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In this dissertation we address an important problem in the visualization of multivalued

scienti�c datasets: To quantify the utility of di�erent vis ualization methods. This quanti�-

cation could become the basis for a theory of visualization that would explain and predict

how di�erent methods represent data e�ectively. Having such a utility function de�ned over

a space of visualization methods would facilitate the search for an e�ective representation of

scienti�c data and, given a problem, optimally use visual resources to solve it. Our hypoth-

esis is that by measuring the perceptual capabilities of some of those methods for simple

single-valued cases, and combining that with subjective evaluations of complex multivalued

displays using expert visual designers, we can generate a predictive model of utility for a

space of visualization methods. De�ning this model involves understanding the capabilities

of those methods to represent data individually, and quantifying the e�ectiveness changes

when they interact to represent multiple data variables simultaneously. While experiments

inspired by psychophysical studies can inform about the expressive capabilities of individual

methods, the complexity of the combined displays create an exponentially growing amount

of variables to be controlled during the studies. Using critiques from expert visual designers

to evaluate such combinations can reduce the experimental di�culties and help create the

utility model.

Our contributions include new experimental and computational techniques to evaluate

how di�erent visualization methods perform when displaying multivalued scienti�c datasets

in 2D. The work spans several experiments aimed at quantifying the perceptual capabilities

of some icon-based visualization methods, and we report on some signi�cant results that

help describe the structure of our space of visualization methods and the process necessary

to explore it.

Our hypothesis aims at stablishing a basis for a theory of visualization. Our results

contribute to that goal by providing several models for the e�ective use of some 2D visual-

ization methods. We have also produced a rich knowledge basefor the design, execution,

and analysis of evaluation studies that use expert visual designers as the main participants.

We hope the visualization community will bene�t from this bo dy of work in its continuing

quest for its theoretical foundations.
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Preface and Motivation

\The basic 
avors were a summing up of the Japanese concept of'umami', of

savoriness, meatiness, mouthwateringness, the bliss-point of any food. 'Umami'

is the Japanese �fth taste..."

{ Je�rey Steingarten, in The Man who ate Everything

To search for the elements that form the basis of things is natural. There are examples

of this in many knowledge disciplines: language and literature (\The Elements of Style"[1]),

architecture (\House Thinking"[2]), cooking (\The Elemen ts of Taste"[3]), to name a few.

The goal is the same in all of them: by enumerating, understanding, and describing

those elements we have power over them. We can then use them ina controlled way so

their combination achieves the purpose we intend in an e�cient and e�ective manner.

The example in cooking is particularly interesting to me, and quite relevant to the theme

of this thesis. In \The Elements of Taste"[3], the authors set o� to explain the principles

behind great taste in a way that anyone could understand. They proceeded to devise a

system that included most of the tastes in the modern palate. Not just the four we have

been taught we have receptors for, but the ones chefs use to produce their creations.

The same as artists and designers, chefs use their experience and knowledge of the basic

components available to develop their recipes. In deconstructing their creative process,

\The Elements of Taste" de�nes fourteen basic tastes: salty, sweet, picante, tangy, vinted,

bulby, 
oral herbal, spiced aromatic, funky, bitter, garde n, meaty, oceanic, and starchy.

How do taste artists put these together? What are the rules they follow and can we learn

them?

This dissertation attempts a similar feat in a completely di�erent area of knowledge,

but one also based very much on experience, intuition and thecontrol of a basic set of

components with endless combinatory possibilities.
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[1] The Elements of Style, 3rd edition, by William Strunk Jr., Macmillan, 1979.

[2] House Thinking, by Winifred Gallagher, HarperCollins, 2006.

[3] The Elements of Taste, by Gray Kunz and Peter Kaminsky, Little Brown and Co., 2001.
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Chapter 1

Introduction and Contributions

\Doctrines and theories are best for weaker moments. In moments of strength,

problems are solved intuitively, as if of themselves"

{ Johannes Itten in The Elements of Color

The main goal of this dissertation is to study ways of maximizing the bandwidth of

information successfully transmitted by a visualization, while leveraging human competen-

cies so a viewer can understand its visual depiction. In other words, we want to optimize

visualization creation by utilizing human visual resources e�ciently. To achieve this we

quantify and model how human perception explores the types of stimuli present in scienti�c

visualizations. Such a model would serve as a basis for a theory of visualization, one that

would explain and predict the way a space of visualizations is organized. This dissertation

is an initial step towards the de�nition of that theory.

A theory of visualization could be described as a theory of e�ective information repre-

sentation. This e�ectiveness is measured by how well that representation allows its users

to \detect the expected and discover the unexpected" in their data [Thomas, 2005]. In

the process of creating this representation, data are mapped onto visually perceivable units

to facilitate their analysis. The goal is to be able to comprehend the data wholistically,

through intuitive processing, as opposed to the linear processing required by looking at the

raw numerical data.

Figure 1.1 shows an example of that mapping and our vision forthis research. This image

represents a potential interface for a visualization software utilizing our results. In this case

a user would like to visualize together four values from a weather dataset (temperature,

pressure, precipitation, and wind speed) all of them represented at the top of the display

using the same grayscale representation with low values in black and high values in white.

Below those data images are a set of knobs that represent the requirements the user has for

each of our four design factors (see below for an explanationof these). Below these knobs

1
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Figure 1.1: Our utility models are based on a set of design factors such as spatial feature
resolution (SFR), data resolution (DR), saliency (SA) and perceptual interference (INT).
Users should be able to either adjust those knobs and have themapping parameters (layer
order, size, and spacing) change automatically, or �x the latter and observe how the utility
values change for each design factor. A more detailed explanation of this �gure is included
in the text.



3

are indications of what visualization method has been chosen to represent each data value,

what layer this value will be at (numbered from bottom to top) , and two more knobs that

can control the icon parameters of size and spacing.

We aim to provide users with an indication of what the e�ects on e�ectiveness are when

they modify the visualization parameters. In our experience, users of visualization software

feel overwhelmed by the multiple visualization options available to them. Most packages

currently available provide them with a wealth of methods to visualize their data, but

they usually provide no guidance at all about which ones are more e�ective for their goals.

Experience, or a visual designer at the user's side, is usually the key to a successful visual

representation of the data. Explaining how the elements of the visualization methods work

together is the �rst step to understanding the structure of a space of visualizations, and a

crucial one in de�ning our model of their utility.

To accomplish this we must measure the utility of the di�erent elements that compose

our visualization methods, what we call ourvisual dimensions. Having those measurements,

our hope is that we would be able to precisely combine these dimensions in such a way

that the overall use of their capabilities was optimized to the needs of the data and the

requirements of the user. In particular, our hypothesis is:

Measuring the perceptual capabilities of several icon-based scienti�c visualiza-

tion methods for simple single-valued scalar datasets in 2D,and combining that

with subjective evaluations of complex multilayered methods representing multi-

valued datasets, we can generate a predictive model of the perceptual properties

of a space of visualization methods.

The key challenge we must overcome for the de�nition of a general utility model is

the extremely fast growth of the number of parameters to explore as we combine visual

dimensions to represent multivalued datasets. Although models for single-valued cases have

not been developed, and we introduce them here, it can be argued that it is possible to fully

study that space. However, starting with two-valued datasets, the complex parameterization

of the visualization methods would make exhaustive experiments infeasible. Part of this

dissertation's contribution is the de�nition of a methodol ogy that attempts to describe a

utility model for higher-order combinations based on lower-order results.

In order to validate the models we obtain we will perform an evaluation that, using our

results, shows an improved and more e�cient visualization creation process. Section 6.2

contains the details of this evaluation.

In the rest of this dissertation we will consider a visualization method as an abstract

function that transforms a scienti�c dataset into a visual r epresentation to facilitate data

exploration. In turn, a visualization display is the instantiation of a visualization method.
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Here, we are interested in studying visualization methods for multivalued continuous scalar

datasets in 2D, using multilayered icon-based methods. Furthermore, the goal of our visual-

izations is exploratory. We assume our end users want all thedata displayed in an unbiased

way: they have no preconceptions about more or less interesting areas that should be high-

lighted or de-emphasized. In the multivalued case, their exploration seeks to understand

the relationships among data values.

De�ning and exploring the space of possible visualization methods for a given scienti�c

problem has challenged computer scientists, statisticians, geographers, and cognitive scien-

tists for many years; it is still an open research problem. The goal of such models is to

describe a searchable space where scientists can �nd visualization methods that optimally

convey the information they require. This dissertation is a modest attempt to generate a

utility prediction model of a small subspace. In other words, we seek a function that given

a visualization method returns the perceptual capabilities of that method to represent data.

The value of identifying the basic visual dimensions that form visualizations, and their

interactions, is that we thus develop a framework to organize knowledge of visualization

design and predict behavior of data displays [Cleveland andMcGill, 1984]. We want to

create a way to get scientists, and visualization users in general, closer to an e�ective visual

representation of their data.

As Watson outlines in [Watson, 2006], to automate the design and creation of visualiza-

tions, researchers must identify the particular problem and its constraints, �nd and capture

the heuristics that describe a good solution, and build a tool that �nds one or more of those

good solutions in the problem space. To these we add, as a �rststep, the actual de�nition

of the pieces used to build the visualizations, ourvisual dimensions, and, before the search

for good solutions, the de�nition of the measures that characterize the utility of those di-

mensions, ourdesign factors. Once these elements are in place, the process of exploration

of the data can really begin by allowing the user to interact with the visualization.

The Visualization Problem: Exploratory Visualization

The basic scienti�c visualization process involves symbolization, the translation of verbal

and numerical information into graphic form [McCleary Jr., 1983], and comprehension, the

analysis and understanding of the data presented. Our research is oriented towards de-

veloping exploratory data visualization methods, with the goal of visually presenting raw

data in a way that prompts visual thinking and knowledge construction [MacEachren and

Kraak, 1997]. Understanding and insight are the main goals of scienti�c data visualization

methods, but methods to represent known phenomena (e.g. turbulence in air 
ow or stress

points in a structure) or geared towards performing speci�c tasks (e.g. �nding extrema or
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identifying a type of turbulent 
ow) are qualitatively di�e rent from visualization methods

designed for exploration of the data. Scientists usually utilize the latter during the early

stages of their research, when they require visuals that provide a broad understanding of

the data being presented. They begin posing hypotheses and asking questions about the

data, which lead them towards task-oriented visualization methods for further analysis.

Exploratory visualization methods allow them also, in a �rs t approximation, to qualita-

tively assess the validity of their experimental and data gathering methods. At this stage,

visualization is merely a tool to help scientists think about their problem [Hibbard, 2004].

Our focus here is on visualization methods for multivalued scalar scienti�c datasets in

2D. These datasets are widely used in disciplines such as meteorology, geology, cartography,

physics, and engineering. Even when scientists are studying three (or higher) dimensional

phenomena, they often rely on 2D slices, such as cutting planes or isosurfaces, to explore

and study the datasets. It is usually easier for them to directly understand two-dimensional

displays than three-dimensional ones, which would require motion, stereo, or some kind of

tracking to be fully perceived. Extensive training and experience is usually required to be

able to extract three-dimensional information from a set of 2D slices, a process that doctors

master, for example, when analyzing 2D magnetic resonance images of parts of the human

body.

With this dissertation we aim to augment the control and understanding of existing

visualization methods. We do not aim to create new methods that would replace existing

techniques, but to introduce some guidance as to what the perceptual capabilities of those

techniques are and how to use them e�ciently.

Visual Dimensions

Common practice in scienti�c visualization is the mapping of scalar quantities to the visual

qualities of surfaces containing the data, with color beingthe predominant example. Other

visual qualities that can be used to represent a scalar �eld on a 2D surface belong not to

the surface itself, but to glyphs or icons that can be placed on the surface. Color is again

the initial choice for most applications, but size, distribution, and orientation of these icons

can also be used to visually represent a scalar �eld.

The class of visualization methods we are concentrating on includes multilayered Poisson-

disk distributed icons where icon size, spacing, lightness, and color saturation can be set to

a constant or coupled to data values from a scalar �eld in 2D. As part of this dissertation

we created dedicated software to generate our visualization displays. In it we implemented

a Poisson-disk distribution scheme to position the icons according to the underlying data

in an e�cient way, trying to obtain a uniform distribution of icons with a minimum of
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noticeable gaps that could be misinterpreted as data features.

Icons have the advantage that they can be layered, increasing the number of variables

being simultaneously shown. Even though we are using this methodology to study a very

limited space, this framework could be extended to include more complex visual dimensions

and even three-dimensional visualization methods.

Design Factors

This dissertation focuses on the creation and evaluation ofvisualization methods according

to a set of design factors. These factors relate to the relative importance of the di�erent

variables in the dataset, their relationships, and the quality of visualization needed for each

one of them. We de�ne the utility of a visualization method as a function of these factors.

During our experiments we measured and modeled the performance of di�erent methods

with respect to our set of design factors. These are important since our visualization problem

is the exploration of the data, with no predetermined task in mind. Our factors serve as a

characterization of the utility of our visual dimensions. There are many possible ways to do

this characterization, but we decided on a manageable set offactors so we could perform

our experiments in a reasonable amount of time. Yet the results provide some indication of

the expressive power of our visual dimensions and the utility of the visualization methods

they form.

1.1 Contributions

This thesis makes contributions towards the quanti�cation of the e�ectiveness of visualiza-

tion methods, the identi�cation and exploration of percept ual issues in multivalued visual-

ization, and the de�nition of a theory of visualization. Dr. Christopher Johnson, in his list

of top scienti�c visualization problems [Johnson, 2004], recognizes all these as some of the

major research areas in the visualization �eld, and stressed the importance of their study in

order to advance the state of the art and make visualization grow as a scienti�c discipline.

This dissertation is further inspired by Fred Brooks's \The Computer Scientist as a

Toolsmith II" paper [Brooks, 1996] where he posits that our success as computer scientists

must be measured by the success of the users of our applications. In that sense, a successful

completion of our research would mean that our visualization software allows scientists

to concentrate on data exploration instead of visualization parameter exploration. We

facilitate the search for an e�ective visualization of scienti�c data by providing a model of

performance that, given a set of design goals and a multivalued dataset, can be used to

obtain a reasonable initial solution and lead the search through the highly complex space

of visualizations.
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Furthermore, this dissertation helps clarify how some of the disciplines that take part in

the visualization process can be put to work together e�ectively. The process of e�ectively

representing scienti�c data involves several disciplinesthat must be well understood to

create useful displays for analysis: data mining, statistical analysis, visual design, perceptual

psychology, computer interface design, and human-computerinteraction are some of those

disciplines. Rarely does a single person have enough expertise in all of these �elds to tackle

a visualization problem alone, requiring collaborative e�orts among a group of experts. In

particular, we contribute to advancing the state of the art i n three separate disciplines:

computer science, perceptual psychology and visual design.

1.1.1 Computer Science Contributions

� We de�ne and quantify a set of design factors that describe the utility of the basic

visual dimensions used for exploratory scienti�c visualization.

� We provide a set of novel predictive models for all our designfactors that allow for

the e�ective use of visualization methods based on the precise control over the utility

of the visual dimensions that form them.

� We hypothesize and evaluate a novel methodology for building these types of predictive

models. This dissertation serves as a proof-of-concept showing how to complete these

models for individual methods. It is an important milestone in formalizing models for

other types of visualization methods and applications.

� We validate the use of visual design experts as evaluators ofscienti�c visualization

methods.

� We evaluate a methodology for knowledge modeling where we tried to capture targeted

critiques of visualization methods from visual design experts to incorporate them in

a quantitative model.

1.1.2 Perceptual Psychology Contributions

� We extend previous experimental results, in spatial feature resolution and data res-

olution, to cases that are closer to real visualization displays, which have not been

tested before. We provide models of how the data resolution characteristics of our

methods change as the independent variables of icon size andspacing change.

� We design an experiment and build a detailed model of saliency and perceptual in-

terference between visual dimensions. We are able to predict and control the relative
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saliency and interference of the various dimensions on a given display by modifying

the size and spacing of the icons, their color, and the order of the layers.

1.1.3 Visual Design Contributions

� We evaluate methodologies to gather and model numerical results obtained from sub-

jective experiments with visual design experts.

� This dissertation is a novel attempt at quantifying the crit ique process used in art

and visual design. We are numerically exploring this experience-based technique for

information display evaluation.

1.2 Experimental Methodology

Evaluating the e�ectiveness of visualization methods is di�cult because tests to evaluate

them meaningfully are hard to design and execute [Kosara et al., 2003].

Our research involves experiments1 where participants perform subjective perceptual

tasks from which we obtain numerical measures of interactions among visual dimensions.

These studies are inspired by psychophysical experiments but geared towards our goal of

developing visualization methods for e�ective data exploration. We also perform subjective

studies where expert visual design educators critique visualization methods that use those

same dimensions. Our research brings together both experimental approaches by using

lessons from the latter to inform the design of the former setof studies.

We do not aim to �nd a single optimal solution that will exactl y match the visualiza-

tion problem's description. Perceptual psychophysicistsand cognitive scientists have been

studying human perceptual capabilities for decades, and there are still many unresolved

problems. Even those problems that have been explored often�nd con
icting experimen-

tal results that make it di�cult to elaborate a complete and s olid theory on how humans

perceive visual dimensions. It would not be realistic for this dissertation to try to exactly

quantify all possible interactions among visual dimensions. Even limiting ourselves to four

dimensions, there are many elements that a�ect the reading of visualization displays, such

as interaction techniques or display form factors, that we cannot possibly begin to explore

if we hope to succeed in our initial goal.

The use of visual design and artistic expertise to develop visualization methods is widely

acknowledged in our discipline. The novelty of this dissertation comes from our goal of

1All participants in our experiments were recruited, given inform ed consent forms, and compensated for
their participation, according to Brown University's IRB rules an d following our approved IRB protocol
titled \Quantifying the Bene�ts of Scienti�c Visualization Techn iques".
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quantifying that expert knowledge in a way that we can combine it with perceptual experi-

ments to build our utility model. We have created a framework for evaluating visualization

methods through feedback from expert visual designers and art educators. Our framework

mimics the art education process, in which art educators impart artistic and visual design

knowledge to their students through critiques of the students' work.

Our use of both perceptual studies and visual design expertise is based on their respective

interest in, �rst, understanding the parameters of use of the di�erent perceptual cues and,

second, an optimal utilization of those cues to communicateinformation.

1.2.1 Perception and Cognitive Science

Perceptual psychologists study how we obtain information from the world around us. In

the visual domain in particular, they study how the di�erent visual cues reaching our eyes

are recognized, organized and transmitted into our brains for comprehension. Cognition,

on the other hand, studies how the information gathered by our senses is put together to

form concepts we understand. How much information processing is done where, at the eye

level or at the cortex level, is up for debate. What is important from our point of view is

their interest in recognizing the individual units of infor mation that get transmitted, and

what visual dimensions carry that information e�ciently.

This thesis diverges from perceptual psychology in that we are interested not in the

pure understanding of how the individual information-transporting units work in general,

but how they transport the particular types of information p resent in scienti�c visualization

displays. This creates a fundamental methodological problem.

To understand those visual cues, perceptual psychologistsperform experiments in which

they try to isolate their e�ects as much as possible. This provides unbiased clean information

about the individual cues. The idea is to build the knowledgeof how they work together

from the bottom up: exploring how those cues are combined andwhat pieces of information

are transmitted up stream into the brain for their comprehension. Using this methodology

allows for a thorough investigation of the basis of our visual information processing system,

but creates problems when complex visual stimuli need to be analyzed. In those cases, it is

not clear how to apply the results from very controlled experiments where visual dimensions

are studied in isolation.

This thesis presents new methodology that tries to obtain the characterization of those

visual cues in the context of more realistic visualization displays. Our experimental results

are then more closely applicable to practical situations where multiple cues are combined

in otherwise unpredictable ways.
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1.2.2 Visual Design and Art

At the other end of the spectrum are visual designers and artists. They study how to

present the information in such a way that utilizes the expressive capabilities of each cue

in an optimal way. They are experts in what could be describedas visual rhetoric which,

extending the de�nition of rhetoric, can be de�ned as the faculty of discovering and utilizing

all the available means of visual persuasion to communicateinformation e�ectively.

Their methodology is based on experience and critiques rather than formal psychophysi-

cal experiments. After years of study and practice, a visualdesigner will begin to understand

how size gradients, for example, e�ectively communicate some particular type of informa-

tion change. They will learn how this visual dimension worksin combination with all other

visual elements present in their toolbox, e.g. di�erent colors or shapes will a�ect the reading

of those size gradients. Di�erent compositions of the visual display will a�ect them too.

Expert artists and visual designers routinely use this experience-based knowledge to create

great art and e�ective information displays [Grossberg, 2006].

Studying the results of perceptual experiments is part of the visual designer's training,

but quickly moving from those to more complex situations allows them to understand the

space in which they are operating. In this process, constantcritiquing of the e�ective use of

the di�erent cues is the key to their learning process. Givena goal for a particular design,

they evaluate how the elements used combine to present the information required. This

makes them strive for an e�cient use of resources, since any extra information presented,

even if redundantly representing a particular message, might create ambiguity in the display

and diminish the overall e�ectiveness. Expert visual designers know that human perception

is very good at noticing very intricate patterns and, if a redundancy is present, it could be

interpreted as a separate piece of information instead of a reiteration of an already presented

one. Along these lines, there is a term in art and visual design called economy of line. It

means that, when creating a charcoal or pen-and-ink drawing, the least amount of line

should be used to show the pose. The expressive power of a welldrawn single line is huge.

In our case, we will know we have an e�cient visualization method when the expressive

power of our visual dimensions is used in the right amount to convey the message in our

datasets.

In this dissertation we introduce new methodology to gather expert knowledge from

visual designers and artists. We utilize these experts to critique visualization methods and

evaluate how e�ciently those methods use di�erent visual elements. We seek to incorporate

their capacity of analyzing the full compositional elements in a display and of evaluating

the e�cient use of visual cue combinations.

There are, however, two big challenges here. The �rst is to beable to make their thought
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process explicit so as to obtain the necessary information we need to build a model of their

knowledge. Performing the evaluations in the form of critiques should help in this process,

although there is not such thing as a unique and accepted critique methodology, which

makes data analysis extremely di�cult.

The second challenge is consistency. Our characterizationof 2D visualization methods

acknowledges that the input we get from the designers is directly targeted at the needs

of scientists, and is not about artistic qualities, visual appeal, or aesthetics. However,

di�erent experience levels would normally lead to very di�erent critiques of the same visual

displays. Our approach to solving this challenge is to use experienced educators that are

used to teaching design concepts. They are used to concentrating on the problem at hand,

abstracting from aesthetic considerations when they have to focus on what the �nal goal of

the design is; while their results are often appealing and aesthetic, they �rst have to satisfy

the given communication goals.

Finally, one of the main advantages of introducing this type of subjective experiment is

the fact that expert designers can not only evaluate the e�cient use of visual dimensions,

but they can also tell us why a method does or does not work and, in most cases, how to

�x it by moving along the axes formed by the visual dimensionsused in it.

1.3 Research Elements

We have accomplished the contributions outlined above by completing the following ele-

ments of the research:

� The development of an interactive software environment forcreating the visualization

displays needed for this research. It provides users with a text-based interface to

create and manipulate multivalued multilayered visualization methods. We developed

it in collaboration with Fritz Drury, professor at the Illus tration Department at the

Rhode island School of Design (RISD), who advised us on what visual dimensions to

implement �rst and how to organize their interplay in the sof tware. The basic software

design is an extensible framework for visualization methods in 3D, and includes other

non-icon-based visual elements such as color planes and streamlines. It also includes

support for vector and tensor-based datasets.

� The design and implementation of a study in which art and illustration experts eval-

uated six 2D vector visualization methods. We found that these expert critiques

mirrored previously recorded experimental results [Laidlaw et al., 2005]; these �nd-

ings support that using artists, visual designers and illustrators to critique scienti�c

visualizations can be faster and more productive than quantitative user studies. Our
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participants successfully evaluated how well the given methods would let users com-

plete a given set of tasks. Our results show a statistically signi�cant correlation with

a previous objective study; i.e., designers' subjective predictions of user performance

by these methods match their measured performance. The experts improved the eval-

uation by providing insights into the reasons for the e�ectiveness of each visualization

method and suggesting speci�c improvements. This was published as a Sketch in

ACM SIGGRAPH'03 [Jackson et al., 2003], and has been submittedfor publication at

IEEE Transactions on Visualization and Computer Graphics Journal [Acevedo et al.,

2007b].

� The design and implementation of a study comparing 2D scalarvisualization meth-

ods using expert visual design educators as subjects. Basedon the experience of the

previous study, and after the development of our visualization software, we conducted

an initial study to evaluate the utility of 2D visualization methods in terms of a set of

design factors, which were subjectively rated by expert visual design educators. We

successfully characterized a total of 33 visualization methods using 11 di�erent visual

dimensions and 6 di�erent design factors for representing single-variable continuous

scalar datasets. This study raised the question of using expert designers, speci�cally

educators, versus non-expert designers as in the previous experiment. The level of

understanding of the tasks to be performed and the profusionof comments about

why and how to improve some methods increased dramatically in this second experi-

ment. Although not empirically evaluated yet, educators seem to be better subjects

for evaluating visualization methods than non-experts. We have not yet utilized ex-

pert non-educators to complete our sample.This was published as a Poster in IEEE

Visualization'05 [Acevedo et al., 2005] and received the Best Poster Award at the con-

ference.

� The design and implementation of an evaluation of a parameterized set of 2D icon-

based visualization methods where we quanti�ed how perceptual interactions among

visual dimensions (size, spacing, icon lightness, and saturation) a�ect e�ective data

exploration. In the previous experiment, the di�culty and n umber of the tasks re-

quired, the high variance of the responses obtained, and thesmall subset of visual

dimension combinations tested made our results di�cult to generalize. This current

experiment improved the tasks by making them more accessible to non-experts, low-

ering the variance between participants. Of course, this moves away from the critique-

inspired methodology towards more quantitative perceptual tasks but, as mentioned

before, keeping in mind the application of the results and the type of visualization

display we will create. This experiment presents the basic methodology for modeling
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perceptual interactions among visual dimensions.This work was published at IEEE

Transactions on Visualization and Computer Graphics and presented at the IEEE

Visualization'06 [Acevedo and Laidlaw, 2006].

� An experimental quanti�cation of how factors such as icon size, spacing, layer order

and color a�ect the relative saliency and interference among �ve di�erent 2D scalar

visualization methods: saturation, lightness, orientation, size, and spacing. We de-

�ne saliency as the perceived dominance of some visualization method over another

when representing scienti�c data. Saliency can be used to visualize the importance

of some variables over others: designers may want some variables to dominate the

composition while others should recede to the background. Our experiment also re-

covers the perceptual interference among methods, which wede�ne as the amount of

distraction a method creates when users are trying to read another method present

in the same display. This work has been accepted for publication as a Poster in IEEE

Visualization'07 [Acevedo et al., 2007a].

� An experiment to subjectively measure legibility changes in multivalued visualization

methods. We used expert visual designers for this experiment so we could rely on

their expertise to evaluate many di�erent combinations in a short period of time. We

presented them with an interactive application showing two-valued scalar datasets

from brain MRI. They critiqued our four visualization metho ds (size, spacing, lightness

and saturation) for how well they maintained legibility of d ata features when they were

combined to show two data variables simultaneously.

1.4 A Hypothesis for our Outcome

Let us reiterate our hypothesis here:

Measuring the perceptual capabilities of several icon-based scienti�c visualiza-

tion methods for simple single-valued scalar datasets in 2D,and combining that

with subjective evaluations of complex multilayered methods representing mul-

tivalued datasets, we can generate a predictive model of utility of a space of

visualization methods.

We successfully characterized the utility of individual methods and obtained predictive

models for their use. We even obtained predictive models of their relative saliency and

perceptual interference when used in pairs. We also validated the hypothesis that using

expert visual designers to subjectively evaluate scienti�c visualization methods can yield

signi�cantly comparable results to objective task-based quantitative studies. After all these
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encouraging results, our next step, utilizing expert visual designers to evaluate complex

combinations of visualization methods, was not successfulin validating our initial hypoth-

esis.

There are two possible reasons for this outcome. The �rst is that our hypothesis is par-

tially false, since we could not disprove the null hypothesis for its �nal statement (\...com-

bining that with subjective evaluations of complex multila yered methods representing mul-

tivalued datasets..."). The second possible reason is thatour methodology for evaluating

such hypothesis did not have the power to capture a signi�cant result when, in fact, there

is one. Let us brie
y look at these two scenarios here. A more extensive explanation is

provided in Chapter 6 of this dissertation.

Our objective was grandiose: to explain how visualizationswork in general, independent

of the application. To try to accomplish it, we constrained the problem to 2D cases and to

a very speci�c set of methods, so our experiments were feasible. This made us switch the

characterization of our research to become a proof-of-concept: we would demonstrate how

to accomplish the �nal goal through our exploration of this small sample of the full space.

Our problem was, as it might be clear to the reader, ill-posed.Even trying to study very

few of those visual dimensions created an uncontrollable exponential growth in the number

of combinations that should be explored to reliably describe the space they form. Even

assuming this exploration was done, an e�ective solution toa given multivalued visualization

problem might not exist and, even if it does, it usually would not be unique.

However, we based our research on the assumption that the potential solution to the

visualization problem depends continuously on the perceptual characteristics of the individ-

ual dimensions that form such a result. Thus, we were attempting to obtain a mathematical

model that explained and predicted how those characteristics work in complex situations.

Furthermore, we believe that our strategy of combining perceptual and artistic knowl-

edge to build our model was the right choice to achieve that goal. Through psychophysical

studies we can quantify how users perceive di�erent aspectsof the data when using di�erent

methods to represent it. It also seems reasonable to engage the expertise of visual designers

and artists, since they are living proof that it is possible to present very complex informa-

tion in an e�ective way. They use the same perceptual capabilities we measure through our

experiments, yet they are able to combine it and analyze it insuch a way that they can

solve complex visual problems based on their experience, without the aid of equations that

map out the space in which they are moving.

In summary, we believe the hypothesis is valid and can be successfully evaluated. If this

is correct, our approach to engaging expert visual designers and capturing their knowledge

could be at fault.
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Given our experience throughout all these experiments, we believe the main reason for

our outcome was the initial assumption of independence fromthe data. Our set of design

factors, and the exploratory characterization of the visualization problem, allowed us to

abstract as much as we could from de�ning a speci�c task for our visualization displays.

Yet, from the beginning of our collaboration with designers, they complained about not

having a speci�c use for the data being represented.

Furthermore, the fact that we were trying to obtain a general model meant we could not

�xate on speci�c instances of our datasets. We tried to accomplish this by presenting our

experimental stimuli using several di�erent datasets and asking designers to subjectively

evaluate methods for a general dataset. This was acceptable, for the most part, when

exploring single-valued visualizations. But, the moment real perceptual interactions came

into play during our last experiment, using two-valued brain MRI datasets, the problem of

abstracting from the speci�c data combinations became clear.

Methods that would seem to work for most cases would be found to fail for partic-

ularly unfavorable combinations of datasets. Also, the similar spatial distribution of the

data across values lead to the question of whether results from this experiment would ap-

ply for datasets with non-correlated spatial distributions. Participants commented that,

most likely, the opposite situation would also be controversial depending on the particular

distribution of values for all data variables.

In summary, without including the data values' spatial dist ribution characteristics and

de�ning a general metric for data variable interactions, we were unable to model the utility

of our space of visualization methods. At the end of this dissertation we o�er some hope

for accomplishing this by describing a possible way of adding the data characteristics as an

extra set of axis in our visualization space.

The potential for a great contribution at the end of this research was not our only

motivating factor. The experiments we have conducted add upto be an important method-

ological framework with which other visual dimensions can be explored. Through those

experiments, as we will present in this dissertation, much has been learned that the visu-

alization, perception, and visual design communities can build upon. The overall results

do not add up to a full 
edged model to be plugged into a visualization software, but our

individual experimental results can help non-expert users in their search for an e�ective vi-

sualization, by providing some indication about probable directions of improvement for their

visualizations, and by shedding some light as to what methods to use in what situations.
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1.5 Organization of this Dissertation

Chapter 2 introduces some de�nitions and notation that will be used throughout this dis-

sertation.

After that introductory chapter, Chapter 3 explores the ext ensive literature related to

this project and how we shaped our investigations based on previous work.

Chapters 4 and 5 form the main portion of this dissertation. They describe the exper-

iments we have conducted and their results. First we go through our initial studies using

visual designers to evaluate scienti�c visualization methods. After that we present our

psychophysical experiments to measure perceptual interactions among visual dimensions.

Chapter 6 presents the design and outcome of our last experiment, where we attempted

to use expert visual designers to evaluate visualizations of two-valued scalar datasets. Given

the outcome we explained before, this chapter also includesthe results of an informal

evaluation of our existing models presenting real datasetsto scientists for exploration.

This will be followed, in Chapter 7, by a �nal discussion of our results, the impact of

this dissertation, what the future lines of research would be, and some conclusions.



Chapter 2

The Elements of Visualization

This chapter clari�es the scope of the thesis and puts each ofthe components of our research

in context: the type of visualization problems we are dealing with, the type of visual

dimensions we consider, and our de�nition of design factors. Although it introduces very

basic concepts, the discussion in this chapter helps in understanding our research plan and

the decisions made along the way.

Every visualization process starts with a question about some characteristic of the

dataset a scientist has just compiled and needs to study [Springmeyer et al., 1992]. After

performing some �ltering of the data, and maybe some statistical analysis or data mining,

it becomes clear that looking at a set of numbers does not helpthe scientist understand

what the data contains: a visual representation is needed.

The �rst step is �guring out how to translate the numbers into visual entities so it is easy

to explore the relationships among all the variables in the dataset. The components used

to create that representation are our visual dimensions. Color, shape, size and movement

are examples of some of those dimensions.

There are many ways of combining those dimensions to show thedata, and scientists

need some guidance in deciding which mapping, from numerical data to visual dimensions,

is appropriate for his or her visualization problem. Our design factors characterize the

capabilities each of the dimensions have for representing data.

Let us review these three pieces of the visualization process (the problem, the visual

dimensions and the design factors) one by one.

2.1 The Visualization Problem

The visualization problem has two distinct components: thegoal for the creation of a visual

representation of a dataset and the type of dataset being visualized. We will discuss these

in the following subsections.

17



18

2.1.1 The Goal of the Visualization

What is the goal of the visualization display? This is the �rs t question we must answer when

we want to transform the set of numbers that form our dataset into a visual representation.

Maybe the goal is to check the dataset for problems or obviouserrors. Maybe we want to

highlight some parts of it, like extrema or areas below a certain threshold. Maybe we are

searching for a speci�c pattern that indicates some interesting phenomena are happening.

All these examples would require, at �rst glance, a dedicated visualization design that would

translate the numerical data into a visual representation that ful�lls the requirements. We

can classify these visualization problems into two main categories: explanatory problems

and exploratory problems.

In cases where the goal is to show speci�c characteristics ofthe data and we know how

to �nd them, or when we want to show the results of an experiment that revealed some

unexpected patterns, our visualization problem is explanatory. There are certain things in

the data that require the viewers attention, and the visualization method used should lead

the viewer to them.

On the other hand, there are occasions in which the end-user just wants to see whether

the data coming out of the experiment looks OK or if there are some errors in it. In this

case the approach is one of exploration. The end-user wants all the data presented in front

of her in an unbiased way. There are no preconceptions about more or less interesting areas

that should be highlighted or blurred. These exploratory visualization problems are the

ones that we are addressing in this dissertation.

In some sense, the lack of a clear task to be performed by our visualization users makes

our job more di�cult. The fact that they just want to visually absorb everything the data

has to o�er without creating biases is a big challenge. For example, local maxima of a

dataset can be marked using visually salient icons. Their numerical values can even be

displayed beside the icons. There can certainly be a discussion about the design of such

icons, the placement of the numerical value, etc., but the visualization problem is clear.

The goal of exploratory visualization is to gain insight into how the data are spatially

organized. In the multivalued case, exploration seeks an understanding of the relationships

among data variables. Once these are presented, the visualization user will begin asking

more explanatory questions, derived from the insight gained and requiring, in general, a

di�erent type of visual display that helps support his or her arguments.

2.1.2 The Type of Dataset Being Visualized

Once we have the main goal the visual display must ful�ll, we must take into account the

scienti�c problem we are trying to address. In other words: what type of dataset are we
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Figure 2.1: An information visualization display showing and example of non-spatial data
from [Norberg and Rayner, 1987] presented in a Cartesian grid designed ad-hoc for this
visualization. It displays di�erent anatomical and 
ight-r elated variables for many species
of bats to try to discover a correlation between size of the bats, their 
ight speed and their
behavior. Shape and location are used as visual dimensions in this case.

dealing with?

Information Visualization vs. Scienti�c Visualization

There is much debate in the community about the distinction between these two types of

visualization [Rhyne, 2003]. The annual IEEE conference onvisualization is divided in two

to distinguish between research in one area or the other.

Information visualization deals with datasets that do not have an inherent spatial com-

ponent or that, having one, represent abstract non-physicaldata. On the �rst case, a visual

representation of those datasets must be made in an abstractspace delimited by some of the

variables present in the data (see Figure 2.1). The second case is more debated since it has

clear spatial reference, such as the geographical area indicated by the map in Figure 2.2, but

includes non-physical information (in the same �gure, the types of con
icts are indicated
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Figure 2.2: An information visualization display from the N ew York Times that shows
several types of data using size, color, and outlines on top of a map, which provides the
spatial information component (Copyright 2006 The New York Times Company)
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Figure 2.3: Visualization of experimental 2D 
ow past an airfoil [Kirby et al., 1999a]. Six
di�erent variables of the 
ow are visible at every point in th is image. It shows relationships
among the values that can verify known properties of this particular 
ow or suggest new
relationships between derived quantities.

by lines.)

When the dataset contains information that has a clear spatial component and involves

physical phenomena, we have a scienti�c visualization display (see Figure 2.3). Even using

the same spatial context as Figure 2.2, the origin of the dataand their characteristics

provide the visual display di�erent qualities (see Figure 2.4)

The distinction is by no means clear cut. The information in the examples of Fig-

ures 2.1 and 2.2 is not un-scienti�c, but the data are qualitatively di�erent from the exam-

ples of Figures 2.3 and 2.4. This dissertation is aimed at developing better, perceptually

e�ective scienti�c visualization methods.

Data Continuity

Another key characteristic of the data is whether they are continuous or discrete. Continu-

ous data can be queried and visually represented at every point in the region of space where

it resides. Discrete data, on the other hand, correspond to measurements at speci�c spatial

locations. The data to be visualized might come from the interpolation of values gathered

in those discrete points; the temperature readings used to create Figure 2.4 were obviously

discrete, but the dataset being visualized is the interpolated one, making it continuous.

There are also continuous data being visualized discretely(see Figure 2.5) but the in-

tention of the visual display is to have the user do the interpolation.

Data continuity can sometimes serves as a distinction between information and scienti�c

visualization displays. Since physical quantities such astemperature or pressure can only be

measured in discrete locations but exist in every point in space, we consider them continuous
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Figure 2.4: Example of a very simple scienti�c visualization display using the same spatial
reference as Figure 2.2.

Figure 2.5: Example of continuous data being visualized using discrete glyphs. In this case
SAR polarimetric response patterns indicate di�erent types of surface cover. A coherent
change in response pattern between the lake surface and reedbeds can be detected [Wood-
house et al., 2002].
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Figure 2.6: Example of discrete non-interpolable data. Thisis also an example of informa-
tion visualization data which clearly has a spatial component.

and scienti�c visualization methods are responsible for visualizing them. Data variables

measured discretely but that cannot be interpolated, like number of people living in an area

(see Figure 2.6), are the responsibility of information visualization methods.

For this thesis we will consider only 2D interpolated continuous datasets. Since our

visualization methods are icon-based, we will be discretizing the interpolated datasets in

order to facilitate layering of multiple variables in the same display. Figure 2.5 accomplishes

this by creating a complex glyph that incorporates multiple variables. Some of our design

factors deal with this loss of spatial feature resolution due to this discretization. Percep-

tually measuring this quality for our visualization method s will allow us to optimize our

visualization results depending upon the importance of thedi�erent requirements: e.g. is

exploring multiple variables more important than higher in formation frequency?

Data Characteristics

There are two more data characteristics that will de�ne the visualization problem. The �rst

one di�erentiates between qualitative and quantitative data. The former include elements

of di�erent classes that may or may not be ordered and that have no inherent numerical

relationship among them. Quantitative data, on the other hand, maintain a mathematical

relationship among all data elements.

There are three types of quantitative data depending on the number of values each data

element has. In a scalar dataset only one value exists at eachlocation in space where data

are present. A vector dataset contains elements with as manyvalues as the dimensionality
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Figure 2.7: Particle 
urries in a Virtual Reality visualiza tion of air 
ow around a bat
in 
ight [Sobel et al., 2004]. Over a short time, the particle animation gives a synoptic
visualization of the main features of the three dimensionalvector �eld.

of the space they are in, i.e. in 2D, vector elements have two components; three in 3D, and

so on. A 2nd order tensor dataset contains elements with morevalues per spatial location,

e.g. four values per element in 2D, and nine in 3D.

The last characteristic of the data that de�nes the visualization problem is the space in

which the data live. Whether it is 1D, 2D, 3D, or more, the visualization display must be

adapted to the requirements of the data space. Time can also be included as a dimension

here. Dynamic datasets require a very di�erent treatment than static ones since correlations

across time-steps and maintaining temporal coherence in thevisualization method become

keys to avoid distracting the user with artifacts not really belonging to the data.

Summary

The previously described characteristics of the visualization problem shape the visualization

methods that can be applied to it. The discussion up to this point is intended to brie
y

introduce the vast number of visualization challenges that datasets in all those di�erent

spaces pose for the creation of e�ective visualization methods.

For this dissertation we chose to constrain our model to continuous scalar datasets in 2D.

This might seem, on �rst glance, a simpli�cation of the probl em, given that there are many

researchers that have already tackled much more complex types of datasets and developed

successful visualization methodologies. Some examples ofcomplex datasets successfully

being visualized are shown in Figures 2.7, 2.8, and 2.9, where di�erent visual techniques,

display form factors, and interactions, combine to form thevarious visualization methods.

Our choice is based on the fact that the basic components of all those visualizations

visually interact in ways that are still not clearly underst ood. Almost all great visualization

methods must be iterated upon until a solution is reached, which should e�ectively show

the information required and minimize perceptual issues. We want to analyze those issues

from the ground up. By constraining ourselves to more manageable datasets, we can be

more thorough in the analysis of perceptual interactions, eliminating from the experiments

a multitude of dependent variables. This is not to say that those variables, such as the

type of display used, the interaction techniques, etc., arenot important, but they should
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Figure 2.8: Three di�erent visualizations of the di�usion t ensor magnetic resonance imaging
data of a brain. This tensor �eld data can be explored using animmersive VR environment
such as a CAVE (left) [Zhang et al., 2003], a �shtank-VR setup (center) [Demiralp et al.,
2006], or a physical model created through color rapid prototyping (right) [Acevedo et al.,
2004].

Figure 2.9: Virtual Reality is again used here to visualize archaeological excavation data.
Colors indicate the type of artifact while size and quantity indicate other abstract variables
present in the dataset. From left to right, a view of the excavation site, an overview of the
full dataset, and two di�erent moments of a user interacting with the system. In this case,
the need to perform spatial correlations were the key to using a VR environment [Acevedo
et al., 2001; Vote et al., 2002].
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be added to the experiment once other basic visual characteristics are well understood.

2.2 The Visual Dimensions

Each of the types of data detailed in the previous section will potentially require a di�erent

visualization method. The choice of method must be made based upon their strengths and

weaknesses, keeping in mind the underlying pledge that every visualization method must

display the data truthfully and avoid misleading the viewer. Fred Brooks summarized this

point beautifully in a talk given during IEEE SIGGRAPH 2003:

\Visualize to inform, not to impress. If you really inform, yo u will impress."

Going from numbers to pictures is usually the �rst step in the exploration of any scienti�c

dataset, and choosing the right tool for the job can be the di�erence between success or

failure of a scienti�c enquiry. As an example of this, Tufte suggests how the space shuttle

Challenger's catastrophic launch in January of 1986 could have been avoided if only the

available data had been presented correctly [Tufte, 1997].The visualization problem, which

includes the goal of the visualization and the type of data, will partly determine this choice.

Nevertheless, the available choices are many and their di�erences in terms of visualization

utility are not well understood, especially when used in combination.

The visual dimensions are the toolset we use to create the visual representation of the

data. There are non-visual dimensions we could be using to represent data, such as sound or

haptic interfaces, but this dissertation is aimed at a smallsubset of just visual dimensions.

We will de�ne these dimensions as the elements that, more or less independently, can

be used to create a visual representation of a scienti�c dataset. This is to say, and for the

purposes of this dissertation, that continuous scalar datavariables must be mappable to

them.

Note that even when only a few of these dimensions get mapped to data variables in

any particular visualization method, all of them will be pre sent in the �nal visualization

display. For example, it is obvious that even when size is notused to represent any data

variable in the dataset, all icons must have a certain size, either constant or randomized,

across the display.

For practical reasons we chose to limit our experiments to �ve visual dimensions: icon

lightness, icon size, icon spacing, icon orientation and icon color saturation (see Fig. 2.10).

This decision was made to decrease issues due to participantfatigue during experiments

and to provide a relevant sampling of the space of visualization methods. The reasons

to choose these �ve particular dimensions are diverse. Sizeand spacing are elements that

received a highly varied set of reactions during our initialexperiments [Acevedo et al., 2005].
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Raw data Icon Saturation

Icon Lightness Icon Orientation

Icon Size Icon Spacing

Figure 2.10: Visual dimensions. We are quantifying and modeling the utility of icon sat-
uration, lightness, orientation, size, and spacing when representing scalar datasets in 2D.
These �ve dimensions are demonstrated here representing the same single-valued dataset
shown at the top left.
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Figure 2.11: Cone response sensitivities normalized as a proportion of the peak response for
each type of cone cells. Our eyes are most sensitive to \yellow green" wavelengths around
the middle of the spectrum. In fact, most of our light sensitivity lies between 500 to 620
nm { roughly from \blue green" to \scarlet"

Also, very few studies have been published exploring these two elements together [Wolfe,

1998]. Icon lightness was chosen because it is an element that has been studied in depth,

allowing us to compare our results with previous experiments. Icon orientation has had

a lot of attention in the perceptual psychology literature r elated to texture discrimination

but its use for scienti�c visualization is limited to a few st udies. It is, from our experience

during the �rst experiments with visual designers, a di�cul t element to perceive as a scalar,

albeit a very salient one. Finally color saturation provides our link with the use of color for

visualization. Including hue would bring in a lot of di�eren t issues related to the use of color

spaces that would complicate the main focus of this dissertation. Saturation, being a very

much neglected visual dimension for scienti�c visualization, provides a convenient middle

ground to introduce color in our experiments and explore itscapabilities for visualization

use. In particular, we decided to choose a green hue (with a 0.6 lightness value) because our

eyes are more sensitive to light around that wavelength (seeFig. 2.11). We use CIELab color

space to generate our visualizations, so we can control thatconstant lightness is achieved

throughout the range of saturation at this hue.

Apart from these �ve dimensions mentioned, another one that we will consider will be

the number of layers a visualization method utilizes. For example, if two data variables

have to be represented in the same display and we want to use size and color saturation,

these can be accomplished on one or two layers, as Figure 2.12shows. We are including the
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a)

b)

Figure 2.12: Examples of a two-valued dataset visualizations using size and saturation in a
single layer (a), and in two layers (b). The data mappings do not change from one to two
layers. Note the gray borders on the icons of the top layer in (b). Our experiments will
quantify which of these representations works best depending upon what the visualization
requirements are.
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number of layers as a visual dimension in our models. Furthermore, to di�erentiate among

layers and avoid, as much as possible, simultaneous contrast issues, the icons on our top

layer will have a small gray border at half the lightness value of the icon color.

To summarize, our analysis of interactions among visual dimensions represents the study

of how independent these dimensions are of each other. Sincethese dimensions represent the

axes of a space of visualization methods, �nding and quantifying those interactions would

lead to an understanding of how orthogonal those axes are. Anideal space would have

orthogonal axes that could be used independently of each other when creating visualization

methods.

2.2.1 De�nitions and Nomenclature

A visualization method takes a scienti�c dataset and produces a visualization display. We

de�ne a space,V, of scienti�c visualization methods. In general, our spaceincludes layered

iconic representations of 2D multivalued data. The visual dimensions that are present in

each layer are:

� Icon color hue (v0) � Icon orientation ( v4)

� Icon color saturation (v1) � Icon size (v5)

� Icon color lightness (v2) � Icon spacing (v6)

� Icon transparency (v3)

A visualization method, v 2 V maps data values to visual dimensions. We can combine

multiple layers, which we will denominate lk . Each one of these layers will contain all 7

visual dimensions de�ned above. The subscriptk of the layer indicates its order in the �nal

visualization, from back to front:

v = f l0; l1; l2; :::g 2 V

where,

lk = f (m0; m1; :::; m6); (r0; r1; :::; r6)g

Each component oflk refers to one of the 7 visual dimensionsvi :

mi =

(
0 vi is not mapped

di vi is mapped

r i =

(
ci 2 R 2 [0; 1] mi = 0

(bi ; ei ) 2 R2 2 ([0; 1]; [0; 1]) mi 6= 0
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where di is the index of the data variable mapped intovi .

Figure 2.13 shows two examples of the use of this nomenclature on the previous two

visualization displays. Note that background color, shapeand border of the icons can

also be controlled but we do not need to include them explicitly in the parameterizations:

background is always black, icons are always circular, and borders are always gray at half

the lightness of the icon color, with a width between 20% (forlarge 10-pixel icons) and 25%

(for small 2-pixel icons) of the the icon's diameter.

2.2.2 Icon Placement

We use a Poisson disk distribution [McCool and Fiume, 1992] to randomly place icons on

the display. This distribution can be de�ned as the limit of a uniform sampling process

with a minimum-distance rejection criterion. Successive points are independently drawn

from a uniform distribution over the 2D domain where the data exists. If a point is at least

distance r from all points in the set of accepted points, it is added to that set. Otherwise,

it is rejected.

In our case the points correspond to the center of our icons, and the choice ofr comes

from the radius of the icons plus half the spacing value. Wheneither or both of these

dimensions are mapped to a data variable, the correspondingvalue is evaluated at the

center point of the icon and r is determined to check for overlaps with previously placed

icons.

While a straightforward implementation of the algorithm wo uld require a certain number

of failures (overlaps) in a row as a stopping condition, that would not guarantee that we

are evaluating all pixels in our display. This could lead to many areas remaining untested

and obvious holes in the visual display. We remedy this by �rst randomizing a full list of

pixel center locations and going through it in order.

Further, we super-sample our domain (2 times is su�cient to obtain a signi�cant im-

provement and not extend the running time too much) and perform all our overlap calcu-

lations in 
oating point coordinates, instead of pixel space. Limiting the size of our icons

to a minimum diameter of 2 pixels, along with this super-sampling scheme, avoids the ap-

pearance of a regular grid bias in our modi�ed location-sampling algorithm using just pixel

center locations. Once we have a full set of icon locations in
oating point, we let our

graphics engine perform the necessary antialiasing for display.

Finally, we chose this placement algorithm instead of a regular grid for two reasons.

The �rst is that clear creases would appear when either size or spacing were tied to a data

variable. This would confuse users of the display by creating false features in the display

that do not correspond to the data. Further, even when size and spacing were constant
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v = f l0g = f (0; 1; 0; 0; 0; 2; 0); (0:33; (0; 1); 0:6; 0; 0; (2; 10); 1)g

v = f l0; l1g = ff (0; 1; 0; 0; 0; 0; 0); (0:33; (0; 1); 0:6; 0; 0; 8; 0:5)g;
f (0; 0; 0; 0; 0; 2; 0); (0; 0; 1; 0; 0; (2; 10); 1)gg

Figure 2.13: The same two displays from Fig. 2.12. Their respective full parameterizations
are shown here.
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across the display, having a regular grid would impose a structure to the data that is not

present.

We believe, and our expert visual designers con�rmed this hypothesis, that having this

quasi-optimal random placement leads to less confusion thata regular grid would. In their

own words: \It is hard to get away from this horizontal and ver tical organization to try

and extract non-aligned structures in the data".

2.2.3 EVOLVIS: A Visualization Language

To create the actual visual displays for this dissertation we developed a language to de-

scribe scienti�c visualizations of multivalued, two-dimensional datasets. Our goal was to

create a language with which a user could quickly create complex and precise data-driven

visualizations as well as facilitate their modi�cation dur ing the iterative design process. We

called this language and the rendering system to display it EVOLVIS.

EVOLVIS is a general tool that can combine three types of basic visual elements {

discrete icons, color planes, and streamlines{ into layers. A text �le fully describes the

resulting method and controls the layering of the di�erent elements, their appearance, and

their spacing, including the mapping assignments of any of these visual dimensions to data

variables. In addition the language supports extensions toaccommodate scalar, vector, and

tensor data in 2D and 3D.

For the purposes of this dissertation, only icon elements will be used, although color

planes were also used for some of the initial studies with expert visual designers. Other visual

dimensions that are possible with our language include border width and color, texture

mapping, and more complex icon shapes that can be controlledby the data. Figure 2.14

shows some examples of the possibilities EVOLVIS provides.

2.3 The Design Factors

In order to represent the exploratory nature of our visualization methods we must establish

a set of design factors that can be used to characterize the utility of a given visualization

method and do not constrain our model to any particular task.

Once we have these factors, we will be able to quantify how thedi�erent visual dimen-

sions express them and how, when we combine those dimensionsfor multivalued visualiza-

tions, perceptual interactions among them a�ect the overall utility.
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Figure 2.14: Di�erent discrete icons. The top three show each basic primitive (ellipse,
triangle and rectangle) provided in the language. The bottom left image shows a composite
icon created using a combination of primitives. The last two images show how texture
mapping the icons can generate arbitrary shapes.

2.3.1 De�nitions and Nomenclature

Developing upon the nomenclature from the previous section, W(v) provides an evaluation

of a visualization method, v 2 V. It produces a vector of values, each of which quantitatively

characterizes the visualization method with respect to a speci�c design factor.

W(v) = ( w0(v); w1(v); w2(v); :::)

In order to generate our utility model we need to specify the type of design factors we

will be accepting. We consider four di�erent ones:

� Spatial Feature Resolution (w0): The size of the features a method is able to accurately

represent.

� Data Resolution (w1): The number of di�erent values of a data variable a method is

able to accurately represent.

� Saliency (w2): How much a method pops-out among the rest of the methods present

in a visualization display.

� Perceptual Interference (w3): How much one method a�ects the accurate reading of

another.
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We derived these factors from our experience creating scienti�c visualizations for our col-

laborators in many disciplines and from our study on designer-critiqued visualization meth-

ods [Acevedo et al., 2005]. In that study we utilized a superset of factors that, given that

experience, we have narrowed down to these three described here.

2.3.2 Spatial Feature Resolution

This design factor is aimed at giving the visualization usersome control over how much

information is lost when the icon-based representation is used. Size and spacing between

icons are the main dimensions that a�ect this factor, but our visual system processes visual

dimensions di�erently. Some dimensions could be easier to interpolate perceptually than

others, so, for example, larger spacing and smaller icons could provide similar spatial feature

resolution results for icon orientation than for icon color saturation using closer together

and larger icons.

Important features of a dataset might be lost if the sizes of those features are beyond

the capabilities of a certain visualization method. When icons are used for representing

continuous data, it is unavoidable that gaps will be presentin the �nal display. These gaps

are what make a multilayered visualization possible but, at the same time, they create a

challenge. There is a trade o� between showing a higher spatial resolution (smaller features)

and providing a comparative view with other layers in the visualization (larger holes to see

through the layers).

We also limit the range of some visual dimensions so we can visualize smaller features.

Size and spacing do not have speci�c limits for their maximum values. Since icons can

potentially be made as large as the full display size, this would clearly limit the available

spatial feature resolution. We will provide numeric valuesfor our available ranges when we

describe the di�erent experiments.

We measure this factor as the size of the smallest feature a method can represent,

measured as cycles per degree. With this measure we try to abstract from the actual physical

size of the stimulae used for our experiments, because we roughly know the distance our

participants stand from the screen when they perform our experimental tasks (either on

paper or on the computer screen).

2.3.3 Data Resolution

This design factor refers to the number of di�erent values that should be visible for a given

variable. Although we are dealing with continuous scalar data, scientists often bin their

data for easier comprehension.

In our experiments we measure the number of levels a visual dimension has by counting
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jnd (just noticeable di�erence) units. This means that, althou gh we are not explicitly

binning the data for display, we are quantifying how many bins will be perceived. Our

result is the limit of the number of bins possible for a certain visual dimension in a given

range.

Some dimensions have a limited range, such as saturation, lightness or orientation,

while size or spacing do not have speci�c limits. As we explained for the spatial feature

resolution design factor, we limit these dimensions so we can provide higher spatial feature

resolution, hence constraining the range and the perceivable bins. This limitation of the

range has consequences for the data resolution itself, since there is a limited number of jnd's

perceivable in a given range. Measuring data resolution fordi�erent ranges will be useful

so we can combine visual dimensions using ranges that con
ict the least between them.

We measure this factor as the total number of levels (jnd's) visible.

2.3.4 Saliency

With this factor we address the level of importance a data variable must have among the

other variables present in the visualization. There might be times when the user wants to

highlight a particular variable and keep others as a context. There might also be cases when

all variables must be visualized at the same level of importance, leaving the highlighting

and backgrounding of some of them for a later stage of exploration.

We measure this factor using direct comparison between methods and asking partici-

pants which method dominates the composition. Along with the next factor, we utilize the

time it takes participants in our experiments to recognize one dimension in the presence of

another. The faster of the two to be recognized is the more salient.

2.3.5 Perceptual Interference

This factor addresses the di�culty of reading a given dimension when others are present.

It characterizes how much more di�cult a given visual dimension makes the reading of

another one. We measure this using the increase or decrease in time that participants take

to recognize the particular dimension with respect to a baseline time. More details of this

factor will be explained in Section 5.2.

2.3.6 Capturing Designer Critiques

As we mentioned before, the advantage of utilizing expert visual design educators as subjects

for some of our experiments is that they can provide reasons for the success or failure of a

certain visualization method. During our experiments we will try to capture this information

numerically by asking them for estimates on how much a design factor would change if a
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certain change in one of the visual dimensions is performed.We can indicate this as the

derivative of our vector of design factors dW(v)
dv :

dW(v)
dv

= (
dw0(v)

dv
;
dw1(v)

dv
;
dw2(v)

dv
)

where,

dwj (v)
dv

= (
@wj (v)

@v0
;
@wj (v)

@v1
; :::;

@wj (v)
@v11

)

Some of these derivatives will be obtained from the analysisof videotapes recorded

during the experiments and from interactive sessions whereexperts modify visualization

methods according to di�erent requirements. It is usually easier to let participants explain

their reasoning as they perform the experimental tasks thanproviding them with a form

to �ll out. This is a more di�cult method to obtain quantitati ve results, but it allows

participants not used to numerically critique designs to feel more con�dent about their

decisions.

2.4 Summary of this Chapter

In this chapter we have de�ned some of the basic components ofthe visualization process:

the visualization problem, the visual dimensions, and the design factors used to characterize

our utility model. For each of these we have de�ned the scope of this dissertation and

introduced the nomenclature and mathematical notation we will utilize throughout the

thesis. The purpose of this chapter was to characterize the di�erent components of the

research and make clear what our assumptions and limitations are.

The next chapter will put our framework in perspective with r espect to the state of the

art in visualization research, as well as perceptual and design literature.



Chapter 3

Literature Review

Our work is related to three main research areas: visual design, visual perception and data

visualization. We will address them separately in this chapter.

In this thesis we are combining all three of these disciplines to facilitate the synthesis

of e�ective visualization methods. Visual design informs our work through techniques for

critiquing and works related to image composition and how visual components work together

to convey a message. Visual perception, on the other hand, isour main source of low level

characterizations for our visual dimensions. The experimental techniques used by perceptual

psychologists help us design our own studies, targeted towards more higher level practical

applications. Finally, we are trying to contribute to the ad vancement of the �eld of scienti�c

visualization, and there are many researchers whose work inspires and complements our own.

We summarize here the main sources of knowledge from all three of these areas of research

and relate it to our own work.

3.1 Visual Design

Our main point of connection with visual design is the quanti�cation of how the di�erent

dimensions that form our basis for visual data communication perform and interact together.

There are many authors that have approached the problem of classifying those dimensions

and providing guidance for their use, but we are providing a bottom-up approach that

numerically quanti�es individual performance �rst and mov es on to combinations and their

interactions.

Visual designers and artists are trained on how to communicate messages visually. In

our case the message is a scienti�c dataset. We have previously researched, and continue to

pursue, the idea of using artistic techniques for scienti�cvisualization [Laidlaw, 2001; Vote

et al., 2003; Laidlaw et al., 2004; Kirby et al., 2004; Keefe et al., 2005]. Our experience in

this area, and our ongoing collaboration with the Rhode Island School of Design, helped

38
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us select the set of visual dimensions that form the means by which we communicate our

message. This is, indeed, a very active area of exploration in the �eld of visualization in

general [Watson, 2006].

In looking at art and design critique, there are many principles of design and compo-

sition expert critics look for when critiquing a certain piece. Rhythm, repetition, balance,

proportion, scale, variety and unity are some examples [Sayre, 1995]. In our case, some of

those come de�ned by the data itself, hence are not subject toevaluation. For example,

rhythm and balance in a visualization display are, for the most part, controlled by how the

values are distributed across the spatial range of the data.A certain balance could still

be judged based on an overall visual balance of the display (whether there are areas that

attract attention or not), but it could be argued that �nding those areas is precisely the

goal of the initial data exploration.

Another aspect of the critique looks at the set of visual elements an art work uses to

convey the message intended. There is no agreement among researchers about what is the set

of visual dimensions that can be used as a basis to create visualization methods. Ontologies

about what visual dimensions are most commonly used served as inspiration for us to come

up with a testable set. There are many publications used in art and design schools that deal

with speci�c visual dimensions, but Wallschlaeger and Busic-Snyder in [Wallschlaeger and

Busic-Snyder, 1992] provide a very comprehensive classi�cation of the di�erent elements

involved in the communication process. Their work spans visual principles for architecture,

art and design, and demonstrates the commonalities among those disciplines in this context.

Our approach is similar in the sense that we are applying these concepts to an area that

makes use of them [Swan et al., 1999], but has not had many researchers studying the

formalization of their use. Although Wallschlaeger and Busic-Snyder provide a very clear

description of each element (color, shape, texture, etc.),they fail to formalize the interaction

among them and the issues arising from their simultaneous use, a key component in our

research.

In the classi�cation and analysis of visual dimensions for data representation, one of

the �rst and most cited works outside of the academic literature for art and design is

Bertin's Semiology of Graphics[Bertin, 1983]. Our approach is very similar to his in that

we are trying to characterize the capabilities of each of ourvisual dimensions individually,

and then build up a model of how they perform in combination. He acknowledges that any

combination of dimensions is possible but he dedicates veryfew pages to formalizing the use

of those combinations. Our studies are designed to gather knowledge and provide a basis for

a formal model for the e�ective combination of visual dimensions. Our work also presents

an opportunity to address a main criticism of Bertin's work, that he lacks experimental

results for his factual presentation of visual properties,by providing quanti�able evidence
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of his theories.

Bertin describes in extensive detail the associative and selective qualities of what he

calls retinal variables: location, size, value, texture, color (hue), orientation and shape.

Compared to our visual dimensions, he combined saturation and hue into a single variable

(color), and used texture in a similar way that we use icon spacing. In the case of the

location visual dimension, the datasets we will be working with have an inherent spatial

component which prevents us from using the location of the visual elements as a carrier of

any other information. An example of this are the points on a map: they indicate precise

geographical locations, so distortions from the real locations would change the map itself

and modify the message (cartograms are an exception to this,in which the visible space

changes its meaning [Bertin, 1983, p.120]).

A signi�cant di�erence with Bertin's work is that we are deal ing with continuous datasets

instead of discrete ones. In his book, the main examples are centered around map displays,

although charts and information visualization displays are also discussed. Maps are very

close to the kind of display we are going to be analyzing. In our case, datasets are assumed to

be continuous across the spatial range of the data variables. Although maps can contain that

type of dataset (e.g interpolated temperature or precipitation readings in meteorological

maps), there are many discrete variables (e.g. labor statistics or population maps) that are

not usually interpolated. Our research will extend Bertin' s results to continuous data.

Many researchers have followed and applied Bertin's work, and map making is one

area that has used his work and inspiration extensibly. MacEachren presents an excellent

summary of previous research in cartographic visualization [MacEachren and Kraak, 1997].

He expanded Bertin's visual variables to include crispness, resolution, transparency and

arrangement. He also divided Bertin's color into hue and saturation for a total of 12 visual

variables. Although his classi�cation is better supported by experimental references from

map makers and perceptual scientists, we miss some discussion about the speci�c use of

each variable, both individually and in combination (combinations of hue, lightness and

saturation are brie
y presented). He provides clues towards the generation of rules for

map-making but does not go as far as presenting such rules.

Cartographic data visualization is an area that uses similardatasets to the ones we

utilize. Techniques and classi�cations of visual elementsfor map communication form an

important basis for our model and our choice of dimensions for the experiments. Along

these lines, MacEachren also describes the three main components of map communication

as the data, the graphical elements, and the user. He contends that a characterization of

all of them must be obtained to create e�ective maps. We are constraining our research to

a very speci�c type of data and a prede�ned set of visual elements that can potentially be

used to represent that type of data. The end-user's characterization is represented by our
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set of design factors.

Finally, one of the most cited works on e�ective visual design for communicating scienti�c

data has to be Tufte's series of three books on information visualization [Tufte, 1983, 1990,

1997]. In his books he discusses many examples of cases wherebad choices in the design of

visualization displays caused problems and misinterpretations. He also presents alternatives

for how to �x those issues and introduces alternative designs that, for the most part, are

e�ective in conveying the original ideas. It has been said that with Tufte's work bad practice

has been uncovered. Even though this is a very valuable step to take in any scienti�c �eld,

the recognition of existing 
aws, Tufte does not take the next step and tries to formalize his

views into a coherent comprehensive model. It is very di�cult to connect all the extensive

advice given in his work and categorize it in a homogeneous way. It seems clear that was not

the intent of his work, and that is where our approach �ts in. W e are trying to build that

model and, for that, we are starting the same way Bertin did in his work: from the ground

up. The examples Tufte introduces present multiple combinations of visual dimensions and

other factors that are very di�cult to isolate. We are starti ng with the study of visual

dimensions in isolation and trying to quantify the expressiveness of each of them as they

get combined in increasingly complex situations. In summary, Tufte does an excellent job

at critiquing and analyzing �nalized visualization displa ys, but fails at exploring how much

or how little each component of the displays participates inits success or failure.

3.2 Visual Perception

At the other end of the spectrum are perceptual psychologists and psychophysicists. They

are interested in studying how our eyes and brains perceive,process, and store visual infor-

mation. For that, they utilize very basic visual displays th at are designed to trigger very low

level responses on the viewer. This helps them isolate how individual pieces of information

are processed and build a model for how we perceive the world around us. In our case we

are quantifying how visual dimensions are perceived by visual experts and measuring the

e�ect that their combination has in the perception of scienti�c datasets.

Ware [Ware, 2004] provides an excellent reference towards the understanding of all per-

ceptual processes involved in information comprehension.Color, texture, form, and motion

are the main elements discussed in his work, beginning from the physiological elements

involved in perceiving each of those, up to a series of recommendations for their use in

displaying abstract information. Ware takes a broad approach at information visualization

and, although continuous data are discussed in the book, they are not its main focus. He

provides a very good introduction to the theory of integral and separable dimensions for

visual attributes, but provides little quanti�able eviden ce for his classi�cation. Our work
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provides such evidence for the displaying of continuous scalar data and for how separable

dimensions combine to form complex visualization displays.

Along these lines, we have found little experimental evidence about the perception of

combinations of visual dimensions. Callaghan studied how hue and lightness interact in

a texture segregation task [Callaghan, 1984]. She also compared, in pairs, hue with form

and line orientation [Callaghan, 1989]. Although she reached interesting conclusions about

which variables dominate and when they interfere, her stimulae were limited to two levels of

the visual variable being analyzed (e.g. horizontal and vertical for the oriented lines), while

the potentially interfering variable was randomized or kept constant. In general, given that

our data are continuous, more than two levels of each visual variable will be displayed. We

have not found any studies for the interaction of more than two visual variables. Note that,

in our displays, all visual dimensions present in our language must be set. Even when only

a single data variable is being mapped to a single visual dimension, there are a whole set

of other dimensions that can potentially interfere with it.

Our experiments are very much inspired by Carswell and Wickens's work [Carswell and

Wickens, 1990] in which they classify di�erent graphical attributes into integral, separable

or con�gurable dimensions depending upon how each attribute's reading is a�ected by the

others, taken pairwise. They found that visual elements canhelp each other when displaying

the same information (redundancy or performance facilitation), or inhibit each other when

only one element is changing (�ltering interference). They also describe a third type called

condensation in which opposite variation of each variable occurs simultaneously. Their

experimental displays are based on single icons, looked at in isolation. We are extending

their experiments to more complex displays and, for now, limiting our analysis to �ltering

interference analysis (see Section 5.1.)

Our goal is to �nd the visual characteristics of di�erent vis ual dimensions when dis-

playing quantitative information, where visual saliency is the property that makes one data

value di�erent from the next. The measurement of saliency or texture contrast thresholds

is common in texture segregation studies [Bergen, 1991]. Those studies utilize stimulae

with regions where the particular visual element di�ers in some amount with respect to the

surrounding region [Landy and Bergen, 1991]. This is similar to our research in that we are

also measuringjnd's for visual dimensions, but our stimulae include overlapping textures.

Our texture segregation is a more complex problem, since even a single layer of icons can

contain two or more textures, e.g. one for spacing and one foricon lightness. We are in-

terested in measuring the segregation between these textures, so we cannot directly apply

jnd values from those texture segregation experiments to our model. Also, many stimulae

are required to explore the full range of a visual dimension,and even more to include inter-

ference analysis with secondary elements. Our studies are designed to evaluate, with fewer
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iterations, a larger portion of the range for each element.

Moving a little closer to experiments directly applicable to scienti�c visualization syn-

thesis, most of the literature about perceptually e�ective data representation is based on

experience. Authors de�ne sets of guidelines that, in the absence of visual perception the-

ories [Senay and Ignatius, 1994], follow common practice and established knowledge [Eick,

1995]. In general, these approaches rely on a clear de�nition of the task a visualization

must ful�ll, making them di�cult to apply in our research. Ou r exploratory visualization

methods are geared towards presenting the data as clearly and without bias as possible for

scientists to explore.

In our case, instead of evaluating error or speed for a speci�c task, we qualify the

di�erent methods based on design factors present during exploratory analysis. Also, since

our participants are expert visual designers with years of experience in design critiques, we

are able to simultaneously evaluate multiple visual dimensions from our language. They

are not new elements for our subjects, so we can exploit theirexpertise in a more e�cient

way. This methodology allows us not only to understand how our visual dimensions are

interpreted by our expert designers, but also how the individual visual dimensions are

combined by an observer into coherent percepts [Landy and Movshon, 1991].

Dastani [Dastani, 2002] takes a di�erent approach. His goalis to match the structure of

the datasets, relational databases in this case, with the perceptual structure of the visual

dimensions used in the visualization display. Again, this is di�cult to apply to our scienti�c

datasets, but it is interesting to note that he includes in his discussion the choice of values

for the visual dimensions not mapped to any data variables but still present in the displays.

We also keep track of these when designers evaluate our visualization methods, and their

comments on them, so we can build a complete model of utility.Like Dastani, we try to

avoid methods with unwanted visual implicatures by non-mapped visual dimensions.

Our evaluation approach comes closest to the work of Healey.He has studied extensively

the application of preattentive processing to visualization [Healey et al., 1993]. Preattentive

processing allows detection of visual elements in a displaywithout focusing attention on

them. Initially, he focused on experiments comparing hue and orientation [Healey et al.,

1996]. Participants in his experiments were asked to perform numerical estimation tasks

with varying hue and orientation di�erences, as well as varying display time. Based on this

discriminability experiments, he identi�ed guidelines for color selection [Healey, 1996] that

we used for our studies.

He also proposed ViA, a visualization system based on perceptual knowledge [Healey

et al., 1999]. The goals of this system are very similar to theones in our research. He

builds, by hand, the perceptual knowledge-base used to suggest a visualization method,

while we are gathering that knowledge through subjective evaluations. Finally, Healey used
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perceptually-based visualization displays to visualize datasets with up to 4 data variables

[Healey and Enns, 1999; Healey et al., 2004].

Finally, in the case of multivalued visualizations, our layering of icon-based visualizations

takes note from Watanabe's texture laciness studies [Watanabe and Cavanagh, 1996]. Tex-

ture laciness de�nes the phenomenon that occurs when two textured surfaces are overlapped

and the top one becomes perceptually transparent so the bottom one can be perceived with-

out interference. He identi�ed icon similarity as the main element a�ecting laciness. In our

case, we want some amount of laciness to be present, itself controlled by the saliency re-

quired by the visualization. Spatial feature resolution was not studied by Watanabe as a

factor of laciness, but it is something we are including in our studies.

It is important to note that this combination of visual dimen sions into perceptually

relevant entities has been studied for decades, starting with the Gestalt psychologists and

their laws of perception and grouping [Ellis, 1939]. These laws are one of the earliest

attempts to qualify how the human visual system recognizes relationships among visual

dimensions. We are trying to quantify some of those relationships and apply that knowledge

to the e�ective visualization of scienti�c data.

3.3 Data Visualization

We titled this section Data Visualization to combine both in formation and scienti�c vi-

sualization literature. Hanrahan [Hanrahan, 2005] recognizes the arti�cial and somewhat

unclear nature of the separation between information and scienti�c visualization, but ac-

knowledges that most of the research aimed at the de�nition and characterization of a space

of visualization methods has been done in the information visualization �eld. Our work is

very much inspired and guided by the classi�cation models developed for information visu-

alization.

Many researchers in information visualization have followed and applied the previously

mentioned work by Bertin on graphic semiology. Cleveland was one of the �rst in ordering

what he called perceptual tasks (our visual dimensions) based on their accuracy when users

read visualization displays [Cleveland and McGill, 1984].[Mackinlay, 1986] augmented his

classi�cation by including expressiveness and e�ectiveness as the two main measures to

evaluate how well a certain dimension performed representing data. Mackinlay went as far

as to develop a compositional algebra that would describe how dimensions and tasks were

matched to choose a certain method. He also acknowledged theexistence of situations where

visual dimensions would interfere with each other, throwing o� the original classi�cations,

but he did not study those cases. This thesis tries to build a similar classi�cation of visual

dimensions and complete the quanti�cation of those perceptual interactions.
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In our case the task is exploratory, but many researchers have approached the modeling

of the space of visualizations based on a taxonomy of tasks [Casner, 1991; Springmeyer et al.,

1992; Shneiderman, 1996]. Their results vary and are appropriate for the tasks represented,

but they all fall short in the study of perceptual interactio ns when multiple variables need

to be represented. Furthermore, even in the cases where theyapproached the issue, the

type of relational or nominal data they dealt with makes the extrapolation of their �ndings

into our domain di�cult.

Other examples of modeling the space of visualizations are [Robertson, 1991; Miceli,

1992; Laper, 1995; Lange et al., 1995; Card and Mackinlay, 1997; Nowell, 1997; Andrienko

and Andrienko, 1999; Chi, 2000; Nagappan, 2001; Salisbury,2001; Jankun-Kelly, 2003].

Most of these works have the commonality of being rule-based:they rely on building a set

of rules that will guide the visualization synthesis process. In our case we do not build rules

before hand and rely on experimental evidence to build our knowledge of expressiveness

and e�ectiveness for each of our visual dimensions.

Indeed, Johnson, in his list of top scienti�c visualization problems [Johnson, 2004],

recognized the quanti�cation of the e�ectiveness of visualization methods as one of the major

research areas in this �eld. He also included perceptual issues, multi-�eld visualization and

theory of visualization, all areas that we are addressing inthis dissertation. Van Wijk, in

two important papers for the �eld [van Wijk, 2005, 2006], also discusses extensively about

the importance of quantifying the value and e�ectiveness ofvisualization methods. Close

collaboration with the end users to de�ne the goals of the visualizations and determine a

basis for e�ectiveness, is the key to successfully quantifythat value. [Tory and Moller, 2004]

also talked about some of the new challenges the �eld of visualization has to tackle and she

concentrated on human factors. She included perceptual measurement of e�ectiveness and

an argument for a formal modeling of these to really anchor the �eld and move forward. We

believe we are modestly addressing those issues in this thesis and we will make a valuable

contribution to the visualization �eld.

[Weigle et al., 2000; Taylor II, 2002; Bokinsky, 2003] are works closely related to ours

in the sense that they dealt with scalar �elds in 2D and tried t o develop new techniques to

display them e�ectively. They heavily relied on experimental evaluations to validate their

techniques, but they did not explore what are the fundamental expressive characteristics of

the visual dimensions that form their visualizations. They built up their techniques based

on previous work and their own experience, obtaining valid results and developing a layering

technique that let them present e�ectively multiple variab les simultaneously.

Finally, our work has also some similarity to the research onmultiple surface visualiza-

tion [Interrante et al., 1997; House and Ware, 2002; House etal., 2006]. These approaches

tried to visualize a 3D object by placing glyphs on its surface. Since the point of view
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of the object was expected to change, these glyphs did not usually change based on the

characteristics of the surface. In our case, the overall textures created by mapping a scalar

�eld to visual dimensions could create the illusion of a surface and might actually represent

one, but the icons are used to indicate the very values being explored.



Chapter 4

Using Visual Design Experts to

Evaluate Scienti�c Visualizations

The human visual system is a highly optimized pattern detection and recognition system.

Visualization methods leverage this ability to allow e�cie nt data exploration, discovery,

and analysis to support data validation and decision making.

Visualization is used in any data-intensive domain: data mining, meteorology, geogra-

phy, transportation sciences, environmental studies, uncertainty analysis, and evolutionary

biology are some example application domains. In these �elds, a common problem for visu-

alization experts is: given a large set of multivalued data and hypotheses a scientist would

like to address, what visualizations best represent the data? And how do we best evaluate

these visualizations? Furthermore, does a good method for evaluation provide su�cient

information to improve the visualization methods?

We hypothesize that using visual design experts to perform critique-based evaluations

can let us quantify the expected performance of visualization methods as well as elicit �xes

for visual design problems that are often di�cult for a domai n or visualization expert to

articulate. Evaluation of scienti�c visualization method s is typically either anecdotal, via

feedback from or observation of, scienti�c users; or quantitative, via measurement of the

performance of relatively na•�ve users on simple abstract tasks. In this study we add visual

design experts to the pool of evaluators (see Table 4.1).

Here we propose expertise in visual design as the basis of a visualization evaluation

methodology that assesses the e�ectiveness of scienti�c visualizations, providing reasons

for that e�ectiveness and suggesting improvements. Our participants, visual designers and

illustrators, are experts in evaluating visuals for targeted communication goals; while their

results are often appealing and aesthetic, they �rst must satisfy the communication goals,

which in this case means presenting scienti�c data for e�ective exploration. They are trained

47
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Table 4.1: Pros and cons analysis for each type of subject in scienti�c visualization evalua-
tions.
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to optimize visual resources in a visual design problem; theultimate goal of our research is

to quantify and model this optimization process.

To achieve this we have performed a series of experiments to evaluate how e�ective these

experts are at evaluating these types of displays.

During the �rst experiment [Jackson et al., 2003; Acevedo etal., 2007b], artists and

visual designers graded the vector visualization methods from a previous study [Laidlaw

et al., 2005] on the basis of their subjective estimates of user performance and also verbally

critiqued each method's e�ectiveness.

The results from this experiment encouraged us to develop a methodology to evalu-

ate scienti�c visualization methods using expert visual designers. This led to our second

study where expert illustration educators evaluated multiple 2D scalar visualization meth-

ods [Acevedo et al., 2005].

The purpose of these two studies is to learn how visual designers evaluate scienti�c

visualizations against certain design and scienti�c goals. Understanding this process should

help us build better evaluation methods, particularly onesthat will both judge visualizations

on their scienti�c merits and provide insights into improvi ng the design of our visualizations.

This, in turn, should speed up and improve its results.

4.1 Critique-based Evaluation of 2D Vector

Visualization Methods

Our hypothesis was that designers would rank the methods similarly to the objective task-

performance measures in [Laidlaw et al., 2005]. We also hoped that the critiques would help

us understand why methods work well by identifying which visual dimensions within each

method worked best for the given tasks. Our results are consistent with our hypothesis.

4.1.1 Methodology

In order to evaluate the e�cacy of our designer critiques, we modeled our study on a previ-

ous quantitative user study [Laidlaw et al., 2005] comparing six 2D vector �eld visualization

methods on three di�erent tasks using expert and novice scientists. Having designers eval-

uate the same six visualization methods, using the same tasks as in the previous study, let

us validate our designers' ability to evaluate scienti�c visualizations e�ectively.

In [Laidlaw et al., 2005] , users were asked to evaluate the merits of the six visualization

methods shown in Fig. 4.1:

� GRID: icons on a regular grid.
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GRID JIT LIT

LIC OSTR GSTR

Figure 4.1: The same vector �eld as visualized by the six visualization methods critiqued
by the designers.

� JIT: icons on a jittered grid [Dipp�e and Wold, 1985].

� LIT: icons using one layer of a visualization method that borrows concepts from oil

painting [Kirby et al., 1999b].

� LIC: line-integral convolution [Cabral and Leedom, 1993].

� OSTR: image-guided streamlines (integral curves) [Turk andBanks, 1996].

� GSTR: streamlines seeded on a regular grid [Turk and Banks, 1996].

With these methods, users were asked to perform three tasks designed to mimic generic

tasks 
uid-
ow experts would use to investigate a 
ow �eld (Fi gure 4.2):

� Counting Task: Choosing the number and location of all critical points (CP) in an

image.

� Type ID Task: Identifying the type of a CP at a speci�ed location.

� Advection Task: Predicting where a particle starting at a speci�ed point wil l advect.
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a) b) c)

Figure 4.2: Sample stimuli for the three experimental tasks. The solutions for each, marked
in red, were provided to participants during the subjective critiques. Their goal was to judge
how accurately and quickly a real user of the visualizationswould perform these tasks for
each method. (a) Counting task with three critical points vi sible, (b) Type ID task with a
saddle-type point (marked in blue), and (c) Advection task with a small red circle indicating
the location to where a particle in the center of the large blue circle would advect.

Seventeen users were run through the 90-minute computer-controlled experiment [Laidlaw

et al., 2005]: �ve were 
uid-
ow experts and 12 were �rst- or second-year applied math

graduate students with little previous experience in computational 
uid dynamics. Details

of the results are given in [Laidlaw et al., 2005].

In the present study, visual designers were asked to judge the six visualization methods

on their ability to convey the information necessary for a user to complete the three tasks

accurately and quickly. Figure 4.3 shows one of our visual designers critiquing the six meth-

ods. The experiment took an average of 60 minutes. Six experts, who were compensated

for their participation, judged all six methods for all task s (within-subjects design). As a

training exercise, all designers took the objective computer-based study �rst. Participants

could ask the experimenter for any necessary clari�cation during the experiment.

Designers evaluated the methods using printed images from three di�erent datasets

simultaneously. This allowed them to critique a visualization method on its own expressive

capabilities and not on its speci�c instantiation for a data set. (The training on the computer

helped here.) The methods for each task were rated separately using letter grades (GPA-

style: F, F+, D-, D, D+, C-, C, C+, B-, B, B+, A-, A, A+) according to t wo measures:

� How well the method would let a user perform the given task accurately.

� How well the method would let a user perform the given task quickly.

Finally, after the critique was completed, designers were asked to create a new visualization

of a given data set that would enable users to perform all three tasks quickly and accurately.
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Figure 4.3: During the study, designers rated the di�erent methods subjectively, based on
accuracy and time to perform the task. They could also appraise how the visual dimensions
used in each method would a�ect their performance.
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Table 4.2: Linear regression results between designer grades and numerical results
from [Laidlaw et al., 2005].

4.1.2 Numerical Results and Discussion

We posed two hypotheses at the onset of this study: �rst, that designer ratings would be

similar to the quantitative performance measures for each task in the previous study [Laid-

law et al., 2005], and second, that the designer critiques would provide additional insight

into the merits of each method and how to improve them. Table 4.2 summarizes the linear

regression results between the designer grades from the current study and the numerical

results from [Laidlaw et al., 2005]

We look �rst at the critical-point-counting task. This is the m ost di�cult task because

no visual cues are present to guide user performance (as there are for the advection and

critical point identi�cation tasks [Laidlaw et al., 2005]) : during this task, users see only

the 
ow �eld. Note that, apart from their response time ratin g, designers could give only

one rating for the other two accuracy variables measured: accuracy of �nding the correct

number of critical points and accuracy of placing the critical-point markers precisely on their

locations. Participants in the objective study performed these last two tasks simultaneously.

Figure 4.4(a) shows the regression analysis for mean percentage correct in counting the

critical points, and also the mean designer grades. It is clear that the designers' pattern of

performance matches the quantitatively collected performance measure for this task very

well (R2 = 0 :941; F = 63:9; p = 0 :001). Figure 4.4(b) shows the regression analysis for

mean critical-point-location error and the mean designer grades. Again, the designers'

pattern of performance matches the quantitatively collected performance measure (R2 =

0:956; F = 87:6; p = 0 :001). Last, Fig. 4.4(c) shows the regression analysis for the mean time
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a)

b)

c)

Figure 4.4: Regression analyses for the critical-point-counting task, with plots for counting
accuracy (a), location accuracy (b), and response time (c).
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a)

b)

Figure 4.5: Regression analyses for the critical-point-typeidenti�cation task, with plots for
type accuracy (a), and response time (b).

to complete the critical-point-location task and the mean designer grades. Once again, the

designers' pattern of performance matches the quantitatively collected performance measure

(R2 = 0 :676; F = 8 :3; p = 0 :045).

As can be seen from the graphs in Fig. 4.5, the designer gradesclosely matched the

pattern of performance in the original quantitative user study for the critical-point-type

identi�cation task, both accuracy ( R2 = 0 :722; F = 10:4; p = 0 :032) and response time

(R2 = 0 :679; F = 8 :5; p = 0 :044).

However, for the advection task, the designer grades did notquite match the previous

experiment's pattern for accuracy (R2 = 0 :615; F = 6 :4; p = 0 :065). Also, no regression

model �t the designer ratings to the quantitative response time measure (R2 = 0 :249; F =

1:3; p = 0 :314).
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a)

b)

Figure 4.6: Regression analyses for the advection task, with plots for accuracy (a), and
response time (b).
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This last discrepancy can be explained by looking at one visualization method in partic-

ular: line integral convolution (LIC). As seen in Fig. 4.1, LIC shows no information about

the 
ow direction, and this is detrimental in performing the advection task. In order to com-

pensate for this known problem, a direction icon was placed at the lower-left corner of the

image to let users extrapolate the 
ow direction across the entire image. The time needed

for this extrapolation contributed to the large increase in completion time for this method

in the previous user study. Most designers viewing this method for the advection task sug-

gested adding direction icons sparsely throughout the image; having seen this easy �x, they

tended to grade the completion time for this method leniently, resulting in the poor corre-

lation between the two sets of data for this task. Removing this polemic method from the

regression analysis yields signi�cant results for accuracy (R2 = 0 :852; F = 17:2; p = 0 :025),

but does not improve the response time regression results (R2 = 0 :389; F = 1 :9; p = 0 :261).

Figure 4.6 shows the linear regression plots for this task with and without LIC.

4.1.3 Design Issues and the Development of a New Method

Apart from those numerically signi�cant results that valid ate their evaluations, partici-

pants provided additional design insights into how to improve the visualization methods to

potentially yield quick and accurate information on the 
ow �elds in the three given tasks.

JIT was rated as the \worst" method because its elements were\too small." OSTR,

on the other hand, was possibly the \best" method, although sometimes \very sharp turns

don't give a sense of movement as well as others." GRID, like JIT, has elements that are

\too small to be e�ective," and \the regularity of the grid in duces a false sense of structure

that is di�cult to ignore." LIC is \OK" but is perceptually \t oo even" with \not enough

contrast," and its elements \don't provide a good sense of 
ow direction," which is key for

some tasks. \Its good sense of tactility connects the user with the concept of 
ow," but

this aesthetic appreciation did not a�ect the participants ' scores, which concentrated on

task performance. LIT and GSTR were both \good representations for doing the advection

task," but LIT had elements that were \a little small" and GST R was a bit \scary" to look

at, since the visual elements seemed to \pass over each other." Comments about the size

were also common, indicating this dimension as the �rst candidate for modi�cation in order

to increase the e�ectiveness of most methods.

In addition to these critiques, we asked the designers to design a new visualization

method for a sample vector �eld data set that would address all three tasks. Figure 4.7

shows one of these designer-created visualizations; this image was created by hand using

tempera paint, charcoal, and pencil. As you can see, this designer added direction icons,

used streamlines to suggest 
ow structure and thus aid in identifying particle advection,
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Figure 4.7: After the experiment, designers were asked to create a new visualization design
that would outperform the six methods presented. This imageshows one of the results.
Black 
ow lines help in the advection task, and white marks indicate direction of the 
ow.
Critical points are clearly marked by large white dots, and critical point type is indicated
by the surrounding arrows.

placed icons around the critical points for easy identi�cation, and put dots on the critical

points to make them easy to locate. It is interesting to see how some of the comments above

are exploited in this particular solution. The tactility of LIC, for example, is retained, while

its directional ambiguity is solved through small additions. We found that participants

designed to the tasks presented and missed the implicit taskof \understand the overall 
ow

structure and features".

4.1.4 General Discussion

These results validate our initial hypotheses, but they leave some open questions. Even

though the tasks are interesting scienti�cally, designersseemed to �nd it very easy to evalu-

ate them. The concepts in their critiques were very basic, even though all six of our methods

were state of the art for 2D 
ow visualization. The speci�cit y of our tasks did not tax our

participants' design expertise . As can be seen from Fig. 4.7, a task-oriented design query

yields, naturally, a highly explanatory visualization met hod in which answers to all three
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tasks are explicitly depicted. We surmise that assigning a task that requires a more holistic

understanding of the datasets will bring out the best in the designers, and that the results

will be more e�ective the greater the designers' expertise.

While the initial study [Laidlaw et al., 2005] found no di�er ences between experts and

non-experts in performing the quantitative tasks, our subjective tasks may elicit some dif-

ferences among participants with di�erent levels of expertise, as suggested in the HCI liter-

ature [Nielsen, 1992]. In particular, we believe that the participants' visual design expertise

is key to providing the types of comments they did during our experiment.

Finally, since the ratings obtained from designers are largely qualitative and do not

provide the numeric values necessary to design a visualization method, combining objective

and subjective experiments using designers will lead to better, more directly usable results,

con�rming the hypothesis from Tory and M•oller [Tory and Mol ler, 2005]. This combination

of quantitative and qualitative studies would yield both nu meric performance estimates and

guidance on what aspects of di�erent visualization methodshelp or impede performance on

certain tasks.

4.2 Evaluation of 2D Scalar Visualization Methods by Illus-

tration Educators

Following the results from the previous study, we set o� to quantify how much each indi-

vidual visual dimension that forms our visualization methods participates in their success

or failure. We would have liked to obtain this information fr om the previous study, but the

speci�city of the tasks, and the non-uniformity, in terms of t he visual dimensions utilized,

of the six 
ow visualization methods used, prevented our participants from consistently

commenting about the exploratory use of the methods or that of their intrinsic visual di-

mensions.

In collaboration with educators from the Illustration Depa rtment at the Rhode Island

School of Design (RISD), we de�ned a space of eleven visual dimensions(see Figure 4.8).

These eleven dimensions were considered su�ciently expressive and representative for an

initial exploration of the space of visualization methods. In order to evaluate the individual

expressive power of each dimension, we used them to visualize single-valued continuous

scalar datasets in 2D.

We created a framework for evaluating these visual dimensions through feedback from

expert visual designers and art educators. Our framework mimics the art education process,

in which art educators impart artistic and visual design knowledge to their students through

critiques of the students' work. We established a set of design factors that characterize the

exploratory nature of our visualizations without focusing on any particular explanatory task,
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Icon Hue Icon Saturation Icon Lightness
(HUE) (SAT) (LIGHT)

Icon Transparency Icon Orientation Icon Size
(ALPHA) (ORIENT) (SIZE)

Icon Spacing Plane Hue Plane Saturation
(SPA) (PHUE) (PSAT)

Plane Lightness Plane Transparency
(PLIGHT) (PALPHA)

Figure 4.8: Visual dimensions. In this experiment we asked expert visual designers to
characterize the utility of each of these dimensions individually.
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such as search for extrema or analyzing data gradients.

This study represents our initial step towards our �nal goal, which is to create a math-

ematical model of the knowledge collected from design experts and use that model to �nd

a solution for a data visualization problem.

4.2.1 Methodology

In this particular study we had �ve participants, all expert educators from the Illustration

Department at RISD, evaluating 33 di�erent visualization m ethods. The number of methods

comes from 11 visual dimensions and 3 di�erent parameterizations for each one (see Table 4.3

for details on each method's parameterizations).

Following what we did for the previous study, we tried to eliminate the e�ect of the

dataset from the analysis by showing 4 di�erent single-valued datasets, shown in Figure 4.9.

In summary, we created a total of 33� 4 = 132 images that we printed and placed on

the wall for our subjects to critique. The setup is shown in Figure 4.10.

The design factors we de�ned provide information about the quality of the data pre-

sented and the capability of a visualization method to work in combination with other

methods. For this particular experiment we had a di�erent set of factors than the ones

introduced before. These factors are:

� Data Resolution (DR): the number of di�erent levels of a data variable that can be

distinguished by a viewer.

� Spatial Feature Resolution (SFR): the minimum spatial feature size that can be reli-

ably represented with a method, expressed as a percentage of the image width.

� Visual Linearity (LI): the perceptual linearity of the mapping from data value to visual

dimension; this factor is measured by asking participants to indicate the locations

where they see the values of 0, 0.25, 0.5, 0.75, and 1.0 along the image for a linear

dataset visualization.

� Visual Bandwidth (VB): the percentage of a method that can be occluded when com-

bined with other methods but still remain readable. This design factor is aimed at

estimating how di�erent visual dimensions will perform in m ultilayer methods.

� Dominance (DO): the forcefulness orpunchinessof the data mapping. This indicates

how much a method would dominate the composition when combined with other

methods, measured as a value from 0 to 10.

� Time to Read (TR): the time it takes an average user to comprehend the data, mea-

sured in seconds.
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Table 4.3: The exact parameterizations presented to our subjects for all 11 visual dimen-
sions. Orientation is measured in degrees from the horizontal direction, size in pixels, and
spacing also in pixels (for 800� 800 images). The pairs of values in the yellow cells indicate
the minimum and maximum values of the mapping ranges for eachmethod. Mappings are
linear in all cases. The red arrows to the right indicate the particular methods shown in
Fig. 2.10.

Figure 4.9: During the study, participants were presented with multiple visualization meth-
ods representing these four single-valued datasets. The �rst one is a linear dataset, while
the rest are general, continuous and smooth changing height�elds.
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Figure 4.10: A participant in our study critiques visualiza tions of single-valued 2D datasets.
Illustration educators were shown a total of 132 visualizations corresponding to 3 parame-
terizations of 11 visual dimensions and 4 di�erent datasets. For each parameterization, they
evaluate all 6 of our design factors (bottom of the image). Here, one of our participants
comments on the reasons for her ratings.
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Note that dominance intends to represent what we called saliency, while visual bandwidth

and time to read are both factors included in our de�nition of perceptual interference. This

experiment preceded the de�nition of our perceptual experiments, hence this set of factors

is a superset of the ones we �nally used for our utility models. In later chapters we will

compare the results using these 6 factors with the results using our �nal set of 4.

As explained before in Chapter 3, Bertin [Bertin, 1983] developed a similar classi�cation

for his \retinal properties" (size, value, texture, color, orientation, and shape) according to

their level of organization (whether they could be used to represent quantitative, qualitative,

or ordered information) and the number of steps they could take (our data resolution factor).

Our design factors introduce new measures, like linearity,and also capture some composition

characteristics, like visual bandwidth and dominance. Our data resolution and spatial

feature resolution factors capture the fact that we are targeting quantitative datasets.

For this experiment we created a novel experimental methodology for capturing quan-

titative knowledge from visual design experts. This is a clear improvement with respect to

the previous study, since we are trying to provide designersa way to convey their critiques

through the use of our design factors. We videotaped the sessions, which last approximately

3 hours, and we asked participants to provide in-depth explanations of the numerical ratings

and their thought process.

For their training, participants were introduced to all met hods and design factors the

day before their critique, when they were given the instructions for the experiment. A

webpage1 was available for them to review all visual dimensions we were interested in,

as well as the goal of the experiment and the introduction to the di�erent factors. They

were encouraged to familiarize themselves with all parts ofthe experiment and write down

any questions they had. They were instructed not to actually perform the design factor

estimations. Before and during the actual evaluation sessions, participants were allowed to

ask any questions or make any comments about the study.

4.2.2 Results

The results of this study allowed us to characterize the expressiveness of individual visual

dimensions when visualizing single-variable scalar datasets for exploratory visualization.

In general, the between-subject scores had a very high variance. While we believe the

relative balance between methods was maintained due to having all stimuli presented at

once and allowing score modi�cation, each participant had his or her own range of values

for each design factor. Hence, we normalized all the scores for each participant individually.

We obtained, then, a relative measure for each design factor. Figures 4.11, 4.12, and 4.13

1http://www.cs.brown.edu/people/daf/study
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(a) (DR) Data Resolution: higher = more levels

(b) (SFR) Spatial Feature Resolution: higher = higher resolution

Figure 4.11: Normalized mean results for all methods (translated so min = 0). Error bars
indicate standard error.
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(a) (LI) Linearity results: Fitted power coe�cient, � , for y = x �

(b) (VB) Visual Bandwidth: higher = can be occluded more

Figure 4.12: Normalized mean results for all methods (translated so min = 0). Linearity
results are not normalized nor translated. Error bars indicate standard error.
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(a) (DO) Dominance: higher = more dominant

(b) (TR) Time to Read: higher = faster to read

Figure 4.13: Normalized mean results for all dimensions (translated somin = 0). Error
bars indicate standard error.
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(a) Overall inverse rank results. Max:Possible = 33 � 6 = 198

(b) Overall inverse rank results without Linearity.
Max:Possible = 33 � 5 = 165

Figure 4.14: Stacked-columns summary visualization of inverse rankings for all design fac-
tors (a) (best is 33, worst is 1, for each factor). Since we can�x linearity by remapping the
data to the visual dimensions using the power function, we can eliminate that factor from
the overall ranking score. We show this in (b).



69

show the normalized results for all factors. It is easy to spot how methods that work very

well for some factors really struggle in others. These graphs show the relative strength of

each method and their relative di�erences, since absolute values cannot be obtained back

from these normalized scores.

With these results, we obtained an inverse ranking (33 is best, 1 is worst) based on the

mean normalized scores. Figure 4.14 shows an overall summaryof rankings. We used a

stacked-columns graph where the larger the colored area for each factor the higher value that

dimension obtained. We can see how, if the goal is to obtain the best possible visualization

method with respect to all factors (with equal weights), we can just pick the top method

(Plane Lightness 1 in this case, i.e. full grayscale representation, not surprisingly.) If weights

are required, then an optimization process can be easily setup to solve for a set of methods

that ful�ll the goals best.

4.2.3 Discussion

In general, all our participants felt this is an important an d very interesting line of research.

None of them were used to making numeric judgments about tasks they perform from

experience. They understood our goal of trying to extract that expert knowledge but

we felt that, in this case, we over-taxed their expertise by making them concentrate on

numbers. They enjoyed the freedom of asking questions and explaining their decisions, but

the ultimate need for a numerical estimation created problems.

The study setup was also well received. They are used to comparative critiquing in

class and in art and design critiques, where comparative critiquing is an established tech-

nique [Feldman, 1994]. Being able to do these comparisons helped self-balance the evalu-

ations within each participant's results and made them muchmore con�dent of their own

evaluations. For this reason we had very good intra-rater reliability for each participant,

but it was di�cult to get good inter-rater reliability.

This comparative critique required printing the stimuli, w hich meant all hue, saturation,

lightness, and transparency images were very much in
uenced by the quality of the printing.

We believe, as did our expert subjects, that extra care must be taken in creating this images

in the future, but the advantage of having them all visible at once outweighed the use of a

high resolution monitor (potentially the tool used by end-users) to view images one by one.

The main problem with our results was the high variance we obtained among the �ve

experts. Our hypothesis is that this could be due to their slightly di�erent interpretations of

some of the factors. Also, although our use of expert educators, as opposed to students, was

based on the expectation that they would be able to distance themselves from their personal

taste, this is very di�cult to achieve. As you can see by the standard error bars displayed,
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even with the normalized scores our participants showed a relatively high degree of variance

in their responses. We decided that a ranking of the means would be the appropriate way

to report our results. We believe the high standard errors point more to a methodological

problem (correct explanation of design factors, calibrated printing, etc.) rather than true

signi�cant di�erences in the methods' performances.

The rankings shown in Fig. 4.14 (b) provide a good overall impression about the utility

of the di�erent methods. In general, full range methods (the #1 parameterization for

most dimensions, as shown is Table 4.3) obtained the best scores and, in particular, color

plane methods performed better than icon-based methods. Among the icon-based cases,

size and spacing have a very consistent set of high rankings for most design factors. This

was expected, given that these methods do not depend on good printer calibration or

illumination conditions in the room. Orientation would be t he other method in this category,

but it performed quite poorly due to the overwhelming sense of 
ow it conveys, one that

interferes with the scalar reading of the individually oriented icons.

As mentioned before, one advantage of using design experts to do the evaluations is

that they can pinpoint reasons why a method does not work. They commented about the

neutrality of the shapes used; circular icons would be better than square ones, since square

ones create very visible orthogonal lines that mislead the viewer. Also, they mentioned

the very prominent e�ects of the negative space; we must takeextra care in doing a very

even random placement of the icons, since holes are very quickly detected and incorrectly

interpreted as data features.

Commenting on the appropriateness of our design factors, one of our participants noted

that the choice of an e�ective visualization method will be a�ected by what the data actually

is, e.g., visualizing temperatures is not the same as looking at wind speed or altitude data.

In our case, we want to apply our resulting design knowledge to any type of scalar data,

so we are considering the use of a seventh factor calledintuitive association. This would

measure whether there are any associative readings of a method that might interfere with

the desired numerical reading and should be avoided.

It is important to note that some of the factors we chose, in particular visual bandwidth

and dominance, are aimed at multivalued visualization situations. We decided to include

these factors to introduce our participants further to what real cases would be. We re-

minded them that single-valued scalar �eld visualizations were used for the purposes of this

particular study only, but our �nal goal was to understand ho w these dimensions work in

combination for complex multivalued datasets. The same waywe did for the previous vector

�eld visualization study, in the next chapter we will correl ate these subjective scores with

more quantitative perceptually-based experimental results from our next set of experiments.

Finally the length of the study was deemed excessive by all participants. Some of them
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took as long as 6 hours to complete all evaluations. Even whenwe moved the training

session to the day before the critiques, and provided them with an online resource for

reference, forcing them to do a continuous critique sessionprobably impacted the results

due to fatigue: participants had to provide a total of 165 numerical estimates, the visual

linearity ratings, and explain out-loud their thought proce ss throughout the experiment.

4.3 Conclusion

The number of options available to solve a visualization problem is far too great for a full

analysis of the design space, and expert visual designers can help us explore this space more

e�ciently. The cost of training designers in the scienti�c g oals of the visualization methods

is more than recovered by their ultimate contributions.

The experiments presented here lay out ways of using expert visual designers as evalu-

ators of mappings between the data and the visual dimensionsthat form our visualization

methods.

The main result of these two studies is that designers can evaluate scienti�c visual-

izations e�ectively: they provide extra information, such as reasons for the good or bad

performance of visualization methods, that participants knowledgeable in the speci�c scien-

ti�c �eld cannot give us. We successfully correlated their subjective critiques with previous

studies and we obtained new insights into how di�erent methods work.

This thesis continues this line of research by combining perceptual experiments and

subjective critiques. This strategy should yield the best of both worlds while allowing

a complete, if always hypothetical, analysis of the high-dimensional space of exploratory

scienti�c visualization methods.



Chapter 5

Experimental Evaluation of

Perceptual Interactions

To solve some of the problems revealed by the previous studies, we turned to a more

psychophysically oriented design for our experiments. Relying on simpler, more perceptual

tasks would make it easier to get reliable quantitative data, but it would lead us away from

the bene�ts of using subjective critiques from expert visual designers.

Our goal with these studies is to analyze the quality of the data we can obtain and how

we can build upon it to accomplish our overall goal of modeling the utility of visualization

methods. To that end we reduced the number of dimensions to a manageable size so we could

explore the subspace they form as exhaustively as possible.Accomplishing our goal with

this few visual dimensions would clarify the methodology toincorporate other dimensions.

In this chapter we describe two experiments. In the �rst experiment we quanti�ed how

perceptual interactions among visual dimensions a�ect e�ective data exploration. During

the experiment, participants quanti�ed three di�erent des ign factors for each method: the

spatial resolution it could represent, the number of data values it could display at each

point, and the degree to which it is visually linear. Icon saturation, icon lightness, icon size,

and icon spacing are the four dimensions we evaluated. We measured �ltering interference

for all three design factors, which characterizes how di�erent levels of a visual dimension

held constant a�ect the evaluation of a data-coupled dimension.

The second experiment goes a little further in exploring multivalued datasets. In this

study we perform an experimental quanti�cation of how factors such as icon size, spacing,

layer order and color a�ect the relative saliency and interference among �ve di�erent di-

mensions: saturation, lightness, orientation, size, and spacing. We included orientation in

this experiment to compare our results with existing visualization literature [Healey et al.,

2004] using orientation as a method to visualize continuousscalar �elds. These two design

72
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factors serve to represent what dominance, visual bandwidth and time to read represented

in our second study with expert visual designers.

Our novel experimental methodology in both studies allows us to generalize this per-

ceptual information, gathered using ad-hoc arti�cial datasets, onto quantitative rules for

visualizing real scienti�c datasets. From both experiments we were able to �t mathematical

models that describe the relationships among dimensions and their expressiveness charac-

teristics.

5.1 Subjective Quanti�cation of Perceptual Interactions

During this experiment, participants quanti�ed three di�e rent design factors for each method:

the spatial resolution it could represent, the number of data values it could display at each

point, and the degree to which it is visually linear. These form a subset of the design

factors we evaluated before, but represent the basic factors for single-variable visualization

methods.

We devised three di�erent tasks that participants would have to perform in order to

provide us with their evaluations. In the previous experiments we asked participants to

judge how easy or hard it would be for a real user of a visualization to perform a certain

task. This is meaningful from the point of view of an illustration expert, but we wanted to

measure the actual perceptual capabilities of our visualization methods. To accomplish this

we must test the participant's perceptual system and extract our characterization based on

their results on those tests. These indirect perceptual tasks should make the experiment

easier on the participants but still powerful and generalizable from our perspective.

The main novelty of our approach is the quanti�cation and modeling of how the di�erent

visual dimensions interact with each other. This interaction can be explored at many

levels [Carswell and Wickens, 1990] but the present study islimited to �ltering interference

among the various elements. This type of interaction is based on the visual dimensions being

mapped to data one at a time, while the rest remain constant across the visualization. We

chose to limit our experiment to four visual dimensions: icon saturation, icon lightness,

icon size and icon spacing. We realize that these choices greatly constrain our otherwise

exponentially large exploration space but, with just theseelements involved, we are able to

generate an extensive set of examples for our experimental participants to evaluate.

5.1.1 Methodology

Table 5.1 shows the values we chose for each of the four visualdimensions involved. Size

indicates the diameter of the circular icons, while spacingindicates the distance between

two icons. We utilize a Poisson disk distribution to randomly place icons across the image.
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Table 5.1: Values used for each of our visual dimensions.

We experimentally chose the upper limits for size and spacing so we could explore methods

with reasonable spatial feature capabilities.

With these parameters we de�ned six possible value ranges, pairs (bi ; ei ), for each visual

dimension: (0:00; 0:33), (0:00; 0:66), (0:00; 1:00), (0:33; 0:66), (0:33; 1:00), and (0:66; 1:00).

Here, and in the rest of this chapter, we will use these normalized values to refer to the ranges

of all our dimensions. That way, for size, a range of (0:00; 1:00) will correspond to a range

of (2; 10) in pixels. Similarly for spacing ranges. For icon saturation and lightness methods

we combined these six ranges with all possible combinationsfor the other two dimensions,

creating a total of 96 visualization methods. For icon size and spacing methods we kept icon

saturation and lightness constant at 1.00, so 24 combinations (6� 4) were de�ned for each

of those two dimensions. Note that even constraining our experiment to a small number of

elements, and only four possible values per element, the number of combinations is quite

large: 240 di�erent visualization methods.

Data Resolution Identi�cation Task

For this task we asked participants to evaluate how many di�erent levels of the data variable

a method is able to represent. Figure 5.1 explains how we created the stimulae for this task.

The task participants were asked to perform was to de�ne in what region of the image they

perceived a sine-wave pattern. Since they were told the pattern would be more pronounced

at the top left corner of the image, they just needed to place 3marks to approximately

bound the region where they perceived the pattern.

Using a vertical sine-wave pattern with constant spatial frequency, � , across the image

(Figure 5.1(a)), we linearly decrease the amplitudea from left to right (Figure 5.1(b)).

While the amplitude values remain constant vertically across the image, we linearly move

the zero value of the sine-wave froma=2 at the top to 1 � a=2 at the bottom. Figure 5.1(c)

shows the �nal appearance of such a dataset using grayscale.

To create these datasets we had two extra variables to �x, the initial amplitude a

and the frequency � . We tested several values for these variables and decided toevaluate
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a) b) c) d)

Figure 5.1: Process for creating the stimulae for the data resolution identi�cation task. (a)
Shows a vertical sine-wave dataset. (b) Shows the same dataset with amplitude values a
linearly decreasing from left to right. (c) Shows the �nal appearance of the datasets used
for this task, where we also linearly move the zero value of the sine-wave froma=2 at the
top of the image to 1 � a=2 at the bottom. (d) Shows how participants would mark the
area where they perceive the sine-wave pattern.

eight di�erent combinations using two amplitude values (a = f 0:2; 0:6g) and four spatial

frequency values (� = f 160; 80; 40; 20g measured in cycles across the image width,c=width).

To avoid multiplying by 8 the full set of 240 methods, we decided to use only combinations

that utilize the full range of the data-mapped visual element, i.e. bi = 0 :00 and ei = 1 :00.

During the analysis of the results we can still describe the data resolution capabilities for

any subrange. Figure 5.2 shows examples of images used for this task for each of the four

visual dimensions.

To obtain actual data resolution values we developed the following process. The marks

placed by a participant delimit a region on the image where the pattern is visible (see

Figure 5.1(d)) . The right and bottom boundaries indicate li nes where the di�erence between

the extremes values of the sine-wave are last perceived by thesubject, i.e. the just noticeable

di�erences (jnd) boundary. The basic idea to obtain data resolution values is to follow these

boundary lines, starting from the top mark, jumping from one level to the next a distance

equal to the amplitude at each point. With this process we will also obtain actual values,

in the range (0:00; 1:00), for each level identi�ed.

Since there are two di�erent initial amplitude values used, the results will overlap after

a certain distance. The total data resolution of a visualization method will be given by the

number of levels obtained for thea = 0 :2 dataset, plus the number of levels for thea = 0 :6

datasets with values greater than the maximum level obtained from the a = 0 :2 dataset.

Spatial Feature Resolution Identi�cation Task

For this task we asked participants to evaluate the size of the smallest spatial feature a

method can represent. Our approach for this task was to indirectly ask the question by

exploring the limits of each participant's visual perception. In this case our datasets were

vertical sine-wave patterns that maintain constant amplitu de a but linearly change their
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a) b)

c) d)

Figure 5.2: Examples of various stimulae used for the data resolution task using saturation
(a), lightness (b), size (c), and spacing (d). All of them with � = 20 c=width and a = 0 :6.
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a) b)

Figure 5.3: (a) Shows an example stimuli for the spatial feature resolution identi�cation
task dataset, with wavelength � linearly decreasing from right to left. (b) Shows the stimuli
for the visual linearity perception task.

frequency, � , from left to right across the image. Figure 5.3 (a) shows an example of this

dataset using lightness values from 0.00 to 1.00 (i.e.a = 1 :0).

By asking participants to place a mark when they stop perceiving the sine-wave pattern,

we obtained our minimum feature size measurement. �= 2 at that point would be the

minimum spatial feature a method can represent. For this task we use all 240 visualization

methods mentioned before. The amplitude for each display isindicated by the range (bi ; ei ).

Figure 5.4 shows examples of images used for this task for each of the four visual dimensions.

Visual Linearity Perception Task

In this task participants were shown visualizations of a linear dataset that progressed from

a value of 0 on the left of the image to a value of 1 on the right edge (see Figure 5.3 (b)).

They were told that 0 and 1 were at the very edge of the images and were asked to place �ve

marks for the values of 0:0; 0:25; 0:50; 0:75; 1:0. The two extremes would indicate regions

where they do not perceive a change in the visualization's border regions. A visually linear

method would maintain a constant ratio between data changesand visualization changes.

Experimental Setup

We ran a fully randomized within-subjects study where 6 computer science graduate stu-

dents performed all three tasks on the computer screen for icon lightness, size and spacing.

The data resolution task for icon saturation was ran separately, since we decided to include

saturation as one of the modeled elements after the experiment with the �rst three was

already done. Also, the results obtained for the other two tasks for the rest of the visual

dimensions indicated we only required this task to be performed.

The full study (for icon lightness, size and spacing) consisted of 9 separate sections (3
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a) b)

c) d)

Figure 5.4: Examples of various stimulae used for the spatial feature resolution task using
saturation (a), lightness (b), size (c), and spacing (d). All of them with (0 :00; 1:00) range.
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tasks � 3 elements) with a training subsection and a real trial subsection within each one.

Response time was recorded for the real trials. There was no time limit during any part

of the study, although participants were instructed to proceed as quickly and accurately as

they could. Participants took an average of one hour and forty minutes to complete the

whole study and were paid for their participation. They were given written instructions

before each task. Stimulae for all tasks consisted of imagesof size 900� 900 pixels displayed

one by one on an LCD display.

5.1.2 Results and Discussion

Our results successfully characterize the capabilities ofeach visual dimension, using a variety

of value ranges, in combination with potentially interferi ng dimensions.

Our spatial feature resolution results con�rmed our expectations. The minimum size

feature perceived by our participants can be modeled as:

w0(vi ) = si + pi ;

where si is the size of the icons andpi their spacing, all of them in the same units (e.g.

pixels or % of the image width.) Note that this factor can be evaluated at any point across

the image. To make this model independent of the dimension used to represent the data

or its range, we must consider the cases whenvi corresponds to size or spacing. To include

those cases, the model we will use will be:

w0(vi ) =
min (si ) + max(si ) + min (pi ) + max(pi )

2

This model represents the size of a half cycle from the original sine-wave dataset. In-

tuitively, using our icon-based representation, any changes in the data occurring in a space

smaller than the size of the icons plus the spacing around them will not be captured. In

portions of the dataset where this is the case (the left side of our experimental stimuli), the

data seems random and loses all structure.

During the visual linearity task, all participants reporte d di�culty completing the task.

They easily placed the marks for the extreme values but they could not judge, in general, the

25% intermediate di�erences we were asking them to indicate, especially for icon lightness

methods. Participants also complained about possible inaccurate gamma calibration of the

monitors used. It is still worth noting that practically all methods, for all three visual

dimensions, exhibited clear constant-value areas for the extreme values, sometimes as large

as 30% of the image width.

The data resolution task yielded the more interesting results of all tasks. Given the
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a = n0�̂ + n1e
1

�̂ +1 + n2si + n3s2
i + n4e

1
si +1 + n5pi + n6p2

i + n7e
1

pi +1

b = m0�̂ + m1e
1

�̂ +1 + m2si + m3s2
i + m4e

1
si +1 + m5pi + m6p2

i + m7e
1

pi +1

Table 5.2: Regression results for all four methods tested. Each model corresponds to one of
the coe�cients for the logarithmic model w1(vi ) = ai Ln (x i ) + bi . �̂ is the spatial frequency
of the data measured inc=degree: �̂ = �= 45. The grayed out areas mark the size and
spacing parameters that do not apply for SPA and SIZE methodsrespectively.

results obtained we �t a logarithmic model to represent the total number of jnd's users

would perceive at each point in the range of the visual dimension.

w1(vi ) = ai Ln (x i ) + bi

This follows Weber's Law of perception which states that therelationship between a stimulus

and its perception is logarithmic. In other words, the threshold necessary to detect a change

in a particular dimension increases logarithmically as thedimension's value increases.

In order to �t this model to our data, we modeled both coe�cien ts as a function of our

independent variables (size, spacing, and the frequency ofthe sine-wave� .) We perform a

linear regression to obtain the coe�cients of a model as follows:

ai = n0� + n1e
1

� +1 + n2si + n3s2
i + n4e

1
si +1 + n5pi + n6p2

i + n7e
1

pi +1 ;

where we include both quadratic terms, which would capture amaximum or minimum in

the ranges studied, and inverse terms, which we transformedto an exponential factor due

to pi = 0 being present in the data. These inverse terms use an exponential function to

limit the e�ect of low values in the models. Through particip ant comments and our own

observations, we noticed the vertical sine-wave patterns produce very strong linear cues that

induce subjects to continue perceiving the pattern when, locally, there is no clear evidence

of it. Limiting this e�ect will yield more realistic results applicable in real cases, where such

strong linear structures are not present.

The results of the regression are detailed in Table 5.2. Notethat only coe�cients with

a signi�cant contribution capturing the variation in the da ta are used in the �nal models.
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Figure 5.5: Data resolution results for the lightness method. This �gure shows the initial
�tted functions (dotted lines) and the results using the overall model (solid lines) for di�erent
data frequencies.

It is important to note that the logarithmic model for w1 can only be applied when

� <
900

2 � w0(vi )

with w0 measured in pixels and� in c=width. Any values obtained beyond this limit would

come from extrapolation but they are false, since the size and spacing values limit the

precision of the method in terms of spatial feature resolution.

For the purposes of facilitating the comparison of our results with previously published

psychophysical results, we can transform our� values from c=width units to c=degree

(denoted as�̂ ). Using an approximate value of 45 degrees for the total �eldof view occupied

by our stimuli during the experiment, we obtained values of �̂ 2 f 3:56; 1:78; 0:89; 0:44g for

our four experimental conditions.

The coe�cients shown on the table were obtained through regression on the mean results

from the experiment. The resulting standard error for all models is approximately� 2 levels.

Figure 5.5 shows the comparison between the experiment dataand the model predictions.

Despite the lack of �t for this particular instance ( si = 2 and pi = 0), the model �ts the

overall space of parameters very well. This combination of parameters shows the highest

DR values of all.

The power of this model comes from the fact that it provides anunderstanding of the

distribution of jnd 0s throughout the range of our visual dimensions. Given a dataset to be

represented, we can chose the best method to represent it depending upon the distribution
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of its values across the data range. For example, although data resolution values for size are

the lowest of all three methods, as the spacing and size of theicons for the other methods

increase and their expressiveness capabilities deteriorate, size becomes the best method to

be used.

These are exactly the type of data we wanted to gather from ourexperiments. It is

clear that the di�erent methods have di�erent optimal condi tions to be applied, and these

models allow us to determine which method is best suited to represent the data in di�erent

situations.

In comparing our results with the existing literature, Bert in [Bertin, 1983] provides one

of the few examples of quantitative results for data resolution values. Although he does

not explicitly measure them for icon lightness, he recognizes that the smaller the icons, the

fewer levels our perception should be able to di�erentiate. Our results contradict that for

all spacing levels. For size, he proposes an average of 20 distinguishable levels when the

ratio between the extremes of the range is 1 to 10. Our range isonly 2 to 10 and our results

are lower than those 20 levels (approximately 7 levels for the lowest spatial frequency data

tested), as expected. The more surprising result is that, for icon spacing, our participants

can di�erentiate a maximum of 9 levels (for si = 2 pixels and � = 20 c=width), while Bertin

does not expect more than 5.

In general, the results obtained follow our expectations. Our perceptual system contains

specialized cells to detect lightness and saturation changes, whereas size and spacing changes

seem to get processed di�erently. Our results validate thistrend of better results for icon

lightness. They also generate some surprising evidence forthe perceptual ordering of icon

size and spacing.

To further validate our model, at least for the lightness case, we compare it now to exist-

ing psychophysical models for contrast sensitivity. Note that this is the closest experimental

results we can compare to. Contrast sensitivity functions (CSF) describe how our threshold

for detecting a change in lightness decreases, up to a point,as the spatial frequency of the

signal (a sine-wave pattern similar to ours) increases. Figure 5.6(a) shows several CSFs for

di�erent overall luminance of the stimuli. Note that, the lo wer the overall brightness, the

less sensitive we become to lightness changes.

Even though our stimuli are based on discrete icons, and we are interested in measuring

the e�ect of the size and spacing of those icons on the utilityof our methods for scienti�c vi-

sualization, we can try to obtain a similar set of curves thanthe ones depicted in Fig. 5.6(a).
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(a) (b)

Figure 5.6: (a) Contrast sensitivity functions (CSFs) for di�erent overall illumination lev-
els [Lamming, 1991]. (b) Resulting CSFs from our model for lightness. We simulate variable
overall illumination (measured in trolands) by modifying t he icon spacing parameter (mea-
sured in pixels). The same trend can be observed in both graphs: i.e. the sensitivity
threshold increases as illumination decreases.

Using our model, the contrast1 threshold necessary to detect a change (an increase or de-

crease of 1 jnd) is constant for a particular data spatial frequency at any lightness level. If

we then modify the spatial frequency values, we can plot the resulting threshold values as

frequency increases (see Figure 5.6(b)).

Furthermore, we can simulate the e�ect of modifying the overall display luminance by

plotting how these curves change as the spacing of the icons increases, e�ectively lowering

the overall luminance. Those curves are also shown in Fig. 5.6(b). Following the same

trend as in Fig. 5.6(a), the threshold for change detection increases as the overall display

luminance decreases. It is important to point out that the th reshold values obtained and

the shape of the curves is not indicative. Our measure of lightness is based on the average

value of the red, green, and blue components sent to the graphics engine. We have not

measured the actual brightness output of the monitor, hencewe cannot directly compare

our values. Also, our discrete representation of the data (the sine-wave) using icons creates a

high frequency signal at the borders of the icons, which interferes with the spatial frequency

of the data at low values of the latter. This could be the reason we do not observe the loss
1Contrast is a ratio between the maximum and minimum lightness of an image (maxL � minL )=(maxL +

minL ). In our case, this ratio changes horizontally across the image as the amplitude of the sine-wave
decreases.
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of sensitivity at low spatial frequencies. However, the trend of the curves, as the overall

luminance changes, shows the expected behavior.

5.1.3 Methodology Discussion

Even though we dramatically reduced the number of combinations of visual dimensions

we explored, the experiment posed a big design challenge. Participants commented on its

apparent extraordinary length due to the similarity of all t he images. As we saw from the

results, the actual values obtained establish clear di�erences. With these 6 participants we

were able to fully randomize the order of the three tasks to eliminate any possible learning

e�ects. Nevertheless, fatigue was a big factor that, although it did not explicitly show up in

the data collected, will require moving to shorter between-subjects designs, or even multiple

sessions, for subsequent experiments.

With this experiment we solved the high variance issue we hadduring our previous

study with expert visual designers. The cost for this was two-fold. First, participants

evaluated methods one at a time, impeding direct comparisons among displays that were

possible in the �rst study. Comparative critique is a very useful tool design educators utilize

constantly, but one that we had to sacri�ce to improve the quality and quantity of data

obtained. Secondly, we did not use expert visual designers as subjects, so we could not

expect feedback on why a method performs as it does for a giventask. Our tasks now are

more perceptual than conceptual and the low variance of the data, along with consistent

trends, validates our choice of non-expert participants.

We have also performed a small set of pilot trials to assess the possibility of including

data resolution trials where size and spacing varied with the data while lightness and satura-

tion were modi�ed constantly across the display, completing this way a full permutation of

the four methods. Our results showed no e�ect of lightness orsaturation in the DR results

for size and spacing. Subjects were able to detect the sine-wave pattern approximately the

same no matter what lightness or saturation the icons were. While saturation levels did not

even a�ect the time subjects took to perform the task, lightness levels did, in fact, a�ect

the speed of the responses (low lightness required longer time), but not the accuracy.

5.1.4 Conclusion

In summary, we have obtained two sets of predictive models for spatial feature resolution and

data resolution. They can be used to quantify the utility of each of the methods we studied

as conditions change for our independent variables. Furthermore, the limits resulting from

the spatial feature resolution model help constrain the applicability of the data resolution

models to useful ranges. Explicitly exposing these limitations to the users will help them
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Figure 5.7: The models obtained up to this point allow us to control the individual ca-
pabilities of each method. Given a dataset, its spatial frequency, and a choice of size and
spacing parameters for the icons, we can present users detailed information about the spa-
tial feature resolution allowed by each method, and its dataresolution capabilities. Note
that users can also decide whether the full range of the visual dimension is used or only a
portion of it. In this example, using the bottom half of the li ghtness range would yield 11
out of 15 perceivable levels of lightness for the full range.The current choice, shown in the
large display, is highlighted in red.
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make e�ective decisions when choosing a visual representation for their data.

Going back to our vision for this thesis shown in Fig. 1.1, we have now advanced towards

that goal in that we have individual control of the capabilit ies of each visualization method.

Figure 5.7 shows a mockup display that would use the currently proposed models. Size,

spacing and, data spatial frequency can be set and SFR and DR values can be obtained

for all methods. The spatial frequency can be obtained directly from the data or it can be

chosen by the user to investigate the capabilities of the di�erent methods. Also, the �gure

includes knobs for the SFR and DR design factors. With the models we have obtained it is

possible to modify those knobs and �nd the size, spacing, andfrequency required to achieve

the values requested.

5.2 Modeling Perceptual Dominance Among Visual Cues in

Multilayered Icon-based Scienti�c Visualizations

In this next experiment we quantify how factors such as icon size, spacing, layer order and

color a�ect the relative saliency and interference among �ve di�erent 2D scalar visualization

methods: saturation (SAT), lightness (LIGHT), orientatio n (ORIENT), size (SIZE), and

spacing (SPA). This experiment should get us one step closerto our goal: we are moving

from single-valued to two-valued datasets, and we are exploring the perceptual interactions

among the di�erent methods.

We de�ne saliency as the perceived dominance of some visualization method over another

when representing scienti�c data. This means that perception and correct understanding

of the data must be assessed, not just the realization that some property of the icons is

changing across the display (which a preattentiveness analysis would assess.) For example,

orientation changes are very preattentive. Yet, as we will see, reading a scalar �eld from

changes in icon orientation is very di�cult, making it, in ou r de�nition, not very salient with

respect to other methods. We measure saliency as the di�erence in time that participants

take to recognize each of the datasets in our stimuli (see Figure 5.8).

Saliency can be used to visualize the importance of some variables over others: users

may want some variables to dominate the composition while others should recede to the

background to serve as context. They may, however, want all variables to have similar

dominance of the �nal display, so not to highlight any partic ular one and bias the exploratory

analysis of the dataset. These relationships among data variables get translated to the

visualization methods as the saliency of those methods.

Our experiment also recovers the perceptual interference among methods, which we

de�ne as the amount of distraction a method creates when users are trying to read another

method present in the same display. We de�ne these interferences as the time participants



87

a) b)

c) d)

Figure 5.8: Sample stimuli for the experiment. (a) The two linear scalar �elds used in the
experiment. Images (b)-(d) are examples of the stimuli presented in the study: they all
represent both linear �elds simultaneously, and participants were asked to judge which one
they perceived �rst, i.e. which one is the more salient of thetwo. (b) Icon orientation on the
bottom layer and saturation on the top, (c) a single-layer example with size and spacing,
(d) another two-layer display with size on the bottom and lightness on top. Top-layer icons
have a gray-valued border at half the lightness value of the inside circle, so as to minimize
simultaneous contrast issues. Circles are used for all methods except orientation, which
uses ellipses.
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take to recognize each method while the distractor method issimultaneously changed and

all other factors of the �nal display are controlled.

Note that these two factors correspond to the dominance, visual bandwidth, and time

to read factors we used in Section 4.2. We will correlate the results from this experiment

to the subjective ratings designers gave us in that previousstudy.

Our main contribution is a set of predictive models that, given a particular combination

of methods, approximates the expected perceptual interference among them and the saliency

level of the combination. This is a useful tool in generatinge�ective visualizations based on

the perceptual characteristics of the methods involved. Furthermore, with the derivatives

of these models, we can con�dently guide the user towards higher or lower saliency and

interference by changing some or all of the factors involved.

5.2.1 Methodology

Our experimental methodology is inspired by psychophysical studies on visual search and

cue interaction [Callaghan, 1984; Bergen and Landy, 1991].We developed an experiment in

which the stimuli resemble real visualization displays, which are notably di�cult to evaluate

perceptually. While still e�ectively controlling the expe rimental factors, this methodology

allows us to generalize our results, and our predictive models, to real applications with

complex multivalued datasets.

Experimental Factors

In order to control the saliency of a method we use a set ofknobs that control some of

our visual dimensions. Here, we analyze and model how the independent variables icon

size, spacing, color, and layer order a�ect the saliency of �ve scalar visualization methods:

icon saturation, lightness, orientation, size, and spacing. The independent variables are not

tied to data and remain constant across the display, while data variables are mapped to

methods. We decided to include orientation so we could compare our results with scienti�c

visualization literature that identi�es orientation as an e�ective dimension for scalar data

visualization.

We measure saliency through a visual-attention experiment.Using displays that show

a two-valued scalar dataset (see Figure 5.8) and measuring the time participants take to

recognize each of the values, we obtain a model of saliency interms of how much the two

times di�er.

We presented the experimental task as a question to the participants: \Which of the

two linear gradients do you perceive and understand �rst? Once you understand one of the

gradients, hit a key (H or V) to indicate whether it is the hori zontal or the vertical gradient.



89

After that, continue exploring the image until you either un derstand the second gradient,

in which case you hit the other key, or the image times out after 10 seconds". A one-second

distractor image was placed between stimuli so as to minimize carry-over e�ects from the

previous choice.

The dependent measure is the time participants take to hit H (tH ) and V ( tV ). The

independent variables are:

� Number of layers: (2 levels) Either 1 or 2 layers are possible.

� Order of the layers: (2 levels) This indicates which method is on the top layer.

� Size and spacing of the icons on each layer: (3 levels each) For the 1 layer case these

are 2 factors when size and spacing themselves are not the methods involved, 1 factor

when one of them is involved, orno factor when both are involved. For the 2 layer

case, these will be4, 3, and 2 factors respectively.

� Color: (2 levels) For cases where neither of the two visual dimensions involve color

(i.e. orientation, size, and spacing), this variable indicates which of the two will be

colored and which will be white.

� Directional mapping: (2 levels) This indicates which method is used horizontally and

which vertically.

Directional mapping is part of the experiment to avoid biasing the results due to lack of

control for this variable. A horizontal orientation of the d ataset might be easier to recognize

than a vertical, due to a known natural human preference to more easily perceive horizontal

things. We wanted to investigate its e�ect, if any, on saliency. Ranges for the �ve methods

and levels for the size, spacing and color independent variables are explained in Table 5.3.

Stimuli

To facilitate the direct application of our results to real v isualization cases, with continuous

scalar �elds, we would like to measure saliency utilizing those types of datasets. Unfor-

tunately, asking subjects to recognize such datasets requires that we are con�dent they

understand all parts of them such as extrema, gradient variations and other details. This

would require subjects to be extremely familiar with the data, or us to provide ground truth

examples for each dataset separately to compare against. Ineither case, it would take a

long time for subjects to go through each visualization display making sure they perceive

and understand the correct dataset.

With this in mind, we designed our study to capture some of the continuity of real

datasets, while maintaining a low level of required knowledge about the data for the subjects.
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Table 5.3: Parameterization for the �ve visualization methods utilized in the experiment.
Each row indicates the parameters for each method in terms ofthe relevant dimensions
de�ned. Gray cells indicate the range of the mappings to the data variable. Since color is
one of our binary independent variables, the color (in red) or no-color (in black) settings
are indicated for orientation, size and spacing methods. Size and spacing, as independent
variables, have three levels each, as indicated in the two right-most columns of the table.

We decided that two perpendicular linear datasets would provide such a stimulus (see

Fig. 5.8). To our knowledge, even this simple combination ofdatasets has not been studied

before from the point of view of visual cue interference in the cognitive or visualization

literature.

We presented our stimuli on a 1280x1024 CRT monitor. Visualization displays were

images of 900x900 pixels on a black background. The illumination of the room was kept

low to avoid distraction when the changing images 
ashed on the screen, and we gamma-

corrected both lightness and saturation ranges for approximate visual linearity. Subjects

sat at approximately 30" from the monitor with no chin rest.

For the two layer cases, icons on the top layer have an extra border around them to

facilitate di�erentiation of the layers and to try to minimi ze simultaneous contrast issues

with background or other icons. The border width is approximately 20% of the internal

diameter of the icons, with spacing values also measured from this internal part. For

orientation cases, we use ellipses where the small axis has the size characteristics of regular

circular icons, and the big axis is three times the length of the small one.

Experimental Logistics

We performed a full factorial design for all factors in the one-layer cases and, for the two-

layer cases, we use a blocked randomized fractional factorial design using an orthogonal

array [Heydayat et al., 1999] for the size and spacing factors of both layers. Fractional fac-

torial designs have fewer trials than full factorial ones, but some e�ects become confounded.

Using an orthogonal array to choose what trials to run from the full factorial set, we assure
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that at least all main e�ects are estimable free of interactions. In particular, we used an or-

thogonal array L 9(34), which gives us 9 combinations to test as opposed to the fullfactorial

of 81 that two factors per layer and three levels each would yield. This is still a balanced

design, since each level of each of the variables occurs equally often (3 times in this case).

With this particular design, interaction e�ects cannot be e stimated. We weighted the possi-

bility of including the interaction e�ects among size and spacing values for both layers, but

this would mean going to an array with 27 combinations, dramatically increasing the time

participants needed to complete the study. Based on our previous experiments, we decided

to minimize the possibility of subject fatigue. Being the �r st model of its kind, to the best

of our knowledge, we believe a main e�ects model will provideimportant clues towards

the inclusion or not of interaction e�ects in later experiments. For all other independent

variables we used a full factorial design.

We created a blocked design for our experiment. Table 5.4 shows all blocks present in

the study based on pairs of visualization methods. The tableshows what a full factorial

design would be. Subjects were introduced to the experimentand taught the task at hand.

Each subject ran through 5 full blocks of method pairs. We divided each block into two

sections, one per directional mapping setting. That made 10sections of approximately 30

stimuli each. Each section contained all combinations for number of layers, layer order,

color, size and spacing, following the mixed fractional andfull factorial design explained

above. Training was provided before each section so subjects could familiarize themselves

with the pair of methods being studied in that section. We used eight images for training, a

number that we reached after piloting the experiment and concluding subjects understood

both methods and the task well enough. The order of the blockswas randomized and

stimuli within each block were also randomized.

A total of six paid participants ran through the experiment, taking approximately one

hour to complete the study with short breaks between sections. All of them were graduate

students from Brown University with various levels of computer expertise, no previous

scienti�c visualization experience, and normal or corrected to normal vision. Since we are

measuring perceptual saliency, we did not require special knowledge of visualization or

computers from our participants.

5.2.2 Results

Before going further with the analysis of the results, we normalized the times per subject to

eliminate the variability in perceptual skills among subjects. This is validated by the fact

that standard deviations for all subjects were comparable (between 0:9s and 1:7s), while

mean times per subject for the �rst key stroke for the full experiment ranged from 1:9s up
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(a) (b)

Table 5.4: Experimental organization tables. (a) Each cell indicates the number of
stimuli for each combination of visual dimensions. In the single layer case, the num-
bers indicate (size x spacing) levels. In the two layer cases the numbers indicate
(sizev x spacingv) x ( sizeh x spacingh) x layerorder . Note that for the SIZE, SPA, and
ORIENT combinations we also controlled for the layer color (�nal x2). For simplicity, the
table shows the full factorial combinations. Size and spacing, as independent variables, were
subject to the orthogonal array design shown in (b), where all levels are indicated in pixels.
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to 4:0s. Normalizing the results maintains the relative order of the measures while losing

the units, seconds. This is acceptable in our case, since we will still obtain a numerical, yet

relative, quanti�cation of saliency and interference. Furthermore, if we were able to maintain

the units of time, they would not be applicable to other more general data visualization cases

that did not match our experimental setup with two linear dat asets. After normalization

we translated all values so no normalized times would be negative. This step does not a�ect

the results, and facilitates the explanations and conclusions.

We must also take into account the cases where subjects reached the 10s timeout limit.

When neither key had been pressed we eliminated that instance. This occurred 22 times out

of 1,680 total stimuli presented. The more interesting caseoccurred when the �rst key was

pressed within the 10s limit and the second was not. Those cases indicate a clear dominance

of the �rst display detected over the second one. This timeout case occurred a total of 300

times over the course of the experiment. Given our fractionalfactorial design, all trials

are key to obtaining meaningful information about the interaction among the independent

variables. Simply discounting these trials would e�ectively make the analysis infeasible.

Our approach to solve this was to consider the timeout trialsas censored observations.

We used the LIFEREG procedure in the SAS statistical program [Cody and Smith,

2006] to perform a maximum likelihood estimation of the timeresponses for all 300 timeout

observations. This procedure �ts a Weibull distribution to what is essentially unknown

\failure" times for the timeout cases, modeling them as a function of the subject ID (since

we are dealing with normalized times and 10 seconds translates to a di�erent value for each

subject), the size and spacing values for each method, theirlayer order, their color, and

their directional mapping. Although inputing the estimate d censored data resulting from

this procedure at its conditional mean is common practice, we decided to utilize the 95%

quantile results to be on the safe side. Indeed, once participants decide not to hit that

second key in less than 10 seconds, we have no way of knowing whether 20 or 60 seconds

would be the time they would require. This procedure allowedus to estimate those values

with con�dence, based on the distribution of the non-censored observations.

Overall Times

Figure 5.9 shows the normalized times of all �ve methods in all conditions. The mean

times to recognize orientation as a scalar �eld are signi�cantly higher than the rest. All

participants declared di�culty understanding orientatio n as a scalar value. The pseudo-
ow

e�ect was so distracting as to prevent them from understanding the linear scalar datasets.

For this reason, all further analyses of the experimental data exclude orientation cases.

Figure 5.10 shows the mean times excluding all those from orientation stimuli. Eliminating
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Figure 5.9: Mean normalized times and standard errors for one- (SINGLE) and two-layer
(BOTTOM and TOP) cases. Signi�cant di�erences are indicate d in red on the tables. The
top table contains between-method comparissons, while the bottom table shows the within-
method test results. Note that the � values are adjusted based on the number of signi�cance
tests performed using the Bonferroni adjustement over an original value of � = 0 :05.
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Figure 5.10: Mean normalized times, after eliminating all observations containing ORI-
ENT, and standard errors for one- (SINGLE) and two-layer (BOT TOM and TOP) cases.
Signi�cant di�erences are indicated in red on the tables. The top table contains between-
method comparissons, while the bottom table shows the within-method test results. Note
that the � values are adjusted based on the number of signi�cance testsperformed using
the Bonferroni adjustement over an original value of� = 0 :05.
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these observations from the analysis also eliminated 12 outof the 22 no-response cases and

158 of the the 300 timeout cases. We recalculated the right-censored data estimates after

removing the orientation trials.

Interesting to note from these graphs is how size and spacingmethods are recognized

faster when they are on the top layer of two-layer cases than for single-layer cases. Although

this is only a trend in the data (these di�erences are not signi�cant at the chosen � levels),

this seems to con�rm the known preattentive precedence of the other three methods over

these two for the single-layer cases.

The graphs in Figs. 5.9 and 5.10 show the overall experiment trends. However, we

want to explore the relative saliency and interference between each pair of methods for all

conditions. Also, the non-signi�cance of some di�erences from Fig. 5.10 comes from the fact

that the overall times combine cases when each method was recognized �rst and second,

hence we cannot assume a normal distribution. A more appropriate way of looking at these

data is shown in Fig.5.11 and explained later in this section.

Directional Mapping

Before going into a detailed analysis of each pair of methodsand the performance of each

one, we evaluated whether the orientation of the dataset in the display had any e�ect in

the choices participants made.

We performed a correlation analysis between the number of times each method was

chosen �rst and their orientation when that was the case. Table 5.5 shows the results of

the analysis. Even though the LIGHT method shows a signi�cant tendency to be chosen

�rst when it is presented vertically, an analysis of the times for this case (LIGHT chosen

�rst) indicates that the times when LIGHT is vertical are not signi�cantly di�erent than the

times when it is horizontal (F (1; 223) = 0:16; p = 0 :687). From this analysis we concluded

the orientation of the stimuli did not have a signi�cant e�ec t in the experiment. Therefore

we utilized both directional mappings as a repeated measureof the same stimuli.

Relative Saliency and Perceptual Interference

Figure 5.11 shows the mean time di�erences for each pair of methods. These values are

averaged over all size and spacing levels. Values signi�cantly di�erent from zero indicate a

signi�cant dominance of one method over another, and it is clear from the graph that the

strength of the dominance varies greatly. For example, the main trend is that the method

displayed on top for the two-layer cases is usually dominant,although that is not the case

for LIGHT and SPA when combined with SAT. In those cases, with SAT on the bottom

layer, there is no clear salient method. SIZE, on the other hand, is more salient than SAT in
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Table 5.5: This is a summary of the directional mapping analysis of the experimental
data. The left column shows the number of times a method was horizontal (numerator)
when chosen �rst (denominator). Given that the choice is a binary variable, the p value is
calculated from a binomial distribution with probability 0 .5, since each method was shown
the same number of times horizontally and vertically.

Two-layer combinations One-layer combinations

Table 5.6: These tables indicate the method that is expectedto dominate in each pair. The
strength of the saliency is not indicated here and can be obtained from Fig. 5.11. Equally
salient methods are indicated with {.

that situation. We summarize all these trends in Table 5.6, where the method expected to

be salient is indicated for one- and two-layer cases. It is important to note that the key to

this experiment is not only to �nd these general trends, but to identify in what conditions

the less obvious solutions provided the desired e�ect, i.e., when and how do we get the

bottom layer to be more salient?

While the time di�erences o�er information about the relati ve saliency of the methods,

the actual times to recognize each method can shed light on the perceptual interference

one method causes another. If a method that performs well in general, with relatively low

recognition times (e.g., SAT), has high recognition times in one particular situation (e.g,.

SAT on the bottom layer combined with SIZ), we can conclude that the other method in

that situation interferes signi�cantly in the process of understanding the �rst. Figure 5.12

shows the summary of recognition times for all methods in allpairs tested. Observe the

similar patterns SAT and LIGHT have for all cases. Also, the similar response that SIZ

and SPA have against SAT and LIGHT.

From that �gure we can predict what methods will be more easily interfered with.
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Figure 5.11: Mean normalized time di�erences and standard errors for each pair of methods
for one- and two-layer cases.v1 is always the �rst method of the pair's name, so negative
di�erence values mean the time to recognizev2 is longer than the time for v1. For SIZ and
SPA methods, (c) indicates the colored method.
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Figure 5.12: Mean normalized times and standard errors for each method for all combina-
tions tested. The tables show the results of the signi�cancetests performed in each case.
Signi�cant values (at � = 0 :017 after applying the Bonferroni adjustement for multiple
tests) are indicated in red. Some values, in green, are not signi�cant under Bonferroni's
conservative method but would appear to be so on visual inspection of the graphs.
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LIGHT maintains its times quite consistently across the board, followed by SAT, then

SIZE, and �nally SPA, which 
uctuates a lot depending on what layer it is on.

5.2.3 Predictive Models

Given the distributions of timing data for the two key presses for each pair, we obtain the

following measures based on the time shown before:

� Relative Saliency, w2(vi ; vj ) 2 (� 1; 1): Here vi and vj are two of our visualization

methods. w2 = � 1 indicates that vi is much more salient than vj , and w2 = 1

indicates the opposite. Di�erences are normalized with respect to the maximum time

di�erence throughout the experiment, i.e. 10 seconds.

� Perceptual Interference,w3(vi jvj ) 2 (0; 1): This measures how muchvj interferes with

the reading of vi . To measure this, we setw3(vi jvj ) = t (vi jvj )� min (t (vi ))
max (t (vi )) � min (t (vi ))

, where t(x)

is the time participants took to recognize method x. To obtain the extreme values

we must look across blocks for all instances wherevi was presented with the same

parameters (size, spacing, color). We assume that the minimum time is how long a

participant would take to recognize a dataset usingvi when presented by itself.

To obtain these measures we have �t a set of models to each one of the recognition times

shown in Fig. 5.12. To the best of our knowledge, there are no models that explain this

type saliency or interference responses so, following the success of the models utilized for

the data resolution factor in the previous experiment, we used the following base equation:

t(vi ) = a0s1 + a1p1 + a2s2 + a3p2 +

+ a4s2
1 + a5p2

1 + a6s2
2 + a7p2

2 +

+ a8e
1

s1+1 + a9e
1

p1+1 + a10e
1

s2+1 + a11e
1

p2+1

It contains linear, quadratic and inverse terms to account for the observed behavior of


uctuation of saliency as size and spacing values are modi�ed. The inverse term uses an

exponential term to limit the e�ect of low values. In this equ ation, s1 and p1 correspond

to the size and spacing parameters for the �rst method of the pair (v1; v2), while s2 and p2

correspond to the second method's parameters. The same as before, while the full model

contains a maximum of 12 degrees of freedom, only coe�cientsthat contribute signi�cantly

to explain the variance in the data are included in the models. After performing linear

regression for all times in the experiment, Table 5.7 shows the coe�cients of the models

and the excellent �t results obtained given the high number of error degrees of freedom.
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Table 5.7: Results from the linear regressions performed oneach method's recognition
times. Each model coe�cient is shown along with the model factor it corresponds to. Only
coe�cients that signi�cantly contribute to explaining the data variance are included in the
models. For the two-layer combinations, the green cells indicate the method on top.
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Figure 5.13: Using our new predictive models, by simply modifying the size and spacing
values for our methods we obtain the predicted saliency signand its strength and, through
the derivatives, we also get information about what the e�ect of modifying the size and
spacing parameters is. Green cells indicate non signi�cantdi�erences (from Fig. 5.11). The
method precedence to de�nev1 and v2 is given by the order f SAT,LIGHT,SIZ,SPA g. A
negative value indicatesv1 is more salient, and vice-versa.



103

In general, the quadratic terms contribute very little to th e models. Even though they

are signi�cant, the coe�cient values are almost zero. The inverse terms are consistently the

more important factors in explaining recognition times. In particular the ones modifying

the icon sizes. This is a logical result given that, in general, increasing the size of the icons

makes them more prominent and hence easier to recognize: more salient. This e�ect is

modulated by the inverse spacing factors and the linear factors. This combination allows

for the observed e�ect that saliency between methods sometimes reaches an in
ection point

along the size or spacing ranges.

As explained before, having this time models at hand we can now generate the relative

saliency and perceptual interference metrics.

Relative Saliency

For each pair of methods we can de�ne:

w2(vi ; vj ) =
t(vi ) � t(vj )

10
; with w 2(vi ; vj ) 2 [� 1; 1]

The limit in the saliency value is important. We used the calculated estimates for the right-

censored data from the experiment to calculate the model parameters. For that reason,

some predicted time values will be greater than 102, so we placed a cuto� for di�erences

smaller than � 10 or larger than 10 with loosing any generality in the predicted saliency

estimates.

Implementing this function, we can now predict and control relative saliency between

pairs of methods (see Fig. 5.13). Not only that, using the derivative of the model we can

provide guidance as to what dimension to modify to increase or decrease saliency in a display

(also shown demonstrated in Fig. 5.13).

Perceptual Interference

We de�ne this measure based on how much the recognition time of a method changes when

presented in combination with another method. For this we de�ne the following function:

w3(vi jvj ) =
t(vi jvj ) � min (t(vi ))

max(t(vi )) � min (t(vi ))
; with w 3(vi jvj ) 2 [0; 1]

To obtain the extreme values for t(vi )we look at the minimum and maximum predicted

times for vi with the same parameterization but when combined with any other method and

in any order of the layers. This values give us an exact measure of how vj really a�ect the

2Since we are dealing with per-subject normalized times, the maximum normalized censoring point was
10:76. Since we translated the normalized times to make the minimum correspond to zero, the maximum
time di�erence possible during the experiment is approximatel y 10.
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reading of vi . If the predicted value is already greater than 10 we assume full interference

(w3 = 1).

With a similar implementation of this equation as we did for saliency, we can create two

interactive tools (one for w3(vi jvj ) and another for w3(vj jvi )) to explore and control the

perceptual interference between the methods. Figures 5.14and 5.15 show these tools.

5.2.4 Discussion

The complete set of results from this experiment allows us tocontrol and predict the relative

saliency and perceptual interference between pairs of methods.

By simply analyzing the time di�erence plots (Fig. 5.11) we obtain a very much expected

result. That is, the method on the top layer will be the most salient of the two. Some

exceptions to this rule, and the inclusion of the single-layer cases, make the summary in

Table 5.6 a very useful design aid. But the time di�erence plots show very di�erent strengths

for the saliency of the methods.

We generated a set of statistically sound predictive modelsthat we can use to �ne tune

the saliency of each method. Furthermore, based on the performance of the methods across

di�erent combinations, we can also control the amount of perceptual interference they will

receive depending upon their companion method.

It is important to note that, given the very simple dataset we used for our experiment

and the task participants performed, we do not have information about how accurately the

linear dataset is represented or how its integrity is preserved. In fact, for a method such

as SPA, it is clear that in the area where the spacing is smaller, it is not possible to see

through the other method behind it. Participants declared that they obviously realized this,

but they could answer the question anyway by looking throughthe area with more sparse

icons. This local interference was not captured by our results (see how the time plots for

SAT-SPA, LIGHT-SPA, and SIZ-SPA in Fig. 5.12 show almost no increase in time, hence

no interference caused by this fact).

Comparing our results with existing literature is di�cult. The closest experiments are

those related to preattentive processes. As mentioned in Chapter 3, these studies tend to

focus on visual search type of tasks with a stimulus present/not-present type of question.

Yet, they describe a precedence of preattentive perceptionfor di�erent visual dimensions.

Looking at our interference measures, our overall precedence is LIGHT, SAT, SIZ, and SPA.

This seems to match the �ndings from [Healey et al., 2004] although our characterization of

both interference and saliency goes beyond their discussion and provides a way of controlling

those factors as the parameters of the visualization change. Furthermore, the �ndings

from [Healey et al., 2004] and other visual search type taskswere based on single-layer
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Figure 5.14: Interactive tool for interference prediction for v1. Using our new predictive
models, by simply modifying the size and spacing values for our methods we obtain the
predicted interference strength and, through the derivatives, we also get information about
what the e�ect of modifying the size and spacing parameters is. The method precedence
to de�ne v1 and v2 is given by the order f SAT,LIGHT,SIZ,SPA g. The higher the value the
more interferencev2 causes tov1.
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Figure 5.15: Interactive tool for interference prediction for v2. Using our new predictive
models, by simply modifying the size and spacing values for our methods we obtain the
predicted interference strength and, through the derivatives, we also get information about
what the e�ect of modifying the size and spacing parameters is. The method precedence
to de�ne v1 and v2 is given by the order f SAT,LIGHT,SIZ,SPA g. The higher the value the
more interferencev1 causes tov2.
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displays, while we include two-layer displays as part of our models.

It is interesting that they present orientation as an e�ecti ve method to represent scalar

�elds. This is not surprising, since their evaluation was based on preattentive processing.

We believe our initial results in this current experiment (see Fig. 5.9) clearly show the

di�culty in reading orientation as a scalar magnitude in con tinuous 2D datasets. Expert

designers alerted us of this issue before, and the recognition times further con�rm it. Also,

participants commented they relied on learned strategies to decide whether the orientation-

mapped dataset was horizontal or vertical. They declared itwas usually the �rst to be

detected (preattentive), but in order to answer the experiment's question they needed to

look at the borders of the display and �gure out the direction the gradient was going. In

this process they sometimes perceived the other method's gradient and sometimes did not,

but their con�dence about their performance was very low. The use of a strategy like the

one explained defeats the purpose of the experiment, since non-linear dataset do not present

any type of boundary indicators that would help understand the data variable in the center

of the display. For all these we eliminated the orientation observations and conclude that

orientation would create too much interference in the reading of other visual dimensions to

make the overall display e�ective.

In utilizing our models interactively to predict the utilit y of di�erent methods, we ob-

served a lack of �t between expected results and the predictions for some extreme cases. In

particular the predicted saliency values for the SAT-LIGHT combination when LIGHT is

on top indicate a dominance of SAT even for low spacing valuesof the top layer. In general,

the non-signi�cance the normalized time di�erences show forthis case in Fig. 5.11, would

indicate a model for this case would not be e�ective. Indeed,that is the reason we indicate

the non-signi�cant cases in the interactive tool in Fig. 5.13.

The tools presented are a simple example to show the utility of the models we have

developed. They should be used in combination and with a visualization goal in mind,

i.e. having a clear idea of what data variables we want to highlight and be able to quickly

understand in our �nal display. Once an acceptable visualization is reached, the derivative

information helps steer the data exploration process through the changing requirements as

new discoveries are made.

5.3 Chapter Summary

In this chapter we have demonstrated the use of perceptual experiments to evaluate the

utility of several visualization methods, both in isolation and in pairs. We have matched

the results from more limited studies that concentrated on target identi�cation tasks, while

augmenting those �ndings with a set of quantitative predict ive models for a total of four
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di�erent design factors and four di�erent visualization me thods.

The limited scope of our investigation allowed us to fully evaluate the multiple combi-

nations of independent variables in both experiments, leading to a successful quanti�cation

and modeling of the experimental results. Our hope is that the methodologies utilized

and lessons learned will facilitate the study of other visual dimensions and their perceptual

capabilities, always oriented to their e�ective use in scienti�c visualization displays.

These two experiments followed another set of two that utilized expert visual designers

to evaluate similar design factors for scienti�c visualization methods. Figure 5.16 shows

ranking comparisons for all design factors evaluated during the second expert visual de-

signer experiment. The visual bandwidth factor is comparedto the perceptual interference

factor here, dominance corresponds to the saliency factor,and time to read corresponds

to an overall estimation of the recognition time in this experiment. Data resolution and

spatial feature resolution are directly obtained from the models developed from the previous

perceptual experiment.

We utilize relative rankings due to the high variance of the actual values obtained from

the designers. They still provide a good visual intuition for the validity of our percep-

tual experiments' results and the con�rmation that they mor e or less follow the subjective

rankings obtained from the designers.

After this last experiment on saliency and perceptual interference, we have once again

taken one more step towards accomplishing our vision. Figure 5.17 shows the new factors

we are able to control thanks to our predictive models.

Note that the results from the �rst perceptual experiment al lowed us to control the

data resolution and spatial feature resolution of the individual methods, and the second

experiment controls between-methods saliency and interference. Except for single-layer

cases, we have no information on how the data legibility characteristics of the methods

(DR, and SFR) are maintained when a second method is shown on the two-layer cases.

We can argue that this information is available for the single-layer cases, since we can

obtain the legibility limits for a combination LIGHT-SIZ, fo r example, by measuring the

DR and SFR values for LIGHT with low and high size values. These limits will be conser-

vative worst-case predictions for the combination, since wecannot be sure were the di�erent

lightness values will lie with respect to the size values.

To try to constrain these limits to a more accurate range and de�ne them for the two-

layer cases, we have performed the next experiment. In it, webrought back expert visual

designers to evaluate real two-valued datasets. Our hope wasthat their expert knowledge of

the visual dimensions at hand would help us de�ne how the legibility characteristics of the

methods are maintained when combined in multivalued visualization displays. Obtaining

that information would put us in a position to hypothesize how combinations of more than
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Figure 5.16: These graphs show a comparison of the relative rankings obtained from the
expert designers experiment from Section 4.2 and the two perceptual experiments presented
in this chapter. Only the 4 methods we evaluated in the latter experiments are shown
here. Observe how, with few exceptions, the relative rank order for all design factors is
approximately the same.
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Figure 5.17: The new models obtained allow us to control the saliency and perceptual
interference characteristics between two methods. Given two values from a dataset, a choice
of method for each value, a choice of size and spacing parameters for the icons of each
method, and the number and order of layers to be used, we can present users detailed
information about both relative saliency between both methods and the interference that
each method su�ers from the other. Saliency limits are displayed based on the parameters
utilized in our study. Interference values go from 0 to 1. Thecurrent choice is shown in the
large display.
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two methods would perform. Our initial vision from Fig. 1.1, so far limited to individual

utilities and some pairwise perceptual interactions, would become a reality for high order

combinations of methods.



Chapter 6

Evaluation of Multivalued

Visualization Methods

In this chapter we describe the experiment we designed to measure how the legibility of our

visual dimensions was improved or impeded when utilized fortwo-valued dataset visualiza-

tions.

In order to complete the utility model for our visualization methods we require one

more piece of data: the legibility variations when two methods are combined. The legibility

of a method describes whether the data it represents is perceived correctly or not. As we

mentioned before, the previous study did not evaluate how well the characteristics of the

datasets themselves were preserved when two of them were combined in the same display.

In that study we quanti�ed saliency, which describes the perceptual dominance of a method

in the �nal composition, and interference, which pertains to the time it takes to perceive

and understand the data.

To evaluate this legibility factor we brought expert visual designers back. Our hypothesis

for this study was that, using their expert knowledge of perceptual interactions among our

methods, they would be able to e�ectively explore the space and indicate how the di�erent

combinations of methods a�ected their individual legibili ty characteristics. Once more, we

hoped to engage their experience-based intuition to quicklytrim o� portions of our search

space that we would need to exhaustively test through a perceptual experiment.

This chapter describes �rst our study to evaluate this hypothesis. As we will explain,

we could not disprove the null hypothesis in this case, leaving us in a position where we

could not advance any more towards our grand vision for the research. We also report on

an informal study to utilize the models we have already developed in a real situation.

112
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Figure 6.1: We expect our legibility models,w4(vi jvj ), to be step functions that de�ne the
portions of the range of methodvi that are correctly readable (w4 = 1) or not ( w4 = 0).
Multiplying this function with, in this case, our data resol ution model for the same method,
w1(vi ), would result in the real data resolution model for method vi when combined with
method vj .

6.1 Subjective Critiques of Two-valued Datasets Using Ex-

pert Visual Designers

The goal of this experiment was to measure how the legibilityof our visual dimensions was

improved or impeded when utilized for two-valued dataset visualizations. We wanted to ob-

tain the information necessary to model data legibility, thus becoming our 5th design factor,

w4, after spatial feature resolution (w0), data resolution (w1), saliency (w2), and perceptual

interference (w3). In fact, our feature legibility de�nition utilizes two of those factors as the

benchmarks. When we talk about preservation of data features we are interested in:

� How the di�erent levels of data (related to data resolution, DR) are perceived in

displays combining two methods.

� How di�erent sized features (related to spatial feature resolution, SFR) are perceived

in those situations.

Hence, legibility will be a factor that will multiply our DR a nd SFR models to provide

guidance as to the loss of information when di�erent methodsare combined. As a simple

example, Fig. 6.1 shows a case where the beginning and end portions of the range for

method vi are lost when this method is combined withvj . The resulting DR model for vi

is then obtained by multiplying both functions. Note that th e model for DR obtained in

Section 5.1.2 is cumulative, so a loss at any subrange means anon-increase in the number

of perceivable jnd's.

6.1.1 Methodology

The study presented our subjects with an interactive tool that allowed them to modify the

same independent variables used in the previous experiment: icon size, spacing, number of
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(1) (2) (3)

Figure 6.2: Three scalar values obtained from an MRI datasetof a human brain. We chose
these three for the variety of spatial frequencies and di�erent value spreads over the data
range, as can be seen in the grayscale variations. All valuesare normalized to the full range
of lightness. Data value (1) is dominated by a relatively narrow range of values (5 or 6
jnd's) from the top third of the full range (15 to 20 jnd's). It also has medium-to-high
frequency information (80-100 cycles/width). Data value (2) has even higher frequency
data (100-150 cycles/width) and utilizes the full gray level range of values more evenly (10
to 15 jnd's). Finally, data value (3) from the MRI dataset has a low number of value levels
(4 or 5 jnd's) spread over the full range. It also has relatively low frequency information
(10-20 cycles/width) mixed with points of high frequency highlights.

layers and their order, and icon color. The data used were three scalar magnetic resonance

imaging (MRI) values from a human brain dataset, which were presented to them in pairs.

The characteristics of the di�erent MRI data variables covered a wide spectrum of high and

low values, high and low frequency features, as well as partial and total value spread over

the full ranges (see Fig. 6.2).

The setup, shown in Fig. 6.3, consisted of two monitors showing the original pair of data

variables, the individual mappings onto one of the four visualization methods (saturation,

lightness, size or spacing), and the �nal display combiningboth variables in one image. It

also provided the basic interface controls to explore the space of possible combinations by

modifying the independent variables explained before.

The images utilized the same parameter space as our last experiment, and the combina-

tion stimuli were the same size and presented on the same monitors as before. Our gamma

correction functions were still valid for this experiment. Users had the ability to zoom the

images on the left side monitor (see Fig. 6.3) to make them thesame size as the combi-

nation display for easy comparison. At the zoomed-in state the perceptual characteristics

of the visualization methods were the same as they were in ourprevious studies, covering

approximately the same visual angle.
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Figure 6.3: Experimental setup (top), and detail of the displays at the illumination level
maintained during the experiment (bottom). The experiment took place in an illumination-
controlled room where two side by side monitors displayed, from left to right, two of the
original data values from the dataset shown in Fig. 6.2, the two individual mappings from
each data value to a di�erent visualization method, the combination display, and the user
interface to control the visualization parameters.
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Experimental Tasks and Protocol

We designed an experimental protocol that would allow us to obtain the legibility informa-

tion we needed while providing expert visual designers withenough freedom to comment

on the validity and e�ectiveness of the visualization methods presented. The basic protocol

was:

1. We introduced to the visual problem and interface to the participants.

2. We choose a pair of methods to represent the data among the 6possible pairs.

3. Task: Which data variable do you think users will perceive�rst and why?

4. Task: Comment on the types of features visible and invisible within the combination.

5. Task: How much legibility is gained or lost from the single-value to the two-value

visualization?

6. Task: By only changing these factors: #layers, order of layers, color, size, and spacing,

how would you modify this combination so:

(a) Variable 1 dominates the composition.

(b) Variable 2 dominates the composition.

(c) Both variables are equally dominant.

During the process you must try to maintain the legibility of as many features of the

dataset as possible, or comment on how changing some of thosefactors a�ects the

data legibility.

7. Task: For each solution provided on the previous point, switch the data variable

involved and comment whether the same or a di�erent solutionapplies. Modify your

parameterization until you reach an appropriate solution.

8. Task: Pick a di�erent pair of methods and go back to point 2 until all six pairs of

visualization methods are explored.

9. Task: Freely design what you think would be the most appropriate visualization

method for any combination of data variables and using any ofthe 4 visualization

methods available.

We explained to the participants that our interest in data fe atures was two-fold. First,

we wanted them to comment how well low, medium and high valuesin the dataset were

visible and understandable in the combination display. Second, we would also like them to
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comment how well low, medium and high frequency elements were preserved in the �nal

combination display. This division of the full range of data values and frequencies was

meant to facilitate the participant's task and our own data a nalysis.

Indeed, this protocol was designed so the level of freedom these experts are used to was

preserved as much as possible, while we asked them to do something they are not used to

do: think aloud as they try to solve a visual communication problem. In two pilot sessions

we explored the possibility of not subdividing the ranges. This did not help participants,

who were only partially identifying data feature issues without exhaustively exploring all

combination options.

Throughout the study, we reminded participants about the exploratory goal of the

combined display, i.e. that the design goal was to show as many features as possible from

the original datasets, with no particular areas that were more important that others. We

explained that the reason we asked them to help was that we realized the conversion from

the original grayscale to the icon-based representation waslossy, hence we needed to explore

the best ways to loose as little information as possible.

The questions on points 3 and 6 were meant to check the accuracy of the predictions from

our previously generated statistical models for saliency and interference. Also, by asking

them to design combinations for the three di�erent situatio ns from point 6, we hoped to

gather derivative information that, although available fr om our models, would provide a

glimpse into their design process. We could potentially analyze their paths through the

design space and try to obtain some guidelines.

Finally, the order of the visualization methods shown and the pair of data values repre-

sented was randomized among the four participants to avoid order e�ects.

Participants and Data Gathering

A total of four expert visual designers ran through our experiment, with a maximum allowed

time of 2 hours to avoid fatigue and lack of concentration.

For data gathering we videotaped the full sessions, paying close attention to how par-

ticipants explored the di�erent displays presented and what tools and techniques they used

to answer our questions. As shown in Fig. 6.4, we developed a simple scorecard that once

completed for each pair of visualization methods, would provide the necessary data to gen-

erate our legibility model. Each cell would contain a zero ora one depending on whether

that particular portion of the data range or frequency range was correctly represented in the

combined display. It would also contain any comments regarding how size, spacing, layer

order, or color a�ected that value. We decided against providing them with the scorecards

to �ll out during the experiment since, from previous experience, we realized this would put
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Figure 6.4: We create these scorecards for each pair of visualization methods. Studying
the videotapes and looking at the resulting displays would allow us to �ll out how DR
information and SFR characteristics were preserved when methods were combined. Note
that we have a full set of interactions represented: how datalevels of one method a�ect the
reading of the levels of another, how spatial frequencies a�ected the reading of data levels,
and the corresponding opposite combinations.
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experts in the uncomfortable position of assigning numbersto their knowledge and design

process.

In these scorecards we hoped to capture some of the intuitionexpert designers bring with

them to solve our particular visual problem. Note that the in teractivity of the application

would allow experts to tell us how modifying each parameter would a�ect legibility. This

interactivity and verbal data gathering would substitute a n exhaustive perceptual experi-

ment and, using expert designers, allow for a much faster exploration of the vast number of

possible combinations of parameters.

Study Motivation

Comments from our participants in the previous study and our own observations motivated

the current experiment. The linear datasets used before were chosen because participants

would intuitively understand what the real data was, hence, we assumed they always per-

ceived the \real" data fully: i.e. a continuous and straight gradient across the display. This

assumption allows us to apply the interference and saliencymodels to real datasets. How-

ever, we cannot assume this total legibility for datasets other than the linear one we used.

In other words, when two visual dimensions interfere each other, the time to read those

dimensions increases, but their legibility might not be a�ected at all (the opposite could

also be true). Even though it might take time for users to shift and focus their attention

on an interfered dimension, they will eventually get the same number of jnd's or perceive

the same size features as in the single-valued case.

In fact, participants declared our assumption of full legibility already broke down for

some cases in the previous experiment. Not only did methods using spacing cover part of the

other methods, making it literally impossible to really seethem fully, they declared that, for

most combinations, they could probably have provided a di�erent \time-to-perceive" value

for di�erent parts of the display. This signals a latent discontinuity of our models across

the ranges of the methods they qualify, one that we have not captured so far.

Our �rst attempted solution was to adapt the previous experi ment to allow for multiple

time responses. It seemed logical to try and approach this legibility modeling through a

perceptual experiment, given the success of the two last studies. It quickly became clear

that the time commitment required for participants would be too high. Either we lifted

the 10s time limit and let them explore all parts of the display freely, or we divided the

range of our visual dimensions in pieces and evaluate each separately. Even dividing the

ranges of our methods in three portions would increase the number of stimuli required to

an unmanageable amount, requiring many more participants and longer experiment times,

with the subsequent fatigue issues.
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Similarly, lifting the timeout limit to avoid increasing th e number of stimuli would not

fare much better. The free exploration of each display wouldstill require subjects to report

times for all nine portions of the display. It is clear that th e experimental interface and

interaction technique would need to be carefully planned inorder to really capture the

participant's perception times. Otherwise, we ran the risk of obtaining subjective estimates

of the order in which participants perceived each portion ofthe display.

To solve these problems we relied on the expertise of our visual designers.

6.1.2 Results and Discussion

All our participants completed di�erent amounts of the full experimental plan, but none

completed all tasks. The di�erent situations encountered during the experiments, explained

in the next subsections, limited our results but provided valuable clues to identify the reasons

for this outcome.

All participants declared the interface was simple to learnand did not a�ect their de-

cisions. As an initial step in the experiment, they spent around 10 minutes exploring the

visualization space our parameters represented and getting used to modifying layer order,

data mapping methods, and the constraints each one had.

The main results obtained from the experiment were a positive evaluation of our saliency

and interference models, and the realization that the solution to a multivalued visualization

design problem depends on the particular spatial distribution of the datasets involved and

might not be safely generalized to other situations: i.e. with our experiment, we were not

able to �nd a general model of legibility that could by applie d to any pair of data values.

During the study, we had a hard time maintaining participant s on-course through our

protocol. The main reason for this was our inability to provide them with other visual

dimensions to explore possible solutions. They constantlyasked for options unavailable

to them such as the use of icon hue, the use of di�erent shape icons, a broader range of

sizes and spacings, or non-linear mappings to emphasize low or high values (although they

realized the scienti�c nature of the data does not permit this type of scaling, which would

visually misrepresent data relationships and potentially lead to the wrong conclusions).

Our experiment was constrained by the number of methods we had been exploring in other

experiments, along with the limited parameterizations we utilized. Although this created a

manageable space to explore during our previous studies, visual designers are not used to

this kind of constraints.
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Variable Saliency Tasks

In general all experts validated the predictions from our models for saliency and interference.

The user interface included in it the values predicted for those two factors, and although

participants were not informed what the �gures indicated, we were able to check them

against their comments as they were exploring the space of visualizations. Figures 6.5

through 6.8 show examples of some of the solutions participants provided to this task,

including our models' predictions.

It is important to note that this task, as opposed to the previ ous experiment, includes

an element of legibility. Participants were asked to keep both variables legible as much as

possible while highlighting one or the other, which accounts for the small deviations observed

in the values for saliency and interference shown in the �gures. The relative values within

a given combination were correctly predicted. For example,Fig. 6.7 is an equal saliency

solution and, while the actual value predicted is not zero, the legibility constraint made

designers increase the size from 2 to 4 pixels to make saturation readable. Our model does

not take into account legibility due to the simple dataset used for the previous experiment

and it predicts size 2 to produce a saliency value of� 0:009, the closest to zero in the range

tested. During the previous experiment, participants werestill able to recognize saturation

changes with that small size, but the continuity and smoothness of the data might have

helped in that regard. These legibility limitations are what we are trying to capture with

this experiment.

In particular, notice how the bottom layer is usually de�ned to be as solid as possible.

Indeed, this solution solves the visual problem we presented to participants: to display \two"

data values simultaneously. House [House et al., 2006] reached a similar set of solutions for

the visualization of two overlaid textured surfaces. Although not using the same stimuli

(they used stereo animated images and three dimensional surfaces) or methodology (they

reached these solutions using a genetic algorithm approachto explore large areas of the

visualization space), our experts con�rmed their results, while our predictive models also

reached a similar outcome.

The problem this created was that only a small portion of our full parameter space was

explored. Furthermore, solutions of the type reached during the experiment do not provide

valid information towards creating multilayered visualiz ation methods for more than two

values. Methods containing a sparse bottom layer did not getevaluated for either saliency

variability or legibility. Similarly, the results from [Ho use et al., 2006] cannot be applied to

the visualization of three overlaid surfaces.

Our initial reaction to this was to change the experimental design to present three scalar

data values simultaneously displayed using three separatelayers. The hypothesis would be
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v = f l0; l1g = ff (0; 0; 0; 0; 0; 3; 0); (0; 0; 1; 0; 0; (2; 10); 0)g;
f (0; 1; 0; 0; 0; 0; 0); (0:33; (0; 1); 0:6; 0; 0; 8; 7:5)gg

Figure 6.5: A result from the equally salient task for SAT and SIZ. This combination
has a predicted saliency value ofw2(v2; v5) = � 0:183 with the available range being
w2 2 [� 0:698; 0:141], given the interface options. While our prediction indicates a slight
dominance of SAT, this compensates for the task's goal of maintaining legibility for both
data values, which our predictive model does not take into account. Interference val-
ues are w3 = ( v2jv5) = 0 :342 for how much SIZ interferes the reading of SAT, and
w3 = ( v5jv2) = 0 :405 for the opposite case. These values being so close con�rmthis
combination as an equal saliency choice. Data value id's in the parameterization come from
Figure 6.2.
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v = f l0; l1g = ff (0; 3; 0; 0; 0; 0; 0); (0:33; (0; 1); 0:6; 0; 0; 2; 0)g;
f (0; 0; 0; 0; 0; 1; 0); (0; 0; 1; 0; 0; (2; 10); 2:5)gg

Figure 6.6: A result from the task to highlight one of the variables (SIZ) for a SAT-SIZ
combination. In this case, the predicted saliency isw2(v2; v5) = 0 :442 2 [� 0:121; 0:714].
Again, although our model would accommodate a more salient solution for SIZ (a fully
opaque layer with 0 distance between icons), designers compromised to allow for some
legibility of SAT. The interference values clearly re
ect t his dominance. While SIZ interferes
with SAT quite signi�cantly, w3(v2jv5) = 0 :858, the opposite is not the case,w3(v5jv2) =
0:120. Again, data value id's in the parameterization come from Figure 6.2.
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v = f (0; 2; 0; 0; 0; 0; 1); (0:33; (0; 1); 0:6; 0; 0; 4; (0; 10))g

Figure 6.7: A result from the equally salient task for SAT and SPA using a single layer.
For this combination, our model predicts a small range of saliencies available given the
interface options: w2(v2; v6) = � 0:177 2 [� 0:249; � 0:009]. This indicates a very unstable
combination with a tendency for SAT saliency. In this case, experts were clearly limited by
the available options, since they could only control the size of the icons. Again, enabling
some legibility for SAT threw o� our predictions.
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v = f l0; l1g = ff (0; 0; 2; 0; 0; 0; 0); (0; 0; (0; 1); 0; 0; 2; 0)g;
f (0; 0; 0; 0; 0; 0; 1); (0:33; 1; 0:6; 0; 0; 2; (0; 10))gg

Figure 6.8: A result from the task to highlight one of the variables (LIGHT) for a LIGHT-
SPA combination. In this case, experts went to a completely opaque bottom layer that
would be salient over a sparse, yet readable, top layer. Our predicted saliency value con�rms
this: w2(v3; v6) = � 0:1272 [� 0:127; 0:008], and interference results indicate SPA does not
interfere much with the reading of LIGHT, w3 = ( v3jv6) = 0 :007, while the opaque layer
does not compromise the reading of SPA either,w3 = ( v6jv3) = 0 :234.
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that the bottom layer would serve as this solid (although still icon-based) background and

the other two would provide us the two-layer interaction information we were looking for.

As we will explain below, the issue with the dataset dependence impeded our pursuit of

this new methodology.

Derivative Information

In designing this experiment, we hoped to identify one or twogood combinations per pair

of methods and record how moving around those would a�ect saliency and legibility, but

the participants' strategies did not �t our expectations. A fter they had performed the three

subtasks from point 6 of our protocol (modifying the parameters of the visualizations so

either variable 1, 2, or both were salient in the combinations display) we were not able

to evaluate our models' derivative information, since we could not identify any particular

paths of exploration. The process they followed was not whatwe expected: After almost

exhaustively exploring all options from the interface, they reached a solution for the �rst

subtask. They then went back to a neutral combination of parameters and explored the

space of parameters again searching for a solution to the second subtask, and so on.

Queried about the reason they were doing this they declared that, although the visual

dimensions were familiar, and the datasets were clear enough, their joint use in the combi-

nation image was not at all common, making them explore the full space every time to be

con�dent of their response.

Legibility Information

The main goal for this study was to obtain a reading of the intuition designers have, from

their experience and design knowledge, as to how the combination of methods work together

to represent data e�ectively. As mentioned before, we had a di�cult time keeping partici-

pants on-course through our protocol and, for this reason, their comments about legibility

were quite sparse and not at all exhaustive enough to complete our scorecards.

Most of the comments regarding our legibility measure were constrained by the particular

characteristics of the dataset utilized. The remarkable spatial similarity of the three scalar

variables provided many examples of the various situationsindicated in our scorecards, but

participants commented they had a very di�cult time answeri ng the very speci�c questions

from tasks 4 and 5. They acknowledge it is a di�cult problem to solve, but without more

tools to explore a solution, such as �ne-tuning parts of the display by hand, they could not

reliably provide general comments valid for other situations. This leads us to the next and

perhaps more important result from the experiment.
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Dataset Spatial Distribution Dependence

All our participants designed individual solutions based on the particular pair of data vari-

ables being displayed. We had hoped that they would try to obtain good overall com-

binations of parameters that would apply to any pair of variables, but that was not the

case.

As it can be seen from Fig. 6.2, since all three MRI scalar values come from the same

human brain dataset, they all share similar physical characteristics. This, we hoped, created

the ideal setting for exploring how data resolution and spatial feature resolution character-

istics were preserved in two-layer combinations.

Participants declared, in fact, these coincidences distracted them too much from trying

to answer the tasks. They understood the setting and why thiswas the case, but adapting

to it in such short time period and with the very constrained parameter space they had

to work with, did not provide an adequate problem-solving situation. Furthermore, the

exploratory goal of our combination display did not help in their design process.

Even though they realized the goal was not to highlight any particular features from

the dataset, the many spatial coincidences from the variables made it hard to balance the

solutions. While some areas were ful�lling the task and making one variable more salient

than another, other areas would show the opposite e�ect. Once again, the limitations of

the interface and parameter space did not let them perform local adjustments that could

have potentially solved those issues.

We enquired whether datasets such as the weather data we haveused for Fig. 5.17

would have helped, since the spatial distribution of valuesis di�erent among variables of

that dataset. This is where they all agreed on mentioning ourmain take-home message

from the experiment: No matter what data we used, they would explore the space of

possibilities and design a visualization that �t the partic ular combination of data variables.

They understood our goal of extracting a general set of rulesfrom their design process, but

they all asked for a full set of design tools and an unconstrained space to really show that

process.

Two Explanations for the Results

This last comment creates a dilemma for the evaluation of ourexperimental hypothesis. On

the one hand this data dependence issue would make it impossible to generate a general set

of legibility scores independent from some measure of spatial data correlation. This, in fact,

would indicate that the wrong hypothesis was tested, and a new hypothesis, which would

include those data correlations, would need to be posed and evaluated.

On the other hand, the solutions participants reached for the saliency tasks, where
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an almost solid layer of icons was permanently placed on the bottom layer, along with

the limitations our parameter space imposed on their designcreativity, would indicate our

experiment did not have the capability of �nding a signi�can t result for our hypothesis,

even though one might have existed. A redesign of the experimental protocol and setup

would be granted.

After analyzing all the comments and solutions from our expert visual designers, we

believe both conditions are true: the current hypothesis cannot be evaluated and the ex-

perimental methodology was not powerful enough to detect a signi�cant result. The next

section explores these two issues.

6.1.3 Attempting a New Approach

Our methodology for the experiment was based on our exploration of this small portion

of the visualization design space, which contained only four visual dimensions. This, we

hypothesized, would make it easier to explore both perceptually and with the help of expert

designers. Our results indicate that that very limitation i mpeded the e�ective use of visual

design experts.

This result has similar connotations to the one from our vector �eld visualization exper-

iment, where it seemed we under-taxed our experts. In this case, we had a complex problem

for them, but the experimental setup did not allow them to solve that problem e�ectively.

We, again, under-taxed their expertise by not providing them the right tools.

Following that conclusion, we could think of approaching our exploration from the top

down. That is, we could present the visual problem to the designers and let them generate

solutions for us using their own tools. We could still recordtheir comments and annotate

their process as much as possible to extract the necessary pieces of data to inform our

model. This obviously creates the problem of generating a powerful enough protocol so

we could obtain valid data from the potentially huge space designers could explore. Also,

trying to extract information about our particular dimensi ons of interest would be biased

by many factors, mostly di�erent for each subject, that we could not fully control: inter-

faces, user interactions, or combinations of visual dimensions used, to name a few. This

approach assumes our hypothesis can in fact be evaluated with a more complex experimental

methodology.

Note that this is the traditional way in which visual designers collaborate with visual-

ization scientists. Since our goal from the beginning was togenerate a quantitative model of

utility, our approach was necessarily bottom-up, hoping to generalize to complex situations

what we could learn from simpler quanti�able ones.

On the other hand, if we conclude that we cannot disprove our current null hypothesis,
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then we believe including the dataset as part of the model could be part of a new experi-

mental hypothesis. We will explain in the next chapter our ideas on how to do this. The

main issue with this solution is that, a successful modelingof this combined space (visual

dimensions plus data characteristics) could lead to visualization solutions that would be

di�erent for the same types of data. For example, using the weather data as our multival-

ued dataset, this new model could suggest an optimal visualization method combination

for the mean temperature and average wind speed data variable combination, based on the

particular spatial relationships between both variables. Now, if we changed the dataset

to be that of another region of the globe, those relationships would most likely change,

potentially leading to a di�erent choice of visualization m ethod. This is precisely the issue

with this approach: even when the same type of variables are used (temperature and wind

speed), a meteorologist looking at these data would be givena di�erent visualization for

each part of the world, or even for each time of day when conditions change in the same

region.

We will further elaborate on these possible scenarios in ourconclusion chapter, when

we will put these options in the context of our overall research.

6.1.4 Experiment Conclusions

This experiment has provided valuable con�rmation of our previous experimental results

and important information about the methodology to use when engaging expert visual

designers in visualization evaluations such as this. In light of our results, we could consider

this experiment a pilot study that evaluated a potentially e �ective methodology to evaluate

legibility factors in multivalued scienti�c visualizatio n methods.

It has o�ered us a glimpse into the visualization design process, albeit biased by our

limited exploration space. This type of exploration required visual design experts to almost

exhaustively search the space every time a new set of variables needed to be displayed. The

limited design space also generated frustration among our participants and dampened their

e�ectiveness performing our tasks. In summary, we should not limit their design creativity

if we expect to extract good data from examining their designprocess.

Finally, the protocol design assumed also that questioningthe participants and guiding

their exploration would help obtain consistent data. Altho ugh that is the aim of exper-

imental protocol analysis techniques, the protocol itself broke the concentration of our

participants, hence not really performing as they normally would. We believe the visual

design �eld is a very di�cult area to explore and to try to quan tify. That said, successful

protocols have been developed to explore, for example, users' ability to control complex user

interface designs, but we estimate it would require years todevelop a deep enough protocol
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to put some mathematical structure around our visualization design process.

6.2 Evaluation on Practical Applications

We present here the results of an informal evaluation of our models and multilayered visu-

alization methods. In it, researchers from the Department of Geology at Brown University

utilized our visualization methods to explore data collected by the 2001 Mars Odyssey

Gamma Ray Spectrometer (GRS), which included concentrations of hydrogen (H ), chlo-

rine (Cl), silicon (Si), potassium (K ), iron ( Fe), thorium ( Th), and a potassium-thorium

ratio ( KvsTh) from the near-surface of the planet. Figure 6.9 shows these data using

grayscale values on a simple cylindrical projection of the surface of Mars (from -180 to

180 degrees of latitude horizontally, and from -60 to 60 degrees of longitude vertically),

cropped at high latitude values where data collection is notreliable. The same �gure also

shows the estimated standard deviation values (� ) for all seven data values. Since only

qualitative relationships are sought, no numerical valuesare attached to these images or

any visualizations shown here.

GRS is a signi�cant component of NASA's Mars Surveyor Program. It is an ongoing

initiative to explore Mars through scienti�c instruments a board orbiters, landers, and rovers.

GRS is really a suite of three instruments designed to analyze the chemical composition of

the Martian surface. GRS also has the capability of detecting water in shallow subsurface

depths.

The goal of visualizing these elements together was to con�rm whether strong corre-

lations exist among the di�erent values, in particular with hydrogen, which is used as an

indicator for the existence of water on or below the planet'ssurface. Current state-of-the-

art methods to explore these correlations rely on 2D scatterplots that show concentration

correlations without any spatial information attached (see Fig. 6.10 (a)) or, at the most,

displays combining two elements as shown in Fig. 6.10 (b). Apart from these, side by side

comparisons are used and, sometimes, RGB combined images displaying three elements si-

multaneously and focusing on �nding areas with pure red, green, blue, white or black colors,

since any other intermediate combinations would be di�cult to interpret.

Our goal during this informal session was to determine whether providing users with

explicit control of the perceptual relationships among thedi�erent methods would overcome

the loss in spatial feature resolution. This loss comes fromthe discretization of the data

into icons. However, the main bene�t of this discretization is the possibility of layering

icons and showing more data values simultaneously. Two researchers attended the session

in which we explored di�erent combinations of data values.

The �rst display we generated is shown in Fig. 6.11. It shows the concentration of H
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H � H

Cl � Cl

Si � Si

K � K

Fe � F e

Th � T h

KvsTh � KvsT h

Figure 6.9: Concentrations and related measurement errorsof various elements on the
surface of Mars as captured by a gamma ray spectrometer. Low values are black and high
values white.
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a)

b)

Figure 6.10: (a) Correlation scatter plot of Cl and H concentrations on the surface of
Mars. This plot lacks spatial information, and is sometimes complemented by (b) using
a combination of a non-perceptually-uniform rainbow scale for the Cl concentrations and
contour lines for the H concentrations. Both images from [Keller et al., 2006].
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Figure 6.11: Concentration ofH mapped to lightness and its corresponding� H mapped to
size. Observe how is mostly at the higher latitudes where data is less reliable.

as lightness changes and its estimated� as size changes. Given the resolution of the given

data, we kept the spacing to a minimum so we would loose as little information as possible

(both spatial feature resolution and data resolution of lightness decrease as spacing values

increase). Also, since the actual concentration values should dominate the composition but

not interfere with the reading of the variance values, we chose this combination of lightness

and size. Our models predict lightness as more salient and interference to be low between

both methods.

This initial display was regarded as e�ective by both our users. They declared the loss

of resolution was a problem, but recognized the simplicity and immediate reading of both

variables that this icon-based visualization created.

The next step was to include some of the other concentration values in the display.

Figure 6.12 shows two visualization of the same three elements (H , Cl, and K ). The �rst

display (Fig. 6.12 (a)) was based on our initial combination, so we keptH as lightness and

included Cl as spacing changes andK as size changes. These choices came from the better

data resolution performance of spacing versus size, and therelatively low data resolution

of the K concentration values. With this representation we kept the dominance of theH

component but our models predict a relatively high interference with the spacing changes.

This was recognized by our users and we switched the visualization to the one shown in

Fig. 6.12 (b). The only change here was to switch theH data values to saturation changes.

This, our models predict, lowers the saliency of that data value, but also decreases the

interference with the other methods.

At this point both users agreed this was a completely novel and e�ective way of looking

at their data. They were able to recognize topographical features of the surface of Mars

based on our visualizations. It is important to note that they were only seeing these resulting

visualization and never the raw data or any other image that could serve as a reference.
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a)

b)

Figure 6.12: Two visualizations of the same three elements.(a) ShowsH as lightness,Cl as
spacing, andK as size changes. In (b) we changedH to saturation to decrease its dominance
of the composition and the interference with the other two data values, as predicted by our
models.
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Figure 6.13: Concentration of Cl mapped to saturation, Fe mapped to size, and the ratio
KvsTh mapped to spacing.

They both had extensive experience looking at these data in other formats. They quickly

became comfortable reading the icon characteristics as data values and were able to con�rm

expected areas of correlation and non-correlation among thedi�erent variables.

In order to bring in some of the other data values, we created the display shown in

Fig. 6.13. This uses the same parameterizations as Fig. 6.12(b) but using Cl, Fe, and

KvsTh as the data values being represented. In this case, spacing is used for the data

value with lower data resolution requirements (KvsTh) to minimize the predicted greater

saliency that using size would cause. As it can be observed, even taking this measure, the

particular spatial distribution of high values for KvsTh creates a very salient feature. This

e�ect, as we mentioned before, cannot be predicted by our models. Our users commented

on the e�ectiveness of this display also, in particular the equal saliency and low interference

between saturation and size changes, making it easy to read both data values simultaneously.

As a �nal step, users asked to correlate these three values tothe concentration of H .

Figure 6.14 shows the two options we provided to them using multiple layers. In Fig. 6.14

(a) we included the raw data directly underneath the previous display. This achieved the

initial goal of highlighting the H concentration, but created too much interference with all

other methods present. While our models do not include full color planes, we can estimate

design factor values by plugging in low size and spacing values into our models. In order

to minimize overall interference and create a more balanceddisplay in terms of saliency

we increased both size and spacing values of the bottom layer(shown in Fig. 6.14 (b)).

We manually optimized the �nal parameterizations by lookin g at the predicted values from

our models for each pair of methods. The combination shown provides the best balance

between equal saliency and low interference, while utilizing the best methods based on the

particular resolution characteristics of each data value.

Users were excited about the possibilities of this, for them, new visualization approach,
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a)

b)

Figure 6.14: Two visualizations of the same four elements. (a) Shows H as background
lightness, Cl as saturation, Fe as size, andKvsTh as spacing changes. This option makes
the background layer too salient with respect to the other values. In (b) we discretized
the H data value and chose a combination of size and spacing for thebottom layer that
would bring pairwise saliency values between methods closer together while, at the same
time would minimize interference.

and our goal of using our models to achieve e�ective solutions e�ciently was ful�lled. Fur-

thermore, a more important conclusion of this experiment was the realization that, even

when the original continuous datasets are discretized, users accept the loss of resolution in

exchange for a quick and intuitive way of correlating their values. They especially praised

the simplicity with which we controlled both the mappings and parameters to achieve dif-

ferent saliencies, and which data values should be be mappedto which visual dimensions

based on their particular features.

In conclusion, we successfully utilized our models to predict the performance of the

di�erent methods for a real visualization problem. Althoug h we performed all the opti-

mizations and parameter tweaking by hand, the process we followed serves as an example

of how changing requirements can be plugged into our models to control the knobs of our

visualization software.



Chapter 7

Discussion and Conclusion

Through a variety of experiments, this dissertation has advanced the state of the art in

scienti�c visualization by evaluating how perceptual studies and collaboration with visual

designers can help predict the properties of visualizationmethods and ultimately their

e�ectiveness. Our contributions include new experimentalmethods and perception models

that can be used to guide future research and improve the utility of multivalued visualization

methods.

This �nal chapter will summarize the main conclusions from all our experiments, and

will propose some potentially rewarding future lines of research, including our ideas on how

to solve some of the issues that we have identi�ed along the way. We will also dedicate a

section of this chapter to provide a series of guidelines fordesigning visualization evaluation

experiments. Even though some of those might not be novel, webelieve it is useful to

complement our contributions with a checklist that re
ects the lessons we have learned.

7.1 Research Summary

One guiding principle in designing our research plan was to complete our model from the

bottom-up: we should �rst understand and quantify how the ind ividual dimensions that

form our visualizations work before trying to approach multivalued scenarios, where per-

ceptual interactions would play a signi�cant role. Our hypo thesis was:

Measuring the perceptual capabilities of several icon-based scienti�c visualiza-

tion methods for simple single-valued scalar datasets in 2D,and combining that

with subjective evaluations of complex multilayered methods representing mul-

tivalued datasets, we can generate a predictive model of utility of a space of

visualization methods.

137
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A key contribution of this dissertation was showing that expert visual designers can

be e�ective evaluators of scienti�c visualization methods. Our �rst experiment showed

that their subjective critiques can be signi�cantly correl ated with the results from more

traditional objective quantitative studies based on task performance. In addition, and

this is one of the bene�ts of using these expert visual designers as experimental subjects,

they were able to provide us with reasons for certain visual dimension interactions, and to

indicate how a change in these dimensions would further a�ect the utility of a method and

the e�ective reading of the data variables.

We continued this line of research further by conducting a second study to evaluate

the utility of individual 2D visualization methods in terms of a set of design factors, which

were subjectively rated by expert visual design educators.We successfully characterized a

total of 33 visualization methods using 11 di�erent visual dimensions and 6 di�erent design

factors for representing single-variable continuous scalar datasets. While the ranking results

obtained were informative, they were not nearly as exhaustive as we needed them to become

the basis for our utility prediction model.

Therefore we approached the evaluation of our hypothesis from a perceptual standpoint,

leaving the use of visual designer subjective critiques fora later stage, when we needed to

evaluate complex visual displays, di�cult to test perceptu ally. Our next experiments were

aimed at quantifying the utility, in terms of some of our design factors, of a subset of the

visual dimensions we set o� to model. We could not try to explore such a vast space of visual

dimensions exhaustively through psychophysical studies.Since the number of variables to

be controlled was just unmanageable, we evaluated four of them: icon saturation, icon

lightness, icon size and icon spacing.

The experiments evaluated some individual properties of these dimensions, such as data

resolution and spatial feature resolution, and also properties of the perceptual relationships

between them, such as saliency, and interference. We were able to successfully obtain

predictive mathematical models based on variables such as the size and spacing of the

icons, their color, the number of layers used in the display and their order.

Once these models were completed, we designed a study that, using expert visual de-

signers to evaluate real two-valued dataset visualizations, would allow us to quantify the

loss in data resolution and spatial feature resolution whentwo methods were combined: i.e.

to quantify the loss or gain in legibility. We had the baseline capabilities for each method

when utilized individually, and we knew how much one method a�ected the time required

to understand another or which one would dominate, but we needed to know the actually

change in legibility to be able to propose a model for higher order combinations.

With this experiment we were not able to disprove the null hypothesis, as we explained in

the previous chapter, and it left us with several open questions that will need to be answered
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and evaluated to move forward with this research. We did, however, validate the models

we generated by obtaining anecdotal evidence from designers during the experiment and

through informal demonstrations of the predictions of our models with scientists exploring

multivalued datasets.

7.2 Open Issues and the Development of a New Hypothesis

As we mentioned before, there are two possible explanationswhy an experiment fails to

disprove its null hypothesis: the hypothesis is false or theexperiment was not designed in

such a way that could capture a signi�cant result if one existed.

We believe both options played a role in the outcome of the last experiment and hence

in the whole project.

7.2.1 Investigating Data Dependence

The main reason our initial hypothesis could be false is that, from the beginning, we elim-

inated the dataset itself from the argument. Our aim was to obtain a general model that

could be applied to any type of multivalued scalar dataset. We tried to capture some of the

characteristics of those datasets by including data resolution and spatial feature resolution

as two of our design factors.

Indeed, this provided, we believed, the link we needed between the visualization methods

and the actual information needs they were required to address. In fact, while studying the

individual methods these o�ered su�cient information to de termine their utility. When we

introduced two-valued visualizations, it became clear we needed some spatial data correla-

tion information to e�ectively address the modeling of the methods' utilities. The intuition

for this is as follows.

Let us suppose we have successfully completed the last experiment and we have obtained

a full legibility model for all pairwise interactions between methods. That means, and

limiting this discussion to data resolution legibility, we know how di�erent levels of one

method a�ect the reading of all levels from another. In order to apply this knowledge we

need to know how the spatial distribution of values from a data variable coincides with the

distribution of another. Here is where our hypothesis fails. We do not account for such

data correlation information to be part of the model.

Our hypothesis does not completely fail since, instead, it errs on the side of caution.

Without including the data, the only prediction of utility w e can make is based on the overall

ranges of the data variables. Given those, we can just apply our model to the extreme values

and use those as a very conservative estimate of correlations. In fact, the coincidence of

the extreme values may never occur and we could be dismissingperfectly valid solutions
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because we are not looking at the speci�c datasets being visualized. Figure 7.1 describes

our attempt to obtain this data correlation information. Ha ving that we could evaluate

visualization method utilities with much more narrow and realistic constraints.

Note how this is precisely what expert visual designers weredoing in our last experiment.

They tweaked each combination of methods to �t the particular pair of data variables being

visualized. We decided we could not take those results because they were not representing a

general methodology but individual instances. This leads us to a di�cult research situation.

On the one hand, if we do not address this data dependence we believe we would not

be able to �nd a general model that would apply to any multival ued dataset. But, if we do

address it, the model itself will generate too much variability in the choice of methods. As

explained in Section 6.1.3, users would need to adapt constantly to new visualization displays

for similar types of data, with important consequences for their research e�ectiveness.

We were not able to continue our research precisely because of this issue. Nevertheless,

important lessons were learned and new perceptual models developed. We will now address

the second possible reason we failed to validate our initialhypothesis: the experimental

methodology.

7.2.2 Experimental Methodology and Guidelines

Our strategy in designing our last experiment was based on our interest in studying a par-

ticular portion of the space of visualization methods. We also utilized the same constraints

we had for the perceptual experiments: �xed ranges for the methods involved and limited

number of levels for the independent variables.

Our results show that these limitations impeded our expertsto fully provide their exper-

tise to solve our visual problem. The fact that subjects explored the full space of parameters

every time signaled an unfamiliarity with both the dataset and the limited space we allowed

them to explore. Participants declared the tasks were easy to understand and the dimen-

sions used were clear, but the lack of freedom for exploring other options frustrated them

and ultimately made their con�dence drop.

From the initial experiment in this project, we have already supported the well-established

idea of collaborating with visual designers for scienti�c visualization design and evaluation.

It is indeed a hot topic in visualization literature, along w ith the use of perceptual knowl-

edge. But while there is a whole area of science dedicated to the study of perception, very

little has been done to try to capture design knowledge experimentally.

The goal is to try and learn from the visual process these experts go through when

solving a visual communication problem. The key to do this, we believe, is to provide

them with the right tools to do their job while controlling th eir exploration enough to be
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Figure 7.1: Given the two data variables, v1 and v2 on the top, we can delimit the value
correlations across the range of the display by superimposing both variables (bottom left)
and plotting what values of v2 coincide with what values of v1. Instead of assuming the
worst case scenarios of just crossing the limits of the valueranges, this construction would
give us much more narrow constraints. An optimization scheme could be set up based on
this information and the capabilities (data resolution, in this case) of the methods chosen
to represent these data. The result of the optimization would be the best ranges for those
methods that produce the most (or any other speci�c goal) perceivable levels across the
display.
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analyzable. This could indeed prove to be an impossible quest: trying to capture on a �xed

protocol something that, although it is undoubtly based on perception rules and established

design knowledge, has a large component of experience, inspiration, and other in
uences

that designers can let transpire into their work.

In summary, in our case we de�nitely constrained our expertstoo much, but we believe

we needed to do so in order to understand their process enoughto turn their responses into

quantitative results. We are, once again, presented with two options: constrain and not get

generalizable results, or do not constrain and not be able toquantify the results.

The same as before, this research has advanced the knowledge in our �eld by testing one

of those strategies. We estimate that a full overhaul of the evaluation methodology would

take many years to develop. It would require exhaustive observation of visual designers

in their own workspaces and careful dissection of the process they follow. This still does

not guarantee success, since the key to developing a useful utility model depends on under-

standing the individual dimensions of visualization and their capabilities, and they will be

di�cult to isolate on a top-down approach.

Nevertheless, our e�orts were not without reward. In the process of evaluating our

methodologies we have learned valuable lessons, and we hopefuture endeavors can bene�t

from our experience. Along these lines, we would like to highlight the main guidelines

we believe must be followed when designing this type of experiment using expert visual

designers. Note that some of these have not been tested and, therefore, are our hypothesis

of what to try next.

Experimental Guidelines

This is by no means an exhaustive list but a set of guidelines we believe are the most

important to take into account when designing new experiments.

� Use comparative critique: Providing participants with several displays to evaluate by

contrast. This is an established technique in art and design[Feldman, 1994], and

one that we successfully used in our scalar datasets experiment with expert visual

designers. This enhances the quality of the participants comments and provides initial

ranking information. It is hard to do this on paper due to prin ting calibration issues

and, on a computer monitor, they must be high resolution and as large as possible.

� Recruit experienced design educators:We hypothesize that their critiques can be bet-

ter suited for protocol analysis than expert non-educators or students. Throughout

this dissertation we have mentioned the use of experienced educators as our subjects.

Their approach to critiquing designs includes their experience teaching composition

and communication concepts to students, and during our second experiment, they
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accommodated more easily to the thinking-out-loud protocol. It is, however, hard to

schedule their participation but they are, in general, very enthusiastic about investi-

gating lines of collaboration between art and science.

� Allow for multiple subjects: We believe we could improve our results by running two

or more experts simultaneously in the same experiment. The most important bene�t

from this is that they could explain to each other task goals or other experiment related

issues in a language they are familiar with. Practical limitations such as scheduling

issues can sometimes impede this approach, such as in our case.

� Create challenging tasks: Simple tasks will not engage subjects and generate only

general results with no new insights. Too complex tasks will, in turn, be di�cult to

control and analyze because of the multitude of elements present. A balance must be

found to successfully complete studies of this kind.

� Record real design session:Allowing experts to use their own preferred tools improves

their con�dence in the results and allows them to more easilythink out loud. We

did this, in part, when we asked designers to create a new method during our �rst

experiment with 2D vector visualization methods.

� Include interaction: Interactive exploration is known to enhance insight, and our re-

search is no exception. However, care must be taken to eliminate as many limitations

as possible. Our last experiment included interactive controls for our visual dimen-

sions and, although it was welcomed by our participants, theexperimental constraints

provoqued frustration and lack of con�dence in their results. As a guideline, we be-

lieve interaction should be limited to those elements that can be fully controlled with

no constraints.

� Combine objective and subjective studies:The �rst can provide exact quanti�cation

of variables that can be directly used to generate mathematical models. The second

can validate those results and help de�ne what type of functions are needed for those

models.

� Present the ground truth: Although showing the original data is in itself a visual-

ization, which would contain the very perceptual issues we are trying to explore, it

is necessary to incorporate this into the design. The groundtruth is, after all, the

subject matter for the experts' critiques. Experienced participants can abstract, to a

point, from perceptual artifacts and concentrate in general trends and features.
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7.2.3 A New Hypothesis

We can now attempt to provide a new hypothesis that we believewould guide a new set of

experiments:

By analyzing how expert visual designers solve complex multivalued visualiza-

tion problems using their own tools, we can obtain a description of the design

process and design psychophysical experiments that quantify the particular in-

teractions among visual dimensions that experts pay attention to. The process

description will then serve as a guide to generate a mathematical model that

explains and predicts the utility of di�erent combinations of visualization meth-

ods.

We believe this hypothesis constitutes a possible solutionto the issues found in this research.

It proposes a top-down approach to obtain both the key visual dimensions to consider and

the interactions that experts pay attention to when presented with complex situations. We

go from complex displays to identifying the process elements and analyzing them in detail.

This hypothesis also helps in two key aspects. First, it will engage experts where they

are most e�ective: presented with challenging problems andallowed to use their own tools

and techniques. Second, it proposes a solution to solve the data dependence problem.

Indeed our proposal acknowledges that it is possible to �nd ageneral model independent

of the dataset. Presenting several experts with di�erent problems to solve and trying to

obtain commonalities among the process they follow is the part where this hypothesis might

fail to produce the expected results. But, as opposed to our current approach, this challenge

is placed at the beginning and the hypothesis can be adjustedbased on the initial �ndings.

7.3 Impact of this Dissertation

Our hypothesis aimed at establishing a basis for a theory of visualization. This theory

would be based on the quanti�cation of the utility of di�eren t visualization methods.

Our results contribute to that goal by providing several models for the e�ective use of

some 2D visualization methods. We have also produced a knowledge base for the design,

execution, and analysis of evaluation studies that use expert visual designers as the main

participants. We hope the visualization community will bene�t from this body of work in

its continuing quest for its theoretical foundations.

The experiments we have conducted add up to be an important methodological frame-

work with which other visual dimensions can be explored. Through those experiments much

has been learned that the visualization, perception, and visual design communities can build
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upon. Even if the results do not add up to a full 
edge model to be plugged into a visu-

alization software, our individual experimental results will help non-expert users in their

search for an e�ective visualization, by providing some indication about probable directions

of improvement for their visualizations, and by shedding some light as to what methods to

use in what situations. This will allow researchers to concentrate on data analysis instead

of visualization creation.

We recognize that this dissertation is just scratching the surface of the complex problem

of e�ective visualization design. Our hope is that new linesof research, involving collabo-

ration with visual design and art experts, as well as perceptual psychologists, will develop

around the basis we had created with these initial results.

7.4 Future Directions of Enquiry

While developing our investigation, there were many options and ideas that we could not

follow for di�erent reasons. Nevertheless, we believe theyare promising directions to be

explored, with signi�cant contributions at the end.

� Optimization:

Upon a successful characterization of the methods' utilityfor multivalued cases, the

next step is to match up those capabilities with the requirements from scientists want-

ing to visualize their data. An optimization process can be designed to weight the

possible solutions and o�er users the best options based on their demands. Further-

more, principal component analysis could be applied to try and discern the correlation

among di�erent visual dimensions. These components would provide knobs similar to

the ones proposed in our idealized screenshots of our project's vision.

� Double mapping:

The practical limits of experimental design constrained our investigations to a handful

of visual dimensions and limited discretizations of the continuous axes de�ned by each

one. Although we have taken into account and explored the di�erent implications of

single versus multiple layers of icons, we could not study the case where more than

one visual dimension were mapped to the same data variable. It is recognized in the

perceptual literature that synergistic relationships might occur when multiple visual

cues are combined, forming emergent features. We would liketo explore how multiple

simultaneous mappings would a�ect the expressiveness of high order visualization

methods. Indeed, in cases where some visual dimensions in a layer are free, maybe

mapping them to already mapped data variables would enhancethe overall utility of

the visualization.
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� Genetic algorithms:

Given the high dimensionality of the space of visualizationmethods we are working

with, an e�cient search strategy is di�cult to design. In par ticular, since our data

are based on low order interactions and we are trying to look for e�ective solutions

for higher order problems, the guiding of that search will not be e�cient. Our origi-

nal idea for this dissertation was to implement a genetic algorithm approach for this

problem. Each visualization method would be an individual in our population, and

the genome would be built with the di�erent visual dimensions we are interested in

using. The de�nition of an evaluation function that could select surviving individuals

for each generation led to the current dissertation. We still believe, as do some other

researchers in the �eld [House and Ware, 2002; House et al., 2006], that a GA ap-

proach would provide good results and an e�cient exploration of the vast extent of

the visualization space. The evaluation function would be based on the interactions

and model for them de�ned in this dissertation.

� Perceptual mapping:

Given that our datasets are scalar �elds in 2D, we could analyze the local contrast

between every pair of data variables by using a grayscale representation. Given a set

of design goals, we could use local measurements of contrastto see how to optimally

�t a single mapping (data to visual dimension) that would mai ntain the saliency

requirement across the image. One hypothesis that would need to be evaluated would

be that changing the mapping across the image to favor perception would not a�ect the

reading of the data values. In other words, if we know that certain values of lightness

and spacing con
ict with each other by decreasing the data resolution of lightness,

we could tweak the lightness mappings in those areas to perceptually maintain data

resolution. This is a very complex and potentially risky proposition, since it basically

means that we are creating a mathematically incorrect visualization (the mapping is

not constant across the display) that is arguably perceivedcorrectly.

� Extensions to other visual dimensions in 2D:

One of the main contributions of this dissertation is that th e methodology used to

gather, analyze, and model the perceptual and visual design knowledge about the four

dimensions we chose can be utilized to include others such as:

{ Icon hue.

{ Icon motion.

{ Streamline-type representation (for vector �eld visualization.)
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{ Ellipsoid-type representations (for tensor �eld visualization.)

� Second-order e�ects:

Size and spacing are used both as independent variables and factors in our mod-

els. We have not investigated, because that is not the purpose of a dissertation in

Computer Science, what are the processes used by our perceptual system to read

these dimensions. We believe our eyes and brain obtain some brightness and contrast

change information from size and spacing changes. If this istrue, treating them as

independent factors from lightness is not completely correct.

Another e�ect would be appearance of three-dimensionality that some dimensions

produce. Size, for example, when representing a linear dataset, appears to suggest

a plane fading in the distance or coming out of the screen. Spacing or saturation

can also generate such illusions. Similarly to the brightness e�ects, it is conceivable,

but out of the scope of this thesis, that our perceptual system uses those illusory

cues to help read the dimensions we are interested in. In thatcase, our model will

implicitly include these e�ects, but possible interferences with other dimensions will

not be detected.

We recognize the importance of these e�ects, some of them very obvious, but we

decided not to include them in this dissertation knowing they are a limitation for

the applicability of our model. Nevertheless, we believe including these e�ects in the

model's mathematical de�nitions would not be complicated, although the experimen-

tal designs to gather the appropriate measures would be.

� Icon orientation:

After our experience trying to use orientation to represent scalar �elds, we believe

it should not be used for that purpose. Subjects had a lot of trouble going beyond

the sense of \
ow" it conveys, and developed strategies to read the scalar �eld, but

only for our simple linear datasets. Even expert designers could not read orientation

for general multi-valued datasets. This \
ow" e�ect can also be considered a second-

order e�ect but, in this case, it is our hypothesis that it is c lear it interferes very much

negatively in the legibility of orientation.

On the other hand, orientation could be used as a di�erentiating factor for multilayered

methods. Including this factor would only improve the model we present here and

provide a more comprehensive coverage of visualization options.

� Other multivalued visualization options:
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We have not explored the possibility that users will not accept the loss of legibility

inherent in the discretization of a continuous dataset. Thepurpose of it is to enhance

the multivalued capabilities, allowing for multiple layer s. A very interesting avenue

of study would be to compare the ability to �nd spatial correl ations among variables

using techniques such as side-by-side visualization, in-place image 
ipping (where the

user clicks a button to switch between data variables in the same visual display using

a single method), and our own icon-based multilayered approach.

� Display Size and Conditions:

In our experiments room illumination, monitor calibration , and subject positioning

were controlled to a �rst approximation. This introduces a l imitation on how our

results apply in other conditions. Although we cannot certainly expect the exact

values to be maintained for other display form factors or illumination conditions, we

believe our model will provide a valuable approximation to e�ective visualizations.

Note that, even for conditions exactly matching our experiments, we do not claim to

�nd a single best visualization, but a solution that puts users closer to an e�ective

visual display of their data.

� Extensions to 3D:

The same reasons that motivated us to create a predictive model of utility for 2D

visualization apply for the 3D case. There are many perceptual artifacts that combine

together to facilitate or impede e�ective visualization of phenomena in 3D. There is a

clear need to understand how to quantify and harness those artifacts to create e�cient

and e�ective visualization methods.

Our experimental methodology, measuring the individual contributions of each visual

dimension and combining those in a predictive model, can be directly applied to the

three dimensional case. The de�nition of the dimensions, however, is harder since

there are more cues involved. The same goes for the design of the experiments,

where it will be more di�cult to isolate individual elements to obtain unbiased e�ect

measurements, while maintaining a realistic view of how these methods would be

used in practice. The same way we did on the 2D case, there needs to be a balance

between isolating individual contributions and successfully generalizing to practical

cases where many factors interact.

We believe that this very complexity, and the vast amount of combinations possible

when more cues are added, will allow visual designers and artists to really show their

potential as visualization evaluators. With their holisti c approach to critiquing, they

are able to evaluate how the di�erent elements present in a visual display participate
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in the overall composition.

7.5 Conclusion

Acquiring and using expert visual design knowledge and perceptual interaction data at the

scope proposed has been intellectually challenging, and the framework we presented in this

thesis to do it advances the state of the art in scienti�c visualization. Better visualizations

have the potential to advance science more quickly by improving our understanding of phys-

ical and biological phenomena, applied science, and engineering. This dissertation enhances

the channels of collaboration in education and research among the disciplines of cognitive

science, visual design, art and scienti�c visualization. It advances our understanding about

the areas in which each discipline in
uences the visualization design process and the quality

of the �nal product: e�ective scienti�c visualizations.

\The prize is the pleasure of �nding the thing out, the kick in the discovery,

the observation that other people use it [my work] {those arethe real things, the

honors are unreal to me."

{ Richard P. Feynman, in The Pleasure of Finding Things Out.



Bibliography

Acevedo, D., Chen, J., and Laidlaw, D. H. (2007a). Modeling perceptual dominance among

visual cues in multilayered icon-based scienti�c visualizations. IEEE Visualization'07,

Poster Compendium.

Acevedo, D., Jackson, C., Laidlaw, D. H., and Drury, F. (2005). Using visual design exper-

tise to characterize the e�ectiveness of 2D scienti�c visualization methods. In Proceedings

IEEE Visualization, Poster Compendium (BEST POSTER AWARD) .

Acevedo, D., Jackson, C., Laidlaw, D. H., and Drury, F. (2007b). Using visual design experts

in critique-based evaluation of 2d vector visualization methods. IEEE Transactions on

Visualization and Computer Graphics. In Review.

Acevedo, D. and Laidlaw, D. H. (2006). Subjective quanti�cation of perceptual interactions

among some 2D scienti�c visualization methods. IEEE Transactions on Visualization

and Computer Graphics (Proceedings Visualization / Information Visualization) , 12(5).

Acevedo, D., Vote, E., Laidlaw, D. H., and Joukowsky, M. (2001). Archaeological data

visualization in VR: Analysis of lamp �nds at the Great Templ e of Petra, a case study.

In Proceedings IEEE Visualization 2001 (BEST CASE-STUDY AWARD) , pages 493{496.

Acevedo, D., Zhang, S., Laidlaw, D. H., and Bull, C. (2004). Color rapid prototyping for

di�usion tensor MRI visualization. In Proceedings of MICCAI 2004 Short Papers.

Andrienko, G. and Andrienko, N. (1999). Data characterization schema for intelligent

support in visual data analysis. In Lecture Notes in Computer Science, pages 349{366.

Springer-verlag.

Bergen, J. R. (1991). Theories of visual texture perception. In Spatial Vision. CRC, Boca

Raton, FL.

Bergen, J. R. and Landy, M. S. (1991). Computational modeling of visual texture seg-

regation. In Computational Models of Visual Processing, pages 253{271. MIT Press,

Cambridge, MA.

150



151

Bertin, J. (1983). Semiology of Graphics. University of Wisconsin Press.

Bokinsky, A. A. (2003). Multivariate Data Visualization with Data-Driven Spots . PhD

thesis, University of North Carolina at Chapel Hill.

Brooks, F. P. (1996). The computer scientist as a toolsmith II. Communications of the

ACM, 39(3):61{68.

Cabral, B. and Leedom, L. C. (1993). Imaging vector �elds using line integral convolution.

In Kajiya, J. T., editor, Computer Graphics (SIGGRAPH '93 Proceedings), volume 27,

pages 263{272.

Callaghan, T. C. (1984). Dimensional interaction of hue andbrightness in preattentive �eld

segregation.Perception and Psychopysics, 36(1):25{34.

Callaghan, T. C. (1989). Interference and dominance in texture segregation: Hue, geometric

form, and line orientation. Perception and Psychopysics, 46(4):299{311.

Card, S. K. and Mackinlay, J. (1997). The structure of the information visualization design

space. InProceedings of IEEE Symposium on Information Visualization, pages 92{99.

Carswell, C. M. and Wickens, C. (1990). The perceptual interaction of graphical attributes:

Con�gurality, stimulus homogeneity, and object integrati on. Perception and Psychopy-

sics, 47:157{168.

Casner, S. M. (1991). A task-analytic approach to the automated design of graphic presen-

tations. ACM Transactions on Graphics, 10(2):111{151.

Chi, E. H. (2000). A taxonomy of visualization techniques using the data state reference

model. In Proceedings of InfoVis 2000, pages 69{76.

Cleveland, W. S. and McGill, R. (1984). Graphical perception: Theory, experimentation,

and application to the development of graphical methods. Journal of the American

Statistical Association, 79(387):531{554.

Cody, R. P. and Smith, J. K. (2006). Applied statistics and the SAS programming language.

Pearson Prentice Hall, Upper Saddle River, N.J.

Dastani, M. (2002). The role of visual perception in data visualization. Journal of Visual

Languages and Computing, 13(6):601{622.

Demiralp, C., Jackson, C., Karelitz, D., Zhang, S., and Laidlaw, D. H. (2006). Cave

and �shtank virtual-reality displays: A qualitative and qua ntitative comparison. IEEE

Transactions on Visualization and Computer Graphics, 12(3):323{330.



152

Dipp�e, M. A. Z. and Wold, E. H. (1985). Antialiasing through stochastic sampling. In

Barsky, B. A., editor, Computer Graphics (SIGGRAPH '85 Proceedings), volume 19,

pages 69{78.

Eick, S. G. (1995). Engineering perceptually e�ective visualizations for abstract data. In

Scienti�c Visualization Overviews, Methodologies and Techniques, pages 191{210. IEEE

Computer Science Press.

Ellis, W. D. (1939). A source book of gestalt psychology. Harcourt, Brace, and company,

New York, NY.

Feldman, E. B. (1994). Practical Art Criticism . Prentice Hall.

Grossberg, S. (2006). The art of seeing and painting. Technical Report CAS/CNS-2006-011,

Department of Cognitive and Neural Systems, Boston University.

Hanrahan, P. (2005). Teaching visualization. Computer Graphics, 39(1):4{5.

Healey, C. G. (1996). Choosing e�ective colours for data visualization. In Proceedings of

IEEE Visualization'96 , San Francisco, CA.

Healey, C. G., Amant, R. S., and Elhaddad, M. S. (1999). Via: Aperceptual visualization

assistant. In 28th Workshop on Advanced Imagery Pattern Recognition.

Healey, C. G., Booth, K. S., and Enns, J. T. (1993). Harnessing preattentive processes

for multivariate data visualization. In Proceedings of Graphics Interface, pages 107{117,

Toronto, Canada.

Healey, C. G., Booth, K. S., and Enns, J. T. (1996). High-speedvisual estimation using

preattentive processing. ACM Transactions on Human-Computer Interaction , 3(2):107{

135.

Healey, C. G. and Enns, J. T. (1999). Large datasets at a glance: Combining textures

and colors in scienti�c visualization. IEEE Transactions on Visualization and Computer

Graphics, 5(2):145{167.

Healey, C. G., Enns, J. T., Tateosian, L., and Rempel, M. (2004). Perceptually-based brush

strokes for nonphotorealistic visualization. Transactions on Graphics, 23(1).

Heydayat, A., Sloane, N., and Stufken, J. (1999).Orthogonal arrays : theory and applica-

tions. Springer.

Hibbard, B. (2004). The top �ve problems that motivated my wo rk. IEEE Computer

Graphics and Applications, 24(6):9{13.



153

House, D. and Ware, C. (2002). A method for perceptual optimization of complex visual-

izations. In Proceedings of Advanced Visual Interface.

House, D. H., Bair, A. S., and Ware, C. (2006). An approach to the perceptual optimization

of complex visualizations. IEEE Transactions on Visualization and Computer Graphics,

12(4):509{521.

Interrante, V., Fuchs, H., and Pizer, S. M. (1997). Conveying shape of smoothly curving

transparent surfaces via texture. IEEE Transactions on Visualization and Computer

Graphics, 3(2):98{117.

Jackson, C., Acevedo, D., Laidlaw, D. H., Drury, F., Vote, E., and Keefe, D. (2003).

Designer-critiqued comparison of 2D vector visualization methods: A pilot study. In

SIGGRAPH 2003 Sketches and Applications. ACM SIGGRAPH.

Jankun-Kelly, T. (2003). Visualizing Visualization: A Model and Framework for Visualiza-

tion Exploration . PhD thesis, Center for Image Processing and Integrated Computing,

University of California, Davis.

Johnson, C. (2004). Top scienti�c visualization research problems. IEEE Computer Graphics

and Applications, 24(4):13{17.

Keefe, D., Karelitz, D., Vote, E., and Laidlaw, D. H. (2005). Artistic collaboration in

designing VR visualizations. IEEE Computer Graphics and Applications, 25(2):18{23.

Keller, J. M., Boynton, W. V., Karunatillake, S., Baker, V. R ., Dohm, J. M., Evans, L. G.,

Finch, M. J., Hahn, B. C., Hamara, D. K., Janes, D. M., Kerry, K . E., Newsom, H. E.,

Reedy, R. C., Sprague, A. L., Squyres, S. W., Starr, R. D., Taylor, G. J., and Williams,

R. M. S. (2006). Equatorial and midlatitude distribution of chlorine measured by mars

odyssey GRS.Journal of Geophysicial Research, 111.

Kirby, M., Keefe, D., and Laidlaw, D. H. (2004). Painting and visualization. In Visualization

Handbook. Academic Press.

Kirby, M., Marmanis, H., and Laidlaw, D. H. (1999a). Visuali zing multivalued data from 2D

incompressible 
ows using concepts from painting. InProceedings of IEEE Visualization

1999, pages 333{340.

Kirby, R. M., Marmanis, H., and Laidlaw, D. H. (1999b). Visua lizing multivalued data

from 2d incompressible 
ows using concepts from painting. In Proceedings Visualization

'99. IEEE Computer Society Press.



154

Kosara, R., Healey, C. G., Interrante, V., Laidlaw, D. H., and Ware, C. (2003). User studies:

Why, how, and when. Computer Graphics and Applications, 23(4):20{25.

Laidlaw, D. H. (2001). Loose, artistic \textures" for visua lization. IEEE Computer Graphics

and Applications, 21(2):6{9.

Laidlaw, D. H., davidkremers, Toga, A., Drury, F., and Jacobs, R. E. (2004). Applying

lessons from visual art to exploration of the brain. Panel in Thirty-Seventh Annual

Winter Conference on Brain Research.

Laidlaw, D. H., Kirby, M., Jackson, C., Davidson, J. S., Mill er, T., DaSilva, M., Warren,

W., and Tarr, M. (2005). Comparing 2D vector �eld visualizat ion methods: A user study.

In IEEE Transactions on Visualization and Computer Graphics, 11(1):59{70.

Lamming, D. (1991). Constrast sensitivity. In Vision and Visual Dysfunction.

Landy, M. and Movshon, J. (1991). Computational Models of Visual Processing. MIT Press,

Cambridge, MA.

Landy, M. S. and Bergen, J. R. (1991). Texture segregation and orientation gradient. Vision

Research, 31(4):679{691.

Lange, S., Schumann, H., Muller, W., and Kromker, D. (1995).Problem-oriented visualisa-

tion of multi-dimensional data sets. In Proceedings of the International Symposium and

Scienti�c Visualization , pages 1{15.

Laper, N. (1995). Mix and Match: A Construction Kit for Scienti�c Visualization . PhD

thesis, University of California Santa Cruz.

MacEachren, A. and Kraak, M.-J. (1997). Exploratory cartographic visualization: Advanc-

ing the agenda. Computers and Geosciences, 23(4):335{343.

Mackinlay, J. (1986). Automating the design of graphical presentations of relational infor-

mation. ACM Transactions on Graphics, 5(2):110{141.

McCleary Jr., G. F. (1983). An e�ective graphic vocabulary. IEEE Computer Graphics and

Applications, 3(2):46{53.

McCool, M. and Fiume, E. (1992). Hierarchical poisson disk sampling distributions. In

Proceedings of ACM SIGGRAPH, pages 94{105.

Miceli, K. D. (1992). A framework for the design of e�ective graphics for scienti�c visual-

ization. Technical Report RNR-92-035, NASA Ames Research Center.



155

Nagappan, R. (2001). A compositional model for multidimensional data visualisation. In

In Proceedings of SPIE, Visual Data Exploration and Analysis VIII , pages 156{167.

Nielsen, J. (1992). Finding usability problems through heuristic evaluation. In Proceedings

of CHI, pages 373{380.

Norberg, U. M. and Rayner, J. M. V. (1987). Ecological morphology and 
ight in bats.

wing adaptations, 
ight performance, foraging strategy and echolocation. Philosophical

Transactions of the Royal Society of London Series B-Biological Sciences, 316:337{419.

Nowell, L. T. (1997). Graphical Encoding for Information Visualization: Using Ico n Color,

Shape, and Size to Convey Nominal and Quantitative Data. PhD thesis, Virginia Poly-

technic Institute and State University, Blacksburg, Virgi nia.

Rhyne, T.-M. (2003). Does the di�erence between informationand scienti�c visualization

really matter? IEEE Computer Graphics and Applications, 23(3):6{8.

Robertson, P. K. (1991). A methodology for choosing data representations. IEEE Computer

Graphics and Applications, 11(3):56{67.

Salisbury, L. D. P. (2001). Automatic Visual Display Design and Creation. PhD thesis,

Department of Computer Science and Engineering, University of Washington.

Sayre, H. M. (1995). Writing about Art . Prentice Hall, 2nd edition.

Senay, H. and Ignatius, E. (1994). A knowledge-based system for visualization design. IEEE

Computer Graphics and Applications, 14(6):36{47.

Shneiderman, B. (1996). The eyes have it. a task by data type taxonomy for information

visualizations. In Proceedings of IEEE Symposium on Visual Languages, pages 336{343,

Boulder, CO.

Sobel, J., Forsberg, A., Laidlaw, D. H., Zeleznik, R., Keefe, D., Pivkin, I., Karniadakis,

G., Richardson, P., and Swartz, S. (2004). Particle 
urries: Synoptic 3D pulsatile 
ow

visualization. IEEE Computer Graphics and Applications, 24(2):76{85.

Springmeyer, R. R., Blattner, M. R., and Max, N. L. (1992). A characterization of the scien-

ti�c data analysis process. In Proceedings of the Second IEEE Visualization Conference,

pages 235{242.

Swan, J. E., Interrante, V., Laidlaw, D. H., Rhyne, T.-M., and Munzner, T. (1999). Vi-

sualization needs more visual design! Sensory design issues as a driving problem for

visualization research. InProceedings of IEEE Visualization Conference, pages 485{490,

San Francisco, California.



156

Taylor II, R. M. (2002). Visualizing multiple scalar �elds o n the same surface. IEEE

Computer Graphics and Applications, 22(2):6{10.

Thomas, J. (2005). Illuminating the Path: The Research and Development Agendafor

Visual Analytics. National Visualization and Analytics Center.

Tory, M. and Moller, T. (2004). Human factors in visualizati on research.IEEE Transactions

on Visualization and Computer Graphics, 10(1):72{84.

Tory, M. and Moller, T. (2005). Evaluating visualizations: Do expert reviews work? IEEE

Computer Graphics and Applications, 25(5):8{11.

Tufte, E. (1983). The Visual Display of Quantitative Information . Graphics Press.

Tufte, E. (1990). Envisioning Information . Graphics Press.

Tufte, E. (1997). Visual Explanations. Graphics Press.

Turk, G. and Banks, D. (1996). Image-guided streamline placement. In Proceedings of

SIGGRAPH 96, pages 453{460. ACM SIGGRAPH.

van Wijk, J. (2006). Bridging the gaps. IEEE Computer Graphics and Applications, 26(6):6{

9.

van Wijk, J. J. (2005). The value of visualization. In Proceedings of IEEE Visualization,

pages 79{86, Minneapolis, MN.

Vote, E., Acevedo, D., Jackson, C., Sobel, J., and Laidlaw, D. H. (2003). Design-by-

example: A schema for designing visualizations using examples from art. In SIGGRAPH

2003 Sketches and Applications. ACM SIGGRAPH.

Vote, E., Acevedo, D., Laidlaw, D. H., and Joukowsky, M. (2002). Discovering Petra:

Archaeological analysis in VR. IEEE Computer Graphics and Applications, 22(5):38{50.

Wallschlaeger, C. and Busic-Snyder, C. (1992).Basic Visual Concepts and Principles for

Artists, Architects and Designers. McGraw Hill.

Ware, C. (2004). Information Visualization. Perception for Design. Elsevier, 2nd edition.

Watanabe, T. and Cavanagh, P. (1996). Texture laciness: thetexture equivalent of trans-

parency? Perception, 25(3):293{303.

Watson, B. (2006). Broadening our collaboration with design. IEEE Computer Graphics

and Applications, 26(5):18{21.



157

Weigle, C., Emigh, W., Liu, G., Russell M. Taylor II, Enns, J. T., and Healey, C. G. (2000).

Oriented sliver textures: A technique for local value estimation of multiple scalar �elds.

In Proceedings of Graphics Interface.

Wolfe, J. M. (1998). Visual search. InAttention . University College London Press, London,

UK.

Woodhouse, I., Turner, D., and Laidlaw, D. H. (2002). Improving the visualization of

polarimetric response in SAR images: from pixels to images.In Proceedings of IEEE

IGARSS.

Zhang, S., Demiralp, C., and Laidlaw, D. H. (2003). Visualizing di�usion tensor MR

images using streamtubes and streamsurfaces.IEEE Transactions on Visualization and

Computer Graphics, 9(4):454{462.


