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In this dissertation we address an important problem in the \visualization of multivalued
scienti ¢ datasets: To quantify the utility of di erent vis ualization methods. This quanti -
cation could become the basis for a theory of visualization ltat would explain and predict
how di erent methods represent data e ectively. Having such a utility function de ned over

a space of visualization methods would facilitate the seatt for an e ective representation of
scienti ¢ data and, given a problem, optimally use visual resources to solve it. Our hypoth-
esis is that by measuring the perceptual capabilities of som of those methods for simple
single-valued cases, and combining that with subjective evaations of complex multivalued
displays using expert visual designers, we can generate agqatictive model of utility for a
space of visualization methods. De ning this model involves understanding the capabilities
of those methods to represent data individually, and quantfying the e ectiveness changes
when they interact to represent multiple data variables sinultaneously. While experiments
inspired by psychophysical studies can inform about the expessive capabilities of individual
methods, the complexity of the combined displays create an>gponentially growing amount
of variables to be controlled during the studies. Using critques from expert visual designers
to evaluate such combinations can reduce the experimentalictulties and help create the
utility model.

Our contributions include new experimental and computational techniques to evaluate
how di erent visualization methods perform when displaying multivalued scienti ¢ datasets
in 2D. The work spans several experiments aimed at quantifyig the perceptual capabilities
of some icon-based visualization methods, and we report on B@ signi cant results that
help describe the structure of our space of visualization m#ods and the process necessary
to explore it.

Our hypothesis aims at stablishing a basis for a theory of vigalization. Our results
contribute to that goal by providing several models for the eective use of some 2D visual-
ization methods. We have also produced a rich knowledge bader the design, execution,
and analysis of evaluation studies that use expert visual dgigners as the main participants.
We hope the visualization community will bene t from this bo dy of work in its continuing
guest for its theoretical foundations.
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Preface and Motivation

\The basic avors were a summing up of the Japanese concept dimami', of
savoriness, meatiness, mouthwateringness, the bliss-miof any food. 'Umami'
is the Japanese fth taste..."

{ Jerey Steingarten, in The Man who ate Everything

To search for the elements that form the basis of things is natral. There are examples
of this in many knowledge disciplines: language and literatire (\The Elements of Style"[1]),
architecture (\House Thinking"[2]), cooking (\The Elemen ts of Taste"[3]), to name a few.

The goal is the same in all of them: by enumerating, understading, and describing
those elements we have power over them. We can then use them & controlled way so
their combination achieves the purpose we intend in an e cient and e ective manner.

The example in cooking is particularly interesting to me, ard quite relevant to the theme
of this thesis. In \The Elements of Taste"[3], the authors s& o0 to explain the principles
behind great taste in a way that anyone could understand. Theg proceeded to devise a
system that included most of the tastes in the modern palate. Not just the four we have
been taught we have receptors for, but the ones chefs use to @duce their creations.

The same as artists and designers, chefs use their experienand knowledge of the basic
components available to develop their recipes. In deconsticting their creative process,
\The Elements of Taste" de nes fourteen basic tastes: salty sweet, picante, tangy, vinted,
bulby, oral herbal, spiced aromatic, funky, bitter, garde n, meaty, oceanic, and starchy.
How do taste artists put these together? What are the rules they follow and can we learn
them?

This dissertation attempts a similar feat in a completely di erent area of knowledge,
but one also based very much on experience, intuition and thecontrol of a basic set of
components with endless combinatory possibilities.
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[1] The Elements of Style 3rd edition, by William Strunk Jr., Macmillan, 1979.
[2] House Thinking, by Winifred Gallagher, HarperCollins, 2006.
[3] The Elements of Taste by Gray Kunz and Peter Kaminsky, Little Brown and Co., 2001.
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Chapter 1

Introduction and Contributions

\Doctrines and theories are best for weaker moments. In momets of strength,
problems are solved intuitively, as if of themselves"
{ Johannes Itten in The Elements of Color

The main goal of this dissertation is to study ways of maximiang the bandwidth of
information successfully transmitted by a visualization, while leveraging human competen-
cies so a viewer can understand its visual depiction. In othewords, we want to optimize
visualization creation by utilizing human visual resources e ciently. To achieve this we
quantify and model how human perception explores the types bstimuli present in scienti ¢
visualizations. Such a model would serve as a basis for a thgoof visualization, one that
would explain and predict the way a space of visualizationss organized. This dissertation
is an initial step towards the de nition of that theory.

A theory of visualization could be described as a theory of eective information repre-
sentation. This e ectiveness is measured by how well that reresentation allows its users
to \detect the expected and discover the unexpected” in ther data [Thomas, 2005]. In
the process of creating this representation, data are mappkonto visually perceivable units
to facilitate their analysis. The goal is to be able to comprénend the data wholistically,
through intuitive processing, as opposed to the linear proessing required by looking at the
raw numerical data.

Figure 1.1 shows an example of that mapping and our vision fothis research. This image
represents a potential interface for a visualization softvare utilizing our results. In this case
a user would like to visualize together four values from a wether dataset (temperature,
pressure, precipitation, and wind speed) all of them represnted at the top of the display
using the same grayscale representation with low values inlack and high values in white.
Below those data images are a set of knobs that represent theequirements the user has for
each of our four design factors (see below for an explanatioaf these). Below these knobs

1



Figure 1.1: Our utility models are based on a set of design fdors such as spatial feature
resolution (SFR), data resolution (DR), saliency (SA) and perceptual interference (INT).
Users should be able to either adjust those knobs and have theapping parameters (layer
order, size, and spacing) change automatically, or x the ldter and observe how the utility
values change for each design factor. A more detailed explation of this gure is included
in the text.
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are indications of what visualization method has been choseto represent each data value,
what layer this value will be at (numbered from bottom to top) , and two more knobs that
can control the icon parameters of size and spacing.

We aim to provide users with an indication of what the e ects on e ectiveness are when
they modify the visualization parameters. In our experiene, users of visualization software
feel overwhelmed by the multiple visualization options avalable to them. Most packages
currently available provide them with a wealth of methods to visualize their data, but
they usually provide no guidance at all about which ones are rare e ective for their goals.
Experience, or a visual designer at the user's side, is usuglthe key to a successful visual
representation of the data. Explaining how the elements of he visualization methods work
together is the rst step to understanding the structure of a space of visualizations, and a
crucial one in de ning our model of their utility.

To accomplish this we must measure the utility of the di erent elements that compose
our visualization methods, what we call ourvisual dimensions Having those measurements,
our hope is that we would be able to precisely combine these diensions in such a way
that the overall use of their capabilities was optimized to the needs of the data and the
requirements of the user. In particular, our hypothesis is:

Measuring the perceptual capabilities of several icon-baskscienti ¢ visualiza-
tion methods for simple single-valued scalar datasets in 2Dand combining that
with subjective evaluations of complex multilayered methads representing multi-
valued datasets, we can generate a predictive model of the pseptual properties
of a space of visualization methods.

The key challenge we must overcome for the de nition of a germal utility model is
the extremely fast growth of the number of parameters to expbre as we combine visual
dimensions to represent multivalued datasets. Although malels for single-valued cases have
not been developed, and we introduce them here, it can be argu that it is possible to fully
study that space. However, starting with two-valued datasets, the complex parameterization
of the visualization methods would make exhaustive experirants infeasible. Part of this
dissertation's contribution is the de nition of a methodol ogy that attempts to describe a
utility model for higher-order combinations based on lower-ader results.

In order to validate the models we obtain we will perform an ewaluation that, using our
results, shows an improved and more e cient visualization aeation process. Section 6.2
contains the details of this evaluation.

In the rest of this dissertation we will consider a visualization method as an abstract
function that transforms a scienti ¢ dataset into a visual r epresentation to facilitate data
exploration. In turn, a visualization display is the instantiation of a visualization method.
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Here, we are interested in studying visualization methods dr multivalued continuous scalar
datasets in 2D, using multilayered icon-based methods. Futtermore, the goal of our visual-
izations is exploratory. We assume our end users want all thelata displayed in an unbiased
way: they have no preconceptions about more or less intereisty areas that should be high-
lighted or de-emphasized. In the multivalued case, their exforation seeks to understand
the relationships among data values.

De ning and exploring the space of possible visualization nethods for a given scienti c
problem has challenged computer scientists, statisticiag, geographers, and cognitive scien-
tists for many years; it is still an open research problem. Tk goal of such models is to
describe a searchable space where scientists can nd visizdtion methods that optimally
convey the information they require. This dissertation is a modest attempt to generate a
utility prediction model of a small subspace. In other words we seek a function that given
a visualization method returns the perceptual capabilities of that method to represent data.

The value of identifying the basic visual dimensions that fam visualizations, and their
interactions, is that we thus develop a framework to organiz knowledge of visualization
design and predict behavior of data displays [Cleveland andMcGill, 1984]. We want to
create a way to get scientists, and visualization users in geeral, closer to an e ective visual
representation of their data.

As Watson outlines in [Watson, 2006], to automate the design ad creation of visualiza-
tions, researchers must identify the particular problem ard its constraints, nd and capture
the heuristics that describe a good solution, and build a todthat nds one or more of those
good solutions in the problem space. To these we add, as a rsitep, the actual de nition
of the pieces used to build the visualizations, ouwisual dimensions and, before the search
for good solutions, the de nition of the measures that charaterize the utility of those di-
mensions, ourdesign factors Once these elements are in place, the process of exploratio
of the data can really begin by allowing the user to interact with the visualization.

The Visualization Problem: Exploratory Visualization

The basic scienti ¢ visualization process involves symbatation, the translation of verbal
and numerical information into graphic form [McCleary Jr., 1983], and comprehension, the
analysis and understanding of the data presented. Our reseeh is oriented towards de-
veloping exploratory data visualization methods, with the goal of visually presenting raw
data in a way that prompts visual thinking and knowledge condruction [MacEachren and
Kraak, 1997]. Understanding and insight are the main goals bscienti ¢ data visualization
methods, but methods to represent known phenomena (e.g. tdoulence in air ow or stress
points in a structure) or geared towards performing speci ctasks (e.g. nding extrema or
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identifying a type of turbulent ow) are qualitatively die rent from visualization methods
designed for exploration of the data. Scientists usually uilize the latter during the early
stages of their research, when they require visuals that pndde a broad understanding of
the data being presented. They begin posing hypotheses andsking questions about the
data, which lead them towards task-oriented visualization nmethods for further analysis.
Exploratory visualization methods allow them also, in a rst approximation, to qualita-
tively assess the validity of their experimental and data gahering methods. At this stage,
visualization is merely a tool to help scientists think abou their problem [Hibbard, 2004].

Our focus here is on visualization methods for multivalued salar scienti ¢ datasets in
2D. These datasets are widely used in disciplines such as negtrology, geology, cartography,
physics, and engineering. Even when scientists are studyithree (or higher) dimensional
phenomena, they often rely on 2D slices, such as cutting plass or isosurfaces, to explore
and study the datasets. It is usually easier for them to diretly understand two-dimensional
displays than three-dimensional ones, which would require mtion, stereo, or some kind of
tracking to be fully perceived. Extensive training and expeience is usually required to be
able to extract three-dimensional information from a set of D slices, a process that doctors
master, for example, when analyzing 2D magnetic resonanceniages of parts of the human
body.

With this dissertation we aim to augment the control and understanding of existing
visualization methods. We do not aim to create new methods tlat would replace existing
techniques, but to introduce some guidance as to what the peeptual capabilities of those
techniques are and how to use them e ciently.

Visual Dimensions

Common practice in scienti ¢ visualization is the mapping of scalar quantities to the visual
qualities of surfaces containing the data, with color beingthe predominant example. Other
visual qualities that can be used to represent a scalar eld a a 2D surface belong not to
the surface itself, but to glyphs or icons that can be placed o the surface. Color is again
the initial choice for most applications, but size, distribution, and orientation of these icons
can also be used to visually represent a scalar eld.

The class of visualization methods we are concentrating omicludes multilayered Poisson-
disk distributed icons where icon size, spacing, lightnessand color saturation can be set to
a constant or coupled to data values from a scalar eld in 2D. As part of this dissertation
we created dedicated software to generate our visualizatio displays. In it we implemented
a Poisson-disk distribution scheme to position the icons aawrding to the underlying data
in an e cient way, trying to obtain a uniform distribution of icons with a minimum of



noticeable gaps that could be misinterpreted as data featuss.

Icons have the advantage that they can be layered, increasmthe number of variables
being simultaneously shown. Even though we are using this mbodology to study a very
limited space, this framework could be extended to include mre complex visual dimensions
and even three-dimensional visualization methods.

Design Factors

This dissertation focuses on the creation and evaluation o¥isualization methods according
to a set of design factors. These factors relate to the relatie importance of the di erent
variables in the dataset, their relationships, and the quaity of visualization needed for each
one of them. We de ne the utility of a visualization method as a function of these factors.

During our experiments we measured and modeled the perfornmece of di erent methods
with respect to our set of design factors. These are importasince our visualization problem
is the exploration of the data, with no predetermined task in mind. Our factors serve as a
characterization of the utility of our visual dimensions. T here are many possible ways to do
this characterization, but we decided on a manageable set dactors so we could perform
our experiments in a reasonable amount of time. Yet the resus provide some indication of
the expressive power of our visual dimensions and the utilit of the visualization methods
they form.

1.1 Contributions

This thesis makes contributions towards the quanti cation of the e ectiveness of visualiza-
tion methods, the identi cation and exploration of percept ual issues in multivalued visual-
ization, and the de nition of a theory of visualization. Dr. Christopher Johnson, in his list
of top scienti ¢ visualization problems [Johnson, 2004], ecognizes all these as some of the
major research areas in the visualization eld, and stresse the importance of their study in
order to advance the state of the art and make visualization gow as a scienti ¢ discipline.

This dissertation is further inspired by Fred Brooks's \The Computer Scientist as a
Toolsmith II" paper [Brooks, 1996] where he posits that our siccess as computer scientists
must be measured by the success of the users of our applicati®. In that sense, a successful
completion of our research would mean that our visualizatimn software allows scientists
to concentrate on data exploration instead of visualization parameter exploration. We
facilitate the search for an e ective visualization of scienti ¢ data by providing a model of
performance that, given a set of design goals and a multivaled dataset, can be used to
obtain a reasonable initial solution and lead the search though the highly complex space
of visualizations.
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Furthermore, this dissertation helps clarify how some of tre disciplines that take part in
the visualization process can be put to work together e ectively. The process of e ectively
representing scienti ¢ data involves several disciplinesthat must be well understood to
create useful displays for analysis: data mining, statisttal analysis, visual design, perceptual
psychology, computer interface design, and human-computeinteraction are some of those
disciplines. Rarely does a single person have enough expisd in all of these elds to tackle
a visualization problem alone, requiring collaborative e orts among a group of experts. In
particular, we contribute to advancing the state of the art in three separate disciplines:
computer science, perceptual psychology and visual design

1.1.1 Computer Science Contributions

We de ne and quantify a set of design factors that describe tle utility of the basic
visual dimensions used for exploratory scienti ¢ visualization.

We provide a set of novel predictive models for all our desigrfactors that allow for
the e ective use of visualization methods based on the presie control over the utility
of the visual dimensions that form them.

We hypothesize and evaluate a novel methodology for buildig these types of predictive
models. This dissertation serves as a proof-of-concept shawg how to complete these
models for individual methods. It is an important milestone in formalizing models for
other types of visualization methods and applications.

We validate the use of visual design experts as evaluators afcienti ¢ visualization
methods.

We evaluate a methodology for knowledge modeling where weitd to capture targeted
critigues of visualization methods from visual design exp#s to incorporate them in
a quantitative model.

1.1.2 Perceptual Psychology Contributions

We extend previous experimental results, in spatial featue resolution and data res-
olution, to cases that are closer to real visualization disgays, which have not been
tested before. We provide models of how the data resolution l@aracteristics of our
methods change as the independent variables of icon size arspacing change.

We design an experiment and build a detailed model of saliencand perceptual in-
terference between visual dimensions. We are able to prediand control the relative
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saliency and interference of the various dimensions on a g display by modifying
the size and spacing of the icons, their color, and the orderfahe layers.

1.1.3 Visual Design Contributions

We evaluate methodologies to gather and model humerical redts obtained from sub-
jective experiments with visual design experts.

This dissertation is a novel attempt at quantifying the crit ique process used in art
and visual design. We are numerically exploring this expegnce-based technique for
information display evaluation.

1.2 Experimental Methodology

Evaluating the e ectiveness of visualization methods is dicult because tests to evaluate
them meaningfully are hard to design and execute [Kosara etla 2003].

Our research involves experiments' where participants perform subjective perceptual
tasks from which we obtain numerical measures of interactins among visual dimensions.
These studies are inspired by psychophysical experimentsub geared towards our goal of
developing visualization methods for e ective data explomation. We also perform subjective
studies where expert visual design educators critique visalization methods that use those
same dimensions. Our research brings together both experiemtal approaches by using
lessons from the latter to inform the design of the former setf studies.

We do not aim to nd a single optimal solution that will exactl y match the visualiza-
tion problem's description. Perceptual psychophysicistsand cognitive scientists have been
studying human perceptual capabilities for decades, and thre are still many unresolved
problems. Even those problems that have been explored oftemd con icting experimen-
tal results that make it di cult to elaborate a complete and s olid theory on how humans
perceive visual dimensions. It would not be realistic for ths dissertation to try to exactly
guantify all possible interactions among visual dimensios. Even limiting ourselves to four
dimensions, there are many elements that a ect the reading 6 visualization displays, such
as interaction techniques or display form factors, that we @annot possibly begin to explore
if we hope to succeed in our initial goal.

The use of visual design and artistic expertise to develop gualization methods is widely
acknowledged in our discipline. The novelty of this disseration comes from our goal of

LAll participants in our experiments were recruited, given inform ed consent forms, and compensated for
their participation, according to Brown University's IRB rules an d following our approved IRB protocol
titted \Quantifying the Bene ts of Scienti ¢ Visualization Techn  iques".
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guantifying that expert knowledge in a way that we can combine it with perceptual experi-
ments to build our utility model. We have created a framework for evaluating visualization
methods through feedback from expert visual designers andraeducators. Our framework
mimics the art education process, in which art educators imprt artistic and visual design
knowledge to their students through critiques of the studens' work.
Our use of both perceptual studies and visual design experte is based on their respective

interest in, rst, understanding the parameters of use of the di erent perceptual cues and,
second, an optimal utilization of those cues to communicaténformation.

1.2.1 Perception and Cognitive Science

Perceptual psychologists study how we obtain information fom the world around us. In
the visual domain in particular, they study how the di erent visual cues reaching our eyes
are recognized, organized and transmitted into our brains ér comprehension. Cognition,
on the other hand, studies how the information gathered by ou senses is put together to
form concepts we understand. How much information procesapg is done where, at the eye
level or at the cortex level, is up for debate. What is important from our point of view is
their interest in recognizing the individual units of infor mation that get transmitted, and
what visual dimensions carry that information e ciently.

This thesis diverges from perceptual psychology in that we ee interested not in the
pure understanding of how the individual information-transporting units work in general,
but how they transport the particular types of information p resent in scienti ¢ visualization
displays. This creates a fundamental methodological prol@dm.

To understand those visual cues, perceptual psychologistserform experiments in which
they try to isolate their e ects as much as possible. This prorides unbiased clean information
about the individual cues. The idea is to build the knowledgeof how they work together
from the bottom up: exploring how those cues are combined anevhat pieces of information
are transmitted up stream into the brain for their comprehension. Using this methodology
allows for a thorough investigation of the basis of our visudinformation processing system,
but creates problems when complex visual stimuli need to beralyzed. In those cases, it is
not clear how to apply the results from very controlled expeiments where visual dimensions
are studied in isolation.

This thesis presents new methodology that tries to obtain the characterization of those
visual cues in the context of more realistic visualization dsplays. Our experimental results
are then more closely applicable to practical situations wkere multiple cues are combined
in otherwise unpredictable ways.
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1.2.2 Visual Design and Art

At the other end of the spectrum are visual designers and arsts. They study how to
present the information in such a way that utilizes the expressive capabilities of each cue
in an optimal way. They are experts in what could be describedas visual rhetoric which,
extending the de nition of rhetoric, can be de ned as the faculty of discovering and utilizing
all the available means of visual persuasion to communicatiformation e ectively.

Their methodology is based on experience and critiques ratr than formal psychophysi-
cal experiments. After years of study and practice, a visuatlesigner will begin to understand
how size gradients, for example, e ectively communicate sme particular type of informa-
tion change. They will learn how this visual dimension worksin combination with all other
visual elements present in their toolbox, e.g. di erent cobrs or shapes will a ect the reading
of those size gradients. Di erent compositions of the visua display will a ect them too.
Expert artists and visual designers routinely use this expéence-based knowledge to create
great art and e ective information displays [Grossberg, 2M6].

Studying the results of perceptual experiments is part of tre visual designer's training,
but quickly moving from those to more complex situations allows them to understand the
space in which they are operating. In this process, constantritiquing of the e ective use of
the di erent cues is the key to their learning process. Givena goal for a particular design,
they evaluate how the elements used combine to present the farmation required. This
makes them strive for an e cient use of resources, since anyxra information presented,
even if redundantly representing a particular message, migt create ambiguity in the display
and diminish the overall e ectiveness. Expert visual designers know that human perception
is very good at noticing very intricate patterns and, if a redundancy is present, it could be
interpreted as a separate piece of information instead of agiteration of an already presented
one. Along these lines, there is a term in art and visual desig called economy of line It
means that, when creating a charcoal or pen-and-ink drawing, lhe least amount of line
should be used to show the pose. The expressive power of a wdthwn single line is huge.
In our case, we will know we have an e cient visualization method when the expressive
power of our visual dimensions is used in the right amount to onvey the message in our
datasets.

In this dissertation we introduce new methodology to gather expert knowledge from
visual designers and artists. We utilize these experts to gtique visualization methods and
evaluate how e ciently those methods use di erent visual elements. We seek to incorporate
their capacity of analyzing the full compositional element in a display and of evaluating
the e cient use of visual cue combinations.

There are, however, two big challenges here. The rstis to beble to make their thought
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process explicit so as to obtain the necessary information &need to build a model of their
knowledge. Performing the evaluations in the form of critiques should help in this process,
although there is not such thing as a unique and accepted crittue methodology, which
makes data analysis extremely di cult.

The second challenge is consistency. Our characterizatioaf 2D visualization methods
acknowledges that the input we get from the designers is dirgly targeted at the needs
of scientists, and is not about artistic qualities, visual gopeal, or aesthetics. However,
di erent experience levels would normally lead to very di erent critiques of the same visual
displays. Our approach to solving this challenge is to use gerienced educators that are
used to teaching design concepts. They are used to concentiiag on the problem at hand,
abstracting from aesthetic considerations when they haved focus on what the nal goal of
the design is; while their results are often appealing and ahetic, they rst have to satisfy
the given communication goals.

Finally, one of the main advantages of introducing this type of subjective experiment is
the fact that expert designers can not only evaluate the e cient use of visual dimensions,
but they can also tell us why a method does or does not work and, in most cases, how to
X it by moving along the axes formed by the visual dimensionsused in it.

1.3 Research Elements

We have accomplished the contributions outlined above by cmpleting the following ele-
ments of the research:

The development of an interactive software environment forcreating the visualization
displays needed for this research. It provides users with aext-based interface to
create and manipulate multivalued multilayered visualization methods. We developed
it in collaboration with Fritz Drury, professor at the lllus tration Department at the
Rhode island School of Design (RISD), who advised us on whatisual dimensions to
implement rst and how to organize their interplay in the sof tware. The basic software
design is an extensible framework for visualization method in 3D, and includes other
non-icon-based visual elements such as color planes and strelines. It also includes
support for vector and tensor-based datasets.

The design and implementation of a study in which art and illustration experts eval-
uated six 2D vector visualization methods. We found that these expert critiques
mirrored previously recorded experimental results [Laidaw et al., 2005]; these nd-
ings support that using artists, visual designers and illugrators to critique scientic

visualizations can be faster and more productive than quantative user studies. Our
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participants successfully evaluated how well the given mdtods would let users com-
plete a given set of tasks. Our results show a statistically igni cant correlation with

a previous objective study; i.e., designers' subjective prdictions of user performance
by these methods match their measured performance. The expis improved the eval-
uation by providing insights into the reasons for the e ectiveness of each visualization
method and suggesting speci ¢ improvements. This was published as a Sketch in
ACM SIGGRAPH'03 [Jackson et al., 2003], and has been submitteor publication at
IEEE Transactions on Visualization and Computer Graphics Journal [Acevedo et al.,
2007h].

The design and implementation of a study comparing 2D scalawisualization meth-

ods using expert visual design educators as subjects. Based the experience of the
previous study, and after the development of our visualizaion software, we conducted
an initial study to evaluate the utility of 2D visualization methods in terms of a set of
design factors, which were subjectively rated by expert vigal design educators. We
successfully characterized a total of 33 visualization métods using 11 di erent visual

dimensions and 6 di erent design factors for representing imgle-variable continuous
scalar datasets. This study raised the question of using exgrt designers, speci cally
educators, versus non-expert designers as in the previous gariment. The level of
understanding of the tasks to be performed and the profusionof comments about
why and how to improve some methods increased dramaticallyni this second experi-
ment. Although not empirically evaluated yet, educators seem to be better subjects
for evaluating visualization methods than non-experts. We have not yet utilized ex-

pert non-educators to complete our samplelhis was published as a Poster in IEEE
Visualization'05 [Acevedo et al., 2005] and received the BeésPoster Award at the con-

ference.

The design and implementation of an evaluation of a parametgzed set of 2D icon-
based visualization methods where we quanti ed how perceptal interactions among
visual dimensions (size, spacing, icon lightness, and satation) a ect e ective data

exploration. In the previous experiment, the di culty and n umber of the tasks re-
guired, the high variance of the responses obtained, and themall subset of visual
dimension combinations tested made our results di cult to generalize. This current
experiment improved the tasks by making them more accessiblto non-experts, low-
ering the variance between participants. Of course, this mees away from the critique-
inspired methodology towards more quantitative perceptud tasks but, as mentioned
before, keeping in mind the application of the results and the type of visualization
display we will create. This experiment presents the basic rathodology for modeling
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perceptual interactions among visual dimensions.This work was published at IEEE
Transactions on Visualization and Computer Graphics and presented at the IEEE
Visualization'06 [Acevedo and Laidlaw, 2006].

An experimental quanti cation of how factors such as icon ske, spacing, layer order
and color a ect the relative saliency and interference amomgy ve di erent 2D scalar
visualization methods: saturation, lightness, orientation, size, and spacing. We de-
ne saliency as the perceived dominance of some visualizath method over another
when representing scienti ¢ data. Saliency can be used to gualize the importance
of some variables over others: designers may want some vabigs to dominate the
composition while others should recede to the background. Gr experiment also re-
covers the perceptual interference among methods, which weae ne as the amount of
distraction a method creates when users are trying to read aother method present
in the same display. This work has been accepted for publication as a Poster in IEE
Visualization'07 [Acevedo et al., 2007a].

An experiment to subjectively measure legibility changes m multivalued visualization
methods. We used expert visual designers for this experimérso we could rely on
their expertise to evaluate many di erent combinations in a short period of time. We
presented them with an interactive application showing two-valued scalar datasets
from brain MRI. They critiqued our four visualization metho ds (size, spacing, lightness
and saturation) for how well they maintained legibility of d ata features when they were
combined to show two data variables simultaneously.

1.4 A Hypothesis for our Outcome
Let us reiterate our hypothesis here:

Measuring the perceptual capabilities of several icon-baskscienti ¢ visualiza-
tion methods for simple single-valued scalar datasets in 2Dand combining that
with subjective evaluations of complex multilayered methads representing mul-
tivalued datasets, we can generate a predictive model of uity of a space of
visualization methods.

We successfully characterized the utility of individual methods and obtained predictive
models for their use. We even obtained predictive models ofheir relative saliency and
perceptual interference when used in pairs. We also validad the hypothesis that using
expert visual designers to subjectively evaluate scientic visualization methods can yield
signi cantly comparable results to objective task-based guantitative studies. After all these
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encouraging results, our next step, utilizing expert visud designers to evaluate complex
combinations of visualization methods, was not successfuh validating our initial hypoth-
esis.

There are two possible reasons for this outcome. The rst is hat our hypothesis is par-
tially false, since we could not disprove the null hypothess for its nal statement (\...com-
bining that with subjective evaluations of complex multila yered methods representing mul-
tivalued datasets..."). The second possible reason is thabur methodology for evaluating
such hypothesis did not have the power to capture a signi cam result when, in fact, there
is one. Let us briey look at these two scenarios here. A more xensive explanation is
provided in Chapter 6 of this dissertation.

Our objective was grandiose: to explain how visualizationsvork in general, independent
of the application. To try to accomplish it, we constrained the problem to 2D cases and to
a very speci c set of methods, so our experiments were feaddh This made us switch the
characterization of our research to become a proof-of-concepwe would demonstrate how
to accomplish the nal goal through our exploration of this small sample of the full space.

Our problem was, as it might be clear to the reader, ill-posed.Even trying to study very
few of those visual dimensions created an uncontrollable gponential growth in the number
of combinations that should be explored to reliably descrite the space they form. Even
assuming this exploration was done, an e ective solution tca given multivalued visualization
problem might not exist and, even if it does, it usually would not be unique.

However, we based our research on the assumption that the pential solution to the
visualization problem depends continuously on the percepial characteristics of the individ-
ual dimensions that form such a result. Thus, we were attemping to obtain a mathematical
model that explained and predicted how those characteristts work in complex situations.

Furthermore, we believe that our strategy of combining per@ptual and artistic knowl-
edge to build our model was the right choice to achieve that gal. Through psychophysical
studies we can quantify how users perceive di erent aspectsf the data when using di erent
methods to represent it. It also seems reasonable to engagbe expertise of visual designers
and artists, since they are living proof that it is possible to present very complex informa-
tion in an e ective way. They use the same perceptual capabities we measure through our
experiments, yet they are able to combine it and analyze it insuch a way that they can
solve complex visual problems based on their experience, tliout the aid of equations that
map out the space in which they are moving.

In summary, we believe the hypothesis is valid and can be suessfully evaluated. If this
is correct, our approach to engaging expert visual designerand capturing their knowledge
could be at fault.
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Given our experience throughout all these experiments, we élieve the main reason for
our outcome was the initial assumption of independence fronmthe data. Our set of design
factors, and the exploratory characterization of the visudization problem, allowed us to
abstract as much as we could from de ning a speci ¢ task for ouw visualization displays.
Yet, from the beginning of our collaboration with designers they complained about not
having a speci ¢ use for the data being represented.

Furthermore, the fact that we were trying to obtain a general model meant we could not
xate on speci c instances of our datasets. We tried to acconplish this by presenting our
experimental stimuli using several di erent datasets and aking designers to subjectively
evaluate methods for a general dataset. This was acceptabhldor the most part, when
exploring single-valued visualizations. But, the moment ral perceptual interactions came
into play during our last experiment, using two-valued brain MRI datasets, the problem of
abstracting from the speci ¢ data combinations became clea

Methods that would seem to work for most cases would be founda fail for partic-
ularly unfavorable combinations of datasets. Also, the sinilar spatial distribution of the
data across values lead to the question of whether results dm this experiment would ap-
ply for datasets with non-correlated spatial distributions. Participants commented that,
most likely, the opposite situation would also be controvesial depending on the particular
distribution of values for all data variables.

In summary, without including the data values' spatial dist ribution characteristics and
de ning a general metric for data variable interactions, we were unable to model the utility
of our space of visualization methods. At the end of this dissrtation we o er some hope
for accomplishing this by describing a possible way of addig the data characteristics as an
extra set of axis in our visualization space.

The potential for a great contribution at the end of this research was not our only
motivating factor. The experiments we have conducted add upto be an important method-
ological framework with which other visual dimensions can k& explored. Through those
experiments, as we will present in this dissertation, much las been learned that the visu-
alization, perception, and visual design communities can hild upon. The overall results
do not add up to a full edged model to be plugged into a visualzation software, but our
individual experimental results can help non-expert usersn their search for an e ective vi-
sualization, by providing some indication about probable drections of improvement for their
visualizations, and by shedding some light as to what method to use in what situations.
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1.5 Organization of this Dissertation

Chapter 2 introduces some de nitions and notation that will be used throughout this dis-
sertation.

After that introductory chapter, Chapter 3 explores the ext ensive literature related to
this project and how we shaped our investigations based on gwious work.

Chapters 4 and 5 form the main portion of this dissertation. They describe the exper-
iments we have conducted and their results. First we go throgh our initial studies using
visual designers to evaluate scienti ¢ visualization metrods. After that we present our
psychophysical experiments to measure perceptual interdions among visual dimensions.

Chapter 6 presents the design and outcome of our last experient, where we attempted
to use expert visual designers to evaluate visualizationsfawo-valued scalar datasets. Given
the outcome we explained before, this chapter also includethe results of an informal
evaluation of our existing models presenting real datasets$o scientists for exploration.

This will be followed, in Chapter 7, by a nal discussion of our results, the impact of
this dissertation, what the future lines of research would ke, and some conclusions.



Chapter 2

The Elements of Visualization

This chapter clari es the scope of the thesis and puts each athe components of our research
in context: the type of visualization problems we are dealirg with, the type of visual
dimensions we consider, and our de nition of design factors Although it introduces very
basic concepts, the discussion in this chapter helps in undstanding our research plan and
the decisions made along the way.

Every visualization process starts with a question about sme characteristic of the
dataset a scientist has just compiled and needs to study [Sjmgmeyer et al., 1992]. After
performing some ltering of the data, and maybe some statistcal analysis or data mining,
it becomes clear that looking at a set of numbers does not helphe scientist understand
what the data contains: a visual representation is needed.

The rst step is guring out how to translate the numbers into visual entities so it is easy
to explore the relationships among all the variables in the étaset. The components used
to create that representation are our visual dimensions. Clor, shape, size and movement
are examples of some of those dimensions.

There are many ways of combining those dimensions to show thdata, and scientists
need some guidance in deciding which mapping, from numeritalata to visual dimensions,
is appropriate for his or her visualization problem. Our desgn factors characterize the
capabilities each of the dimensions have for representingada.

Let us review these three pieces of the visualization proces(the problem, the visual
dimensions and the design factors) one by one.

2.1 The Visualization Problem

The visualization problem has two distinct components: thegoal for the creation of a visual
representation of a dataset and the type of dataset being visalized. We will discuss these
in the following subsections.

17
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2.1.1 The Goal of the Visualization

What is the goal of the visualization display? This is the rst question we must answer when
we want to transform the set of numbers that form our dataset into a visual representation.
Maybe the goal is to check the dataset for problems or obviougrrors. Maybe we want to
highlight some parts of it, like extrema or areas below a cerin threshold. Maybe we are
searching for a speci ¢ pattern that indicates some intereing phenomena are happening.
All these examples would require, at rst glance, a dedicatel visualization design that would
translate the numerical data into a visual representation that ful lls the requirements. We
can classify these visualization problems into two main catgories: explanatory problems
and exploratory problems.

In cases where the goal is to show speci ¢ characteristics dhe data and we know how
to nd them, or when we want to show the results of an experimen that revealed some
unexpected patterns, our visualization problem is explangory. There are certain things in
the data that require the viewers attention, and the visualization method used should lead
the viewer to them.

On the other hand, there are occasions in which the end-user gt wants to see whether
the data coming out of the experimentlooks OK or if there are some errors in it. In this
case the approach is one of exploration. The end-user wantslahe data presented in front
of her in an unbiased way. There are no preconceptions about are or less interesting areas
that should be highlighted or blurred. These exploratory visualization problems are the
ones that we are addressing in this dissertation.

In some sense, the lack of a clear task to be performed by oursialization users makes
our job more di cult. The fact that they just want to visually  absorb everything the data
has to o er without creating biases is a big challenge. For eample, local maxima of a
dataset can be marked using visually salient icons. Their nmerical values can even be
displayed beside the icons. There can certainly be a discus: about the design of such
icons, the placement of the numerical value, etc., but the vsualization problem is clear.

The goal of exploratory visualization is to gain insight into how the data are spatially
organized. In the multivalued case, exploration seeks an wterstanding of the relationships
among data variables. Once these are presented, the visuadition user will begin asking
more explanatory questions, derived from the insight gaind and requiring, in general, a
di erent type of visual display that helps support his or her arguments.

2.1.2 The Type of Dataset Being Visualized

Once we have the main goal the visual display must ful ll, we nust take into account the
scienti c problem we are trying to address. In other words: what type of dataset are we
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Figure 2.1: An information visualization display showing and example of non-spatial data
from [Norberg and Rayner, 1987] presented in a Cartesian gii designed ad-hoc for this
visualization. It displays di erent anatomical and ight-r elated variables for many species
of bats to try to discover a correlation between size of the bts, their ight speed and their
behavior. Shape and location are used as visual dimensions this case.

dealing with?

Information Visualization vs. Scienti ¢ Visualization

There is much debate in the community about the distinction between these two types of
visualization [Rhyne, 2003]. The annual IEEE conference owisualization is divided in two
to distinguish between research in one area or the other.

Information visualization deals with datasets that do not have an inherent spatial com-
ponent or that, having one, represent abstract non-physicaldata. On the rst case, a visual
representation of those datasets must be made in an abstracpace delimited by some of the
variables present in the data (see Figure 2.1). The second sa is more debated since it has
clear spatial reference, such as the geographical area irmdited by the map in Figure 2.2, but
includes non-physical information (in the same gure, the types of conicts are indicated
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Figure 2.2: An information visualization display from the New York Times that shows
several types of data using size, color, and outlines on topfaa map, which provides the
spatial information component (Copyright 2006 The New York Times Company)
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Figure 2.3: Visualization of experimental 2D ow past an airfoil [Kirby et al., 1999a]. Six
di erent variables of the ow are visible at every point in th is image. It shows relationships
among the values that can verify known properties of this paticular ow or suggest new
relationships between derived quantities.

by lines.)

When the dataset contains information that has a clear spatal component and involves
physical phenomena, we have a scienti ¢ visualization disfay (see Figure 2.3). Even using
the same spatial context as Figure 2.2, the origin of the dataand their characteristics
provide the visual display di erent qualities (see Figure 2.4)

The distinction is by no means clear cut. The information in the examples of Fig-
ures 2.1 and 2.2 is not un-scienti ¢, but the data are qualitatively di erent from the exam-
ples of Figures 2.3 and 2.4. This dissertation is aimed at destoping better, perceptually
e ective scienti ¢ visualization methods.

Data Continuity

Another key characteristic of the data is whether they are catinuous or discrete. Continu-
ous data can be queried and visually represented at every pai in the region of space where
it resides. Discrete data, on the other hand, correspond to raasurements at speci ¢ spatial
locations. The data to be visualized might come from the intepolation of values gathered
in those discrete points; the temperature readings used toreate Figure 2.4 were obviously
discrete, but the dataset being visualized is the interpoléed one, making it continuous.

There are also continuous data being visualized discretelysee Figure 2.5) but the in-
tention of the visual display is to have the user do the interpolation.

Data continuity can sometimes serves as a distinction betwen information and scienti ¢
visualization displays. Since physical quantities such asemperature or pressure can only be
measured in discrete locations but exist in every point in spce, we consider them continuous
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Figure 2.4: Example of a very simple scienti ¢ visualization display using the same spatial
reference as Figure 2.2.

Figure 2.5: Example of continuous data being visualized usig discrete glyphs. In this case
SAR polarimetric response patterns indicate di erent types of surface cover. A coherent
change in response pattern between the lake surface and reéeéds can be detected [Wood-

house et al., 2002].
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Figure 2.6: Example of discrete non-interpolable data. Thisis also an example of informa-
tion visualization data which clearly has a spatial component.

and scienti ¢ visualization methods are responsible for vsualizing them. Data variables
measured discretely but that cannot be interpolated, like rumber of people living in an area
(see Figure 2.6), are the responsibility of information visialization methods.

For this thesis we will consider only 2D interpolated continuous datasets. Since our
visualization methods are icon-based, we will be discretizig the interpolated datasets in
order to facilitate layering of multiple variables in the same display. Figure 2.5 accomplishes
this by creating a complex glyph that incorporates multiple variables. Some of our design
factors deal with this loss of spatial feature resolution de to this discretization. Percep-
tually measuring this quality for our visualization method s will allow us to optimize our
visualization results depending upon the importance of thedi erent requirements: e.g. is
exploring multiple variables more important than higher in formation frequency?

Data Characteristics

There are two more data characteristics that will de ne the visualization problem. The rst
one di erentiates between qualitative and quantitative data. The former include elements
of di erent classes that may or may not be ordered and that hawe no inherent numerical
relationship among them. Quantitative data, on the other hand, maintain a mathematical
relationship among all data elements.

There are three types of quantitative data depending on the mmber of values each data
element has. In a scalar dataset only one value exists at eadbcation in space where data
are present. A vector dataset contains elements with as manyalues as the dimensionality
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Figure 2.7. Particle urries in a Virtual Reality visualiza tion of air ow around a bat
in ight [Sobel et al.,, 2004]. Over a short time, the particle animation gives a synoptic
visualization of the main features of the three dimensionalvector eld.

of the space they are in, i.e. in 2D, vector elements have twoanponents; three in 3D, and
so on. A 2nd order tensor dataset contains elements with morealues per spatial location,
e.g. four values per element in 2D, and nine in 3D.

The last characteristic of the data that de nes the visualization problem is the space in
which the data live. Whether it is 1D, 2D, 3D, or more, the visualization display must be
adapted to the requirements of the data space. Time can alsodincluded as a dimension
here. Dynamic datasets require a very di erent treatment than static ones since correlations
across time-steps and maintaining temporal coherence in theisualization method become
keys to avoid distracting the user with artifacts not really belonging to the data.

Summary

The previously described characteristics of the visualizéon problem shape the visualization
methods that can be applied to it. The discussion up to this padnt is intended to brie y
introduce the vast number of visualization challenges thatdatasets in all those di erent
spaces pose for the creation of e ective visualization metbds.

For this dissertation we chose to constrain our model to connuous scalar datasets in 2D.
This might seem, on rst glance, a simpli cation of the probl em, given that there are many
researchers that have already tackled much more complex tygs of datasets and developed
successful visualization methodologies. Some examples obmplex datasets successfully
being visualized are shown in Figures 2.7, 2.8, and 2.9, wherdi erent visual techniques,
display form factors, and interactions, combine to form the various visualization methods.

Our choice is based on the fact that the basic components of hthose visualizations
visually interact in ways that are still not clearly underst ood. Almost all great visualization
methods must be iterated upon until a solution is reached, wirch should e ectively show
the information required and minimize perceptual issues. V¢ want to analyze those issues
from the ground up. By constraining ourselves to more managable datasets, we can be
more thorough in the analysis of perceptual interactions, &éminating from the experiments
a multitude of dependent variables. This is not to say that those variables, such as the
type of display used, the interaction techniques, etc., arenot important, but they should
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Figure 2.8: Three di erent visualizations of the di usion t ensor magnetic resonance imaging
data of a brain. This tensor eld data can be explored using animmersive VR environment
such as a CAVE (left) [Zhang et al., 2003], a shtank-VR setup (center) [Demiralp et al.,
2006], or a physical model created through color rapid prottyping (right) [Acevedo et al.,
2004].

Figure 2.9: Virtual Reality is again used here to visualize achaeological excavation data.
Colors indicate the type of artifact while size and quantity indicate other abstract variables
present in the dataset. From left to right, a view of the excawation site, an overview of the
full dataset, and two di erent moments of a user interacting with the system. In this case,
the need to perform spatial correlations were the key to usig a VR environment [Acevedo
et al., 2001; Vote et al., 2002].
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be added to the experiment once other basic visual charactestics are well understood.

2.2 The Visual Dimensions

Each of the types of data detailed in the previous section wilpotentially require a di erent
visualization method. The choice of method must be made basktupon their strengths and
weaknesses, keeping in mind the underlying pledge that evgrvisualization method must
display the data truthfully and avoid misleading the viewer. Fred Brooks summarized this
point beautifully in a talk given during IEEE SIGGRAPH 2003:

\Visualize to inform, not to impress. If you really inform, yo u will impress."

Going from numbers to pictures is usually the rst step in the exploration of any scienti ¢
dataset, and choosing the right tool for the job can be the di erence between success or
failure of a scienti ¢ enquiry. As an example of this, Tufte suggests how the space shuttle
Challenger's catastrophic launch in January of 1986 could hve been avoided if only the
available data had been presented correctly [Tufte, 1997]The visualization problem, which
includes the goal of the visualization and the type of data, vl partly determine this choice.
Nevertheless, the available choices are many and their di eences in terms of visualization
utility are not well understood, especially when used in corbination.

The visual dimensions are the toolset we use to create the viml representation of the
data. There are non-visual dimensions we could be using to repsent data, such as sound or
haptic interfaces, but this dissertation is aimed at a smallsubset of just visual dimensions.

We will de ne these dimensions as the elements that, more ordss independently, can
be used to create a visual representation of a scienti ¢ dataet. This is to say, and for the
purposes of this dissertation, that continuous scalar datavariables must be mappable to
them.

Note that even when only a few of these dimensions get mappedtdata variables in
any particular visualization method, all of them will be present in the nal visualization
display. For example, it is obvious that even when size is noused to represent any data
variable in the dataset, all icons must have a certain size, ither constant or randomized,
across the display.

For practical reasons we chose to limit our experiments to \e visual dimensions: icon
lightness, icon size, icon spacing, icon orientation and @n color saturation (see Fig. 2.10).
This decision was made to decrease issues due to participafatigue during experiments
and to provide a relevant sampling of the space of visualizabn methods. The reasons
to choose these ve particular dimensions are diverse. Sizand spacing are elements that
received a highly varied set of reactions during our initialexperiments [Acevedo et al., 2005].
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Raw data Icon Saturation
Icon Lightness Icon Orientation
Icon Size Icon Spacing

Figure 2.10: Visual dimensions. We are quantifying and modkng the utility of icon sat-
uration, lightness, orientation, size, and spacing when rpresenting scalar datasets in 2D.
These ve dimensions are demonstrated here representing th same single-valued dataset

shown at the top left.
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Figure 2.11: Cone response sensitivities normalized as agortion of the peak response for
each type of cone cells. Our eyes are most sensitive to \yellogreen" wavelengths around
the middle of the spectrum. In fact, most of our light sensitivity lies between 500 to 620
nm { roughly from \blue green" to \scarlet"

Also, very few studies have been published exploring thesenp elements together [Wolfe,
1998]. Icon lightness was chosen because it is an element thaas been studied in depth,
allowing us to compare our results with previous experimers. Icon orientation has had
a lot of attention in the perceptual psychology literature related to texture discrimination
but its use for scienti ¢ visualization is limited to a few st udies. It is, from our experience
during the rst experiments with visual designers, a di cul t element to perceive as a scalar,
albeit a very salient one. Finally color saturation provides our link with the use of color for
visualization. Including hue would bring in a lot of di eren t issues related to the use of color
spaces that would complicate the main focus of this dissertiion. Saturation, being a very
much neglected visual dimension for scienti ¢ visualizaton, provides a convenient middle
ground to introduce color in our experiments and explore itscapabilities for visualization
use. In particular, we decided to choose a green hue (with a 6.lightness value) because our
eyes are more sensitive to light around that wavelength (se€ig. 2.11). We use CIELab color
space to generate our visualizations, so we can control thatonstant lightness is achieved
throughout the range of saturation at this hue.

Apart from these ve dimensions mentioned, another one thatwe will consider will be
the number of layers a visualization method utilizes. For example, if two data variables
have to be represented in the same display and we want to usez& and color saturation,
these can be accomplished on one or two layers, as Figure 2.4Bows. We are including the
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b)

Figure 2.12: Examples of a two-valued dataset visualizatios using size and saturation in a
single layer (a), and in two layers (b). The data mappings do ot change from one to two
layers. Note the gray borders on the icons of the top layer in l§). Our experiments will

guantify which of these representations works best dependi upon what the visualization

requirements are.
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number of layers as a visual dimension in our models. Furthenore, to di erentiate among
layers and avoid, as much as possible, simultaneous contfassues, the icons on our top
layer will have a small gray border at half the lightness valwe of the icon color.

To summarize, our analysis of interactions among visual dirensions represents the study
of how independent these dimensions are of each other. Sintteese dimensions represent the
axes of a space of visualization methods, nding and quantifing those interactions would
lead to an understanding of how orthogonal those axes are. Amdeal space would have
orthogonal axes that could be used independently of each o#r when creating visualization
methods.

2.2.1 De nitions and Nomenclature

A visualization method takes a scienti ¢ dataset and produces a visualization display. We
de ne a space,V, of scienti c visualization methods. In general, our spaceincludes layered
iconic representations of 2D multivalued data. The visual dmensions that are present in
each layer are:

Icon color hue (vp) Icon orientation (Vv4)
Icon color saturation (v1) Icon size {s)
Icon color lightness ») Icon spacing )

Icon transparency (v3)

A visualization method, v 2 V maps data values to visual dimensions. We can combine
multiple layers, which we will denominate I,. Each one of these layers will contain all 7
visual dimensions de ned above. The subscripf of the layer indicates its order in the nal
visualization, from back to front:

v="flg;lg;lo;iig2V

where,

I = f(mo; my; s me); (ro;ras i re)g

Each component ofly refers to one of the 7 visual dimensions;:

= 0 v; is not mapped
' di Vi is mapped

¢ 2 R2[0;1] mi =0

T (hie)2R22(0;1[0;1]) m; 60
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where d; is the index of the data variable mapped intov;.

Figure 2.13 shows two examples of the use of this nomenclateron the previous two
visualization displays. Note that background color, shapeand border of the icons can
also be controlled but we do not need to include them explicity in the parameterizations:
background is always black, icons are always circular, and drders are always gray at half
the lightness of the icon color, with a width between 20% (forlarge 10-pixel icons) and 25%
(for small 2-pixel icons) of the the icon's diameter.

2.2.2 lIcon Placement

We use a Poisson disk distribution [McCool and Fiume, 1992]d randomly place icons on
the display. This distribution can be de ned as the limit of a uniform sampling process
with a minimum-distance rejection criterion. Successive pmts are independently drawn
from a uniform distribution over the 2D domain where the data exists. If a point is at least
distancer from all points in the set of accepted points, it is added to that set. Otherwise,
it is rejected.

In our case the points correspond to the center of our icons,ra the choice ofr comes
from the radius of the icons plus half the spacing value. Wheneither or both of these
dimensions are mapped to a data variable, the correspondingalue is evaluated at the
center point of the icon andr is determined to check for overlaps with previously placed
icons.

While a straightforward implementation of the algorithm wo uld require a certain number
of failures (overlaps) in a row as a stopping condition, thatwould not guarantee that we
are evaluating all pixels in our display. This could lead to many areas remaining untested
and obvious holes in the visual display. We remedy this by rd randomizing a full list of
pixel center locations and going through it in order.

Further, we super-sample our domain (2 times is su cient to obtain a signi cant im-
provement and not extend the running time too much) and perfam all our overlap calcu-
lations in oating point coordinates, instead of pixel space. Limiting the size of our icons
to a minimum diameter of 2 pixels, along with this super-samping scheme, avoids the ap-
pearance of a regular grid bias in our modi ed location-samphg algorithm using just pixel
center locations. Once we have a full set of icon locations inoating point, we let our
graphics engine perform the necessary antialiasing for digay.

Finally, we chose this placement algorithm instead of a reglar grid for two reasons.
The rst is that clear creases would appear when either size spacing were tied to a data
variable. This would confuse users of the display by creatig false features in the display
that do not correspond to the data. Further, even when size ad spacing were constant
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v = flog= f(0;1;0;0;0; 2;0); (0:33,(0; 1); 0:6; 0; 0; (2; 10); 1)g

v = flg;l1g = ff (0;1;0;0;0;0;0); (0:33;(0; 1); 0:6; 0; 0; 8; 0:5)g;
f(0;0;0;0;0;2;0); (0; 0; 1; 0; 0; (2; 10); 1)9g
Figure 2.13: The same two displays from Fig. 2.12. Their resgective full parameterizations
are shown here.
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across the display, having a regular grid would impose a streture to the data that is not
present.

We believe, and our expert visual designers con rmed this hpothesis, that having this
guasi-optimal random placement leads to less confusion thaa regular grid would. In their
own words: \It is hard to get away from this horizontal and ver tical organization to try
and extract non-aligned structures in the data”.

2.2.3 EVOLVIS: A Visualization Language

To create the actual visual displays for this dissertation we developed a language to de-
scribe scienti ¢ visualizations of multivalued, two-dimensional datasets. Our goal was to
create a language with which a user could quickly create compx and precise data-driven

visualizations as well as facilitate their modi cation dur ing the iterative design process. We
called this language and the rendering system to display it #OLVIS.

EVOLVIS is a general tool that can combine three types of basi visual elements {
discrete icons, color planes, and streamlines{ into layers A text le fully describes the
resulting method and controls the layering of the di erent elements, their appearance, and
their spacing, including the mapping assignments of any of hese visual dimensions to data
variables. In addition the language supports extensions taccommodate scalar, vector, and
tensor data in 2D and 3D.

For the purposes of this dissertation, only icon elements Wi be used, although color
planes were also used for some of the initial studies with exgt visual designers. Other visual
dimensions that are possible with our language include borer width and color, texture
mapping, and more complex icon shapes that can be controlletly the data. Figure 2.14
shows some examples of the possibilities EVOLVIS provides.

2.3 The Design Factors

In order to represent the exploratory nature of our visualization methods we must establish
a set of design factors that can be used to characterize the ility of a given visualization
method and do not constrain our model to any particular task.

Once we have these factors, we will be able to quantify how theli erent visual dimen-
sions express them and how, when we combine those dimensiofos multivalued visualiza-
tions, perceptual interactions among them a ect the overal utility.
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Figure 2.14: Dierent discrete icons. The top three show eab basic primitive (ellipse,
triangle and rectangle) provided in the language. The bottan left image shows a composite
icon created using a combination of primitives. The last two images show how texture
mapping the icons can generate arbitrary shapes.

2.3.1 De nitions and Nomenclature

Developing upon the nomenclature from the previous sectionW(v) provides an evaluation
of a visualization method, v 2 V. It produces a vector of values, each of which quantitativey
characterizes the visualization method with respect to a spci ¢ design factor.

W(v) = (wo(Vv); wi(V); wa(Vv);::)

In order to generate our utility model we need to specify the ype of design factors we
will be accepting. We consider four di erent ones:

Spatial Feature Resolution (vg): The size of the features a method is able to accurately
represent.

Data Resolution (w1): The number of di erent values of a data variable a method is
able to accurately represent.

Saliency (w2): How much a method pops-out among the rest of the methods presén
in a visualization display.

Perceptual Interference (w3): How much one method a ects the accurate reading of
another.
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We derived these factors from our experience creating sciéirc visualizations for our col-
laborators in many disciplines and from our study on designe-critiqued visualization meth-
ods [Acevedo et al., 2005]. In that study we utilized a superst of factors that, given that
experience, we have narrowed down to these three describecite.

2.3.2 Spatial Feature Resolution

This design factor is aimed at giving the visualization usersome control over how much
information is lost when the icon-based representation is usd. Size and spacing between
icons are the main dimensions that a ect this factor, but our visual system processes visual
dimensions di erently. Some dimensions could be easier tonterpolate perceptually than
others, so, for example, larger spacing and smaller icons olal provide similar spatial feature
resolution results for icon orientation than for icon color saturation using closer together
and larger icons.

Important features of a dataset might be lost if the sizes of hose features are beyond
the capabilities of a certain visualization method. When imns are used for representing
continuous data, it is unavoidable that gaps will be presentin the nal display. These gaps
are what make a multilayered visualization possible but, atthe same time, they create a
challenge. There is a trade o between showing a higher spatil resolution (smaller features)
and providing a comparative view with other layers in the visualization (larger holes to see
through the layers).

We also limit the range of some visual dimensions so we can wialize smaller features.
Size and spacing do not have specic limits for their maximum values. Since icons can
potentially be made as large as the full display size, this wold clearly limit the available
spatial feature resolution. We will provide numeric valuesfor our available ranges when we
describe the di erent experiments.

We measure this factor as the size of the smallest feature a rfeod can represent,
measured as cycles per degree. With this measure we try to atract from the actual physical
size of the stimulae used for our experiments, because we rghly know the distance our
participants stand from the screen when they perform our exgrimental tasks (either on
paper or on the computer screen).

2.3.3 Data Resolution

This design factor refers to the number of di erent values that should be visible for a given
variable. Although we are dealing with continuous scalar daa, scientists often bin their
data for easier comprehension.

In our experiments we measure the number of levels a visual diension has by counting
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jnd (just noticeable dierence) units. This means that, although we are not explicitly
binning the data for display, we are quantifying how many bins will be perceived. Our
result is the limit of the number of bins possible for a certan visual dimension in a given
range.

Some dimensions have a limited range, such as saturation,gltness or orientation,
while size or spacing do not have specic limits. As we explaied for the spatial feature
resolution design factor, we limit these dimensions so we caprovide higher spatial feature
resolution, hence constraining the range and the perceivdb bins. This limitation of the
range has consequences for the data resolution itself, siathere is a limited number of jnd's
perceivable in a given range. Measuring data resolution fodi erent ranges will be useful
so we can combine visual dimensions using ranges that conidhe least between them.

We measure this factor as the total number of levels (jnd's) vsible.

2.3.4 Saliency

With this factor we address the level of importance a data vaiable must have among the
other variables present in the visualization. There might be times when the user wants to
highlight a particular variable and keep others as a context There might also be cases when
all variables must be visualized at the same level of importace, leaving the highlighting
and backgrounding of some of them for a later stage of explotan.

We measure this factor using direct comparison between metids and asking partici-
pants which method dominates the composition. Along with the next factor, we utilize the
time it takes participants in our experiments to recognize me dimension in the presence of
another. The faster of the two to be recognized is the more sant.

2.3.5 Perceptual Interference

This factor addresses the di culty of reading a given dimension when others are present.
It characterizes how much more dicult a given visual dimension makes the reading of
another one. We measure this using the increase or decreasetime that participants take
to recognize the particular dimension with respect to a baskne time. More details of this
factor will be explained in Section 5.2.

2.3.6 Capturing Designer Critiques

As we mentioned before, the advantage of utilizing expert vdual design educators as subjects
for some of our experiments is that they can provide reasonsof the success or failure of a
certain visualization method. During our experiments we wil try to capture this information
numerically by asking them for estimates on how much a designaictor would change if a
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certain change in one of the visual dimensions is performedWe can indicate this as the

derivative of our vector of design factors dv(‘j/\(,v):

dW(v) _  dwo(V)  dwy(v)  dwz(v)
dv =( dv’dv’dv)
where,
dw; (v) y @wv), @wv) ... @W(V))
dv @y ' @y ' @w

Some of these derivatives will be obtained from the analysiof videotapes recorded
during the experiments and from interactive sessions wherexperts modify visualization
methods according to di erent requirements. It is usually easier to let participants explain
their reasoning as they perform the experimental tasks thanproviding them with a form
to Il out. This is a more dicult method to obtain quantitati  ve results, but it allows
participants not used to numerically critique designs to feel more con dent about their
decisions.

2.4 Summary of this Chapter

In this chapter we have de ned some of the basic components dhe visualization process:
the visualization problem, the visual dimensions, and the @sign factors used to characterize
our utility model. For each of these we have de ned the scope fthis dissertation and
introduced the nomenclature and mathematical notation we will utilize throughout the
thesis. The purpose of this chapter was to characterize the icerent components of the
research and make clear what our assumptions and limitatios are.

The next chapter will put our framework in perspective with r espect to the state of the
art in visualization research, as well as perceptual and degn literature.



Chapter 3

Literature Review

Our work is related to three main research areas: visual degh, visual perception and data
visualization. We will address them separately in this chaper.

In this thesis we are combining all three of these discipling to facilitate the synthesis
of e ective visualization methods. Visual design informs aur work through techniques for
critiquing and works related to image composition and how vsual components work together
to convey a message. Visual perception, on the other hand, isur main source of low level
characterizations for our visual dimensions. The experimstal techniques used by perceptual
psychologists help us design our own studies, targeted towds more higher level practical
applications. Finally, we are trying to contribute to the ad vancement of the eld of scienti ¢
visualization, and there are many researchers whose work épires and complements our own.
We summarize here the main sources of knowledge from all theeof these areas of research
and relate it to our own work.

3.1 Visual Design

Our main point of connection with visual design is the quantication of how the di erent
dimensions that form our basis for visual data communicatian perform and interact together.
There are many authors that have approached the problem of @ssifying those dimensions
and providing guidance for their use, but we are providing a mttom-up approach that
numerically quanti es individual performance rst and mov es on to combinations and their
interactions.

Visual designers and artists are trained on how to communice messages visually. In
our case the message is a scienti c dataset. We have previdysesearched, and continue to
pursue, the idea of using artistic techniques for scienti cvisualization [Laidlaw, 2001; Vote
et al., 2003; Laidlaw et al., 2004; Kirby et al., 2004; Keefe tal., 2005]. Our experience in
this area, and our ongoing collaboration with the Rhode Island School of Design, helped

38
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us select the set of visual dimensions that form the means by lich we communicate our
message. This is, indeed, a very active area of exploratiomithe eld of visualization in
general [Watson, 2006].

In looking at art and design critique, there are many principles of design and compo-
sition expert critics look for when critiquing a certain piece. Rhythm, repetition, balance,
proportion, scale, variety and unity are some examples [Sag, 1995]. In our case, some of
those come de ned by the data itself, hence are not subject teevaluation. For example,
rhythm and balance in a visualization display are, for the mast part, controlled by how the
values are distributed across the spatial range of the data.A certain balance could still
be judged based on an overall visual balance of the display (wether there are areas that
attract attention or not), but it could be argued that nding those areas is precisely the
goal of the initial data exploration.

Another aspect of the critique looks at the set of visual elerents an art work uses to
convey the message intended. There is no agreement amongeaschers about what is the set
of visual dimensions that can be used as a basis to create viglization methods. Ontologies
about what visual dimensions are most commonly used servedsanspiration for us to come
up with a testable set. There are many publications used in arand design schools that deal
with speci ¢ visual dimensions, but Wallschlaeger and Bust-Snyder in [Wallschlaeger and
Busic-Snyder, 1992] provide a very comprehensive classi tian of the di erent elements
involved in the communication process. Their work spans vigal principles for architecture,
art and design, and demonstrates the commonalities among thse disciplines in this context.
Our approach is similar in the sense that we are applying thes concepts to an area that
makes use of them [Swan et al., 1999], but has not had many remehers studying the
formalization of their use. Although Wallschlaeger and Busc-Snyder provide a very clear
description of each element (color, shape, texture, etc.)they fail to formalize the interaction
among them and the issues arising from their simultaneous s a key component in our
research.

In the classi cation and analysis of visual dimensions for dta representation, one of
the rst and most cited works outside of the academic literature for art and design is
Bertin's Semiology of Graphics[Bertin, 1983]. Our approach is very similar to his in that
we are trying to characterize the capabilities of each of ouwisual dimensions individually,
and then build up a model of how they perform in combination. He acknowledges that any
combination of dimensions is possible but he dedicates verfigw pages to formalizing the use
of those combinations. Our studies are designed to gather lawledge and provide a basis for
a formal model for the e ective combination of visual dimendons. Our work also presents
an opportunity to address a main criticism of Bertin's work, that he lacks experimental
results for his factual presentation of visual properties,by providing quanti able evidence
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of his theories.

Bertin describes in extensive detail the associative and sective qualities of what he
calls retinal variables: location, size, value, texture, color (hue), orientation and shape.
Compared to our visual dimensions, he combined saturation &d hue into a single variable
(color), and used texture in a similar way that we use icon spaing. In the case of the
location visual dimension, the datasets we will be working vith have an inherent spatial
component which prevents us from using the location of the \8ual elements as a carrier of
any other information. An example of this are the points on a map: they indicate precise
geographical locations, so distortions from the real locabns would change the map itself
and modify the message (cartograms are an exception to thisn which the visible space
changes its meaning [Bertin, 1983, p.120]).

A signi cant di erence with Bertin's work is that we are deal ing with continuous datasets
instead of discrete ones. In his book, the main examples areentered around map displays,
although charts and information visualization displays are also discussed. Maps are very
close to the kind of display we are going to be analyzing. In oucase, datasets are assumed to
be continuous across the spatial range of the data variablesAlthough maps can contain that
type of dataset (e.g interpolated temperature or precipitaion readings in meteorological
maps), there are many discrete variables (e.g. labor stattics or population maps) that are
not usually interpolated. Our research will extend Bertin's results to continuous data.

Many researchers have followed and applied Bertin's work, ad map making is one
area that has used his work and inspiration extensibly. MacEchren presents an excellent
summary of previous research in cartographic visualizatio [MacEachren and Kraak, 1997].
He expanded Bertin's visual variables to include crispnessresolution, transparency and
arrangement. He also divided Bertin's color into hue and satiration for a total of 12 visual
variables. Although his classi cation is better supported by experimental references from
map makers and perceptual scientists, we miss some discussiabout the specic use of
each variable, both individually and in combination (combinations of hue, lightness and
saturation are briey presented). He provides clues toward the generation of rules for
map-making but does not go as far as presenting such rules.

Cartographic data visualization is an area that uses similardatasets to the ones we
utilize. Techniques and classi cations of visual elementsfor map communication form an
important basis for our model and our choice of dimensions fothe experiments. Along
these lines, MacEachren also describes the three main compents of map communication
as the data, the graphical elements, and the user. He contersdthat a characterization of
all of them must be obtained to create e ective maps. We are castraining our research to
a very speci c type of data and a prede ned set of visual elemats that can potentially be
used to represent that type of data. The end-user's charactdration is represented by our
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set of design factors.

Finally, one of the most cited works on e ective visual desigh for communicating scienti ¢
data has to be Tufte's series of three books on information \gualization [Tufte, 1983, 1990,
1997]. In his books he discusses many examples of cases wHead choices in the design of
visualization displays caused problems and misinterpretdons. He also presents alternatives
for how to x those issues and introduces alternative desigs that, for the most part, are
e ective in conveying the original ideas. It has been said that with Tufte's work bad practice
has been uncovered. Even though this is a very valuable stepttake in any scienti c eld,
the recognition of existing aws, Tufte does not take the nex step and tries to formalize his
views into a coherent comprehensive model. It is very di cult to connect all the extensive
advice given in his work and categorize it in a homogeneous wa It seems clear that was not
the intent of his work, and that is where our approach ts in. W e are trying to build that
model and, for that, we are starting the same way Bertin did in his work: from the ground
up. The examples Tufte introduces present multiple combingions of visual dimensions and
other factors that are very dicult to isolate. We are starti ng with the study of visual
dimensions in isolation and trying to quantify the expressiveness of each of them as they
get combined in increasingly complex situations. In summay, Tufte does an excellent job
at critiquing and analyzing nalized visualization displa ys, but fails at exploring how much
or how little each component of the displays participates inits success or failure.

3.2 Visual Perception

At the other end of the spectrum are perceptual psychologiss and psychophysicists. They
are interested in studying how our eyes and brains perceivegrocess, and store visual infor-
mation. For that, they utilize very basic visual displays th at are designed to trigger very low
level responses on the viewer. This helps them isolate how diividual pieces of information
are processed and build a model for how we perceive the world@nd us. In our case we
are guantifying how visual dimensions are perceived by visal experts and measuring the
e ect that their combination has in the perception of scienti ¢ datasets.

Ware [Ware, 2004] provides an excellent reference toward$é understanding of all per-
ceptual processes involved in information comprehensionColor, texture, form, and motion
are the main elements discussed in his work, beginning fromhe physiological elements
involved in perceiving each of those, up to a series of recomendations for their use in
displaying abstract information. Ware takes a broad approach at information visualization
and, although continuous data are discussed in the book, the are not its main focus. He
provides a very good introduction to the theory of integral and separable dimensions for
visual attributes, but provides little quanti able eviden ce for his classi cation. Our work
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provides such evidence for the displaying of continuous sta data and for how separable
dimensions combine to form complex visualization displays

Along these lines, we have found little experimental evidene about the perception of
combinations of visual dimensions. Callaghan studied how ke and lightness interact in
a texture segregation task [Callaghan, 1984]. She also coraged, in pairs, hue with form
and line orientation [Callaghan, 1989]. Although she reachd interesting conclusions about
which variables dominate and when they interfere, her stimilae were limited to two levels of
the visual variable being analyzed (e.g. horizontal and vetical for the oriented lines), while
the potentially interfering variable was randomized or kept constant. In general, given that
our data are continuous, more than two levels of each visualariable will be displayed. We
have not found any studies for the interaction of more than two visual variables. Note that,
in our displays, all visual dimensions present in our languge must be set. Even when only
a single data variable is being mapped to a single visual dinmesion, there are a whole set
of other dimensions that can potentially interfere with it.

Our experiments are very much inspired by Carswell and Wickas's work [Carswell and
Wickens, 1990] in which they classify di erent graphical attributes into integral, separable
or con gurable dimensions depending upon how each attribué's reading is a ected by the
others, taken pairwise. They found that visual elements carhelp each other when displaying
the same information (redundancy or performance facilitaion), or inhibit each other when
only one element is changing ( ltering interference). They also describe a third type called
condensation in which opposite variation of each variable ocurs simultaneously. Their
experimental displays are based on single icons, looked af iisolation. We are extending
their experiments to more complex displays and, for now, liniting our analysis to Itering
interference analysis (see Section 5.1.)

Our goal is to nd the visual characteristics of di erent vis ual dimensions when dis-
playing quantitative information, where visual saliency is the property that makes one data
value di erent from the next. The measurement of saliency ortexture contrast thresholds
is common in texture segregation studies [Bergen, 1991]. Tse studies utilize stimulae
with regions where the particular visual element di ers in some amount with respect to the
surrounding region [Landy and Bergen, 1991]. This is similato our research in that we are
also measuringjnd's for visual dimensions, but our stimulae include overlappng textures.
Our texture segregation is a more complex problem, since ewea single layer of icons can
contain two or more textures, e.g. one for spacing and one foicon lightness. We are in-
terested in measuring the segregation between these textas, so we cannot directly apply
jnd values from those texture segregation experiments to our mael. Also, many stimulae
are required to explore the full range of a visual dimensionand even more to include inter-
ference analysis with secondary elements. Our studies areedigned to evaluate, with fewer
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iterations, a larger portion of the range for each element.

Moving a little closer to experiments directly applicable to scienti c visualization syn-
thesis, most of the literature about perceptually e ective data representation is based on
experience. Authors de ne sets of guidelines that, in the aBence of visual perception the-
ories [Senay and Ignatius, 1994], follow common practice ahestablished knowledge [Eick,
1995]. In general, these approaches rely on a clear de nitio of the task a visualization
must ful Il, making them di cult to apply in our research. Ou r exploratory visualization
methods are geared towards presenting the data as clearly anwithout bias as possible for
scientists to explore.

In our case, instead of evaluating error or speed for a speat task, we qualify the
di erent methods based on design factors present during exipratory analysis. Also, since
our participants are expert visual designers with years of gperience in design critiques, we
are able to simultaneously evaluate multiple visual dimengns from our language. They
are not new elements for our subjects, so we can exploit theiexpertise in a more e cient
way. This methodology allows us not only to understand how ou visual dimensions are
interpreted by our expert designers, but also how the indivdual visual dimensions are
combined by an observer into coherent percepts [Landy and Mashon, 1991].

Dastani [Dastani, 2002] takes a di erent approach. His goalis to match the structure of
the datasets, relational databases in this case, with the peeptual structure of the visual
dimensions used in the visualization display. Again, this § di cult to apply to our scienti c
datasets, but it is interesting to note that he includes in his discussion the choice of values
for the visual dimensions not mapped to any data variables bustill present in the displays.
We also keep track of these when designers evaluate our vidimation methods, and their
comments on them, so we can build a complete model of utility. Like Dastani, we try to
avoid methods with unwanted visual implicatures by non-mapped visual dimensions.

Our evaluation approach comes closest to the work of HealeyHe has studied extensively
the application of preattentive processing to visualization [Healey et al., 1993]. Preattentive
processing allows detection of visual elements in a displayithout focusing attention on
them. Initially, he focused on experiments comparing hue ad orientation [Healey et al.,
1996]. Participants in his experiments were asked to perfan numerical estimation tasks
with varying hue and orientation di erences, as well as varying display time. Based on this
discriminability experiments, he identi ed guidelines for color selection [Healey, 1996] that
we used for our studies.

He also proposed ViA, a visualization system based on percapl knowledge [Healey
et al., 1999]. The goals of this system are very similar to theones in our research. He
builds, by hand, the perceptual knowledge-base used to suggea visualization method,
while we are gathering that knowledge through subjective ealuations. Finally, Healey used
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perceptually-based visualization displays to visualize dtasets with up to 4 data variables
[Healey and Enns, 1999; Healey et al., 2004].

Finally, in the case of multivalued visualizations, our layering of icon-based visualizations
takes note from Watanabe's texture laciness studies [Wataabe and Cavanagh, 1996]. Tex-
ture laciness de nes the phenomenon that occurs when two texred surfaces are overlapped
and the top one becomes perceptually transparent so the bottm one can be perceived with-
out interference. He identi ed icon similarity as the main element a ecting laciness. In our
case, we want some amount of laciness to be present, itselfrdcolled by the saliency re-
quired by the visualization. Spatial feature resolution was not studied by Watanabe as a
factor of laciness, but it is something we are including in ou studies.

It is important to note that this combination of visual dimen sions into perceptually
relevant entities has been studied for decades, starting wh the Gestalt psychologists and
their laws of perception and grouping [Ellis, 1939]. Thesedws are one of the earliest
attempts to qualify how the human visual system recognizes elationships among visual
dimensions. We are trying to quantify some of those relatioships and apply that knowledge
to the e ective visualization of scienti ¢ data.

3.3 Data Visualization

We titled this section Data Visualization to combine both information and scienti c vi-
sualization literature. Hanrahan [Hanrahan, 2005] recogizes the arti cial and somewhat
unclear nature of the separation between information and senti ¢ visualization, but ac-
knowledges that most of the research aimed at the de nition aad characterization of a space
of visualization methods has been done in the information \dualization eld. Our work is
very much inspired and guided by the classi cation models deeloped for information visu-
alization.

Many researchers in information visualization have folloved and applied the previously
mentioned work by Bertin on graphic semiology. Cleveland wa one of the rst in ordering
what he called perceptual tasks (our visual dimensions) basd on their accuracy when users
read visualization displays [Cleveland and McGill, 1984].[Mackinlay, 1986] augmented his
classi cation by including expressiveness and e ectivenss as the two main measures to
evaluate how well a certain dimension performed representg data. Mackinlay went as far
as to develop a compositional algebra that would describe h@ dimensions and tasks were
matched to choose a certain method. He also acknowledged tlexistence of situations where
visual dimensions would interfere with each other, throwirg o the original classi cations,
but he did not study those cases. This thesis tries to build a snilar classi cation of visual
dimensions and complete the quanti cation of those perceptnal interactions.



45

In our case the task is exploratory, but many researchers hay approached the modeling
of the space of visualizations based on a taxonomy of tasks gGner, 1991; Springmeyer et al.,
1992; Shneiderman, 1996]. Their results vary and are appraojate for the tasks represented,
but they all fall short in the study of perceptual interactio ns when multiple variables need
to be represented. Furthermore, even in the cases where thegpproached the issue, the
type of relational or nominal data they dealt with makes the extrapolation of their ndings
into our domain di cult.

Other examples of modeling the space of visualizations areRpbertson, 1991; Miceli,
1992; Laper, 1995; Lange et al., 1995; Card and Mackinlay, 9; Nowell, 1997; Andrienko
and Andrienko, 1999; Chi, 2000; Nagappan, 2001; Salisbury2001; Jankun-Kelly, 2003].
Most of these works have the commonality of being rule-basedthey rely on building a set
of rules that will guide the visualization synthesis proces. In our case we do not build rules
before hand and rely on experimental evidence to build our kowledge of expressiveness
and e ectiveness for each of our visual dimensions.

Indeed, Johnson, in his list of top scienti c visualization problems [Johnson, 2004],
recognized the quanti cation of the e ectiveness of visualzation methods as one of the major
research areas in this eld. He also included perceptual igges, multi- eld visualization and
theory of visualization, all areas that we are addressing inthis dissertation. Van Wijk, in
two important papers for the eld [van Wijk, 2005, 2006], also discusses extensively about
the importance of quantifying the value and e ectiveness ofvisualization methods. Close
collaboration with the end users to de ne the goals of the visializations and determine a
basis for e ectiveness, is the key to successfully quantifghat value. [Tory and Moller, 2004]
also talked about some of the new challenges the eld of visugation has to tackle and she
concentrated on human factors. She included perceptual mearement of e ectiveness and
an argument for a formal modeling of these to really anchor tke eld and move forward. We
believe we are modestly addressing those issues in this thesand we will make a valuable
contribution to the visualization eld.

[Weigle et al., 2000; Taylor I, 2002; Bokinsky, 2003] are wiks closely related to ours
in the sense that they dealt with scalar elds in 2D and tried to develop new techniques to
display them e ectively. They heavily relied on experimental evaluations to validate their
techniques, but they did not explore what are the fundamentd expressive characteristics of
the visual dimensions that form their visualizations. They built up their techniques based
on previous work and their own experience, obtaining valid esults and developing a layering
technique that let them present e ectively multiple variab les simultaneously.

Finally, our work has also some similarity to the research onmultiple surface visualiza-
tion [Interrante et al., 1997; House and Ware, 2002; House eal., 2006]. These approaches
tried to visualize a 3D object by placing glyphs on its surfae. Since the point of view
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of the object was expected to change, these glyphs did not usilly change based on the
characteristics of the surface. In our case, the overall tetires created by mapping a scalar
eld to visual dimensions could create the illusion of a surbce and might actually represent
one, but the icons are used to indicate the very values beingxglored.



Chapter 4

Using Visual Design Experts to
Evaluate Scienti ¢ Visualizations

The human visual system is a highly optimized pattern detecton and recognition system.
Visualization methods leverage this ability to allow e cie nt data exploration, discovery,
and analysis to support data validation and decision making

Visualization is used in any data-intensive domain: data minng, meteorology, geogra-
phy, transportation sciences, environmental studies, unertainty analysis, and evolutionary
biology are some example application domains. In these eld, a common problem for visu-
alization experts is: given a large set of multivalued data ad hypotheses a scientist would
like to address, what visualizations best represent the daa? And how do we best evaluate
these visualizations? Furthermore, does a good method forvaluation provide su cient
information to improve the visualization methods?

We hypothesize that using visual design experts to perform gtique-based evaluations
can let us quantify the expected performance of visualizathtn methods as well as elicit xes
for visual design problems that are often di cult for a domai n or visualization expert to
articulate. Evaluation of scienti ¢ visualization method s is typically either anecdotal, via
feedback from or observation of, scienti ¢ users; or quantiative, via measurement of the
performance of relatively nawe users on simple abstract asks. In this study we add visual
design experts to the pool of evaluators (see Table 4.1).

Here we propose expertise in visual design as the basis of aswualization evaluation
methodology that assesses the e ectiveness of scienti ¢ sualizations, providing reasons
for that e ectiveness and suggesting improvements. Our paticipants, visual designers and
illustrators, are experts in evaluating visuals for targeted communication goals; while their
results are often appealing and aesthetic, they rst must sdisfy the communication goals,
which in this case means presenting scienti ¢ data for e ectve exploration. They are trained
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Table 4.1: Pros and cons analysis for each type of subject incienti ¢ visualization evalua-
tions.
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to optimize visual resources in a visual design problem; theiltimate goal of our research is
to quantify and model this optimization process.

To achieve this we have performed a series of experiments tova@uate how e ective these
experts are at evaluating these types of displays.

During the rst experiment [Jackson et al., 2003; Acevedo etal., 2007b], artists and
visual designers graded the vector visualization methodsrém a previous study [Laidlaw
et al., 2005] on the basis of their subjective estimates of & performance and also verbally
critigued each method's e ectiveness.

The results from this experiment encouraged us to develop a ethodology to evalu-
ate scienti ¢ visualization methods using expert visual designers. This led to our second
study where expert illustration educators evaluated multiple 2D scalar visualization meth-
ods [Acevedo et al., 2005].

The purpose of these two studies is to learn how visual desigms evaluate scientic
visualizations against certain design and scienti ¢ goals Understanding this process should
help us build better evaluation methods, particularly onesthat will both judge visualizations
on their scienti ¢ merits and provide insights into improvi ng the design of our visualizations.
This, in turn, should speed up and improve its results.

4.1 Critique-based Evaluation of 2D Vector
Visualization Methods

Our hypothesis was that designers would rank the methods siitarly to the objective task-
performance measures in [Laidlaw et al., 2005]. We also hogdehat the critiques would help
us understand why methods work well by identifying which visual dimensions within each
method worked best for the given tasks. Our results are constent with our hypothesis.

4.1.1 Methodology

In order to evaluate the e cacy of our designer critiques, we modeled our study on a previ-
ous quantitative user study [Laidlaw et al., 2005] comparirg six 2D vector eld visualization
methods on three di erent tasks using expert and novice scigtists. Having designers eval-
uate the same six visualization methods, using the same taskas in the previous study, let
us validate our designers' ability to evaluate scienti ¢ visualizations e ectively.

In [Laidlaw et al., 2005] , users were asked to evaluate the migs of the six visualization
methods shown in Fig. 4.1:

GRID: icons on a regular grid.
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GRID JIT LIT

LIC OSTR GSTR

Figure 4.1: The same vector eld as visualized by the six visalization methods critiqued
by the designers.

JIT: icons on a jittered grid [Dippe and Wold, 1985].

LIT: icons using one layer of a visualization method that borows concepts from oil
painting [Kirby et al., 1999b].

LIC: line-integral convolution [Cabral and Leedom, 1993].
OSTR: image-guided streamlines (integral curves) [Turk andBanks, 1996].

GSTR: streamlines seeded on a regular grid [Turk and Banks, 996].

With these methods, users were asked to perform three tasksesigned to mimic generic
tasks uid- ow experts would use to investigate a ow eld (Fi gure 4.2):

Counting Task: Choosing the number and location of all critical points (CP) in an

image.
Type ID Task: Identifying the type of a CP at a speci ed location.

Advection Task: Predicting where a particle starting at a speci ed point wil | advect.
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a) b) €)

Figure 4.2: Sample stimuli for the three experimental tasks The solutions for each, marked
in red, were provided to participants during the subjective critiques. Their goal was to judge
how accurately and quickly a real user of the visualizationswould perform these tasks for
each method. (a) Counting task with three critical points visible, (b) Type ID task with a

saddle-type point (marked in blue), and (c) Advection task with a small red circle indicating

the location to where a particle in the center of the large blwe circle would advect.

Seventeen users were run through the 90-minute computer-cortlled experiment [Laidlaw
et al.,, 2005]: ve were uid- ow experts and 12 were rst- or second-year applied math
graduate students with little previous experience in compuational uid dynamics. Details
of the results are given in [Laidlaw et al., 2005].

In the present study, visual designers were asked to judge #hsix visualization methods
on their ability to convey the information necessary for a user to complete the three tasks
accurately and quickly. Figure 4.3 shows one of our visual dggners critiquing the six meth-
ods. The experiment took an average of 60 minutes. Six expest who were compensated
for their participation, judged all six methods for all task s (within-subjects design). As a
training exercise, all designers took the objective compugr-based study rst. Participants
could ask the experimenter for any necessary clari cation dring the experiment.

Designers evaluated the methods using printed images fromhtee dierent datasets
simultaneously. This allowed them to critique a visualization method on its own expressive
capabilities and not on its speci c instantiation for a data set. (The training on the computer
helped here.) The methods for each task were rated separatelsing letter grades (GPA-
style: F, F+, D-, D, D+, C-, C, C+, B-, B, B+, A-, A, A+) accordingtot wo measures:

How well the method would let a user perform the given task acuarately.

How well the method would let a user perform the given task quckly.

Finally, after the critique was completed, designers were sked to create a new visualization
of a given data set that would enable users to perform all thre tasks quickly and accurately.
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Figure 4.3: During the study, designers rated the di erent methods subjectively, based on
accuracy and time to perform the task. They could also apprase how the visual dimensions
used in each method would a ect their performance.
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Table 4.2: Linear regression results between designer grad and numerical results
from [Laidlaw et al., 2005].

4.1.2 Numerical Results and Discussion

We posed two hypotheses at the onset of this study: rst, that designer ratings would be
similar to the quantitative performance measures for each ask in the previous study [Laid-
law et al., 2005], and second, that the designer critiques wadd provide additional insight
into the merits of each method and how to improve them. Table 42 summarizes the linear
regression results between the designer grades from the cant study and the numerical
results from [Laidlaw et al., 2005]

We look rst at the critical-point-counting task. This is the m ost di cult task because
no visual cues are present to guide user performance (as therare for the advection and
critical point identi cation tasks [Laidlaw et al., 2005]) : during this task, users see only
the ow eld. Note that, apart from their response time ratin g, designers could give only
one rating for the other two accuracy variables measured: amracy of nding the correct
number of critical points and accuracy of placing the critical-point markers precisely on their
locations. Participants in the objective study performed these last two tasks simultaneously.

Figure 4.4(a) shows the regression analysis for mean perdage correct in counting the
critical points, and also the mean designer grades. It is clar that the designers' pattern of
performance matches the quantitatively collected perforrance measure for this task very
well (R? = 0:941F = 63:9;p = 0:001). Figure 4.4(b) shows the regression analysis for
mean critical-point-location error and the mean designer graes. Again, the designers’
pattern of performance matches the quantitatively collected performance measureR? =
0:956 F = 87:6;p=0:001). Last, Fig. 4.4(c) shows the regression analysis for thmean time
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Figure 4.4: Regression analyses for the critical-point-couimg task, with plots for counting
accuracy (a), location accuracy (b), and response time (c).
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b)

Figure 4.5: Regression analyses for the critical-point-typadenti cation task, with plots for
type accuracy (a), and response time (b).

to complete the critical-point-location task and the mean desgner grades. Once again, the
designers' pattern of performance matches the quantitatiely collected performance measure
(R?=0:676F =8:3;p=0:045).

As can be seen from the graphs in Fig. 4.5, the designer gradetosely matched the
pattern of performance in the original quantitative user study for the critical-point-type
identi cation task, both accuracy ( R? = 0:722F = 10:4;p = 0:032) and response time
(R?=0:679 F =8:5,p=0:044).

However, for the advection task, the designer grades did notuite match the previous
experiment's pattern for accuracy (R? = 0:615F = 6:4;p = 0:065). Also, no regression
model t the designer ratings to the quantitative response time measure R? = 0:249 F =
1:3;p=0:314).
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Figure 4.6: Regression analyses for the advection task, wit plots for accuracy (a), and
response time (b).
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This last discrepancy can be explained by looking at one visalization method in partic-
ular: line integral convolution (LIC). As seen in Fig. 4.1, LIC shows no information about
the ow direction, and this is detrimental in performing the advection task. In order to com-
pensate for this known problem, a direction icon was placed tathe lower-left corner of the
image to let users extrapolate the ow direction across the atire image. The time needed
for this extrapolation contributed to the large increase in completion time for this method
in the previous user study. Most designers viewing this methd for the advection task sug-
gested adding direction icons sparsely throughout the imag; having seen this easy x, they
tended to grade the completion time for this method leniently, resulting in the poor corre-
lation between the two sets of data for this task. Removing ttis polemic method from the
regression analysis yields signi cant results for accurag (R? = 0:852 F = 17:2;p = 0:025),
but does not improve the response time regression result®R€ = 0:389 F = 1:9;p = 0:261).
Figure 4.6 shows the linear regression plots for this task v and without LIC.

4.1.3 Design Issues and the Development of a New Method

Apart from those numerically signi cant results that valid ate their evaluations, partici-
pants provided additional design insights into how to improve the visualization methods to
potentially yield quick and accurate information on the ow elds in the three given tasks.

JIT was rated as the \worst" method because its elements werdtoo small." OSTR,
on the other hand, was possibly the \best" method, although ®metimes \very sharp turns
don't give a sense of movement as well as others." GRID, like IT, has elements that are
\too small to be e ective,” and \the regularity of the grid in duces a false sense of structure
that is di cult to ignore." LIC is \OK" but is perceptually \t 00 even" with \not enough
contrast," and its elements \don't provide a good sense of awv direction," which is key for
some tasks. \lts good sense of tactility connects the user wh the concept of ow," but
this aesthetic appreciation did not a ect the participants ' scores, which concentrated on
task performance. LIT and GSTR were both \good representatons for doing the advection
task,"” but LIT had elements that were \a little small" and GST R was a bit \scary" to look
at, since the visual elements seemed to \pass over each otherComments about the size
were also common, indicating this dimension as the rst canddate for modi cation in order
to increase the e ectiveness of most methods.

In addition to these critiques, we asked the designers to dégn a new visualization
method for a sample vector eld data set that would address al three tasks. Figure 4.7
shows one of these designer-created visualizations; this age was created by hand using
tempera paint, charcoal, and pencil. As you can see, this dégner added direction icons,
used streamlines to suggest ow structure and thus aid in idetifying particle advection,
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Figure 4.7: After the experiment, designers were asked to eate a new visualization design
that would outperform the six methods presented. This imageshows one of the results.
Black ow lines help in the advection task, and white marks indicate direction of the ow.
Critical points are clearly marked by large white dots, and aitical point type is indicated
by the surrounding arrows.

placed icons around the critical points for easy identi cation, and put dots on the critical
points to make them easy to locate. It is interesting to see hav some of the comments above
are exploited in this particular solution. The tactility of LIC, for example, is retained, while
its directional ambiguity is solved through small additions. We found that participants
designed to the tasks presented and missed the implicit taskf \understand the overall ow
structure and features".

4.1.4 General Discussion

These results validate our initial hypotheses, but they leae some open questions. Even
though the tasks are interesting scienti cally, designersseemed to nd it very easy to evalu-
ate them. The concepts in their critiques were very basic, een though all six of our methods
were state of the art for 2D ow visualization. The speci cit y of our tasks did not tax our
participants' design expertise . As can be seen from Fig. 4,7a task-oriented design query
yields, naturally, a highly explanatory visualization method in which answers to all three
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tasks are explicitly depicted. We surmise that assigning a &sk that requires a more holistic
understanding of the datasets will bring out the best in the designers, and that the results
will be more e ective the greater the designers' expertise.

While the initial study [Laidlaw et al., 2005] found no di er ences between experts and
non-experts in performing the quantitative tasks, our subjective tasks may elicit some dif-
ferences among participants with di erent levels of experise, as suggested in the HCI liter-
ature [Nielsen, 1992]. In particular, we believe that the paticipants' visual design expertise
is key to providing the types of comments they did during our experiment.

Finally, since the ratings obtained from designers are largly qualitative and do not
provide the numeric values necessary to design a visualizan method, combining objective
and subjective experiments using designers will lead to bétr, more directly usable results,
con rming the hypothesis from Tory and Meller [Tory and Mol ler, 2005]. This combination
of quantitative and qualitative studies would yield both nu meric performance estimates and
guidance on what aspects of di erent visualization methodshelp or impede performance on
certain tasks.

4.2 Evaluation of 2D Scalar Visualization Methods by Illus-
tration Educators

Following the results from the previous study, we set o to quantify how much each indi-
vidual visual dimension that forms our visualization methods participates in their success
or failure. We would have liked to obtain this information fr om the previous study, but the
speci city of the tasks, and the non-uniformity, in terms of t he visual dimensions utilized,
of the six ow visualization methods used, prevented our paticipants from consistently
commenting about the exploratory use of the methods or that @ their intrinsic visual di-
mensions.

In collaboration with educators from the lllustration Depa rtment at the Rhode Island
School of Design (RISD), we de ned a space of eleven visual miensions(see Figure 4.8).
These eleven dimensions were considered su ciently expras/e and representative for an
initial exploration of the space of visualization methods. In order to evaluate the individual
expressive power of each dimension, we used them to visuaizsingle-valued continuous
scalar datasets in 2D.

We created a framework for evaluating these visual dimensios through feedback from
expert visual designers and art educators. Our framework nmics the art education process,
in which art educators impart artistic and visual design knowledge to their students through
critiques of the students' work. We established a set of degin factors that characterize the
exploratory nature of our visualizations without focusing on any particular explanatorytask,
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Icon Hue Icon Saturation Icon Lightness

(HUE) (SAT) (LIGHT)
Icon Transparency Icon Orientation Icon Size
(ALPHA) (ORIENT) (SIZE)
Icon Spacing Plane Hue Plane Saturation
(SPA) (PHUE) (PSAT)
Plane Lightness Plane Transparency
(PLIGHT) (PALPHA)

Figure 4.8: Visual dimensions. In this experiment we asked »@ert visual designers to
characterize the utility of each of these dimensions indivilually.
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such as search for extrema or analyzing data gradients.

This study represents our initial step towards our nal goal, which is to create a math-
ematical model of the knowledge collected from design exper and use that model to nd
a solution for a data visualization problem.

4.2.1 Methodology

In this particular study we had ve participants, all expert educators from the lllustration
Department at RISD, evaluating 33 di erent visualization m ethods. The number of methods
comes from 11 visual dimensions and 3 di erent parameterizéons for each one (see Table 4.3
for details on each method's parameterizations).

Following what we did for the previous study, we tried to eliminate the e ect of the
dataset from the analysis by showing 4 di erent single-valu@l datasets, shown in Figure 4.9.

In summary, we created a total of 33 4 = 132 images that we printed and placed on
the wall for our subjects to critique. The setup is shown in Figure 4.10.

The design factors we de ned provide information about the quality of the data pre-
sented and the capability of a visualization method to work in combination with other
methods. For this particular experiment we had a di erent set of factors than the ones
introduced before. These factors are:

Data Resolution (DR): the number of di erent levels of a data variable that can be
distinguished by a viewer.

Spatial Feature Resolution (SFR): the minimum spatial feature size that can be reli-
ably represented with a method, expressed as a percentage dfd image width.

Visual Linearity (LI): the perceptual linearity of the mapping from data value to visual
dimension; this factor is measured by asking participants b indicate the locations
where they see the values of 0, 0.25, 0.5, 0.75, and 1.0 alongetimage for a linear
dataset visualization.

Visual Bandwidth (VB): the percentage of a method that can be occluded when com-
bined with other methods but still remain readable. This dedgn factor is aimed at
estimating how di erent visual dimensions will perform in m ultilayer methods.

Dominance (DO): the forcefulness orpunchinessof the data mapping. This indicates
how much a method would dominate the composition when combiad with other
methods, measured as a value from 0 to 10.

Time to Read (TR): the time it takes an average user to comprehend the data, mea-
sured in seconds.
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Table 4.3: The exact parameterizations presented to our sujects for all 11 visual dimen-
sions. Orientation is measured in degrees from the horizoal direction, size in pixels, and
spacing also in pixels (for 800 800 images). The pairs of values in the yellow cells indicate
the minimum and maximum values of the mapping ranges for eachmethod. Mappings are

linear in all cases. The red arrows to the right indicate the marticular methods shown in
Fig. 2.10.

Figure 4.9: During the study, participants were presented wth multiple visualization meth-
ods representing these four single-valued datasets. The tsone is a linear dataset, while
the rest are general, continuous and smooth changing heighglds.
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Figure 4.10: A participant in our study critiques visualizations of single-valued 2D datasets.
Illustration educators were shown a total of 132 visualizatons corresponding to 3 parame-
terizations of 11 visual dimensions and 4 di erent datasets For each parameterization, they
evaluate all 6 of our design factors (bottom of the image). Hee, one of our participants
comments on the reasons for her ratings.
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Note that dominance intends to represent what we called saéncy, while visual bandwidth
and time to read are both factors included in our de nition of perceptual interference. This
experiment preceded the de nition of our perceptual experiments, hence this set of factors
is a superset of the ones we nally used for our utility models In later chapters we will
compare the results using these 6 factors with the results usg our nal set of 4.

As explained before in Chapter 3, Bertin [Bertin, 1983] devéoped a similar classi cation
for his \retinal properties” (size, value, texture, color, orientation, and shape) according to
their level of organization (whether they could be used to r@resent quantitative, qualitative,
or ordered information) and the number of steps they could tée (our data resolution factor).
Our design factors introduce new measures, like linearityand also capture some composition
characteristics, like visual bandwidth and dominance. Our data resolution and spatial
feature resolution factors capture the fact that we are targeting quantitative datasets.

For this experiment we created a novel experimental methodlmgy for capturing quan-
titative knowledge from visual design experts. This is a clar improvement with respect to
the previous study, since we are trying to provide designers way to convey their critiques
through the use of our design factors. We videotaped the semms, which last approximately
3 hours, and we asked participants to provide in-depth explaations of the numerical ratings
and their thought process.

For their training, participants were introduced to all met hods and design factors the
day before their critique, when they were given the instrucions for the experiment. A
webpage! was available for them to review all visual dimensions we wes interested in,
as well as the goal of the experiment and the introduction to he di erent factors. They
were encouraged to familiarize themselves with all parts ofhe experiment and write down
any questions they had. They were instructed not to actually perform the design factor
estimations. Before and during the actual evaluation sessins, participants were allowed to
ask any questions or make any comments about the study.

4.2.2 Results

The results of this study allowed us to characterize the expessiveness of individual visual
dimensions when visualizing single-variable scalar datase for exploratory visualization.

In general, the between-subject scores had a very high varime. While we believe the
relative balance between methods was maintained due to hamg all stimuli presented at
once and allowing score modi cation, each participant had hs or her own range of values
for each design factor. Hence, we normalized all the scoregrfeach participant individually.

We obtained, then, a relative measure for each design factorFigures 4.11, 4.12, and 4.13

Lhttp://www.cs.brown.edu/people/daf/study
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(a) (DR) Data Resolution: higher = more levels

(b) (SFR) Spatial Feature Resolution: higher = higher resolution

Figure 4.11: Normalized mean results for all methods (trankted so min = 0). Error bars
indicate standard error.
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(a) (L) Linearity results: Fitted power coe cient, ,fory=x

(b) (VB) Visual Bandwidth: higher = can be occluded more

Figure 4.12: Normalized mean results for all methods (trankted so min = 0). Linearity
results are not normalized nor translated. Error bars indicate standard error.
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(a) (DO) Dominance: higher = more dominant

(b) (TR) Time to Read: higher = faster to read

Figure 4.13: Normalized mean results for all dimensions (@nslated somin = 0). Error
bars indicate standard error.
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(a) Overall inverse rank results. Max:Possible =33 6 =198

(b) Overall inverse rank results without Linearity.
Max:Possible =33 5 =165

Figure 4.14: Stacked-columns summary visualization of invese rankings for all design fac-
tors (a) (best is 33, worst is 1, for each factor). Since we carx linearity by remapping the
data to the visual dimensions using the power function, we ca eliminate that factor from
the overall ranking score. We show this in (b).
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show the normalized results for all factors. It is easy to spphow methods that work very
well for some factors really struggle in others. These graph show the relative strength of
each method and their relative di erences, since absolute alues cannot be obtained back
from these normalized scores.

With these results, we obtained an inverse ranking (33 is bas1 is worst) based on the
mean normalized scores. Figure 4.14 shows an overall summaojf rankings. We used a
stacked-columns graph where the larger the colored area foaeh factor the higher value that
dimension obtained. We can see how, if the goal is to obtain tl best possible visualization
method with respect to all factors (with equal weights), we @n just pick the top method
(Plane Lightness 1 in this case, i.e. full grayscale represéation, not surprisingly.) If weights
are required, then an optimization process can be easily setp to solve for a set of methods
that ful Il the goals best.

4.2.3 Discussion

In general, all our participants felt this is an important an d very interesting line of research.
None of them were used to making numeric judgments about task they perform from
experience. They understood our goal of trying to extract that expert knowledge but
we felt that, in this case, we over-taxed their expertise by m&ing them concentrate on
numbers. They enjoyed the freedom of asking questions and phaining their decisions, but
the ultimate need for a numerical estimation created problens.

The study setup was also well received. They are used to compative critiquing in
class and in art and design critiques, where comparative ctiquing is an established tech-
nique [Feldman, 1994]. Being able to do these comparisons lped self-balance the evalu-
ations within each participant's results and made them muchmore con dent of their own
evaluations. For this reason we had very good intra-rater rahbility for each participant,
but it was di cult to get good inter-rater reliability.

This comparative critique required printing the stimuli, w hich meant all hue, saturation,
lightness, and transparency images were very much in uenadby the quality of the printing.
We believe, as did our expert subjects, that extra care must le taken in creating this images
in the future, but the advantage of having them all visible at once outweighed the use of a
high resolution monitor (potentially the tool used by end-users) to view images one by one.

The main problem with our results was the high variance we ob&ined among the ve
experts. Our hypothesis is that this could be due to their slghtly di erent interpretations of
some of the factors. Also, although our use of expert educats, as opposed to students, was
based on the expectation that they would be able to distance ltemselves from their personal
taste, this is very di cult to achieve. As you can see by the standard error bars displayed,
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even with the normalized scores our participants showed a tatively high degree of variance
in their responses. We decided that a ranking of the means wdd be the appropriate way
to report our results. We believe the high standard errors pint more to a methodological
problem (correct explanation of design factors, calibratel printing, etc.) rather than true
signi cant di erences in the methods' performances.

The rankings shown in Fig. 4.14 (b) provide a good overall impession about the utility
of the dierent methods. In general, full range methods (the #1 parameterization for
most dimensions, as shown is Table 4.3) obtained the best s@s and, in particular, color
plane methods performed better than icon-based methods. Amay the icon-based cases,
size and spacing have a very consistent set of high ranking®if most design factors. This
was expected, given that these methods do not depend on goodripter calibration or
illumination conditions in the room. Orientation would be t he other method in this category,
but it performed quite poorly due to the overwhelming sense & ow it conveys, one that
interferes with the scalar reading of the individually oriented icons.

As mentioned before, one advantage of using design expert® tdo the evaluations is
that they can pinpoint reasons why a method does not work. Thg commented about the
neutrality of the shapes used; circular icons would be bettethan square ones, since square
ones create very visible orthogonal lines that mislead the iewer. Also, they mentioned
the very prominent e ects of the negative space; we must takeextra care in doing a very
even random placement of the icons, since holes are very qulg detected and incorrectly
interpreted as data features.

Commenting on the appropriateness of our design factors, anof our participants noted
that the choice of an e ective visualization method will be a ected by what the data actually
is, e.g., visualizing temperatures is not the same as lookmat wind speed or altitude data.
In our case, we want to apply our resulting design knowledged any type of scalar data,
so we are considering the use of a seventh factor calledtuitive association. This would
measure whether there are any associative readings of a mett that might interfere with
the desired numerical reading and should be avoided.

It is important to note that some of the factors we chose, in paticular visual bandwidth
and dominance, are aimed at multivalued visualization situations. We decided to include
these factors to introduce our participants further to what real cases would be. We re-
minded them that single-valued scalar eld visualizations were used for the purposes of this
particular study only, but our nal goal was to understand ho w these dimensions work in
combination for complex multivalued datasets. The same waywe did for the previous vector
eld visualization study, in the next chapter we will correl ate these subjective scores with
more quantitative perceptually-based experimental resuls from our next set of experiments.

Finally the length of the study was deemed excessive by all géicipants. Some of them
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took as long as 6 hours to complete all evaluations. Even wheme moved the training
session to the day before the critigues, and provided them wh an online resource for
reference, forcing them to do a continuous critique sessioprobably impacted the results
due to fatigue: participants had to provide a total of 165 numerical estimates, the visual
linearity ratings, and explain out-loud their thought proce ss throughout the experiment.

4.3 Conclusion

The number of options available to solve a visualization prdlem is far too great for a full
analysis of the design space, and expert visual designersrcaelp us explore this space more
e ciently. The cost of training designers in the scienti ¢c g oals of the visualization methods
is more than recovered by their ultimate contributions.

The experiments presented here lay out ways of using expertisual designers as evalu-
ators of mappings between the data and the visual dimensionghat form our visualization
methods.

The main result of these two studies is that designers can evaate scienti c visual-
izations e ectively: they provide extra information, such as reasons for the good or bad
performance of visualization methods, that participants knowledgeable in the speci ¢ scien-
tic eld cannot give us. We successfully correlated their subjective critiques with previous
studies and we obtained new insights into how di erent methads work.

This thesis continues this line of research by combining pereptual experiments and
subjective critiques. This strategy should yield the best ¢ both worlds while allowing
a complete, if always hypothetical, analysis of the high-dinensional space of exploratory
scienti ¢ visualization methods.



Chapter 5

Experimental Evaluation of
Perceptual Interactions

To solve some of the problems revealed by the previous studie we turned to a more
psychophysically oriented design for our experiments. Rging on simpler, more perceptual
tasks would make it easier to get reliable quantitative datg but it would lead us away from
the bene ts of using subjective critiques from expert visud designers.

Our goal with these studies is to analyze the quality of the dda we can obtain and how
we can build upon it to accomplish our overall goal of modelig the utility of visualization
methods. To that end we reduced the number of dimensions to a enageable size so we could
explore the subspace they form as exhaustively as possibleédAccomplishing our goal with
this few visual dimensions would clarify the methodology toincorporate other dimensions.

In this chapter we describe two experiments. In the rst expeaiment we quanti ed how
perceptual interactions among visual dimensions a ect e ective data exploration. During
the experiment, participants quanti ed three di erent des ign factors for each method: the
spatial resolution it could represent, the number of data vdues it could display at each
point, and the degree to which it is visually linear. lcon saturation, icon lightness, icon size,
and icon spacing are the four dimensions we evaluated. We mea®d ltering interference
for all three design factors, which characterizes how di eent levels of a visual dimension
held constant a ect the evaluation of a data-coupled dimenson.

The second experiment goes a little further in exploring mutivalued datasets. In this
study we perform an experimental quanti cation of how factors such as icon size, spacing,
layer order and color a ect the relative saliency and interference among ve di erent di-
mensions: saturation, lightness, orientation, size, and gacing. We included orientation in
this experiment to compare our results with existing visualzation literature [Healey et al.,
2004] using orientation as a method to visualize continuouscalar elds. These two design
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factors serve to represent what dominance, visual bandwidt and time to read represented
in our second study with expert visual designers.

Our novel experimental methodology in both studies allows 8 to generalize this per-
ceptual information, gathered using ad-hoc arti cial datasets, onto quantitative rules for
visualizing real scienti c datasets. From both experiments we were able to t mathematical
models that describe the relationships among dimensions @htheir expressiveness charac-
teristics.

5.1 Subjective Quanti cation of Perceptual Interactions

During this experiment, participants quanti ed three di e rent design factors for each method:
the spatial resolution it could represent, the number of dat values it could display at each
point, and the degree to which it is visually linear. These fam a subset of the design
factors we evaluated before, but represent the basic factarfor single-variable visualization
methods.

We devised three di erent tasks that participants would have to perform in order to
provide us with their evaluations. In the previous experimeits we asked participants to
judge how easy or hard it would be for a real user of a visualizion to perform a certain
task. This is meaningful from the point of view of an illustration expert, but we wanted to
measure the actual perceptual capabilities of our visualiation methods. To accomplish this
we must test the participant's perceptual system and extrad our characterization based on
their results on those tests. These indirect perceptual taks should make the experiment
easier on the participants but still powerful and generalizable from our perspective.

The main novelty of our approach is the quanti cation and modeling of how the di erent
visual dimensions interact with each other. This interaction can be explored at many
levels [Carswell and Wickens, 1990] but the present study ifimited to Itering interference
among the various elements. This type of interaction is basa on the visual dimensions being
mapped to data one at a time, while the rest remain constant amss the visualization. We
chose to limit our experiment to four visual dimensions: ica saturation, icon lightness,
icon size and icon spacing. We realize that these choices @itéy constrain our otherwise
exponentially large exploration space but, with just theseelements involved, we are able to
generate an extensive set of examples for our experimentabgticipants to evaluate.

5.1.1 Methodology

Table 5.1 shows the values we chose for each of the four visudimensions involved. Size
indicates the diameter of the circular icons, while spacingindicates the distance between
two icons. We utilize a Poisson disk distribution to randomly place icons across the image.
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Table 5.1: Values used for each of our visual dimensions.

We experimentally chose the upper limits for size and spacig so we could explore methods
with reasonable spatial feature capabilities.

With these parameters we de ned six possible value ranges,girs (Iy; ), for each visual
dimension: (000; 0:33), (0:00; 0:66), (0:00; 1:00), (0:33;0:66), (0:33;1:00), and (0:66; 1:00).
Here, and in the rest of this chapter, we will use these normated values to refer to the ranges
of all our dimensions. That way, for size, a range of (fD0; 1:00) will correspond to a range
of (2; 10) in pixels. Similarly for spacing ranges. For icon saturéion and lightness methods
we combined these six ranges with all possible combinationfor the other two dimensions,
creating a total of 96 visualization methods. For icon size ad spacing methods we kept icon
saturation and lightness constant at 1.00, so 24 combinatins (6 4) were de ned for each
of those two dimensions. Note that even constraining our expriment to a small number of
elements, and only four possible values per element, the nuper of combinations is quite
large: 240 di erent visualization methods.

Data Resolution Identi cation Task

For this task we asked participants to evaluate how many di erent levels of the data variable
a method is able to represent. Figure 5.1 explains how we créed the stimulae for this task.
The task participants were asked to perform was to de ne in wtat region of the image they
perceived a sine-wave pattern. Since they were told the patten would be more pronounced
at the top left corner of the image, they just needed to place 3marks to approximately
bound the region where they perceived the pattern.

Using a vertical sine-wave pattern with constant spatial frequency, , across the image
(Figure 5.1(a)), we linearly decrease the amplitudea from left to right (Figure 5.1(b)).
While the amplitude values remain constant vertically across the image, we linearly move
the zero value of the sine-wave fronra=2 at the topto 1 a=2 at the bottom. Figure 5.1(c)
shows the nal appearance of such a dataset using grayscale.

To create these datasets we had two extra variables to x, theinitial amplitude a
and the frequency . We tested several values for these variables and decided ®valuate



75

a) b) c) d)

Figure 5.1: Process for creating the stimulae for the data reolution identi cation task. (a)
Shows a vertical sine-wave dataset. (b) Shows the same dataseith amplitude values a
linearly decreasing from left to right. (c) Shows the nal appearance of the datasets used
for this task, where we also linearly move the zero value of th sine-wave froma=2 at the
top of the image to 1 a=2 at the bottom. (d) Shows how participants would mark the
area where they perceive the sine-wave pattern.

eight di erent combinations using two amplitude values (a = f0:2;0:6g) and four spatial

frequency values ( = f160, 80; 40; 20g measured in cycles across the image widtlg=width).

To avoid multiplying by 8 the full set of 240 methods, we decidced to use only combinations
that utilize the full range of the data-mapped visual element, i.e. b = 0:00 andg = 1:00.
During the analysis of the results we can still describe the dta resolution capabilities for
any subrange. Figure 5.2 shows examples of images used foighask for each of the four
visual dimensions.

To obtain actual data resolution values we developed the fdbwing process. The marks
placed by a participant delimit a region on the image where the pattern is visible (see
Figure 5.1(d)) . The right and bottom boundaries indicate lines where the di erence between
the extremes values of the sine-wave are last perceived by theibject, i.e. thejust noticeable
di erences (jnd) boundary. The basic idea to obtain data resolution values $ to follow these
boundary lines, starting from the top mark, jumping from one level to the next a distance
equal to the amplitude at each point. With this process we wil also obtain actual values,
in the range (0:00; 1:00), for each level identi ed.

Since there are two di erent initial amplitude values used, the results will overlap after
a certain distance. The total data resolution of a visualizaion method will be given by the
number of levels obtained for thea = 0:2 dataset, plus the number of levels for thea = 0:6
datasets with values greater than the maximum level obtainel from the a = 0:2 dataset.

Spatial Feature Resolution Identi cation Task

For this task we asked participants to evaluate the size of tle smallest spatial feature a
method can represent. Our approach for this task was to indiectly ask the question by
exploring the limits of each participant's visual perception. In this case our datasets were
vertical sine-wave patterns that maintain constant amplitu de a but linearly change their
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c) d)

Figure 5.2: Examples of various stimulae used for the data reolution task using saturation
(), lightness (b), size (c), and spacing (d). All of them with =20 c=width and a=0:6.
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a) b)

Figure 5.3: (a) Shows an example stimuli for the spatial featire resolution identi cation
task dataset, with wavelength linearly decreasing from right to left. (b) Shows the stimuli
for the visual linearity perception task.

frequency, , from left to right across the image. Figure 5.3 (a) shows an eample of this
dataset using lightness values from 0.00 to 1.00 (i.ea = 1:0).

By asking participants to place a mark when they stop perceiing the sine-wave pattern,
we obtained our minimum feature size measurement. =2 at that point would be the
minimum spatial feature a method can represent. For this tak we use all 240 visualization
methods mentioned before. The amplitude for each display isndicated by the range (b; ).
Figure 5.4 shows examples of images used for this task for daof the four visual dimensions.

Visual Linearity Perception Task

In this task participants were shown visualizations of a linear dataset that progressed from
a value of 0 on the left of the image to a value of 1 on the right ede (see Figure 5.3 (b)).
They were told that 0 and 1 were at the very edge of the images athwere asked to place ve
marks for the values of 00; 0:25; 0:50; 0:75;1:0. The two extremes would indicate regions
where they do not perceive a change in the visualization's ber regions. A visually linear
method would maintain a constant ratio between data changesand visualization changes.

Experimental Setup

We ran a fully randomized within-subjects study where 6 compuer science graduate stu-
dents performed all three tasks on the computer screen for an lightness, size and spacing.
The data resolution task for icon saturation was ran separatly, since we decided to include
saturation as one of the modeled elements after the experinme with the rst three was
already done. Also, the results obtained for the other two tasks for the rest of the visual
dimensions indicated we only required this task to be perfamed.

The full study (for icon lightness, size and spacing) consigd of 9 separate sections (3
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c) d)

Figure 5.4: Examples of various stimulae used for the spatiafeature resolution task using
saturation (a), lightness (b), size (c), and spacing (d). Al of them with (0 :00; 1:00) range.
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tasks 3 elements) with a training subsection and a real trial subsetion within each one.
Response time was recorded for the real trials. There was ndrhe limit during any part
of the study, although participants were instructed to proceed as quickly and accurately as
they could. Participants took an average of one hour and fory minutes to complete the
whole study and were paid for their participation. They were given written instructions
before each task. Stimulae for all tasks consisted of images size 900 900 pixels displayed
one by one on an LCD display.

5.1.2 Results and Discussion

Our results successfully characterize the capabilities adach visual dimension, using a variety
of value ranges, in combination with potentially interfering dimensions.

Our spatial feature resolution results con rmed our expecttions. The minimum size
feature perceived by our participants can be modeled as:

Wo(Vi) = si + pi;

where s; is the size of the icons andp; their spacing, all of them in the same units (e.g.
pixels or % of the image width.) Note that this factor can be ewaluated at any point across
the image. To make this model independent of the dimension wed to represent the data
or its range, we must consider the cases whew corresponds to size or spacing. To include
those cases, the model we will use will be:

min (si) + max(si) + min (p;) + max(p;)
2

This model represents the size of a half cycle from the origia sine-wave dataset. In-

Wo (Vi) =

tuitively, using our icon-based representation, any changs in the data occurring in a space
smaller than the size of the icons plus the spacing around tha will not be captured. In
portions of the dataset where this is the case (the left side foour experimental stimuli), the
data seems random and loses all structure.

During the visual linearity task, all participants reporte d di culty completing the task.
They easily placed the marks for the extreme values but they ould not judge, in general, the
25% intermediate di erences we were asking them to indicateespecially for icon lightness
methods. Participants also complained about possible inazurate gamma calibration of the
monitors used. It is still worth noting that practically all methods, for all three visual
dimensions, exhibited clear constant-value areas for the dreme values, sometimes as large
as 30% of the image width.

The data resolution task yielded the more interesting resuls of all tasks. Given the
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1
a= no + nle Ty NaSi + N3s? + Ng€5°T + nspj + Ngp? + n7epu+1
b= mo + mie” +1 + mos; + m332+ m4e5u+l + msp; + mep, + m7epu+l

Table 5.2: Regression results for all four methods tested. &h model corresponds to one of
the coe cients for the logarithmic model wi(vi) = aLn(x;)+ h. " is the spatial frequency
of the data measured inc=degree "= =45. The grayed out areas mark the size and
spacing parameters that do not apply for SPA and SIZE methodsrespectively.

results obtained we t a logarithmic model to represent the total number of jnd's users
would perceive at each point in the range of the visual dimenisn.

wi(vi) = ailn(xj)+ b

This follows Weber's Law of perception which states that therelationship between a stimulus
and its perception is logarithmic. In other words, the threshold necessary to detect a change
in a particular dimension increases logarithmically as thedimension's value increases.

In order to t this model to our data, we modeled both coe cien ts as a function of our
independent variables (size, spacing, and the frequency dhe sine-wave .) We perform a
linear regression to obtain the coe cients of a model as folbws:

1 1 1
8 = No +N1€ T + NaSi + N3 + N4eS'T + nsp; + nepf + nzen ™t ;

where we include both quadratic terms, which would capture amaximum or minimum in
the ranges studied, and inverse terms, which we transformedo an exponential factor due
to pi = 0 being present in the data. These inverse terms use an expamtial function to
limit the e ect of low values in the models. Through particip ant comments and our own
observations, we noticed the vertical sine-wave patterns msduce very strong linear cues that
induce subjects to continue perceiving the pattern when, lgally, there is no clear evidence
of it. Limiting this e ect will yield more realistic results applicable in real cases, where such
strong linear structures are not present.

The results of the regression are detailed in Table 5.2. Not¢hat only coe cients with
a signi cant contribution capturing the variation in the da ta are used in the nal models.
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Figure 5.5: Data resolution results for the lightness methal. This gure shows the initial
tted functions (dotted lines) and the results using the overall model (solid lines) for di erent
data frequencies.

It is important to note that the logarithmic model for wj can only be applied when

900
2 Wo(Vi)
with wg measured in pixels and in c=width. Any values obtained beyond this limit would
come from extrapolation but they are false, since the size ah spacing values limit the
precision of the method in terms of spatial feature resolutbn.

For the purposes of facilitating the comparison of our resuis with previously published
psychophysical results, we can transform our values from c=width units to c=degree
(denoted as'\). Using an approximate value of 45 degrees for the total eldof view occupied
by our stimuli during the experiment, we obtained values of " 2 f 3:56;1:78; 0:89; 0:44g for
our four experimental conditions.

The coe cients shown on the table were obtained through regession on the mean results
from the experiment. The resulting standard error for all models is approximately 2 levels.
Figure 5.5 shows the comparison between the experiment datand the model predictions.
Despite the lack of t for this particular instance (s; = 2 and p; = 0), the model ts the
overall space of parameters very well. This combination of prameters shows the highest
DR values of all.

The power of this model comes from the fact that it provides anunderstanding of the
distribution of jnd % throughout the range of our visual dimensions. Given a datast to be
represented, we can chose the best method to represent it depding upon the distribution
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of its values across the data range. For example, although da resolution values for size are
the lowest of all three methods, as the spacing and size of thigons for the other methods

increase and their expressiveness capabilities deteridie size becomes the best method to
be used.

These are exactly the type of data we wanted to gather from ourexperiments. It is
clear that the di erent methods have di erent optimal condi tions to be applied, and these
models allow us to determine which method is best suited to neresent the data in di erent
situations.

In comparing our results with the existing literature, Bert in [Bertin, 1983] provides one
of the few examples of quantitative results for data resoluton values. Although he does
not explicitly measure them for icon lightness, he recognies that the smaller the icons, the
fewer levels our perception should be able to di erentiate. Our results contradict that for
all spacing levels. For size, he proposes an average of 20titiguishable levels when the
ratio between the extremes of the range is 1 to 10. Our range isnly 2 to 10 and our results
are lower than those 20 levels (approximately 7 levels for th lowest spatial frequency data
tested), as expected. The more surprising result is that, foicon spacing, our participants
can di erentiate a maximum of 9 levels (for s; = 2 pixels and =20 c=width), while Bertin
does not expect more than 5.

In general, the results obtained follow our expectations. @r perceptual system contains
specialized cells to detect lightness and saturation chargg, whereas size and spacing changes
seem to get processed di erently. Our results validate thistrend of better results for icon
lightness. They also generate some surprising evidence ftine perceptual ordering of icon
size and spacing.

To further validate our model, at least for the lightness cas, we compare it now to exist-
ing psychophysical models for contrast sensitivity. Note hat this is the closest experimental
results we can compare to. Contrast sensitivity functions CSF) describe how our threshold
for detecting a change in lightness decreases, up to a poings the spatial frequency of the
signal (a sine-wave pattern similar to ours) increases. Figte 5.6(a) shows several CSFs for
di erent overall luminance of the stimuli. Note that, the lo wer the overall brightness, the
less sensitive we become to lightness changes.

Even though our stimuli are based on discrete icons, and we arinterested in measuring
the e ect of the size and spacing of those icons on the utilityof our methods for scienti c vi-
sualization, we can try to obtain a similar set of curves thanthe ones depicted in Fig. 5.6(a).
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(a) (b)

Figure 5.6: (a) Contrast sensitivity functions (CSFs) for di erent overall illumination lev-
els [Lamming, 1991]. (b) Resulting CSFs from our model for jhtness. We simulate variable
overall illumination (measured in trolands) by modifying t he icon spacing parameter (mea-
sured in pixels). The same trend can be observed in both gragh i.e. the sensitivity
threshold increases as illumination decreases.

Using our model, the contrast threshold necessary to detect a change (an increase or de-
crease of 1 jnd) is constant for a particular data spatial freqyuency at any lightness level. If
we then modify the spatial frequency values, we can plot the esulting threshold values as
frequency increases (see Figure 5.6(b)).

Furthermore, we can simulate the e ect of modifying the overall display luminance by
plotting how these curves change as the spacing of the icongadreases, e ectively lowering
the overall luminance. Those curves are also shown in Fig. 6(b). Following the same
trend as in Fig. 5.6(a), the threshold for change detection mcreases as the overall display
luminance decreases. It is important to point out that the threshold values obtained and
the shape of the curves is not indicative. Our measure of ligimess is based on the average
value of the red, green, and blue components sent to the grapts engine. We have not
measured the actual brightness output of the monitor, hencewe cannot directly compare
our values. Also, our discrete representation of the data (he sine-wave) using icons creates a
high frequency signal at the borders of the icons, which inteferes with the spatial frequency
of the data at low values of the latter. This could be the reasm we do not observe the loss

LContrast is a ratio between the maximum and minimum lightness of an image (maxL minL )=(maxL +
minL ). In our case, this ratio changes horizontally across the image as the amplitude of the sine-wave
decreases.
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of sensitivity at low spatial frequencies. However, the trand of the curves, as the overall
luminance changes, shows the expected behavior.

5.1.3 Methodology Discussion

Even though we dramatically reduced the number of combinatons of visual dimensions
we explored, the experiment posed a big design challenge. Riipants commented on its
apparent extraordinary length due to the similarity of all t he images. As we saw from the
results, the actual values obtained establish clear di eraces. With these 6 participants we
were able to fully randomize the order of the three tasks to eminate any possible learning
e ects. Nevertheless, fatigue was a big factor that, althouh it did not explicitly show up in
the data collected, will require moving to shorter between-sibjects designs, or even multiple
sessions, for subsequent experiments.

With this experiment we solved the high variance issue we hadduring our previous
study with expert visual designers. The cost for this was twefold. First, participants
evaluated methods one at a time, impeding direct comparisos among displays that were
possible in the rst study. Comparative critique is a very useful tool design educators utilize
constantly, but one that we had to sacri ce to improve the quality and quantity of data
obtained. Secondly, we did not use expert visual designerssasubjects, so we could not
expect feedback on why a method performs as it does for a givetask. Our tasks now are
more perceptual than conceptual and the low variance of the dta, along with consistent
trends, validates our choice of non-expert participants.

We have also performed a small set of pilot trials to assess thpossibility of including
data resolution trials where size and spacing varied with tle data while lightness and satura-
tion were modi ed constantly across the display, completing this way a full permutation of
the four methods. Our results showed no e ect of lightness oisaturation in the DR results
for size and spacing. Subjects were able to detect the sine-wa pattern approximately the
same no matter what lightness or saturation the icons were. Wiile saturation levels did not
even a ect the time subjects took to perform the task, lightness levels did, in fact, a ect
the speed of the responses (low lightness required longemie), but not the accuracy.

5.1.4 Conclusion

In summary, we have obtained two sets of predictive models fospatial feature resolution and
data resolution. They can be used to quantify the utility of each of the methods we studied
as conditions change for our independent variables. Furthenore, the limits resulting from
the spatial feature resolution model help constrain the apflicability of the data resolution
models to useful ranges. Explicitly exposing these limitatons to the users will help them



85

Figure 5.7: The models obtained up to this point allow us to catrol the individual ca-
pabilities of each method. Given a dataset, its spatial fregency, and a choice of size and
spacing parameters for the icons, we can present users det information about the spa-
tial feature resolution allowed by each method, and its dataresolution capabilities. Note
that users can also decide whether the full range of the visdadimension is used or only a
portion of it. In this example, using the bottom half of the li ghtness range would yield 11
out of 15 perceivable levels of lightness for the full rangeThe current choice, shown in the
large display, is highlighted in red.
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make e ective decisions when choosing a visual representiain for their data.

Going back to our vision for this thesis shown in Fig. 1.1, we lave now advanced towards
that goal in that we have individual control of the capabilit ies of each visualization method.
Figure 5.7 shows a mockup display that would use the currentt proposed models. Size,
spacing and, data spatial frequency can be set and SFR and DRalues can be obtained
for all methods. The spatial frequency can be obtained diretty from the data or it can be
chosen by the user to investigate the capabilities of the dierent methods. Also, the gure
includes knobs for the SFR and DR design factors. With the moe&ls we have obtained it is
possible to modify those knobs and nd the size, spacing, andrequency required to achieve
the values requested.

5.2 Modeling Perceptual Dominance Among Visual Cues in
Multilayered Icon-based Scienti ¢ Visualizations

In this next experiment we quantify how factors such as icon &e, spacing, layer order and
color a ect the relative saliency and interference among ve di erent 2D scalar visualization
methods: saturation (SAT), lightness (LIGHT), orientatio n (ORIENT), size (SIZE), and
spacing (SPA). This experiment should get us one step closeo our goal: we are moving
from single-valued to two-valued datasets, and we are explonig the perceptual interactions
among the di erent methods.

We de ne saliency as the perceived dominance of some visuadition method over another
when representing scienti ¢ data. This means that perceptbon and correct understanding
of the data must be assessed, not just the realization that sme property of the icons is
changing across the display (which a preattentiveness angéis would assess.) For example,
orientation changes are very preattentive. Yet, as we will ge, reading a scalar eld from
changes in icon orientation is very di cult, making it, in ou r de nition, not very salient with
respect to other methods. We measure saliency as the di erase in time that participants
take to recognize each of the datasets in our stimuli (see Fige 5.8).

Saliency can be used to visualize the importance of some vaidles over others: users
may want some variables to dominate the composition while dbers should recede to the
background to serve as context. They may, however, want all ariables to have similar
dominance of the nal display, so not to highlight any partic ular one and bias the exploratory
analysis of the dataset. These relationships among data viables get translated to the
visualization methods as the saliency of those methods.

Our experiment also recovers the perceptual interference raong methods, which we
de ne as the amount of distraction a method creates when usey are trying to read another
method present in the same display. We de ne these interfenaces as the time participants
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c) d)

Figure 5.8: Sample stimuli for the experiment. (a) The two linear scalar elds used in the
experiment. Images (b)-(d) are examples of the stimuli preseted in the study: they all
represent both linear elds simultaneously, and participants were asked to judge which one
they perceived rst, i.e. which one is the more salient of thetwo. (b) Icon orientation on the
bottom layer and saturation on the top, (c) a single-layer exanple with size and spacing,
(d) another two-layer display with size on the bottom and lightness on top. Top-layer icons
have a gray-valued border at half the lightness value of the iside circle, so as to minimize
simultaneous contrast issues. Circles are used for all metids except orientation, which
uses ellipses.
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take to recognize each method while the distractor method isimultaneously changed and
all other factors of the nal display are controlled.

Note that these two factors correspond to the dominance, vigal bandwidth, and time
to read factors we used in Section 4.2. We will correlate the esults from this experiment
to the subjective ratings designers gave us in that previoustudy.

Our main contribution is a set of predictive models that, given a particular combination
of methods, approximates the expected perceptual interfance among them and the saliency
level of the combination. This is a useful tool in generatinge ective visualizations based on
the perceptual characteristics of the methods involved. Futhermore, with the derivatives
of these models, we can con dently guide the user towards higer or lower saliency and
interference by changing some or all of the factors involved

5.2.1 Methodology

Our experimental methodology is inspired by psychophysichstudies on visual search and
cue interaction [Callaghan, 1984; Bergen and Landy, 1991We developed an experiment in
which the stimuli resemble real visualization displays, whch are notably di cult to evaluate
perceptually. While still e ectively controlling the expe rimental factors, this methodology
allows us to generalize our results, and our predictive mods, to real applications with
complex multivalued datasets.

Experimental Factors

In order to control the saliency of a method we use a set oknobsthat control some of
our visual dimensions. Here, we analyze and model how the imghendent variables icon
size, spacing, color, and layer order a ect the saliency of ve scalar visualization methods:
icon saturation, lightness, orientation, size, and spacig. The independent variables are not
tied to data and remain constant across the display, while d#a variables are mapped to
methods. We decided to include orientation so we could compe our results with scienti ¢
visualization literature that identi es orientation as an e ective dimension for scalar data
visualization.

We measure saliency through a visual-attention experiment.Using displays that show
a two-valued scalar dataset (see Figure 5.8) and measuring thtime participants take to
recognize each of the values, we obtain a model of saliency terms of how much the two
times di er.

We presented the experimental task as a question to the partipants: \Which of the
two linear gradients do you perceive and understand rst? Orce you understand one of the
gradients, hit a key (H or V) to indicate whether it is the hori zontal or the vertical gradient.
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After that, continue exploring the image until you either un derstand the second gradient,
in which case you hit the other key, or the image times out afte 10 seconds”. A one-second
distractor image was placed between stimuli so as to minimie carry-over e ects from the
previous choice.

The dependent measure is the time participants take to hit H ty) and V (ty). The
independent variables are:

Number of layers: @ levelg Either 1 or 2 layers are possible.
Order of the layers: (2 level9 This indicates which method is on the top layer.

Size and spacing of the icons on each layer3(levels each For the 1 layer case these
are 2 factors when size and spacing themselves are not the methods involdel factor

when one of them is involved, orno factor when both are involved. For the 2 layer
case, these will be4, 3, and 2 factors respectively.

Color: (2 levelg For cases where neither of the two visual dimensions invok color
(i.e. orientation, size, and spacing), this variable indiates which of the two will be
colored and which will be white.

Directional mapping: (2 levelg This indicates which method is used horizontally and
which vertically.

Directional mapping is part of the experiment to avoid biasing the results due to lack of
control for this variable. A horizontal orientation of the d ataset might be easier to recognize
than a vertical, due to a known natural human preference to moe easily perceive horizontal
things. We wanted to investigate its e ect, if any, on saliency. Ranges for the ve methods
and levels for the size, spacing and color independent varides are explained in Table 5.3.

Stimuli

To facilitate the direct application of our results to real visualization cases, with continuous
scalar elds, we would like to measure saliency utilizing those types of datasets. Unfor-
tunately, asking subjects to recognize such datasets requés that we are con dent they
understand all parts of them such as extrema, gradient variions and other details. This
would require subjects to be extremely familiar with the data, or us to provide ground truth
examples for each dataset separately to compare against. laither case, it would take a
long time for subjects to go through each visualization dispay making sure they perceive
and understand the correct dataset.

With this in mind, we designed our study to capture some of the continuity of real
datasets, while maintaining a low level of required knowlede about the data for the subjects.
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Table 5.3: Parameterization for the ve visualization methods utilized in the experiment.
Each row indicates the parameters for each method in terms othe relevant dimensions
de ned. Gray cells indicate the range of the mappings to the @ta variable. Since color is
one of our binary independent variables, the color (in red) @ no-color (in black) settings
are indicated for orientation, size and spacing methods. e and spacing, as independent
variables, have three levels each, as indicated in the two ght-most columns of the table.

We decided that two perpendicular linear datasets would praide such a stimulus (see
Fig. 5.8). To our knowledge, even this simple combination oflatasets has not been studied
before from the point of view of visual cue interference in tle cognitive or visualization
literature.

We presented our stimuli on a 1280x1024 CRT monitor. Visualtation displays were
images of 900x900 pixels on a black background. The illumirteon of the room was kept
low to avoid distraction when the changing images ashed on he screen, and we gamma-
corrected both lightness and saturation ranges for approxnate visual linearity. Subjects
sat at approximately 30" from the monitor with no chin rest.

For the two layer cases, icons on the top layer have an extra brder around them to
facilitate di erentiation of the layers and to try to minimi ze simultaneous contrast issues
with background or other icons. The border width is approximately 20% of the internal
diameter of the icons, with spacing values also measured fro this internal part. For
orientation cases, we use ellipses where the small axis hdset size characteristics of regular
circular icons, and the big axis is three times the length of he small one.

Experimental Logistics

We performed a full factorial design for all factors in the ore-layer cases and, for the two-
layer cases, we use a blocked randomized fractional factati design using an orthogonal
array [Heydayat et al., 1999] for the size and spacing facta of both layers. Fractional fac-

torial designs have fewer trials than full factorial ones, lut some e ects become confounded.
Using an orthogonal array to choose what trials to run from the full factorial set, we assure
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that at least all main e ects are estimable free of interactions. In particular, we used an or-
thogonal array L 9(3%), which gives us 9 combinations to test as opposed to the fullactorial
of 81 that two factors per layer and three levels each would ygld. This is still a balanced
design, since each level of each of the variables occurs etlyaoften (3 times in this case).
With this particular design, interaction e ects cannot be e stimated. We weighted the possi-
bility of including the interaction e ects among size and spacing values for both layers, but
this would mean going to an array with 27 combinations, dramdically increasing the time
participants needed to complete the study. Based on our preious experiments, we decided
to minimize the possibility of subject fatigue. Being the r st model of its kind, to the best
of our knowledge, we believe a main e ects model will provideimportant clues towards
the inclusion or not of interaction e ects in later experiments. For all other independent
variables we used a full factorial design.

We created a blocked design for our experiment. Table 5.4 shes all blocks present in
the study based on pairs of visualization methods. The tableshows what a full factorial
design would be. Subjects were introduced to the experimenand taught the task at hand.
Each subject ran through 5 full blocks of method pairs. We divded each block into two
sections, one per directional mapping setting. That made 1Gections of approximately 30
stimuli each. Each section contained all combinations for mmber of layers, layer order,
color, size and spacing, following the mixed fractional andfull factorial design explained
above. Training was provided before each section so subjexitould familiarize themselves
with the pair of methods being studied in that section. We usel eight images for training, a
number that we reached after piloting the experiment and cortluding subjects understood
both methods and the task well enough. The order of the blocksvas randomized and
stimuli within each block were also randomized.

A total of six paid participants ran through the experiment, taking approximately one
hour to complete the study with short breaks between sectios. All of them were graduate
students from Brown University with various levels of computer expertise, no previous
scienti ¢ visualization experience, and normal or correced to normal vision. Since we are
measuring perceptual saliency, we did not require special fowledge of visualization or
computers from our participants.

5.2.2 Results

Before going further with the analysis of the results, we nomalized the times per subject to
eliminate the variability in perceptual skills among subjects. This is validated by the fact
that standard deviations for all subjects were comparable between Q9s and 1:7s), while
mean times per subject for the rst key stroke for the full experiment ranged from 19s up
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(@) (b)

Table 5.4: Experimental organization tables. (a) Each cellindicates the number of
stimuli for each combination of visual dimensions. In the single layer case, the num-
bers indicate (size x spacing) levels. In the two layer cases the numbers indicate
(sizey x spacing,) X (size, X spacing,) x layerorder. Note that for the SIZE, SPA, and

ORIENT combinations we also controlled for the layer color (nal x2). For simplicity, the

table shows the full factorial combinations. Size and spacig, as independent variables, were
subject to the orthogonal array design shown in (b), where dllevels are indicated in pixels.
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to 4:0s. Normalizing the results maintains the relative order of the measures while losing
the units, seconds. This is acceptable in our case, since wallstill obtain a numerical, yet
relative, quanti cation of saliency and interference. Furthermore, if we were able to maintain
the units of time, they would not be applicable to other more general data visualization cases
that did not match our experimental setup with two linear dat asets. After normalization
we translated all values so no normalized times would be neg&e. This step does not a ect
the results, and facilitates the explanations and conclusins.

We must also take into account the cases where subjects reaet the 1Gs timeout limit.
When neither key had been pressed we eliminated that instarez This occurred 22 times out
of 1,680 total stimuli presented. The more interesting caseccurred when the rst key was
pressed within the 1G limit and the second was not. Those cases indicate a clear ddmance
of the rst display detected over the second one. This timeou case occurred a total of 300
times over the course of the experiment. Given our fractionalfactorial design, all trials
are key to obtaining meaningful information about the interaction among the independent
variables. Simply discounting these trials would e ectively make the analysis infeasible.
Our approach to solve this was to consider the timeout trialsas censored observations.

We used the LIFEREG procedure in the SAS statistical program [Cody and Smith,
2006] to perform a maximum likelihood estimation of the timeresponses for all 300 timeout
observations. This procedure ts a Weibull distribution to what is essentially unknown
\failure" times for the timeout cases, modeling them as a furction of the subject ID (since
we are dealing with normalized times and 10 seconds translas to a di erent value for each
subject), the size and spacing values for each method, theilayer order, their color, and
their directional mapping. Although inputing the estimate d censored data resulting from
this procedure at its conditional mean is common practice, v decided to utilize the 95%
qguantile results to be on the safe side. Indeed, once partipants decide not to hit that
second key in less than 10 seconds, we have no way of knowing ether 20 or 60 seconds
would be the time they would require. This procedure allowedus to estimate those values
with con dence, based on the distribution of the non-censorel observations.

Overall Times

Figure 5.9 shows the normalized times of all ve methods in dl conditions. The mean
times to recognize orientation as a scalar eld are signi catly higher than the rest. All
participants declared di culty understanding orientatio n as a scalar value. The pseudo- ow
e ect was so distracting as to prevent them from understanding the linear scalar datasets.
For this reason, all further analyses of the experimental déa exclude orientation cases.
Figure 5.10 shows the mean times excluding all those from agntation stimuli. Eliminating
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Figure 5.9: Mean normalized times and standard errors for oa- (SINGLE) and two-layer
(BOTTOM and TOP) cases. Signi cant di erences are indicate d in red on the tables. The
top table contains between-method comparissons, while the dittom table shows the within-
method test results. Note thatthe values are adjusted based on the humber of signi cance
tests performed using the Bonferroni adjustement over an dginal value of = 0:05.
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Figure 5.10: Mean normalized times, after eliminating all doservations containing ORI-
ENT, and standard errors for one- (SINGLE) and two-layer (BOT TOM and TOP) cases.
Signi cant di erences are indicated in red on the tables. The top table contains between-
method comparissons, while the bottom table shows the withi-method test results. Note
that the values are adjusted based on the number of signi cance testperformed using
the Bonferroni adjustement over an original value of = 0:05.
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these observations from the analysis also eliminated 12 outf the 22 no-response cases and
158 of the the 300 timeout cases. We recalculated the right-cesored data estimates after
removing the orientation trials.

Interesting to note from these graphs is how size and spacingethods are recognized
faster when they are on the top layer of two-layer cases than fosingle-layer cases. Although
this is only a trend in the data (these di erences are not sign cant at the chosen levels),
this seems to con rm the known preattentive precedence of tie other three methods over
these two for the single-layer cases.

The graphs in Figs. 5.9 and 5.10 show the overall experimentrends. However, we
want to explore the relative saliency and interference betwen each pair of methods for all
conditions. Also, the non-signi cance of some di erences fom Fig. 5.10 comes from the fact
that the overall times combine cases when each method was regnized rst and second,
hence we cannot assume a normal distribution. A more appropate way of looking at these
data is shown in Fig.5.11 and explained later in this section

Directional Mapping

Before going into a detailed analysis of each pair of methodand the performance of each
one, we evaluated whether the orientation of the dataset in he display had any e ect in
the choices participants made.

We performed a correlation analysis between the number of thes each method was
chosen rst and their orientation when that was the case. Talde 5.5 shows the results of
the analysis. Even though the LIGHT method shows a signi cart tendency to be chosen
rst when it is presented vertically, an analysis of the times for this case (LIGHT chosen
rst) indicates that the times when LIGHT is vertical are not signi cantly di erent than the
times when it is horizontal (F (1;223) = 0:16; p = 0:687). From this analysis we concluded
the orientation of the stimuli did not have a signi cant e ec t in the experiment. Therefore
we utilized both directional mappings as a repeated measuref the same stimuli.

Relative Saliency and Perceptual Interference

Figure 5.11 shows the mean time di erences for each pair of nteods. These values are
averaged over all size and spacing levels. Values signi clg di erent from zero indicate a
signi cant dominance of one method over another, and it is ckar from the graph that the
strength of the dominance varies greatly. For example, the min trend is that the method
displayed on top for the two-layer cases is usually dominantalthough that is not the case
for LIGHT and SPA when combined with SAT. In those cases, with SAT on the bottom
layer, there is no clear salient method. SIZE, on the other had, is more salient than SAT in
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Table 5.5: This is a summary of the directional mapping analsis of the experimental
data. The left column shows the number of times a method was hdzontal (numerator)
when chosen rst (denominator). Given that the choice is a bnary variable, the p value is
calculated from a binomial distribution with probability 0 .5, since each method was shown
the same number of times horizontally and vertically.

Two-layer combinations One-layer combinations

Table 5.6: These tables indicate the method that is expectedo dominate in each pair. The
strength of the saliency is not indicated here and can be obt@ed from Fig. 5.11. Equally
salient methods are indicated with {.

that situation. We summarize all these trends in Table 5.6, where the method expected to
be salient is indicated for one- and two-layer cases. It is imprtant to note that the key to
this experiment is not only to nd these general trends, but to identify in what conditions
the less obvious solutions provided the desired e ect, i.e.when and how do we get the
bottom layer to be more salient?

While the time di erences o er information about the relati ve saliency of the methods,
the actual times to recognize each method can shed light on # perceptual interference
one method causes another. If a method that performs well in gneral, with relatively low
recognition times (e.g., SAT), has high recognition times n one particular situation (e.g,.
SAT on the bottom layer combined with SIZ), we can conclude that the other method in
that situation interferes signi cantly in the process of understanding the rst. Figure 5.12
shows the summary of recognition times for all methods in allpairs tested. Observe the
similar patterns SAT and LIGHT have for all cases. Also, the smilar response that SIZ
and SPA have against SAT and LIGHT.

From that gure we can predict what methods will be more easily interfered with.
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Figure 5.11: Mean normalized time di erences and standard gors for each pair of methods
for one- and two-layer cases.v; is always the rst method of the pair's name, so negative
di erence values mean the time to recognizev, is longer than the time for v;. For SIZ and
SPA methods, (c) indicates the colored method.
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Figure 5.12: Mean normalized times and standard errors for &h method for all combina-
tions tested. The tables show the results of the signi cancetests performed in each case.
Signi cant values (at = 0:017 after applying the Bonferroni adjustement for multiple
tests) are indicated in red. Some values, in green, are not gni cant under Bonferroni's
conservative method but would appear to be so on visual inspetion of the graphs.
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LIGHT maintains its times quite consistently across the boad, followed by SAT, then
SIZE, and nally SPA, which uctuates a lot depending on what layer it is on.

5.2.3 Predictive Models

Given the distributions of timing data for the two key presses for each pair, we obtain the
following measures based on the time shown before:

Relative Saliency, wo(vi;vj) 2 ( 1;1): Herev; and v; are two of our visualization
methods. wp, = 1 indicates that v; is much more salient thanv;, and w, = 1
indicates the opposite. Di erences are normalized with repect to the maximum time
di erence throughout the experiment, i.e. 10 seconds.

Perceptual Interference, wz(vijv;) 2 (0; 1): This measures how muchy; interferes with
t(vijvj) min (t(vi))
max (t(vi)) min (t(v;))’
is the time participants took to recognize method x. To obtain the extreme values

the reading of vi. To measure this, we setws(vjjvj) = where t(x)

we must look across blocks for all instances wherg, was presented with the same
parameters (size, spacing, color). We assume that the miniom time is how long a
participant would take to recognize a dataset usingv; when presented by itself.

To obtain these measures we have t a set of models to each ond the recognition times
shown in Fig. 5.12. To the best of our knowledge, there are no odels that explain this
type saliency or interference responses so, following theuscess of the models utilized for
the data resolution factor in the previous experiment, we ugd the following base equation:

t(vi) = agS1 + aip1 + axSy + agpz +
+ays? + aspi + agss + azp; +

1 1 1 1
+ages1*t + ager1tt + a;0es2tt + a;lerat!

It contains linear, quadratic and inverse terms to account br the observed behavior of
uctuation of saliency as size and spacing values are modi d. The inverse term uses an
exponential term to limit the e ect of low values. In this equ ation, s; and p; correspond
to the size and spacing parameters for the rst method of the @ir (v1;v2), while s, and p;
correspond to the second method's parameters. The same asfbee, while the full model
contains a maximum of 12 degrees of freedom, only coe cientshat contribute signi cantly
to explain the variance in the data are included in the models After performing linear
regression for all times in the experiment, Table 5.7 showshe coe cients of the models
and the excellent t results obtained given the high number of error degrees of freedom.
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Table 5.7: Results from the linear regressions performed orach method's recognition
times. Each model coe cient is shown along with the model fador it corresponds to. Only
coe cients that signi cantly contribute to explaining the data variance are included in the
models. For the two-layer combinations, the green cells indiate the method on top.
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Figure 5.13: Using our new predictive models, by simply modiing the size and spacing
values for our methods we obtain the predicted saliency sigand its strength and, through
the derivatives, we also get information about what the e ed of modifying the size and
spacing parameters is. Green cells indicate non signi canti erences (from Fig. 5.11). The
method precedence to de nev; and v; is given by the order f SAT,LIGHT,SIZ,SPA g. A
negative value indicatesv; is more salient, and vice-versa.
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In general, the quadratic terms contribute very little to th e models. Even though they
are signi cant, the coe cient values are almost zero. The inverse terms are consistently the
more important factors in explaining recognition times. In particular the ones modifying
the icon sizes. This is a logical result given that, in generk increasing the size of the icons
makes them more prominent and hence easier to recognize: nmesalient. This e ect is
modulated by the inverse spacing factors and the linear faairs. This combination allows
for the observed e ect that saliency between methods sometines reaches an in ection point
along the size or spacing ranges.

As explained before, having this time models at hand we can ne generate the relative
saliency and perceptual interference metrics.

Relative Saliency

For each pair of methods we can de ne:

t(vi) t(y).
10 ’

The limit in the saliency value is important. We used the calculated estimates for the right-

Wa(Vi;Vj) = with wa(vi;vy) 2 [ 1,1]

censored data from the experiment to calculate the model pameters. For that reason,
some predicted time values will be greater than 18, so we placed a cuto for di erences
smaller than 10 or larger than 10 with loosing any generality in the predided saliency
estimates.

Implementing this function, we can now predict and control relative saliency between
pairs of methods (see Fig. 5.13). Not only that, using the devative of the model we can
provide guidance as to what dimension to modify to increase iodecrease saliency in a display
(also shown demonstrated in Fig. 5.13).

Perceptual Interference

We de ne this measure based on how much the recognition time foa method changes when
presented in combination with another method. For this we dene the following function:

t(vijvj)  min (t(vi))

WaVilvi) = Xty min @w)

with  w3(vijvj) 2 [0; 1]

To obtain the extreme values fort(vi)we look at the minimum and maximum predicted
times for v; with the same parameterization but when combined with any other method and
in any order of the layers. This values give us an exact measerof howyv; really a ect the

2Since we are dealing with per-subject normalized times, the maximum normalized censoring point was
10:76. Since we translated the normalized times to make the minimum correspond to zero, the maximum
time di erence possible during the experiment is approximatel y 10.
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reading of v;. If the predicted value is already greater than 10 we assumeufl interference
(wz =1).

With a similar implementation of this equation as we did for saliency, we can create two
interactive tools (one for wz(vijvj) and another for ws(v;jvi)) to explore and control the
perceptual interference between the methods. Figures 5.1dnd 5.15 show these tools.

5.2.4 Discussion

The complete set of results from this experiment allows us taontrol and predict the relative
saliency and perceptual interference between pairs of metus.

By simply analyzing the time di erence plots (Fig. 5.11) we obtain a very much expected
result. That is, the method on the top layer will be the most salient of the two. Some
exceptions to this rule, and the inclusion of the single-laye cases, make the summary in
Table 5.6 a very useful design aid. But the time di erence plds show very di erent strengths
for the saliency of the methods.

We generated a set of statistically sound predictive modelghat we can use to ne tune
the saliency of each method. Furthermore, based on the perfmance of the methods across
di erent combinations, we can also control the amount of perceptual interference they will
receive depending upon their companion method.

It is important to note that, given the very simple dataset we used for our experiment
and the task participants performed, we do not have informaion about how accurately the
linear dataset is represented or how its integrity is preseved. In fact, for a method such
as SPA, it is clear that in the area where the spacing is smalle it is not possible to see
through the other method behind it. Participants declared that they obviously realized this,
but they could answer the question anyway by looking throughthe area with more sparse
icons. This local interference was not captured by our resu$ (see how the time plots for
SAT-SPA, LIGHT-SPA, and SIZ-SPA in Fig. 5.12 show almost no increase in time, hence
no interference caused by this fact).

Comparing our results with existing literature is di cult. The closest experiments are
those related to preattentive processes. As mentioned in Clpter 3, these studies tend to
focus on visual search type of tasks with a stimulus presentiot-present type of question.
Yet, they describe a precedence of preattentive perceptioffor di erent visual dimensions.
Looking at our interference measures, our overall precedee is LIGHT, SAT, SIZ, and SPA.
This seems to match the ndings from [Healey et al., 2004] alhough our characterization of
both interference and saliency goes beyond their discussiand provides a way of controlling
those factors as the parameters of the visualization change Furthermore, the ndings
from [Healey et al., 2004] and other visual search type tasksvere based on single-layer
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Figure 5.14: Interactive tool for interference prediction for vi. Using our new predictive
models, by simply modifying the size and spacing values for w methods we obtain the
predicted interference strength and, through the derivatives, we also get information about
what the e ect of modifying the size and spacing parameters $. The method precedence
to de ne v; and v is given by the orderf SAT,LIGHT,SIZ,SPA g. The higher the value the

more interferencev, causes tov;.
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Figure 5.15: Interactive tool for interference prediction for v,. Using our new predictive
models, by simply modifying the size and spacing values forwr methods we obtain the
predicted interference strength and, through the derivatives, we also get information about
what the e ect of modifying the size and spacing parameters $. The method precedence
to de ne v; and v is given by the orderf SAT,LIGHT,SIZ,SPA g. The higher the value the

more interferencev; causes tov;.



107

displays, while we include two-layer displays as part of our mdels.

It is interesting that they present orientation as an e ecti ve method to represent scalar
elds. This is not surprising, since their evaluation was based on preattentive processing.
We believe our initial results in this current experiment (see Fig. 5.9) clearly show the
di culty in reading orientation as a scalar magnitude in con tinuous 2D datasets. Expert
designers alerted us of this issue before, and the recogrotn times further con rm it. Also,
participants commented they relied on learned strategies @ decide whether the orientation-
mapped dataset was horizontal or vertical. They declared itwas usually the rst to be
detected (preattentive), but in order to answer the experiment's question they needed to
look at the borders of the display and gure out the direction the gradient was going. In
this process they sometimes perceived the other method's gdient and sometimes did not,
but their con dence about their performance was very low. The use of a strategy like the
one explained defeats the purpose of the experiment, sinceon-linear dataset do not present
any type of boundary indicators that would help understand the data variable in the center
of the display. For all these we eliminated the orientation dservations and conclude that
orientation would create too much interference in the readng of other visual dimensions to
make the overall display e ective.

In utilizing our models interactively to predict the utilit y of di erent methods, we ob-
served a lack of t between expected results and the predictins for some extreme cases. In
particular the predicted saliency values for the SAT-LIGHT combination when LIGHT is
on top indicate a dominance of SAT even for low spacing valuesf the top layer. In general,
the non-signi cance the normalized time di erences show forthis case in Fig. 5.11, would
indicate a model for this case would not be e ective. Indeedthat is the reason we indicate
the non-signi cant cases in the interactive tool in Fig. 5.13.

The tools presented are a simple example to show the utility ®the models we have
developed. They should be used in combination and with a visalization goal in mind,
i.e. having a clear idea of what data variables we want to highight and be able to quickly
understand in our nal display. Once an acceptable visualiation is reached, the derivative
information helps steer the data exploration process throgh the changing requirements as
new discoveries are made.

5.3 Chapter Summary

In this chapter we have demonstrated the use of perceptual gperiments to evaluate the
utility of several visualization methods, both in isolation and in pairs. We have matched
the results from more limited studies that concentrated on target identi cation tasks, while

augmenting those ndings with a set of quantitative predictive models for a total of four
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di erent design factors and four di erent visualization me thods.

The limited scope of our investigation allowed us to fully exaluate the multiple combi-
nations of independent variables in both experiments, leathg to a successful quanti cation
and modeling of the experimental results. Our hope is that tte methodologies utilized
and lessons learned will facilitate the study of other visuddimensions and their perceptual
capabilities, always oriented to their e ective use in scieti ¢ visualization displays.

These two experiments followed another set of two that utilzed expert visual designers
to evaluate similar design factors for scienti ¢ visualization methods. Figure 5.16 shows
ranking comparisons for all design factors evaluated durig the second expert visual de-
signer experiment. The visual bandwidth factor is comparedto the perceptual interference
factor here, dominance corresponds to the saliency factorand time to read corresponds
to an overall estimation of the recognition time in this experiment. Data resolution and
spatial feature resolution are directly obtained from the models developed from the previous
perceptual experiment.

We utilize relative rankings due to the high variance of the actual values obtained from
the designers. They still provide a good visual intuition far the validity of our percep-
tual experiments' results and the con rmation that they mor e or less follow the subjective
rankings obtained from the designers.

After this last experiment on saliency and perceptual interference, we have once again
taken one more step towards accomplishing our vision. Figw 5.17 shows the new factors
we are able to control thanks to our predictive models.

Note that the results from the rst perceptual experiment al lowed us to control the
data resolution and spatial feature resolution of the indivdual methods, and the second
experiment controls between-methods saliency and interfence. Except for single-layer
cases, we have no information on how the data legibility chaacteristics of the methods
(DR, and SFR) are maintained when a second method is shown orhe two-layer cases.

We can argue that this information is available for the single-layer cases, since we can
obtain the legibility limits for a combination LIGHT-SIZ, fo r example, by measuring the
DR and SFR values for LIGHT with low and high size values. The® limits will be conser-
vative worst-case predictions for the combination, since weannot be sure were the di erent
lightness values will lie with respect to the size values.

To try to constrain these limits to a more accurate range and & ne them for the two-
layer cases, we have performed the next experiment. In it, wérought back expert visual
designers to evaluate real two-valued datasets. Our hope wabat their expert knowledge of
the visual dimensions at hand would help us de ne how the lediility characteristics of the
methods are maintained when combined in multivalued visuakation displays. Obtaining
that information would put us in a position to hypothesize how combinations of more than
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Figure 5.16: These graphs show a comparison of the relativeankings obtained from the
expert designers experiment from Section 4.2 and the two peeptual experiments presented
in this chapter. Only the 4 methods we evaluated in the latter experiments are shown
here. Observe how, with few exceptions, the relative rank ater for all design factors is
approximately the same.
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Figure 5.17: The new models obtained allow us to control the aliency and perceptual

interference characteristics between two methods. Givenvo values from a dataset, a choice
of method for each value, a choice of size and spacing paranees for the icons of each
method, and the number and order of layers to be used, we can psent users detailed
information about both relative saliency between both methods and the interference that

each method su ers from the other. Saliency limits are dispayed based on the parameters
utilized in our study. Interference values go from 0 to 1. Thecurrent choice is shown in the

large display.



111

two methods would perform. Our initial vision from Fig. 1.1, so far limited to individual
utilities and some pairwise perceptual interactions, woutl become a reality for high order
combinations of methods.



Chapter 6

Evaluation of Multivalued
Visualization Methods

In this chapter we describe the experiment we designed to meare how the legibility of our
visual dimensions was improved or impeded when utilized fotwo-valued dataset visualiza-
tions.

In order to complete the utility model for our visualization methods we require one
more piece of data: the legibility variations when two methads are combined. The legibility
of a method describes whether the data it represents is peroeed correctly or not. As we
mentioned before, the previous study did not evaluate how wi the characteristics of the
datasets themselves were preserved when two of them were cbmed in the same display.
In that study we quanti ed saliency, which describes the perceptual dominance of a method
in the nal composition, and interference, which pertains to the time it takes to perceive
and understand the data.

To evaluate this legibility factor we brought expert visual designers back. Our hypothesis
for this study was that, using their expert knowledge of per@ptual interactions among our
methods, they would be able to e ectively explore the space ad indicate how the di erent
combinations of methods a ected their individual legibili ty characteristics. Once more, we
hoped to engage their experience-based intuition to quicklytrim o portions of our search
space that we would need to exhaustively test through a pergetual experiment.

This chapter describes rst our study to evaluate this hypothesis. As we will explain,
we could not disprove the null hypothesis in this case, leavig us in a position where we
could not advance any more towards our grand vision for the reearch. We also report on
an informal study to utilize the models we have already devedped in a real situation.

112
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Figure 6.1: We expect our legibility models,ws(vijvj), to be step functions that de ne the

portions of the range of methodv; that are correctly readable (w4 = 1) or not (wg = 0).

Multiplying this function with, in this case, our data resol ution model for the same method,
wi(vi), would result in the real data resolution model for method v; when combined with
method v; .

6.1 Subjective Critigues of Two-valued Datasets Using Ex-
pert Visual Designers

The goal of this experiment was to measure how the legibilityof our visual dimensions was
improved or impeded when utilized for two-valued dataset visializations. We wanted to ob-
tain the information necessary to model data legibility, thus becoming our 5th design factor,
Wy, after spatial feature resolution (wg), data resolution (ws), saliency (w»), and perceptual
interference (w3). In fact, our feature legibility de nition utilizes two of those factors as the
benchmarks. When we talk about preservation of data feature we are interested in:

How the dierent levels of data (related to data resolution, DR) are perceived in
displays combining two methods.

How di erent sized features (related to spatial feature re®lution, SFR) are perceived
in those situations.

Hence, legibility will be a factor that will multiply our DR a nd SFR models to provide
guidance as to the loss of information when di erent methodsare combined. As a simple
example, Fig. 6.1 shows a case where the beginning and end pions of the range for
method v; are lost when this method is combined withv;. The resulting DR model for v;

is then obtained by multiplying both functions. Note that th e model for DR obtained in
Section 5.1.2 is cumulative, so a loss at any subrange meansnan-increase in the number
of perceivable jnd's.

6.1.1 Methodology

The study presented our subjects with an interactive tool that allowed them to modify the
same independent variables used in the previous experimenicon size, spacing, number of
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(1) (2) 3)

Figure 6.2: Three scalar values obtained from an MRI datasebf a human brain. We chose
these three for the variety of spatial frequencies and di eent value spreads over the data
range, as can be seen in the grayscale variations. All valuege normalized to the full range
of lightness. Data value (1) is dominated by a relatively narow range of values (5 or 6
jnd's) from the top third of the full range (15 to 20 jnd's). It also has medium-to-high
frequency information (80-100 cycles/width). Data value (2) has even higher frequency
data (100-150 cycles/width) and utilizes the full gray level range of values more evenly (10
to 15 jnd's). Finally, data value (3) from the MRI dataset has a low number of value levels
(4 or 5 jnd's) spread over the full range. It also has relativdy low frequency information
(10-20 cycles/width) mixed with points of high frequency highlights.

layers and their order, and icon color. The data used were thee scalar magnetic resonance
imaging (MRI) values from a human brain dataset, which were gesented to them in pairs.
The characteristics of the di erent MRI data variables covered a wide spectrum of high and
low values, high and low frequency features, as well as pagl and total value spread over
the full ranges (see Fig. 6.2).

The setup, shown in Fig. 6.3, consisted of two monitors showig the original pair of data
variables, the individual mappings onto one of the four viswalization methods (saturation,
lightness, size or spacing), and the nal display combiningboth variables in one image. It
also provided the basic interface controls to explore the spce of possible combinations by
modifying the independent variables explained before.

The images utilized the same parameter space as our last expment, and the combina-
tion stimuli were the same size and presented on the same mdors as before. Our gamma
correction functions were still valid for this experiment. Users had the ability to zoom the
images on the left side monitor (see Fig. 6.3) to make them thesame size as the combi-
nation display for easy comparison. At the zoomed-in state tke perceptual characteristics
of the visualization methods were the same as they were in ouprevious studies, covering
approximately the same visual angle.
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Figure 6.3: Experimental setup (top), and detail of the displays at the illumination level
maintained during the experiment (bottom). The experiment took place in an illumination-
controlled room where two side by side monitors displayed, rbm left to right, two of the
original data values from the dataset shown in Fig. 6.2, the wo individual mappings from
each data value to a di erent visualization method, the combination display, and the user
interface to control the visualization parameters.
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Experimental Tasks and Protocol

We designed an experimental protocol that would allow us to dtain the legibility informa-

tion we needed while providing expert visual designers withenough freedom to comment

on the validity and e ectiveness of the visualization methods presented. The basic protocol

was:

We introduced to the visual problem and interface to the paticipants.

We choose a pair of methods to represent the data among the Bossible pairs.
Task: Which data variable do you think users will perceive rst and why?

Task: Comment on the types of features visible and invisike within the combination.

Task: How much legibility is gained or lost from the singlevalue to the two-value
visualization?

. Task: By only changing these factors: #layers, order of lgers, color, size, and spacing,

how would you modify this combination so:

(a) Variable 1 dominates the composition.

(b) Variable 2 dominates the composition.

(c) Both variables are equally dominant.
During the process you must try to maintain the legibility of as many features of the

dataset as possible, or comment on how changing some of tho$gctors a ects the
data legibility.

. Task: For each solution provided on the previous point, svtch the data variable

involved and comment whether the same or a di erent solutionapplies. Modify your
parameterization until you reach an appropriate solution.

Task: Pick a dierent pair of methods and go back to point 2 until all six pairs of
visualization methods are explored.

. Task: Freely design what you think would be the most appropiate visualization

method for any combination of data variables and using any ofthe 4 visualization
methods available.

We explained to the participants that our interest in data features was two-fold. First,

we wanted them to comment how well low, medium and high valuesn the dataset were

visible and understandable in the combination display. Seond, we would also like them to
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comment how well low, medium and high frequency elements wer preserved in the nal
combination display. This division of the full range of data values and frequencies was
meant to facilitate the participant's task and our own data analysis.

Indeed, this protocol was designed so the level of freedom ése experts are used to was
preserved as much as possible, while we asked them to do sorhigig they are not used to
do: think aloud as they try to solve a visual communication problem. In two pilot sessions
we explored the possibility of not subdividing the ranges. This did not help participants,
who were only partially identifying data feature issues without exhaustively exploring all
combination options.

Throughout the study, we reminded participants about the exploratory goal of the
combined display, i.e. that the design goal was to show as manfeatures as possible from
the original datasets, with no particular areas that were mae important that others. We
explained that the reason we asked them to help was that we rdized the conversion from
the original grayscale to the icon-based representation wakssy, hence we needed to explore
the best ways to loose as little information as possible.

The questions on points 3 and 6 were meant to check the accurgof the predictions from
our previously generated statistical models for saliency ad interference. Also, by asking
them to design combinations for the three di erent situations from point 6, we hoped to
gather derivative information that, although available fr om our models, would provide a
glimpse into their design process. We could potentially anfyze their paths through the
design space and try to obtain some guidelines.

Finally, the order of the visualization methods shown and the pair of data values repre-
sented was randomized among the four participants to avoid aler e ects.

Participants and Data Gathering

A total of four expert visual designers ran through our expeiment, with a maximum allowed
time of 2 hours to avoid fatigue and lack of concentration.

For data gathering we videotaped the full sessions, payinglose attention to how par-
ticipants explored the di erent displays presented and wha tools and techniques they used
to answer our questions. As shown in Fig. 6.4, we developed ansple scorecard that once
completed for each pair of visualization methods, would preide the necessary data to gen-
erate our legibility model. Each cell would contain a zero ora one depending on whether
that particular portion of the data range or frequency range was correctly represented in the
combined display. It would also contain any comments regarthg how size, spacing, layer
order, or color a ected that value. We decided against providing them with the scorecards
to Il out during the experiment since, from previous experience, we realized this would put
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Figure 6.4: We create these scorecards for each pair of visliEation methods. Studying
the videotapes and looking at the resulting displays would #ow us to Il out how DR
information and SFR characteristics were preserved when nmhods were combined. Note
that we have a full set of interactions represented: how datdevels of one method a ect the
reading of the levels of another, how spatial frequencies a&cted the reading of data levels,
and the corresponding opposite combinations.
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experts in the uncomfortable position of assigning numbergo their knowledge and design
process.

In these scorecards we hoped to capture some of the intuitioaxpert designers bring with
them to solve our particular visual problem. Note that the interactivity of the application
would allow experts to tell us how modifying each parameter wuld a ect legibility. This
interactivity and verbal data gathering would substitute a n exhaustive perceptual experi-
ment and, using expert designers, allow for a much faster expration of the vast number of
possible combinations of parameters.

Study Motivation

Comments from our participants in the previous study and our own observations motivated
the current experiment. The linear datasets used before we&r chosen because participants
would intuitively understand what the real data was, hence, we assumed they always per-
ceived the \real" data fully: i.e. a continuous and straight gradient across the display. This
assumption allows us to apply the interference and saliencynodels to real datasets. How-
ever, we cannot assume this total legibility for datasets obher than the linear one we used.
In other words, when two visual dimensions interfere each dter, the time to read those
dimensions increases, but their legibility might not be a ected at all (the opposite could
also be true). Even though it might take time for users to shit and focus their attention
on an interfered dimension, they will eventually get the sane number of jnd's or perceive
the same size features as in the single-valued case.

In fact, participants declared our assumption of full legibility already broke down for
some cases in the previous experiment. Not only did methodssing spacing cover part of the
other methods, making it literally impossible to really seethem fully, they declared that, for
most combinations, they could probably have provided a di erent \time-to-perceive" value
for di erent parts of the display. This signals a latent discontinuity of our models across
the ranges of the methods they qualify, one that we have not catured so far.

Our rst attempted solution was to adapt the previous experi ment to allow for multiple
time responses. It seemed logical to try and approach this lgbility modeling through a
perceptual experiment, given the success of the two last stilies. It quickly became clear
that the time commitment required for participants would be too high. Either we lifted
the 10s time limit and let them explore all parts of the display freely, or we divided the
range of our visual dimensions in pieces and evaluate eachpsgately. Even dividing the
ranges of our methods in three portions would increase the maber of stimuli required to
an unmanageable amount, requiring many more participants ad longer experiment times,
with the subsequent fatigue issues.
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Similarly, lifting the timeout limit to avoid increasing th e number of stimuli would not
fare much better. The free exploration of each display wouldstill require subjects to report
times for all nine portions of the display. It is clear that th e experimental interface and
interaction technique would need to be carefully planned inorder to really capture the
participant's perception times. Otherwise, we ran the risk of obtaining subjective estimates
of the order in which participants perceived each portion ofthe display.

To solve these problems we relied on the expertise of our vigilidesigners.

6.1.2 Results and Discussion

All our participants completed di erent amounts of the full experimental plan, but none
completed all tasks. The di erent situations encountered during the experiments, explained
in the next subsections, limited our results but provided vaduable clues to identify the reasons
for this outcome.

All participants declared the interface was simple to learnand did not a ect their de-
cisions. As an initial step in the experiment, they spent araund 10 minutes exploring the
visualization space our parameters represented and gettonused to modifying layer order,
data mapping methods, and the constraints each one had.

The main results obtained from the experiment were a positie evaluation of our saliency
and interference models, and the realization that the soluton to a multivalued visualization
design problem depends on the particular spatial distribuion of the datasets involved and
might not be safely generalized to other situations: i.e. wih our experiment, we were not
able to nd a general model of legibility that could by applied to any pair of data values.

During the study, we had a hard time maintaining participant s on-course through our
protocol. The main reason for this was our inability to provide them with other visual
dimensions to explore possible solutions. They constantlyasked for options unavailable
to them such as the use of icon hue, the use of di erent shape @ms, a broader range of
sizes and spacings, or non-linear mappings to emphasize low lbigh values (although they
realized the scienti ¢c nature of the data does not permit this type of scaling, which would
visually misrepresent data relationships and potentially lead to the wrong conclusions).
Our experiment was constrained by the number of methods we hdibeen exploring in other
experiments, along with the limited parameterizations we uilized. Although this created a
manageable space to explore during our previous studies, stial designers are not used to
this kind of constraints.
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Variable Saliency Tasks

In general all experts validated the predictions from our malels for saliency and interference.
The user interface included in it the values predicted for those two factors, and although
participants were not informed what the gures indicated, we were able to check them
against their comments as they were exploring the space of sualizations. Figures 6.5
through 6.8 show examples of some of the solutions particigdas provided to this task,
including our models' predictions.

It is important to note that this task, as opposed to the previous experiment, includes
an element of legibility. Participants were asked to keep bth variables legible as much as
possible while highlighting one or the other, which accouns for the small deviations observed
in the values for saliency and interference shown in the gues. The relative values within
a given combination were correctly predicted. For example,Fig. 6.7 is an equal saliency
solution and, while the actual value predicted is not zero, te legibility constraint made
designers increase the size from 2 to 4 pixels to make satuiah readable. Our model does
not take into account legibility due to the simple dataset used for the previous experiment
and it predicts size 2 to produce a saliency value of 0:009, the closest to zero in the range
tested. During the previous experiment, participants werestill able to recognize saturation
changes with that small size, but the continuity and smoothness of the data might have
helped in that regard. These legibility limitations are what we are trying to capture with
this experiment.

In particular, notice how the bottom layer is usually de ned to be as solid as possible.
Indeed, this solution solves the visual problem we presenteto participants: to display \two"
data values simultaneously. House [House et al., 2006] reaed a similar set of solutions for
the visualization of two overlaid textured surfaces. Although not using the same stimuli
(they used stereo animated images and three dimensional siaces) or methodology (they
reached these solutions using a genetic algorithm approacto explore large areas of the
visualization space), our experts con rmed their results, while our predictive models also
reached a similar outcome.

The problem this created was that only a small portion of our full parameter space was
explored. Furthermore, solutions of the type reached duriry the experiment do not provide
valid information towards creating multilayered visualiz ation methods for more than two
values. Methods containing a sparse bottom layer did not geevaluated for either saliency
variability or legibility. Similarly, the results from [Ho use et al., 2006] cannot be applied to
the visualization of three overlaid surfaces.

Our initial reaction to this was to change the experimental design to present three scalar
data values simultaneously displayed using three separatkyers. The hypothesis would be
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v = flo;11g = ff (0;0;0;0;0; 3;0); (0;0; 1, 0; 0; (2; 10); 0)g;
f(0; 1,0;0;0;0; 0); (0:33,(0; 1); 0:6; 0; 0; 8; 7:5)ag

Figure 6.5: A result from the equally salient task for SAT and SIZ. This combination
has a predicted saliency value ofw,(vo;vs) =  0:183 with the available range being
wy 2 [ 0:698 0:141], given the interface options. While our prediction indcates a slight
dominance of SAT, this compensates for the task's goal of mataining legibility for both
data values, which our predictive model does not take into acount. Interference val-
ues arews = (Vojvs) = 0:342 for how much SIZ interferes the reading of SAT, and
ws = (vsjvo) = 0:405 for the opposite case. These values being so close con rthis
combination as an equal saliency choice. Data value id's intte parameterization come from
Figure 6.2.
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v = flo;lag = ff (0;3;0;0;0;0;0); (0:33,(0; 1); 0:6; 0; 0; 2; 0)g;
f(0;0;0;0;0; 1;0); (0; 0; 1, 0; 0; (2; 10); 2:5)gg

Figure 6.6: A result from the task to highlight one of the variables (SIZ) for a SAT-SIZ
combination. In this case, the predicted saliency iswy(vo;vs) = 0:4422 [ 0:121;0:714].
Again, although our model would accommodate a more salient @ution for SIZ (a fully
opaque layer with O distance between icons), designers comgmised to allow for some
legibility of SAT. The interference values clearly re ect t his dominance. While SIZ interferes
with SAT quite signi cantly, ws(v2jvs) = 0:858, the opposite is not the casews(vsjva) =
0:120. Again, data value id's in the parameterization come fron Figure 6.2.
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v = f(0;2,0;0;0;0; 1); (0:33,(0; 1); 0:6; 0; 0; 4; (0; 10))g

Figure 6.7: A result from the equally salient task for SAT and SPA using a single layer.
For this combination, our model predicts a small range of sdkncies available given the
interface options: wa(vo;vg) = 0:1772 [ 0:249 0:009]. This indicates a very unstable
combination with a tendency for SAT saliency. In this case, &perts were clearly limited by
the available options, since they could only control the sie of the icons. Again, enabling
some legibility for SAT threw o our predictions.
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v = flg;l1g = ff (0;0;2;0;0;0;0); (0;0; (0; 1); 0; 0; 2; 0)g;
f(0;0;0;0;0; 0; 1); (0:33; 1, 0:6; 0; 0; 2; (0; 10))gg

Figure 6.8: A result from the task to highlight one of the variables (LIGHT) for a LIGHT-
SPA combination. In this case, experts went to a completely paque bottom layer that
would be salient over a sparse, yet readable, top layer. Ournedicted saliency value con rms
this: wa(vs;Vve) = 0:1272 [ 0:127 0:008], and interference results indicate SPA does not
interfere much with the reading of LIGHT, w3 = (v3jve) = 0:007, while the opaque layer
does not compromise the reading of SPA eitherws = (vgjvs) = 0:234.
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that the bottom layer would serve as this solid (although still icon-based) background and
the other two would provide us the two-layer interaction information we were looking for.
As we will explain below, the issue with the dataset dependece impeded our pursuit of
this new methodology.

Derivative Information

In designing this experiment, we hoped to identify one or twogood combinations per pair
of methods and record how moving around those would a ect saéncy and legibility, but
the participants' strategies did not t our expectations. A fter they had performed the three
subtasks from point 6 of our protocol (modifying the parameters of the visualizations so
either variable 1, 2, or both were salient in the combinatiors display) we were not able
to evaluate our models' derivative information, since we cald not identify any particular
paths of exploration. The process they followed was not whatve expected: After almost
exhaustively exploring all options from the interface, they reached a solution for the rst
subtask. They then went back to a neutral combination of paraneters and explored the
space of parameters again searching for a solution to the saed subtask, and so on.

Queried about the reason they were doing this they declaredhat, although the visual
dimensions were familiar, and the datasets were clear enohgtheir joint use in the combi-
nation image was not at all common, making them explore the fll space every time to be
con dent of their response.

Legibility Information

The main goal for this study was to obtain a reading of the intuition designers have, from
their experience and design knowledge, as to how the combitian of methods work together
to represent data e ectively. As mentioned before, we had a dcult time keeping partici-
pants on-course through our protocol and, for this reason, tlkeir comments about legibility
were quite sparse and not at all exhaustive enough to completour scorecards.

Most of the comments regarding our legibility measure were anstrained by the particular
characteristics of the dataset utilized. The remarkable sptial similarity of the three scalar
variables provided many examples of the various situationsndicated in our scorecards, but
participants commented they had a very di cult time answeri ng the very speci ¢ questions
from tasks 4 and 5. They acknowledge it is a di cult problem to solve, but without more
tools to explore a solution, such as ne-tuning parts of the dsplay by hand, they could not
reliably provide general comments valid for other situations. This leads us to the next and
perhaps more important result from the experiment.
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Dataset Spatial Distribution Dependence

All our participants designed individual solutions based o the particular pair of data vari-
ables being displayed. We had hoped that they would try to obtin good overall com-
binations of parameters that would apply to any pair of variables, but that was not the
case.

As it can be seen from Fig. 6.2, since all three MRI scalar vales come from the same
human brain dataset, they all share similar physical charateristics. This, we hoped, created
the ideal setting for exploring how data resolution and spatal feature resolution character-
istics were preserved in two-layer combinations.

Participants declared, in fact, these coincidences distreted them too much from trying
to answer the tasks. They understood the setting and why thiswas the case, but adapting
to it in such short time period and with the very constrained parameter space they had
to work with, did not provide an adequate problem-solving situation. Furthermore, the
exploratory goal of our combination display did not help in their design process.

Even though they realized the goal was not to highlight any paticular features from
the dataset, the many spatial coincidences from the varialds made it hard to balance the
solutions. While some areas were ful lling the task and makng one variable more salient
than another, other areas would show the opposite e ect. One again, the limitations of
the interface and parameter space did not let them perform leal adjustments that could
have potentially solved those issues.

We enquired whether datasets such as the weather data we havesed for Fig. 5.17
would have helped, since the spatial distribution of valuesis di erent among variables of
that dataset. This is where they all agreed on mentioning ourmain take-home message
from the experiment: No matter what data we used, they would plore the space of
possibilities and design a visualization that t the partic ular combination of data variables.
They understood our goal of extracting a general set of rulesrom their design process, but
they all asked for a full set of design tools and an unconstraied space to really show that
process.

Two Explanations for the Results

This last comment creates a dilemma for the evaluation of ouexperimental hypothesis. On
the one hand this data dependence issue would make it impo$de to generate a general set
of legibility scores independent from some measure of spaiiidata correlation. This, in fact,
would indicate that the wrong hypothesis was tested, and a ne hypothesis, which would
include those data correlations, would need to be posed andvaeluated.

On the other hand, the solutions participants reached for the saliency tasks, where
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an almost solid layer of icons was permanently placed on the ditom layer, along with
the limitations our parameter space imposed on their desigrcreativity, would indicate our
experiment did not have the capability of nding a signi can t result for our hypothesis,
even though one might have existed. A redesign of the experiamtal protocol and setup
would be granted.

After analyzing all the comments and solutions from our expet visual designers, we
believe both conditions are true: the current hypothesis canot be evaluated and the ex-
perimental methodology was not powerful enough to detect aigni cant result. The next
section explores these two issues.

6.1.3 Attempting a New Approach

Our methodology for the experiment was based on our explorabn of this small portion
of the visualization design space, which contained only fouvisual dimensions. This, we
hypothesized, would make it easier to explore both perceptally and with the help of expert
designers. Our results indicate that that very limitation i mpeded the e ective use of visual
design experts.

This result has similar connotations to the one from our vecor eld visualization exper-
iment, where it seemed we under-taxed our experts. In this cas we had a complex problem
for them, but the experimental setup did not allow them to solve that problem e ectively.
We, again, under-taxed their expertise by not providing them the right tools.

Following that conclusion, we could think of approaching ou exploration from the top
down. That is, we could present the visual problem to the degyners and let them generate
solutions for us using their own tools. We could still recordtheir comments and annotate
their process as much as possible to extract the necessaryeggies of data to inform our
model. This obviously creates the problem of generating a pwserful enough protocol so
we could obtain valid data from the potentially huge space dsigners could explore. Also,
trying to extract information about our particular dimensi ons of interest would be biased
by many factors, mostly di erent for each subject, that we could not fully control: inter-
faces, user interactions, or combinations of visual dimensns used, to name a few. This
approach assumes our hypothesis can in fact be evaluated viita more complex experimental
methodology.

Note that this is the traditional way in which visual designers collaborate with visual-
ization scientists. Since our goal from the beginning was tgenerate a quantitative model of
utility, our approach was necessarily bottom-up, hoping to generalize to complex situations
what we could learn from simpler quanti able ones.

On the other hand, if we conclude that we cannot disprove our arrent null hypothesis,
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then we believe including the dataset as part of the model cold be part of a new experi-
mental hypothesis. We will explain in the next chapter our ideas on how to do this. The
main issue with this solution is that, a successful modelingof this combined space (visual
dimensions plus data characteristics) could lead to visuatation solutions that would be
di erent for the same types of data. For example, using the weather data as our multival-
ued dataset, this new model could suggest an optimal visuatation method combination
for the mean temperature and average wind speed data variabl combination, based on the
particular spatial relationships between both variables. Now, if we changed the dataset
to be that of another region of the globe, those relationshig would most likely change,
potentially leading to a di erent choice of visualization m ethod. This is precisely the issue
with this approach: even when the same type of variables are sed (temperature and wind
speed), a meteorologist looking at these data would be givea di erent visualization for
each part of the world, or even for each time of day when condibns change in the same
region.

We will further elaborate on these possible scenarios in ouconclusion chapter, when
we will put these options in the context of our overall reseach.

6.1.4 Experiment Conclusions

This experiment has provided valuable con rmation of our previous experimental results
and important information about the methodology to use when engaging expert visual
designers in visualization evaluations such as this. In ligt of our results, we could consider
this experiment a pilot study that evaluated a potentially e ective methodology to evaluate
legibility factors in multivalued scienti ¢ visualizatio n methods.

It has o ered us a glimpse into the visualization design pro@ss, albeit biased by our
limited exploration space. This type of exploration required visual design experts to almost
exhaustively search the space every time a new set of variadd needed to be displayed. The
limited design space also generated frustration among ourgrticipants and dampened their
e ectiveness performing our tasks. In summary, we should noblimit their design creativity
if we expect to extract good data from examining their designprocess.

Finally, the protocol design assumed also that questioninghe participants and guiding
their exploration would help obtain consistent data. Although that is the aim of exper-
imental protocol analysis techniques, the protocol itselfbroke the concentration of our
participants, hence not really performing as they normally would. We believe the visual
design eld is a very di cult area to explore and to try to quan tify. That said, successful
protocols have been developed to explore, for example, use@bility to control complex user
interface designs, but we estimate it would require years talevelop a deep enough protocol
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to put some mathematical structure around our visualization design process.

6.2 Evaluation on Practical Applications

We present here the results of an informal evaluation of our mdels and multilayered visu-
alization methods. In it, researchers from the Department ¢ Geology at Brown University
utilized our visualization methods to explore data collecied by the 2001 Mars Odyssey
Gamma Ray Spectrometer (GRS), which included concentratios of hydrogen ), chlo-
rine (Cl), silicon (Si), potassium (K ), iron (Fe), thorium ( Th), and a potassium-thorium
ratio (KvsTh) from the near-surface of the planet. Figure 6.9 shows theseafa using
grayscale values on a simple cylindrical projection of the wface of Mars (from -180 to
180 degrees of latitude horizontally, and from -60 to 60 degms of longitude vertically),
cropped at high latitude values where data collection is notreliable. The same gure also
shows the estimated standard deviation values () for all seven data values. Since only
gualitative relationships are sought, no numerical valuesare attached to these images or
any visualizations shown here.

GRS is a signi cant component of NASA's Mars Surveyor Progran. It is an ongoing
initiative to explore Mars through scienti c instruments a board orbiters, landers, and rovers.
GRS is really a suite of three instruments designed to analyz the chemical composition of
the Martian surface. GRS also has the capability of detectig water in shallow subsurface
depths.

The goal of visualizing these elements together was to conm whether strong corre-
lations exist among the di erent values, in particular with hydrogen, which is used as an
indicator for the existence of water on or below the planet'ssurface. Current state-of-the-
art methods to explore these correlations rely on 2D scattemplots that show concentration
correlations without any spatial information attached (see Fig. 6.10 (a)) or, at the most,
displays combining two elements as shown in Fig. 6.10 (b). Aart from these, side by side
comparisons are used and, sometimes, RGB combined imagespliaying three elements si-
multaneously and focusing on nding areas with pure red, gren, blue, white or black colors,
since any other intermediate combinations would be di cult to interpret.

Our goal during this informal session was to determine whetkr providing users with
explicit control of the perceptual relationships among thedi erent methods would overcome
the loss in spatial feature resolution. This loss comes fronthe discretization of the data
into icons. However, the main benet of this discretization is the possibility of layering
icons and showing more data values simultaneously. Two resechers attended the session
in which we explored di erent combinations of data values.

The rst display we generated is shown in Fig. 6.11. It shows he concentration of H
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H H
Cl cl
Si Si
K K
Fe Fe
Th Th

KvsTh KvsTh

Figure 6.9: Concentrations and related measurement errorof various elements on the
surface of Mars as captured by a gamma ray spectrometer. Lowalues are black and high
values white.
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b)

Figure 6.10: (a) Correlation scatter plot of C| and H concentrations on the surface of
Mars. This plot lacks spatial information, and is sometimes complemented by (b) using
a combination of a non-perceptually-uniform rainbow scale fo the Cl concentrations and
contour lines for the H concentrations. Both images from [Keller et al., 2006].
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Figure 6.11: Concentration ofH mapped to lightness and its corresponding 4 mapped to
size. Observe how is mostly at the higher latitudes where dat is less reliable.

as lightness changes and its estimated as size changes. Given the resolution of the given
data, we kept the spacing to a minimum so we would loose as lite information as possible
(both spatial feature resolution and data resolution of lightness decrease as spacing values
increase). Also, since the actual concentration values shudd dominate the composition but
not interfere with the reading of the variance values, we chee this combination of lightness
and size. Our models predict lightness as more salient and ierference to be low between
both methods.

This initial display was regarded as e ective by both our uses. They declared the loss
of resolution was a problem, but recognized the simplicity ad immediate reading of both
variables that this icon-based visualization created.

The next step was to include some of the other concentration Vlaes in the display.
Figure 6.12 shows two visualization of the same three elemé&n(H, Cl, and K). The rst
display (Fig. 6.12 (a)) was based on our initial combination so we keptH as lightness and
included CI as spacing changes an# as size changes. These choices came from the better
data resolution performance of spacing versus size, and theelatively low data resolution
of the K concentration values. With this representation we kept the dominance of theH
component but our models predict a relatively high interference with the spacing changes.
This was recognized by our users and we switched the visuabifion to the one shown in
Fig. 6.12 (b). The only change here was to switch theH data values to saturation changes.
This, our models predict, lowers the saliency of that data vdue, but also decreases the
interference with the other methods.

At this point both users agreed this was a completely novel ad e ective way of looking
at their data. They were able to recognize topographical fetures of the surface of Mars
based on our visualizations. It is important to note that they were only seeing these resulting
visualization and never the raw data or any other image that ould serve as a reference.
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a)

b)

Figure 6.12: Two visualizations of the same three elements(a) ShowsH as lightness,Cl as
spacing, andK as size changes. In (b) we changdd to saturation to decrease its dominance
of the composition and the interference with the other two dda values, as predicted by our
models.
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Figure 6.13: Concentration of C| mapped to saturation, Fe mapped to size, and the ratio
KvsTh mapped to spacing.

They both had extensive experience looking at these data inther formats. They quickly
became comfortable reading the icon characteristics as datvalues and were able to con rm
expected areas of correlation and non-correlation among thei erent variables.

In order to bring in some of the other data values, we created lhe display shown in
Fig. 6.13. This uses the same parameterizations as Fig. 6.1®) but using CIl, Fe, and
KvsTh as the data values being represented. In this case, spacing used for the data
value with lower data resolution requirements (KvsTh) to minimize the predicted greater
saliency that using size would cause. As it can be observedyen taking this measure, the
particular spatial distribution of high values for KvsTh creates a very salient feature. This
e ect, as we mentioned before, cannot be predicted by our moels. Our users commented
on the e ectiveness of this display also, in particular the equal saliency and low interference
between saturation and size changes, making it easy to readdbh data values simultaneously.

As a nal step, users asked to correlate these three values tthe concentration of H.
Figure 6.14 shows the two options we provided to them using mitiple layers. In Fig. 6.14
(a) we included the raw data directly underneath the previous display. This achieved the
initial goal of highlighting the H concentration, but created too much interference with all
other methods present. While our models do not include full olor planes, we can estimate
design factor values by plugging in low size and spacing vaks into our models. In order
to minimize overall interference and create a more balancedlisplay in terms of saliency
we increased both size and spacing values of the bottom laygshown in Fig. 6.14 (b)).
We manually optimized the nal parameterizations by lookin g at the predicted values from
our models for each pair of methods. The combination shown mvides the best balance
between equal saliency and low interference, while utilizig the best methods based on the
particular resolution characteristics of each data value.

Users were excited about the possibilities of this, for themnew visualization approach,
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b)

Figure 6.14: Two visualizations of the same four elements. &) ShowsH as background
lightness, Cl as saturation, Fe as size, andKvsTh as spacing changes. This option makes
the background layer too salient with respect to the other vdues. In (b) we discretized
the H data value and chose a combination of size and spacing for thkottom layer that
would bring pairwise saliency values between methods closdogether while, at the same
time would minimize interference.

and our goal of using our models to achieve e ective solutios e ciently was ful lled. Fur-
thermore, a more important conclusion of this experiment wa the realization that, even
when the original continuous datasets are discretized, use accept the loss of resolution in
exchange for a quick and intuitive way of correlating their values. They especially praised
the simplicity with which we controlled both the mappings and parameters to achieve dif-
ferent saliencies, and which data values should be be mappe&d which visual dimensions
based on their particular features.

In conclusion, we successfully utilized our models to predi the performance of the
di erent methods for a real visualization problem. Althoug h we performed all the opti-
mizations and parameter tweaking by hand, the process we fawed serves as an example
of how changing requirements can be plugged into our modelsotcontrol the knobs of our

visualization software.



Chapter 7

Discussion and Conclusion

Through a variety of experiments, this dissertation has adwanced the state of the art in
scienti ¢ visualization by evaluating how perceptual studies and collaboration with visual
designers can help predict the properties of visualizationmethods and ultimately their
e ectiveness. Our contributions include new experimentalmethods and perception models
that can be used to guide future research and improve the utity of multivalued visualization
methods.

This nal chapter will summarize the main conclusions from all our experiments, and
will propose some potentially rewarding future lines of regarch, including our ideas on how
to solve some of the issues that we have identi ed along the wa We will also dedicate a
section of this chapter to provide a series of guidelines fodesigning visualization evaluation
experiments. Even though some of those might not be novel, wéelieve it is useful to
complement our contributions with a checklist that re ects the lessons we have learned.

7.1 Research Summary

One guiding principle in designing our research plan was to amplete our model from the

bottom-up: we should rst understand and quantify how the ind ividual dimensions that

form our visualizations work before trying to approach multivalued scenarios, where per-
ceptual interactions would play a signi cant role. Our hypothesis was:

Measuring the perceptual capabilities of several icon-baskscienti ¢ visualiza-
tion methods for simple single-valued scalar datasets in 2Dand combining that
with subjective evaluations of complex multilayered methads representing mul-
tivalued datasets, we can generate a predictive model of uity of a space of
visualization methods.

137
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A key contribution of this dissertation was showing that expert visual designers can
be e ective evaluators of scienti ¢ visualization methods. Our rst experiment showed
that their subjective critiques can be signi cantly correl ated with the results from more
traditional objective quantitative studies based on task performance. In addition, and
this is one of the bene ts of using these expert visual desigers as experimental subjects,
they were able to provide us with reasons for certain visual @nension interactions, and to
indicate how a change in these dimensions would further a etthe utility of a method and
the e ective reading of the data variables.

We continued this line of research further by conducting a seond study to evaluate
the utility of individual 2D visualization methods in terms of a set of design factors, which
were subjectively rated by expert visual design educatorsWe successfully characterized a
total of 33 visualization methods using 11 di erent visual dimensions and 6 di erent design
factors for representing single-variable continuous scatadatasets. While the ranking results
obtained were informative, they were not nearly as exhaustie as we needed them to become
the basis for our utility prediction model.

Therefore we approached the evaluation of our hypothesis im a perceptual standpoint,
leaving the use of visual designer subjective critiques foa later stage, when we needed to
evaluate complex visual displays, di cult to test perceptu ally. Our next experiments were
aimed at quantifying the utility, in terms of some of our design factors, of a subset of the
visual dimensions we set 0 to model. We could not try to explore such a vast space of visual
dimensions exhaustively through psychophysical studiesSince the number of variables to
be controlled was just unmanageable, we evaluated four of #m: icon saturation, icon
lightness, icon size and icon spacing.

The experiments evaluated some individual properties of tiese dimensions, such as data
resolution and spatial feature resolution, and also propeties of the perceptual relationships
between them, such as saliency, and interference. We were lgbto successfully obtain
predictive mathematical models based on variables such ashé size and spacing of the
icons, their color, the number of layers used in the display ad their order.

Once these models were completed, we designed a study thatsing expert visual de-
signers to evaluate real two-valued dataset visualizationswould allow us to quantify the
loss in data resolution and spatial feature resolution whenwo methods were combined: i.e.
to quantify the loss or gain in legibility. We had the baseline capabilities for each method
when utilized individually, and we knew how much one method aected the time required
to understand another or which one would dominate, but we neded to know the actually
change in legibility to be able to propose a model for higher mler combinations.

With this experiment we were not able to disprove the null hypothesis, as we explained in
the previous chapter, and it left us with several open questns that will need to be answered
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and evaluated to move forward with this research. We did, hovwever, validate the models
we generated by obtaining anecdotal evidence from designerduring the experiment and
through informal demonstrations of the predictions of our models with scientists exploring
multivalued datasets.

7.2 Open Issues and the Development of a New Hypothesis

As we mentioned before, there are two possible explanationg/hy an experiment fails to
disprove its null hypothesis: the hypothesis is false or theexperiment was not designed in
such a way that could capture a signi cant result if one existed.

We believe both options played a role in the outcome of the lasexperiment and hence
in the whole project.

7.2.1 Investigating Data Dependence

The main reason our initial hypothesis could be false is that from the beginning, we elim-
inated the dataset itself from the argument. Our aim was to oltain a general model that
could be applied to any type of multivalued scalar dataset. W tried to capture some of the
characteristics of those datasets by including data resoliion and spatial feature resolution
as two of our design factors.

Indeed, this provided, we believed, the link we needed betven the visualization methods
and the actual information needs they were required to addres. In fact, while studying the
individual methods these o ered su cient information to de termine their utility. When we
introduced two-valued visualizations, it became clear we neded some spatial data correla-
tion information to e ectively address the modeling of the methods' utilities. The intuition
for this is as follows.

Let us suppose we have successfully completed the last exjpeent and we have obtained
a full legibility model for all pairwise interactions between methods. That means, and
limiting this discussion to data resolution legibility, we know how di erent levels of one
method a ect the reading of all levels from another. In order to apply this knowledge we
need to know how the spatial distribution of values from a dat variable coincides with the
distribution of another. Here is where our hypothesis fails We do not account for such
data correlation information to be part of the model.

Our hypothesis does not completely fail since, instead, it s on the side of caution.
Without including the data, the only prediction of utility w e can make is based on the overall
ranges of the data variables. Given those, we can just applyw model to the extreme values
and use those as a very conservative estimate of correlatisn In fact, the coincidence of
the extreme values may never occur and we could be dismissingerfectly valid solutions
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because we are not looking at the speci c datasets being viglized. Figure 7.1 describes
our attempt to obtain this data correlation information. Ha ving that we could evaluate
visualization method utilities with much more narrow and realistic constraints.

Note how this is precisely what expert visual designers werdoing in our last experiment.
They tweaked each combination of methods to t the particular pair of data variables being
visualized. We decided we could not take those results becae they were not representing a
general methodology but individual instances. This leads 8 to a di cult research situation.

On the one hand, if we do not address this data dependence we ligve we would not
be able to nd a general model that would apply to any multival ued dataset. But, if we do
address it, the model itself will generate too much variabiity in the choice of methods. As
explained in Section 6.1.3, users would need to adapt constély to new visualization displays
for similar types of data, with important consequences for teir research e ectiveness.

We were not able to continue our research precisely becausé this issue. Nevertheless,
important lessons were learned and new perceptual models deloped. We will now address
the second possible reason we failed to validate our initiahypothesis: the experimental
methodology.

7.2.2 Experimental Methodology and Guidelines

Our strategy in designing our last experiment was based on auinterest in studying a par-
ticular portion of the space of visualization methods. We abo utilized the same constraints
we had for the perceptual experiments: xed ranges for the m#hods involved and limited
number of levels for the independent variables.

Our results show that these limitations impeded our expertsto fully provide their exper-
tise to solve our visual problem. The fact that subjects expbred the full space of parameters
every time signaled an unfamiliarity with both the dataset and the limited space we allowed
them to explore. Participants declared the tasks were easyd understand and the dimen-
sions used were clear, but the lack of freedom for exploringtber options frustrated them
and ultimately made their con dence drop.

From the initial experiment in this project, we have already supported the well-established
idea of collaborating with visual designers for scienti ¢ visualization design and evaluation.
It is indeed a hot topic in visualization literature, along with the use of perceptual knowl-
edge. But while there is a whole area of science dedicated tdé¢ study of perception, very
little has been done to try to capture design knowledge expementally.

The goal is to try and learn from the visual process these expés go through when
solving a visual communication problem. The key to do this, vwe believe, is to provide
them with the right tools to do their job while controlling th eir exploration enough to be
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Figure 7.1. Given the two data variables, v, and v, on the top, we can delimit the value
correlations across the range of the display by superimposg both variables (bottom left)
and plotting what values of v, coincide with what values of v;. Instead of assuming the
worst case scenarios of just crossing the limits of the valueanges, this construction would
give us much more narrow constraints. An optimization schene could be set up based on
this information and the capabilities (data resolution, in this case) of the methods chosen
to represent these data. The result of the optimization woutl be the best ranges for those
methods that produce the most (or any other specic goal) peceivable levels across the
display.
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analyzable. This could indeed prove to be an impossible quéstrying to capture on a xed
protocol something that, although it is undoubtly based on perception rules and established
design knowledge, has a large component of experience, igtion, and other in uences
that designers can let transpire into their work.

In summary, in our case we de nitely constrained our expertstoo much, but we believe
we needed to do so in order to understand their process enougdhb turn their responses into
guantitative results. We are, once again, presented with tve options: constrain and not get
generalizable results, or do not constrain and not be able taquantify the results.

The same as before, this research has advanced the knowledgeour eld by testing one
of those strategies. We estimate that a full overhaul of the galuation methodology would
take many years to develop. It would require exhaustive obswation of visual designers
in their own workspaces and careful dissection of the procesthey follow. This still does
not guarantee success, since the key to developing a usefuility model depends on under-
standing the individual dimensions of visualization and their capabilities, and they will be
di cult to isolate on a top-down approach.

Nevertheless, our e orts were not without reward. In the process of evaluating our
methodologies we have learned valuable lessons, and we hofuture endeavors can benet
from our experience. Along these lines, we would like to higlight the main guidelines
we believe must be followed when designing this type of expenent using expert visual
designers. Note that some of these have not been tested andyerefore, are our hypothesis
of what to try next.

Experimental Guidelines

This is by no means an exhaustive list but a set of guidelines & believe are the most
important to take into account when designing new experimes.

Use comparative critique: Providing participants with several displays to evaluate by
contrast. This is an established technique in art and designFeldman, 1994], and
one that we successfully used in our scalar datasets experant with expert visual
designers. This enhances the quality of the participants comments and provides initial
ranking information. It is hard to do this on paper due to prin ting calibration issues
and, on a computer monitor, they must be high resolution and & large as possible.

Recruit experienced design educatorsWe hypothesize that their critiques can be bet-
ter suited for protocol analysis than expert non-educators o students. Throughout
this dissertation we have mentioned the use of experienceddacators as our subjects.
Their approach to critiquing designs includes their experence teaching composition
and communication concepts to students, and during our seawd experiment, they
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accommodated more easily to the thinking-out-loud protocol. It is, however, hard to
schedule their participation but they are, in general, very enthusiastic about investi-
gating lines of collaboration between art and science.

Allow for multiple subjects: We believe we could improve our results by running two
or more experts simultaneously in the same experiment. The mst important bene t
from this is that they could explain to each other task goals @ other experiment related
issues in a language they are familiar with. Practical limitations such as scheduling
issues can sometimes impede this approach, such as in our eas

Create challenging tasks: Simple tasks will not engage subjects and generate only
general results with no new insights. Too complex tasks willin turn, be di cult to
control and analyze because of the multitude of elements psent. A balance must be
found to successfully complete studies of this kind.

Record real design sessionAllowing experts to use their own preferred tools improves
their con dence in the results and allows them to more easilythink out loud. We
did this, in part, when we asked designers to create a new metd during our rst
experiment with 2D vector visualization methods.

Include interaction: Interactive exploration is known to enhance insight, and ou re-
search is no exception. However, care must be taken to eliméie as many limitations
as possible. Our last experiment included interactive contols for our visual dimen-
sions and, although it was welcomed by our participants, theexperimental constraints
provoqued frustration and lack of con dence in their results. As a guideline, we be-
lieve interaction should be limited to those elements that @n be fully controlled with
no constraints.

Combine objective and subjective studiesThe rst can provide exact quanti cation
of variables that can be directly used to generate mathematial models. The second
can validate those results and help de ne what type of functons are needed for those
models.

Present the ground truth: Although showing the original data is in itself a visual-
ization, which would contain the very perceptual issues we ge trying to explore, it
is necessary to incorporate this into the design. The groundruth is, after all, the
subject matter for the experts' critiques. Experienced paticipants can abstract, to a
point, from perceptual artifacts and concentrate in generd trends and features.



144
7.2.3 A New Hypothesis

We can now attempt to provide a new hypothesis that we believewould guide a new set of
experiments:

By analyzing how expert visual designers solve complex multalued visualiza-
tion problems using their own tools, we can obtain a descripibn of the design
process and design psychophysical experiments that quarfi the particular in-

teractions among visual dimensions that experts pay attenion to. The process
description will then serve as a guide to generate a mathematal model that
explains and predicts the utility of di erent combinations of visualization meth-
ods.

We believe this hypothesis constitutes a possible solutioto the issues found in this research.
It proposes a top-down approach to obtain both the key visual dmensions to consider and
the interactions that experts pay attention to when presented with complex situations. We
go from complex displays to identifying the process elemestand analyzing them in detail.
This hypothesis also helps in two key aspects. First, it willengage experts where they
are most e ective: presented with challenging problems andallowed to use their own tools
and techniques. Second, it proposes a solution to solve theath dependence problem.
Indeed our proposal acknowledges that it is possible to nd ageneral model independent
of the dataset. Presenting several experts with di erent problems to solve and trying to
obtain commonalities among the process they follow is the pa& where this hypothesis might
fail to produce the expected results. But, as opposed to ourwrrent approach, this challenge
is placed at the beginning and the hypothesis can be adjustedased on the initial ndings.

7.3 Impact of this Dissertation

Our hypothesis aimed at establishing a basis for a theory of isualization. This theory
would be based on the quanti cation of the utility of di eren t visualization methods.

Our results contribute to that goal by providing several models for the e ective use of
some 2D visualization methods. We have also produced a knoedlge base for the design,
execution, and analysis of evaluation studies that use expé visual designers as the main
participants. We hope the visualization community will bene t from this body of work in
its continuing quest for its theoretical foundations.

The experiments we have conducted add up to be an important minodological frame-
work with which other visual dimensions can be explored. Though those experiments much
has been learned that the visualization, perception, and \sual design communities can build
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upon. Even if the results do not add up to a full edge model to be plugged into a visu-
alization software, our individual experimental results will help non-expert users in their
search for an e ective visualization, by providing some indcation about probable directions
of improvement for their visualizations, and by shedding sane light as to what methods to
use in what situations. This will allow researchers to concetrate on data analysis instead
of visualization creation.

We recognize that this dissertation is just scratching the sirface of the complex problem
of e ective visualization design. Our hope is that new linesof research, involving collabo-
ration with visual design and art experts, as well as perceptal psychologists, will develop
around the basis we had created with these initial results.

7.4 Future Directions of Enquiry

While developing our investigation, there were many optiors and ideas that we could not
follow for di erent reasons. Nevertheless, we believe theyare promising directions to be
explored, with signi cant contributions at the end.

Optimization:

Upon a successful characterization of the methods' utilityfor multivalued cases, the
next step is to match up those capabilities with the requirements from scientists want-
ing to visualize their data. An optimization process can be asigned to weight the
possible solutions and o er users the best options based orheir demands. Further-
more, principal component analysis could be applied to try ad discern the correlation
among di erent visual dimensions. These components would pvide knobs similar to
the ones proposed in our idealized screenshots of our projécvision.

Double mapping:

The practical limits of experimental design constrained ou investigations to a handful
of visual dimensions and limited discretizations of the cotinuous axes de ned by each
one. Although we have taken into account and explored the dierent implications of
single versus multiple layers of icons, we could not study te case where more than
one visual dimension were mapped to the same data variablet Is recognized in the
perceptual literature that synergistic relationships might occur when multiple visual
cues are combined, forming emergent features. We would liki» explore how multiple
simultaneous mappings would a ect the expressiveness of gh order visualization
methods. Indeed, in cases where some visual dimensions in ayér are free, maybe
mapping them to already mapped data variables would enhancéhe overall utility of
the visualization.
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Genetic algorithms:

Given the high dimensionality of the space of visualizationmethods we are working
with, an e cient search strategy is di cult to design. In par ticular, since our data
are based on low order interactions and we are trying to look dr e ective solutions
for higher order problems, the guiding of that search will nd be e cient. Our origi-
nal idea for this dissertation was to implement a genetic algrithm approach for this
problem. Each visualization method would be an individual in our population, and
the genome would be built with the di erent visual dimensions we are interested in
using. The de nition of an evaluation function that could select surviving individuals
for each generation led to the current dissertation. We stil believe, as do some other
researchers in the eld [House and Ware, 2002; House et al.,0P6], that a GA ap-
proach would provide good results and an e cient exploration of the vast extent of
the visualization space. The evaluation function would be lased on the interactions
and model for them de ned in this dissertation.

Perceptual mapping:

Given that our datasets are scalar elds in 2D, we could analyge the local contrast
between every pair of data variables by using a grayscale reépsentation. Given a set
of design goals, we could use local measurements of contrastsee how to optimally
t a single mapping (data to visual dimension) that would mai ntain the saliency
requirement across the image. One hypothesis that would nekto be evaluated would
be that changing the mapping across the image to favor percejwn would not a ect the
reading of the data values. In other words, if we know that cetain values of lightness
and spacing con ict with each other by decreasing the data rsolution of lightness,
we could tweak the lightness mappings in those areas to perptually maintain data
resolution. This is a very complex and potentially risky proposition, since it basically
means that we are creating a mathematically incorrect visuéization (the mapping is
not constant across the display) that is arguably perceivedcorrectly.

Extensions to other visual dimensions in 2D

One of the main contributions of this dissertation is that the methodology used to
gather, analyze, and model the perceptual and visual designrowledge about the four
dimensions we chose can be utilized to include others suchas

{ Icon hue.
{ lcon motion.

{ Streamline-type representation (for vector eld visualization.)
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{ Ellipsoid-type representations (for tensor eld visualization.)

Second-order e ects:

Size and spacing are used both as independent variables andctors in our mod-
els. We have not investigated, because that is not the purpas of a dissertation in
Computer Science, what are the processes used by our percept system to read
these dimensions. We believe our eyes and brain obtain someightness and contrast
change information from size and spacing changes. If this ifrue, treating them as
independent factors from lightness is not completely corret.

Another e ect would be appearance of three-dimensionality that some dimensions
produce. Size, for example, when representing a linear daset, appears to suggest
a plane fading in the distance or coming out of the screen. Sm#ng or saturation

can also generate such illusions. Similarly to the brightnss e ects, it is conceivable,
but out of the scope of this thesis, that our perceptual systen uses those illusory
cues to help read the dimensions we are interested in. In thatase, our model will

implicitly include these e ects, but possible interferences with other dimensions will

not be detected.

We recognize the importance of these e ects, some of them wvgrobvious, but we
decided not to include them in this dissertation knowing they are a limitation for
the applicability of our model. Nevertheless, we believe inluding these e ects in the
model's mathematical de nitions would not be complicated, although the experimen-
tal designs to gather the appropriate measures would be.

Icon orientation:

After our experience trying to use orientation to represent scalar elds, we believe
it should not be used for that purpose. Subjects had a lot of tbuble going beyond
the sense of \ ow" it conveys, and developed strategies to rad the scalar eld, but
only for our simple linear datasets. Even expert designersauld not read orientation
for general multi-valued datasets. This \ ow" e ect can also be considered a second-
order e ect but, in this case, it is our hypothesis that it is c lear it interferes very much
negatively in the legibility of orientation.

On the other hand, orientation could be used as a di erentiating factor for multilayered
methods. Including this factor would only improve the model we present here and
provide a more comprehensive coverage of visualization ojins.

Other multivalued visualization options:
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We have not explored the possibility that users will not accept the loss of legibility

inherent in the discretization of a continuous dataset. Thepurpose of it is to enhance
the multivalued capabilities, allowing for multiple layer s. A very interesting avenue
of study would be to compare the ability to nd spatial correl ations among variables
using techniques such as side-by-side visualization, in-placimage ipping (where the

user clicks a button to switch between data variables in the ame visual display using
a single method), and our own icon-based multilayered approeh.

Display Size and Conditions:

In our experiments room illumination, monitor calibration , and subject positioning
were controlled to a rst approximation. This introduces a | imitation on how our
results apply in other conditions. Although we cannot certanly expect the exact
values to be maintained for other display form factors or ilumination conditions, we
believe our model will provide a valuable approximation to eective visualizations.
Note that, even for conditions exactly matching our experiments, we do not claim to
nd a single best visualization, but a solution that puts users closer to an e ective
visual display of their data.

Extensions to 3D:

The same reasons that motivated us to create a predictive moel of utility for 2D
visualization apply for the 3D case. There are many perceptal artifacts that combine
together to facilitate or impede e ective visualization of phenomena in 3D. There is a
clear need to understand how to quantify and harness those &ifacts to create e cient
and e ective visualization methods.

Our experimental methodology, measuring the individual cantributions of each visual
dimension and combining those in a predictive model, can beidectly applied to the
three dimensional case. The de nition of the dimensions, hwever, is harder since
there are more cues involved. The same goes for the design dfiet experiments,
where it will be more di cult to isolate individual elements to obtain unbiased e ect
measurements, while maintaining a realistic view of how thee methods would be
used in practice. The same way we did on the 2D case, there negdo be a balance
between isolating individual contributions and successflly generalizing to practical
cases where many factors interact.

We believe that this very complexity, and the vast amount of combinations possible
when more cues are added, will allow visual designers and asts to really show their
potential as visualization evaluators. With their holisti ¢ approach to critiquing, they
are able to evaluate how the di erent elements present in a sual display participate
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in the overall composition.

7.5 Conclusion

Acquiring and using expert visual design knowledge and pemptual interaction data at the
scope proposed has been intellectually challenging, and éhframework we presented in this
thesis to do it advances the state of the art in scienti ¢ visualization. Better visualizations
have the potential to advance science more quickly by improing our understanding of phys-
ical and biological phenomena, applied science, and engiegng. This dissertation enhances
the channels of collaboration in education and research ammg the disciplines of cognitive
science, visual design, art and scienti ¢ visualization. t advances our understanding about
the areas in which each discipline in uences the visualizabn design process and the quality
of the nal product: e ective scienti c visualizations.

\The prize is the pleasure of nding the thing out, the kick in the discovery,
the observation that other people use it [my work] {those aréhe real things, the
honors are unreal to me."

{ Richard P. Feynman, in The Pleasure of Finding Things Out
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