We apply these fair exchange protocols to create incentives in anonymous peer-to-peer filesharing

systems. We show how to perform an efficient fair exchange for very large files (such as movies);

the trusted third party can resolve problems without downloading the entire file. We also show how

to escrow electronic coins to allow peers to barter for files. If one of the peers fails to deliver, he

acquires the escrowed coin.

Electronic cash can be used for anonymous authentication. Instead of purchasing a good or

service, the user may use electronic coins to access restricted resources. For example, the user

may purchase a license to download twenty songs a month from a provider. We show how to use

secret sharing to create flexible policies. In the case where the electronic coins are stored on a

small hardware device, the extra flexibility may be used to provide glitch protection in case the user

accidentally spends a few extra coins.

Finally, we end by developing a new secret sharing protocol for a disjunctive multi-level access

structure.

Sharing Secrets for Fun and Profit

by

Mira Belenkiy

B. Sc. (Computer Science) Brandeis University

M. Sc. (Computer Science) Brown University

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2008

3335629

3335629
 2008

c© Copyright 2008 by Mira Belenkiy

This dissertation by Mira Belenkiy is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Prof. Anna Lysyanskaya, Director

Recommended to the Graduate Council

Date
Dr. Jan Camenisch, Reader

IBM Research Laboratory, Zurich

Date
Prof. Roberto Tamassia, Reader

Brown University

Date
Prof. John Jannotti, Reader

Brown University

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Mira Belenkiy was born in Moscow, Russia in 1981. She received a Bachelor of Science degree

with Highest Honors in Computer Science and Mathematics from Brandeis University in 2003, and

a Master of Science degree in Computer Science from Brown University in 2005. She completed

her Doctorate in Computer Science at Brown University in 2008; her thesis examined applications

of secret sharing to electronic cash and fair exchange. Her research focuses on various types of

anonymous credentials. She has been awarded a Department of Homeland Security Fellowhip in

2004.

iv

Acknowledgements

My time at Brown would not have been the same without the support of my colleagues, family, and

friends.

My biggest thanks go to my advisor Anna Lysyanskaya. She has been a wonderful mentor, who

taught me both the technical and the creative skills of successful research. I am grateful for her

guidance and encouragement to tackle challenges that I would have never had the courage to take

on alone.

I am grateful to John Jannotti for our many conversations, which have given me a new perspective

on life and on research. He has taught me the value of considering the simpler approach first. I also

want to thank Roberto Tamassia for his help and career advice. Many thanks to Dude Neergaard

at Oak Ridge National Laboratory who made me feel welcome in Tennessee and showed me the

empirical side of research.

I owe a lot to my wonderful co-authors. Markulf Kohlweiss forced me to examine my unconscious

assumptions and defend my deductions. Melissa Chase taught me never to give up on a proof. Jan

Camenisch has shown me that nothing is impossible. Working with them has made me a better

researcher.

The Brownie group has shown me the value of looking beyond the math and to the practical

and social applications of research. I will always remember our weekly discussions on game theory,

incentives, and social networks. My sincere thanks to Alptekin Kupcu, Chris Erway, and Eric

Rachlin.

These five years would not have been the same without my friends. Jenine Turner, William

Headden, Dan Grollman, David McClosky, Nina Levetin, and Ariel Bender who were always ready

to share a joke or a bowl of ice-cream.

Finally, I want to thank my family, without whom I could have never gotten this far. My

husband Ilya Belenkiy cheered me on when things went well and supported me when they did not.

My parents, Alexander and Laura Meyerovich, and my brother Leo Meyerovich have always been

there for me and encouraged me every step of the way.

My work at Brown has been supported by a Department of Homeland Security Fellowship and

National Science Foundation research grants.

v

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 Buying Digital Content . 3

1.3 Incentives in Peer-To-Peer Networks . 4

1.4 Anonymous Authentication . 5

1.5 New Results in Secret Sharing . 6

1.6 Conclusion . 8

2 Background 9

2.1 Basics . 10

2.1.1 Groups and Fields . 10

2.1.2 Bilinear Maps . 11

2.1.3 Polynomial Interpolation . 12

2.2 Cryptographic fundamentals . 13

2.2.1 Complexity Theory . 13

2.2.2 Complexity Assumptions . 13

2.2.3 Hash Functions . 16

2.2.4 Merkle Hash Trees . 16

2.2.5 Pseudorandom Functions . 17

2.2.6 Commitment Schemes . 17

2.2.7 Zero-Knowledge Proofs of Knowledge . 18

2.2.8 Digital Signatures . 20

2.2.9 Encryption and Verifiable Encryption . 20

2.2.10 Coin Flipping . 21

2.3 Secret Sharing Background . 23

2.3.1 Definitions . 23

2.3.2 Verifiable Secret Sharing . 24

2.3.3 Threshold Secret Sharing . 24

2.3.4 Conjunctive Multi-Level Secret Sharing . 25

2.3.5 Disjunctive Multi-Level Secret Sharing . 27

vi

2.4 E-Cash Background . 30

2.4.1 Definition . 30

2.4.2 Compact E-Cash . 32

2.4.3 Fair Exchange . 33

2.4.4 Anonymous Authentication . 34

3 Disjunctive Multi-Level Secret Sharing 35

3.1 Fast Disjunctive Multi-Level Secret Sharing Scheme 36

3.1.1 Construction . 36

3.1.2 Efficiency . 37

3.1.3 Security . 37

3.2 Verifiable Secret Sharing . 41

3.2.1 Construction . 41

3.2.2 Efficiency . 42

3.2.3 Security . 42

4 Fair Exchange of E-Cash 44

4.1 Endorsed E-Cash . 45

4.1.1 Definition . 45

4.1.2 Construction . 47

4.1.3 Efficiency . 48

4.1.4 Security . 48

4.2 Threshold Endorsed E-cash . 51

4.2.1 Construction . 51

4.2.2 Efficiency . 52

4.2.3 Security . 52

4.3 Paying Multiple E-Coins . 53

4.3.1 Definition . 53

4.3.2 Construction . 53

4.3.3 Efficiency . 54

4.3.4 Security . 54

5 Endorsed E-Cash Applications 57

5.1 Onion Remailing . 58

5.2 File Sharing . 60

5.2.1 Buying Files . 61

5.2.2 Efficient Dispute Resolution . 63

5.2.3 Bartering for Files . 63

5.3 Other Applications . 66

vii

6 Clone Wars 68

6.1 Periodic Authentication . 69

6.1.1 Definition . 69

6.1.2 Agreeing on the Time . 71

6.1.3 Construction . 72

6.1.4 Efficiency . 75

6.1.5 Security . 75

6.2 Basic Glitch Protection . 78

6.2.1 Definition . 78

6.2.2 Construction . 80

6.2.3 Security . 82

6.3 Window Glitch Protection . 84

6.3.1 Definition . 84

6.3.2 Construction . 85

6.3.3 Security . 86

Bibliography 87

viii

Chapter 1

Introduction

1

2

1.1 Introduction

Privacy is almost non-existent on the Internet today. To complete a simple economic transaction,

such as buying a book, a user reveals so much information about himself that the merchant can steal

the user’s identity! Indeed, identity theft and credit card fraud are a major security threat facing

the world today.

Electronic cash (e-cash), invented by Chaum [36, 37], is an important tool that can help restore

on-line privacy. E-cash allows a user to withdraw money from a bank and then spend it anonymously.

Since merchants never learn any information about their customers, they cannot steal their identity.

A user’s privacy even extends to the bank. Even if the bank colludes with the merchants, it will be

unable to link any e-coins to an honest user (or even check if two e-coins correspond to the same

anonymous user). The only exception is if a user double-spends his e-coins (i.e. forges new money);

in this case, the bank will be able to identify the user and link him to all the e-coins he has spent.

The bank can even revoke users. E-cash has been studied extensively. We give an overview in

Section 2.4.

This work studies ways in which e-cash can be used to solve real-world problems. We show

that secret sharing techniques often play an important role in extending the functionality of e-cash.

Secret sharing is a fundamental cryptographic primitive. A dealer creates shares of a secret and

gives each share to a user. A group of authorized users should be able to reconstruct the secret. A

group of unauthorized users, i.e. a group of users that does not contain a subgroup of authorized

users, should learn no information about the secret. Section 2.3 gives an overview of some results in

secret sharing, as they relate to this work.

We address a wide variety of problems. We develop a new type of e-cash, called endorsed e-

cash, that can be fairly exchanged for electronic goods and services. We use endorsed e-cash to

simultaneously pay multiple e-coins. We also show how it can be used to provide incentives in peer-

to-peer systems, such as anonymous remailers and file sharing networks. A variation of e-cash can

be used for anonymous authentication. Finally, we develop new techniques in secret sharing that

might be useful for constructing divisible e-cash.

Thesis. Secret sharing techniques are useful for efficiently extending the privacy preserving proper-

ties of electronic cash.

The work presented in this dissertation comes from “Endorsed E-Cash,” IEEE Security and Pri-

vacy 2007 [29], “How to win the clone wars: efficient periodic n-times anonymous authentication,”

ACM CCS 2006 [23], “Making P2P Accountable without Losing Privacy,” WPES 2007 [10], and

“Disjunctive Multi-Level Secret Sharing,” [75].

3

1.2 Buying Digital Content

E-cash was originally invented to let users securely and privately purchase content on-line.1 It

protects the anonymity of a user who does not trust the merchant and bank with his private data.

Careful attention is paid to protecting the merchant and bank from users who try to forge e-coins.

Despite this environment of mutual mistrust, traditional e-cash Spend protocols do not ensure a fair

exchange of e-cash for content.

A fair exchange protocol involves two parties. Each party has some content that the other one

wants. At the end of the protocol, either both parties should have acquired the content it wants,

or neither of them should have learned anything about the other party’s data. All fair exchange

protocols must involve a trusted third party (TTP). In an optimistic fair exchange [76, 5], the TTP

gets involved only if one of the parties claims something went wrong.

Most fair exchange literature focuses on exchanging digital signatures and not on e-cash, but

there are a few exceptions. Asokan, Shoup and Waidener [5] apply their optimistic fair exchange

scheme for digital signatures to Brand’s e-cash [20]. The result compromises the privacy of the

user. If the exchange fails and the user ever tries to reuse the same e-coin, the bank can link it to

the failed exchange. The only other fair exchange schemes for e-cash in the literature are due to

Jakobsson’s [61] and Reiter, Wang and Wright’s [86]. These two schemes are even less fair to the

user: if the user tries to reuse an e-coin from a failed exchanged, he is guilty of double-spending and

his identity is revealed. See Section 2.4.3 for a full survey of the literature.

We solve the fair exchange problem for e-cash. We split every e-coin into two parts, the unen-

dorsed e-coin coin and an endorsement x. The user gives the merchant coin and then performs a fair

exchange of the digital content for x. The unendorsed e-coin is an encrypted version of the e-coin

and cannot be spent without x. If the fair exchange fails, the user can generate a new unendorsed

e-coin from the same coin with a different endorsement x′. The two unendorsed e-coins cannot

be linked to each other, even if the user eventually endorses one of them. The user can make an

exponential number of promises of the same e-coin, as long as he only endorses one.

Most goods and services cost more than one coin. The user wants to execute a single fair

exchange, at the end of which the merchant either gets all of the e-coins or none. We solve this

problem using a technique from threshold secret sharing (see Section 2.3.3). Suppose an item costs n

e-coins. The user creates n unendorsed e-coins. Then the user takes the n endorsements, and creates

a polynomial f of degree n−1 such that f(i) = xi, where xi is the ith endorsement. This can be done

using straightforward Lagrange interpolation (see Section 2.1.3). Then the user gives the merchant

the n unendorsed e-coins and n− 1 different points on the polynomial f(n + 1), . . . , f(2n− 1). The

merchant takes advantage of the fact that endorsements are really openings of Pedersen commitments

to efficiently verify that the points on f are consistent with the n endorsements. Once the merchant

is satisfied, the user and merchant perform a fair exchange of a single endorsement for the digital

content. Once the merchant learns one endorsement, he can interpolate f to learn all of the other
1Every on-line good or service can be reduced to some sort of digital content, whether it is an e-book, verifiable
computation, or signed receipt for a physical item.

4

endorsements and deposit all n e-coins. This protocol can be extended to the situation when the

merchant also has multiple goods or services he is selling.

We describe endorsed e-cash in Chapter 4 for more details.

1.3 Incentives in Peer-To-Peer Networks

Peer-to-peer networks are designed to provide services to its users anonymously. As long as all

users contribute their fair share to the network, a peer-to-peer system can be more efficient than

a centralized system. However, many users would rather consume services and provide nothing

in return. We can use endorsed e-cash to efficiently provide incentives to selfish users without

compromising privacy. Our results can be found in Chapter 5 We present several examples of how

we can provide accountability in peer-to-peer networks without compromising privacy:

Onion routing. Anonymous remailers, invented by David Chaum [35], also known as onion routers,

let users communicate anonymously, even in the face of traffic analysis. A user chooses a sequence

of routers to relay a message. Then, the user encrypts the message in many layers of encryption;

each router peels off a single layer to learn the forwarding address of the next router in the chain.

However, most peers in the network are selfish and prefer to send only their own messages. Users

needs a way to anonymously provide routers with an incentive to forward messages.

The naive solution would be to include an e-coin in each encryption layer of the message. This

will not work because a router can deposit the e-coin without forwarding the message. Suppose we

include an unendorsed e-coin in each layer and make the router contact the next router in the chain

in order to get the endorsement. This also will not work because the next router in the chain has

no incentive to talk to the previous router.

We construct threshold endorsed e-cash to solve the onion routing problem. Threshold endorsed

e-cash lets the user give away shares of the endorsement; if a merchant collects m shares, where m is

set by the user, the merchant can calculate the endorsement and deposit the e-coin. See Section 4.2

for details. Suppose each router, upon peeling off a layer of encryption, sees (1) a threshold unen-

dorsed e-coin, (2) the endorsement to the previous router’s e-coin, and (3) the endorsement to the

next router’s e-coin. In order to collect its own e-coin, the router must contact the previous and

next routers in the chain. The router performs a fair exchange with the previous router in the chain.

Then the router must forward the onion to the next router in the chain, so that it can perform a fair

exchange of endorsements with the next router. As a result, a router only gets paid if it forwards

the message.

File sharing. One of the most popular application of peer-to-peer systems is file sharing. Initially,

file sharing systems relied on the altruism of users. Each user who joined the system indicated what

files he was willing to share. Any interested peer could connect to the user’s computer and download

the files. These altruistic file sharing networks were very slow in practice because users would hack

their clients to avoid sharing files with other peers. Instead, they would use their entire bandwith

to download the files they wanted.

5

BitTorrent [40] proposed the first practical solution to the problem of selfish users. It provided

incentives for users to share files: if a user wanted to download a file from another user, he would

have to offer a file in return. If the user sent the file too slowly, the other user would either decrease

his file transfer rate, or cut off the slow user completely. Due to this incentive systems, BitTorrent

downloads are very fast and BitTorrent is one of the most popular file sharing systems today.

The problem with BitTorrent is that it provides non-fungible incentives. Suppose Alice has a file

that Bob wants, Bob has a file that Charlie wants and Charlie has a file that Alice wants. In the

BitTorrent model, all three users are stuck. Alice will not talk to Bob because he has nothing for

her, Bob won’t talk to Charlie, and Charlie won’t talk to Alice. BitTorrent resolves this dilemma by

encouraging users to altruistically give away bandwith once they have finished their own download.

We can use e-cash to provide fungible incentives for file sharing. There are many problems

associated with using e-cash in peer-to-peer networks. Some are pure policy issues: how do users

join the system, are variable prices allowed, how does the system handle inflation/deflation, etc. In

this work, we are mostly concerned with the cryptographic problems. We have developed a protocol

that lets Alice sell a her file to Bob. We use endored e-cash as a building block for the fair exchange

protocol. Our new protocol lightens the burden on the TTP; the TTP never has to download the

entire file in order to verify that Alice is honest. We also show how Alice and Bob can trade files by

placing endorsed e-coins into escrow. Alice and Bob can perform this step once and then choose to

engage an arbitrary number of transactions with each other.

Other Distributed Systems. Peer-to-peer systems can provide a variety of different services,

including distributed computation, distributed storage, and distributed look-up. Endorsed e-cash

makes it possible to pay a service provider conditional on the performance of some well defined

service.

1.4 Anonymous Authentication

E-cash can be used for anonymous authentication. Instead of withdrawing a wallet of e-coins and

using them to purchase goods and services, a user can withdraw an e-token dispenser, and use the

e-tokens to authenticate with verification authorities. In Section 6.1, we show how to slightly modify

the dispenser to create new e-tokens every time period. For example, with regular e-cash, the user

could withdraw a dispenser that lets him authenticate ten times, while with this modification, the

dispenser lets him authenticate ten times per day.

We can apply secret sharing techniques to protect users who accidentally clone their e-tokens.

(For example, an honest user’s computer may crash and erase the fact that a particular e-token was

already spent). In standard e-cash, every time a user spends an e-coin, he generates a polynomial

f of degree 1 (i.e. a straight line) such that f(0) = id, his identity. The user provides the merchant

with a single point randomly chosen on that line. If the user spends the same e-coin more than once,

he reveals two points, and the merchant or bank can interpolate the line to learn the user’s identity.

Since every e-coin has a line with a different slope, an honest user who spends different e-coins each

6

time does not have to worry about compromising his anonymity.

In Section 6.2, we extend this technique to protect users who occasionally reuse e-tokens. Recall

that we allow users to authenticate n times per time period. Each time a user reuses an e-token, we

call the extra e-token a clone. We group the time periods into non-overlapping time intervals. We

preserve the anonymity of users who create less than m clones per time interval. Each time a user

shows an e-token, he gives the verifier a point on two polynomials, K and E. Polynomial E is of

degree m− 1, such that E(0) = id; it is unique to each user and time interval. The polynomial K is

of degree 1. It is unique to each e-token. If the user reuses an e-token, the verifier can interpolate K

and learn a link-id. The link-id lets the verifier group clones made by the same user in the same time

interval. If the verifier gets m clones with the same link-id, he can then interpolate the polynomial

E and learn the user’s identity.

A drawback of the basic glitch protection scheme is that all time intervals must be non-overlapping.

Suppose a user is be permitted five glitches per day. If the clock resets at midnight, a malicious

user may create five clones just before midnight and five more immediately after. To prevent this

behavior, we create window glitch protection. A time interval now consists of any W adjacent time

periods. So in the above example, the user would be caught if he made more than five clones in

a twenty-four hour period. Section 6.3 describes how we achieve window glitch protection. The

general idea is a user reveals a point on W different equations Ki that each correspond to a different

link-id (one for each time interval that a time period is part of) and W different polynomials Ei.

In chapter 4, we decribe how to apply e-cash to anonymous authentication and create glitch

protection extensions using secret sharing techniques.

1.5 New Results in Secret Sharing

Our work has shown that secret sharing techniques are very useful for secure anonymous transactions

using e-cash. In this section, we describe a new secret sharing scheme. We then explain how it fits

into the e-cash framework.

Disjunctive Multi-Level Secret Sharing. Introduced by Simmons [93], a disjunctive multi-level

access structure assigns all users to some level L. Each level is given a threshold tL, and these

thresholds form an increasing sequence. A group of users is authorized if there exists some level L

such that there are at least tL users in the group at levels 0...L.

Simons [93] gives a very general exponential time solution to this problem, that is more of a proof

that a solution exists. Brickell [21] gives a concrete exponential time solution to the problem; using

Shoup’s [91] guess-and-check algorithm, it can be sped up to expected polynomial time. Brickell’s

solution only works on secrets chosen from certain types of fields, which depend on the access

structure. Simmons’ and Brickell’s solutions allow new users to join the system at any time and at

any level. Tassa [95] gives a polynomial time solution, but his solution does not allow new users to

join the system. See Section 2.3.5 for a comprehensive literature survey of this problem.

We construct a new disjunctive multi-level secret sharing scheme. Our scheme runs in polynomial

7

time (it is actually faster than Tassa’s scheme). It allows new users to join the system at any time

and at any level. Our scheme is based on the Birkhoff interpolation problem (see Section 2.1.3). The

dealer selects a random polynomial f such that the coefficient of the highest order monomial is equal

to the secret. The share of each user is either a point on f or a point on a derivative of f , depending

on the user’s level. We prove security by reducing our disjunctive secret sharing scheme to Tassa’s

conjunctive multi-level secret sharing scheme [95] (see Section 2.3.4 for Tassa’s construction).

Suppose a dealer wants to share a secret s. The dealer chooses a random polynomial f of degree

tn−1, where n is the highest level, such that the coefficient of xtn−1 is s. The share of user u at level

L is f (tn−tL)(u). A dealer can also prove that he has distributed consistent shares by publishing

commitments to all of the coefficients of f . An authorized set of users can recover the secret by

solving a system of linear equations to learn the coefficents of f .

In Chapter 3, we decribe the new disjunctive multi-level secret sharing scheme in more detail

and prove it is secure.

Possible applications. A recent trend in e-cash protocols is divisible e-cash, which allows users

to pay an arbitrary value, or at least a power of two, in a single transaction. For example, the first

provably secure scheme is due to Canard and Gouget [33]. All divisible e-cash schemes to date are

based on the same idea: the bank gives the user a signature on a seed to a pseudorandom function

(the bank does not learn what the seed is). The user uses the seed to generate a serial number

and two more seeds. Each seed is then used to generate a serial number and two more seeds. The

result is a binary tree of serial numbers. Leaf nodes in the tree represent e-coins. To spend multiple

e-coins, a user gives the merchant the seed of a node higher up in the tree; the merchant can apply

the pseudorandom function to the seed to generate all the child nodes and their serial numbers.

Advanced secret sharing techniques may offer a radically different and more efficent solution to

the divisible e-cash problem. Suppose we use disjunctive multi-level secret sharing directly. The

user would reveal a single serial number for the wallet and a share of his ID. If the e-coin is worth

2L dollars, he would reveal a share at level n − L (where n is a constant). In this construction, it

would be in the user’s best interest to spend t0 − 1 e-coins worth 2n dollars, t1 − 1 e-coins worth

2n−1 dollars, etc. Thus the wallet is not arbitrarily divisible.

The ideal secret sharing access structure for divisible e-cash is the weighted threshold secret

sharing access structure: each user is assigned a weight, and if the sum of the weights in a group

of users is higher than a threshold, then the users are authorized. To apply this to e-cash, a user

would assign a weight to each e-coin. If the total weight of the spent e-coins is higher than the

amount withdrawn from the bank, then the user has overspent and the bank should be able to use

the deposited e-coins to learn the user’s identity.

The only universal weighted threshold secret sharing scheme in the literature simply gives each

user multiple shares of the secret; a user with weight w would get w shares. This is highly inefficient;

to spend a coin worth w dollars would require calculating and revealing w shares. We need a

construction where a user reveals at most log w shares. Beimel et al. [9] show that it is possible

to perform weighted threshold secret sharing using only one share, but their construction takes

8

exponential time and only works for a small subset of weight distributions. Beimel et al. use

disjunctive multi-level secret sharing as one of their building blocks; it might be possible to expand

on their scheme.

1.6 Conclusion

My work so far has used e-cash, and extensions of e-cash, to solve a wide variety of problems.

Endorsed e-cash has been especially useful for solving problems ranging from fair payment of multiple

e-coins to onion routing. Secret sharing techniques provide the mathematical building blocks for

these solutions.

The rest of this dissertation is organized as follows: Chapter 2 overviews some fundamental

cryptography and provides an in-depth introduction to secret sharing and e-cash. Chapter 3 presents

a new disjunctive multi-level secret sharing scheme. Chapter 4 presents endorsed e-cash and shows

how it can be used to pay for electronic goods and services. Chapter 5 examines how endorsed e-cash

can be applied to concrete peer-to-peer applications. Finally, Chapter 6 shows how to use a variant

of e-cash for anonymous authentication.

Chapter 2

Background

9

10

This chapter covers fundamental cryptography and provides an in depth look at e-cash and secret

sharing. Section 2.1 introduces some notation and provides a basic mathematical background. Sec-

tion 2.2 covers complexity theory and fundamental cryptographic primitives. Section 2.3 introduces

secret sharing and surveys past results, while Section 2.4 does the same for electronic cash.

2.1 Basics

We go over some basic notation and mathematical definitions.

Let S be a set. Then |S| is the number of elements in S. P(S) is the power set of S – it is the

set of all subsets of S.

Let ~a = (a0, a1, . . . , an) and ~b = (b0, b1, . . . , bn) be vectors. We can compute the dot prod-

uct as ~a · ~b = a0b0 + a1b1 + · · · + anbn. We can also perform pairwise multiplication as ~a �~b =

(a0b0, a1b1, . . . , anbn).

Let f(x) =
∑

aix
i be a polynomial of degree d. The ith formal derivative of f evaluated at x is

defined as:

f (i)(x) =
∑
j=0

d
j!ajx

j−i

(j − i)!

If ~a(x) = (f0(x), f1(x), . . . , fn(x)) is a vector, then ~a(i)(x) = (f0
(i)(x), f1

(i)(x), . . . , fn
(i)(x)).

2.1.1 Groups and Fields

We briefly cover some concepts from group theory. For a more comprehensive treatment, see Dummit

and Foote [49].

Let G be nonempty set, and ∗ be a binary operation on G × G. We say that G forms a group

under the operation ∗ if the following conditons hold:

1. Closure. The operation ∗ always maps to G: ∀a, b ∈ G : a ∗ b ∈ Group.

2. Associativity. The operation ∗ is associative: ∀a, b, c ∈ G : a ∗ (b ∗ c) = (a ∗ b) ∗ c.

3. Identity. There exists an element e ∈ G such that ∀a ∈ G : e ∗ a = a ∗ e = a.

4. Inverses. Every element in G has an inverse: ∀a ∈ G : ∃b ∈ G : a ∗ b = e.

We say that a group G is commutative if ∀a, b ∈ G : a ∗ b = b ∗ a. A group G is finite if |G|
(the number of elements in G) is finite. The number of elements of a finite group is called its order.

We write G = 〈g〉 to indicate that g is a generator of G; this means that any element of G can be

expressed as ga, for some integer a.

Let G1 and G2 be two groups under operations ∗ and ·, respectively. We say that a function

φ : G1 ×G1 → G2 is a homomorphic function if ∀a, b ∈ G : φ(a ∗ b) = φ(a) · φ(b).

We will frequently encounter the following four groups:

11

Group Zq. The group Zq contains all the integers modulo q, where q is prime. The group operation

is addition modulo q. It can be thought of as 0, 1, . . . , q−1. The order of Zq is q. Every element

of Zq is a generator.

Group Z∗q. The group Z∗q is contains all the integers modulo q, where q is prime, that are relatively

prime to q. The group operation is multiplication modulo q. It can be thought of as 1, . . . , q−1.

The order of Zq is q.

Group Z∗n. The group Z∗n contains all the integers that are relatively prime to n and smaller than

n, where n = pq and p and q are prime. The group operation is multiplication modulo n. The

order of the group is (p− 1)(q − 1).

Abstract Group. We will frequently talk about some general group G. In our notation, we will

consider the group operation to be multiplication; the operator will be denoted either as ∗ or

omitted entirely.

A field is an algebraic object similar to a group, except that it is defined with two binary

operations (+, ·). Let F be a non-empty set. We say that (F, +, ·) is a field if:

1. Additive Group. (F, +) is a commutative group. Let 0 be the identity in this group.

2. Multiplicative Group. (F/{0}, ·) is a commutative group. Let 1 be the identity in this

group.

3. Distinct Identities. 0 6= 1 F has distinct additive and multiplicative identities.

4. Distributive Property. The distributive property holds on the operations ‘+’ and ‘·’:
∀a, b, c ∈ F : a · (b + c) = (a · b) + (b · c).

This work deals primarily with finite fields. All finite fields are of order qβ , where q is a prime

number and β is a positive integer. A generic finite field can be denoted as either GF (qβ) or Fqβ .

2.1.2 Bilinear Maps

We briefly describe bilinear maps; for more details on pairing based cryptography, see Boyen [19].

Let G1, G2 and GT be groups of prime order q. We say that a function e : G1 × G2 → GT is a

bilinear map if it is:

Bilinear. ∀g ∈ G1, h ∈ G2 : e(ga, hb) = e(g, h)ab.

Non-degenerate. For all generators g ∈ G1, h ∈ G2: e(g, h) 6= 1.

We introduce the function Bilinear Setup(1k), that outputs (q, G1, G2, GT , g1, g2, gT , e), where

G1,G2, and GT are groups of order q (where q is a k-bit prime), along with an efficiently computable

bilinear map e. In some cases, G1 = G2, so the bilinear map is redefined to e : G × G → GT .

Such groups, based on Weil and Tate pairings over eliptic curves (see Silverman [92]) and have been

extensively used in cryptographic literature over the past few years.

12

2.1.3 Polynomial Interpolation

We describe some basic ideas from polynomial interpolation; see [95] for a more detailed overview.

Let f(x) =
∑

aix
i be a polynomial of degree d. Recall that f (i)(x) is the ith formal derivative

of f evaluated at x; f (0)(x) = f(x).

Lagrange interpolation. Given set S of d + 1 points, we can perform Lagrange interpolation to

construct a unique polynomial that intercepts every point in S:

f(x) =
∑
u∈S

f(u)
∏
v∈S
v 6=u

x− u

v − u

Using the naive approach, it takes O(d2) field operations to evaluate f(x) for some x. Shamir [90]

shows there is also an O(d log2 d) algorithm. If we have less than d + 1 points, then for a fixed

x, every point is equally likely to be f(x).

Hermite Interpolation. Suppose we are given d + 1 points that either lie on f or on one of its

derivatives:

fi,x = f (i)(x)

It is possible to uniquely reconstruct the polynomial f ∈ R[x] if, for each x, the points

fi,x we get come from an unbroken sequence of derivatives beginning at the 0th derivative:

f0,x, f1,x, . . . , fj,x. In this case, we can reconstruct f by performing Gaussian elimination to

learn a0, a1, . . . , ad.

Birkhoff Interpolation. This is a generalization of the Hermite interpolation problem. For any

x, the sequence of derivatives f (i)(x) may be broken, or not begin at the 0th derivative. In

this case, a solution may not exist, or there may be more than one polynomial that fits the

requirements. There exist some known necessary and sufficient conditions for the Birkhoff

interpolation problem. See Tassa [95] for details. If a solution does exist, we can perform

Gaussian elimination to learn a0, a1, . . . , ad.

13

2.2 Cryptographic fundamentals

We describe some fundamental concepts in public-key cryptography. For a detailed overview, see

Goldreich [56].

2.2.1 Complexity Theory

We measure the complexity of an algorithm in terms of how long it takes to run and the amount of

memory space it uses. We use standard asymptotic complexity notation. If we say that a function

f(k) is O(g(k)), this means that there exist positive values a, b, such that ∀k ≥ a : f(k) ≤ b · g(k).

An algorithm is said to be polynomial time if, given input of length k, it runs in O(kc) time, for

some constant c. An algorithm is said to run in exponential time if, given input k, it runs in ck

time, for some constant c > 1. Finally, we say that a function f is negligible if f(k) < k−c for all

c > 1. We typically use ν(k) to indicate a negligible function.

We typically measure the running time of an algorithm in terms of the number of basic steps.

In some cases, this can is the number of field operations: multiplication, division, addition, and

subtraction. Sometimes we count the number of exponentiations performed. An exponentiation

can be single base (e.g. ga) or multi-base (e.g. gahb). In a good implementation, multi-base

exponentiation takes only slightly longer than single-base exponentiation.

We prove the security of a cryptographic construction by showing that breaking the construction

is as hard as solving some difficult problem, under plausible harness assumptions. To determine

how hard a problem is, we upper bound the probability that a probabilistic polynomial time Turing

machine (PPTM) can ever solve it. We model the situation as a game. In the game, a series of events

can occur. We use notation developed by Goldwasser, Micali and Rivest [60]. We write Pr[a; b; c : d]

to mean the probability of event d, in the probability space defined by a, b, and c. We write x← S

to denote choosing a value x from some set S. Unless otherwise stated, x is chosen uniformly at

random from the elements of S. If A is an algorithm, with inputs (a, b, c, . . .), then x← A(a, b, c, . . .)

is the output of A, chosen over the coin flips performed by A. For example, Pr[a← Zq : a mod 2 = 0]

is the probability of choosing an even number at random from Zq.

2.2.2 Complexity Assumptions

We describe the complexity assumptions required by our work. The first two assumptions are about

composite order groups. We say that a 2k-bit integer n is a RSA modulus if n = pq, where p and q

are equal length primes.

Definition 2.2.1 (Strong RSA Assumption [8, 53]). Let n = pq be a 2k bit integer, where p and

q are equal length primes. primes. The Strong RSA assumption states that no PPTM adversary A
can compute values h, e such that he ≡ g mod n:

Pr[g ← Z∗n; (h, e)← A(g, n) : (e > 1) ∧ (he ≡ g mod n)] ≤ ν(k)

14

Definition 2.2.2 (Paillier Assumption [83]). Let n = pq be a 2k bit integer, where p and q are equal

length primes. We define the set P = {an|a ∈ Zn2}. The Paillier assumption states that no PPTM

can distinguish a random element of P from a random element of Zn2 :

Pr[g0 ← P ; g1 ← Zn2 ; b← {0, 1}; b′ ← A(n, gb) : b′ = b] ≤ 1
2

+ ν(k)

The remaining assumptions deal with groups of prime order q. The first three, the discrete

logarithm assumption, the Diffie-Hellman assumption, and the decisional Diffie-Hellman assumption,

are well accepted. The remaining ones, especially the LRSW and the Sum-Free Decisional Diffie-

Hellman, are more recent and are considered to be very strong assumptions.

Definition 2.2.3 (Discrete Logarithm Assumption [45]). Let G be a group of order q, where q is a

k-bit prime. Let g be a randomly chosen generator of G. The discrete logarithm assumption states

that no PPTM that gets as input h = gx can compute x with more than negligible probability:

Pr[x← Zq; h← gx; x′ ← A(q, g, h) : gx′ = h] ≤ ν(k)

Definition 2.2.4 (Diffie-Hellman Assumption [45]). Let G be a group of order q, where q is a k-bit

prime. Let g be a randomly chosen generator of G. The Diffie-Hellman assumption states that no

PPTM that gets as input (g, gx, gy) can compute gxy with more than negligible probability:

Pr[x, y ← Zq; h← A(q, g, gx, gy) : h = gxy] ≤ ν(k)

Definition 2.2.5 (Decisional Diffie-Hellman Assumption (DDH) [79]). Let G be a group of order q,

where q is a k-bit prime. Let g be a randomly chosen generator of g. The Decisional Diffie-Hellman

assumption states that no PPTM that gets as input (g, gx, gy) can distinguish gxy from a random

element in G with more than negligible probability:

Pr[x, y ← Zq; h0 ← gxy; h1 ← G; b← {0, 1}; b′ ← A(q, g, gx, gy, hb) : b′ = b] ≤ 1
2

+ ν(k)

Definition 2.2.6 (y-Diffie-Hellman Inversion Assumption (y-DHI) [77]). Let G be a group of order

q, where q is a k-bit prime. Let g be a randomly chosen generator of G. The y-DHI assumption

states that no PPTM that gets as input (g, gx, . . . , g(xy)) can compute g1/x with more than negligible

probability:

Pr[x← Zq; h← A(q, g, gx, . . . , g(xy)) : h = g1/x] ≤ ν(k)

Definition 2.2.7 (y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [15, 48]). Let G be

a group of order q, where q is a k-bit prime. Let g be a randomly chosen generator of G. The

y-DDHI assumption states that no PPTM that gets as input (g, gx, . . . , g(xy)) can distinguish g1/x

from a random element in G with more than negligible probability:

Pr[x← Z∗q ; h0 = g1/x; h1 ← G; b← {0, 1};

b′ ← A(g, gx, gx2
, . . . , gxy

, hb) : b = b′] <
1
2

+ ν(k)

15

Definition 2.2.8 (Strong DDH Inversion Assumption (SDDHI)[23]). Suppose that g ∈ G is a

random generator of order q ∈ Θ(2k). Let Oa(·) be an oracle that, on input z ∈ Z∗q , outputs g1/(a+z).

Then, no PPTM adversary A(·) that does not query the oracle on x can distinguish g1/(a+x) from

random:

Pr[a← Z∗q ; (x, α)← AOa(g, ga); h0 = g1/(a+x); h1 ← G;

b← {0, 1}; b′ ← AOa(hb, α) : b = b′] <
1
2

+ ν(k).

Definition 2.2.9 (External Diffie-Hellman Assumption (XDH) [54, 89, 73, 16]). Let G1, G2, and

GT be groups of prime order q, where q is a k-bit prime, and let e : G1 × G2 → GT be a bilinear

map. The XDH assumption states that the Decisional Diffie-Hellman (DDH) problem is hard in G1.

The XDH assumption is conjectured to hold only in non-supersingular curves.

Definition 2.2.10 (Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [47]). Suppose that

g ∈ G is a random generator of order q ∈ Θ(2k). Let L be any polynomial function of k. Let O~a(·)
be an oracle that, on input a subset I ⊆ {1, . . . , L}, outputs the value gβI

1 where βI =
∏

i∈I ai for

some ~a = (a1, . . . , aL) ∈ ZL
q . Further, let R be a predicate such that R(J, I1, . . . , It) = 1 if and only

if J ⊆ {1, . . . , L} is DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with

a one in position j if and only if j ∈ Ii and zero otherwise, then there are no three sets Ia, Ib, Ic

such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise over the integers). Then, for all

probabilistic polynomial time adversaries A(·),

Pr[~a = (a1, . . . , aL)← ZL
q ; (J, α)← AO~a(1k); y0 = g

Q
i∈J ai ;

y1 ← G; b← {0, 1}; b′ ← AO~a(yb, α) : b = b′∧

R(J,Q) = 1] < 1/2 + 1/ν(k),

where Q is the set of queries that A made to O~a(·).

Definition 2.2.11 (Lysyanskaya-Rivest-Sahai-Wolf Assumption (LRSW) [70]). Let

(q, G, GT , g, gT , e) ← Bilinear Setup(1k). Let Ox,y be an oracle that on input m ∈ Zq, randomly

chooses h, and outputs the triple (h, hy, hx+mxy). The LRSW assumption states that no PPTM can

generate this triple on its own:

Pr[(q, G, GT , g, gT , e)← Bilinear Setup(1k); x, y ← Zq; (Q,m, h, h1, h2)← AOx,y (q, G, GT , g, gT) :

(m 6∈ Q) ∧ (h ∈ G) ∧ (h1 = hy) ∧ (h2 = hx+mxy)] ≤ ν(k)

Lysyanskaya et al. [70] show that the LRSW assumption holds in the generic group model and

is independent of the Diffie-Hellman assumption.

Definition 2.2.12 (Decisional Bilinear Diffie-Hellman Assumption (DBDH) [63, 17]). Let (q, G, GT , g,

gT , e)← Bilinear Setup(1k). The DBDH assumption states that no PPTM can distinguish gxyz from

16

a random value in GT :

Pr[(q, G, GT , g, gT , e)← Bilinear Setup(1k); x, y, z ← Zq; h0 = e(g, g)xyz; h1 ← GT ;

b← {0, 1}; b′ ← A(q, g, gx, gy, gz, hb) : b = b′] ≤ 1
2

+ ν(k)

The DBDH assumption is implied by y-DDHI or Sum-Free DDH.

Definition 2.2.13 (y-Decisional Bilinear Diffie-Hellman Inversion Assumption (y-DBDHI) [14]).

Let (q, G, GT , g, gT , e) ← Bilinear Setup(1k). The y-DBDHI assumption states that given the tuple

(g, gx, . . . , g(x)y

), no PPTM can distinguish e(g, g)1/x from a random value in GT :

Pr[(q, G, GT , g, gT , e)← Bilinear Setup(1k); x← Zq; h0 = e(g, g)1/x; h1 ← GT ;

b← {0, 1}; b′ ← A(q, g, gx, . . . , g(x)y

, hb) : b = b′] ≤ 1
2

+ ν(k)

2.2.3 Hash Functions

Definition 2.2.14 (Collision resistant hash function). Let H = hk be a family of functions, hk :

Dk → Rk. We say that H is a family of hash functions if |Rk| < |Dk|. We say that H is a family of

collision resistant hash functions if no PPTM can find two values in Dk that map to the same value

in Rk:

Pr[h← H(1k); (x, y)← A(h) : (h(x) = h(y)) ∧ (x 6= y)] ≤ ν(k)

For this work, we assume the existence of efficient collision resistant hash functions.

2.2.4 Merkle Hash Trees

A Merkle hash tree [74] uses a collision resistant hash function to efficiently commit to a large block

of data.

Suppose that we have a block consisting of 2` chunks chunk1, . . . , chunk2` . Consider a rooted

binary tree with 2` leaves (i.e. it is a binary tree of height `). Associated with every node the tree,

there is the address a of the node. Specifically, the label a associated with the root node is the

empty string ε. The label of a left (resp. right) child is derived by concatenating 0 (resp., 1) to the

label of the parent node. Thus, the label a associated with the ith leaf is the integer i written in

binary.

Stored at a node labeled with a, is a value va. At the ith leaf, the value stored is vi = h(chunk i).

For each internal node a, va = h(va||0||va||1). By MHash(block) we denote the value vε obtained by

applying this procedure to block = chunk1|| . . . ||chunk2` .

To prove that chunk is the ith chunk of the block represented by bhash = MHash(block), reveal

the values vaj
where for 1 ≤ j ≤ `, the label aj is obtained by taking the first j − 1 bits of the

binary representation of i, and concatenating to them the negation of the jth bit. (For example, if

i = 0101, then a1 = 1, a2 = 00, a3 = 011 and a4 = 0100.) In the Merkle tree, the node aj will be

the sibling of the jth node on the path from the root to the chunk in question.

17

To verify that (v1, ..., v`) is a valid proof that chunk is the ith chunk of block associated with

bhash, first we compute the labels aj (as above). We know that vj = vaj
is the value that should

be associated with node labelled aj . Let i = i1i2 . . . i`, i.e. ij is the jth bit of the `-bit binary

representation of i. Let bj = i1 . . . ij be the j-bit prefix of i. First, we know that vi = h(chunk).

For each j, `− 1 ≥ j ≥ 0, compute vbj
= h(vbj ||0||vbj ||1). We can do it because one of (vbj ||0, vbj ||1)

is vaj+1 , and the other one is computed in the previous step. Finally, verify that vε = bhash.

If two conflicting proofs can be constructed (i.e. for chunk 6= chunk ′, there are proofs that each

of them is the ith chunk of block associated with bhash), then a collision in h is found, contradicting

the assumption that h is collision-resistant.

2.2.5 Pseudorandom Functions

Definition 2.2.15 (Pseudorandom Function). Let F = {fk} be a family of functions fk : Dk → Rk.

Let Ok(·) be an oracle that on input from Dk outputs a random value in Rk (O always gives consistent

responses to the same input). F is a family of pseudorandom functions if no PPTM can distinguish

the output of fk ∈ F from Ok(·):

Pr[b← AOk(·)(1k) : b = 0]− Pr[b← Afk(·)(1k) : b = 0] ≤ 1
2

+ ν(k)

Dodis and Yampolskiy [48] construct a pseudorandom function that lends itself nicely to efficient

zero-knowledge proofs. Let G = 〈g〉 be a group of prime order q, where q is a k-bit prime. Let s be

a random element of Z∗q . Then:

DYg,s(x) = g1/(s+x)

Dodis and Yampolskiy [48] show that the Dodis-Yampolskiy PRF DYg,s(x) is secure under the

y-DDHI assumption, when either: (1) the inputs are drawn from the restricted domain {0, 1}O(log k)

only, or (2) the adversary specifies a polynomial-sized set of inputs from Z∗qbefore a function is

selected from the PRF family (i.e., before the value s is selected). Camenisch et al. [23] show that

the DY PRF is secure for all inputs in Z∗q in the generic group model, given the SDDHI assumption.

2.2.6 Commitment Schemes

A commitment scheme consists of three protocols: ComSetup, Commit, and Verify.

1. ComSetup(1k). Outputs params, the protocol parameters.

2. Commit(params, x). Outputs a commitment C to the value x.

3. Verify(params, C, x, proof). Outputs 1 if C is a valid commitment to x.

A commitment scheme should have the following two properties:

Binding. No PPTM can open a commitment to two different values:

Pr[params ← ComSetup(1k); (C, x, proof , x′, proof ′)← A(params) :

(x 6= x′) ∧ Verify(params, C, x, proof) ∧ Verify(params, C, x′, proof ′)] ≤ ν(k)

18

Hiding. Let x and y be two values chosen uniformly at random from the domain of committed

values. We define two distribution ensembles:

X = {params ← ComSetup(1k) : (C, proof)← Commit(params, x)}

Y = {params ← ComSetup(1k) : (C, proof)← Commit(params, x)}

We say that the commitment scheme is perfectly, statistically, or computationally hiding if en-

sembles X and Y are (respectively) information theoretically, statistically, or computationally

indistinguishable.

Definition 2.2.16 (Secure commitment scheme). A perfectly/statistically/computationally secure

commitment scheme is binding and perfectly/statistically/computationally hiding.

Pedersen Commitments [84]. Protocol ComSetup(1k) outputs a group G of order q, where

q is a k-bit prime, and generators (g0, . . . , gm). To commit to values (x1, . . . , xm) ∈ Zm
q , pick a

random value r ∈ Zq and set:

PedCom(x1, . . . , xm; r) = gr
0

m∏
i=1

gxi
i

The protocol Verify takes as input (x1, . . . , xm, r), calculates PedCom(x1, . . . , xm; r), and outputs 1

iff the result equals to the commitment C. Pedersen commitments are perfectly hiding.

Fujisaki-Okamoto Commitments [53]. Fujisaki and Okamoto extend the Pedersen Commit-

ment scheme to Z∗n, where n = pq, and p, q are safe primes. Later, Damgaard and Fujisaki [43]

generalize this construction to work for a larger class of composite order groups.

We denote a commitment to values (x1, . . . , xm) using randomness r as FujOkaCom(v1, . . . , vm; r).

Fujisaki-Okamoto commitments are statistically hiding.

2.2.7 Zero-Knowledge Proofs of Knowledge

Goldwasser, Micali and Rackoff [59] introduce the concept of zero-knowledge proofs. The idea is that

a prover P proves to a verifier V that some statement is true, without revealing any other additional

information. For example, P might prove that he knows a value x such that gx = h. Goldreich,

Micali and Wigderson [57] showed how to prove any statement in NP in zero-knowledge, assuming

the existence of a commitment scheme.

Let L be a language, and R : {0, 1}∗ × {0, 1}∗ a relation such that (x,w) ∈ R if w is a witness

proving that x ∈ L. A zero-knowledge proof of knowledge proof system is a two-party protocol. The

input of the prover P is (x,w). The input of the verifier V is x. At the end of the protocol, V should

output 1 if (x,w) ∈ R. The verifier learns no information about w.

Setup(1k) outputs the public parameters params.

Prove(P(x,w, params),V(x, params)) at the end of execution, the verifier V outputs 0 or 1 depending

on whether it accepts. The prover P outputs nothing.

19

A zero-knowledge proof of knowledge proof system needs to have the following three properties.

Completeness. Suppose an honest prover P gets input (x,w) such that (x,w) ∈ R, and an honest

verifier V gets input x. Then the verifier should accept with probability 1.

Soundness. The probability that an honest verifier V accepts a proof for x 6∈ L is negligible:

Pr[params ← Setup(1k); (state, x 6∈ L)← P∗(params); Prove(P∗(state),V(x)) : 1← V] ≤ ν(k).

Zero-knowledge. For every dishonest verifier V∗, there exists a simulator S so that ∀(x,w) ∈ R,

no PPTM adversary can distinguish between the output of V∗ after running Prove(P(x,w),V∗)
and the output of S. In other words, ∀(x,w) ∈ R, the following two distribution ensembles

are indistinguishable:

X = {params ← Setup(1k); output ← Prove(P(x,w, params),V∗(x, params)) : (output , params)}

Y = {(params, output)← S(1k) : (output , params)}

If the soundness property holds even if the prover is computationally unbounded, then the

protocol is called a zero-knowledge proof, while if soundness holds only if the prover is a PPTM, then

the protocol is a called a zero-knowledge argument. We can also distinguish the strength of the zero-

knowledge property – whether the output of S and P are information theoretically (i.e. perfectly),

statistically, or computationally indistinguishable. Zero-knowledge proofs may be interactive or

non-interactive.

Bellare and Goldreich [11] define a proof of knowledge, which is an extension of a zero-knowledge

proof. Now, insted of proving that there exists a witness w that x ∈ L, we can prove that we

know a witness w. To do this, we replace the soundness property with a stronger requirement called

extraction:

Extraction. For every dishonest prover P∗, if an honest verifier would accept its proofs, then there

exists a PPTM extractor E that can calculate the witness w. We define:

∀x : p(x) = Pr[params ← Setup(1k); Prove(P∗(x,w, params),V(x)) : 1← V]

If ∀(x,w) ∈ R, p(x) is O(2−u(k)), for some polynomial u(k), then there exists a PPTM algo-

rithm E , that when given oracle access to P∗ and the ability to choose the setup parameters

params, calculates a value w′ such that (x,w′) ∈ R with probability at least 1− ν(k).

Besides proofs of knowledge, we can also consider signatures of knowledge. The prover generates

a digital signature that states “a person who knows a witness for the statement x ∈ L signed this

document.”

We adopt the notation developed by Camenisch and Stadler [32]. We write PK{(variables) :

properties} to indicate a zero-knowledge proof of knowledge of variables which meet some properties.

For example, PK{(α, β) : A = gα ∧ B = Aβ} is a proof of knowledge of two values, α and β such

20

that A = gα ∧ B = Aβ . We will always use Greek letters to indicate unknowns and Roman letters

to indicate publicly known values. When we perform non-interactive zero-knowledge proofs, or

signatures of knowledge, we write SPK instead of PK. So PK{(α, β) : A = gα ∧ B = Aβ}(m) is a

signature on message m.

2.2.8 Digital Signatures

A stateless signature scheme consists of three protocols: SigSetup, Sign, SigVerify.

SigSetup(1k) is a probabilistic algorithm that outputs a k-bit signing key sk and k-bit verification

key vk .

Sign(sk ,m) is a probabilistic algorithm that outputs a signature σ on message m using signing key

sk .

SigVerify(vk ,m, σ) outputs 1 if σ is a valid signature on m under the verification key vk .

Definition 2.2.17 (Secure Signature Scheme [60]). A secure signature scheme must satisfy two

properties. Firstly, it must be correct:

∀m : Pr[(sk , vk)← SigSetup(1k); σ ← Sign(sk ,m) : SigVerify(vk ,m, σ) = 1] = 1

It must also be secure against an adaptive chosen message attack. We give the adversary A access

to a signing oracle Sign(sk , ·). A must honestly record every query to Sign(sk , ·) on a query tape Q.

We say that the signature scheme is secure if:

Pr[(sk , vk)← SigSetup(1k); (Q,m, σ)← ASign(sk ,·)(vk) : (m 6∈ Q) ∧ SigVerify(vk ,m, σ)] ≤ ν(k)]

CL-Signatures [26, 27, 16]. Camenisch and Lysyanskaya [26] introduced a secure signature

scheme with two protocols: (1) An efficient protocol for a user to obtain a signature on the value in a

Pedersen or Fujisaki-Okamoto commitment [84, 53] without the signer learning anything about the

value and (2) An efficient zero-knowledge proof of knowledge of a signature on a committed value.

There are three known constructions. The original CL-signature [26] is based on the Strong RSA

assumption. Camenisch and Lsysyanskaya [27] and Boneh et al. [16] use bilinear maps to construct

more efficient CL-signatures.

2.2.9 Encryption and Verifiable Encryption

An encryption scheme consists of three protocols: Setup, Encrypt, Decrypt.

Setup(1k) is a probabilistic algorithm that outputs a k-bit public-key pk and a k-bit secret-key sk .

Encrypt(pk ,m) outputs ctext , an encryption of m under the public-key pk .

Decrypt(sk , ctext) outputs m, a decryption of ctext using the secret-key sk .

21

Definition 2.2.18 (Semantically Secure Encryption [58]). A secure encryption scheme must have

two properties. First, it must be correct:

∀m : Pr[(sk , pk)← Setup(1k); ctext ← Encrypt(pk ,m) : Decrypt(sk , ctext) = m] = 1

Second, a PPTM adversary A who gets an encryption of one of two messages of its choice, m0 and

m1, cannot guess which message corresponds to the ciphertext:

Pr[(sk , pk)← Setup(1k);

(m0,m1, state)← A(sk , pk);

b← {0, 1};

ctext ← Encrypt(pk ,mb);

b′ ← A(ctext , state) : b = b′] < 1/2 + ν(k)

Bilinear El Gamal Encryption. We require a cryptosystem where gx is sufficient for decryption

and the public key is φ(gx) for some function φ. One example is the bilinear El Gamal cryptosys-

tem [17, 6], which is semantically secure under the DBDH assumption.

Block Ciphers. Also known as symmetric-key encryption, a block cipher is an encryption scheme

where the Encrypt algorithm takes the secret-key sk as input instead of the public-key. Block ciphers

are much faster than public-key encryption schemes. However, they are not semantically secure.

They also do not provide provable security guarantees. Some common block ciphers are AES [81],

DES [80], and Blowfish [88].

Verifiable Encryption [22]. Camenisch and Damg̊ard [22] developed a technique for turning any

semantically-secure encryption scheme into a verifiable encryption scheme. Verifiable encryption lets

the sender prove to the receiver statements about the content of a ciphertext. This is typically used

in escrow schemes; for example, the sender can prove that the ciphertext is an encryption of his

identity under the public key of some trusted third party.

Let Setup, Encrypt, Decrypt be a semantically secure encryption scheme, and let R be a binary

relation and define the language LR = {x|∃w : (x,w) ∈ R}. A verifiable encryption scheme

Setup,Encrypt,Decrypt, LR is actually a zero-knowledge proof system where the prover P proves

to the verifier that he knows a witness w to some statement x, where x is a statement about the

contents of the ciphertext.

Camenisch and Shoup [31] construct an efficient verfiable encryption scheme for discrete log-

arithms. The prover can convince the verifier that a ciphertext is an encryption of the discrete

logarithm of A, under pk : PK{(α) : ciphertext = Encrypt(pk , α||β) ∧ C = gαhβ}. This is equivalent

to proving that the plaintext in ciphertext is the opening of a Pedersen commitment.

2.2.10 Coin Flipping

Coin flipping, introduced by Blum [13], refers to a multi-party protocol in which two (or more) users

jointly contribute randomness to generate a sequence of random bits. As a result, neither party can

22

predict or influence the values of these bits. (The only exception is that one user can terminate the

protocol early if he is unhappy with the value of the bit(s), without revealing the chosen bits to the

other party; this problem is inherent to any multi-party protocol).

Suppose two users, U1 and U2 want to generate a single random value in Z∗q . A simple three step

protocol would be:

1. U1 randomly chooses x1 ∈ Z∗q , and sends Commit(x1) to U2.

2. U2 randomly chooses x2 ∈ Z∗q and sends x2 to U1.

3. U1 sends U2 the committed value x1. U2 verifies that x1 is correct. Then both U1 and U2

compute the final answer x = x1 + x2.

If U1 or U2 honestly follows the protocol, then x is chosen uniformly at random. If U1 terminates in

step 3 and does not send x1 to U2, then only U1 will learn x. If either of them terminate in step 1

or step 2, then neither learn any information about x. To make sure the protocol is well defined, we

can require an honest party to output ⊥ if his partner terminates early.

Now suppose U1 and U2 want to choose a sequence of random values jointly. The naive approach

is to repeat the coin flipping protocol above for each value. To save effort it is possible to negotiate

only one value and generate all other values either using a either a pseudorandom function or a

collision resistant hash function. Let F be such a function. The two users generate the seed x of F

using the coin flipping protocol. To generate the ith value in the sequence, the two users calculate

Fx(i).

23

2.3 Secret Sharing Background

A secret sharing scheme lets a dealer give shares of a secret to a group of users. An authorized

group of users should be able to work together to reconstruct the secret. If a group of users does

not contain an authorized group of users, it should learn nothing about the secret. Secret sharing

was introduced by Shamir [90] and Blakley [12] and has been studied extensively. In this section, we

discuss some classical secret sharing problems, following the notation and ideas due to Simmons [93]

(the reader may also refer to Tassa [95], who summarizes these ideas and is more accessible).

2.3.1 Definitions

Definition 2.3.1 (Access structure). Let U be a set of users. An access structure Γ ⊆ P(U) must

meet the following two conditions: (1) monotonicity: if A ∈ Γ and A ⊆ B then B ∈ Γ and (2)

non-triviality: if A ∈ Γ then |A| > 0.

We say that every set A ∈ Γ is authorized and every set B /∈ Γ is unauthorized.

Definition 2.3.2 (Minterm). Let Γ be an access structure. We say that A ∈ Γ is a minterm if

∀u ∈ A : A− {u} /∈ Γ.

There are many possible access structures. The most common is the theshold access structure

(Section 2.3.3). We will also consider some multi-level access structures: conjunctive (Section 2.3.4)

and disjunctive (Section 2.3.5).

In a multi-level access structure, all users are assigned to a level using some function L : U → Z
(each user is assigned to exactly one level, but multiple users can be assigned to the same level).

Sometimes, users can be assigned to different levels depending on the context. To handle this, we

write A(L) to indicate a set of users A whose levels are calculated using level assignment function

L. Thus, for a multi-level access structure, we would write that A(L) ∈ Γ. It is quite possible that

for the same A, there exists another level assignment function L′ such that A(L′) /∈ Γ.

To realize an access structure, we need to construct a secret sharing scheme. There are two types

of players: users and the dealer. The dealer chooses a secret at random from some domain S and

distributes shares of the secret to each user.

Definition 2.3.3 (Secret Sharing Scheme). Suppose there are n users in the system. Let S be the

domain of the secret. A dealer takes a secret s ∈ S, chooses a random string r, and uses the function

(s1, s2, . . . , s|A|) ← Sharer(s,A,L, Γ) to calculate the shares of users A when they are assigned to

levels according to L. We say that a secret sharing scheme is dynamic if the dealer can invoke Share

multiple times with the same randomness r but different sets of users and still get consistent sharings

of the same secret.

Definition 2.3.4 (Secure Secret Sharing Scheme). A secret sharing scheme is a perfect realization

of an access structure Γ if the following two conditions hold:

24

1. Correctness. Regardless of the secret s and the random choices taken by the dealer, ∀A ∈ Γ,

the users in A can always reconstruct s.

2. Privacy. ∀B /∈ Γ the shares of B are information theoretically independent of the secret.

A good secret sharing scheme should maximize its information rate.

Definition 2.3.5 (Information Rate). Given the set of all possible secrets S and the set of all

possible shares T , the information rate ρ of a secret sharing scheme is ρ = log |S|/ log |T |.

Definition 2.3.6 (Ideal Secret Sharing Scheme). An ideal secret sharing scheme has information

rate 1.

A secret sharing scheme should also optimize the dealer efficiency and user efficiency; these are,

respectively, how quickly the dealer computes shares and how quickly an authorized set of users

reconstructs the secret. Simmons [93] distinguishes between extrinsic schemes where all users get

shares from the same domain and intrinsic schemes where the domain of shares may differ. Secret

sharing schemes are often used as part of other protocols. The more simple and direct a scheme is,

the easier it is to use it as a building block.

2.3.2 Verifiable Secret Sharing

Verifiable secret sharing, introduced by Chor et al. [39], and formalized by Feldman and Micali [51],

protects users against a malicious dealer. The dealer must publish some verification information

that lets users check that their shares are consistent with the shares of other users. A verifiable

secret sharing scheme must have the same propeties of correctness and privacy as a regular secret

sharing scheme. However, we add the additional properties of completeness and binding.

Definition 2.3.7 (Verifiable Secret Sharing). A verifiable secret sharing scheme must be a secure

secret sharing scheme (see Definition 2.3.4) and must also have the the following two properties:

1. Completeness. For all secrets, if the dealer follows the distribution protocol, and user u

follows the verification protocol, then u accepts his share with probability 1.

2. Binding. Let k be a security parameter. Suppose a PPTM dealer distributes shares to all the

users, using any process he wants. If A1 and A2 are two sets of authorized users that accept

their shares as valid, then, when they reconstruct secrets s1 and s2, respectively, Pr[s1 6= s2] <

2−k.

2.3.3 Threshold Secret Sharing

The most well known access structure is the threshold access structure introduced by Shamir [90]

and Blakley [12].

Definition 2.3.8 (Threshold access structure). We say that Γ is a threshold access structure cor-

responding to threshold t if Γ = {A ⊆ U : |A| ≥ t}.

25

Shamir [90] shows how to share a secret for a threshold access structure. Suppose the threshold

is t. To share a secret s ∈ Fq, the dealer chooses a sequence of values a1, a2, . . . , at−1 at random

and sets a0 = s. These values define the polynomial f(x) =
∑t−1

i=0 aix
i. The share of a user with

id u is f(u). Any group of users A, such that |A| > t, can reconstruct the secret using Lagrange

interpolation:

s = f(0) =
∑
u∈A

f(u)
∏
v∈A
v 6=u

u

u− v

Let us briefly reinterpret Shamir’s construction from the point of view of solving a system of linear

equations. The sequence of values a0, a1, . . . , at−1 constitute the t unknowns. Each user u learns a

linear equation in terms of these variables, where the ui constitute the known coefficients. If there are

t users, then they possess t equations with t variables. The users can solve this system of equations

if and only if the equations are linearly independent. Using the coefficients 1, u, u2, . . . , ut−1 ensures

that the equations are linearly independent for any choice of user ids.

Theorem 2.3.9. (Security [90]) The above secret scheme is a secure threshold secret sharing scheme.

Efficiency: It takes O(t) field operations to calculate the share of user u. Calculating s using

Lagrange interpolation takes O(t log2 t) field operations [90].

2.3.4 Conjunctive Multi-Level Secret Sharing

Tassa [95] introduced the conjunctive multi-level access structure. Each user is assigned to a level

between 0 and n. Each level is associated with a threshold tL; the thresholds form an increasing

sequence t0 ≤ t1 ≤ · · · ≤ tn. A group of users is authorized if, ∀L : 0 ≤ L ≤ n, there are at least tL

users at level L.

For example, suppose a university can decides that it takes a group of professors, grad students,

and undergraduates to start a meeting. The policy can say that a quorum consists of at least

twenty people, three of whom must be professors, and ten of whom must be either professors or grad

students. We assign professors to level 0, grad students to level 1, and undergraduates to level 2.

The policy can be expressed via the thresholds t0, t1, t2 as follows:
Level Type Threshold

0 Professor 3

1 Grad Student 10

2 Undergraduate 20
This means a group of three professors, seven grad students and ten undergraduates are sufficient

to start the meeting. A group of four professors, six grad students and ten undergraduates can also

start the meeting. Even a group of ten professors and ten undergraduates can start the meeting. In

fact, twenty professors are sufficient to start the meeting! The idea is that we need twenty people,

and any person from a lower level can replace a person from a higher level.

Definition 2.3.10 (Conjunctive multi-level access structure). We say that Γ is a conjunctive multi-

level access structure corresponding to a sequence of thresholds t0 < t1 < . . . < tn and level assigning

26

function L if Γ = {A ⊆ U : ∀L ∈ [0, n] it holds that |{u ∈ A : L(u) ≤ L}| ≥ tL}

There are two conjunctive secret sharing schemes in the literature. The earliest, by Tassa [95]

is based on the Birkhoff interpolation problem. The second, by Tassa and Dyn [96] interpolates

polynomials in two variables. We focus on Tassa’s construction [95] because it is more efficient

(Tassa and Dyn [96] need to find points in general position) and is a basic building block for the

results in Chapter 3.

We now describe Tassa’s [95] conjunctive multi-level secret sharing scheme. Suppose the sequence

of thresholds is t0 < t1 < . . . < tn, and let t = tn. To share a secret s ∈ Fq, the dealer chooses

a sequence of values a1, a2, . . . , at−1 and sets a0 = s. These values define the polynomial f(x) =∑t−1
i=0 aix

i. The share of user u at level L = L(u) is f (tL−1)(u). To reconstruct the secret, the users

solve a system of linear equations to learn all of the ai, including s = a0.

Not all ids lead to a valid sharing of the secret. Tassa shows under what conditions derivatives

of f are guaranteed to result in linearly independent equations:

Theorem 2.3.11 (Security with monotone ID allocation [95]). Let Γ be a conjunctive access struc-

ture, with maximum threshold t, and let the underlying finite field be Fq. Assume that the users in

U were assigned ids in an increasing monotone manner, such that ∀u, v ∈ U : u < v ⇔ L(u) < L(v).

Let N = max{u ∈ U}. Then the above secret sharing scheme is a perfect realization of Γ as long as

q is big enough:

q > 2−t · (t + 1)(t+1)/2 ·N (t−1)t/2

Theorem 2.3.12 (Security with random ID allocation [95]). Let Γ be a conjunctive access structure,

with maximum threshold t, and let the underlying finite field be Fq. Assume a random allocation of

user identities. For a randomly choosen A ⊆ U , (1) if A ∈ Γ, then the probability that the shares

given to A let it reconstruct the secret is at least 1 − ν(t, q) and (2) if A /∈ Γ, then the probability

that the shares reveal no information about the secret in the information theoretic sense is at least

1− ν(t, q), where:

ν(t, q) =
(t− 2)(t− 1)

2(q − t)

Remark. Theorem 2.3.12 states that a random allocation of user ids leads to a correct and private

realization of Γ with high probability, if the size of the field Fq is exponential compared to the highest

threshold t.

Efficiency: Calculating the share of a user u takes O(t) field operations (basically, evaluating the

polynomial f or its derivative). To interpolate the polynomial f and learn the secret requires solving

a system of t linear equations with t variables; using Gaussian elimination, this takes O(t3) field

operations.

We reinterpret Tassa’s secret sharing scheme in terms of vector operations. Let c : Fq → Ft
q be

defined as c(x) = (1, x, x2, . . . , xt−1). We write c(i)(x) to denote the ith derivative of that vector.

Taking the ith derivative of c(x) zeroes out the first i elements. The share of user u at level L can be

written as c(tL−1)(u) · a, where a = (a0, a1, . . . , at−1). Thus, a user at level L = 0 gets information

27

about a0, but a user at a higher level only learns a linear equation in terms of (atL−1 , . . . , at−1)

because the first tL−1 elements of c(x) have been zeroed out.

An authorized set of users can reconstruct the secret by solving a system of linear equations.

Suppose we have a set of m users A(L) = {u0, u1, . . . , um}. We put the users in order by level, so

that L(ui) ≤ L(uj), for all i < j. We create a coefficient matrix CA(L) corresponding to A, where

the ith row of CA(L) is the row vector c(tL−1)(ui). Let σ be the vector of shares known by A(L). To

learn the secret, the users need to solve the equation CA(L) · a = σ. Suppose A(L) is a minterm of

Γ. Tassa [95] shows that in that case, under certain conditions, CA(L) has a non-zero determinant,

which means that the users can find a unique solution for a and recover the secret.

Corollary 2.3.13 (Non-zero determinant with monotone ID allocation [95], from the proof of

Lemma 2). Let Γ be a conjunctive access structure, with maximum threshold t, and let the underlying

finite field be Fq. Assume that the users in U were assigned ids in an increasing monotone manner,

such that ∀u, v ∈ U : u < v ⇔ L(u) < L(v). Let N = max{u ∈ U}. Furthermore, 2−t · (t+ 1)(t+1)/2 ·
N (t−1)t/2 < q. Then for every A(L) that is a minterm of Γ, det(CA(L)) 6= 0

Corollary 2.3.14 (Non-zero determinant with random ID allocation [95], from the proof of Theorem

3). Let Γ be a conjunctive access structure, with maximum threshold t, and let the underlying finite

field be Fq. Assume a random allocation of user identities. Then for every A(L) that is a minterm

of Γ, the probability that det(CA(L)) 6= 0 is at least 1−ν(t, q), where ν(t, q) = ((t−2)(t−1))/2(q−t).

2.3.5 Disjunctive Multi-Level Secret Sharing

Simmons [93] introduced the disjunctive multi-level access structure. Each user is assigned to a level

between 0 and n. Each level is associated with a threshold tL; the thresholds form an increasing

sequence t0 ≤ t1 ≤ · · · ≤ tn. A group of users is authorized if, ∃L : 0 ≤ L ≤ n such that there are

at least tL users at level L.

While a conjuctive access policy is expressed in terms of and clauses, the disjunctive policy is

stated in terms of or clauses. Returning to our university forum example, the policy might state

that either three professors, or ten professors and grad students, or twenty undergraduates, grad

students and professors are sufficient to start the meeting. In other words, if there are less than

three professors in the group, then there should be at least ten people in the group who are either

professors or grad students. And if there are less than ten people who fall in that category, then the

group must consist of at least twenty people. We assign the thresholds as follows:
Level Type Threshold

0 Professor 3

1 Grad Student 10

2 Undergraduate 20
Notice that the thresholds are identical to the ones in the conjunctive example in the previous

section. However, the meaning is completely different. In the conjunctive example, all constraints

had to be satisfied. In the disjunctive example, only one of them needs to be.

28

Definition 2.3.15 (Disjunctive multi-level access structure). We say that Γ is a disjunctive multi-

level access structure corresponding to a sequence of thresholds t0 < t1 < . . . < tn and level assigning

function L if Γ = {A ⊆ U : ∃L ∈ [0, n] such that |{u ∈ A : L(u) ≤ L}| ≥ tL}

Simmons [93] constructs the earliest disjunctive secret sharing scheme in the literature. To

share a secret s, the dealer constructs a sequence of nested hyperplanes H0 ⊂ H1 ⊂ · · · ⊂ Hn.

Hyperplane HL is of dimension tL − 1; it takes tL points to interpolate HL. The dealer publishes

a line. The secret s is the intersection of the line and H0. The share of user u at level L is a point

in HL. Unfortunately, the dealer cannot use arbitrary points. All of the points must be in general

position: no three points may be collinear. Brickell [21] presents an algorithm for finding these

points for access structures with a small number of levels; the dealer runs in exponential time in the

number of levels and linear time in the size of the field. Since for most applications, the field size is

typically exponential, this construction is too inefficient to be used in practice.

Brickell [21] constructs an ideal disjunctive secret sharing scheme, which Shoup [91] subse-

quently shows runs in expected polynomial-time. The dealer chooses a different polynomial for each

level, and gives a user u at level L the point fL(u). By carefully selecting which ids u to use, Brickell

ensures that any authorized set of users can reconstruct the secret. Brickell’s solution allows the

dealer to add new users dynamically. However, there are two major drawbacks to his scheme. First

of all, it only works for secrets in GF (qβ), where q is prime and β is a function of the number of levels

in the access structure and the highest threshold. Thus the domain of the secret depends on the

access structure. Secondly, Brickell’s claimed result takes exponential time. The bottleneck occurs

when the dealer must choose an irreducible polynomial over GF (q). Using Shoup’s guess-and-check

algorithm [91], it takes an expected O(β2 log β + β log q) field operations to find this polynomial.

Ghodosi, Pieprzyk and Safavi-Naini [55] construct an ideal polynomial-time disjunctive

secret sharing scheme that only works for small numbers of users. It is impossible to add new users

to the system on the fly. Their algorithm is iterative. Let s be the secret. The dealer chooses a

random polynomial f0 of degree t0 − 1, such that f0(0) = s. The share of user u at level 0 is f0(u).

For each subsequent level L, the dealer constructs a polynomial fL of degree tL − 1 such that (1)

fL(0) = s and (2) fL(v) = fL−1(v) = . . . = f0(v) for every user v at levels 0...L− 1.

The problem with this approach is that if there are tL − 1 users at levels 0...L − 1, then there

is exactly one polynomial of degree tL − 1 that can satisfy the two requirements for fL. That

polynomial is fL−1. However, the degree of fL−1 is tL−1 − 1 < tL − 1. Thus, tL−1 users at level L

would be able to learn the secret.

Ghodosi et al. overcome this problem by increasing the degree of fL to some value TL− 1. They

call this a (tL, NL)TL
extension of the secret sharing scheme (where NL is the total number of users

on level L). As a result, for every level L, at least TL ≥ tL users of that level or higher are needed

to reconstruct the secret. Privacy is preserved. Correctness is not. Ghodosi et al. show how to

calculate the TL as a function of the number of users and thresholds at previous levels.

To compute each fL, the dealer needs to solve n systems of linear equations, with each system

29

having up to Tn variables. Using Gaussian elimination, this takes O(nT 3
n) field operations. Re-

constructing the secret using Lagrange interpolation takes O(T 2
n) field operations; there is also an

O(Tn log2 Tn) algorithm [90].

Tassa [95] constructs an ideal disjunctive secret sharing scheme that can be computed in

polynomial-time. Tassa shows that the dual of a disjunctive access structure Γ with thresholds

tL is a conjunctive access structure Γ∗ with thresholds t∗L = |{u : L(u) ≤ L}| − tL + 1. Tassa [95]

(also see Section 2.3.4 and Tassa and Dyn [96]) present two different polynomial-time ideal con-

junctive secret sharing schemes. It is possible to use either one to create an ideal monotone span

program for Γ∗ (see [65] for definition of monotone span programs). Using Fehr’s [50] transform on

Γ∗, we can compute an ideal monotone span program that realizes Γ in O(|U|3) field operations. We

can then extract the share of each user from this program. Tassa’s scheme is not dynamic, because

the thresholds of Γ∗ depend on |U|.

30

2.4 E-Cash Background

E-cash allows users to anonymously pay for goods and services online. An e-coin consists of four

parts: (1) a serial number uniquely identifying the e-coin, (2) a double-spending equation that lets

the bank identify users who spend a coin with the same serial number more than once, (3) a zero-

knowledge proof demonstrating that the bank signed this e-coin, and (4) some additional data about

the transaction (e.g. merchant name). The e-coins are completely anonymous. Even though the

bank signs each e-coin when a user withdraws it (this is not done anonymously), the bank cannot

link any e-coin that a merchant deposits to any user. The bank cannot even link e-coins belonging

to the same user to each other. The only exception is when a user spends a coin with the same serial

number more than once. In this case, the user is “counterfeiting” e-coins, and the bank can use the

double-spending equation to identify the user.

There are three phases to an e-cash transaction. In the first phase, the user withdraws a wallet of

e-coins from the bank. The user authenticates himself with the bank. Then the user generates some

e-coins, and the bank signs them (without learning what they are). The bank notes the withdrawal

on the user’s bank account, and logs some trace information for the transaction. In the second

phase, the user makes a purchase. First, the user selects the e-coin he will use. Next, the user

gives the e-coin to the merchant. The merchant verifies the zero-knowledge proof to ensure the

e-coin is signed by the bank. In the third phase, the merchant deposits the e-coins he received from

numerous transactions. The bank checks the zero-knowledge proofs (supplied by users) to ensure

that the e-coins are valid. The bank also records the serial number and double-spending equation

in a log. If a serial number appears in the log more than once, this means a user is spending the

same e-coin multiple times.

2.4.1 Definition

We have three types of players: banks, users and merchants. Merchants are a subset of users. We

generally use B to denote a bank, M to denote a merchant and U to denote a user. When we write

Protocol(U(x),B(y)) we mean that there is a protocol called Protocol between a user U and a bank

B in which the private input of U is x and the private input of B is y.

Our definition of e-cash comes from Camenisch et al. [24]. An e-cash system contains the following

set of protocols for transferring wallets and coins between players and for handling cheaters:

BKeygen(1k, params) A bank B invokes BKeygen to generate (pkB, skB), its public/private-key pair.

UKeygen(1k, params) A user U (or a merchant M) invokes UKeygen to generate (pkU , skU), its

public/private-key pair.

Withdraw(U(pkB, skU , n),B(pkU , skB, n)) This is a protocol between a user U and a bank B that lets

the user withdraw n coins from his bank account. The user gets either a wallet W of n coins,

or an error message. The bank gets either some trace information that it stores in a database,

or an error message.

31

Spend(U(W,pkM),M(skM, pkB, n)) This is a protocol between a user U and a merchant M that

transfers one coin from the user’s wallet W to the merchant. The merchant gets an e-coin coin

and the user updates his wallet to contain one less coin.

Deposit(M(skM, coin, pkB),B(pkM, skB)) This is a protocol between a merchant M and a bank B
that lets the merchant deposit a coin he got from a customer into his bank account.

PublicSecurityProtocols(protocol , params, arglist) This is a set of functions that can be invoked by

anybody to identify double spenders and verify their guilt. The bank finds double-spenders,

but it must be able to convince everyone else. The Camenisch et al. protocols [24] include

Identify(params, coin1 , coin2) to identify a double spender, VerifyGuilt(params, coin, pkU , proof)

to publicly verify that user U had double spent a coin, Trace(params, coin, pkU , proof , database)

to find all coins spent by a guilty user, VerifyOwnership (params, coin, proof , pkU) to verify that

a guilty user spent a particular coin. The exact set of functions depends on the e-cash system

and its desired security properties.

A secure e-cash system must maintain the following four properties:

Correctness. If an honest user runs Withdraw with an honest bank, then neither outputs error; if

an honest user runs Spend with an honest merchant, then the merchant accepts the e-coin. If

an honest merchant runs Deposit with an honest bank on an e-coin given to him by an honest

user, then the bank will accept the e-coin.

Anonymity. Even if a malicious bank conspires with one or more malicious merchants, the bank

cannot link a user to any coins he spends. We create a simulator S and give it special pow-

ers (e.g. control of random oracle, ability to generate common parameters, control of key

generation). The simulator should be able to run the Spend protocol without knowing any

information about any user’s wallet or public/secret-key pair.

Formally, we create an adversary A that plays the part of the bank and of all merchants. A
creates the bank’s public-key pkB. Then, A gets access to an interface Game that plays either

the real or ideal game; A must determine which. A can make four types of queries to Game:

GameSetup(1k) generates the public parameters params and private parameters auxsim for

the simulator S.

GameGetPK(i) returns the public-key of user Ui, generated by UKeygen(1k, params).

GameWithdraw(i) runs Withdraw protocol user Ui: Withdraw(Ui(pkB, ski, n),A(state, n)). (We

use state to denote the state of the adversary; it is updated throughout the course of

protocol execution). We call Wj the wallet generated the jth time protocol Withdraw is

run.

GameSpend(j) in the real game, this runs the spend protocol with the user U that holds the

wallet Wj : Spend(U(Wj),A(state, n)). In the ideal game, S pretends to be the user:

32

Spend(S(params, auxsim, pkB),A(state, n)); S does not have access to the wallet Wj or

know who owns it.

An adversary is legal if it never asks a user to double-spend a coin: for all j, the adversary

never calls GameSpend(j) more than n times (where n is the size of the wallet). An e-cash

scheme preserves anonymity if, for all pkB, no computationally bounded legal adversary can

distinguish between the real game and the ideal game with more than negligible probability.

Balance. No group of dishonest users and merchants should be able to deposit more coins than they

withdraw. We assume that each coin has a serial number (generated during the Withdraw pro-

tocol) We create a knowledge extractor E that executes the Withdraw protocol with u dishonest

users and generates un coin serial numbers: S1, . . . , Sun (we assume each user withdraws n

coins). No adversary should be able to successfully deposit a coin with serial number S unless

S ∈ {S1, . . . , Sun}. Again, E must have additional powers, such as control of the random oracle

or special knowledge about public parameters.

Culpability and Exculpability. Any user that runs Spend twice on the same coin should be

caught by the bank; however, a malicious bank should not be able to conspire with mali-

cious merchants to frame an honest user for double-spending. We omit the specifics of these

definitions and refer the reader to Camenisch et al. [24].

Definition 2.4.1 (Secure e-cash system). We say that an e-cash system is secure if it maintains

the correctness, anonymity, balance, and culpability and exculpability properties.

2.4.2 Compact E-Cash

We overview the CHL [24] compact e-cash scheme. A user has a secret-key u ∈ Zq and public-

key gu. To withdraw n coins, the user randomly chooses s, t ∈ Zq and obtains from the bank a

CL-signature σ on (u, s, t) (see Section 2.2.8 for reference). Now the user has a wallet of n coins:

(0, u, s, t, σ), . . . , (n− 1, u, s, t, σ).

To pay a merchant, the user constructs an e-coin (S, T, Φ, R) from the wallet coin (J, u, s, t, σ)

(see Algorithm 2.4.1. S is a unique (with high probability) serial number. T and R are needed to

trace double-spenders — knowing two different (T,R) values corresponding to the same wallet coin

lets the bank learn the user’s identity. Φ is a zero-knowledge proof that tells the merchant and bank

that the e-coin is valid. Finally, R is as hash of the contract between the user and merchant and

should be unique to every transaction (this lets the bank use (T,R) to catch double-spenders).

To deposit and e-coin, the merchant gives (S, T, Φ, R) to the bank, along with his public-key. The

bank checks whether it has already seen a coin with serial number S – if yes, then the bank knows that

somebody is trying to double-spend because S is supposed to be unique. If it has seen (S, R) before,

then the merchant is at fault because R is unique to every transaction. If the bank hasn’t seen (S, R)

before, then the user is at fault and the bank uses the values (S, Told, Φold, Rold) and (S, T, Φ, R) to

learn the double-spending user’s identity. CHL finds double-spenders in a manner similar to Chaum

33

et al. [38], but it only learns the user’s public-key, and not his secret-key (Camenisch et al’s extended

solution also reveals the secret-key).

Global parameters: Let k be the security parameter. All computation is done in a group G, of

prime order q = Θ(2k), with generator g. We assume there is a public-key infrastructure.

Spend lets a user U pay a merchantM the wallet coin (J, u, s, t, σ): First, the user and merchant

agree on a contract contract (we assume each contract is unique per merchant). The merchant gives

the user his public key pkM. Then, the user runs CalcCoin, as defined in Algorithm 2.4.1, to create

the coin (S, T, Φ, R) and sends it to the merchant. Finally, the merchant verifies Φ to check the

validity of the coin (S, T, Φ, R).

Algorithm 2.4.1: CalcCoin
Input: pkM ∈ {0, 1}∗ merchant’s public key, contract ∈ {0, 1}∗
User Data: u private key, gu public key, (s, t, σ, J) a wallet coin
R← H(pkM||info) ;
S ← DYg,s(J) ;
T ← gu · DYg,s(J)R ;
Calculate ZKPOK Φ of (J, u, s, t, σ) such that:

0 ≤ J < n
S = DYg,s(J)
T = gu · DYg,s(J)R

VerifySig(pkB, (u, s, t), σ) = true
DYg,s(J) Dodis-Yampolskiy pseudorandom function (see Section 2.2.5) and H is a
collision-resistant hash function.
return (S, T, Φ, R)

Theorem 2.4.2. CHL is a secure e-cash scheme, given the security of the following three building

blocks:

1. CL-signatures, which depend on the Strong RSA Assumption.

2. Zero-knowledge proof (or argument) system, which relies on the Strong RSA Assumption and

the Random Oracle Model.

3. Collision-resistant hash functions.

4. Dodis-Yampolskiy pseudorandom function, which for the case of polynomial size input depends

on the q-DHI and q-DBDHI assumptions.

Efficiency. A user must compute seven multi-base exponentiations to build the commitments and

eleven more for the proof. The merchant and bank need to do eleven multi-base exponentiations to

check that the coin is valid.

2.4.3 Fair Exchange

Suppose Alice wishes to purchase some on-line goods from Bob. Alice wants to make sure that

she doesn’t give away her money unless she actually gets the goods. Bob wants to make sure that

34

he doesn’t give away the goods without getting paid. This is a well-known problem called fair

exchange [42, 76, 4, 5]. In optimistic fair exchange [76, 5], fairness is ensured by the existence of

a trusted third party (TTP) who intervenes only if one of the players claims that something went

wrong.

Most of the fair exchange literature focuses on exchanging digital signatures, or on exchanging

a digital signature for digital goods or services. There have been several attempts to realize fair

exchange of e-cash. Jakobsson’s [61] and Reiter, Wang and Wright’s [86] schemes’ are not fair to the

user: the user is not allowed to reuse a coin from a failed exchange. Asokan, Shoup and Waidner [5]

show how to exchange Brands’ e-cash [20], but their protocol is not quite fair to the user either:

if an exchange fails, a user may reuse the coin, but he cannot do so unlinkably. This weakness in

all three schemes cannot be solved by a trusted third party. At early stages of the fair exchange

protocol, the merchant can ask the trusted third party to terminate the exchange; however, the user

would have already revealed too much information about his coin. This is a serious problem because

on-line multi-party protocols often fail due to network delay, computers crashing, and etc.

2.4.4 Anonymous Authentication

E-cash can be used for anonymous authentication. Instead of buying goods and services, an e-coin

can be used as proof that user is authorized to perform some action.

The most obvious application is for authentication policies that allow a user to perform some

action at most n times. In this case, the user would withdraw a wallet of n e-coins and use an e-coin

to authenticate. If the user authenticates more than n times, then by the pidgeon-hole principle,

he must have double-spent one of the e-coins and the bank can discover his identity. This approach

is used by [97, 98, 82], with some variant of e-cash. A recent variation on the theme is Jarecki

and Shmatikov’s [62] work on anonymous, but linkable, authentication where one’s identity can be

discovered after one carries out too many transactions.

Finally, Damg̊ard et al. [44] relax the double-spending condition slightly. They allow a user

to authenticate once per time interval. However, instead of using e-cash, they use general zero-

knowledge techniques to achieve their results.

Chapter 3

Disjunctive Multi-Level Secret

Sharing

35

36

In this chapter, we present a new disjunctive multi-level secret sharing scheme. Our scheme is

the most dealer efficient scheme in the literature; it takes O(|U|t) field operations to calculate the

shares of |U| users, where t is the highest threshold. The only other polynomial time construction is

Tassa [95], which takes O(|U|3t) field operationsto generate shares for all users. Ours is also the first

polynomial time disjunctive secret sharing scheme that allows the dealer to add users dynamically.

See Section 2.3.5 for a survey of the literature on this problem. Our constructions is very simple: the

share of a user is simply a point on a randomly chosen polynomial or its derivative. In Section 3.1

we present our construction and prove it is secure. In Section 3.2 we show how to transform it into

a verifiable secret sharing scheme.

The results in this chapter are based on “Disjunctive Multi-Level Secret Sharing,” [75].

3.1 Fast Disjunctive Multi-Level Secret Sharing Scheme

We present our new disjunctive multi-level secret sharing scheme. Our scheme is very similar to

Tassa’s [95] conjunctive secret sharing scheme (see Section 2.3.4 for overview). In both schemes,

users get a point on either a polynomial or its derivative. In Tassa’s conjunctive scheme, the secret is

stored in the lowest order coefficient, while in our scheme, it is stored in the highest order coefficient.

We prove security by reducing our disjunctive scheme to Tassa’s conjunctive secret sharing scheme.

3.1.1 Construction

Let t0 < t1 < · · · < tn be a sequence of increasing thresholds. The share of user u at level L is

a linear equation of tL variables, one of which is the secret. We choose the coefficients for these

equations using Tassa’s technique of taking derivatives: user u at level L will receive f (t−tL)(u),

where t is the highest threshold. Using a reduction to conjunctive multi-level secret sharing, we will

show that any authorized set of users learns a sufficient number of linearly independent equations

to reconstruct the secret.

Construction 3.1.1. Suppose the sequence of thresholds is t0 < t1 < . . . < tn, and let t = tn.

To share a secret s ∈ Fq, the dealer chooses a random sequence of values a0, a1, . . . , at−2 and sets

at−1 = s. The sequence of values defines the polynomial f(x) =
∑t−1

i=0 aix
i. The share of user u

at level L = L(u) is f (t−tL)(u). The ids u can be chosen either at random or in monotonically

decreasing order. Any authorized set of users can solve the system of linear equations to learn

s = at−1.

We reinterpret our disjunctive scheme in terms of vector operations. Let d : Fq → Ft
q be defined

as d(x) = (1, x, x2, . . . , xt−1). We write d(i)(x) to denote the ith derivative of that vector. The

share of user u at level L can be written as d(t−tL)(u) · a, where a = (a0, a1, . . . , at−1). Suppose

we have a set of m users A(L) and the highest level of user is M . The users might not be able

to recover the entire vector a because they would have information only about (at−tM
, . . . , at−1)

(because taking the derivative zeroes-out the other coefficients of d). Let aM and d
(i)
M be the t− tM

37

leftmost coefficients of those respective vectors. In this case, each user u ∈ A(L) at level L can

write his share as d
(t−tL)
M (u) · aM . We order the users in A(L) = {u0, u1, . . . , um} by level, so that

L(ui) ≥ L(uj) for all i < j. We can then create the coefficient matrix DA(L), where the ith row of

DA(L) is d
(t−tL)
M (ui). Users in A(L) can try to recover aM by solving DA(L) · aM = σ, where σ is a

vector of their of shares.

3.1.2 Efficiency

To calculate a single share, the dealer must compute a point on the derivative of f . This takes O(t)

field operations per user. Reconstructing the secret requires solving a system of t linear equations;

using Gaussian elimination, this would take O(t3) field operations.

3.1.3 Security

Before proving the security of the construction in Section 3.1.1, we first need to prove few interesting

claims that show the link between disjunctive and conjunctive access structures and secret sharing

schemes.

Let Γ be a disjunctive multi-level access structure with thresholds t0 < t1 < . . . < tn; we set

t = tn. Let L be some level assignment function. We take an arbitrary set of users A ⊆ U ; let

M be the highest level of user in A(L). We define L′ as: L′(u) = M − L(u). We also define

the conjunctive access structure Γ′ with thresholds t′0 < t′1 < . . . < t′M , where t′M = tM and

∀0 ≤ L < M : t′L = tM − tM−L−1.

We give some intuition about the above transformation. Suppose A(L) is a minterm of Γ. For

every user at level M in A(L), there is a user at level 0 in A(L′). We can calculate a lower bound

on the number of users in A(L) at level M ; if there is not enough, there will be tM−1 users at levels

0...M − 1, thus contradicting the fact that A(L) is a minterm. As a result, we can calculate a lower

bound on the number of users at level 0 in A(L′). We can do the same for every level. Due to this

property, we were able to chose the thresholds for Γ′ in such a way as to ensure that A(L′) is a

minterm of Γ′. More importantly, the share that a user u receives for Γ is algebraically related to

the share that the user receives for Γ′. We now prove these claims formally:

Claim 3.1.2. If A(L) is a minterm of Γ then A(L′) is a minterm of Γ′.

Proof. Let A(L) be a minterm of Γ. We need to show that there are at least t′M = tM users in A(L′)
at levels 0...M and t′L = tM − tM−L−1 users at levels 0...L for all L < M . Let us begin with level M .

We know that |A| = tM because A(L) is a minterm of Γ. This means that there are exactly t′M = tM

users in A(L′) at levels 0...M . The case for levels L < M is also straightforward. If there is a set

B ⊂ A such that B(L) had tM−L−1 users at levels 0...M −L− 1 then B(L) ∈ Γ, thus contradicting

the fact that A(L) is a minterm of Γ. Therefore, there are at least tM − tM−L−1 + 1 users at levels

M − L...M in A(L). Applying L′, we see that there are at least tM − tM−L−1 + 1 users at levels

0...L in A(L′). Ergo, there are at least tM − tM−L−1 users at levels 0...L in A(L′). Thus, we have

38

shown that A(L′) ∈ Γ′. A(L′) must be a minterm of Γ because any subset of A(L′) would have less

than t′M users at levels 0...M , so it would be unauthorized.

Claim 3.1.3. If A(L) /∈ Γ then A(L′) /∈ Γ′.

Proof. Suppose A(L) /∈ Γ. If M is the highest level of user in A(L), then |A| < tM = t′M . Since Γ′

is a conjunctive access structure, A(L′) /∈ Γ′.

Recall the pairwise multiplication operator ~a �~b = (a0b0, . . . , anbn).

Claim 3.1.4. Let A(L) be a minterm of Γ, and let Γ′ be the corresponding conjunctive access

structure. If the dealer for Γ and the dealer for Γ′ pick the same secret values, then there exists a

positive vector b such that: DA(L) · aM = CA(L′) · (b �aM).

Proof. Let A(L) be a minterm of Γ. Let M be the highest level of user in A. The share of user u

at level L according to Γ′ is d
(t−tL)
M (u) · aM = d

((t−tM)+(tM−tL))
M (u) · aM . We can relate d

(t−tM)
M to c

(the vector used to calculate shares in Γ′) as follows:

d
(t−tM)
M = (xt−tM , . . . , xt−1)(t−tM)

= (1, . . . , xtM−1) �b

= c �b

In the above equations, b is the vector of coefficients that result from calculating a derivative; all of

its entries are positive. Using this result, we get that the share of u in Γ is equal to:

d
(t−tL)
M (u) · aM = d

((t−tM)+(tM−tL))
M (u) · aM

= (ctM−tL(u) �b) · aM

= ctL′−1(u) · (b �aM)

Therefore, if the dealer for Γ′ chooses the same vector of secret values as the dealer for Γ, we would

have the relation: DA(L) · aM = CA(L) · (b �aM).

Now we will show that in order to prove privacy and correctness, it is sufficient to prove that for

any minterm A(L) ∈ Γ, det(DA(L)) 6= 0.

Claim 3.1.5. If for every minterm A(L) ∈ Γ it holds that det(DA(L)) 6= 0, then the secret sharing

scheme in Construction 3.1.1 is correct.

Proof. Assume every minterm of Γ has an associated coefficient matrix with non-zero determinant.

Let A(L) be a minterm of Γ. Let M be the highest level of user in A(L) and let σ be a vector of

shares owned by A(L). We know that DA(L) · aM = σ. Since A(L) is a minterm, det(DA(L)) 6= 0.

This means that we can calculate the inverse of DA(L) and learn aM , which includes the secret

s = at−1. Every authorized set of users contains at least one minterm as a subset. The authorized

users can recover the secret using the minterm.

39

Claim 3.1.6. If for every minterm A(L) ∈ Γ it holds that det(DA(L)) 6= 0, then the secret sharing

scheme in Construction 3.1.1 preserves privacy.

Proof. Assume every minterm in Γ has a corresponding coefficient matrix with a non-zero determi-

nant. We will use the phantom user technique introduced by Tassa [95] to prove Claim 3.1.6. We

introduce a phantom user u0 ∈ U and set L(u0) = 0. No real user will ever get the share assigned

to user u0.

Fix some A(L) /∈ Γ, and let M be the highest level of user in A(L). For now, assume that

|A| = tM − 1. If we let A0 = A + {u0}, then A0 has tM users at levels 0...M , so A0(L) ∈ Γ. We will

show that users A0 can recover the entire vector aM . The users can recover aM only if the equation

DA0 · aM = σ has a unique solution, which is the case if and only if det(DA0) 6= 0. This means that

the row in DA0 corresponding to u0 is independent of the rows fcorresponding to users in A. Since

u0 is at the lowest level, it is on the bottom row of DA0 . Therefore, (0, . . . , 0, 1) /∈ row-space(DA).

Thus, the secret s = at−1 is information theoretically independent of the view of A.

Suppose A0(L) is a minterm. Then, the corresponding matrix DA0 has a non-zero determinant.

Let σ be the shares of A0. We can find a unique solution to the equation DA0 · aM = σ and learn

the entire vector aM . This means that the secret is independent of the view of A.

However, A0 might not be a minterm of Γ. This is because the addition of u0 might create a

set of tL users at levels 0...L, where L < M . Therefore, we divide A0 into two sets of users: Alow

and Ahigh. Alow contains all users at levels 0...L, while Ahigh contains all users at levels L + 1...M .

Alow is a minterm of Γ. (If Alow was not a minterm, then we could remove a user from Alow and

still have tL users at levels 0...L. This means we can remove u0 from Alow and still have tL users

at levels 0...L. In this case, A would be authorized, which is a contradiction.) We divide the vector

of shares σ into σlow and σhigh in a similar fashion. Finally, we take the vector of unknown secret

values aM and divide it into alow and ahigh.

We now show that the users in A0 can solve DA0 · a = σ. DA0 is a tM × tM matrix. The bottom

tL rows consist of tM − tL columns of zeroes on the left, followed by DAlow
. The top tM − tL rows

consist of DAhigh
. (We draw a diagram of DA0 on the next page). To solve for aM , we create the

augmented matrix DA0 |σ. Then we perform the following two operations:

Step 1: We perform Gaussian elimination on the bottom rows corresponding to Alow to learn alow.

We can do this because Alow is a minterm of Γ, and therefore, the determinant of DAlow
is non-

zero. Gaussian elimination will result in the identity submatrix in the rightmost tL columns

of those rows.

Step 2: Next, we use the bottom tL rows of DA0 to completely zero out the rightmost tL columns

of DA0 . This leaves the leftmost tM − tL columns untouched, but changes σhigh to some σ1.

Graphically, these two steps result in the following transformation:

DA0 |σ =

(
DAhigh

σhigh

0 DAlow
σlow

)
→

(
DAhigh

σhigh

0 I alow

)
→

(
DA1 0 σ1

0 I alow

)

40

Consider the (tM−tL) x (tM−tL) matrix DA1 . We get the equation DA1 ·ahigh = σ1. The vector σ1

is whatever results when we zero out the rightmost columns. The matrix DA1 is an abridgement of

the rows corresponding to DAhigh
. Essentially, we have transformed the shares of Ahigh from access

structure Γ to the shares of some set of users A1 from some other disjunctive access structure Γ1.

Due to the equation DA1 · ahigh = σ1, we know that the secret values chosen by the dealer for Γ1

are ahigh.

It is easy to see that A1 is in Γ1. The users in A1 are assigned to levels J...K via some (unknown)

labeling function L1. The lowest row of DA1 represents the share of the user at level K. Since DA1

is a (tM − tL) × (tM − tL) square matrix, we know the threshold for level K is tM − tL. Since

|A1| = tM − tL, A1(L1) ∈ Γ1.

If A1(L1) is a minterm of Γ1, then det(DA1) 6= 0 and we can solve for ahigh. If A1(L1) is

not a minterm of Γ1, then we can keep repeating the reduction we performed on A0 until we have

solved for the entire secret vector ahigh. Since we can solve for ahigh and alow, this means we have

recovered the entire vector aM . As stated earlier, this means the secret is information theoretically

independent of view of the users in A.

Finally, we have to consider the possibility that |A| 6= tM − 1. If |A| > tM − 1, then A(L) ∈ Γ. If

|A| < tM −1, we can always augment it until it does have tM −1 users at levels 0...M . However, the

view of this augmented set of users will still be information theoretically independent of the secret.

Therefore, the view of A is also independent of the secret.

We are now ready to prove that our secret sharing scheme is secure.

Theorem 3.1.7. (Security with monotone id allocation) Let Γ be a disjunctive access structure,

with maximum threshold t, and let the underlying finite field be Fq. Assume that the users are

assigned ids in a decreasing monotone manner, such that ∀u, v ∈ U : u > v ⇔ L(u) < L(v). Let

N = max{u ∈ U}. Then the secret sharing scheme in Construction 3.1.1 is a perfect realization of

Γ, as long as:

2−t · (t + 1)(t+1)/2 ·N (t−1)t/2 < q

Proof of Theorem 3.1.7. Let Γ be a disjunctive secret sharing scheme. By Claims 3.1.5 and 3.1.6, to

prove privacy and correctness, all we need to show is that for all minterms A(L) ∈ Γ, det(DA(L)) 6= 0.

Let A(L) be a minterm of Γ, and let Γ′ be the corresponding disjunctive access structure. By

Claim 3.1.4, if the dealer for Γ and the dealer for Γ′ pick the same secret values, then there exists a

positive vector b such that: DA(L) · aM = CA(L′) · (b �aM). If CA(L′) has a non-zero determinant,

then we can solve for b �aM . Since b is a constant positive vector whose values depend solely on

the access structure Γ (recall that b is the coefficients of a derivative), we can recover aM . Since

this is the case, Da(L) must also have a non-zero determinant.

Therefore, DA(L) has a non-zero determinant if CA(L′) has a non-zero determinant, which occurs

if all the conditions in Corollary 2.3.13 hold. We have to ensure that A(L′) is a minterm of Γ′,

the ids of the users increase monotonically in L′ and that the field is large enough. Since A(L)

is a minterm of Γ, by Claim 3.1.2, A(L′) is a minterm of Γ′. Monotonicity is easy; if we assign

41

users ids in monotonically decreasing order in terms of L, they will be in monotonically increasing

order in terms of every possible L′. As far as field size, Tassa’s scheme expresses it in terms of N ,

the highest possible id of user in the system, and t′, the highest threshold associated with Γ′. The

highest threshold in any Γ′ is t′M = tM where M is the highest level of authorized user. Therefore,

the highest t′ is simply t, the highest threshold for Γ. Thus, the lower bound on the size of the field

is the same as in Corollary 2.3.13.

Theorem 3.1.8. (Security with random id allocation) Let Γ be a disjunctive access structure, with

maximum threshold t, and let the underlying finite field be Fq. Assume a random allocation of user

identities. For a randomly choosen A ⊆ U , (1) if A ∈ Γ, then the probability that the shares given

to A let it reconstruct the secret is at least 1− ν(t, q) and (2) if A /∈ Γ, then the probability that the

shares reveal no information about the secret in the information theoretic sense is at leat 1− ν(t, q),

where:

ν(t, q) =
(t− 2)(t− 1)

2(q − t)

Proof of Theorem 3.1.8. The privacy and correctness proof is essentially the same. Once again,

we need to prove that CA(L′) has a non-zero determinant. This is true if the the conditions of

Corollary 2.3.14 hold. We’ve already shown that A(L′) is a minterm of Γ′. Id selection is easy: if

we assign ids to all users at random in the disjunctive scheme, then they are equally random as far

as Γ′ is concerned. We know that the determinant is non-zero with probability at least 1− ν(t′, q′).

If we take the lower bound for 1− ν(t′, q′), for every possible Γ′ that arises from an authorized set

A(L) ∈ Γ, we will have a lower bound on the probability that users in A can reconstruct the secret.

We know that the underlying field size q is the same in all cases. By Corollary 2.3.14, we see that

1− ν(t′, q′) is lower when t′ is higher. The highest value for t′ is simply t. Therefore, with random

id allocation, our disjunctive construction is correct with probability 1− ν(t, q).

3.2 Verifiable Secret Sharing

3.2.1 Construction

We use standard techniques developed by Pedersen [84] to transform our disjunctive secret sharing

scheme into a verifiable secret sharing scheme. The dealer will give users a point on the polynomial

f ∈ Fq[x] as before. The dealer will also publish a Pedersen commitment [84] to each of the

coefficients of f . The randomness for committing coefficient ai of polynomial f will come from the

coefficient bi of a randomly chosen polynomial g ∈ Fq[x]. If the user’s share of the secret is f (d)(u),

then the user will get auxiliary verification value g(d)(u). Due to the algebraic properties of Pedersen

commitments, PedCom(f (d)(u); g(d)(u)) is a function of the commitments PedCom(ai; bi). Each user

will verify that his share is consistent with the values the dealer published.

We now give the scheme in detail. In the setup phase, some trusted third party chooses generators

h1, h2 of some finite field Fq of prime order q. The Pedersen commitment [84] of x, y ∈ Zq is

42

PedCom(x; y) = hx
1hy

2. Suppose the sequence of thresholds is t0 < t1 < . . . < tn, and let t = tn. To

share a secret s ∈ Zq, the dealer performs the following four steps:

1. The dealer chooses a random sequence of values a0, a1, . . . , at−2 and sets at−1 = s. The

sequence of values defines the polynomial f(x) =
∑t−1

i=0 aix
i.

2. The dealer chooses a random sequence of values b0, b1, . . . , bt−1. The sequence of values defines

the polynomial g(x) =
∑t−1

i=0 bix
i.

3. The dealer sends each user u at level L = L(u) his share (f (t−tL)(u), g(t−tL)(u)).

4. The dealer calculates Ci = PedCom(ai; bi) and publishes C0, . . . , Ct−1.

A user u at level L = L(u) can verify the validity of his share (x, y) by checking that:

PedCom(x; y) =
t−1∏

i=t−tL

C
i!

(i−t+tL)! u
i−t+tL

i

3.2.2 Efficiency

It takes the dealer O(2t) field operations to compute the share of each user. On top of this, the

dealer publishes O(t) field elements as verification purposes. It takes a user O(t) field operations to

verify a share. A group of users can reconstruct the secret in O(t3) time by performing Gaussian

elimination.

We note that Ballico et al. [7] propose a verifiable variant of Tassa’s [95] conjunctive secret sharing

scheme; their scheme requires the dealer to perform O(t) field operations to compute a user’s share

but preserves privacy only under the discrete logarithm assumption. Applying their result to our

disjunctive scheme is straightforward.

3.2.3 Security

Theorem 3.2.1. The construction in Section 3.2.1 results in a private, correct, complete, and

binding verifiable secret sharing scheme as long as the dealer cannot compute logh1
h2.

Proof. Correctness. This follows from Theorem 3.1.7 because each users’s share contains the same

f (t−tL)(u) as in Construction 3.1.1.

Privacy. This is also straightforward. The only extra information received by a user u at level L

are Pedersen [84] commitments to the coefficients of the polynomials f and g, as well as g(t−tL)(u).

Pedersen commitments do not provide any extra information, while the g(t−tL)(u) does not provide

any more information about g than f (t−tL)(u) does about f . Thus, an unauthorized set of users

gains no advantage when trying to learn the secret.

43

Completeness. This follows from the fact that:

PedCom(x; y) =
t−1∏

i=t−tL

C
i!

(i−t+tL)! u
i−t+tL

i

=
t−1∏

i=t−tL

(hai
1 hbi

2)
i!

(i−t+tL)! u
i−t+tL

= h
f(t−tL)(u)
1 h

f(t−tL)(u)
2

Binding. We essentially follow Pedersen’s proof [84]. If an authorized set of users accepts all

of its shares, then, due to correctness, the users can reconstruct some pair of polynomials f and

g that are consistent with their shares. This implies that C0 = PedCom(f(0); g(0)). Now suppose

that there are two (possibly overlapping) sets of users A and A′ that reconstruct different secrets

from their shares. This means that there exist values s, s′, t, t′, where s 6= s′ and t 6= t′, such that

C0 = PedCom(s; t) = PedCom(s′; t′). In this case, we can use the shares of A and A′ to calculate

logh1
h2 using standard techniques [84]. All the dealer has to do is find two sets of users with

inconsistent shares and use them to calculate the discrete logarithm.

To do this, the dealer starts with an arbitrary minterm A, such that |A| = t, the highest threshold.

The dealer uses the shares assigned to those users to calculate f and g (a minterm of size t ensures the

dealer can reconstruct f and g completely, rather than just their derivatives). Next, the dealer goes

through every other user u ∈ U and checks if that user’s share (x, y) = (f (t−tL)(u), g(t−tL)(u)), where

L = L(u). If the user’s share is inconsistent, the dealer constructs a new set of users A′ = A−V +{u},
where V is the set of users that need to be removed to ensure A′ is a minterm. Since u has a share

that is not on f, g, the dealer can use the shares of A′ to reconstruct a different pair of polynomials

with a different secret than that of A.

Chapter 4

Fair Exchange of E-Cash

44

45

In this chapter, we present new protocols for exchanging e-cash for digital goods and services.

We use CHL compact e-cash as a starting point. We show how to modify the Spend protocol to let

the user engage in a fair exchange with the merchant. In Section 4.1, we introduce endorsed e-cash,

which reduces exchanging e-coins to exchanging lightweight endorsements. Then, in section 4.3, we

show how to extend endorsed e-cash to allow paying multiple e-coins for a single good or service.

While this multiple coin exchange protocol still takes linear time in the number of e-coins, the actual

fair exchange (which is the bottleneck) needs to be performed only on one endorsement!.

The results in this chapter appear in “Endorsed E-Cash” [29].

4.1 Endorsed E-Cash

Endorsed e-cash solves the fair exchange problem for e-cash (see Section 2.4.3 for background).

Endorsed e-cash is similar to e-cash. The only difference is that spending a coin is split into two

stages. In the first stage, a user gives a merchant a blinded version of the coin, a.k.a. an unendorsed

coin. An unendorsed coin is not a real coin and cannot be deposited with the bank. A user

is allowed to issue unendorsed coins as often as he wants — it should be impossible to link two

unendorsed versions of the same e-coin. (This is the chief difference between our solution and that

of Jakobsson [61] and Asokan et al. [5]). A user can endorse a coin by giving a particular merchant

the information he needs to transform the unendorsed coin into a real coin (i.e. an endorsed coin)

that can be deposited with the bank. As long as a user endorses at most one version of the same

wallet coin, he is not a double-spender and cannot be identified.

As a result, exchanging e-cash for electronic goods and services is reduced to exchanging lightweight

endorsements for electronic goods and services. In our construction, the endorsement is simply the

opening of a Pedersen commitment. This allows us to use Asokan, Shoup, and Waidener’s [5] fair

exchange algorithm (for exhcanging the pre-image of a homomorphic function for digital goods and

services).

In this section, we formally define endorsed e-cash, give a construction, and prove its security.

We also introduce threshold endorsed e-cash; now the merchant needs to get m out of n possible

endorsements in order to recover the e-coin.

4.1.1 Definition

An endorsed e-cash system is almost identical to a regular e-cash system, except Spend is replaced

by SplitCoin, ESpend, and Reconstruct. We define the three new protocols:

SplitCoin(params,Wj , pkB) A user U can take a coin from his wallet and generate (φ, x, y, coin′).

The value coin′ is a blinded version of the e-coin. The function φ is a one-way homomorphic

function, such that φ(x) = y. The tuple (φ, x, y, coin ′) should have enough information to

reconstruct the e-coin.

46

ESpend(U(W,pkM),M(skM, pkB, n)) This is the endorsed spend protocol. The user U privately

runs SplitCoin to generate (φ, x, y, coin′). The user gives the merchant (φ, y, coin′), but keeps

x for himself. The merchant uses coin′ to verify the validity of the unendorsed coin.

Reconstruct(φ, x, y, coin′) This function (typically used by a merchant) reconstructs a coin that can

be deposited with the bank if and only if φ(x) = y.

An endorsed e-cash scheme should have the same properties of correctness, anonymity, balance,

culpability and exculpability as an e-cash scheme. However, the definitions must be slightly modified

to fit the new set of protocols:

Correctness. If an honest user runs Withdraw with an honest bank, then neither will output an

error message; if an honest user runs SplitCoin and gives the resulting (φ, y, coin′) to an hon-

est merchant via the ESpend protocol, the merchant will accept; if an honest merchant gets

(φ, y, coin′) from an honest user and learns the value x = φ−1(y), then he’ll be able to use

Reconstruct to generate a valid coin that an honest bank will accept during the Deposit protocol.

Anonymity. Splitting a coin into two pieces: (φ, y, coin′) and x should not increase the ability

of a consortium of a malicious bank and merchants to link a coin to a user. Nor should an

adversary be able to link two unendorsed versions of the same coin to each other. Once again,

we create a simulator S and give it special powers. The simulator should be able to run the

ESpend protocol without knowing any information about any user’s wallet or public/secret-key

pair.

Formally, we create an adversary A that plays the part of the bank and of all merchants. A
creates the bank’s public-key pkB. Then, A gets access to an interface Game that plays either

a real game or an ideal game; A must determine which. A can make five types of queries to

Game:

GameSetup(1k) generates the public parameters params and private parameters auxsim for S.

GameGetPK(i) returns the public-key of user Ui, generated by UKeygen(1k, params).

GameWithdraw(i) runs Withdraw with user Ui: Withdraw(Ui(pkB, ski, n),A(state, n)). We call

Wj the wallet generated the jth time the protocol Withdraw is run.

GameESpend(j, J) gives the adversary an unendorsed coin number J from wallet Wj . In the

real game, GameESpend runs the ESpend protocol with the user U that holds the wallet

Wj : ESpend(U(Wj , J, pkB),A(state, n)). In the ideal game, S plays the part of the user

and runs the protocol: ESpend(S(params, auxsim, pkB),A(state, n)). S knows nothing

about the wallet Wj , the particular coin J requested, or the user who owns it. In the

end, the adversary gets the unendorsed coin (φ, y, coin′).

GameEndorse(φ, y, coin′) returns either the endorsement x = φ−1(y) or an error message if the

protocol GameESpend has not previously issued (φ, y, coin′).

47

An adversary is called legal if it never asks a user to double-spend. Suppose two separate calls

to GameESpend(j, J) result in the responses (φ, y1, coin ′1) and (φ, y2, coin ′2). A legal adversary

never calls both GameEndorse(φ, y1, coin ′1) and GameEndorse(φ, y2, coin ′2). An endorsed e-cash

scheme preserves anonymity if no computationally bounded legal adversary can distinguish

between the real and ideal game with more than negligible probability.

Balance. The balance property is the same as in regular e-cash. See Section 2.4.1 for reference.

Culpability and Exculpability. We combine SplitCoin, ESpend, and Reconstruct to create a pro-

tocol SPEND that corresponds to the Spend protocol of a standard e-cash scheme. We need

to show that the e-cash system EC = (BKeygen,UKeygen,Withdraw,SPEND,Deposit,

PublicSecurityProtocols) meets the culpability and exculpability guarantees of a standard e-cash

system. We define SPEND(U(W,pkM),M(skM, pkB, n)) as follows: First, U calls the func-

tion SplitCoin(params,Wj , pkB) to generate the tuple (φ, x, y, coin ′) and sends it toM. When

M receives (φ, x, y, coin ′), he verifies that (φ, y, coin ′) is valid (as in ESpend), and checks if

φ(x) 6= y coin. If either test fails,M rejects. Otherwise,M creates the corresponding endorsed

coin coin = Reconstruct(φ, x, y, coin ′). M stores coin until he is ready to deposit it.

The culpability and exculpability properties provide protection if the user issues only one un-

endorsed coin per wallet coin – in this case, endorsed e-cash reduces to standard e-cash. So what

prevents dishonest merchants from using an endorsement from one coin to generate endorsements

for other coins? If a merchant successfully deposits a falsely endorsed coin with the bank, then

he violates the balance property. If the merchant uses the fake endorsement to frame a user for

double-spending, then he violates anonymity.

4.1.2 Construction

Our endorsed e-cash construction is based on CHL. The wallet coin (J, u, s, t, σ) is the same as before,

but the unendorsed coin is a blinded version of the CHL e-coin. Instead of giving the merchant

(S, T, Φ, R), the user chooses a random endorsement (x1, x2, x3) and calculates (S′, T ′, Φ′, R, y),

where S′ = Sgx1 , T ′ = Tgx2 and y = PedCom(x1, x2; x3). The value Φ′ is a zero-knowledge

proof that the unendorsed coin is valid. Once the merchant learns the endorsement, he can easily

reconstruct (S, T, Φ′, R), which along with y and (x1, x2, x3) constitutes an endorsed coin that can

be deposited with the bank. The user can generate as many unendorsed versions of the same wallet

coin as he wants by choosing different endorsements. However, if he endorses two versions of the

same wallet coin, the bank will identify him using the same method as in CHL.

Global parameters: Same as in CHL. Additionally, let g, h1, h2 be elements in G whose dis-

crete logarithms with respect to each other are unknown. We define the homomorphic one-way

function φ : Z3
q → G, where φ(a, b, c) = ha

1hb
2g

c. We split the public parameters params =

(paramsCHL, paramsZK), where paramsZK is used for the zero-knowledge proof in the SplitCoin pro-

tocol and paramsCHL is used for everything else (and is, in fact, the same as in the CHL system).

48

SplitCoin, defined in Algorithm 4.1.1, creates an endorsable coin (S′, T ′, Φ′, R, (x1, x2, x3), y),

where (S′, T ′, Φ′, R, y) is the unendorsed coin and (x1, x2, x3) is the endorsement (with φ(x1, x2, x3) =

y). The values S′ and T ′ are blinded versions of S and T and Φ′ is the zero-knowledge proof that

S′ and T ′ are formed correctly. The merchant verifies Φ′ during the ESpend protocol.

When the merchant receives the endorsement (x1, x2, x3) for his unendorsed coin (S′, T ′, Φ′, R, y)

he calls Reconstruct to create an endorsed coin (S = S′/gx1 , T = T ′/gx2 , Φ′, R, (x1, x2, x3), y). The

endorsed coin is almost identical to the original coin (S, T, Φ, R), except that Φ′ is a zero-knowledge

proof of slightly different information. Possession of that information is sufficient to create a valid

CHL coin and the bank can safely accept it. The bank can also identify double-spenders because

S, T, R are constructed the same way as in the CHL Spend protocol.

Algorithm 4.1.1: SplitCoin
Input: pkM ∈ {0, 1}∗ merchant’s public key, contract ∈ {0, 1}∗
User Data: u private key, gu public key, (s, t, σ, J) a wallet coin
R← H(pkM||contract) ;
x1, x2, x3 ← Zq ;
y ← φ(x1, x2, x3) ;
S′ ← DYg,s(J)gx1 ;
T ′ ← guDYg,t(J)Rgx2 ;
Calculate zero-knowledge proof of knowledge Φ′ of (J, u, s, t, σ, x1, x2, x3) such that:

y = hx1
1 hx2

2 gx3

0 ≤ J < n
S′ = DYg,s(J)gx1

T ′ = guDYg,t(J)Rgx2

VerifySig(pkB, (u, s, t), σ) = true
return (S′, T ′, Φ′, R, (x1, x2, x3), y)

4.1.3 Efficiency

SplitCoin is very similar to CalcCoin; it requires two more multi-base exponentiation from the user,

one to compute y and one due to its inclusion in the proof, and one more multi-base exponentiation

from the merchant and bank to verify the proof. (Note: we compute T ′ slightly different from CHL,

but this has a negligible effect on the computation.) Thus, it takes the user a total of eighteen

multi-base exponentiations to compute an e-coin, and it takes the merchant and bank a total of

twelve multi-base exponentiations to verify the e-coins.

4.1.4 Security

Theorem 4.1.1. The endorsed e-cash system described in Section 4.1.2 meets the definition of a

secure endorsed e-cash system.

Proof. Correctness. It is easy to see the system is correct because the key values S, T, R are identical

to the CHL e-cash system.

49

Anonymity. We construct an algorithm S that impersonates all honest users of the endorsed

e-cash system without access to their data during the ESpend protocol. (Recall, in our definition,

the adversary accesses an interfaces Game, which either invokes real users or S). S will use SCHL,

the simulator for the CHL Spend protocol, and SZK , the simulator for the zero-knowledge system,

as building blocks. We will show that any adversary A that can distinguish when the interface Game

plays the real game with real users or the ideal game using S can either (1) break the anonymity of

CHL or (2) violate the zero-knowledge property of the zero-knowledge proof system.

S gets as input (params, auxsim, pkB). The endorsed e-cash system generated (params, auxsim)

during GameSetup; some of those parameters are intended for SCHL and SZK : (paramsCHL,

auxsimCHL) is intended for SCHL and (paramsZK , auxsimZK) is for SZK .

S has to simulate ESpend. It gets (contract , pkM) from the adversary. S executes

Spend(SCHL(paramsCHL, auxsimCHL),S(contract , pkM, pkB, n)) (n is the size of the wallets), pre-

tending to be a merchant. S does not need the merchant’s secret-key for the Spend protocol. SCHL

gives S some coin (S, T, Φ, R). S pretends to run SplitCoin. First it randomly generate (x1, x2, x3).

Then it uses the the “endorsement” to calculate: y = φ(x1, x2, x3), S′ = Sgx1 , and T ′ = Tgx2 . Then

it calls SZK(paramsZK , auxsimZK) to generate a fake proof Φ′. S sets coin ′ = (S′, T ′, Φ′, R, y). It

stores (φ, (x1, x2, x3), y, coin ′) in a database for later use and returns (φ, y, coin ′) to the adversary.

We prove S is indistinguishable from real users via a hybrid argument. Consider an algorithm

S1 that acts just like a real user, but after constructing a legitimate unendorsed coin, invokes SZK

to create a fake proof Φ′. If A can distinguish S1 from a real user, A violates the zero-knowledge

property of the zero-knowledge proof system. Now consider algorithm S2 that generates unendorsed

coins using SCHL and SZK , but makes sure that all unendorsed versions of the same coin have the

same serial number. In this case, if A can distinguish S1 from S2, A violates the anonymity of CHL.

Finally, by the definition of SplitCoin, the S′ and T ′ are information theoretically independent of the

real serial number. Therefore, S2 is indistinguishable from S. By the hybrid argument, no adversary

can tell when Game is playing the ideal game or the real game.

Balance. We need to show that no consortium of users and merchants can cheat an honest bank.

Suppose we have an adversary A that can break the balance property of our endorsed e-cash system.

A executes the Withdraw protocol u times to withdraw un coins (assuming n coins per wallet).

We take the knowledge extractor E from the CHL system and use it to generate serial numbers

S1, . . . , Sun from all the invocations of Withdraw (recall that our endorsed e-cash uses the same

Withdraw protocol as CHL). Eventually, A produces an endorsed coin (S, T, Φ′, R, (x1, x2, x3), y)

that the bank accepts, but S 6∈ S1, . . . , Sun. Since the bank accepted the endorsed coin, this implies

that φ(x1, x2, x3) = y and Φ′ is valid. Since Φ′ is formed by a sound zero-knowledge proof system,

A knows values J, u, s, t, σ such that: (1) S′ = Sgx1 = g/(s+J)gx1 , (2) T ′ = Tgx2 = gR/(t+J)gx2 , and

(3) VerifySig(pkB, (u, s, t), σ) = true.

Therefore, we can use A to create a proof Φ such that the CHL bank accepts the coin (S, T, Φ, R).

We construct a reduction that breaks the security of the CHL scheme by playing middleman in the

Withdraw and Deposit invocations that A makes. The reduction can set up the public parameters

50

for the endorsed e-cash zero-knowledge proof system, and exploit them to extract the values u, s, t, σ

from A. As a result, it can construct a valid CHL zero-knowledge proof for coins that A tries to

deposit.

Culpability and Exculpability. Since Reconstruct creates a coin (S, T, Φ′, R, (x1, x2, x3), y) where

(S, T, R) are the same as in the CHL system, the CHL PublicSecurityProtocols can remain unchanged.

Therefore, culpability and exculpability are preserved.

51

4.2 Threshold Endorsed E-cash

Sometimes, we want to require the merchant to acquire several endorsements before reconstructing

an e-coin. In this section, we construct a threshold endorsed e-cash system where the merchant

needs to get m out of n possible endorsements.

Threshold endorsed e-cash uses ideas from secret-sharing. When exchanging a regular endorsed

e-coin, the user gives the merchant a Pedersen commitment to the endorsement, then performs

a fair exchange for the endorsement. In threshold endorsed e-cash, the user generates a random

polynomial f such that f(0) is equal to the endorsement. The user gives the merchant a Pedersen

commitment to a point on the polynomial, then performs a fair exchange for the point. Once the

merchant collects enough points, he is able to interpolate f and learn the endorsement.

The merchant wants to make sure that he always gets a point on the same polynomial f . There-

fore, the user will give the merchant a Pedersen commitment to the coefficients of f in advance. The

merchant will take advantage of the algebraic properties of Pedersen commitments to verify that the

Pedersen commitment to the point lies on the polynomial described by the committed coefficients.

Another minor technical detail is that, in our our construction, an endorsement consists of three

points (x1, x2, x3). As a result, the user will actually generate three random polynomials (f1, f2, f3).

The merchant will verify the values in one efficient step.

We now describe our scheme in detail.

4.2.1 Construction

An unendorsed coin consists of (S′, T ′, Φ′, R, y), where y = PedCom(x1, x2; x3). We can use Pedersen

Verifiable Secret Sharing [84] to create shares of the endorsement. For notational convenience, we

use (g1, g2, g3) instead of original parameters (h1, h2, g) in Section 4.1.2.

To share (x1, x2, x3), the user generates three random polynomials f1, f2, f3 of degree m − 1

such that fj(0) = xj . The user stores a secret vector of n points on the polynomial; these points

are the endorsements. The user gives the merchant commitments to the coefficients that define the

polynomials. Once the merchant learns m points on the polynomials, he can recover (x1, x2, x3) and

endorse the coin. Algorithm 4.2.3 describes how the user creates a threshold endorsable coin.

Algorithm 4.2.1: SplitCoinMN
Input: pkM ∈ {0, 1}∗ merchant’s public key, contract ∈ {0, 1}∗
User Data: u private key, gu public key, (s, t, σ, J) a wallet coin
(S′, T ′, Φ′, R, (x1, x2, x3), y)← SplitCoin(pkM, contract) ;
aj,0 ← xj ,∀j ∈ {1, 2, 3} ;
aj,k ← Zq,∀j ∈ {1, 2, 3},∀k ∈ [1,m− 1] ;
Z ← {Zk =

∏3
j=1 g

aj,k

j : k ∈ [0,m− 1]} ;

X ← {X(i)
j =

∑m−1
k=0 aj,kik : j ∈ {1, 2, 3}, i ∈ [0, n]} ;

return (S′, T ′, Φ′, R, X, Z)

In MNSpend, the user gives the merchant the threshold unendorsed coin (S′, T ′, Φ′, R, Z) and

52

stores the endorsement X. The merchant needs to verify the unendorsed coin: he uses uses Z,

a commitment to the polynomials’ coefficients, to calculate Y , a commitment to points on the

polynomials: Y = {Y (i) =
∏m−1

k=0 (Zk)ik

: i ∈ [0, n]}. The merchant sets y = Y (0) and verifies Φ′ in

the usual way.

Now the merchant needs to get m endorsements. The user has n endorsements: {(X(i)
1 , X

(i)
2 , X

(i)
3) :

i ∈ [1, n]}. They can use the homomorphic one-way function φ(a, b, c) = ga
1gb

2g
c
3 to do an optimistic

fair exchange because φ(X(i)
1 , X

(i)
2 , X

(i)
3) = Y (i) (remember, Φ′ proves the Y (i) are correct). In

MNReconstruct, the merchant uses the m points to interpolate the polynomials and learn (x1, x2, x3).

4.2.2 Efficiency

It takes the user m extra multi-base exponentiations to commit to the coefficients of the polynomials

f1, f2, f3. It takes the user 3m single-base exponentiations to calculate a single endorsement. The

zero-knowledge proof remains unchanged. Thus, the user makes a total of 18 + m + 3mn multi-

base exponentiations to construct a threshold e-coin with n different endorsements. To verify an

unendorsed threshold e-coin, the merchant needs to calculate y = Y (0); this takes m single-base

exponentiations. Then the merchant verifies the zero-knowledge proof in the usual way. Thus, the

merchant performs a total of 12 + m multi-base exponentiations to verify an unendorsed threshold

e-coin. To check the validity of a single endorsement, the merchant performs m + 3 multi-base

exponentiations. Thus, the final work done by the merchant is 12 + m + m(m + 3). The bank also

performs 12 + m + m(m + 3) multi-base exponentiations to verify a threshold e-coin for deposit.

4.2.3 Security

This is a straightforward application of Pedersen VSS. The user creates n verifiable shares of the

secret (x1, x2, x3) and gives the merchant the standard verification vector. Each endorsement is a

share of the secret.

53

4.3 Paying Multiple E-Coins

Suppose a merchant is selling a car for 19,995 e-coins (an e-coin can be worth a dollar, or some

other amount if the system supports different denominations). If a user wants to do a fair exchange,

she must verifiably encrypt 19,995 endorsements. Creating and verifying the ciphertexts is compu-

tationally expensive. Worse, if the trusted third party becomes involved, it must store all of the

verifiable encryptions and their tags.

We can significantly reduce the cost of the fair exchange. Examine the unendorsed coin (S′, T ′, Φ′,

R, y) from Section 3.2. The value y = φ(x1, x2, x3), where (x1, x2, x3) is the endorsement. A fair

exchange of one coin for the car trades the opening of y for the opening of some value K. A fair

exchange of n unendorsed coins trades the opening of (y(0), . . . , y(n−1)) for the opening of K. Be-

cause φ is really a Pedersen commitment, we can use a Pedersen VSS [84] style algorithm to reduce

opening all the y(i) to just opening y(0).

4.3.1 Definition

Definition 4.3.1. (Secure multiple e-coin fair exchange) A multiple e-coin fair exchange scheme is

secure if a merchant who, after enaging in an arbitrary number of fair exchange protocols with a set

of users, and receiving N endorsed e-coins, cannot deposit more than N e-coins with the bank.

We assume that the bank will accept all withdraw requests from the users. Additionally, if the

merchant withdraws M e-coins from the bank, then the merchant should not be able to deposit

more than M + N e-coins.

4.3.2 Construction

Setup: We will use the same public parameters as the endorsed e-cash system in Section 4.1.2.

For notational convenience, we will use (g1, g2, g3) instead of (h1, h2, g) (recall that these are three

generators of G whose discrete logarithm representation relative to each other is unknown; we assume

the discrete logarithm problem is hard in G). We set φ(a, b, c) = ga
1gb

2g
c
3.

User Promise: The user makes n new endorsable coins (S′(i), T ′(i), Φ′(i), R(i), (x(i)
1 , x

(i)
2 , x

(i)
3), y(i)),

for i ∈ [0, n − 1]. The user defines three polynomials f1, f2, f3 of degree n − 1, such that ∀i ∈
[0, n − 1],∀j ∈ {1, 2, 3} : fj(i) = x

(i)
j (the user doesn’t have to do anything for this). Let set

A = {0, . . . , n− 1}. The user calculates n− 1 new points p
(i)
j on f1, f2 and f3, as follows:

∀i ∈ [n, 2n− 2],∀j ∈ {1, 2, 3} : p
(i)
j = fj(i) =

∑
a∈A

fj(a)
∏
b∈A
b 6=a

i− a

b− a

The user gives the merchant the n unendorsed coins and {p(i)
j : i ∈ [n, 2n− 2], j ∈ {1, 2, 3}}.

Merchant Verifies: The merchant gets n unendorsed coins (S′(i), T ′(i), Φ′(i), R(i), y(i)), for i ∈
[0, n− 1], and uses the Φ′(i) to verify their validity. Then the merchant checks that the openings of

54

the y(i) are on the same polynomials as the p
(i)
j . He does not need to know the openings for this!

Let set B = {n, . . . , 2n− 2}. The merchant accepts only if:

∀i ∈ [1, n− 1] : y(0) = (y(i))
Q

b∈B
i

i−b

3∏
j=1

(gj)

P
a∈B

a
a−i pa

j

Q
b∈B
b 6=a

a
a−b

.

Fair Exchange: The merchant and the user conduct an optimistic fair exchange of the opening

of y(0) for the opening of K. The merchant learns φ−1(y(0)) = (x(0)
1 , x

(0)
2 , x

(0)
3). If the exchange fails,

the user must throw out the unendorsed coins.

Reconstruct: The merchant uses (x(0)
1 , x

(0)
2 , x

(0)
3) and {p(i)

j : i ∈ [n, 2n− 2], j ∈ {1, 2, 3}} to learn

the openings of y(1), . . . , y(n−1). He sets C = {0, n, . . . , 2n− 2}, p
(0)
j = x

(0)
j , and calculates:

∀i ∈ [1, n− 1],∀j ∈ {1, 2, 3} : x
(i)
j = fj(i) =

∑
a∈C

fj(a)
∏
b∈C
b 6=a

x− a

b− a

4.3.3 Efficiency

The multiple e-coin fair exchange protocol runs in linear time in the number of e-coins. It takes the

user eighteen multi-base exponentiations to compute each e-coin and O(n2 log2 n) multi-base expo-

nentiations to compute all the points p
(i)
j . The merchant performs twelve multi-base exponentiations

to verify the unendorsed e-coins and

4.3.4 Security

We want to show that the multi-coin fair exchange presented in Section 4.3.2 is secure. Specifically,

we want to show that no malicious merchant that asks users to participate in the multiple-coin fair

exchange can falsely endorse coins (so if a user endorses N coins then the merchant can deposit at

most N coins). First we prove in Lemma 4.3.2 that if a merchant endorses a coin during a single run

of a failed multi-coin exchange, then he can calculate discrete logarithms. Then we use the Lemma

to show that if the merchant manages to deposit more coins than the users intended to give him,

the merchant violates either the security of the endorsed e-cash scheme or the discerete logarithm

assumption.

Lemma 4.3.2. Let (x(0)
1 , x

(0)
2 , x

(0)
3), . . . , (x(n−1)

1 , x
(n−1)
2 , x

(n−1)
3) be numbers in Zq selected at ran-

dom, and let g1, g2, g3 be generators of a group G. We define the function φ(a, b, c) = ga
1gb

2g
c
3 and

calculate y(0), . . . , y(n−1), such that yi = φ(x(i)
1 , x

(i)
2 , x

(i)
3). In addition, the x

(i)
j define three polyno-

mials f1, f2, f3 such that fj(i) = x
(i)
j for 0 ≤ i ≤ n− 1. We calculate n− 1 points on each of these

three polynomials: {p(i)
j = fj(i) : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}}. Suppose there exists an adversary

that on input G, g1, g2, g3, (y(0), . . . , y(n−1)), and {p(i)
j = fj(i) : i ∈ [n, 2n− 2], j ∈ {1, 2, 3}} outputs

(a, b, c) such that y(i) = φ(a, b, c), for some i ∈ [0, n−1]. Then we can use this adversary to calculate

discrete logarithms in G.

Proof. We construct a reduction that uses the adversary from Lemma 4.3.2 as a black-box to calcu-

late discrete logarithms. The reduction gets y as input. Suppose (x1, x2, x3) is the opening of y; the

55

reduction does not know these values, but it constructs three polynomials f1, f2, f3 so that fj(0) = xj .

First the reduction randomly chooses 3(n − 1) numbers in Zq: {p(i)
j : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}};

these will be random points that, along with the (unknown) opening of y, define the polynomials

f1, f2, f3. Then the reduction calculates y(1), . . . , y(n−1). Let S = [n, 2n− 1], then:

∀i ∈ [1, n− 1] : y(i) = y
Q

b∈S
i
b

3∏
j=1

(gj)

P
a∈S pa

j

Q
b∈S∪{0}

b 6=a

i−a
b−a

The reduction passes (y, y(1), . . . , y(n−1)) and {p(i)
j : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}} to the black-box.

The black-box responds with an opening to one of the y(i). From this the reduction can interpolate

the polynomials and open y.

We now show that no merchant can take advantage of the multi-coin fair exchange protocol to

deposit more coins than the honest users intended to give him. Suppose a dishonest merchant, after

running a number of multi-coin fair exchanges in which only N coins should be endorsed, manages

to deposit more than N coins. Then we can construct a reduction that uses the merchant as a

black-box to either break the balance of anonymity of the endorsed e-cash scheme or to calculate

discrete logarithms.

The reduction gets y as input and needs to output (x1, x2, x3) such that y = hx1
1 hx2

2 gx3 . The

reduction sets up an endorsed e-cash system, using (h1, h2, g) as the public parameters. It also uses

SZK , the simulator for the zero-knowledge system Φ′ to create (paramsZK , auxsimZK) and SCHL,

the simulator for the CHL e-cash system to create (paramsCHL, auxsimCHL).

The reduction runs multi-coin fair exchanges with the merchant. In one of those exchanges (the

reduction chooses which one at random), the reduction inserts y into an unendorsed coin. Suppose

the merchant wants n coins. Then the reduction prepares the input to the merchant as follows: It asks

SCHL to create n e-coins (S(0), T (0), Φ(0), R(0)), . . . , (S(n−1), T (n−1), Φ(n−1), R(n−1)) (the reduction

runs Withdraw and Spend the appropriate amount of times). Then the reduction uses y to create an

unendorsed coin. It randomly chooses r1 and r2 and calculates S′ = Sgr1 and T ′ = Tgr2 (we need

to blind S and T ; we don’t know any valid openings of y, but for any r1 and r2 we choose, there

exists some r3 such that φ(r1, r2, r3) = y). Then it uses SZK to generate a fake proof Φ′ such that

an honest merchant would accept the unendorsed coin coin ′(0) = (S′(0), T ′(0), Φ′(0), R′(0), y). Next

the reduction chooses the random points on three polynomials: {p(i)
j : i ∈ [n, 2n− 2], j ∈ {1, 2, 3}}.

Finally, the reduction chooses the appropriate y(1), . . . , y(n−1) (using the same method as in the proof

of Lemma 4.3.2) and uses SCHL and SZK to create the unendorsed coins coin ′(1), . . . , coin ′(n−1).

The reduction gives coin ′(0), . . . , coin ′(n−1) and {p(i)
j : i ∈ [n, 2n− 2], j ∈ {1, 2, 3}} to the merchant.

Eventually, the merchant outputs a list of more than N coins for deposit. At least one of these

coins must be fake. If it is an entirely new coin then the merchant violated the balance property of the

endorsed e-cash scheme. The only other possibility is that the coin was from a terminated multi-coin

fair exchange. With non-negligible probability, the reduction would have inserted y into that fair

exchange. In this case, by Lemma 4.3.2, the merchant violated the discrete logarithm assumption.

56

If the merchant fails to output more than N coins, then the merchant violated anonymity because

it distinguished the simulator from real users (this can be shown with a straightforward reduction).

Chapter 5

Endorsed E-Cash Applications

57

58

In this chapter we show how endorsed e-cash can be used to add incentives to peer-to-peer

systems without sacrificing user privacy.

Peer-to-peer systems leverage the cooperative behavior of a large group of relative resource poor

nodes to provide each user with useful services. The decentralized nature of peer-to-peer networks

provides many advantages, including fault-tolerance and scalability, yet seems to preclude simple

enforcement mechanisms for ensuring that each peer does its part. For example, quotas and strong

reputations are difficult to maintain in a peer-to-peer network, especially when user privacy is a

concern.

We would like to design systems that provide fungible benefits to cooperative nodes, rewarding

those that continue to provide service with credit towards future service. The goal is to make

each user to contribute as much as he receives from the system. Equitable exchange would make

the system significantly more robust, as it would no longer be dependent on the contributions of

altruistic users. These benefits should be secure, anonymous, and fungible. Further, the complete

system should continue to self-scale.

In Section 5.1 we show how to use threshold endorsed e-cash to create incentives for onion

remailers. Then, in Section 5.2 we examine the problem of on-line file sharing. Finally, in Section 5.3,

we end by showing how endorsed e-cash can be used to augment other types of peer-to-peer systems.

The work in this chapter originally appeared in “Endorsed E-Cash,” IEEE Security and Privacy

2007 [29] and “Making P2P Accountable without Losing Privacy,” Workshop on Privacy in the

Electronic Society 2007 [10].

5.1 Onion Remailing

Onion routing, invented by David Chaum [35], allows a user to send a message without revealing

to outside observers that he is communicating with the receiver. The sender chooses a sequence of

routers to pass the message. The sender first encrypts the message under the recipient’s public-key,

then under the public-key of each router in the chain. Onion routing derives its name from this

layered encryption.

The sender then gives the ciphertext to the first router. The router decrypts the ciphertext

to learn the name of the next router in the chain and a new ciphertext. The router passes the

new ciphertext to the next router. The process repeats until the message reaches the intended the

recipient. Under certain forms of encryption, the only information that each router learns is the

location of the next router in the chain; a router does not even learn its distance to the sender or

recipient [28]. As a result, an adversary who corrupts some of the routers in an onion remailing

network cannot determine which sender is communicating with which recipient. In a sufficiently busy

network, an adversary may not even be able to determine which nodes are originating or receiving

messages, rather than merely passing them.

However, in an onion remailing network, routers have no incentive to consume bandwidth by

passing messages. It is desirable to create incentives without jeopardizing the anonymous nature of

59

onion remailing. The naive solution would be to include an e-coin in each encryption layer of the

message. This will not work because a router can deposit the e-coin without forwarding the message.

Suppose we include an unendorsed e-coin in each layer and make the router contact the next

router in the chain in order to get the endorsement. This also will not work because the next router

in the chain has no incentive to talk to the previous router. Reiter, Wang and Wright [86] tried this

approach (using Jakobsson’s [61] ripped e-cash rather than endorsed e-cash).

We propose using threshold endorsed e-cash. The sender would place a threshold unendorsed

e-coin in each encryption layer. The e-coin would require two endorsements in order to be deposited.

When a router receives a message, it will decrypt it to learn:

1. The name of the next router in the chain

2. The name of the previous router in the chain

3. The ciphertext to pass to the next router in the chain

4. A threshold unendorsed e-coin that requires two endorsements

5. The endorsement needed by the next router in the chain

6. The endorsement needed by the previous router in the chain

The router would be able to get one of the endorsements it needs from the previous router in the

chain. The two routers would perform a fair exchange because each one has an e-coin endorsement

that the other one needs. If the previous router in the chain is the original sender, it would still go

through the fair exchange protocol to hide its identity as the originator of the message.

Next the router would pass the new ciphertext to the next router in the chain. It has an incentive

to do this because the second endorsement it needs can only be decrypted by the next onion router.

The next onion router would decrypt the ciphertext to get its own threshold unendorsed e-coin and

two endorsements. The current and next router would perform a fair exchange of endorsements.

Note that if the next router in the chain is the recipient, it must get an unendorsed e-coin that

requires only one endorsement. If the recipient has no e-coin that needs endorsing, then it has no

incentive to give the endorsement to the last router in the chain. As a result, each router has less

incentive to pass the message because it knows that there is a good chance that it might be the last

router and therefore it will not get paid.

60

5.2 File Sharing

File sharing is one the most popular applications of peer-to-peer networks. It is a fast way to obtain

music, movie, and other files because there is no central distribution point that can form a bottleneck.

Measurement studies and theoretical analyses have shown selfish behavior common among users of

peer-to-peer file-sharing systems, and effective for obtaining an unfair share of resources [1, 64,

69, 68]. The most popular file-sharing system, BitTorrent [41], employs a “tit-for-tat” mechanism

aimed at encouraging fairness, but a recent study has suggested that BitTorrent’s effectiveness is due

largely to the altruistic behavior of a small number of high-bandwidth nodes [85] rather than fair

contributions from all participants. Most nodes leave the system as soon as they finish downloading;

only the most altruistic continue to donate upload capacity.

There have been many prior attempts to solve the free rider problem in file sharing systems.

They typically fall into three classes.

Barter Mechanisms. In a bartering system, users trade files (or blocks of files). The best example

of this is the popular BitTorrent system. Users query randomly chosen peers to try set up a

file exchange. If each peer has a piece of a file that the other one wants, then the two peers

begin to transmit data to each other. Since each user has a limited upload bandwidth, the

goal is to find a set of trading partners that would give back as much useful data as possible.

As a result, peers constantly test new trading partners, keeping the best ones. Users have an

incentive to share their data because otherwise their partners would move on to find better

peers. However, as previously mentioned, BitTorrent is easily exploited [85].

An inherent problem with any barter mechanism is that incentives fail when no dual exchange

is possible. There have been attempts to extend the barter economy by identifying chains

of indebted nodes that can be used for transitive exchanges [78, 2]. However, this leads to

unnecessary complexity in the system, creating an expensive trade-off between efficiency and

fairness.

Reputation Systems. Local and centralized reputation systems have been used to provide incen-

tives in peer-to-peer systems [101, 72, 78, 2]. Reputation schemes are ineffective when users can

easily shed a discredited pseudonym. This limits their applicability in privacy-preserving peer-

to-peer systems [46, 71]. Friedman and Resnick [52] show that in this environment, participants

must distrust new users until they have earned enough reputation, leading to inefficiency.

Currency Based. Fungibility is the biggest benefit of a currency based system. There have been

several prior attempts use currency to incentivize file-sharing. KARMA [99] and Scrivener [78]

aim to provide incentives for resource sharing, but are built atop unincentivized DHT systems.

BAR Gossip [67] also incentivizes file-sharing, but strictly controls which peers may exchange

data, potentially underutilizing bandwidth. Mojo Nation [100] used a currency for incentives

that was not provably secure. None of these systems ensured a fair-exchange of money for

data.

61

In Section 5.2.1, we create a new optimistic fair exchange protocol that lets Alice buy a block

of a file from Bob. In Section 5.2.2 we describe an improved dispute resolution protocol that lowers

the the load on the TTP to be logarithmic in the size of the exchanged file, rather than linear as in

Section 4.1 and Asokan et al. [5].

In Section 5.2.3, we create a new fair exchange protocol that lets Alice and Bob trade two blocks;

we call this process bartering. Our barter protocol let Alice and Bob engage in many efficient barter

transactions after they each place a single e-coin into escrow. This offers two advantages over prior

work. The Asokan et al. [5] digital content exchange protocol requires a TTP to verify that each

block of the exchanged files is correct and to sign the encryption of each block together with the

commitment to the encryption key. Our protocol only assumes that both parties know the desired

hash of each block; thus no trusted signer is required. Also, since we let Alice and Bob maintain a

continuous relationship; they only have to create one e-coin each to initiate a relationship, and can

reuse the e-coins indefinitely.

Our protocols require a symmetric block cipher (see Section 2.2.9): we write Encrypt(K, block)

to denote encrypting block with key K; Decrypt(K, ctext) means decrypting ctext using key K.

We assume that a block is large enough to be divided into chunks and Encrypt(K, block) encrypts

each chunk separately. We also need to perform escrow [31] (also known as verifiable encryption,

see Section 2.2.9): EscrowTTP (data, contract) encrypts data under the public-key of the TTP. The

decryption key to the escrow is a combination of the TTP’s secret-key and the contract ; this lets

the TTP ensure he decrypts the escrow only when the terms of the contract have been fulfilled.

Anybody who knows the TTP’s public-key and the contract can verify that the escrow is valid.

Finally, write Com(data) to denote a commitment that can only be opened to data (this should be

a Pedersen commitment for efficiency [84], see Section 2.2.6).

We use Merkle hash trees [74] to create short descriptions of a block (or ciphertext). We write

MHash(block) to denote a Merkle hash of block . A person who knows the entire file can publish

(chunk , proof , MHash(block)) to prove that chunk is in (or is not in) block ; proof is short, efficiently

calculated, and includes the position of the chunk in the block. See Section 2.2.4 for details on how

Merkle trees work. Finally, we require a collision-resistant hash function h (see Section 2.2.3).

5.2.1 Buying Files

We present our protocol that lets Alice buy a file block from Bob. Before the start of the protocol,

Alice acquires bhash = MHash(block) from a trusted authority. (It is impossible to do a secure

exchange of digital content without some authority certifying that the content Alice gets is the

content Alice wants). Alice and Bob will agree on a timeout by when Bob must provide Alice with

the block. The protocol works as follows:

1. Bob chooses a random key K and sends ctext = Encrypt(K, block) to Alice.

2. Alice constructs an endorsed e-coin (coin ′, endorsement). Alice calculates chash = MHash(ctext),

chooses a random value r and calculates the exchange ID v = h(r). Alice sets contract =

62

Algorithm 5.2.1: AliceResolve, run by the TTP
Input: Exchange ID r (ensures only Alice can resolve)
v ← h(r);
if < v, K > ∈ DB then

send K to Alice.
end

Algorithm 5.2.2: BobResolve, run by the TTP
Input: key K, escrow , and contract = {bhash, chash, timeout , coin ′, v}
if currentT ime < timeout then

endorsement ← Decrypt(escrow);
if endorsement not valid for coin ′ then

return error.
end
Run VerifyKey with Bob for K, using (bhash, chash) from the contract.
if K verifies then

add < v, K > to DB .
send endorsement to Bob.

else
return error.

end
end

(bhash, chash, timeout , coin ′, v). She escrows the endorsement under the TTP’s public-key:

escrow = EscrowTTP (endorsement , contract). Alice sends Bob (coin ′, contract , escrow).

3. Bob verifies that (coin ′, contract , escrow) is formed correctly. If he is satisfied, he establishes

a secure connection to Alice using standard techniques and sends the key K. Otherwise, Bob

terminates.

4. If Alice receives a K that lets her decrypt ctext correctly before timeout , she responds with

endorsement . Otherwise, Alice waits until timeout and then calls AliceResolve(r) on the TTP,

as in Algorithm 5.2.1.

5. If Bob does not receive a correct endorsement before timeout , he calls BobResolve(K, escrow , contract)

on the TTP, as in Algorithm 5.2.2. During BobResolve, Bob will run the interactive VerifyKey

algorithm, to prove to the TTP that K is the correct decryption key. We describe this process

in Section 5.2.2.

Security. Suppose Alice wants to avoid paying. If an Bob calls BobResolve before timeout and

provides the TTP with a valid decryption key (see Section 5.2.2), he is guaranteed to be paid, as

long as the unendorsed e-coin is valid. If the unendorsed e-coin is invalid (either badly formed coin ′

or incorrect contract), Bob would not accept it and terminate in step 4 without giving Alice the key

K.

Suppose Bob wants to avoid giving Alice a correct key. If he calls BobResolve after timeout he

will not get paid. If he calls BobResolve before timeout , due to the contract associated with the

63

Algorithm 5.2.3: VerifyKey
TTP’s Input: Two Merkle hashes bhash and chash, key K
Bob’s Input: Ciphertext c0|| . . . ||cn, key K
Step 1: TTP’s challenge

The TTP sends Bob a set of indices I.
Step 2: Bob’s response

Bob replies with (ci, cproof i, bproof i) for every i ∈ I, where cproof i proves that ci is the
Merkle tree corresponding to chash and bproof i proves that bi = Decrypt(K, ci) is in the
Merkle tree corresponding to bhash.

Step 3: Verification
The TTP accepts the key if Bob responds with valid (ci, cproof i, bproof i) for every i ∈ I,
and rejects otherwise.

escrow , he can only get paid if he deposits the correct key K. Alice can then retrieve K at her

convenience.

5.2.2 Efficient Dispute Resolution

We give a protocol that lets a seller prove to the TTP that he provided the buyer with the correct

ciphertext and decryption key.

Recall that when Bob calls BobResolve in Algorithm 5.2.2, he has to prove to the TTP that he has

provided it with the correct key. Specifically, he has to show that K decrypts ctext = c0||c1|| . . . ||cn

to block = b0||b1|| . . . ||bn, where ctext is in chash and block is in bhash. Bob and the TTP execute

VerifyKey, as shown in Algorithm 5.2.3.

Algorithm VerifyKey will detect if chunk ci does not decrypt correctly. We call such a chunk

corrupted. If Bob corrupts an nth fraction of the chunks, and the TTP verifies k chunks, then the

TTP will catch Bob with probability 1−(1−n)k. Suppose Bob corrupts 10% of the chunks. To catch

Bob with 90% probability, the TTP needs to check 22 chunks; to catch Bob with 80% probability,

the TTP needs to check 16 chunks. This approach might not deter a malicious Bob who just wants

to perform a denial of service attack. However, a selfish Bob who wants to try to get paid for a bad

file block would be deterred. This is good enough for our purposes.

5.2.3 Bartering for Files

We present a new protocol that lets Alice and Bob perform a fair exchange of two files. The exchange

proceeds in two phases. First, Alice and Bob give each other an unendorsed e-coin and an escrow of

the endorsement. This establishes a collateral that an aggrieved party can collect if something goes

wrong. In the second phase, Alice and Bob perform a fair exchange of the file. If the exchange fails,

the wronged party can ask the TTP to endorse the e-coin. As long as Alice and Bob are honest,

they can continue in a bartering relationship indefinitely using the same e-coin as collateral.

Suppose Alice has blockA and she wants blockB which is owned by Bob. They both get hashA =

MHash(blockA), hashB = MHash(blockB) from a trusted authority (i.e. the tracker). They perform

64

the exchange as follows:

1. Alice chooses a new signing key (skA, pkA) and gives pkA to Bob. Bob does the same, re-

sponding with pkB.

2. Alice creates an endorsed e-coin (coin ′A, endorsement) and calculates escrowA =

EscrowTTP (endorsement , contract), where the contract states that the TTP can endorse coin ′

for anyone who presents some contract ′ that is (1) signed by pkA and (2) whose terms are

fulfilled. Alice gives (coin ′A, escrowA) to Bob, who performs the corresponding operation and

gives Alice (coin ′B , escrowB).

3. Alice calculates a ciphertext ctextA and a commitment to the decryption key K ′
A = Com(KA).

Alice gives (ctextA,K ′
A) to Bob. Bob similarly computes (ctextB ,K ′

B) and gives it to Alice.

4. Alice and Bob both compute contract ′ = (pkTTP , pkA,K ′
A, MHash(ctextA), hashA, pkB,K ′

B ,

MHash(ctextB), hashB). This contract states that to collect collateral, one of two conditions

must be met: (1) the owner of pkB can prove that the opening of K ′
A does not decrypt a

ciphertext corresponding to MHash(ctextA) to a plaintext corresponding to hashA, or (2) the

owner of pkA can prove that the opening of K ′
B does not decrypt a ciphertext corresponding

to MHash(ctextB) to a plaintext corresponding to hashB . This can be proved using standard

techniques from Merkle hashes.

5. Alice gives Bob her signature on contract ′ and Bob gives Alice his signature on contract ′.

6. Alice and Bob execute a fair exchange protocol where Alice gets KB (the opening of K ′
B) and

Bob gets KA (the opening of K ′
A). This can be done using Asokan et al. fair exchange [5].

7. If KB does not decrypt ctextB correctly, Alice goes to the TTP with the signed contract ′,

escrowB , KB , a proof showing that ctextB did not decrypt correctly, and a proof that she

knows the secret key corresponding to pkA. The TTP would give Alice the endorsement to

Bob’s e-coin and his signature on the e-coin. Alice can bring the endorsed e-coin to the bank

and deposit it in her account. Bob would do the same if KA is incorrect.

Note: Showing that ctextB does not decrypt correctly can be done efficiently. Alice gives the

TTP the signed contract ′, KB , and a chunk that does not decrypt correctly. The TTP can check

that KB is the promised opening of K ′
B . Then the TTP can test if (1) chunk is in ctextB , (2)

MHash(ctextB) is in chashB and (3) Decrypt(KB , chunk) is not in hashB .

Steps 1 and 2 of the protocol only have to be done once to establish a bartering relationship

between Alice and Bob. Subsequently, Alice and Bob can perform steps 3–7 to exchange a block.

The bartering protocol has more efficient conflict resolution. If Bob cheats Alice, Alice can show the

TTP which chunk decrypted incorrectly. As a result, (1) conflict resolution is more efficient and (2)

a cheating Bob is caught with overwhelming probability. Finally, we note that, bartering two files

is more efficient for the users than executing two purchase protocols; this is because the Asokan et

65

al [5] fair exchange only has to be performed once instead of twice (per block). This is true even if

Alice and Bob decide to preserve anonymity by using new signing keys and e-coins each time they

exchange files.

Security. The main security challenge is to ensure that Alice cannot deposit the e-coin she put up

for collateral (and that Bob cannot deposit his collateral e-coin). We have to make an assumption

about the endorsed e-cash deposit protocol: the bank can verify the contract associated with an

endorsed e-coin. Specifically, the bank will have to verify that the TTP signed the e-coin (the TTP’s

signing key is included in the contract, so the bank does not have to know the TTP’s identity in

advance). As a result, to deposit the e-coin under contract ′, Alice has to get the TTP’s signature.

Alice cannot enforce clause (1) of the contract because she does not know Bob’s secret key. Alice

can enforce clause (2) only if Bob cheats, in which case she is entitled to get her e-coin back. The

only other option Alice has is to deposit her e-coin under a new contract. If Alice does this, and Bob

later deposits the endorsed e-coin under the old contract, the bank will see that Alice double-spent

an e-coin. Due to the construction of endorsed e-cash, if the same e-coin is deposited under two

different contracts, the bank can trace the owner of the e-coin. Thus Alice cannot deposit her own

collateral e-coin unless Bob cheats. The same argument shows that Bob also cannot deposit his own

collateral e-coin unless Alice cheats.

66

5.3 Other Applications

Endorsed e-cash can be used to add incentives to many distributed peer-to-peer systems. This

section gives some insights on how to endorsed e-cash be used in several different applications.

Distributed Lookup. In BitTorrent, a user contacts a centralized tracker for a list of neighbors

who are likely to have the file the user wants. It would be nice to eliminate this bottleneck. There

are many other situations when a user would like to search a peer-to-peer network for a content

provider. Thus, we want to introduce incentives to encourage peers to help other users find files and

to discourage unnecessary lookup queries.

One approach is to pay each node along the query path; the interaction between search depth

and query price has been studied in random-tree networks [66]. To avoid flooding and scale effi-

ciently, we would rather lookup using a structured Distributed Hash Tree (DHT)such as Chord [94].

Incentivizing the distributed lookup remains an open problem even though some other incentive

systems [99, 78] assumed the presence of cooperative DHT layer.

A DHT distributes data amongst a set of peers. A user searching for a particular file might

not know exactly who has the file. However, the user know how far he is from the file and can tell

from any other user’s id, how far that user is from the file. Furthermore, each user knows enough

different peers that given any filename, the user can locate a peer who is half-way closer to the file.

If Alice wants a file, she knows somebody who is half-way closer to the file. And that person knows

somebody who is half-way closer. In a perfect world, Alice can hop from peer to peer until she zeroes

in on the file. In the real world, a selfish peer might not want to waste bandwidth responding to

Alice’s queries.

We can use endorsed e-cash to create incentives for users to participate in a DHT look-up.

Suppose Alice wants to find some file. She asks Bob, the closest peer she knows to the file, for the

next hop. Alice pays for this information using endorsed e-cash. The contract specifies that the

e-coin is released only if the next hop node is at least half-way closer to the file than Bob (which

can be checked using hashes). Then Alice would contact the next node and repeat the process.

Alice pays all peers that help her find the file, encouraging peers to cooperate, and discouraging fake

lookups.

Distributed Storage. A distributed storage system allows a user to backup her data on another

peer’s machine. Suppose Alice wants to backup her data, and Bob offers her the use of his machine.

If Alice pays Bob upfront, then Bob has no incentive to store the data, he already got the money.

However, if Alice pays him upon retrieval, then if she decides she no longer needs the data, she

would never pay and Bob would have wasted his resources storing her data.

We propose that Alice pays Bob upfront, but Bob give her a warranty check in return (via a fair

exchange protocol) that contains a Merkle hash of the data (for the TTP to easily verify without

downloading the whole data), an unendorsed e-coin, and an escrow of the endorsement. If Bob ever

loses or corrupts the data, the arbiter would decrypt the escrow and pay Alice for her damage. The

bank can ensure that Bob always maintains a balance large enough to cover his liability. When Alice

67

gets her data, the check is invalidated.

Distributed computation. In current distributed computing projects, like Rosetta@Home [87],

people voluntarily donate their excess CPU cycles to perform computation-heavy tasks. We can

transform this one-way system into a mutually beneficial computing cluster. Users can accept

outside jobs when their CPU is not fully loaded, and pay other users to perform some computations

when they need more resources.

Suppose Alice wants some computation-heavy task to be done (although I/O-heavy tasks may

also be considered). Endorsed e-cash can provide an incentive for users to not only contribute in this

computation but also to perform it correctly. For some problems, such as graph coloring (in NP),

verifying the correctness of the answer is easy, and so can be a part of the contract. In optimization

problems, the contract may specify that the best answer within a deadline will be paid (the most),

and again the verification is easy. Unfortunately, this is not true for some other types of problems.

Hence, Alice should off-load the job to multiple independent users [3], and pay the majority in case

of a dispute.

Chapter 6

Clone Wars

68

69

We can use e-cash to perform anonymous authentication. A user withdraws a wallet of e-coins.

To authenticate, the user produces an e-coin. Thus, the user can perform some action once for every

e-coin in his wallet.

Suppose we want to allow the user to perform some action n times every time period (e.g.

download 30 songs a month). In Section 6.1 we show how to let the user refresh his wallet of e-coins

every time period without interacting with the bank.

Since we introduce the concept of time, users must worry about accidentally double-spending

their e-coins if their clocks are reset. For this reason, in Section 6.2 and Section 6.3, we introduce

glitch protection. We allow users to double-spend a limitted number of e-coins without compromising

their anonymity. The bank can detect (and reject) the double-spent e-coins, but cannot link them

to the honest-but-faulty user unless the user double-spends too often.

The results in this chapter originally appeared in “How to win the clone wars: efficient periodic

n-times anonymous authentication,” [23].

6.1 Periodic Authentication

We use a very simple trick to transform CHL [24] compact e-coins into authentication e-tokens

that can be refreshed every time period. Recall the construction of compact e-cash outlined in

Section 2.4.2. A wallet contains upto n e-coins, numbered 0....n−1. The user maintains a counter J

and constructs an e-coin by evaluating a pseudo-random function on J . Since the value of J remains

hidden, the user must perform an SRSA range proof to demonstrate that 0 ≤ J < n− 1.

To allow periodic authentication, we need to expand the range of J . Suppose the first few bits

of J correspond to the time period, while the remaining log n bits of J are a counter 0 to n (where

n is the maximum number of e-tokens per time period). A user could prove that 2T ≤ J < 2T + n.

There is only one slight difficulty with this approach. CHL compact e-cash is efficient because it

uses the Dodis-Yampolskiy pseudo-random function to transform the counter J into the e-coin serial

number and double-spending equation. Dodis and Yampolskiy [48] proved the their pseudo-random

function is secure only on imputs from a restricted domain of log k bits (where k is the security

paramter). For periodic anonymous authentication, we want to expand the range of J as much as

possible. Camenisch et al. [23] show that the Dodis-Yampolskiy pseudo-random function is secure

for inputs from a domain of k-bits, under the SDDHI assumption, and that the SDDHI assumption

holds in the generic group model.

6.1.1 Definition

Our definitions for periodic n-times anonymous authentication are based on the e-cash definitions

of [24] and [25]. We define a scheme where users U obtain e-token dispensers from the issuer I,

and each dispenser can dispense up to n anonymous and unlinkable e-tokens per time period, but

no more; these e-tokens are then given to verifiers V that guard access to a resource that requires

authentication (e.g., an on-line game). U , V, and I interact using the following algorithms:

70

IKeygen(1k, params) is the key generation algorithm of the e-token issuer I. It takes as input 1k

and, if the scheme is in the common parameters model, these parameters params. It outputs

a key pair (pkI , skI). Assume that params are appended as part of pkI and skI .

UKeygen(1k, pkI) creates the user’s key pair (pkU , skU) analogously.

Obtain(U(pkI , skU , n), I(pkU , skI , n)) At the end of this protocol, the user obtains an e-token dis-

penser D, usable n times per time period and (optionally) the issuer obtains tracing information

tD and revocation information rD. I adds tD and rD to a record RU which is stored together

with pkU .

Show(U(D, pkI , t, n),V(pkI , t, n)) . Shows an e-token from dispenser D in time period t. The

verifier outputs a token serial number (TSN) S and a transcript τ . The user’s output is an

updated e-token dispenser D′.

Identify(pkI , S, τ, τ ′) . Given two records (S, τ) and (S, τ ′) output by honest verifiers in the Show

protocol, where τ 6= τ ′, computes a value sU that can identify the owner of the dispenser D

that generated TSN S.

The value sU may also contain additional information specific to the owner of D that (a) will

convince third parties that U is a violator (weak exculpability), that (b) will convince third

parties that U double-showed this e-token (strong exculpability), or that (c) can be used to

extract all token serial numbers of U (traceability).

A periodic n-times anonymous authentication scheme needs to fulfill the following three proper-

ties:

Soundness. Given an honest issuer, a set of honest verifiers are guaranteed that, collectively, they

will not have to accept more than n e-tokens from a single e-token dispenser in a single time

period. There is a knowledge extractor E that executes u Obtain protocols with all adversarial

users and produces functions, f1, . . . , fu, with fi : T × I → S. I is the index set [0..n − 1], T
is the domain of the time period identifiers, and S is the domain of TSN’s. Running though

all j ∈ I, fi(t, j) produces all n TSNs for dispenser i at time t ∈ T. We require that for every

adversary, the probability that an honest verifier will accept S as a TSN of a Show protocol

executed in time period t, where S 6= fi(j, t), ∀1 ≤ i ≤ u and ∀0 ≤ j < n is negligible.

Identification. There exists an efficient function φ with the following property. Suppose the issuer

and verifiers V1,V2 are honest. If V1 outputs (S, τ) and V2 outputs (S, τ ′) as the result of Show

protocols, then Identify(pkI , S, τ, τ ′) outputs a value sU , such that φ(sU) = pkU , the violator’s

public key. In the sequel, when we say that a user has reused an e-token, we mean that there

exist (S, τ) (S, τ ′) that are both output by honest verifiers.

Anonymity. An issuer, even when cooperating with verifiers and other dishonest users, cannot

learn anything about an honest user’s e-token usage behavior except what is available from

71

side information from the environment. This property is captured by a simulator S which can

interact with the adversary as if it were the user. S does not have access to the user’s secret

or public key, or her e-token dispenser D.

Formally, we create an adversary A that will play the part of the issuer and of all verifiers. A

will create the public and private-keys of the issuer and verifiers. Then, A will be given access

to an environment Env that is either using real users or a simulator; A must determine which.

A can make four types of queries to Env:

EnvSetup(1k) generates the public parameters params (if any) and the private parameters

auxsim for the simulator (if there is one).

EnvGetPK(i) returns the public-key of user Ui, generated by UKeygen(1k, pkI).

EnvObtain(i) runs the Obtain protocol with user Ui: Obtain(U(pkI , skU , n), A(state)). (We

use state to denote whatever state the adversary maintains). We call Dj the dispenser

generated the jth time protocol Obtain is run.

EnvShow(j, pkI , t) behaves differently depending on whether the environment is using a simu-

lator. If the environment is using real users, it will simply run the Show protocol with the

user U that holds the dispenser Dj : Show(U(Dj , pkI , t, n), A(state)). If the environment is

using a simulator S, then it will run the Show protocol with it: Show(S(params, auxsim, pkI),

A(state)); S will not have access to the dispenser Dj or know who owns it.

An adversary is legal if it never asks a user to use the same dispenser to show more than

n e-tokens in the same time-period. We say that an e-token scheme preserves anonymity if

no computationally bounded legal adversary can distinguish when the environment is playing

with users and when it is using a simulator.

6.1.2 Agreeing on the Time

Something as natural as time becomes a complex issue when it is part of a security system. First,

it is necessary that the value of time period identifier t be the same for all users that show e-tokens

in that period. Secondly, it should be used only for a single period, i.e., it must be unique. Our

construction in Section 6.1.3 allows for the use of arbitrary time period identifiers, such as those

negotiated using the hash tree protocol in [44]. The same is true for the basic glitch protection

scheme in Section 6.2. For window glitch protection, in Section 6.3, we assume a totally ordered set

of time period identifiers.

If all parties have perfect clocks, then the current time (truncated in order to get the desired

period size) fulfills all required properties. Since perfect clocks may be an unrealistic assumption, one

of the parties must be motivated to enforce correctness. It is in the interest of verifiers to ensure that

all users that show an e-token during a particular time period use the same time period identifier;

otherwise, a dishonest user could create extra e-tokens within one time period by using different time

period identifiers. Users are also interested in ensuring they all use the same time period identifier;

72

otherwise, a verifier could link e-tokens that use similarly biased time period identifiers. In addition,

users have a strong interest in ensuring that time period identifiers are unique, i.e. that they are

never reused. Otherwise, e-tokens from different time periods would look like clones (even if they

are not) and a verifier will be able to learn the user’s identity.

Damg̊ard et al. [44] describe a protocol that allows multiple users and a single verifier to agree

on the same unique value for a time period identifier by having every user contribute sufficient

randomness (i.e. uniqueness) to it. Their solution allows users to agree on a unique value without

keeping additional state. Their approach can be used in our basic system Section 6.1.3, and for

glitch protection (Section 6.2), but not in window glitch protection (Section 6.3), which requires

that time period identifiers conform to a metric, i.e. that it is possible to compute the value for

future time period identifiers from the current one.

Practice: In the real world, uniqueness can be enforced by checking that the system clock has

not been turned back since the last invocation. Sameness for a given global period is more difficult

to ensure. It is impossible to have a global notion of time in a distributed systems, so the only thing

we can hope for, is to get the processes to agree on the time within a specific bound. Thus, this

remains a possible line of attack for cheating verifiers. The situation can be improved by avoiding

running the protocol at period boundaries.

Another practical decision is whether we want to have users announce the time, and verifiers

check it, or whether we want to have verifiers announce the time and users check it. Each approach

allows different attacks, e.g., by manipulating the users’ time servers.

6.1.3 Construction

We use CHL e-cash as a starting point. We perform a zero-knowledge proof to show that an e-token

serial number S = DYg,s(J), where s is signed by the bank and J is a counter between 1 and n.

(To prove that 1 ≤ J ≤ n, we need to perform an SRSA range proof.) By assuming the full Dodis-

Yampolskiy PRF, we can extend the range of legal values for J to O(2k), where k is our security

parameter. As a result, we can use the first bits of J can represent the time period, while the last

few bits can represent the token counter. Moreover, we can even add additional parameters. We

modify the range proof to show that 2T ≤ J ≤ 2T + n, where T is the time period and n is the

maximum number of tokens per time period.

Let k be a security parameter. We choose a group 〈g〉 = G of order q, where q is a k-bit prime. Let

lq ∈ O(k), lx, ltime, and lcnt be system parameters such that lq ≥ lx ≥ ltime+lcnt+2 and 2lcnt−1 > n,

where n is the number of tokens we allow per time period. In the following, we assume implicit

conversion between binary strings and integers, e.g., between {0, 1}l and [0, 2l − 1]. For suitably

defined ltime, lcnt, and lx define the function c : {0, 1}lx−ltime−lcnt × {0, 1}ltime × {0, 1}lcnt → {0, 1}lx

as:

c(u, v, z) :=
(
u2ltime + v

)
2lcnt + z .

Let F(g,s)(u, v, z) := DYg,s(c(u, v, z)).

Issuer Key Generation: In IKeygen(1k, params), the issuer I generates two cyclic groups:

73

1. A group 〈g〉 = 〈h〉 = G of composite order p′q′ that can be realized by the multiplicative

group of quadratic residue modulo a special RSA modulus N = (2p′ + 1)(2q′ + 1). In addition

to CL signatures, this group will be needed for zero-knowledge proofs of knowledge used in the

sequel. Note that soundness of these proof systems is computational only and assumes that

the prover does not know the order of the group.

2. A group 〈g〉 = 〈g̃〉 = 〈h〉 = G of prime order q with 2lq−1 < q < 2lq .

The issuer must also prove in zero-knowledge that N is a special RSA modulus, and 〈g〉 = 〈h〉
are quadratic residues modulo N . In the random oracle model, one non-interactive proof may be

provided. In the plain model, the issuer must agree to interactively prove this to anyone upon

request.

Furthermore, the issuer generates a CL signature key pair (pk , sk) set in group G. The issuer’s

public-key will contain (g,h,G, g, g̃, h, G, pk), while the secret-key will contain all of the information.

User Key Generation: In UKeygen(1k, pkI), the user chooses a random skU ∈ Zq and sets

pkU = gskU ∈ G.

Get e-Token Dispenser: Obtain(U(pkI , skU , n), I(pkU , skI , n)). Assume that U and I have

mutually authenticated. A user U obtains an e-token dispenser from an issuer I as follows:

1. U and I agree on a commitment C to a random value s ∈ Zq as follows:

(a) U selects s′ at random from Zq and computes C ′ = PedCom(skU , s′; r) = gskU g̃s′hr.

(b) U sends C ′ to I and proves that it is constructed correctly.

(c) I sends a random r′ from Zq back to U .

(d) Both U and I compute C = C ′g̃r′ = PedCom(skU , s′+r′; r). U computes s = s′+r′ mod q.

2. I and U execute the CL signing protocol on commitment C. Upon success, U obtains σ, the

issuer’s signature on (skU , s). This step can be efficiently realized using the CL protocols [26,

27] in such a way that I learns nothing about skU or s.

3. U initializes counters T := 1 (to track the current period) and J := 0 (to count the e-tokens

shown in the current time period). U stores the e-token dispenser D = (skU , s, σ, T, J).

Use an e-Token: Show(U(E, pkI , t, n),V(pkI , t, n)). Let t be the current time period identifier

with 0 < t < 2ltime . (We discuss how two parties might agree on t in Section 6.1.2.) A user U reveals

a single e-token from a dispenser D = (skU , s, σ, T, J) to a verifier V as follows:

1. U compares t with T . If t 6= T , then U sets T := t and J := 0. If J ≥ n, abort!

2. V sends to U a random R ∈ Z∗q .

74

3. U sends to V a token serial number S and a double spending tag E computed as follows:

S = F(g,s)(0, T, J), E = pkU · F(g,s)(1, T, J)R

4. U and V engage in a zero-knowledge proof of knowledge of values skU , s, σ, and J such that:

(a) 0 ≤ J < n,

(b) S = F(g,s)(0, T, J),

(c) E = gskU · F(g,s)(1, T, J)R,

(d) VerifySig(pkI , (skU , s), σ)=true.

5. If the proof verifies, V stores (S, τ), with τ = (E,R), in his database. If he is not the only

verifier, he also submits this tuple to the database of previously shown e-tokens.

6. U increases counter J by one. If J ≥ n, the dispenser is empty. It will be refilled in the next

time period.

Technical Details. The proof in Step 4 is done as follows:

1. U generates the commitments CJ = gJhr1 , Cu = gskUhr2 , Cs = gshr3 , and sends them to V.

2. U proves that CJ is a commitment to a value in the interval [0, n − 1] using standard tech-

niques [34, 30, 18].

3. U proves knowledge of a CL signature from I for the values committed to by Cu and Cs in

that order. This step can be efficiently realized using the CL protocols [26, 27].

4. U as prover and V as verifier engage in the following proof of knowledge, using the notation

by Camenisch and Stadler [32]:

PK{(α, β, δ, γ1, γ2, γ3) : g = (Csg
c(0,t,0)CJ)αhγ1 ∧

S = gα ∧ g = (Csg
c(1,t,0)CJ)βhγ2 ∧

Cu = gδhγ3 ∧ E = gδ(gR)β} .

U proves she knows the values of the Greek letters; all other values are known to both parties.

Let us explain the last proof protocol. From the first step we know that CJ encodes some value

Ĵ with 0 ≤ Ĵ < n, i.e., CJ = gĴhr̂J for some r̂J . From the second step we know that Cs and Cu

encoded some value û and ŝ on which the prover U knows a CL signature by the issuer. Therefore,

Cs = gŝhr̂s and Cu = gûhr̂u for some r̂s and r̂u. Next, recall that by definition of c(·, ·, ·) the term

gc(0,t,0) corresponds to gt2lcnt . Now consider the first term g = (Csg
c(0,t,0)CJ)αhγ1 in the proof

protocol. We can now conclude the prover U knows values â and r̂ such that g = g(ŝ+t2lcnt+Ĵ)âhr̂

and S = gâ. From the first equation is follows that â = (ŝ + (t2lcnt + Ĵ))−1 (mod q) must hold

provided that U is not privy to logg h (as we show via a reduction in the proof of security) and

75

thus we have established that S = F(g,ŝ)(c(0, t, Ĵ)) is a valid serial number for the time period t.

Similarly one can derive that E = gû · F(g,ŝ)(c(1, t, Ĵ))R, i.e., that E is a valid double-spending tag

for time period t.

Identify Cheaters: Identify(pkI , S, (E,R), (E′, R′)). If the verifiers who accepted these tokens were

honest, then R 6= R′ with high probability, and proof of validity ensures that E = pkU · fs(1, T, J)R

and E′ = pkU · fs(1, T, J)R′
. The violator’s public key can now be computed by first solving for

fs(1, T, J) = (E/E′)(R−R′)−1
and then computing pkU = E/fs(1, T, J)R.

6.1.4 Efficiency

To analyze the efficiency of our scheme, it is sufficient to consider the number of (multi-base)

exponentiations the parties have to do in G and G. In a decent implementation, a multi-base

exponentiation takes about the same time as a single-base exponentiation, provided that the number

of bases is small. For the analysis we assume that the Strong RSA based CL-signature scheme is

used.

Obtain: both the user and issuer perform 3 exponentiations in G. Show: the user performs 12

multi-base exponentiation in G and 23 multi-base exponentiations in G, while the verifier performs

7 multi-base exponentiation in G and 13 multi-base exponentiations in G. If n is odd, the user

only needs to do 12 exponentiations in G, while the verifier needs to do 7. To compare ourselves

to the Damg̊ard et al. [44] scheme, we set n = 1. In this case, Show requires that the user perform

12 multi-base exponentiation in G and 1 multi-base exponentiations in G and the verifier perform

7 multi-base exponentiation in G and 1 multi-base exponentiations in G. Damg̊ard et al. requires

57+68r exponentiations in G, where r is the security parameter (i.e., 2−r is the probability that the

user can cheat). Depending on the application, r should be at least 20 or even 60. Thus, our scheme

is an order of magnitude more efficient than Damg̊ard et al.

6.1.5 Security

Theorem 6.1.1. Protocols IKeygen, UKeygen, Obtain, Show, and Identify described above achieve

soundness, identification, and anonymity properties in the plain model assuming Strong RSA, and

y-DDHI if lx ∈ O(log k) or SDDHI otherwise.

Proof. Soundness. Informally, in our system, tokens are unforgeable, because each token serial

number (TSN) is a deterministic function F(g,s)(0, t, J) of the seed s, the time period t, and J ∈
[0, n − 1]. Thus, there are only n valid TSNs per time period, and since a user must provide a ZK

proof of validity for the token, to show n + 1 or more times requires that two shows use the same

TSN by the pigeonhole principle.

More formally, we will describe a knowledge extractor E that, after executing u Obtain protocols

with an adversary A acting on behalf of all malicious users, can output functions f1, . . . , fu that

allow to compute all possible token serial numbers that A could output in any given time period t.

Let n be the number of shows allowed per time period. Our extractor E operates as follows:

76

1. In step one of Obtain, E behaves as an honest issuer and agrees on a Pedersen commitment

C = gski g̃shr = PedCom(sk i, s; r) with A, where sk i is whatever secret key A choses to use

and s is the PRF seed.

2. In step two, E must run the CL signing protocol with A to provide A with a signature on

(sk i, s). As part of the CL protocol, A is required to prove knowledge of (α, β, γ) such that

C = gαg̃βhγ . There are a number of ways to guarantee that this proof of knowledge is

extractable; in this step, E employs one of the methods of CL to extract the secrets (skU , s)

from A. (Here we will enforce that Obtain protocols must be run sequentially, so that rewinding

does not become a problem.)

3. E outputs the function fi as the description of the Dodis-Yampolskiy pseudorandom function,

together with the seed s.

Since E knows the value s used for every dispenser, it can calculate the token serial number S :=

F(g,s)(0, t, J). The CL signatures and its protocols are secure under the Strong RSA assumption.

Identification of Violators. Suppose (S, E,R) and (S, E′, R′) are the result of two Show protocols

with an honest verifier(s). Since the verifier(s) was honest, it is the case that R 6= R′ with high

probability since an honest verifier chooses R ∈ Z∗q at random. Due to the soundness of the ZK

proof of validity, it must be the case that E = pkU · F(g,s)(1, t, J)R and E′ = pkU · F(g,s)(1, t, J)R′

for the same values of s, t, J and pkU . Thus, the violator’s public key can be computed as follows:(E1/R

E′1/R′

) RR′
R′−R =

(gskU/R · F(g,s)(1, t, J)
gskU/R′ · F(g,s)(1, t, J)

) RR′
R′−R =

(
gskU (1/R−1/R′)

) RR′
R′−R = gskU = pkU .

To be explicit with respect to our definition of this property, the value sU := pkU and the function

φ is the identity.

Anonymity. Informally, the intuition for anonymity is that the issuer does not learn the PRF seed

during Obtain. Then showing a token in Show consists of releasing (S, E), where S and E are

functions of the PRF (indistinguishable from random) and a zero-knowledge (ZK) proof that the

token is valid (reveals one bit). Thus, if a user is honest, nothing about her identity is revealed by

two random-looking numbers and a ZK proof.

More formally, will describe a simulator S which an adversary A cannot distinguish from an

honest user during the Show protocol. Recall that A, playing the role of a coalition of adversarial

issuer and verifiers, first runs the Obtain protocol u times with honest users, who then obtain a

dispenser D. Let the number of allowed shows per time period be n.

Now, at some point, A outputs a value j ∈ [1, u] and a time period t. A will now execute the

Show protocol with either the honest user U that holds the token dispenser Dj at time t or with

simulator S, whose input is only the global parameters params, t, n, and the issuer’s public key pkI .

To impersonate an unknown user, S behaves as follows:

1. In steps one and two of the Show protocol, S does nothing.

77

2. In step three, S sends to A random values (S, E) ∈ G2.

3. In step four, S simulates a proof of knowledge of (z, s, J, σ) for the statements:

(a) 0 ≤ J < n,

(b) S = F(g,s)(0, t, J),

(c) E = gz · F(g,s)(1, t, J)R.

(d) VerifySig(pkI , (z, s), σ)=true.

Proving this statement, in the honest setting, follows the standard discrete-logarithm-based Σ-

protocol, as we detailed in Section 6.1.3. Thus, for this step, S can simulate this Σ-protocol in

the two standard ways: (1) rewind the adversary (interactive proof) or (2) use its control over the

random oracle (non-interactive proof). To prevent any rewinding difficulties, Show protocols should

be executed sequentially.

This simulator’s behavior is indistinguishable from a user with dispenser Dj . The zero knowledge

proof is standard. The random values (S, E) are indistinguishable from the user’s real (S′, E′) due

to the security of the Dodis-Yampolskiy PRF, which relies on y-DDHI (for small system param-

eters) and otherwise SDDHI. Specifically, SDDHI is required for whenever parameter lx becomes

superlogarithmic due to a technicality in the original proof of security for the Dodis-Yampolskiy

PRF.

78

6.2 Basic Glitch Protection

In our periodic n-times anonymous authentication scheme, a user who shows two tokens with the

same TSN becomes identifiable. (Recall that only n unique TSN values are available to a user per

time period.) A user might accidentally use the same TSN twice because of hardware breakdowns,

clock desychronization, etc. We want to protect the anonymity of users who occasionally cause a

glitch (repeat a TSN in two different tokens), while still identifying users who cause an excessive

amount of glitches. A user might be permitted up to m glitches per monitoring interval (e.g., year).

Any TSN repetition will be detected, but the user’s anonymity will not be compromised until the

(m + 1)st glitch. A token that causes a glitch is called a clone.

We divide time periods into monitoring intervals. So if a single time period last a day, then our

monitoring interval could be a week, a month, a year, etc. For the basic glitch protection scheme, we

will have non-overlaping monitoring intervals; each time period will belong to exactly one monitoring

interval.

Suppose a user has u glitches in one monitoring interval. Our goal is to design a scheme where:

– if u = 0, all shows are anonymous and unlinkable;

– if 1 ≤ u ≤ m, all shows remain anonymous, but a link-id L is revealed, making all clones linkable;

– if u > m, the user’s public key is revealed.

One can think of link-id L as a pseudonym (per monitoring interval) that is hidden in each token

released by the same user (much in the same way that the user’s public key was hidden in each

token released by a user in the basic scheme). If tokens (S, τ) and (S, τ ′) caused a glitch, then we

call (S, τ, τ ′) a glitch tuple, where by definition τ 6= τ ′. We introduce a new function GetLinkId that

takes as input a glitch tuple and returns the link-id L. Once m + 1 clones are linked to the same

pseudoym L, there is enough information from these collective original and cloned transcripts to

compute the public key of the user.

We continue to use identifier t ∈ T for (indivisible) time periods. Identifier v ∈ V refers to a

monitoring interval. We give two glitch protection schemes: Section 6.2 considers disjoint moni-

toring intervals, while Section 6.3 works on overlapping monitoring intervals. For the first scheme,

we assume the existence of an efficient function MV that maps every time period t to its unique

monitoring interval v ∈ V.

Our basic glitch protection scheme tolerates up to m clones per monitoring interval v; monitoring

intervals are disjoint.

6.2.1 Definition

A periodic authentication scheme with basic glitch protectionhas almost the same protocols as a

regular periodic authentication scheme. We replace Showwith ShowGPand Identifywith IdentifyGP.

We also add a new protocol called GetLinkId.

79

ShowGP(U(D, pkI , t, n, m),V(pkI , t, n, m)). Shows an e-token from dispenser D in time period t and

monitoring interval v = MV(t). The verifier obtains a token serial number S and a transcript

τ .

GetLinkId(pkI , S, τ, τ ′). Given e-tokens (S, τ, τ ′), where τ 6= τ ′ by definition, computes a link-id

value L.

IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+`+1)). Given m + 1 glitch tuples where for each i,

GetLinkId(Si, τi, τ ′i) produces the same link-id L, computes a value sU that can be used to

compute the public key of the owner of the dispenser D from which the TSNs came.

We need to extend the anonymity and identification properties to handle the fact that honest users

might occasionally make clones. Users that never clone should have the same security guarantees

as they would in a basic anonymous authentication scheme without glitch protection: the result of

every show must be anonymous and unlinkable. For a glitchy user, the verifier should be able to link

clones together, but still be unable to identifier a user that has less than m glitches per monitoring

interval.

Defining the extended anonymity property is tricky because we have to let the adversary request

clones. We achieve this result by adding a fifth command to our environment: EnvClone(token). The

adversary controls which user shows it which e-token, what dispenser the user is supposed to use,

the value of the counter J in the dispenser, and the time-interval for which this e-token was created.

Therefore, this command gives it complete control over how and when users make clones. A scheme

offers glitch protection if the adversary cannot distinguish between real users and a simulator, as

long as it does not ask for too many clones (where too many is determined by the type of glitch

protection).

There is a slight problem with this definition. The simulator is supposed to return a clone that

is linked to some set of other clones generated by the same dispenser. The simulator can easily link

clones of the same e-token because they have the same serial number. However, by the definition of

anonymity, the simulator does not know what dispenser generated the e-token, nor what were that

dispenser’s other e-tokens.

Fortunately, the environment can keep track of this information. Therefore, the environment

will pass an extra argument linkid to the simulator whenever the adversary invokes EnvClone (we

make the environment do this rather than the adversary to ensure consistency). The linkid will

be a unique integer independent of the user’s id, dispenser, counter, etc. This linkid will let the

simulator link only those e-tokens that ought to be linked. If the adversary never asks for clones, the

anonymity property is the same as for n-times anonymous authentication without glitch protection.

Note: It’s easy to see that whenever the adversary asks for an e-token, via either the EnvShow

or EnvClone command, the environment can always consult its transcript of past communication

to calculate (U , j, J, t), where U is the identity of the user, Dj is the dispenser that generated the

e-token, J is the counter value Dj used, and t is the time-interval. Thus, we will assume that this

information is available to the environment without explicitly calculating it. The environment will

80

store a table clones that will count the number of clones of a particular type; it will use this table

to ensure the adversary does not try to create more clones than is allowed by the glitch protection

scheme. The environment will also have a table LinkIDs that will store the linkids it will pass to

the simulator.

Defining identification is also a little tricky because we need a way to link clones that were

generated by different values (j, J, t) and to identify users from these clones. We create a new helper

function GetLinkId(S, τ1, τ2) that outputs a value L that is the same for all clones made by the

a dispenser in the same time interval. In otherwords, if a single dispenser made e-tokens (S, τ1),

(S, τ2), (S′, τ ′1) and (S′, τ ′2), then GetLinkId(S, τ1, τ2) = GetLinkId(S′, τ ′1, τ
′
2). Using GetLinkId, we

can require that the function IdentifyGP return the public-key of the violator when it gets as input

a sufficiently long sequence of clones that are all linked (as defined by GetLinkId). It is upto the

designers of a glitch-protection scheme to instantiate GetLinkId and ensure that it does not clash

with the anonymity and glitch protection property.

We formally define the GP Anonymity and GP Identification properties of an n-times anonymous

authentication scheme with basic glitch protection.

GP Anonymity. The adversary will interact with the environment. The environment will generate

a table clones that will count how many clones a dispenser j made in time interval v ∈ V and

a corresponding list LinkIDs, such that LinkIDs(j, v) is unique for every pair (j, v). The

first time the adversary invokes EnvShow(j, ∗, t) (it does not matter which verifier the adver-

sary uses), the environment will set clones(j, MV(t)) = 0. Whenever the adversary invokes

EnvClone(etoken), before fulfilling the request, the environment will check if clones(j, v) ≥ m.

If yes, the environment will output error. Otherwise the environment will fulfill the request

and increment clones(j, v); if it is using a simulator, the environment will give the simulator

LinkIDs(j, v) as input.

We say that a scheme offers GP Anonymity if, in this game, no computationally bounded

adversary can tell if the environment is using real users or a simulator.

GP Identification. Suppose the issuer and verifiers are honest and they receive m+1 glitch tuples

Input = (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1) with the same L = GetLinkId(pkI , Si, τi, τ

′
i) for all

1 ≤ i ≤ m+1. Then with high probability algorithm IdentifyGP(pkI , Input) outputs a value sU

for which there exists an efficient function φ such that φ(sU) = pkU , identifying the violator.

6.2.2 Construction

Recall that in our basic scheme, an e-token has three logical parts: a serial number S = F(g,s)(0, T, J),

a tag E = pkU ·F(g,s)(1, T, J)R, and a proof of validity. If the user shows a token with TSN S again,

then he must reveal E′ = pkU · F(g,s)(1, T, J)R′
, where R 6= R′, and the verifier can solve for pkU

from (E,E′, R, R′).

Now, in our glitch protection scheme, an e-token has four logical parts: a serial number S =

F(g,s)(0, T, J), a tag K that exposes the link-id L if a glitch occurs, a tag E that exposes pkU if

81

more than m glitches occur, and a proof of validity.

We instantiate K = L · F(g,s)(2, T, J)R. Now a double-show reveals L just as it revealed pkU in

the original scheme. The link-id for monitoring interval v is L = F(g,s)(1, v, 0).

Once the verifiers get m + 1 clones with the same link-id L, they need to recover pkU . To allow

this, the user includes tag E = pkU ·
∏m

i=1 F(g,s)(3, v, i)ρi · F(g,s)(4, T, J)R. (Here, it will be critical

for anonymity that the user and the verifier jointly choose the random values R, ρ1, . . . , ρm.)

Now, suppose a user causes m + 1 glitches involving ` distinct TSNs. Given (E,R, ρ1, . . . , ρm)

from each of these (m+`+1) tokens, the public key of the user can be computed by repeatedly using

the elimination technique that allowed the discovery of L from (K, K ′, R, R′). We have (m + ` + 1)

equations E and (m+ `+ 1) unknown bases including pkU and the F(g,s)(·, ·, ·) values. Thus, solving

for pkU simply requires solving a system of linear equations.

ShowGP(U(D, pkI , t, n, m),V(pkI , t, n, m)). Let v = MV(t). A user U shows a single e-token from a

dispenser D = (skU , s, σ, T, J) to a verifier V as follows:

1. U compares t with T . If t > T , then U sets T := t and J := 0. If J ≥ n, abort!

2. V and U jointly choose R, ρ1, . . . , ρm uniformly at random from Z∗q (see Section 2.2.10 for

details).

3. U sends V an interval serial number S, a double spending tag K encoding the link-id L, and

a special (m + 1)-cloning tag E:

S = F(g,s)(0, T, J),

K = F(g,s)(1, v, 0) · F(g,s)(2, T, J)R,

E = pkU · F(g,s)(3, v, 1)ρ1 · · ·

· F(g,s)(3, v,m)ρm · F(g,s)(4, T, J)R

4. U performs a zero-knowledge proof that the values above were correctly computed.

5. If the proof verifies, V stores (S, τ), where τ = (K, E,R, ρ1, . . . , ρm), in his database.

6. U increments counter J by one. If J ≥ n the dispenser is empty. It will be refilled in the next

time period.

GetLinkId(pkI , S, (K, E,R, ~ρ), (K ′, E′, R′, ~ρ′)). Returns

L =
K

(K/K ′)(R−R′)−1R
.

IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)). Let the m + 1 glitch tuples include ` distinct

TSN values. We extract the values (Ei, R, ρ1, . . . , ρm) (or (E′
i, R

′, ρ′1, . . . , ρ
′
m)) from all m + ` + 1

unique transcripts. Now, we use the intuition provided above to solve for pkU .

82

6.2.3 Security

Theorem 6.2.1. The construction in Section 6.2.2 is a secure periodic n-times anonymous au-

thentication scheme with basic glitch protection. It fulfills the soundness, GP anonymity and GP

identification properties.

Proof. Soundness: The soundness proof is identical to the soundness proof for the basic n-times

anonymous authentication scheme.

GP Anonymity: All we need to do to prove GP anonymity is to explain how the simulator will

respond to EnvSetup, EnvShow, and EnvClone.

To ensure consistency, the simulator will store a table Token of information about e-tokens it has

previously shown. It will also have a table Link indexed by link-ids provided by the environment.

Link(linkid) will be a random number; the simulator will ensure that when the adversary runs

GetLinkId on a double-show with link-id linkid, the output will always be Link(linkid).

During EnvShow, the simulator will run the Show protocol with the adversary. The simulator

will perform steps 1, 2 and 3 as normal; at the end of which it will have random (R, ρ1, . . . , ρm).

In step 4 The simulator will randomly choose (S, L̂, E) ∈ G3. In step five, S simulates a proof of

knowledge of (z, s, J, σ) for the statements:

(a) 0 ≤ J < n,

(b) S = F(g,s)(0, T, J)

(c) L̂ = F(g,s)(1, v, 0) · F(g,s)(2, T, J)R

(d) E = pkU
ρ0 · F(g,s)(3, v, 1)ρ1 · · ·F(g,s)(3, v,m)ρm · F(g,s)(4, T, J)R

(e) VerifySig(pkI , (z, s), σ)=true.

Simulating such a proof is a standard operation; see the anonymity proof in Section 6.1.3 for details.

Call the e-token resulting from this execution etoken. The simulator will store Token(etoken) =

(S, R, L̂, F = φ). If the token is ever cloned with some link-id linkid, the simulator will retroactively

set F so that L̂ = Link(linkid) · FR.

When the adversary invokes EnvClone(etoken), the environment will give the simulator a linkid.

Then the adversary and the simulator will run through the Show protocol. The simulator will have

to produce an e-token that is a clone of etoken and that is linked to all other e-tokens with link-id

linkid.

Once again, the simulator will perform steps 1, 2 and 3 as normal; at the end of which it

will have random (R′, R′
1, . . . , R

′
m). In step 4, the simulator will perform the following operations:

first, it will retrieve Token(etoken) = (S, R, L̂, F). If F = φ, then the simulator will calculate

F = (L̂/Link(linkid))1/R and update the entry Token(etoken) accordingly. Then, the simulator

will create a new e-token: S′ = S, L̂′ = Link(linkid)FR′
, and E′ will be a random number. In step

5, the simulator will simulate a proof of knowledge of (z, s, J, σ) for the statements:

83

(a) 0 ≤ J < n,

(b) S′ = F(g,s)(0, T, J)

(c) L̂′ = F(g,s)(1, v, 0) · F(g,s)(2, T, J)R′

(d) E′ = pkU
R′

0 · F(g,s)(3, v, 1)R′
1 · · ·F(g,s)(3, v,m)R′

m · F(g,s)(4, T, J)R′

(e) VerifySig(pkI , (z, s), σ)=true.

It will do this in the same manner as for Show. After terminating, the simulator will store

Token(etoken′) = (S, R′, L̂′, F).

We sketch out why the output of the simulator is indistinguishable from that of real users: Until

the adversary asks for a clone, an e-token is a completely random number. It is generated in the same

way as in the original proof of anonymity; therefore the output of the simulator is indistinguishable

from that of real users. When the adversary asks for a clone, the simulator retroactively sets the

link-id to be Link(linkid), where linkid is provided by the environment. This ensures that the

link-ids are consistent. The (m + 1)-cloning tags E are all random numbers; this is fine because the

adversary never gets m + 1 clones and therefore they should provide no information.

GP Identification: By the soundness property, we know that the glitch-tuples given to the function

IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)) are correctly formed. The only remaining ques-

tion is whether the (m + 1)-clone tags Eb
i contain enough information to solve for pkU .

Since the issuer never learns the seed of the PRF used to calculate the m + 1-clone tags Eb
i , as

far as it is concerned, each tag Eb
i is the product of m + 2 randomly chosen unknowns. One of the

unknowns is pkU , m of the unknowns are the same for every tag from that monitoring interval, and

one of the unknowns is unique to the cloned e-token. Therefore, if a user clones ` different e-tokens

(|{S1, . . . , Sm+1}| = `), then there are m + 1 + ` different unknowns among all the Eb
i . How many

distinct tags Eb
i are there? If there are ` different multi-shown e-tokens, then there are exactly

m + 1 + ` different tags Eb
i : there are ` distinct Ei and m + 1 distinct E′

i. With high probability,

a randomly generated system of m + 1 + ` equations with m + 1 + ` unknowns will have a unique

solution, in which case GP Identify will find it using Gaussian Elimination.

More specifically if we represent the y = m + ` + 1 equations as a y × y matrix, the success

probability PS corresponds to the probability that a random matrix of this size is invertible. The

first vector in your matrix is arbitrary, except that it should not be 0. So there are (qy − 1) choices.

The second vector should be linearly independent of the first; i.e., it should not lie in a 1-dimensional

subspace. So there are (qy− q) choices. The third vector should not lie in a 2-dimensional subspace,

so there are (qy−q2) choices. Etc. So in general, there are (qy−1) ·(qy−q) · · · (qy−q(y−1)) invertible

y×y matrices. To get the probability one divides this number by the total number of matrices, that

84

is q(y2). It is easy to see that

PS =
(qy − 1) · (qy − q) · · · (qy − q(y−1))

q(y2)
=
(

1− 1
qy

)
·
(

1− 1
qy−1

)
· · ·
(

1− 1
q

)
≥
(

1− 1
q

)
·
(

1− 1
q

)
· · ·
(

1− 1
q

)
=
(

1− 1
q

)y

=
y∑

i=0

(−1)(i mod 2) ·
(

y

i

)
· (1/q)y−i

= 1 +
y∑

i=1

(−1)(i mod 2) ·
(

y

i

)
· (1/q)y−i.

As q is exponential in the security parameter k, PS is bounded below by 1 − ν(k), with ν(k) a

negligible function in k.

6.3 Window Glitch Protection

The basic glitch protection scheme prevents users from creating more than m clones in a single

monitoring interval. If two neighboring time periods fall in different monitoring intervals, then a

malicious user can create m clones in each of them. We want to catch users who make more than

m clones within any W consecutive time periods.

6.3.1 Definition

We define an interval of consecutive time-periods to be a window. For convenience, we will consider

each time period identifier t to be an integer, and time periods t and t + 1 to be neighbors. Each

time period is in W different windows of size W . If we let a time period define the end of a window,

then time period t would be in windows t, t + 1, . . . , t + W − 1.

(m,W)-Window glitch protection allows a user to clone at most m e-tokens during any window

of W consecutive time periods. We describe the new protocols associated with a window glitch

protection scheme:

ShowWGP(U(D, pkI , t, n, m,W),V(pkI , t, n, m,W)) .

Shows an e-token from dispenser D for time period t. The verifier obtains a serial number S

and a transcript τ .

GetLinkIds(pkI , S, τ, τ ′) .

Given two e-tokens (S, τ) and (S, τ ′), outputs a list of W link-ids L1, . . . , LW .

IdentifyWGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)). Given m + 1 glitch tuples where for each i,

the same link-id L is in the list of link-ids produced by GetLinkId(Si, τi, τ ′i), computes a value

sU that can be used to compute the public key of the owner of the dispenser D from which

the TSNs came.

85

We modify the GP Anonymity and GP Identification properties to apply to window glitch protection.

WGP Anonymity. The environment will keep a table clones that will count how many clones

every user made during every window of length W , and a table LinkIDs with a random unique

entry for each time interval i ∈ V. Each time the adversary invokes EnvClone, before fullfilling

the request, the environment will increment the values at clones(U , t), . . . , clones(U , t+w−1).

If any of those result in a value greater than m, the environment will output error. Otherwise,

the environment will run the Show protocol; if it is using the simulator, the environment will

give it LinkIDs(t), . . . , LinkIds(t + w − 1) as input.

WGP Identification. Suppose the issuer and verifiers are honest. Should they receive a list of

m + 1 glitch tuples Input = (S1, τ1, τ
′
2), . . . , (Sm+1, τm+1, τ

′
m+1), such that ∃L : ∀i : L ∈

GetLinkIds(pkI , Si, τi, τ
′
i), then with high probability IdentifyWGP(pkI , Input) outputs a value

sU for which there exists an efficient function φ such that φ(sU) = pkU , identifying the violator.

6.3.2 Construction

Intuitively, we replicate our basic glitch solution W times to create overlapping windows of W time

periods.

ShowWGP(U(D, pkI , t, n, m,W). We modify the ShowGP protocol as follows. In step 3, the user and

verifier jointly choose random numbers R1, . . . , RW and ρ1,1, . . . , ρW,m. In step 4, the user calculates

essentially the same values S, K,E, except that now she calculates separate Ki and Ei tags for every

window in which time period T falls:

S = F(g,s)(0, T, J)

Ki = F(g,s)(1, T + i, 0) · F(g,s)(2, T, J)Ri

Ei = pkU · F(g,s)(3, T + i, 1)ρi,1 · · ·

· F(g,s)(3, T + i,m)ρi,m · F(g,s)(4, T, J)Ri

Finally, in step 5, the user proves to the verifier that the values S, K1, . . . ,KW , E1, . . . , EW are

formed correctly. That, along with the random numbers generated in step 3, forms the transcript

stored in steps 6. Step 7 is unchanged.

GetLinkIds(pkI , S, τ, τ ′). Returns the link-ids:

Li =
Ki

(Ki/K ′
i)

(Ri−R′
i)
−1Ri

, 1 ≤ i ≤ m + 1.

IdentifyWGP(pkI , (S1, τ1, τ
′
2), . . . , (Sm+1, τm+1, τ

′
m+1)). For all i, let L ∈ GetLinkIds(pkI , Si, τi, τ

′
i),

that is, let L be the link-id each glitch tuple has in common. Let these m + 1 glitch tuples include `

distinct TSN values. We extract the values (Ei,j , Ri, ρi,1, . . . , ρi,m) (or (E′
i,j , R

′
i, ρ

′
i,1, . . . , ρ

′
i,m)) from

all m+`+1 unique transcripts, where j depends on where L falls in the list GetLinkIds(pkI , Si, τi, τ
′
i).

Now, we use the same techniques as before to solve for pkU .

86

6.3.3 Security

Theorem 6.3.1. The scheme in Section 6.3.2 is a secure periodic n-times anonymous authenti-

cation scheme with window glitch protection. It fulfills the soundness, WGP anonymity and WGP

identification properties.

Proof. Soundness: The soundness proof is identical to the soundness proof for the basic n-times

anonymous authentication scheme.

WGP Anonymity: The WGP anonymity proof follows closely after the GP anonymity proof in

Section 6.2. Essentially, the only difference between basic glitch protection e-tokens and window

glitch protection e-tokens is that we now have L̂1, . . . , L̂W instead of just one L̂ and E1, . . . , EW

instead of just E. Therefore, step 4 in both showing and cloning will construct each L̂i and Ei

using the same techniques as for L̂ and E, and the simulated proof in step 5 will reflected the more

complicated construction. We give a sketch:

Once again, the simulator will store tables Token and Link (though entries in Token will be

longer because e-tokens contain more data). During EnvShow, the simulator will run the Show

protocol in essentially the same manner. The simulator will perform steps 1, 2 and 3 as normal; at the

end of which it will have random R1, . . . , RW , ρ1,1, . . . , ρW,m. In step 4 the simulator will randomly

choose (S, L̂1, . . . , L̂W , E1, . . . , EW) ∈ G1+2W . In step five, the simulator will fake the proof of

knowledge of (z, s, J, σ) showing the e-token is formed correctly, using the technique as Section 6.1.3.

Let ~R = (R1, . . . , RW), ~ρ = (ρ1,1, . . . , ρW,m), ~̂
L = (L̂1, . . . , L̂W), and ~F = (F1, . . . , FW). The

simulator will store Token(etoken) = (S, ~R, ~ρ,
~̂
L, ~F). If the token is ever cloned with some link-ids

linkid1, . . . , linkidW , the simulator will retroactively set all the Fi so that L̂i = Link(linkidi) ·FRi
i .

The simulator also clones e-tokens in the same way as the simulator for GP anonymity. It looks

up the original e-token in Token(etoken). In step 4, the simulator uses linkidi to calculate the value

for Fi, and from that calculates the L̂i. Then it randomly chooses the Ei. In step 5 it once again

simulates a zero-knowledge proof of knowledge showing the e-token is correctly formed. Finally, it

stores the new e-token in Token(etoken′).

WGP Identification: Observe that IdentifyWGP is identical to IdentifyGP, once the appropriate link-

id L is chosen. If there are ` = |{S1, . . . , Sm+1}| different cloned e-tokens, then there are m + 1 + `

distinct tags Eb
i,ji

and m+1+` unknowns. Therefore, with high probability, the system of equations

can be solved via Gaussian Elimination to reveal pkU .

Bibliography

[1] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. First Monday, 5(10), 2000.

[2] Kostas G. Anagnostakis and Michael B. Greenwald. Exchange-based incentive mechanisms

for peer-to-peer file sharing. In ICDCS ’04: Proceedings of the 24th International Conference

on Distributed Computing Systems (ICDCS’04), 2004.

[3] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray. Discouraging free riding in a peer-to-

peer cpu-sharing grid. In HPDC 2004, 2004.

[4] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair exchange.

In Proc. 4th ACM Conference on Computer and Communications Security, pages 6–17. ACM

press, 1997.

[5] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures.

IEEE Journal on Selected Areas in Communications, 18(4):591–610, April 2000.

[6] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-

encryption schemes with applications to secure distributed storage. In NDSS, 2005.

[7] Edoardo Ballico, Giulia Boato, Claudio Fontanari, and Fabrizio Granelli. Hierarchical secret

sharing in ad hoc networks through birkhoff interpolation. In International Conference on

Telecommunications and Networking (TeNE 2005), 2005.

[8] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes

without trees. In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume

1233 of Lecture Notes in Computer Science, pages 480–494. Springer Verlag, 1997.

[9] Amos Beimel, Tamir Tassa, and Enav Weinreb. Characterizing ideal weighted threshold secret

sharing. In Theory of Cryptography Conference – TCC 2005, volume 3378 of Lecture Notes in

Computer Science, pages 600–619. Springer-Verlag, 2005.

[10] Mira Belenkiy, Melissa Chase, C. Chris Erway, John Jannotti, Alptekin Küpçü, Anna Lysyan-

skaya, and Eric Rachlin. Making p2p accountable without losing privacy. In Workshop on

Privacy in the Electronic Society, pages 31–40, 2007.

87

88

[11] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,

editor, Advances in Cryptology — CRYPTO ’92, volume 740 of Lecture Notes in Computer

Science, pages 390–420. Springer-Verlag, 1992.

[12] George Robert Blakley. Safeguarding cryptographic keys. In Proceedings of the National Com-

puter Conference 1979, volume 48 of American Federation of Information Processing Societies

Proceedings, pages 313–317, 1979.

[13] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems. SIGACT

News, 15(1):23–27, 1983.

[14] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity based encryption without

random oracles. In Advances in Cryptology — EUROCRYPT 2004, volume 3027 of Lecture

Notes in Computer Science, pages 223–238. Springer-Verlag, 2004.

[15] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in

Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages

56–73. Springer-Verlag, 2004.

[16] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures using strong diffie

hellman. In CRYPTO 2005, volume 3152 of Lecture Notes in Computer Science, pages 41–55.

Springer-Verlag, 2005.

[17] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. In Joe

Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in

Computer Science, pages 213–229. Springer Verlag, 2001.

[18] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart Pre-

neel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in

Computer Science, pages 431–444. Springer Verlag, 2000.

[19] Xavier Boyen. A promenade through the new cryptography of bilinear pairings. In Proceedings

of the IEEE Information Theory Workshop (ITW 2006), pages 19–23. IEEE Press, 2006.

[20] Stefan Brands. Untraceable off-line cash in wallets with observers. manuscript, CWI, 1993.

[21] Ernest F. Brickell. Some ideal secret sharing schemes. In Journal of Combinatorial Mathe-

matics and Combinatorial Computing, volume 9, pages 105–113, 1989.

[22] Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption, and their ap-

plications to group signatures and signature sharing schemes. In Tatsuaki Okamoto, editor,

Advances in Cryptology — ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer

Science, pages 331–345. Springer Verlag, 2000.

89

[23] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysysanskaya, and Mira

Meyerovich. How to win the clone wars: Efficient periodic n-times anonymous authentica-

tion. In ACM CCS, pages 201–210, 2006.

[24] Jan Camenisch, Susan Hohenberger, and Anna Lysysanskaya. Compact e-cash. In Ronald

Cramer, editor, Advances in Cryptology – EUROCRYPT. lncs, 2005.

[25] Jan Camenisch, Susan Hohenberger, and Anna Lysysanskaya. Balancing accountability and

privacy using e-cash. In Security and Cryptography for Networks – SCN. lncs, 2006.

[26] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In

Giuseppe Persiano, editor, Security in communication networks, volume 2576 of Lecture Notes

in Computer Science, pages 268–289. Springer Verlag, 2002.

[27] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In Advances in Cryptology — CRYPTO 2004, Lecture Notes in Computer

Science. Springer Verlag, 2004.

[28] Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion routing. In Victor Shoup,

editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer

Science, pages 169–187. Springer-Verlag, August 2005.

[29] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In IEEE Sympo-

sium on Security and Privacy, May 2007.

[30] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number n is the product

of two safe primes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99,

volume 1592 of Lecture Notes in Computer Science, pages 107–122. Springer Verlag, 1999.

[31] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete

logarithms. In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, Lecture Notes

in Computer Science. Springer Verlag, 2003. To appear.

[32] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In

Burt Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of Lecture Notes

in Computer Science, pages 410–424. Springer Verlag, 1997.

[33] Sebastien Canard and Aline Gouget. Divisible e-cash systems can be truly anonymous. In

Advances in Cryptology — EUROCRYPT 2007, pages 482–497, 2007.

[34] Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy come – easy go divisible cash. In Kaisa

Nyberg, editor, Advances in Cryptology — EUROCRYPT ’98, volume 1403 of Lecture Notes

in Computer Science, pages 561–575. Springer Verlag, 1998.

[35] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM, 24(2):84–88, February 1981.

90

[36] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,

and Alan T. Sherman, editors, Advances in Cryptology — Proceedings of CRYPTO ’82, pages

199–203. Plenum Press, 1983.

[37] David Chaum. Blind signature systems. In David Chaum, editor, Advances in Cryptology —

CRYPTO ’83, page 153. Plenum Press, 1984.

[38] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser,

editor, Advances in Cryptology — CRYPTO ’88, volume 403 of Lecture Notes in Computer

Science, pages 319–327. Springer Verlag, 1990.

[39] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing

and achieving simultaneity in the presence of faults. In Proc. 26th IEEE Symposium on

Foundations of Computer Science (FOCS), pages 383–395, 1985.

[40] Bram Cohen. Incentives build robustness in bittorrent. In Procceedings of the 1st Workshop

on Economics of Peer-to-Peer Systems, Berkeley, CA, 2003.

[41] Bram Cohen. Incentives build robustness in bittorrent. In Proc. 2th International Workshop

on Peer-to-Peer Systems (IPTPS), Berkeley, CA, February 2003.

[42] B. Cox, J. D. Tygar, and M. Sirbu. Netbill security and transaction protocol. In Proceedings

of the First Usenix Workshop on Electronic Commerce, pages 77–88, 1995.

[43] Ivan Damg̊ard and Eiichiro Fujisaki. An integer commitment scheme based on groups with

hidden order. In ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages

77–85. Springer Verlag, 2002.

[44] Ivan Bjerre Damg̊ard, Kasper Dupont, and Michael Ostergaard Pedersen. Uncloneable group

identification. In Serge Vaudenay, editor, Advances in Cryptology — EUROCRYPT ’06, vol-

ume 4004 of Lecture Notes in Computer Science, pages 555–572. Springer-Verlag, 2006.

[45] Whitfield Diffie and Martin E Hellman. New directions in cryptography. IEEE Trans. on

Information Theory, IT-22(6):644–654, Nov. 1976.

[46] Roger Dingledine, Nick Mathewson, and Paul Syverson. Reputation in p2p anonymity systems.

In P2PECON ’03: Proceedings of Workshop on Economics of Peer-to-Peer Systems, June 2003.

[47] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo

Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,

pages 1–17. Springer Verlag, 2002.

[48] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs

and keys. In Proceedings of the Workshop on Theory and Practice in Public Key Cryptography,

volume 3386 of Lecture Notes in Computer Science, pages 416–431, 2005.

91

[49] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley & Sons, Inc., third

edition, 2004.

[50] Serge Fehr. Efficient construction of the dual span program. Available at http://citeseer.

ist.psu.edu/fehr99efficient.html, 1999.

[51] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine

agreement. SIAM Journal on Computing, 26(4):873–893, 1997.

[52] Eric Friedman and Paul Resnick. The social cost of cheap pseudonyms. Journal of Economics

and Management Strategy, 10(2):173–199, 2001.

[53] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular

polynomial relations. In Burt Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume

1294 of Lecture Notes in Computer Science, pages 16–30. Springer Verlag, 1997.

[54] Steven D. Galbraith. Supersingular curves in cryptography. In Advances in Cryptology — ASI-

ACRYPTO ’01, volume 2248 of Lecture Notes in Computer Science, pages 495–513. Springer

Verlag, 2001.

[55] Hossein Ghodosi, Josef Pieprzyk, and Rei Safavi-Naini. Secret sharing in multilevel and com-

partmented groups. In C. Boyd and E. Dawson, editors, ACISP ’98: Proceedings of the Third

Australasian Conference on Information Security and Privacy, volume 1438 of Lecture Notes

in Computer Science, pages 367–378. Springer Verlag, 1998.

[56] Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

[57] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity

and a method of cryptographic protocol design. In Proc. 27th IEEE Symposium on Foundations

of Computer Science (FOCS), pages 174–187. IEEE Computer Society Press, 1986.

[58] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker

keeping secret all partial information. In Proc. 14th Annual ACM Symposium on Theory of

Computing (STOC), pages 365–377, 1982.

[59] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof systems. In Proc. 27th Annual Symposium on Foundations of Computer Science, pages

291–304, 1985.

[60] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[61] Markus Jakobsson. Ripping coins for a fair exchange. In Advances in Cryptology — EURO-

CRYPT ’95, volume 921, pages 220–230. Springer Verlag, 1995.

92

[62] Stanis law Jarecki and Vitaly Shmatikov. Handcuffing big brother: an abuse-resilient transac-

tion escrow scheme. In Advances in Cryptology — EUROCRYPT 2004, volume 3027 of Lecture

Notes in Computer Science, pages 590–608. Springer Verlag, 2004.

[63] Antoine Joux. A one-round protocol for tripartite Diffie-Hellman. In Proceedings of the ANTS-

IV conference, volume 1838 of Lecture Notes in Computer Science, pages 385–394. Springer-

Verlag, 2000.

[64] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding. In P2PECON

’05: Proceeding of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems,

pages 116–121, 2005.

[65] Mauricio Karchmer and Avi Wigderson. On span programs. In 8th Annual Conference on

Structures in Complexity Theory (SCTC’93), pages 102–111. IEEE Computer Society Press,

1993.

[66] Jon Kleinberg and Prabhakar Raghavan. Query incentive networks. In FOCS ’05: Proceedings

of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005.

[67] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. BAR gossip.

In Proceedings of the 2006 USENIX Operating Systems Design and Implementation (OSDI),

November 2006.

[68] Nikitas Liogkas, Robert Nelson, Eddie Kohler, and Lixia Zhang. Exploiting bittorrent for

fun (but not profit). In Proc. 5th International Workshop on Peer-to-Peer Systems (IPTPS),

Santa Barbara, CA, February 2006.

[69] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free Riding in BitTor-

rent is Cheap. In Proc. 5th Workshop on Hot Topics in Networking (HotNets-V), November

2006.

[70] Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Howard

Heys and Carlisle Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture

Notes in Computer Science. Springer Verlag, 1999.

[71] Sergio Marti and Hector Garcia-Molina. Identity crisis: Anonymity vs. reputation in p2p sys-

tems. In P2P ’03: Proceedings of the 3rd International Conference on Peer-to-Peer Computing,

2003.

[72] Sergio Marti and Hector Garcia-Molina. Taxonomy of trust: Categorizing p2p reputation

systems. Computer Networks, 50(4):472–484, 2006.

[73] Noel McCullagh and Paulo S.L.M. Barreto. A new two-party identity-based authenticated key

agreement. In Topics in Cryptology – CT-RSA, volume 3376 of Lecture Notes in Computer

Science, pages 262–274, 2005.

93

[74] Ralph Merkle. A digital signature based on a conventional encryption function. In Advances

in Cryptology — CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pages

369–378. Springer Verlag Berlin, 1988.

[75] Mira Meyerovich. Disjunctive multi-level secret sharing. manuscript, 2006.

[76] Silvio Micali. Certified e-mail with invisible post offices. Presentation at the 1997 RSA Security

Conference, 1997.

[77] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. In IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol-

ume E85-A, No. 2, pages 481–484, 2002.

[78] Animesh Nandi, Tsuen-Wan “Johnny” Ngan, Atul Singh, Peter Druschel, and Dan S. Wallach.

Scrivener: Providing incentives in cooperative content distribution systems. In Proceedings of

the ACM/IFIP/USENIX 6th International Middleware Conference (Middleware 2005), Greno-

ble, France, November 2005.

[79] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random

functions. In Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), 1997.

[80] Standards (U.S.) National Bureau of. Data encryption standard (des). Fed. Inform. Proc.

Standards Publication 46, Nat. Techn. Inform. Service, Springfield, VA, April 1977.

[81] Standards (U.S.) National Bureau of. Advanced encryption standard (aes). Federal Informa-

tion Processing Standards Publication 197, 2001.

[82] Lan Nguyen and Rei Safavi-Naini. Dynamic k-times anonymous authentication. In Applied

Cryptography and Network Security, volume 3531 of Lecture Notes in Computer Science, pages

318–333, New York, 2005.

[83] Pascal Paillier. Public-key cryptosystems based on composite residuosity classes. In Jacques

Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in

Computer Science, pages 223–239. Springer Verlag, 1999.

[84] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of

Lecture Notes in Computer Science, pages 129–140. Springer Verlag, 1992.

[85] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and Arun Venkatara-

mani. Do incentives build robustness in bittorrent? In Proc. 4th USENIX/ACM Symposium

on Networked Systems Design and Implementation, April 2007.

[86] Michael Reiter, XiaoFeng Want, and Matthew Wright. Building reliable mix networks with

fair exchange. In Applied Cryptography and Network Security: Third International Conference,

pages 378–392. Lecture Notes in Computer Science, June 2005.

94

[87] Rosetta@Home. http://boinc.bakerlab.org/rosetta/.

[88] Brude Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish). In

Fast Software Encryption, Cambridge Security Workshop Proceedings, pages 191–204. Springer

Verlag, 1993.

[89] Mike Scott. Authenticated id-based key exchange and remote log-in with simple token and

pin number. http://eprint.iacr.org/2002/164, 2002.

[90] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November

1979.

[91] Victor Shoup. Fast construction of irreducible polynomials over finite fields. In SODA: ACM-

SIAM Symposium on Discrete Algorithms, 1993.

[92] Joseph Silverman. The arithmetic of elliptic curve. Springer-Verlag, 1986.

[93] Gustavus J. Simmons. How to (really) share a secret. In Shafi Goldwasser, editor, Advances

in Cryptology — CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages

390–448. Springer Verlag, 1988.

[94] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:

A scalable peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM

Conference, August 2001.

[95] Tamir Tassa. Hierarchical threshold secret sharing. In Moni Naor, editor, Theory of Cryp-

tography: First Theory of Cryptography Conference, TCC 2004, Lecture Notes in Computer

Science, pages 473–490, Cambridge, MA, 2004.

[96] Tamir Tassa and Nira Dyn. Multipartite secret sharing by bivariate interpolation. In ICAALP

2006, Part II, volume 4052 of Lecture Notes in Computer Science, pages 288–299, Venice, Italy,

2006.

[97] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-times anonymous authentication. In

Advances in Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer

Science, pages 308–322, Japan, 2004.

[98] Isamu Teranishi and Kazue Sako. k-times anonymous authentication with a constant proving

cost. In Public Key Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer

Science, pages 525–542, New York, NY, 2004.

[99] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. Karma: A secure eco-

nomic framework for p2p resource sharing. In Proc. of Workshop on the Economics of Peer-

to-Peer Systems, 2003.

95

[100] Brian Wilcox-O’Hearn. Experiences deploying a large-scale emergent network. In Proc. 1st

International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, March 2002.

[101] Bo Zhu and Sushil Jajodia. Building trust in peer-to-peer systems: a review. International

Journal of Security and Networks, 1(1/2):103–112, 2006.

	BLANK PAGE.pdf
	Blank Page tiff

