
Abstract of “Load Shedding Techniques for Data Stream Management Systems” by Emine Nesime

Tatbul, Ph.D., Brown University, May 2007.

In recent years, we have witnessed the emergence of a new class of applications that must deal

with large volumes of streaming data. Examples include financial data analysis on feeds of stock tick-

ers, sensor-based environmental monitoring, and network traffic monitoring. Traditional database

management systems (DBMS) which are very good at managing large volumes of stored data, fall

short in serving this new class of applications, which require low-latency processing on live data from

push-based sources. Aurora is a data stream management system (DSMS) that has been developed

to meet these needs.

A DSMS such as Aurora may be subject to higher input rates than its resources can handle.

When input rates exceed system capacity, the system will become overloaded and Quality of Service

(QoS) at system outputs will fall below acceptable levels. Under these conditions, the system will

shed load by selectively dropping tuples, thus degrading the answer, in order to improve the observed

latency of the results.

In this dissertation, we first define the load shedding problem in data stream management systems

and provide a general solution framework which handles the overload problem in a light-weight

manner, while minimizing the loss in result accuracy. Then we present additional techniques on top

of this basic framework to handle windowed aggregation queries in a way that preserves the subset

result guarantee.

Due to the distributed nature of stream-based data sources as well as the need for better scal-

ability and fault tolerance, we have recently extended Aurora into Borealis - a larger-scale system

that can operate in distributed environments. In such an environment, the load shedding problem

involves simultaneously removing excess load from multiple overloaded nodes in a scalable fashion.

In the final part of this thesis, we investigate this distributed load shedding problem, and provide

several alternative solutions to extend our earlier framework in Aurora to the distributed setting of

the Borealis system.

Load Shedding Techniques for Data Stream Management Systems

by

Emine Nesime Tatbul

B. S., Middle East Technical University, Ankara, Turkey, 1996

Sc. M., Middle East Technical University, Ankara, Turkey, 1998

Sc. M., Brown University, Providence, RI, USA, 2001

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2007

c© Copyright 2003, 2005, 2006, 2007 by Emine Nesime Tatbul

This dissertation by Emine Nesime Tatbul is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Stan Zdonik, Director

Recommended to the Graduate Council

Date
Uğur Çetintemel, Reader

Date
Mitch Cherniack, Reader

Brandeis University

Date
John Jannotti, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Emine Nesime Tatbul was born on December 15th, 1974 in Devrek, Turkey. She completed İstiklâl

Elementary School in Devrek and TED Zonguldak College Foundation Private High School in

Zonguldak. She attended the Middle East Technical University in Ankara, where she received

her Bachelor of Science degree in 1996, and her Master of Science degree in 1998, both in Computer

Engineering. She then joined the Ph.D. program at Brown University Computer Science Depart-

ment in the fall of 1999, where she received a Masters degree in 2001. During her graduate school

years at Brown, she also worked as a research intern at the IBM Almaden Research Center, and as

a consultant for the U.S. Army Research Institute of Environmental Medicine.

v

vi

Acknowledgements

This thesis work could not have been completed without the help and support of my colleagues,

friends, and family.

First and foremost, I am in deep gratitude to my Ph.D. supervisor Stan Zdonik. Stan has been

the perfect advisor. Starting from the first day I met him, he has been a constant source of moral

support and encouragement. He has done so much to help me establish confidence in my research

work. There have been times when I felt like he believed in me even more than I believed in myself.

He provided invaluable resources and opportunities for me to accumulate academic experience in

various areas including writing research papers and grant proposals, giving clear and convincing

presentations, advising junior students, organizing conferences, and technical consulting to external

institutions. Stan, I will forever be grateful for the time and effort that you invested in me. I hope

I can be worthy of your unending trust.

I would like to also thank Uğur Çetintemel, whose role in my graduate school years has gone

far beyond being a member of my thesis committee. The first and the most influential thing I

learned from Uğur was to keep trying your very best, even when things seem to be hopeless, or

impossible at times. In addition to being a great source of motivation and energy, Uğur has had

significant technical contributions in my thesis research. This dissertation would not have been the

same without him. I have also been in close interaction with Uğur on planning my career path. He

not only shared his extensive experience with me, but also served and will continue to serve as an

excellent role model.

When I joined Brown, Mitch Cherniack had just finished his Ph.D. work with Stan. I have always

seen Mitch as my older academic brother. In my initial years at Brown, Stan and I would drive to

Brandeis University to have research meetings with Mitch. We had a lot of fun in those meetings

and I learned so much. In particular, observing Mitch come up with elegant ways to model and

express his research ideas, I realized the importance of having good taste in research. Mitch has also

served in my research comps and Ph.D. thesis committees, providing me great feedback. I am also

thankful for his support during my job search.

I would like to thank John Jannotti who served in my Ph.D. thesis committee. Being from a

closely related but a different subfield of computer systems, John provided the essential networking

perspective that was needed on my research work. He has always raised interesting questions and

given complementary feedback. His detailed comments on my thesis proposal document was very

vii

helpful to improve the clarity of my writing.

The Aurora/Borealis projects, which form the basis of this dissertation work, involved tremen-

dous group effort. I would like to thank all the team members from Brandeis University, Brown Uni-

versity and MIT: Daniel Abadi, Yanif Ahmad, Hari Balakrishnan, Magdalena Balazinska, Bradley

Berg, Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey, Christina Erwin, Eddie

Galvez, Matt Hatoun, Mark Humphrey, Jeong-Hyon Hwang, Anjali Jhingran, Sangdon Lee, Wolf-

gang Lindner, Sam Madden, Anurag Maskey, Olga Papaemmanouil, Alex Rasin, Esther Ryvkina,

Jon Salz, Adam Singer, Mike Stonebraker, Richard Tibbetts, Robin Yan, Wenjuan Xing, Ying Xing,

and Stan Zdonik. It was a great opportunity for me to work with Mike Stonebraker. I learned a

lot from his extensive experience in designing and building large-scale database systems. Christian

Convey, who worked as a software engineer for the Aurora project, deserves special thanks for his

dedicated support in preparing our system demo for the SIGMOD Conference [7]. Mark Humphrey,

Jeong-Hyon Hwang, Robin Yan, Wenjuan Xing worked on the graphical interfaces of the projects,

which made our demos look much more sensible and nicer.

I want to also thank the members of the Brown Database Group. It was great fun working

with you folks. We shared the stress of the conference deadlines, and the fun of partying after

work, celebrating our success. In particular, I will always remember the sleepless nights that we

spent together, debugging the Borealis code to get it working for the SIGMOD demo [12]. Yanif,

Jeong-Hyon, Mark, Olga, Alex, Vivian, Ying: We deserved the best demo award after all, didn’t

we?

I am also thankful to the administrative and technical staffs of the Brown Computer Science

Department. They were always available to answer questions and solve problems. I would like

to especially acknowledge the help from Lori Agresti, Katrina Avery, Eugenia deGouveia, Jennet

Kirschenbaum, Dorinda Moulton, Max Salvas, and Jeff Coady.

I had the opportunity to spend the summer of 2002 at the IBM Almaden Research Center as a

research intern. Although the work I did at Almaden did not become a part of this dissertation, I

learned various skills during my internship which I believe made me a better researcher in general.

I would like to thank my project manager C. Mohan and my mentor Mehmet Altınel for providing

me the opportunity. Special thanks are also due to my long-time friend Fatma Özcan from IBM

Almaden, whose career steps I closely followed over the years. Fatma has given me great advice and

support at various periods of my graduate school life from research-related issues to career planning.

I will always be grateful to Asuman Doğaç, my Masters advisor at the Middle East Technical

University in Turkey. She first introduced me to the database field and she encouraged me to pursue

my Ph.D. study at Brown in the first place. I will continue to admire and get motivation from her

enthusiasm, hard work, and energy for database research.

I thank all my friends at Brown Computer Science for their companionship and support. Çağatay

Demiralp was one of the first people that I met when I came to Providence. With Çağatay, we have

shared many interesting conversations in research, politics, and miscellaneous gossip over coffee. I

joined Brown at the same time with Olga Karpenko and Prabhat. We have been very good friends

viii

ever since. Thanks to you folks for your help and support in everything. I would like to also thank my

colleague, exercise buddy, hotel roommate, and chicken-thrower Olga Papaemmanouil, with whom

we both worked and shared laughs together on various occasions.

I also thank all my friends in the Brown Turkish community for their friendship, help, and

support over the years. They always made me feel at home.

I also send my thanks to my close friends in Turkey including Sibel Aktaş-Şen, Nuray Aydın,

Özlem Demir-Kaya, and Burçak Ekinci for giving me continuous moral support and for cheering me

up from 5000 miles away.

My family has always been a wonderful source of support and encouragement. I would like

to thank my parents Emin Tatbul and Şaziye Tatbul, and my brother Mustafa Tatbul for their

unconditional love and support. They have always had everlasting faith in me which gave me

strength to overcome the obstacles that I encountered during my Ph.D. years. Thanks are due to

my parents-in-law Müberra and Ferhat Bitim as well as my brother-in-law Semih Bitim for their

continuous support and prayers.

Finally, I would like to express my deepest gratitude to my husband Melih Bitim. Melih is re-

sponsible for initially motivating me to pursue an academic career in the United States. I wouldn’t

be where I am today if he didn’t encourage me in the first place. He had to endure the ups and

downs of my long graduate school life. There have been many times that he woke up in the middle

of the night to pick me up from school. He had to spend many boring Sundays without me. Despite

all this suffering, he never stopped supporting me and believing in that I will become a doctor one

day. Melih, I thank you for your love and support, and I dedicate this dissertation to you.

ix

x

Credits

This thesis is based on several papers that we have jointly written with Stan Zdonik, Uğur Çetintemel,

Mitch Cherniack, Michael Stonebraker, and some other members of the Aurora/Borealis Projects.

Chapter 2 is based on our system design papers for Aurora [8] and Borealis [6]. Chapter 3 is based

on our VLDB 2003 paper [93]. Chapter 4 is based on our VLDB 2006 paper [95]. Finally, Chapter

5 is based on our NetDB 2006 paper [94] and a recent conference submission [92].

This thesis research has been supported by several grants, including NSF grants IIS-0086057 and

IIS-0325838, and Army contract DAMD-17-02-2-0048, for which we are grateful.

xi

xii

Uzun ince bir yoldayım.

Gidiyorum gündüz gece.

Yetişmek için menzile.

Gidiyorum gündüz gece,

Gündüz gece.

I am on a long, narrow path.

I am walking on, day and night.

On the road to reach my destination.

I am walking on, day and night,

Day and night.

Âşık Veysel (1894-1973)

xiii

xiv

To my dear husband, Melih Bitim.

xv

xvi

Contents

List of Tables xxi

List of Figures xxiii

1 Introduction 1

1.1 Data Stream Processing . 1

1.2 The Overload Challenge . 3

1.3 Thesis Contributions . 4

1.4 Thesis Outline . 6

2 Background 7

2.1 The Aurora System . 7

2.1.1 System Architecture . 7

2.1.2 Data Model . 8

2.1.3 Query Model . 9

2.1.4 Quality of Service Model . 10

2.2 The Borealis System . 11

2.2.1 System Architecture . 11

2.2.2 Optimizer Hierarchy . 12

3 Load Shedding in a Data Stream Manager 15

3.1 The Load Shedding Problem . 15

3.2 General Solution Framework . 17

3.3 Overload Detection . 18

3.3.1 The Theory . 19

3.3.2 The Practice . 20

3.4 A Greedy Approach . 21

3.4.1 Drop Locations . 24

3.4.2 Loss/Gain Ratio . 27

3.5 The Load Shedding Road Map . 28

3.6 Drop Operators . 30

xvii

3.7 Semantic Load Shedding . 32

3.7.1 Translation between QoS Functions . 32

3.7.2 The Drop Predicate . 34

3.7.3 Semantic Drop on Joins . 34

3.8 Simulation-based Performance Evaluation . 35

3.8.1 Experimental Setup . 35

3.8.2 Comparing Load Shedding to Simple Admission Control 36

3.8.3 Comparing Random and Semantic Load Shedding 38

3.8.4 Evaluating the Effect of Operator Sharing . 39

3.9 Case Study: Battalion Monitoring . 40

3.10 Chapter Summary . 42

4 Window-aware Load Shedding 47

4.1 Overview . 47

4.2 Aggregation Queries . 48

4.2.1 The Window Model . 49

4.2.2 The Aggregate Function . 49

4.2.3 The Aggregate Operator . 49

4.3 The Subset-based Approximation Model . 50

4.4 Window-aware Load Shedding with Window Drop 51

4.5 Handling Multiple Aggregates . 53

4.5.1 Pipeline Arrangement of Aggregates . 53

4.5.2 Fan-out Arrangement of Aggregates . 55

4.5.3 Composite Arrangements . 56

4.6 Decoding Window Specifications . 56

4.7 Early Drops . 58

4.8 Window Drop Placement . 59

4.9 Analysis . 59

4.9.1 Correctness . 59

4.9.2 Performance . 60

4.10 Extensions . 61

4.10.1 Multiple Groups . 61

4.10.2 Count-based Windows . 62

4.11 Performance Evaluation on Borealis . 62

4.11.1 Experimental Setup . 62

4.11.2 Basic Performance . 63

4.11.3 Effect of Window Parameters . 65

4.11.4 Processing Overhead . 68

4.12 Chapter Summary . 68

xviii

5 Distributed Load Shedding 71

5.1 Overview . 71

5.1.1 Motivating Example . 72

5.1.2 Design Goals . 73

5.1.3 Our Solution Approach . 74

5.1.4 Assumptions . 74

5.1.5 Chapter Outline . 75

5.2 The Distributed Load Shedding Problem . 75

5.2.1 Basic Formulation . 75

5.2.2 Operator Splits and Merges . 76

5.3 Architectural Overview . 78

5.4 Advance Planning with a Solver . 80

5.4.1 Region-Quadtree-based Division and Indexing of the Input Rate Space 81

5.4.2 Exploiting Workload Information . 83

5.5 Advance Planning with FIT . 84

5.5.1 Feasible Input Table (FIT) . 84

5.5.2 FIT Generation . 85

5.5.3 FIT Merge and Propagation . 88

5.5.4 Point-Quadtree-based Division and Indexing of the Input Rate Space 89

5.6 Putting it All Together . 90

5.7 Performance Evaluation on Borealis . 91

5.7.1 Experimental Setup . 91

5.7.2 Experimental Results . 91

5.8 Chapter Summary . 99

6 Related Work 103

6.1 Computer Networking . 103

6.2 Network Services . 104

6.3 Multimedia Streaming . 105

6.4 Real-Time Databases . 106

6.5 Approximate Query Processing . 107

6.6 Parametric Query Optimization . 108

6.7 Load Shedding in Data Stream Management Systems 109

6.7.1 STREAM . 109

6.7.2 TelegraphCQ . 110

6.7.3 NiagaraCQ . 111

6.7.4 The Cornell Knowledge Broker . 111

6.7.5 Model- and Control-based Approaches . 112

xix

7 Conclusions and Future Work 113

7.1 Future Directions . 114

7.1.1 Managing Other Resources . 114

7.1.2 Other Forms of Load Reduction . 114

7.1.3 Other Latency Problems . 115

7.1.4 Window-awareness on Joins . 115

7.1.5 Prediction-based Load Shedding . 115

7.1.6 Load Management on Update Streams . 116

Bibliography 117

xx

List of Tables

3.1 Drop operators (* indicates limited use) . 31

3.2 Notation for translation between QoS functions . 33

3.3 Example value intervals . 33

3.4 Value-based QoS and other metadata for the join of Figure 3.10 35

3.5 Notation for the utility formulas . 36

4.1 Window specification attribute . 52

4.2 Rules for setting window drop parameters . 53

4.3 Decoding window specifications . 57

4.4 Throughput ratio (WinDrop(p = 0)/NoDrop) . 68

5.1 Alternate load shedding plans for node A of Figure 5.1 72

5.2 Linear query diagram notation . 76

5.3 Four phases of distributed load shedding . 81

5.4 FITs for example of Figure 5.1 (spread = 0.2) . 85

5.5 Effect of dimensionality (εmax = 10%) . 99

xxi

xxii

List of Figures

1.1 DBMS vs. DSMS: The paradigm shift . 2

2.1 Aurora system architecture . 8

2.2 Aurora query network . 9

2.3 Quality of Service (QoS) . 10

2.4 Borealis system architecture . 12

2.5 Borealis optimizer hierarchy . 13

3.1 Calculating load coefficients . 19

3.2 Query network with load coefficients . 20

3.3 Candidate drop locations . 24

3.4 Query plan with no fan-out . 25

3.5 Query plan with fan-out . 25

3.6 Drop insertion . 27

3.7 Load Shedding Road Map (LSRM) . 29

3.8 LSRM construction . 30

3.9 Derivation of the loss-tolerance QoS . 33

3.10 Join . 35

3.11 Load shedding vs. admission control variants (% Tuple utility loss) 37

3.12 Load shedding vs. admission control variants (% Value utility loss) 38

3.13 Value utility loss ratio for Random-LS/Semantic-LS vs. skew in utility 39

3.14 Tuple utility loss ratio for Input-Uniform/Random-LS vs. % excess load 40

3.15 Battalion Monitoring . 41

3.16 Battalion Monitoring Queries . 43

3.17 Aurora Performance Monitoring GUI for Battalion Monitoring Queries 44

3.18 Load Shedding Results for the Battalion Monitoring Application 45

4.1 An example nested aggregation query . 47

4.2 Drop alternatives for an aggregate . 51

4.3 Pipeline example . 54

4.4 Fan-out example . 55

xxiii

4.5 Inserting drops into an aggregation query . 60

4.6 Drop-batch (when B ≥ bω
δ c) . 61

4.7 Drop insertion plans for the pipeline arrangement (RDrop, Nested1, and Nested2) . 63

4.8 Comparing alternatives (pipeline) . 64

4.9 Drop insertion plans for the fan-out arrangement . 65

4.10 Comparing alternatives (fan-out) . 65

4.11 Effect of window size . 66

4.12 Effect of window slide . 67

4.13 Filtered aggregation query . 68

5.1 Two continuous queries distributed onto two servers 72

5.2 Linear query diagram . 76

5.3 Two levels of operator splits . 77

5.4 Merging two streams via Union . 78

5.5 Centralized approach . 79

5.6 Distributed approach . 80

5.7 Region-Quadtree-based space division and index for Solver 83

5.8 Choosing feasible points . 86

5.9 Splits to be supported by complementary plans . 88

5.10 Point-Quadtree-based space division and index for FIT 89

5.11 Query networks with different query load distributions and feasibility boundaries . . 92

5.12 Effect of query load imbalance . 93

5.13 Effect of workload distribution and provision level on Solver-W plan generation . . . 95

5.14 Exponential workload distribution for different λ values 96

5.15 Effect of operator fan-out (εmax = 1%) . 97

5.16 Effect of input dimensionality . 98

5.17 D-FIT Overhead . 100

xxiv

Chapter 1

Introduction

New applications that must deal with vast numbers of input streams are becoming more common.

These include applications that process data from small embedded sensors, applications that must

correlate financial data feeds, and applications that must manage input from a very large number

of geo-positioning devices. A new class of data management systems has emerged in response to

these applications [24, 28, 31, 70]. These systems are commonly known as Data Stream Manage-

ment Systems (DSMS). A DSMS aims at providing the same kind of infrastructure to stream-based

applications that Database Management Systems (DBMS) have provided for data processing appli-

cations.

In this chapter, we first introduce the data stream processing concept. We then focus on some

of the important challenges of data stream processing that motivated this thesis work, and highlight

our main contributions in addressing those challenges. Finally, we conclude the chapter with a brief

outline of the thesis.

1.1 Data Stream Processing

Data streams are possibly unbounded sequences of data elements that are typically generated rapidly

one after the other. Common sources of this kind of data include sensors that make physical

measurements about their environments and emit these as value readings (e.g. a temperature sensor),

and software that continuously report the occurrence of certain events of interest (e.g., a program

reporting the trades of stock shares). An important property of these data sources is that they

are push-based, i.e., they are not programmed to store and provide data on demand, but to release

it as soon as new data becomes available. There are an increasing number of applications that

require continuous, real-time monitoring and processing on data streams. Well-known examples

include sensor-based monitoring (e.g. habitat monitoring [89], biomedical monitoring [82, 91], road

traffic monitoring [15]), RFID-based asset tracking [42], financial analysis applications [105, 107],

GPS-based location tracking [66], and network traffic monitoring [18].

Data streams have caused an important paradigm shift in data management. In traditional

1

2

(a) Traditional Data Management (b) Data Stream Management

Figure 1.1: DBMS vs. DSMS: The paradigm shift

data processing systems, large volumes of datasets are persistently stored on disk, and one-time

queries are executed on them (see Figure 1.1(a)). In this model, data is pulled from the disk as it is

demanded by the queries. In case of data streams, the two basic elements of data processing, data

and queries, have their roles completely reversed (see Figure 1.1(b)). A large number of long-lived

queries called continuous queries are defined in advance of the data, and are persistently stored in

the system. Data streams, as they arrive from their push-based sources, are continuously evaluated

against these standing queries. In this model, data is pushed from the sources and needs to be

processed through the queries 1. This radical reversal of roles for data and queries has not only

required that the database community rethink most of the earlier data processing problems and

their respective solutions, but also introduced a number of brand new challenges:

• Continuous Queries. Stream data typically arrives in certain order and may have no end.

Queries have to be continuously executed, taking the order of data arrival into account. This

is radically new since the traditional relational operations assume set-based (i.e., unordered)

semantics on finite data. Furthermore, since data streams can be unbounded, some of these

operations, which were designed to process their inputs as a whole may be blocked (e.g., ag-

gregate operations) or may have to keep infinitely growing internal state (e.g., join operation).

To address these issues, such operations needs to be redefined to perform “window-based”

continuous query processing.

• Low-latency Processing. Stream data usually represents real-time events and therefore has

close association with the time of its generation. In most cases, data will quickly lose its value

to the application as it gets older. Therefore, low-latency processing of data streams is highly

important.

• High and Variable Input Rates. Stream data arrival rates can be very high. For example,
1In some cases, data can also be optionally archived at the receiver for post-processing.

3

in the financial domain, applications have to deal with 100,000+ messages per second [3] (al-

though not all of these messages may be equally important or interesting to the application).

Furthermore, input load often fluctuates in an unpredictable fashion due to bursty nature

of data arrival. This may further cause unexpected resource bottlenecks and performance

degradation in the system. Therefore, continuous performance monitoring and adaptive re-

source management are essential for maintaining system scalability and good quality of service,

including low latency.

The database community has worked on many problems in the past that closely relate to data

stream processing. These include temporal and real-time databases focusing on representing time

and satisfying timing constraints [73]; active databases with database events and trigger processing

[75]; publish/subscribe systems focusing on push-based data processing [40]; approximate query

processing techniques as a trade-off for improved performance [44]; and sequence databases where

order of processing is important [83]. Data streams embody the challenges of all of these problem

areas and more.

Consequently, data stream processing has emerged as a new subfield of research in database sys-

tems in the past few years 2. Researchers have investigated various aspects of data stream processing,

including data models and query algebras, basic query processing and optimization algorithms, ap-

proximation and adaptivity for scalable performance, XML streams, and stream mining. Several

large-scale research prototypes have been built, some of which have already successfully turned into

promising start-up companies (e.g., StreamBase [87], Coral8 [2], and Amalgamated Insight [1]).

This thesis research has been conducted in the context of two such prototype systems, Aurora and

Borealis, which we will describe in detail in the next chapter.

1.2 The Overload Challenge

The high-level focus of this thesis is the resource overload problem in data stream management

systems. As also mentioned earlier, streaming applications are characterized by a large number of

push-based data sources in which the data arrival rates can be high and unpredictable. Each of these

applications is responsible for monitoring data to detect critical situations, during which the data

rates can significantly increase. During bursty data arrival, the demand on system resources (such as

CPU) may exceed the available capacity. In this case, tuple queues will build up, thereby seriously

increasing the latency of the query results. This is a major problem since low-latency processing is

an important requirement of real-time stream processing.

Providing meaningful service even under system overload is one of the key challenges for stream

processing systems. Since such overload situations are usually unforeseen and immediate attention

is vital, adapting the system capacity to the increased load by adding more resources may not be
2To give an idea about the growing interest, starting in 2002, the two leading conferences in databases, SIGMOD
and VLDB, have included increasingly more number of research sessions on data streams, reaching up to 4 sessions
each in 2005 (roughly, 18% and 16% of the total research sessions, respectively) [38].

4

feasible or economically meaningful. In order to meet the low-latency requirements, there may be

no alternative but to shed some of the load.

In general terms, we define load shedding as the process of dropping excess load from the system

such that latency bounds are preserved. While dropping tuples will certainly reduce the processing

requirements on the system, and thus, reduce the effective load, it will also have a detrimental effect

on the accuracy of the answer. Said another way, load reduction to improve latency and accuracy

are fundamentally at odds. When we improve utility by shedding load and reducing latency, we

necessarily lose utility by producing an approximate answer. The technical challenge in this problem

is to improve latency with minimal loss in answer accuracy.

Another important challenge with load shedding is to be able to produce approximate answers

for queries with different levels of semantic complexity. As we mentioned earlier, in order to deal

with ordered and unbounded data arrival, continuous queries may involve operators that operate on

“windows” of tuples. These are also known as “stateful” operators. One such common operator is

windowed aggregation. These operators can also have customizable components such as user-defined

functions, and multiple of them can occur in the same query plan in a nested or shared fashion.

Load shedding for such complex queries brings additional semantic challenges.

On the other hand, due to the distributed nature of stream-based data sources as well as the

need for better scalability and fault tolerance, data stream management systems have recently been

extended to operate in distributed environments. Although distributed stream processing systems

are potentially equipped with more powerful computational resources where query workload can

be carefully distributed onto multiple machines to avoid overload situations as much as possible,

the overload problem can still arise since data is likely to arrive in unexpected bursts, and the

system usually cannot be provisioned based on a bursty workload. In a distributed environment, the

load shedding problem involves simultaneously removing excess load from a multitude of overloaded

nodes. Note that presence of even a single overloaded node is sufficient to cause latency increase.

Therefore, it is important to make sure that all nodes operate below their processing capacity.

Furthermore, in a distributed setting, there is a load dependency between nodes that are assigned

to run pieces of the same query. Shedding load at an upstream node affects the load levels at its

downstream nodes, and the load shedding actions at all nodes along a query chain will collectively

determine the quality degradation at the query end-points. It is essential that nodes shed load in

a coordinated manner in order not only to relieve all of the overloaded nodes, but also to minimize

the total quality loss at query end-points.

1.3 Thesis Contributions

This thesis defines the resource overload problem in data stream management systems and provides

scalable and efficient load shedding techniques in order to solve it. In particular, we model load

shedding as automatic insertion of load reducing drop operators into running query plans, where

a drop operator essentially provides a simple and convenient abstraction for load reduction. We

5

provide a solution framework which addresses the following four key questions of load shedding:

• When load shedding is needed?

• Where in the query plan to insert drops?

• How much of the load should be shed at that point in the plan?

• Which tuples should be dropped?

Our load shedding framework is shaped by several important principles. First of all, any practical

load shedding algorithm must be very light-weight, as the system is already under duress whenever

load shedding is needed. To minimize run-time overhead, our approach relies on pre-computing

and materializing load shedding plans in advance, which can then be efficiently used at run time

whenever an overload is detected. Secondly, load shedding is essentially an approximate query

answering technique which trades result accuracy for low-latency processing. It is important that

the loss in accuracy is kept minimal. To achieve this, we try to balance two conflicting requirements:

• The earlier the load is reduced in a query plan, the larger is the savings in resources, and

hence, the smaller is the needed data reduction.

• Shedding load early in a shared query plan may hurt the accuracy for multiple end-point

applications.

To address this conflict in a way to minimize the total accuracy loss at the query end-points, we

discovered that load reduction should be applied either on the input dataflows, or on dataflows that

split onto multiple subqueries. Furthermore, we developed a metric called “loss/gain ratio”, which

ranks these alternative dataflows. The load shedding plans are then generated based on the order

determined by this ranking [93].

Our work further adopts a subset-based approximation model in which all of the delivered output

tuples are guaranteed to be part of the original query answer, i.e. no incorrect values are generated.

It is particularly challenging to provide this guarantee for windowed aggregation queries. Our

window-aware load shedding approach achieves this by applying load reduction in units of windows

[95].

The final piece of this thesis investigates the distributed load shedding problem [94]. We devel-

oped two alternative solution approaches to this problem:

• a centralized approach, where a coordinator node produces globally optimal plans, and the

rest of the nodes adopt their share of these global plans;

• a distributed approach, where nodes exchange metadata information with their neighbors, and

each node produces its own plan based on the available metadata.

6

All of these techniques have been implemented both as simulations and as part of the Au-

rora/Borealis prototype systems. As we will show, their performances have been extensively studied

through theoretical analysis, simulation- and prototype-based experimentation, and through apply-

ing them on several realistic case studies.

1.4 Thesis Outline

This thesis is outlined as follows. In Chapter 2, we provide detailed overviews of the Aurora/Borealis

systems which the research described in this thesis builds upon. Chapter 3 presents the core load

shedding techniques that we developed for Aurora together with their performance evaluation results

and a detailed look at a case study. We then extend this work in Chapter 4 to handle an important

class of queries for data stream applications, namely, windowed aggregation queries, and present

experimental results on Borealis. Chapter 5 presents our work on handling the load shedding problem

in distributed stream processing environments such as that of the Borealis system. A detailed review

of the related work is presented in Chapter 6. Finally, we conclude in Chapter 7, discussing several

interesting directions for future research.

Chapter 2

Background

In this chapter, we present a comprehensive overview of two stream processing prototype systems,

Aurora and Borealis 1. The research conducted in the scope of this thesis is an integral part of these

two systems.

2.1 The Aurora System

Aurora is a data stream management system for processing continuous queries over data streams

[7, 8, 20, 24]. It has been developed by a group of researchers from Brandeis University, Brown

University, and MIT. The project started in early 2001, and in 2003 the built research prototype

has been commercialized into a start-up company named StreamBase Systems [87]. In what follows,

we provide an overview of the basic Aurora architecture and summarize the models underlying its

design.

2.1.1 System Architecture

Figure 2.1 illustrates the basic system architecture of Aurora. We briefly describe the functionality

of each component and the flow of data and control among them.

The catalogs store metadata information regarding the query network topology, QoS functions,

and run-time statistics (e.g., selectivity and average processing cost for an operator). This infor-

mation is fundamental for the operation of all run-time components, and hence, the catalogs are

accessed by all components as required.

The router is responsible for forwarding data streams between run-time components. It receives

input tuples from data sources as well as from box processors. If query processing on a stream

tuple has been completed, the router outputs this tuple from Aurora to feed external applications.
1“Aurora is a glow in a planet’s ionosphere caused by the interaction between the planet’s magnetic field and
charged particles from the Sun. This phenomenon is known as the Aurora Borealis in the Earth’s northern
hemisphere and the Aurora Australis in the Earth’s southern hemisphere.” [47].

7

8

Figure 2.1: Aurora system architecture

Otherwise, the router forwards the tuple to the storage manager to be placed on proper queues for

further processing.

The storage manager is responsible for efficient storage and retrieval of data queues on arcs

between query operators. It manages the in-memory buffer pool that stores stream tuples for

immediate use by box processors as well as the persistent store that keeps history for processing

potential ad hoc queries.

The scheduler is the core component that makes decisions about operator execution order. It

selects an operator with waiting tuples in its queues and executes that operator on one or more

of the input tuples [25]. There is one processor per box type that implements the functionality

for the corresponding query operator. When invoked by the scheduler, the box processor executes

the appropriate operation and then forwards the output tuples to the router. The scheduler then

ascertains the next processing step and the cycle repeats.

The QoS monitor continually monitors system performance and triggers the load shedder if it

detects a decrease in QoS. The load shedder is responsible for handling overload due to high input

rates [93]. It reads in system statistics and query network description from the catalogs, and makes

certain modifications on the running query plans to bring the demand on CPU down to the available

capacity level.

2.1.2 Data Model

Aurora models a stream as an append-only sequence of tuples with a uniform schema. In addition

to application-specific data fields, each tuple in a stream also carries a header with system-assigned

fields. These fields are hidden from the application and are used internally by the system for QoS

9

output to
applications

QoS

QoS

QoS

OP OP OP OP

OP

OP

OP

OP OP

OP OP OP OP

input data
streams

Figure 2.2: Aurora query network

management purposes. For example, every input tuple to Aurora is tagged with a timestamp upon

system entry to indicate its arrival time, and every tuple generated by an Aurora operator is tagged

with the timestamp of the oldest tuple that was used in generating it. This timestamp is further

used to measure the processing latency of a tuple at any time point during its processing.

2.1.3 Query Model

Aurora queries are defined through a boxes-and-arrows-based dataflow diagram. Each box represents

a query operator and each arc represents a data flow or a queue between the operators. Aurora is

expected to process a large number of queries that are built out of a set of operators. Each such

query may take an arbitrary number of input streams and always ends at a single output. An

operator may be connected to multiple downstream operators. All such splits carry identical tuples

and enable sharing of computation among different queries. Multiple streams can also be merged

by the operators that accept more than one input. A query network is a collection of such queries.

Figure 2.2 illustrates an Aurora query network.

Queries are composed using the operators defined by the Aurora Stream Query Algebra (SQuAl)

[8]. SQuAl has nine primitive operators: Filter, Map, Union, Aggregate, Join, BSort, Resample,

Read, and Update. Filter applies a predicate to tuples and retains those for which the predicate is

true. Map applies a function to each stream element. Union merges two input streams into one.

Aggregate applies a function on a window of tuples. Join correlates tuples from two streams that

are within the same time band. BSort is an approximate sort operator that sorts tuples on an order

attribute using a bounded-pass bubble sort algorithm. Resample is used to align pairs of streams

by interpolating missing values. Finally, Read and Update are used to query and update database

tables respectively, for each input tuple received.

Aurora also has a set of system-level drop operators. These operators are not used to build

queries by the applications. Rather, the load shedder uses these operators to modify running query

networks to deal with system overload. We will describe drop operators in Chapter 3. It is sufficient

to note at this point that a drop operator is a load reducing operator that eliminates some fraction

of its input.

10

utility

10 25 30

0.5

1.0

0
0 (msec)

delay

(a) Latency-based QoS

% tuple
delivery

utility

70 20 0

0.4

1.0

0
100

(b) Loss-tolerance QoS

utility

1.0

0 value
0 20012060

0.5

(c) Value-based QoS

Figure 2.3: Quality of Service (QoS)

We further group our primitive operators into two as, order-agnostic and order-sensitive. Order-

agnostic operators process input tuples one at a time and regardless of their tuple arrival order.

Filter, Map, Union, Read, and Update have this property. On the other hand, Aggregate, Join,

BSort, and Resample are order-sensitive. These operators require order on their input data streams

and can only be guaranteed to execute with finite buffer space and in finite time if they can assume

this ordering. Aurora does not restrict input streams to arrive in a specific order. Instead, order-

sensitive operators are allowed to require order specifications on their inputs which may allow some

bounded disorder [8]. Allowance for disorder complicates operators’ basic functionality. In this

thesis, we simply assume strict order specification for order-sensitive operators when order is relevant.

We also consider query networks with a subset of SQuAl operators. More specifically, we do not

consider BSort, Resample, Read, and Update. These operators, although they make SQuAl more

expressive and may be useful for some specific applications, are not used as commonly as the other

five operators.

2.1.4 Quality of Service Model

Most of Aurora optimizations are driven by a Quality of Service (QoS) model. Query results are

sent to external applications for which a number of QoS functions are defined (see Figure 2.2). For

each application, these functions relate a characteristic of the output to its utility (i.e., its usefulness

to the receiving application).

QoS in Aurora is captured by three piece-wise linear functions, along three different dimensions

(shown in Figure 2.3):

• Latency-based QoS: This function maps tuple latencies to utility values such that as tuples

get delayed, their utility degrades. Latency of a tuple is defined as the time difference between

when a tuple arrives at Aurora and when it is output from the system.

• Loss-tolerance QoS: This function maps the percent tuple delivery to a utility value and indi-

cates how averse an application is to approximate answers. The larger the percentage of output

11

tuples delivered, the higher its utility to the receiving application. As an additional metric,

we assume that each output application also specifies a threshold for its tolerance to gaps or

“lack of responsiveness”. We call the maximum gap that an application can tolerate the batch

size. The system must guarantee that the number of consecutive output tuples missed never

exceeds this value. Note that batch size puts a lower bound on loss. Given a batch size B,

the query must at least deliver 1 tuple out of every B+ 1 tuples. Therefore, the percentage of

tuples delivered should not be below 1/(B + 1).

• Value-based QoS: The value-based QoS function shows which values of the output tuple space

are most important. For example, in a medical application that monitors patient heartbeats,

extreme values are certainly more interesting than normal ones, hence, corresponding value

ranges must have higher utility.

Latency-based QoS function drives the scheduling policies, whereas loss-tolerance and value-based

QoS functions drive the load shedding decisions in Aurora.

An important assumption we make about latency-based and loss-tolerance QoS functions is that

they have concave shapes, i.e., the negative slope of the function is monotonically increasing.

2.2 The Borealis System

After Aurora was commercialized, its research prototype has evolved into Borealis. Borealis is a dis-

tributed stream processing engine which inherits its core stream processing functionality from Aurora

[6]. Based on the needs of recently emerging, second-generation of stream processing applications,

Borealis extends Aurora with the ability to:

• operate in a distributed fashion,

• dynamically modify various data and query properties without disrupting the system’s run-

time operation,

• dynamically optimize processing to scale with changing load and resource availability in a

heterogeneous environment,

• tolerate node and network failures for high availability.

In this section, we provide a brief overview of the Borealis System architecture, with a special

focus on its optimizer structure.

2.2.1 System Architecture

Borealis accepts a collection of continuous queries, represents them as one large network of query

operators (also known as a query diagram), and distributes the processing of these queries across

multiple server nodes. Sensor networks can also participate in query processing behind a sensor

proxy interface which acts as another Borealis node.

12

Transport Independent RPC (XML,TCP,Local)

QueryProcessor HA
MonitorCatalog

NH
Optimizer

Admin
LocalGlobal

IOQueues

Control DataMeta−data

Borealis Node

Load
Shedder

Local Optimizer
Priority

Scheduler

Storage
Persistent

Processor
Box

Storage Manager

Data Interface Control Interface

Query Processor
Catalog

Local

(Buffers and CP data)

Figure 2.4: Borealis system architecture

Each node runs a Borealis server whose major components are shown in Figure 2.4. The query

processor (QP) forms the essential piece where local query execution takes place. Most of the core

QP functionality is provided by parts inherited from Aurora. I/O queues feed input streams into

the QP and route tuples between remote Borealis nodes and clients.

The admin module is responsible for controlling the local QP, performing tasks such as setting

up queries and migrating query diagram fragments. This module also coordinates with the local

optimizer to provide performance improvements on a running diagram. The local optimizer employs

various tactics including, changing local scheduling policies, modifying operator behavior on the fly

via special control messages, and locally discarding low-utility tuples via load shedding when the

node is overloaded.

The QP also contains the storage manager, which is responsible for storage and retrieval of data

that flows through the arcs of the local query diagram, including memory buffers and connection

point (CP) data views. Lastly, the local catalog stores query diagram description and metadata, and

is accessible by all the local components.

Other than the QP, a Borealis node has modules which communicate with their respective peers

on other Borealis nodes to take collaborative actions. The neighborhood optimizer uses local load

information as well as information from other neighborhood optimizers to improve load balance

between nodes. The high availability (HA) modules on different nodes monitor each other and take

over processing for one another in case of failures. The local monitor collects performance-related

statistics as the local system runs to report to local and neighborhood optimizer modules. The global

catalog provides access to a single logical representation of the complete query diagram.

2.2.2 Optimizer Hierarchy

For scalable operation, Borealis uses a multi-tier optimizer structure with a hierarchy of monitors

and optimizers, as seen in Figure 2.5.

Each Borealis node runs a local monitor that collects local statistics. These statistics include

13

Neighborhood Optimizer

Local Optimizer

Local Monitor

Borealis Node

Global Monitor Global Optimizer

Figure 2.5: Borealis optimizer hierarchy

various operator- and node-level statistics regarding utilization and queuing delays for various re-

sources such as CPU, bandwidth, and power (only relevant to sensor proxies). Local statistics are

periodically forwarded to a global monitor.

Monitors trigger optimizers. There are three levels of collaborating optimizers: At the lowest

level, the local optimizer runs at every node and is responsible for optimized execution of local

query plans. In the middle tier, the neighborhood optimizer runs at every node and is responsible

for communicating with immediate neighbors of this node for collaborative optimization. At the

highest level, a global optimizer is responsible for making global optimization decisions on the whole

query network, by identifying bottleneck nodes or neighborhoods based on global statistics provided

by the global monitor.

Monitoring components run continuously and trigger optimizer(s) when they detect problems

(e.g., resource overload) or optimization opportunities (e.g., neighbor with significantly lower load).

The local monitor triggers the local optimizer or the neighborhood optimizer, while the global

monitor triggers the global optimizer.

As we go up in the optimizer hierarchy, optimizers provide better and more effective solutions,

but they also incur higher overhead, and can be more disruptive to system’s operation. Hence, our

general approach is to activate the optimizers in a bottom-up fashion. Each optimizer first tries

to resolve the situation itself. If it can not achieve this within a pre-defined time period, monitors

trigger the optimizer at the next level of the hierarchy. A higher level optimizer, when activated,

reflects its decisions to lower level ones, instructing them to apply certain modifications on local

query fragments. This approach strives to handle problems locally when possible because in general,

local decisions are cheaper to make and realize, and are less disruptive. Another implication is

that transient problems are dealt with locally, whereas more persistent problems potentially require

global intervention.

14

Chapter 3

Load Shedding in a Data Stream

Manager

In this chapter, we provide a detailed definition of the load shedding problem for data stream man-

agement systems. We present our solutions to various important subproblems of load shedding

from overload detection to load shedding plan generation. Our two main forms of load shedding,

random and semantic load shedding, are also introduced in this chapter. Finally, we present perfor-

mance results for these approaches on an Aurora simulation as well as on a battlefield monitoring

application.

3.1 The Load Shedding Problem

Data stream management systems operate on real-time data whose utility decreases as it gets older.

Therefore, latency is an important performance factor. Furthermore, since data is being pushed

from autonomous sources into the system, the system may not have direct control over the data

arrival rates. Data rates can change in unpredictable ways, getting bursty at times. This requires

that data processing has to keep up with data arrival; otherwise queues may build up, thereby

seriously increasing the latency of the query results. In other words, the data arrival rates can get

so high that the demand on CPU may exceed the available capacity. In this case, the CPU will

be overloaded and will not be able to process input tuples as fast as they are received. Unless the

overload problem is resolved, tuples will continue accumulating in queues, latencies will continuously

grow, and latency-based QoS will degrade.

There are two high-level solutions to the CPU overload problem: (i) increase the CPU capacity to

a level that is higher than the demand, or (ii) decrease the demand below the available CPU capacity.

The former option may not be a feasible solution due to several reasons. First, the overload problem

requires an immediate solution, therefore it may be slow and impractical to add new hardware.

Second, getting new hardware may be expensive. Third, rates can change unpredictably, therefore

15

16

the problem may repeat itself even after the capacity is increased to solve the current problem. The

last but not the least, bursts that we consider are usually short durations of very intense activity,

and the CPU demand during bursts may be orders of magnitude larger than the CPU demand

during regular workload. It may not be worth provisioning the system based on temporary overload

scenarios, in which case the CPU will stay idle for most of the time. For these reasons, we explore

the latter approach in this research.

To decrease demand on CPU below available capacity requires that we reduce the workload.

We call this process of dropping excess load from the system load shedding 1. More precisely, load

shedding is an optimization problem and can be formally stated as follows. We are given a query

network N , a set of input streams I with certain data arrival rates, and a processing capacity

C for the system that runs N . Let N(I) indicate the network N operating on inputs I, and

Load(N(I)) represent the load as a fraction of the total capacity C that network N(I) presents.

Load shedding is typically invoked when Load(N(I)) > H × C. The constant H is the headroom

factor that is a conservative estimate of the percentage of processing resources required by the system

at steady state. The headroom is reserved to guard the system against thrashing. The problem is

to find a new network N ′ that is derived from network N such that Load(N ′(I)) < H × C and

Utility(N(I))− Utility(N ′(I)) is minimized. Utility is the aggregate utility that is measured from

the loss-tolerance QoS graphs of the application set. Utility(N(I)) represents the measured utility

when there is no load shedding.

To put it another way, we model the load shedding problem as automatic modification of a

running query network into a new network with reduced load. This modification can be in various

different forms. In this thesis, we consider one specific type of modification where load reducing

drop operators are inserted into the query plans. The load shedding problem can be broken into the

following fundamental subproblems:

1. Determining when to shed load. The processing load of the query network needs to be

continuously monitored. If there is overload, it should be detected quickly.

2. Determining where to shed load. Tuples can be dropped at any point in the processing

network. Dropping them early avoids wasting work; however, because a stream can fan out to

multiple streams, an early drop might adversely effect too many output applications.

3. Determining how much load to shed. Once we have determined where to insert a drop

operator, we must decide the magnitude of that drop.

4. Determining which tuples to shed. Depending on the semantics of a particular drop

operator used, we must figure out which tuples must be dropped.
1Load shedding is a term that originally comes from electric power management, where it refers to the process of
intentionally cutting off the electric current on certain lines when the demand for electricity exceeds the available
supply to save the electric grid from collapsing. The same term has also been used in computer networking to
refer to a certain form of congestion control approach, where a router simply drops packets when its buffers fill
up.

17

It must be emphasized that any practical load shedding algorithm must be very light-weight.

The system is by definition under duress whenever load shedding is needed. Therefore, an important

part of the overload problem is to provide an efficient mechanism with minimal run-time overhead.

Note that CPU overload is one of many potential problems that can be caused by fast data

arrival. High data rates can overload any of the system resources, including memory and bandwidth.

For example, given a query network with a large number of stateful operators (e.g., aggregates,

joins), memory overflow may become an issue. Similarly, if the system is running in a distributed

environment, then the bandwidth between nodes may become insufficient. Each of these resource

problems may manifest itself in a different way (e.g., CPU and bandwidth overload lead to latency

increase, memory overflow may crash the system). However, they all fundamentally relate to increase

in data arrival rates. Thus, although the load shedding approach we investigate in this thesis focuses

on CPU as the primary scarce resource, it can be extended to handle other resource problems as

well.

3.2 General Solution Framework

Our objective in this thesis is to develop a suite of load shedding techniques with the following

principle features:

• Light-weight overload handling. The main objective of load shedding is to handle tem-

porary bursts in input rates in a light-weight manner. Our techniques must react to overload

immediately and they must be low-overhead not to make things worse in an already-overloaded

system.

• Minimizing QoS degradation. An overloaded system experiences constant growth in its

queues which consequently leads to ever increasing latencies at outputs. In a system where

there is any excess load, sooner or later, latency utilities of all outputs will eventually drop

to zero. The actual amount of overload only affects how fast this drop will take place. It is

essential that load shedding controls queue growth in the system. To achieve this, it trades

answer quality for improved latency. In this case, it must be guaranteed that the degradation

in answer quality is minimal.

• Delivering subset results. Load shedding can approximate the query result in many dif-

ferent ways. Two alternative approximation models exist. One model produces approximate

answers by omitting tuples from the correct answer. In this model, all delivered tuples are

guaranteed to be a subset of the “exact” answer. In other words, we never produce incorrect

answers. This property is important since it allows the application to rely on the tuples that it

receives to be correct. An alternate approach to degrading the result is to emit nearly the same

number of values, each of which might be inaccurate. The goal is to ensure that the errors are

bounded by some amount. This model is reasonable as well. It is an application-level decision

as to whether it is better to have all values, some of which may be inaccurate, or fewer values,

18

all of which are accurate. Our work is based on the subset model. The load shedder must

guarantee to deliver results that are subsets of original query answers.

Our general operational model can be abstracted as follows. The load shedder operates in a loop,

detecting important changes to the load status and reacting accordingly. Periodically, current load

of the system is measured and compared against the known system capacity. If the load is above

the available capacity, then load must be shed by inserting drops into the query network. On the

other hand, if load is below the available capacity, then load can be returned by removing drops that

might have been inserted in previous iterations of the loop. Hence, load shedding involves automatic

insertion and removal of load reducing operators into query plans as required by the current load

due to changing data arrival rates.

A load shedding approach must be accompanied by an underlying approximation model. In our

case, the QoS model described in Section 2.1 drives load shedding. More specifically, load shedder

uses two of the QoS functions, loss-tolerance and value-based QoS. Although the ultimate goal is to

control output latencies, the latency-based QoS function need not be directly considered. This is due

to an Aurora design decision which decouples the scheduler and the load shedder. We assume that

any processor cycles that are recovered by the load shedder will be used sensibly by the scheduler to

improve the overload situation thereby best improving the latency. We can, therefore, simply figure

out how much capacity we need to recover and then produce a plan to do so. The scheduler will do

the rest.

In the rest of this chapter, we first describe common techniques that apply to any load shedding

algorithm, assuming a generic drop operator (which is reducing its input by a certain fraction),

and abstracting other operators as operations with known costs and selectivities. Later, we will

present additional mechanisms specifically required by each load shedding algorithm and for specific

operator types.

3.3 Overload Detection

We provide a mathematical description of how to determine when a system is overloaded. This

approach may have limited practical use in a real system due to a couple of reasons. First, it

assumes the presence of reliable and stable statistics. Second, it assumes that a running query

network is the only source of load in the system. This is not true even if Aurora were running on

a dedicated machine with no other processes. Aurora run-time components themselves also have

contribution to load. In fact, we use a headroom factor H to account for the portion of resources

reserved for running the query network. However, it may sometimes be unrealistic to assume that

there exists such a constant factor, or that it can be precisely measured. For these reasons, we also

discuss several practical techniques that help overload detection.

19

3.3.1 The Theory

To detect an overload, we must first have a way to measure load. For this purpose, we use load

coefficients. Each input to the query network has an associated load coefficient. A load coefficient

represents the number of processor cycles required to process a single input tuple through the rest

of the network to the outputs. Consider an input stream I running through a query of n operators

and producing an output stream O as shown in Figure 3.1.

OI c1

s1 s2

cn

cn

c2

Figure 3.1: Calculating load coefficients

Assume that each operator i has an associated cost ci (cycles per tuple) and selectivity si. We

assume that such statistics can be gathered over some characteristic run period. The load coefficient

for input I is computed as

L =
n∑

i=1

(
i−1∏

j=1

sj)× ci (3.1)

If an input has load coefficient L (in processor cycles per tuple) and input rate r (in tuples per

time unit), the actual run-time load for that input is L × r (cycles per time unit). If there are m

inputs, we can compute the total load as

m∑

i=1

Li × ri (3.2)

The load coefficient formulation given in Equation 3.1 is based on the flat query shown in Figure

3.1. We now generalize this equation to query networks with fan-outs and n-ary operators (e.g.,

Union, Join). Again consider an input stream I, running through a query network N with p distinct

query paths. We define a query path as a flat sequence of operators connecting I to any Aurora

output. The load coefficient for input I in this case is

L =
p∑

i=1

(
ni∑

j=1

(
j−1∏

k=1

si,k)× ci,j) (3.3)

where ni denotes the number of operators on path i, si,k denotes the selectivity of operator k on

path i, and ci,j denotes the cost of operator j on path i.

To illustrate, in Figure 3.2, we provide an example query network with two continuous queries

and two input streams. Input I1 has three distinct query paths and input I2 has one query path. We

present load coefficients for each of the input streams as well as load coefficients for each intermediate

stream in the network. When there is fan-out, each different path’s load is added to an input’s load

coefficient. When there is a binary operator, input rate flowing into the operator is a sum of both

inputs (i.e., summed per query path).

20

One important point to note is that load coefficients can be computed statically when cost and

selectivity statistics are known. Later, the actual run-time load can easily be calculated using these

pre-computed coefficients. For example, if it turns out that input streams I1 and I2 have rates of 10

and 20 tuples per time unit, respectively, then the load of this network becomes 26.5×10+18.75×20 =

640 cycles per time unit.

12.5

s = 0.9

c = 10
s = 0.5

c = 10
s = 0.7

c = 10
s = 0.5

5

5

5

514

19

s = 1.0

s = 1.0

c = 5

c = 5

c = 10
s = 0.8

c = 10

I1

I2

L1 = 26.5

r1 = 10

r2 = 20

L2 = 18.75

O1

O2

Figure 3.2: Query network with load coefficients

An overload is detected when the network load computed as above exceeds the allowed capacity

of the system.

Note that the actual load of a query network is a combination of current input rates and any

queues that may have built up since the last load evaluation step. With the headroom constant

H > 0, queues will eventually disappear as long as the load shedder maintains the headroom space.

Alternatively, load shedder may exploit the queue length information to speed up this process

through overshedding. To achieve this, we compute load coefficients not only for input arcs, but

for intermediate arcs as well, which represents the number of processor cycles required to push

a single tuple from a queue on that arc to the outputs. We use this coefficient to calculate the

contribution of queue on an arc to the total queue load Q. First, we define a system parameter

called MELT RATE. This parameter is a lower bound on how fast we want to melt (i.e., shrink)

the queues. It represents the queue length reduction per time unit as a fraction of the current queue

length. An arc i with a load coefficient Li and queue of length qi contributes to the total queue load

by MELT RATE ∗ Li ∗ qi. The queue load of all arcs are summed to calculate Q. Essentially, by

having Q > 0, we cause an overshedding in the network to melt the queues. After all the queues are

melted, the load shedder will discover that some of the drops are redundant and have to be removed

(or their drop probabilities must be decreased). Note that under normal circumstances, dealing with

queues is scheduler’s responsibility. However, tuning the MELT RATE parameter, we can let the

load shedder speed up the process of shrinking the queues for a faster improvement on latency QoS.

3.3.2 The Practice

In practice, the first thing to examine in order to detect CPU overload is CPU utilization. If this

quantity is measured to be below 100%, then there is no CPU overload. Otherwise, the system may

21

be running just at capacity or may be overloaded. Next, we could check two things: queue lengths

on arcs of the Aurora query network or tuple latencies at Aurora outputs. In most cases, the latter

is a direct reflection of the former.

If there is a monotonic increase in total length of queues on arcs, then CPU is overloaded. One

special case to consider is multi-input operators that can potentially block, such as Join. Join may

block if data on one of its input streams is not arriving as fast as the other. In this case, the queue

on the fast arc may be growing even though there are enough CPU cycles, which further leads to

a misjudgement that CPU is overloaded (due to a constant increase in total queue length in the

system). To avoid this problem, we must further check that join operators have growing queues on

both input arcs.

Monotonic increase in tuple latencies at outputs could also be an indication of CPU overload.

However, this information might be misleading when there are blocking operators in the query

network. For example, windowed aggregates only produce output tuples when they receive enough

tuples to close a window. If data does not arrive fast enough, output tuples may end up having

large latency values (remember that output tuple gets the smallest timestamp in the window). The

problem is similar with Join. Therefore, queue lengths might be a more reliable indication of CPU

overload than output latencies alone.

3.4 A Greedy Approach

We cast our basic problem of “which of the possible arcs should have drops placed on them and

how much of the data should be dropped on each such arc” as one of the classical optimization

problems, namely the Fractional Knapsack Problem. We first define this problem and discuss its

optimal greedy solution. Then we define our own problem in terms of this problem and formulate a

similar greedy solution. Finally, we provide a proof that this greedy algorithm indeed produces the

optimal solution.

Definition 1 (Fractional Knapsack Problem). Given n items, each with weight wi and value vi,

and a knapsack that can hold items up to a total weight limit of W , find the most valuable mix of

items which will fit in the knapsack. If a fraction xi, 0 ≤ xi ≤ 1 of item i is placed into the knapsack

then a value of vi ∗ xi is earned. The objective is to obtain a filling of the knapsack that maximizes

the total value earned. In other words, we want to find fractions xi, 0 ≤ xi ≤ 1, for each item i,

1 ≤ i ≤ n, that will maximize
∑

vi ∗ xi subject to the constraint that
∑

wi ∗ xi ≤ W .

The Fractional Knapsack Problem has an optimal greedy solution [34]. The idea is to take as

much of the item with the maximum value per unit weight (i.e., vi/wi) as possible. If that item is

fully in the knapsack and if there is still room available in the knapsack, then the item with the next

largest value per unit weight is taken. This procedure continues until the knapsack is full.

Our load shedding problem can be modeled as a Fractional Knapsack Problem. The processing

system with a fixed CPU capacity of C represents the knapsack of a fixed capacity. The query

22

network with a certain input load represents the materials we want to fit into the knapsack. We

must make sure that the materials do not take up capacity more than C. If that happens, the

materials with smallest unit value must be removed from the knapsack. Materials in our problem

correspond to data flowing through the arcs of the query network. The unit value of a material

represents the total QoS utility a unit (i.e., 1%) of data on the corresponding arc provides to the

end-point application(s) in exchange for the total processing power needed before that data unit

reaches to the end-point(s). Thus, the least valuable data unit is the one whose removal from the

query network causes the least utility loss for the amount of processing power it returns back to the

system.

Note that the original knapsack problem tries to fill in the knapsack until the capacity limit is hit

whereas our problem tries to empty an overfull knapsack until it is no more full beyond the capacity

limit. Although the two tasks are completely opposite of each other, the final objective is the same:

to leave the knapsack filled with the highest total value.

We will now define our version of the Fractional Knapsack Problem, which we call the Overloaded

CPU Problem; reformulate the original greedy algorithm for our version; and show that it provides

the optimal solution as in the original case. For easy exposition, we assume that each loss tolerance

QoS function defined at the query end-points is a linear function (i.e., piece-wise linear with a single

piece). This assumption implies that we completely drop from one output before we start dropping

from the next output 2.

Definition 2 (Overloaded CPU Problem). We are given a computer system with CPU capacity C

that runs a query network N with a set of input streams, each arriving at a certain rate. There are

n independent arcs (a.k.a. drop locations) on N where drop operators can be inserted. Each such

operator i (1 ≤ i ≤ n) can have a drop fraction of xi (0 ≤ xi ≤ 1). Furthermore, each unit of data

dropped by i causes a total output QoS utility loss of li, while providing a processing power gain of gi.

Find drop fractions X = (x1, . . . , xn) that will minimize the total QoS utility loss
∑

li ∗ xi subject

to the constraint that
∑

gi ∗ (1− xi) ≤ C.

The greedy algorithm for the Overloaded CPU Problem can be stated as follows: Find loss/gain

ratios (li/gi) for each drop arc and sort them in ascending order. If the current system load is above

C, then remove data from the drop arc with the smallest loss/gain ratio. If data on that arc is

completely dropped and the system is still overloaded, then remove data from the drop arc with the

next smallest loss/gain ratio. Continue removing data until the CPU load drops below the capacity.

Theorem 1. The greedy algorithm that always selects to remove data on the drop arc with the

smallest loss/gain ratio finds an optimal solution to the Overloaded CPU Problem.

Proof. Assume the drop locations {1, . . . , n} and that

l1
g1
≤ l2

g2
≤ · · · ≤ ln

gn

2We remove this assumption later in Section 3.4.2.

23

Let X = (x1, . . . , xn) be the solution computed by the greedy algorithm. If xi = 0 for all i, then

the solution is optimal (i.e., we do not drop any data since the query network is already operating

below the CPU capacity). Note that there is no possibility that xi = 1 for all i (assuming that

C > 0) since the system should be able to process some fraction of the inputs to the extent allowed

by its capacity C. Thus, some entries of X can be 1, some other entries can be 0, and there may

be one entry with xi < 1. Let j be the smallest value for which xj < 1. According to the greedy

algorithm, if i < j, then xi = 1, and if i > j, then xi = 0. Furthermore,
∑n

i=1 (1− xi) ∗ gi = C.

Let Y = (y1, . . . , yn) be any feasible solution. Then

n∑

i=1

(1− yi) ∗ gi ≤ C =
n∑

i=1

(1− xi) ∗ gi

n∑

i=1

gi − yi ∗ gi ≤
n∑

i=1

gi − xi ∗ gi

n∑

i=1

(yi − xi) ∗ gi ≥ 0

Let L(Z) denote the total QoS utility loss of a feasible solution Z.

L(Y)− L(X) =
n∑

i=1

(yi − xi) ∗ li =
n∑

i=1

(yi − xi) ∗ gi ∗ li
gi

If we can show that L(Y)− L(X) ≥ 0, then we prove that the greedy solution X minimizes the

total QoS utility loss and therefore is the optimal solution.

As mentioned earlier, if i < j, then xi = 1, and yi − xi ≤ 0, and li
gi
≤ lj

gj
, and therefore we have

(yi − xi) ∗ li
gi
≥ (yi − xi) ∗ lj

gj

If i > j, then xi = 0, and yi − xi ≥ 0, and li
gi
≥ lj

gj
, and therefore we again have

(yi − xi) ∗ li
gi
≥ (yi − xi) ∗ lj

gj

If we plug this inequality into L(Y)− L(X), we obtain

L(Y)− L(X) =
n∑

i=1

(yi − xi) ∗ gi ∗ li
gi
≥

n∑

i=1

(yi − xi) ∗ gi ∗ lj
gj
≥ lj

gj
∗

n∑

i=1

(yi − xi) ∗ gi ≥ 0

Hence, any given feasible solution Y causes at least as much QoS utility loss as the solution X

computed by the greedy algorithm. Therefore, X is an optimal solution.

Next we discuss drop locations and loss/gain ratios in detail.

24

O

B
C

E

H

D

GF

I1

I2

% tuples

1

0
100 50 0

1

% tuples0
100 50 0

1

0 % tuples
050100

0.9

0.8

0.7

utility

utility

utility

1

2O

O3

A op1

op2

op3

op5op4

Figure 3.3: Candidate drop locations

3.4.1 Drop Locations

Technically, all arcs on the query network can have drop operators placed on them. However, to

maximize the amount of processing power gained, some arcs are better candidates than others. In

this section, we will show how we determine the set of arcs to be considered for drop insertion.

Consider the query network shown in Figure 3.3. This network consists of two input streams

and three queries. Each query has a loss-tolerance QoS attached to its output. Smaller gray boxes

marked with letters indicate candidate arcs for drops, which we call the drop locations. We will use

this example query network to illustrate two important ideas.

First, consider a query plan that has no sharing with others. In a network that contains such a

plan, a drop insertion at any location on that query does not affect any of the other queries. Hence,

the utility loss is only observed at the output of that particular query plan. For example, in Figure

3.3, the bottom-most query has no sharing with the top two. In general, it is best to insert drops

as early in the query plan as possible since it minimizes wasted work 3. Therefore, for query plans

with no sharing, the best location for a drop is always at its input. Hence, the small box marked

with F is the best location for a drop in the bottom query.

Second, consider a query network with sharing. Sharing occurs when the output of an operator

fans out to more than one downstream operator leading to different query outputs. This is observed

at the output of op1 in Figure 3.3. Any tuple coming out of op1 would be routed to both outputs

O1 and O2. Hence, a drop operator inserted at A would affect both of these outputs. Inserting a

drop at B or D affects only one output, and is thus a way to isolate the effect to a single output. If

both B and D were assigned drops, then the drop should be placed at A, thereby saving the work of

op1. Note that if A were preceded by a linear stretch of boxes, then by our previous reasoning, the

drops should be pushed further upstream towards the inputs. As a result, output of operators with

split points (B, D) and network inputs (A, F) are the only locations that need to be considered for

drop insertion. We formally state these ideas with the following theorems.
3This is reminiscent of the standard selection-pushdown heuristic used in relational query optimization.

25

R BA
cost1
sel1

cost2
sel2

Figure 3.4: Query plan with no fan-out

Theorem 2. For query plans with no fan-out, placing drops at inputs minimizes the output data

loss.

Proof. Consider the query plan in Figure 3.4. Assume that the system has an excess CPU load of

∆. For simplicity, assume also that drop operator has no CPU cost. If we place a drop at location

A, then the magnitude of that drop (and hence, the fraction of data lost at the query output) must

be:

p ∗R ∗ (cost1 + sel1 ∗ cost2) = ∆

p =
∆

R ∗ (cost1 + sel1 ∗ cost2)

If instead, we place a drop at location B, then the magnitude of that drop must be:

p′ ∗R ∗ sel1 ∗ cost2 = ∆

p′ =
∆

R ∗ sel1 ∗ cost2

It is easy to see that p < p′. Thus, placing the drop on the input arc minimizes the output data

loss.

B

C

AR cost1
sel1

cost2
sel2

cost3
sel3

lossB

lossC

Figure 3.5: Query plan with fan-out

Theorem 3. For query plans with fan-out, placing drops at inputs not necessarily minimizes the

total output data loss.

Proof. Consider the query plan in Figure 3.5. Without loss of generality, assume that the system

has an excess CPU load of R ∗ sel1 ∗ cost2. If we place a drop at location A, then the magnitude of

that drop must be:

p ∗R ∗ (cost1 + sel1 ∗ cost2 + sel1 ∗ cost3) = R ∗ sel1 ∗ cost2

26

p =
sel1 ∗ cost2

cost1 + sel1 ∗ cost2 + sel1 ∗ cost3

In this case, both outputs of the query network will observe this fraction of data loss, adding up

to a total output data loss of 2 ∗ p = 2 ∗ sel1∗cost2
cost1+sel1∗cost2+sel1∗cost3

.

If instead, we place a drop at location B, then the magnitude of that drop must be:

p′ ∗R ∗ sel1 ∗ cost2 = R ∗ sel1 ∗ cost2

p′ = 1

In this case, only output of B will observe data loss. Drop location A provides smaller total loss

if 2 ∗ p < p′. This holds only if:

2 ∗ sel1 ∗ cost2
cost1 + sel1 ∗ cost2 + sel1 ∗ cost3

< 1

sel1 ∗ cost2
cost1 + sel1 ∗ cost2 + sel1 ∗ cost3

<
1
2

sel1 ∗ cost2 < cost1 + sel1 ∗ cost3

Only under this condition, drop location A would provide smaller total data loss than drop

location B. Therefore, placing drops at inputs not necessarily minimizes the total output data

loss.

Theorem 4. Dropping upstream from a fan-out point has more value than dropping collectively on

all fan-out arcs.

Proof. Consider the query plan in Figure 3.5 where lossB denotes the unit QoS utility loss at the

output of B and lossC denotes the unit QoS utility loss at the output of C. Assume further that

dropping a unit fraction of data at A provides a processing power gain of gainA, while dropping

that same fraction at B and C provides gain of gainB and gainC respectively. We know that

gainA > gainB + gainC . Then

lossB + lossC

gainA
<

lossB + lossC

gainB + gainC

lossB + lossC

gainA
<

lossB

gainB + gainC
+

lossC

gainB + gainC

Since lossB

gainB+gainC
< lossB

gainB
and lossC

gainB+gainC
< lossC

gainC
, we have

lossB + lossC

gainA
<

lossB

gainB
+

lossC

gainC

In other words, the loss/gain ratio for A is smaller than the sum of loss/gain ratios of B and C.

Therefore, it has more value to drop at A than to drop at both B and C.

27

3.4.2 Loss/Gain Ratio

As mentioned earlier, loss/gain ratios indicate the value of a data unit on a given arc of the query

network. In this ratio, loss refers to the total loss-tolerance QoS utility loss at query outputs for each

percentage of tuples dropped on the given arc; and gain refers to total processor cycles gained as a

result of this drop. We will now show how we compute this ratio for each candidate drop location.

U(x)

1

x

loss−tolerance QoS

0
100 0

L
Query SubnetworkR

DROP
p = x

cost = D

Figure 3.6: Drop insertion

Consider Figure 3.6, where a drop operator has been inserted upstream from a query subnetwork.

R is the input rate flowing into the drop, x is the drop amount, D is the cost of the drop operator

itself, and L is the load coefficient on the input arc of the downstream subnetwork. The gain from

inserting this drop is:

G(x) =





R× (x× L−D) if x > 0

0 otherwise
(3.4)

Assume that the loss-tolerance QoS function of the affected output is given as U(x). Then the

loss/gain ratio can be computed as follows:

−dU(x)/dx

dG(x)/dx
=

negative slope of U(x)
R× L

(3.5)

An important point to note is that since the order of the loss/gain ratios (not their absolute

values) is all we need for our greedy algorithm, absolute values of input data rates are in fact not

needed. Rather, it would be sufficient to know relative proportions of the input rates. Hence, if

statistics on rate proportions are available, the gain values, and therefore the loss/gain ratios can

be computed statically.

In our previous example shown in Figure 3.3, we identified a set of four candidate drop locations:

{A,B, D, F}. The QoS graphs to be used for drop locations B, D, and F are the same as those of

O1, O2, and O3, respectively. However, the QoS graph to be used for location A is the cumulative

QoS graph from O1 and O2. One way to obtain this cumulative graph is to sum the QoS functions

of both of these outputs 4. Furthermore, since loss is a function of the slope of the utility function,

each drop location may have as many different loss/gain ratios as there are different function pieces

in its (cumulative) QoS graph. For example, the percent loss for location F is (1 − 0.7)/50 for the

first piece of the QoS function, whereas it is (0.7 − 0)/50 for the second piece. Furthermore, it is

4Note that we are not considering the semantics of the operators in this analysis. Depending on the types of the
operators we have in the query network, the cumulative QoS may have be obtained in different ways.

28

always guaranteed that loss/gain ratio increases as we move from 100% to 0% on a given graph.

This is a result of our concaveness assumption mentioned earlier in Section 2.1.4.

3.5 The Load Shedding Road Map

For light-weight load adaptivity, our approach utilizes a tabular data structure called the Load

Shedding Road Map (LSRM). LSRM materializes a sequence of drop insertion plans that can be

pre-computed in advance of a system overload based on statistics on operator costs, selectivities,

output value histograms and an estimation about relative proportions of input data rates. At run-

time, when an overload is detected, we use the LSRM to find a proper plan for recovering the

excess load by simply performing a table lookup and adapting the matching drop insertion plan.

Materializing load shedding plans in advance using the LSRM can significantly reduce the run-time

overhead of making load shedding decisions.

As illustrated in Figure 3.7, LSRM is a table in which each subsequent row represents a load

shedding plan that sheds more load than its predecessor. A load shedding plan consists of an

indication of the expected cycle savings (ci indicating the cycle savings coefficient for input i), the

network arcs to place the drop operators, the corresponding drop amounts, and the effect of the

drops on QoS graphs (pi indicating the QoS cursor for output i). More specifically, each LSRM

entry is a triple of the form:

<Cycle Savings Coefficients, Drop Insertion Plan, Percent Delivery Cursors>

The Drop Insertion Plan (DIP) is a set of drops that will be inserted at specific points in the

network. Cycle Savings Coefficients (CSC) is a list of input streams that will be affected by the plan

along with their associated savings coefficients. CSCs are used to determine how many cycles will

be saved along the path of each input stream if the corresponding DIP is adopted. Percent Delivery

Cursors (PDC) is a list of cursors for the loss-tolerance QoS graphs, one for each output. They

indicate where the system will be running (in terms of percent of tuple delivery) if the corresponding

DIP is adopted.

At run-time, when an overload is detected, we simply search the LSRM to find a plan for

recovering the required number of processor cycles and adapt the corresponding plan by updating

the query network accordingly. As load levels change, the load shedder adaptively switches from one

plan to another. As shown in Figure 3.7, we keep a cursor that indicates which row in the LSRM

was used last. Later on, if additional load needs to be shed, the search on the LSRM can begin at

the cursor. On the other hand, if the load is ever determined to be within the capacity bound and

there are drops in the network (i.e., cursor is non-zero), then the search can be done in the reverse

direction.

Figure 3.8 shows the steps followed in the construction of the LSRM. We first identify the

candidate drop locations in a query network (as discussed in Section 3.4.1). Next, for each location,

we compute a loss/gain ratio, indicating the unit QoS utility loss per CPU cycles gained if a drop

29

c2

c3

c1

p1

p2

p3

p1

p2

p3

c2

c3

c1

cursor

D

D

D

D

m
or

e
lo

ad
 s

he
dd

in
g

le
ss

 lo
ad

 s
he

dd
in

g

Drop Insertion Plan (DIP)Cycle Savings Percent Delivery
Cursors (PDC)Coefficients (CSC)

Figure 3.7: Load Shedding Road Map (LSRM)

were inserted at that location (as discussed in Section 3.4.2). These locations are sorted in increasing

order of their ratios. Finally, drop insertion plans are generated by processing each location in this

sort order. As discussed earlier in Section 3.4, this algorithm guarantees minimal QoS utility loss;

i.e., for any overload level, drops are inserted such that utility loss for gained cycles in return is

minimized.

We will now describe how we create the drop insertion plans in detail, i.e., the bottom loop at

LSRM construction chart of Figure 3.8. We process the sorted drop locations one by one, starting

with the one with the smallest ratio. Each time, we insert an additional amount of drop and record

the resulting plan and its effects on cycle savings and QoS as a new LSRM entry. Each entry builds

on the plan of the previous plan.

To create a new LSRM entry, first the drop parameter p, which denotes the fraction of tuples to be

dropped, has to be determined. Drops are applied in increments of a constant called STEP SIZE.

To explain how we set this parameter, we will turn back to Equation 3.4 presented in Section 3.4.2.

To guarantee G(x) > 0, i.e., that the gain from drop insertion is more than its cost, we must ensure

that x > D
L . For this purpose, we use a STEP SIZE parameter such that STEP SIZE > D

min{L} ,

where min{L} is the minimum load coefficient in the network (over all drop arcs). We use this

minimum value so that the chosen STEP SIZE will work for all drop locations in the network.

The value for this parameter also affects the granularity of the entries in LSRM. Thus, the granularity

can be adjusted using the STEP SIZE parameter provided that STEP SIZE > D
min{L} .

Assume that the loss-tolerance QoS for the output that correspond to the current drop location

has a percent delivery cursor (PDC) value of x (as stored in the previous LSRM entry). Then we

choose the new drop amount such that the cursor moves to x − 100 × STEP SIZE. For this, the

new drop to be inserted must have a drop rate of p = 1− (x− 100× STEP SIZE)/x.

30

where to drop?

how much to drop? which values to drop?

identify drop locations

compute & sort loss/gain ratios

take the smallest ratio

create LSRM entry

Figure 3.8: LSRM construction

After p is determined, we create a new drop operator to be placed at the designated drop location.

Since every LSRM entry builds on a previous one, we must maintain the drop insertion decisions

of earlier LSRM entries while placing the new one into the plan. Our algorithm achieves this by

inserting the new drop at the output first, and then pushing it towards the designated drop location.

Necessary adjustments are made on drop parameters of the existing drops that are encountered

along the way. For example, if we were to insert a drop with p = pA at A in Figure 3.3, and if B

already had a drop with p = pB where pB ≤ pA, then the drop at B becomes redundant because

the drop at A subsumes the amount that B is supposed to drop. On the other hand, if pB > pA,

then B’s percentage must be reduced to produce a total percentage of pB at the output.

New drops combined with the drops of the previous LSRM entry form the DIP of our new LSRM

entry. We update the CSCs for each stream that sends tuples to the drops in the DIP. Finally, QoS

cursors of the affected outputs are advanced and stored in PDCs. The next iteration of the loop

takes the current entry and builds upon it. This way, each LSRM entry has more savings than the

previous one.

3.6 Drop Operators

A drop operator forms the essence of our approach. There may be many instances of such an

operator. We first define a generic drop operator. Then, we define several instances of it that we

31

Drop Type Parameters Metadata Prime Target Across

Random Drop p: drop probability Loss-tolerance QoS
order-
agnostic
operators

Filter
Map
Union

Window Drop

T : windowing attribute
G: group-by attribute(s)
ω: window size
δ: window slide
p[|domain(G)|]: drop
probability array
B[|domain(G)|]: drop batch
size array

Loss-tolerance QoS
Batch size (B)

sliding
window
aggregates

Filter
Map
Union*
Join*
Aggregate

Semantic Drop P: drop predicate
Value-based QoS
Histograms

value-
preserving
operators

Filter
Union
Join
Aggregate*

Table 3.1: Drop operators (* indicates limited use)

specifically used in our approach.

Definition 3 (Drop Operator). Given a data stream Sin, with rate Rin tuples per time unit, a

drop operator is an operation that maps Sin into Sout with rate Rout tuples per time unit, such that

Sout ⊆ Sin and Rout ≤ Rin.

Definition 4 (Random Drop). Random drop is a drop operator which takes a parameter p that

represents the probability that an input tuple t ∈ Sin will not appear in Sout. For each input tuple t,

random drop makes an independent decision using a Bernoulli distribution with drop probability p.

The expected value for Rout then becomes E[Rout] = (1− p) ∗ Rin.

Definition 5 (Window Drop). Window drop is a drop operator which takes six parameters T , G,

ω, δ, p[|domain(G)|], and B[|domain(G)|]. T denotes the windowing attribute and G denotes the

group-by attributes(s), where |domain(G)| represents the number of distinct groups in the domain of

G. For each group g ∈ G, p[g] represents the probability that a consecutive batch of B[g] windows,

each with size ω and slide δ will not appear in the final query result. For each batch of input tuples

t in group g that is a window starter (as defined by ω and δ), window drop makes an independent

decision using a Bernoulli distribution with drop probability p[g]. Window drop further marks this

decision into t. Certain tuples succeeding t, if t is marked with a drop decision, are dropped by the

window drop under some conditions. Details of this operator will be discussed in Chapter 4.

Definition 6 (Semantic Drop). Semantic drop is a drop operator which takes a drop predicate P
as parameter such that an input tuple t ∈ Sin will not appear in Sout if P(t) evaluates to true. If

selectivity of P is s, then the expected value for Rout becomes E[Rout] = (1− s) ∗ Rin.

Table 3.1 provides a summary of our drop operators. The Metadata column denotes the QoS

specifications that must be provided by output applications and the statistics that must be collected

32

by Aurora as required for using each type of drop. The Prime Target column indicates the kind of

operators or query plans that each drop type is primarily designed for (or has the best fit). The

last column of the table refers to the list of operators across which a particular drop operator can

be placed. Window drop is an improved version of random drop which should be used to shed load

across aggregation queries. Semantic drop should only be used across queries with operators that

do not generate tuples with new attribute values (i.e., value-preserving operators). Query plans

with the *-marked operators have limited use of the corresponding drop type (e.g., a semantic drop

should not be placed upstream from an aggregate unless the drop predicate is defined on aggregate’s

group-by attribute). These limitations mainly arise due to the subset guarantee requirement.

We call a load shedding algorithm random load shedding if it only uses random drop operators.

Note that random drop is the simplest operator of our drop operator set. It requires a single

parameter which indicates the probability that a given tuple should be discarded. Therefore, all

the load shedding techniques that we described in the previous sections of this chapter essentially

constitute our random load shedding algorithm. If the algorithm additionally uses window drops,

we call it window-aware. These two algorithms drop tuples or tuple groups probabilistically, without

paying attention to actual tuple values. If semantic drops are used instead, we call such an algorithm

semantic load shedding, where drop decisions are taken based on tuple values. Next we discuss

additional techniques that we specifically developed for the semantic and the window-aware load

shedding algorithms.

3.7 Semantic Load Shedding

LSRM entries for semantic load shedding are created in almost the same way as for the random

one. The major difference is that we need to create semantic drops with proper predicates which

will provide us the desired level of load shedding, while filtering out the data values with the lowest

utility. Therefore, in this section, we mainly discuss additional techniques that the semantic load

shedding algorithm uses to construct the LSRM entries.

We developed a technique that enables us to follow the same method to determine the drop

amount and location, as the one described for the random load shedder. Our approach essentially

derives the loss-tolerance QoS graph from a given value-based QoS graph. In this way, the derived

loss-tolerance QoS graph captures the value utility information and can be directly used for deciding

loss/gain ratios.

3.7.1 Translation between QoS Functions

For the purposes of this study, we restrict value-based QoS graphs to be piece-wise linear functions.

For simplicity, assume that values in each value interval have a constant utility 5. Assume further
5For non-constant linear utility functions, we simply define a chunk size and assume that each load shedding step
will drop value ranges in multiples of a chunk. Hence, the values in the same chunk can be assumed to have the
average utility of that piece of the utility function.

33

that the output data value histograms are available for each of the intervals specified in the value-

based QoS graph. Such histograms are commonly created in conventional DBMS’s to assist in query

processing. A histogram shows the relative frequency of each value interval. Using a histogram and

a value-based QoS graph, we can produce a loss-tolerance QoS graph as described below. We use

the notation shown in Table 3.2.

symbol description
ui utility of values in interval i
fi relative frequency of values in interval i,

∑
fi = 1

wi weighted utility of values in interval i, wi = ui × fi

ni normalized utility of values in interval i, (ni = wiP
wi

)

Table 3.2: Notation for translation between QoS functions

We order the value intervals based on their u values in ascending order and store them in a table

together with their u, f , w, and n values. Table 3.3 illustrates such a table with two value intervals.

interval u f w n

0-50 0.2 0.4 0.08 0.08/0.68 = 0.12
51-100 1.0 0.6 0.6 0.6/0.68 = 0.88

Table 3.3: Example value intervals

The derivation relies on the fact that given a value-based QoS, if we needed to drop some tuples,

we would always start dropping from the lowest utility interval (hence, the table is ordered on u).

When we drop all values in an interval i with normalized utility ni, then the utility for that output

drops to 1−ni. Based on the corresponding relative frequency fi, we can infer that dropping values

of interval i will lead us to drop about fi×100 percent of the tuples. Therefore, while utility of 100%

is 1, the utility of (100− fi× 100)% drops to 1−ni, and the utility values for the range in-between,

(100, 100− fi × 100), decrease linearly.

relative frequency

100500
0

0.4

0.6

(a)

0 50 100
0

0.2

utility

1.0

(b)

0

utility

60100 0

(c)

values values % tuples

0.88
1.0

Figure 3.9: Derivation of the loss-tolerance QoS

Consider the simple example in Figure 3.9. A histogram for two value intervals (Figure 3.9(a))

and a value-based QoS (Figure 3.9(b)) are provided. Our goal is to generate a loss-tolerance QoS

from these two. Notice that the first value interval makes up 40% of the values and has a normalized

34

utility of 0.12 (see Table 3.3). This means that when we drop 40% of the tuples, our utility drops

from 1 to 1− 0.12 = 0.88. Therefore, the point (60, 0.88) is the inflection point at which the utility

function and hence the slope changes. This leads us to the loss-tolerance QoS graph in Figure 3.9(c).

3.7.2 The Drop Predicate

There is a pre-determined order for dropping value intervals imposed by their utilities. We capture

this by keeping a sorted list of intervals in ascending order of their utilities. The cursor on the

loss-tolerance QoS graph, say x, indicates how much of the data we already dropped. Each time we

need to drop an additional k percent of the tuples, we locate the right entry in the interval table

based on relative frequency of the intervals.

Consider the example we presented in Figure 3.9. Assume that x is 100, i.e., we have not dropped

any tuples yet. Assume also that the algorithm has decided to drop 20% of the tuples. Interval [0,

50] has a percentage of 40% and it is the smallest utility interval that we have not dropped from

before. We should drop the 20% from interval [0, 50], i.e., half the data in this interval 6. The

interval to be dropped will be [0, 25) and the predicate for the semantic drop operator to be inserted

will be value ≥ 25. If we needed to drop 70%, then interval [0, 50] would not be sufficient. We would

have to drop all of interval [0, 50] plus half of the interval [51, 100]. Hence, the required predicate

would be value ≥ 75.

3.7.3 Semantic Drop on Joins

The main challenge of load shedding on joins is to be able to control the size of the resulting subset.

Random sampling from join inputs does not work as the result can be reduced in arbitrary ways

[30]. Load shedding on joins has to take either tuple contents into account, or assume some kind of

stream arrival model [85]. Thus, our random load shedding approach by itself does not work well

with join queries.

Our semantic load shedding approach, on the other hand, can easily be used with joins. Assume

that we are given a value-based QoS function for the join output, defined on the join attribute.

Additionally, we keep track of histograms for the join attribute, at both inputs as well as at the

output of the join. Based on this metadata, we can infer loss-tolerance QoS functions for the join

inputs, which we can then use to drop lowest utility values using a semantic drop with the appropriate

predicate.

For example, assume the equi-join operator shown in Figure 3.10 with inputs S1 and S2, and

join attribute x. We are given histograms H(x) for input and output streams. We are also given the

value-based QoS function Uo
v (x) for the join output. Based on these, we can derive the loss-tolerance

QoS function Uo
l () for the join output (see Table 3.4). Furthermore, we can infer loss-tolerance QoS

functions U1
l () and U2

l () for the inputs by directly copying the normalized output utilities to the

6Any 50% of this interval could be dropped. However, we restrict our drop predicates to be range predicates.
Therefore, we drop contiguous data values from beginning of the interval towards its end.

35

O
JOIN Ho(x)

U o
v (x)

U o
l ()

U1
l ()

H1(x)

H2(x)
U2

l ()
S2

S1

S1.x = S2.x

Figure 3.10: Join

O.x utility frequency weighted utility normalized utility
0-50 0.25 0.1 0.025 0.025/0.925 = 0.027

51-100 1.0 0.9 0.9 0.9/0.925 = 0.972

S1.x frequency normalized utility
0-50 0.4 0.027

51-100 0.6 0.972

S2.x frequency normalized utility
0-50 0.2 0.027

51-100 0.8 0.972

Table 3.4: Value-based QoS and other metadata for the join of Figure 3.10

corresponding value ranges. As discussed in Section 3.7.2, we can then generate an appropriate drop

predicate for each join input depending on how much load needs to be shed. Note that we save the

most processing cycles if we use the same drop predicate on both inputs of the join. The reason

for this is that dropping a value range from one input, say S1, implies that this range will never

appear in the join result. Therefore, there is no need to keep that range in S2. This would only

waste cycles, trying to find matching tuples on S1 that do not exist.

3.8 Simulation-based Performance Evaluation

We conducted various experiments to evaluate the performance of our approach. Our initial set

of experiments have been performed on a simulation of the Aurora System implemented using the

CSIM18 Simulation Engine [69].

3.8.1 Experimental Setup

Input Streams. Input streams have uniformly distributed integer values from the range [0, 100].

They arrive Aurora with a constant mean inter-arrival time.

Queries. For our experiments on the simulator, we used queries with a mix of filter and union

operators. Filter predicates are simple comparisons of the form value > constant. Filter selectivities

can be easily estimated since input values have a uniform distribution. Each operator is also assumed

36

Variable Description
n number of value intervals in value-based QoS graph
k number of epochs, where an epoch is the time period during which

the same percentage of tuples are being received.
ni number of tuples seen in epoch i
ui

l loss-tolerance utility of each tuple during epoch i
fi relative frequency of tuples for value interval i without drops
f ′i relative frequency of tuples for value interval i with drops
ui

v average value utility for value interval i

Table 3.5: Notation for the utility formulas

to have a fixed known average time cost per tuple.

Quality of Service. We use value-based QoS graph as our primary QoS function. Given the

value-based QoS for an output and its value histogram which we collect in a test run, we generate

a loss-tolerance QoS graph for that output. We use two value intervals in the value-based graphs.

The utility of the first interval is selected from a [0, 1.0] range with a Zipf distribution, while the

second interval has a utility of 1.0. Using Zipf distribution, we can control the skewedness of utility

for the first value interval on QoS graphs of multiple output applications.

Evaluation Metrics. We use two metrics to evaluate the utility of a query output. Tuple Utility

refers to the utility based on the loss-tolerance QoS graph. Value Utility refers to the utility based

on the value-based QoS graph. The following formulas are used to compute these utilities:

Tuple Utility =
∑k

i=1 ui
l × ni∑k

i=1 ni

Value Utility =
∑n

i=1 f ′i × ui
v∑n

i=1 fi × ui
v

The overall tuple (value) utility of a query network in the presence of multiple queries is computed

by taking a sum of individual tuple (value) utilities for each query. Variables used in these formulas

are described in Table 3.5.

3.8.2 Comparing Load Shedding to Simple Admission Control

Admission Control Algorithms

Input-Random. When an excess of load, ∆L, is detected, this algorithm randomly selects one

input stream and sheds sufficient load on that stream to compensate for ∆L. If shedding all the

data from the chosen input does not suffice, we select another input stream at random and repeat

the same step until all of the remaining excess load is shed.

Input-Top-Cost. This is a variant of the Input-Random algorithm. Rather than selecting random

inputs for load shedding, input stream with the highest load share is selected.

37

+307%

80

60

40

20

100

load: +22%

Input−Random

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

%
 tu

pl
e

ut
ili

ty
 lo

ss

Random−LS
Semantic−LS

Input−Uniform

Input−Cost−Top

Input−Cost−Uniform

Figure 3.11: Load shedding vs. admission control variants (% Tuple utility loss)

Input-Uniform. Rather than choosing streams one at a time, this algorithm distributes the excess

load evenly across all input streams, attempting to shed the same amount of load from each. If an

input stream cannot provide its share of cycle gains, then the extra amount is distributed evenly to

the other inputs until all of the excess load is shed.

Input-Uniform-Cost. This is a variant of the Input-Uniform algorithm that distributes excess

load across all input streams weighted by their costs instead of an even distribution.

Random Load Shedding

Our first experiment quantifies the loss in tuple utility for different load shedding schemes and for

varying overload levels. Different load levels are characterized by different mean (arrival) rates for

the input streams. The mean arrival rate is defined as the mean number of tuple arrivals per time

unit at each input stream in the network.

Figure 3.11 shows that all algorithms are clearly negatively affected by increasing input rates.

Because the system has fixed capacity, the percentage of tuples that need to be dropped increases

with increasing input rates, thereby, decreasing the loss-tolerance utility of the system.

As expected, we observe that the two QoS-driven algorithms perform much better than the

admission control algorithms. They follow a similar pattern, which is not surprising as they make

their decisions based on the same loss-tolerance QoS graph (generated from the same value-QoS

graph). Utility loss for Semantic-LS is observed to be less than that of Random-LS by a constant

amount. This is a result of information in the output value histograms that Semantic-LS can exploit

whereas Random-LS cannot. Since some of the input tuples are filtered out by the filter operators

before they reach the outputs, they show up in the input streams but not in the output. Those

are the tuples that should be dropped from the input in the first place. They provide cycle gain

without causing any utility loss at the output. Semantic-LS can capture this with a predicate, but

Random-LS is only allowed to drop random tuples. The constant utility difference between the two

curves amounts to this free “cycle gain” in Semantic-LS at no utility loss.

38

+307%

100

80

60

40

20

load: +22%

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mean rate

 0
 0.1 0.15 0.25 0.3 0.35 0.4 0.45 0.5

mean rate
 0.2

%
 v

al
ue

 u
til

ity
 lo

ss

Random−LS
Semantic−LS

Input−Uniform

Input−Cost−Top
Input−Random

Input−Cost−Uniform

Figure 3.12: Load shedding vs. admission control variants (% Value utility loss)

The Input-Random and Input-Top-Cost algorithms perform poorly compared to others, incurring

relatively higher utility losses for all input rates.

Because Input-Uniform spreads tuple drops uniformly across the applications, for low excess

loads, all applications can manage to remain at the top, relatively flat portions of their loss-tolerance

QoS graphs. With increased load, as shown in Figure 3.11, this situation changes and we start

observing the benefits of the QoS-driven algorithms over the Input-Uniform algorithm. Weighting

drops from input streams based on their costs does not help much and almost performs exactly the

same as Input-Uniform for low excess loads.

Semantic Load Shedding

We now investigate the loss in the value utility for different algorithms and input rates. Our goal

is to quantify the semantic utility gains we can achieve by exploiting information present in the

value-QoS graph. We compare our value-based algorithm against others that do not utilize such

semantic information.

Figure 3.12 clearly demonstrates that the semantic drop algorithm significantly outperforms the

other approaches in terms of the value utility metric. Note that comparing the other approaches

among each other based on the outcome of this experiment would not be fair. Since those approaches

drop in a randomized fashion, they must be compared on the basis of the tuple utility metric, as we

presented in the previous experiment.

3.8.3 Comparing Random and Semantic Load Shedding

In the scenarios we considered so far, the utility values for the first data intervals of different outputs

were uniformly distributed. (Remember that the utility value of the second interval is taken as 1.0

for all the outputs.)

In order to characterize the impact of skewed utility distributions for different outputs, we devise

a scenario where we inject skew to the utility values for the first data interval. We use a Zipf

39

r=0.25

r=0.20

 0

 5

 10

 15

 20

 0 0.2 0.8

va
lu

e
ut

ili
ty

 lo
ss

 r
at

io

r=0.15

 0.5
skew in utility values (theta)

 0.99

Figure 3.13: Value utility loss ratio for Random-LS/Semantic-LS vs. skew in utility

distribution to generate the utility values and use the Zipf parameter θ to control the skew. For

low skew values, the utility values are more evenly distributed. For higher values, low utilities have

higher probability of occurrence. Hence, we expect that with high skew, value-based dropping will

perform much better than the randomized dropping approach. The rationale is that the latter will

tend to drop high utility tuples, whereas the former will be able to fine-select the lower utility tuples

for dropping.

We now demonstrate the effect of skew on utility loss for drops and filters for different values

of mean input rates. Figure 3.13 illustrates our results. On the y-axis, we show the ratio of the

value utility loss coming from the random load shedding algorithm to that coming from the semantic

one. As we hypothesized, as the skew gets larger, the Semantic-LS algorithm gets increasingly more

effective compared to the Random-LS algorithm. Interestingly, as the input rates increase, this

effect tends to diminish. The reason is that when the rates are sufficiently high, the Semantic-LS

algorithm also starts to drop tuples from the higher utility value intervals.

3.8.4 Evaluating the Effect of Operator Sharing

For our last experiment, we used a network with 20 identical queries. Queries receive input from a

single input stream and have one common operator. This operator’s output is split into 20 arcs and

routed to the query-specific operators on separate arcs to create a scenario of full sharing among the

queries.

This experiment investigates the behavior of our algorithms against the admission control algo-

rithms in the presence of shared operators (i.e., splits) in the query network. In this experiment, we

compare the tuple utility loss of two algorithms: Input-Uniform, the best of the admission control

algorithms as observed in the earlier experiments; and our Random-LS algorithm. Our comparison

here is based on the loss-tolerance QoS rather than the value-QoS, to factor out the advantage of

our algorithms due to using semantic information.

The bar chart in Figure 3.14 shows how tuple utility loss ratio between the two algorithms change

40

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

theta=0.99
theta=0.5
theta=0

% excess load

tu
pl

e
ut

ili
ty

 lo
ss

 r
at

io

 90 70 50 30 10

Figure 3.14: Tuple utility loss ratio for Input-Uniform/Random-LS vs. % excess load

as the amount of excess load in the system is increased. At each point of excess load, we present

three different results. Each result is obtained using a different set of QoS graphs for the 20 queries.

The loss-tolerance QoS graphs are generated from value-QoS graphs for which two data intervals

are used: [0, 75] with a utility chosen from a Zipf distribution with skew parameter θ, and [76, 100]

with utility 1.0. Hence, as the skew parameter theta increases, the uniformity of the QoS graphs

decreases.

We observe that, as QoS graphs get more skewed, Random-LS performs better than the Input-

Uniform algorithm. The reason is that our algorithm takes slopes of the QoS graphs into account

while deciding where to shed load; whereas Input-Uniform always uniformly drops from the inputs.

We further observe that the success of Random-LS against Input-Uniform starts to diminish as the

amount of excess load gets to extremely high levels. This is because of the fact that, as the load

increases to extreme levels, dropping from the inner arcs of the network does not suffice to recover

all extra the cycles. Our algorithm is forced to adopt the plans down in the LSRM, which eventually

correspond to dropping at input points of the query network.

3.9 Case Study: Battalion Monitoring

While developing Aurora, we have worked closely with a major defense contractor on a battlefield

monitoring application. In this application, an advanced aircraft gathers reconnaissance data and

sends it to monitoring stations on the ground. This data includes positions and images of friendly

and enemy units. Commanders in the ground stations monitor this data for analysis and tactical

decision making. Each ground station is interested in particular subsets of the data, each with

differing priorities. In a potential battle scenario, the enemy units cross a given demarcation line on

the field, and move toward the friendly units thereby signaling an attack (see Figure 3.15). When

such an attack is initiated, the priorities for the data classes change. More data becomes critical,

and the bandwidth likely saturates. In this case, selective dropping of data is allowed in order to

service the more important classes.

41

Figure 3.15: Battalion Monitoring

In the real application, the limiting resource is the bandwidth between the aircraft and the

ground. For our purposes, we built a simplified version of this application to test our load shedding

techniques. Instead of modeling bandwidth, we assume that the limited resource is the CPU. We

introduce load shedding as a way to save cycles.

One of the query networks that we used in this case study is shown in Figure 3.16(a). There

are four queries in this network. The Analysis query merges all tuples about positions of all units

for analysis and archiving. The next two queries labeled Enemy Tanks and Enemy Aircraft select

enemy tank and enemy aircraft tuples using predicates on their ids. The last query, Across The

Line, selects all the objects that have crossed the demarcation line towards the friendly side.

Each query further has a value-based QoS function attached to its output. A value-based QoS

function maps the tuple values observed at an output to utility values that express the importance

of a given result tuple. In this example, the functions are defined on the x-coordinate attribute of the

output tuple which indicates where an object is positioned horizontally. The functions take values in

the range [0, 500], of which 350 corresponds to the position of the vertical demarcation line. Initially

all friendly units are on [0, 350] side of this line whereas enemy units are on the [350, 500] side. The

QoS functions are specified by an application administrator and reflect the basic fact that tuples for

enemy objects that have crossed the demarcation line are more important than others.

Query results are also displayed on a visualizer as shown in Figure 3.16(b). In the screenshot of

Figure 3.16(b), there is one screen per query and an additional screen for the video results.

Figure 3.17 illustrates the performance monitoring GUI that we implemented to watch the

changes in system load as the queries are running. There are two main screenshots shown in this

Figure: (i) Figure 3.17(a) is showing the queue lengths on the arcs between the query operators (red

and thick arcs indicating there is high tuple accumulation in the corresponding queues), as well as

drop operators that are dynamically inserted at run-time (small gray boxes); (ii) Figure 3.17(b) is

42

showing a manual interface through which we can change the load shedding level in the system to

see its effect on QoS values as presented on the small graphs on the righthand side.

We ran this query network with tuples generated by the Aurora workload generator based on a

battle scenario that we got from the defense contractor. We fed the input tuples at different rates

to create specific levels of overload in the network; then we let the load shedding algorithm remove

the excess load by inserting drops to the network. Figure 3.18 shows the result. We compare the

performance of three different load shedding algorithms in terms of their value utility loss (i.e., the

average degradation in the QoS provided by the system) across all outputs at increasing levels of

load.

We make the following important observations: First, our semantic load shedding algorithm,

which drops tuples based on attribute values, achieves the least value utility loss at all load levels.

Second, our random load shedding algorithm inserts drops of the same amounts at the same network

locations as the semantic load shedder. Since tuples are dropped randomly, however, loss in value

utility is higher compared to the semantic load shedder. As excess load increases the performance of

the two algorithms becomes similar. The reason is that at high load levels, our semantic load shedder

also drops tuples from the high utility value ranges. Lastly, we compare both of our algorithms

against a simple admission control algorithm which sheds random tuples at the network inputs.

Both our algorithms achieve lower utility loss compared to this algorithm. Our load shedding

algorithms may sometimes decide to insert drops on inner arcs of the query network. On networks

with operator sharing among queries (e.g., the union operator is shared among all four queries in

Figure 3.16(a)), inner arcs may be preferable to avoid utility loss at multiple query outputs. On the

other hand, at very high load levels, since drops at inner arcs become insufficient to save the needed

CPU cycles, our algorithms also insert drops close to the network inputs. Hence, all algorithms tend

to converge to the same utility loss levels at very high loads.

3.10 Chapter Summary

In this chapter, we have described the general problem of shedding load in a data stream management

system by discarding tuples that have the least impact on QoS. We discussed the way in which we

detect an overload, our mechanism for discarding tuples (i.e., inserting drops), and a technique for

determining the proper location and the right magnitude of the drops. The key feature of our solution

is that most of the analysis concerning dropping strategies can be done statically and captured in

a simple data structure. The dynamic load shedding process involves a very cheap use of the static

information. This technique makes our solution practical and scalable.

Also, our solution does not depend on the details of the scheduling algorithm. Instead it assumes

that any cycles that are recovered as a result of load shedding are used sensibly by the scheduler

to relieve the congestion. This makes our solution much more general in that it works equally well

with any good scheduler.

We have shown some experimental evidence that our load shedding techniques outperform basic

43

(a) Aurora Query Network for Battalion Monitoring Queries

(b) Aurora Visualizer for the Battalion Monitoring Queries

Figure 3.16: Battalion Monitoring Queries

44

(a) Load Monitor

(b) Load Shedding Controller

Figure 3.17: Aurora Performance Monitoring GUI for Battalion Monitoring Queries

45

Figure 3.18: Load Shedding Results for the Battalion Monitoring Application

admission control and its variants. We have also shown that while our probabilistic dropping tech-

nique can do fairly well, the method that takes tuple semantics into account can do even better.

Our experiments also clearly show that as we increase the difference in importance between the

most valuable tuples and the least valuable tuples, semantic load shedding produces more striking

benefits. All of these results verify our intuitions. The most crucial observation of this chapter is

that it is possible to design a low-overhead mechanism for putting these concepts into practice in

the context of a stream data manager.

46

Chapter 4

Window-aware Load Shedding

4.1 Overview

Window-based computation is an essential component of stream processing systems. As streams are

potentially unbounded tuple sequences, often times query results are obtained by grouping tuples

into finite windows of consecutive tuples. A key operation on windows is aggregation. In this case,

an aggregate function such as sum, average, or count is applied on a window of tuples and an output

tuple for that window is produced with the value of the function result. This function can also be

an arbitrary user-defined function. Most stream processing systems provide full support for user-

defined aggregates (e.g., [8, 65]). With such a capability, it is highly likely to use aggregates at

arbitrary places in a query plan. Thus, nested user-defined aggregates have proven to be essential

in various applications, ranging from habitat monitoring with sensors to online auctions [86], and

highway traffic monitoring [15].

As a concrete example, consider the query plan in Figure 4.1, that computes the number of times

in an hour that IBM’s high price and low price in a 5-minute window differ by more than 5. Box 2 is

a user-defined aggregate that collects all prices for a symbol in a 5-minute window, and then emits

a tuple that contains the difference between the high and the low price. This stream is then filtered

to retain differences that are larger than a given threshold, in this case, 5. A downstream aggregate

then counts these extreme price differences. This kind of behavior can nest to an arbitrary depth.

Load shedding techniques devised so far, including our own approach described in the previous

Filter FilterFilter Aggregate

2 3 4 5

Aggregate

symbol="IBM" window = 5 min
slide = 5 min

diff = high − low

diff > 5 window = 60 min
slide = 60 min

count

count > 0

1

Figure 4.1: An example nested aggregation query

47

48

chapter, have applied drops in units of individual tuples. Drops are implemented as a specific

operator, and this operator is pushed toward the inputs to avoid wasted work. A major limitation of

this approach is that windowed operators such as aggregates, either block the motion of such drops

(e.g., drop must be placed between box 4 and box 5 in Figure 4.1), or result in non-subset answers if

drops are pushed across them. Furthermore, if inexact answers are produced through load shedding

in the middle of the query plan, it is difficult to understand how this error will propagate through

subsequent downstream operators. This further limits the query topologies across which such drops

can be placed. For example, some solutions allow at most one aggregate operator in the query, and

only to appear at the leaf of the query tree [17].

In this chapter, we introduce a new approach which applies drops in units of windows. This

approach never produces wrong values and does not suffer from any of the problems mentioned

above. It further enables the placement of drops at early points in a query plan (e.g., before box

1 in Figure 4.1), maximizing the amount of processing saved while keeping the error under control.

More specifically, in this chapter, we study the problem of load shedding for aggregation queries

over data streams, building upon our general framework that we described in the previous chapter.

The main contributions of our work can be summarized as follows:

• We propose a novel load shedding approach for windowed aggregation queries which guarantees

to deliver subset results.

• Our technique is general enough to handle arbitrary (user-defined) aggregate functions, mul-

tiple levels of aggregate nesting, and shared query plans.

• Regardless of where the aggregates appear in a query plan, our approach enables pushing drops

across them, to early points in the plan, maximizing the amount of processing saved.

• We mathematically analyze the correctness and performance of our approach.

• We experimentally evaluate the performance of our approach on a stream processing system

prototype.

The rest of this chapter is organized as follows: We first introduce important models and assump-

tions underlying our work. In particular, we introduce windowed aggregation queries in Section 4.2

and the subset-based approximation model in Section 4.3. Our subset-based, window-aware load

shedding approach is presented in detail in Sections 4.4, 4.5, 4.6, 4.7, and 4.8. We provide a math-

ematical analysis of this approach in Section 4.9. Extensions to multiple aggregate groups and

count-based windows are briefly described in Section 4.10. We present an experimental evaluation

of our approach in Section 4.11. Finally, we conclude in Section 4.12.

4.2 Aggregation Queries

An aggregation query is composed of one or more aggregate operators along with other operators.

Aggregate operators act on windows of tuples. Before we define the aggregate operator, we describe

49

how we model its two important building blocks: windows and aggregate functions.

4.2.1 The Window Model

Data streams are continuous sequences of data records that may have no end. Traditional set

operations like join or aggregate may block or may require unbounded memory if data arrival is

unbounded. Most applications, however, require processing on finite portions of a stream rather

than the whole. Each such excerpt is called a window. Windows can be modeled in various ways

[48]. In our system, there are two ways to physically build windows: (i) attribute-based windows,

and (ii) count-based windows. In the first case, an attribute is designated as the windowing attribute

(usually time), and consecutive tuples for which this attribute is within a certain interval constitute

a window (e.g., stock reports over the last 10 minutes). Here, tuples are assumed to arrive in

increasing order of their windowing attributes. In the second case, a certain number of consecutive

tuples constitute a window (e.g., the last 10 readings from the temperature sensor). Our system also

uses a sliding window model in which a window’s endpoints move by a given amount to produce the

next window.

4.2.2 The Aggregate Function

An aggregate function F takes in a window of values and performs a computation on them. F
can be a standard SQL-style aggregate function (sum, count, average, min, max) or a user-defined

function. Aggregate functions in our system have the form F(init, incr, final), such that the

init function is called to initialize a state when a window is opened; incr is called to update that

state whenever a tuple that belongs to that window arrives; and final is called to convert the state

to a final result when the window closes. Note that, as will soon become apparent, our approach is

in fact independent of the particular aggregate functions used in a query.

4.2.3 The Aggregate Operator

An aggregate operator Aggregate(S, T ,G,F , ω, δ) has the following semantics. It takes an input

stream S, which is ordered in increasing order on one of its attributes denoted by T , which we call

the windowing attribute. If T is not specified, Aggregate requires no order on its input stream. In

practice, T usually corresponds to tuple timestamps which can either be embedded in the tuple

during its generation at the source (e.g., temperature readings from a sensor, recorded with the time

they were measured), or can be assigned by the stream processing system at arrival time. From here

on, we will use the terms “timestamp” and “windowing attribute” interchangeably.

S is divided into substreams based on optional group-by attribute(s) G, if specified. Each sub-

stream is further divided into a sequence of windows on which the aggregate function F is applied.

Aggregate’s window properties are defined by two important parameters: window size ω and win-

dow slide δ. These parameters can be defined in two alternative ways: (i) in units of the windowing

attribute T (e.g., time-based window), (ii) in terms of number of tuples (i.e., count-based window).

50

According to the time-based windowing scheme, a window W consists of tuples whose timestamp

values are less than ω apart. When Aggregate receives a tuple whose timestamp is equal to or

greater than the smallest timestamp in W + ω, W has to be closed. While ω denotes how large a

window is and thus when it should be closed, δ denotes when new windows should be opened. Every

δ time units, Aggregate has to open a new window. We assume that 0 < δ ≤ ω. When δ = ω,

we say that we have a tumbling window. Otherwise, we say that we have a sliding window. Tum-

bling windows constitute an interesting case because they partition a stream into non-overlapping

consecutive windows.

Aggregate outputs a stream of tuples of the form (t, g, v), one for each window W processed. t

is the smallest timestamp of the tuples in W , g is the value of the group-by attribute(s) (skipped

when G is not specified), and v is the final aggregate value returned by the final function of F . In

this work, we will initially assume that S consists of a single group and windows are time-based.

Extensions to more general forms of aggregates are provided in 4.10.

4.3 The Subset-based Approximation Model

Approximate answers result from dropping tuples. In our system, we shed load such that the

total utility loss measured at the output is minimized. As explained in Chapter 2, a loss-tolerance

QoS function maps the percent tuple delivery to utility values (see Figure 2.3(b)). The larger the

percentage of output tuples delivered, the higher its utility to the receiving application. In the case

of a single query, minimizing utility loss corresponds to providing the largest possible subset of the

actual query result. In the case of multiple queries, the load to shed from each is based on their

(possibly different) tolerance to loss. If no QoS functions are specified, then we assume that all

applications have the same tolerance and the goal is to maximize the amount of total percent tuple

delivery. It is important to note that in all of these cases we shed load such that the delivered answer

is a subset of the original answer.

In this chapter, additionally, we assume that each output application can also specify a threshold

for its tolerance to gaps. Gap represents a succession of tuples missing from the result. For example,

we have worked on a sensor network application [91], in which a person’s physiological measurements

must be delivered at least once per minute, i.e., losing or choosing not to deliver results observed

more frequently is acceptable. We call the maximum output gap to which an application can tolerate

the batch size. The system must guarantee that the amount of consecutive output tuples missed

due to load shedding never exceeds this value. Note that batch size can be defined in terms of tuple

counts or time units. In this work, we assume the former.

Note that batch size puts a lower bound on loss. Given a batch size B, the query must at least

deliver 1 tuple out of every B + 1 tuples. Therefore, the fraction of tuples delivered can never be

below 1/(B + 1). Under heavy workload, it may not be possible to remove excess load while still

meeting all applications’ bounds on B. In this case, we apply “admission control” on queries, where

the most costly queries whose bounds can not be met have to be completely shut down (by inserting

51

.. 30 15 30 20 10 30 .. 25 20
Average

.. 30 15 30 20 10 30 .. _ 15 _ 20 10 _ .. 15 15
AverageDrop

Tuple

50%

.. 30 15 30 20 10 30 .. _ 20.. 25 20
Average

50%

Drop
Tuple

.. 30 15 30 20 10 30 .. _ 20

50%

Window
Drop

.. _ _ _ 20 10 30
Average

Figure 4.2: Drop alternatives for an aggregate

drops at their inputs with drop probability p = 1).

4.4 Window-aware Load Shedding with Window Drop

In our subset-based load shedding framework, queries deliver values all of which would also occur in

the exact answer; no new values are generated. As such, this framework has to address an important

challenge when windowed aggregates are involved: dropping individual tuples from streams does not

guarantee subset results when such streams are to be processed by windowed aggregates. Therefore,

if the goal is to deliver subset results as approximate answers, the windowing mechanisms of a query

must be taken into account when discarding tuples. Thus, load shedding on windowed queries must

be window-aware.

Let us illustrate our point with a simple example. Consider the aggregate operator in Figure

4.2, which computes 3-minute averages on its input in a tumbling window fashion. If we place a

tuple-based random drop before the Average which cuts the load down by 50%, then we obtain a

non-subset result of nearly the same size as the original. In this case, the load between the Tuple

Drop and the Average is reduced by a factor of 50%, but the load is the same downstream from the

Average. Alternatively, we can place the Tuple Drop after the Average, which drops tuples after the

average has been computed. In this case, we produce a subset result of smaller size. However, load

reduction has been achieved too late in the query plan, and we do not save from the computation

of the aggregate. As a result, there is a tradeoff between achieving subset results and reducing

load early in a query plan. We need a mechanism which would drop load before the Average, but

would still produce a subset result. Windowed aggregates deliver subset results if and only if they

operate on original windows as indivisible units. This observation led us to invent a new type of

drop operator, called a Window Drop. As shown in Figure 4.2, the Window Drop can be placed

before the Average, and applies drops in units of windows. As a result, it can achieve early load

52

Window Specification Description
-1 don’t care
0 window disallowed

τ
window allowed;
must preserve tuples with T < τ

Table 4.1: Window specification attribute

reduction without sacrificing the subset guarantee.

A window drop operator WinDrop(S, T ,G, ω, δ, p,B) takes six parameters in addition to an input

stream S. T denotes the windowing attribute, G denotes the group-by attribute(s), ω denotes the

window size, δ denotes the window slide, p denotes the drop probability, and B denotes the drop

batch size. The T ,G, ω, δ parameters of WinDrop are derived from the properties of the downstream

aggregate operators. p is determined by the load shedder according to the amount of load to be

shed. Finally, B is derived based on the requirements of the output applications.

The basic functionality of WinDrop is to encode window keep/ drop decisions into stream tuples

to be later decoded by downstream aggregate operators. WinDrop logically divides its input stream

S into time windows of size ω, noting the start of a new window every δ time units. For every group

of B consecutive windows, WinDrop makes a probabilistic keep/drop decision. Each decision is an

independent Bernoulli trial with drop probability p. The drop decision for a window is encoded into

the tuple which is supposed to be the window’s first (or starter) element, by annotating this tuple

with a window specification value.

Each tuple has a window specification attribute as part of its system-assigned tuple header,

with a default value of -1. To allow a downstream aggregate to open a window upon seeing a

tuple t, WinDrop sets the window specification attribute of t to a positive value for the windowing

attribute T . This value not only indicates that a window can start at this tuple, but also indicates

until which T value the succeeding tuples should be retained in the stream to ensure the integrity

of the opened window. To disallow a downstream aggregate from opening a window upon seeing

a tuple t, WinDrop sets the window specification attribute of t to 0. Table 4.1 summarizes the

semantics for the window specification attribute.

Consider an aggregate operator Aggregate(F , ω, δ) 1 and assume that we would like to place

a window drop before Aggregate. In order to drop p fraction from the output of Aggregate, we

insert WinDrop(ω, δ, p,B) at Aggregate’s input. Note that the first two parameters of WinDrop

are directly inherited from Aggregate so that WinDrop can divide the input stream into windows

in exactly the same way as Aggregate would. Then it decides which of those windows should

be dropped and marks their starter elements. Finally, when a tuple t is received by Aggregate,

Aggregate examines t’s window specification attribute and skips windows that are disallowed. As

a result of this, we save system resources at multiple levels. First, when a window is skipped,
1We do not show S when the input stream is clear from the context. From here on, we also drop the T and G
parameters from both aggregate and window drop, simply assuming that windows are commonly defined on time,
and S consists of a single group.

53

Aggregate Arrangement Parameters for WinDrop

Pipeline:
Aggregate Aggregate

WinDrop B
A1 Ak

(Fk, ωk, δk)(F1, ω1, δ1)(ω, δ, B)

ω =
∑k

i=1 ωi − (k − 1)
δ = δk

B

Fan-out:

non−aggregate
operator

some

Aggregate

Aggregate

WinDrop

Bk

Ak

(F1, ω1, δ1)

(Fk, ωk, δk)

B1

A1

(ω, δ, B)

ω = lcm(δ1, . . . , δk)
+maxk

i=1{extent(Ai)}
where extent(Ai) = ωi − δi

δ = lcm(δ1, . . . , δk)
B = mink

i=1{ Bi

lcm(δ1,...,δk)/δi
}

Table 4.2: Rules for setting window drop parameters

Aggregate need not open and maintain state for that window. In other words, Aggregate does less

work upon seeing tuples that arrive immediately after t because there is one fewer open window that

those tuples can contribute to. Second, when Aggregate skips a window, it produces no output for

that window, thereby reducing data rate and saving from processing in the downstream subnetwork.

Third, WinDrop not only encodes window specifications into tuples, but it is also capable of actually

dropping tuples under certain conditions, which we call an early drop. More specifically, tuples that

are marked with a negative window specification value and that are beyond the T range imposed

by the most recently seen positive window specification value can be dropped right away, without

waiting to be seen by a downstream aggregate. Early drops are discussed in detail in Section 4.7.

It should be emphasized here that the ability to move a drop upstream from an aggregate enables

us to continue pushing it toward the inputs. This is important as it can save computation for the

complete downstream subquery from where it ends up.

4.5 Handling Multiple Aggregates

There are two basic arrangements of aggregates in a query network: (1) a pipeline arrangement,

(2) a fan-out arrangement. Table 4.2 summarizes the rules for setting window drop parameters for

these two arrangements. Any query network can be handled using a composition of these two rules.

We now discuss these rules and how we derived them in detail.

4.5.1 Pipeline Arrangement of Aggregates

A query arrangement with a sequence of operators where each operator’s output is fed into another

one is called a pipeline arrangement.

Assume that we have k aggregates, Ai(Fi, ωi, δi), 0 < i ≤ k, pipelined in ascending order of i,

54

1 2 3 4 5 6 7 8 9 10 11 12 ...

1 3

1 4

7 95 11

7 10

1 2 3 4 5 6 7 8 9 10 11 12 ...

41 7 10

WinDrop

ω1 = 3, δ1 = 2

ω2 = 3, δ2 = 3
A1

ω1, δ1 ω2, δ2

A2

ω, δ
ω = 5, δ = 3

Figure 4.3: Pipeline example

as shown in the first row of Table 4.2. We would like to drop p fraction from the output of Ak

by placing WinDrop(ω, δ, p,B) before the leftmost operator in the pipeline (A1). WinDrop must

have a slide δ that is equal to the slide of the last aggregate Ak in the pipeline. The reason for

this is that Ak is the last operator that divides the stream into windows and produces one output

every δk time units. Dropping p fraction from Ak’s output requires that we encode a drop decision

once every δk time units. Furthermore, WinDrop must have a window size which will guarantee

the preservation of all tuples of a window W when W is kept. If we only had Ak, the window

size would simply be ωk. However, there are k − 1 aggregates preceding Ak, each with its own

corresponding window of tuples to be preserved. To be on the safe side, we consider the following

worst case scenario: To produce an output tuple tm with time m, Ak needs outputs of Ak−1 in

the range [tm, tm+ωk
); Ak−1 in turn needs outputs of Ak−2 in the range [tm, tm+ωk+ωk−1−1); and

so on. Finally, A2 needs outputs of A1 in the range [tm, tm+ωk+...+ω2−(k−2)) and A1 needs stream

inputs [tm, tm+ωk+...+ω1−(k−1)) in order to guarantee the desired range. Therefore, WinDrop has

to preserve a window of size ω1 + . . . + ωk − (k − 1) whenever it decides to retain a window, which

forms its effective window size. Note that this is a conservative formulation, based on the worst case

scenario when each aggregate’s window slide is such that the last time value in a window opens up a

new window. As such, it is an upper bound on the required window size for WinDrop. Finally, the

batch size parameter B of WinDrop is assigned as specified by the output application at the end of

the pipeline.

The simple example in Figure 4.3 illustrates the pipeline arrangement rule. We show a query that

consists of two aggregates. A1 has a window size and slide of 3 and 2 respectively, followed by A2 with

window size and slide of 3 each. We first show how an input stream with the indicated time values is

divided into windows by these aggregates consecutively. Then we show the corresponding WinDrop

to be placed before this arrangement. According to our pipeline arrangement rule, WinDrop must

have a window size and slide of 5 and 3 respectively. Hence, it divides the input stream as shown,

marking the tuples that correspond to window starts. Notice how WinDrop considers input tuples

with time values in the range [1, 6) as an indivisible window unit to produce a result tuple with time

value of 1. The original query uses exactly the same time range to produce its result with time value

of 1.

55

1 2 3 4 5 6 7 8 9 10 11 12 ...

1 3 5

1 4 7 10

119

common start

7

1 2 3 4 5 6 7 8 9 10 11 12 ...

1 7

WinDrop

extent(A1) = 1

extent(A2) = 0

ω1 = 3, δ1 = 2

ω2 = 3, δ2 = 3

ω, δ

A1

ω1, δ1

A2

ω2, δ2

ω = 7, δ = 6

A0

Figure 4.4: Fan-out example

4.5.2 Fan-out Arrangement of Aggregates

A query arrangement with an operator whose output is shared by multiple downstream branches is

called a fan-out arrangement.

When there are aggregates at child branches of a fan-out, we need a WinDrop which makes

window keep/drop decisions that are common to all of these aggregates. Assume k sibling aggregates,

A1(F1, ω1, δ1), . . . , Ak(Fk, ωk, δk), as in the second row of Table 4.2. A common WinDrop for all

aggregates would have a drop probability of p, a window slide of lcm(δ1, . . . , δk) and a window size of

lcm(δ1, . . . , δk) + max(extent(A1), . . . , extent(Ak)), where extent(Ai) = ωi − δi. δ = lcm(δ1, . . . , δk)

represents the lowest common multiple of slides of all sibling aggregates, i.e., every δ time units, all

aggregates start a new window at the same time point. Assume T to be such a time point where

all aggregates meet to start a new window. extent(Ai) represents the number of time units that Ai

needs beyond T in order to cleanly close its most recently opened window. Ai must have opened a

window at T − δi, because its next window will be starting at T . Therefore, its extent beyond T is

ωi− δi. We take the maximum of all the aggregates’ extents so that all aggregates can cleanly close

their open windows. As a result, the logical window that encloses all aggregate siblings must have a

window size of ω = lcm(δ1, . . . , δk)+max(extent(A1), . . . , extent(Ak)). In other words, window slide

δ is formulated such that each time WinDrop slides, it positions itself to where all of the aggregates,

A1 through Ak, would attempt to start new windows. Window size ω is formulated such that when

a keep decision is made, enough of the range is kept to preserve integrity of all of the aggregates’

windows. Finally, the batch size of WinDrop is the minimum allowed by all sibling aggregates.

Note that we need to scale each aggregate’s batch size Bi before computing the minimum. This

scaling is required because, when WinDrop slides once, Ai slides lcm(δ1, . . . , δk)/δi times. Hence,

lcm(δ1, . . . , δk)/δi consecutive windows for Ai correspond to 1 window for WinDrop.

The example in Figure 4.4 illustrates the fan-out arrangement rule. We show a query that consists

of two sibling aggregates. Window sizes and slides of these aggregates are the same as in the pipeline

example of Figure 4.3. Both aggregates receive a copy of the stream emanating from their parent,

but they divide it in different ways based on their window parameters. We first show how this is done

together with the extents and common window start positions for the aggregates. Both aggregates

start new windows at time values 1 and 7. A1 has an extent of 1 (i.e., its last window before a new

56

window starts at 7 extends until 8). A2 has an extent of 0 (i.e., its last window completely closes

before a new window opens at 7). Based on these, we show the corresponding WinDrop that must

be placed before this aggregate arrangement. WinDrop must have a window size and slide of 7 and

6 respectively. This way, it makes window keep/drop decisions at time values where both A1 and A2

expect to open new windows. Furthermore, in case of a keep decision, WinDrop retains all tuples

required to cleanly close open windows of both of the aggregates.

4.5.3 Composite Arrangements

We will now briefly illustrate the composition of the rules in Table 4.2. Assume that A0 in Figure

4.4 is an aggregate with ω0 = 4 and δ0 = 1 (i.e., A0(4, 1)). Thus, we have a combined arrangement

with two pipelines and a fan-out. There are two alternative ways to construct WinDrop for this

arrangement:

1. We first apply the fan-out rule on A1 and A2, which gives us WinDrop(7, 6) as illustrated in

Figure 4.4. Then we apply the pipeline rule on A0(4, 1) and WinDrop(7, 6), which gives us

WinDrop(10, 6).

2. We first apply the pipeline rule on paths [A0(4, 1), A1(3, 2)] and [A0(4, 1), A2(3, 3)], which

gives us WinDrop(6, 2) and WinDrop(6, 3), respectively. We then apply the fan-out rule on

these, which gives us WinDrop(10, 6).

4.6 Decoding Window Specifications

As mentioned earlier in Section 4.4, window drop attaches window specifications to tuples that are

potential window starters. These specifications further indicate the fate of those windows and need

to be decoded by downstream aggregates in order for them to take the right action. In this section,

we describe how this decoding mechanism works.

Table 4.3 summarizes how an aggregate Aggregate with window size ω decodes the window

specifications coded by a preceding WinDrop. First assume that Aggregate receives a tuple with

time value t and according to the slide parameter of Aggregate, a new window has to start at t

(upper half of Table 4.3). If the tuple has a positive window specification τ , then Aggregate opens

a new window with a window specification attribute of τ − (ω − 1) (i.e., when this window closes

and produces an output tuple, the window specification of this output tuple will be τ − (ω − 1)).

Aggregate also has to make sure that all successive tuples with time values up to τ − (ω − 1) are

retained in the stream (i.e., Aggregate sets its keep until variable to τ − (ω − 1)). If the tuple has

a non-positive (0 or -1) window specification, then Aggregate checks if t is within the time range

that it must retain (i.e., if t < keep until). If so, a new window is opened with the given window

specification and the keep range is set to max(keep until, t+ω). If not, Aggregate skips this window.

Now assume that Aggregate receives a tuple with time value t where Aggregate does not expect to

open a new window (lower half of Table 4.3). Aggregate will not open any new window. However, it

57

win start? win spec keep until relevant action
yes τ within open window

keep until = τ − (ω − 1)
win spec = τ − (ω − 1)

yes τ beyond open window
keep until = τ − (ω − 1)
win spec = τ − (ω − 1)

yes 0 within open window
keep until = t+ω, (if >)

yes 0 beyond skip window
yes -1 within open window

keep until = t+ω, (if >)
yes -1 beyond skip window
no τ within keep until = τ − (ω − 1)

win spec = τ − (ω − 1)
mark as fake tuple

no τ beyond keep until = τ − (ω − 1)
win spec = τ − (ω − 1)
mark as fake tuple

no 0 within mark as fake tuple
no 0 beyond mark as fake tuple
no -1 within ignore
no -1 beyond ignore

Table 4.3: Decoding window specifications

has to still maintain the window specification attribute in the tuple for other downstream aggregates’

disposal (if any). The two important specifications are τ and 0, the former indicating the opening

of a window and the latter indicating the skipping of a window. If the specification is -1, Aggregate

does not need to do anything. If the tuple has a positive window specification τ , Aggregate updates

its time range as well as the window specification of the tuple. In both of the non-negative cases,

Aggregate marks this tuple as a fake tuple. A fake tuple is one which has no real content but only

carries a window specification value that may be significant to some downstream aggregates. Such

tuples should not participate in query computations and should be solely used for decoding purposes.

We must point out here that fake tuples have one other important use. A query network may

have other types of operators lying between a window drop and the downstream aggregates which

are supposed to decode window specifications generated by the window drop. We must make sure

that window specifications correctly survive through such operators. For example, assume that the

filter between the two aggregates in Figure 4.1 (box 3) decides to drop a tuple t from the stream since

this tuple does not satisfy its predicate. If t is carrying a non-negative window specification, then

we can not simply discard it. Instead, we must mark t as a fake tuple and let it pass through the

filter. This is because t is carrying a message for the downstream aggregate (box 4) about whether

to open or to skip a window at a particular time point.

Note that it can be argued that fake tuples introduce additional tuples into the query pipeline.

58

However, since these are not real tuples, operators except aggregates will just pass them along

without doing any processing on them, whereas aggregates will check the flag to see if they should

open a window. Hence, it is unlikely that fake tuples will drive the system into overload.

4.7 Early Drops

Window drop not only marks tuples, but it can also drop some of them. In this section, we discuss

how this early drop mechanism works. We start with a useful definition.

Definition 7 (Window Count Function (WCF)). Consider a stream S with tuples partially ordered

in increasing order of their time values. Assume that the very first tuple in S has a time value of

θ. Consider an aggregate Aggregate(S, ω, δ), where ω = m ∗ δ + φ, m ≥ 1, 0 ≤ φ < δ. We define

a Window Count Function WCF : Z∗ → N, that maps time value t to the number of consecutive

windows to which tuples with t belong as:

WCF (t) =





i + 1, if t ∈ [θ + i ∗ δ, θ + (i + 1) ∗ δ − 1], where 0 ≤ i < m

m + 1, if t ∈ [θ + i ∗ δ, θ + (i−m) ∗ δ + ω − 1], where i ≥ m

m, if t ∈ [θ + (i−m) ∗ δ + ω, θ + (i + 1) ∗ δ − 1], where i ≥ m

Note that the first case only occurs once at the start of the stream. Thereafter, the second and the

third cases occur repeatedly one after the other. If the aggregate window is tumbling (i.e., ω = δ),

then the second case has a time range length of 0, i.e., it is skipped. Also, the first case is equivalent

to the third case since m = 1. As a result, for tumbling window aggregates, WCF (t) = m = 1 for

all tuples (i.e., each tuple belongs to only 1 window).

Rule 1 (Early Drop Rule). If a tuple with time value t belongs to k windows (i.e., WCF (t) = k),

then this tuple can be early-dropped if and only if the window drop operator decides to drop all of

these k windows.

If a window drop operator WinDrop flips a coin every time it observes a potential window start

and decides to drop that window with probability p, then for an early drop, WinDrop has to flip

the coin for k consecutive times, which has probability pk. Unless p is a big number or k is a

small number (e.g., in the case of a tumbling window), then the probability of an early drop is very

small. Instead, to take advantage of early drops, we use the following (more deterministic) drop

mechanism: We mentioned in Section 4.3 that, to indicate its tolerance to gaps in the answer, each

query specifies a constant B for the maximum number of consecutive windows that can be shed.

Given a drop probability p, WinDrop flips the coin once for every batch of B windows and drops

them all with probability p. Based on the window count function WCF , dropping B consecutive

windows corresponds to a certain number of early drops. Note that to satisfy B, at least one window

has to be opened after each dropped batch. If the coin yields two consecutive drops, then we allow

the first window of the second batch to open and compensate for it later by skipping a window when

in fact the coin yields a keep. This ensures that we satisfy both B and p.

59

4.8 Window Drop Placement

In general, load reduction should be performed at the earliest point in a query plan to avoid wasted

work. However, there may be certain situations where placing drops at inner arcs of the query

plan might be more preferable than placing them at the input arcs. We will briefly discuss these

situations.

Unless B is large enough to allow early drops (i.e., B ≥ bω
δ c), there is no benefit in placing a

window drop operator WinDrop further upstream than the leftmost aggregate in the pipeline. For

the pipeline arrangement, as we place WinDrop further upstream, the difference between ω and δ

widens (i.e., m = bω
δ c in Definition 7 grows). Similarly, for the fan-out arrangement, both ω and

δ may get larger across a split while B may get smaller. WinDrop must be placed at the earliest

point in the query where it saves processing while also not violating the constraints on B.

Although not so common, a query plan may have multiple aggregates with different sliding

window properties over the same data stream (e.g., a pipeline arrangement with a mix of count-

based and time-based windows, and/or with different group-by attributes). In this case, the window

drop must be placed at a point where such properties are homogeneous downstream. It requires

further investigation to extend our framework to handle the heterogeneous case.

4.9 Analysis

Next we mathematically analyze our approach for correctness and performance.

4.9.1 Correctness

Definition 8 (Correctness). A drop insertion plan is said to be correct if it produces subset results

at query outputs.

Theorem 5. WinDrop inserted aggregation queries preserve correctness.

Proof. The proof for this theorem has two parts, one for each aggregate arrangement. We can prove

each by induction. Consider a pipeline P of N aggregates Ai(ωi, δi). Given a finite input stream S,

assume that the result of P(S) is the set A, and the result for the window drop inserted version,

P ′(S), is the set A′. For N = 1, WinDrop(ω, δ) is inserted before A1 such that ω = ω1, δ = δ1.

Every δ1 time units, WinDrop marks a tuple t as either keep (τ , where τ = t.time+ω), or drop (0).

When A1 receives t with specification of τ , it opens a new window at t.time and retains all tuples

in time range [t.time, τ). In this case, A1 delivers an output tuple o ∈ A. When A1 receives t with

a 0 or −1 specification, it does not open a window. In this case, A1 adds no output tuple to the

result. Therefore, A′ ⊆ A. Next, assume that the theorem holds for N = n. We will show that it

must also hold for N = n + 1. We are given that a WinDrop(ω, δ), with ω =
∑n

i=1 ωi− (n− 1) and

δ = δn, inserted before A2 preserves correctness. Consider a window W at A1 with a time range of

[T, T + ω1 − 1], when processed produces an aggregate output with time value T . Any aggregate

60

WinDrop RDrop

R cost2

sel2

A(ω, δ)

p(ω, δ, p,B)

BSUBNET1 SUBNET2

cost3cost1

sel3sel1

Figure 4.5: Inserting drops into an aggregation query

downstream from A1, that includes a tuple with time T in its window effectively incorporates S

values with time up to T + ω1− 1. Therefore, if WinDrop′ is placed before A1, its effective window

size must include this range to preserve window integrity. As a result, WinDrop′ must have a

window size of ω′ = ω + ω1 − 1 =
∑n

i=1 ωi − (n − 1) + ω1 − 1 =
∑n+1

i=1 ωi − (n + 1 − 1). This

proves our window size formulation for a pipeline of n + 1 aggregates. Finally, in order to produce

subset results, the WinDrop′ must produce results either δn+1 apart or in multiples of this quantity.

Therefore, WinDrop′ must have a window slide of δ′ = δn+1. This concludes the first part of our

proof. The part for the fan-out case follows a similar inductive reasoning, therefore we do not discuss

it here.

4.9.2 Performance

We now analyze the effect of window drop on CPU performance. We also compare it against

the random drop alternative [93]. Consider a query network as in Figure 4.5, where an aggregate

A(ω, δ) is present between two subnetworks of other non-aggregate operators, whose total costs and

selectivities are as shown. The CPU cycles needed to process one input tuple across this query

network can be estimated as cost1 + sel1 ∗ (cost2 + sel2 ∗ cost3). If the input stream has a rate of

R tuples per time unit, then the CPU load as processing cycles per time unit is R ∗ (cost1 + sel1 ∗
(cost2 + sel2 ∗ cost3)).

If a random drop were inserted downstream from the aggregate operator, the CPU load would

become:

LRDrop = R ∗ (cost1 + sel1 ∗ (cost2 + sel2 ∗ (costRDrop + (1− p) ∗ cost3)))

The CPU cycles saved as a result of this would be:

SRDrop = R ∗ (sel1 ∗ sel2 ∗ p ∗ cost3 − sel1 ∗ sel2 ∗ costRDrop)

Instead, if a WinDrop were inserted at the query input, the CPU load would become:

LWinDrop = R ∗ (costWinDrop + cost′1 + cost′2 + sel1 ∗ sel2 ∗ (1− p) ∗ cost3)

cost′1 = costfcheck + selw1 ∗ cost1 + selw2 ∗ costcopy

cost′2 = selw1
δ ∗ costwcheck + selw2 ∗ costwcheck + selw1 ∗ sel1 ∗ cost2

SUBNET1 first checks if a tuple is fake or not (costfcheck). Assume selw1 of tuples from WinDrop

are normal and selw2 of them are fake. Then, former are processed normally (selw1 ∗ cost1), and

latter are just copied across to A (selw2 ∗ costcopy). A checks window specification attributes for

61

keep−window keep−windowdrop−batch

(B − 1) ∗ δ + ω

(B + 1) ∗ δ − ω ω − δω − δ

of B windows

Figure 4.6: Drop-batch (when B ≥ bω
δ c)

ones to be opened (selw1
δ ∗ costwcheck) and for ones to be skipped (selw2 ∗ costwcheck). Then, tuples

in the former group go through normal aggregate processing (selw1 ∗ sel1 ∗ cost2). The CPU cycles

saved would be:

SWinDrop = R∗ (sel1 ∗sel2 ∗p∗ cost3 +(1−selw1)∗ cost1 +(1−selw1)∗sel1 ∗ cost2− costWinDrop

−costfcheck − selw2 ∗ costcopy − (selw1
δ + selw2) ∗ costwcheck)

If we compare SRDrop with SWinDrop, we see that SWinDrop has two additional savings terms: it

saves from the aggregate operator’s cost (cost2) as well as from the first subnetwork’s cost (cost1)

with an amount determined by selw1 (as a result of early drops). On the other hand, there are three

additional cost terms for handling the flags introduced by WinDrop. We expect these costs to be

much smaller than the savings of WinDrop. We experimentally show the processing overhead of

WinDrop in Section 4.11.

Let us now briefly show how selw1 and selw2 can be estimated. For simplicity, we will assume

a stream with one tuple per time value. We drop windows in batches of size B. By definition, each

drop-batch must be preceded and followed by at least one keep-window. The total number of tuples

in a batch is (B − 1) ∗ δ + ω (see Figure 4.6). Given a drop-batch, 2 ∗ (ω − δ) of its tuples overlap

with the preceding and the following keep-windows, therefore the number of tuples that belong only

to the drop-batch is (B+ 1) ∗ δ− ω. These are the tuples that can be early-dropped (assuming that

B ≥ bω
δ c). This many tuples out of a total of (B − 1) ∗ δ + ω can be early-dropped and this would

occur with probability p. Therefore, we end up with selw1 = 1−p∗ (B+1)∗δ−ω
(B−1)∗δ+ω of WinDrop’s output

tuples being kept as normal tuples. Furthermore, one tuple out of every δ tuples may have to be

retained as a fake tuple since it carries a 0 window specification. Thus, b (B+1)∗δ−ω
δ c = (B+1)−bω

δ c
out of (B + 1) ∗ δ − ω will be additionally kept with probability p. Therefore, we end up with

selw2 = p ∗ (B+1)−bω
δ c

(B+1)∗δ−ω .

4.10 Extensions

4.10.1 Multiple Groups

An aggregate can be defined to operate on groups formed by common values of one or more of its

input attributes as specified by its group-by attribute G. In this case, windows are formed separately

62

within each group. In this case, WinDrop operator must make window keep/drop decisions on a

per-group basis. WinDrop uses the same ω, δ, T parameters on all groups. However, we allow

p and B parameters to be assigned differently for each group. First, groups may have different

QoS requirements. For example, consider an aggregate which computes the average price for the

last 1 hour’s stock prices grouped by company. The loss-tolerance for Company A tuples may be

smaller than for Company B tuples. Additionally, an application may not want to miss more than 5

windows in a row for A, whereas it may tolerate missing up to 10 consecutive windows for B. Hence,

we handle this kind of cases by using a different B parameter for each aggregate group (stored

as a drop batch size array). Second, groups may be experiencing different arrival rates, thereby

contributing differently to the CPU load. Therefore, it may be preferable to shed different amounts

of load from each group. Hence, we handle such cases by using a different p parameter for each

aggregate group (stored as a drop probability array).

4.10.2 Count-based Windows

Although the fan-out arrangement rule in Table 4.2 directly applies to aggregation queries with

count-based windows, a modification is required to the pipeline arrangement rule. The window size

parameter for WinDrop across a pipeline of aggregates must be modified as ω = ωk ∗
∏k−1

i=1 δi +∑k−1
i=1 (extent(Ai) ∗

∏i−1
j=1 δj), and the window slide parameter for WinDrop must be modified as

δ =
∏k

i=1 δi (assuming that
∏0

i=1 δi = 1).

There is an additional issue with count-based windows when there are certain types of other

operators lying between a WinDrop and an aggregate. For example, if a Filter in-between these

operators removed tuples from the stream, the downstream aggregate would count tuples in a dif-

ferent way than the upstream WinDrop. There is a similar counting problem when a Union that

merges two streams into one lies between a WinDrop and an aggregate. In both cases, window in-

tegrity could be lost. As a result, with count-based windows, existence of other operators introduce

a limitation on how far a WinDrop can be pushed upstream from an aggregate.

4.11 Performance Evaluation on Borealis

4.11.1 Experimental Setup

We implemented the window drop operator as part of the load shedder component of the Au-

rora/Borealis stream processing prototype system [7, 12]. We conducted our experiments on a

single-node Borealis server, running on a Linux PC with an Athlon 64 2GHz processor. We created

a basic set of benchmark queries as will be described in the following subsections. We used synthetic

data to represent readings from a temperature sensor as (time, value) pairs. For our experiments,

the data arrival rates and the query workload were more important than the actual values of the

data workload. Thus, for our purposes, using synthetic data was sufficient.

We first compare our approach against the random drop alternative which can only provide the

63

Delay
50 msec

Delay
5 msec

Aggregate Delay
500 msec

Aggregate RDrop
10, 10 100, 100

B=10

Delay
5 msec

Aggregate
10, 10

Delay
50 msec

Delay
500 msec

Aggregate
100, 100

B=10WinDrop
100, 100

B=10

Delay
5 msec

Aggregate Delay
500 msec

Aggregate
100, 100

Delay
50 msec10, 10109, 100

B=10

B=10WinDrop

Figure 4.7: Drop insertion plans for the pipeline arrangement (RDrop, Nested1, and Nested2)

subset guarantee by applying tuple-based drops when placed downstream from all the aggregates in

a query plan. 2. As part of this initial set of experiments, we also show the advantage of shedding

load early in a query plan, by placing the window drop operator at various locations in a given plan

and comparing the results. Then in Section 4.11.3, we examine the effect of window parameters, by

varying window size and slide, and measuring the result degradation for various query plans. We

also compare these experimental results against the analytical estimates of Section 4.9 to confirm

their validity. Finally, in Section 4.11.4, we evaluate the processing overhead of our technique.

4.11.2 Basic Performance

First we will show the basic performance of window drop for both the pipeline and the fan-out (i.e.,

shared) query arrangements.

Nested Aggregates. For this experiment, we used the nested aggregation query shown in Figure

4.7, which is similar to the stock count example of Figure 4.1. There are two aggregate operators,

each with tumbling windows of size 10 and 100 respectively, and both with count functions. We

used a batch size of 10. We added delay operators before and after each aggregate to model other

operators that may exist upstream and downstream from the aggregates. A delay operator simply

withholds its input tuple for a specific amount of time (busy-waiting the CPU) before releasing it to

its successor operator. A delay operator is essentially a convenient way to represent a query subplan

with a certain CPU cost; its delay parameter provides a knob to easily adjust the query cost. In

Figure 4.7, we used appropriate delay values to make different parts of the query equally costly.

The goal of this experiment is twofold. First, we show how much window drop degrades the

result for handling a given level of excess load. Second, we compare it against two alternatives: one

is a variation of our window drop approach, where a window drop is inserted in the middle of the

query network; the other is random drop that is placed downstream from both of the aggregates.

Figure 4.7 illustrates these three alternative drop insertion plans.

Figure 4.8 presents our result. The excess rate on the x-axis represents the percentage of the

input rate that is over full capacity. The y-axis shows the drop rate (i.e. the fraction of the answer
2Note that we do not compare our approach against the relative error-based approaches (e.g., [17]) since there is
no fair way to do this when error models are different.

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
% excess rate

Nested2
Nested1

RDrop

dr
op

 r
at

e

Figure 4.8: Comparing alternatives (pipeline)

that is missing from the result). RDrop represents random drop, Nested1 corresponds to window

drop inserted in the middle, and Nested2 is for window drop placed at the input. At relatively

low input rates, RDrop shows comparable performance to window drop approaches. However, as

the rate gets higher, both Nested1 and Nested2 scale far better than the RDrop approach. In fact,

RDrop stops delivering any results once the excess load gets beyond 65%. Nested2 either results in

equal or smaller degradation in the answer compared to Nested1 at all load levels.

As a result, window drop is effective in handling system overload. It scales well with increasing

input rate and outperforms the random drop alternative. Note that the RDrop case is all that

would have been allowed by our previous work [93], since one could not move drops past aggregates.

Placing the window drop further upstream in a nested aggregation query significantly improves the

result quality, as more load can be saved earlier in the query, which reduces the total percentage of

the data that needs to be shed.

Shared Query Plans. We repeated the previous experiment on a shared query plan. We used

a fan-out arrangement with two aggregate queries as shown in Figure 4.9. The figure plots the

three alternative load shedding plans that we compared. Shared WinDrop is when window drop

is placed at the earliest point in the query plan, Split WinDrop is when each query has a sep-

arate window drop placed after the split point, and Split RDrop is when we apply tuple-based

random load shedding downstream from the aggregates. The parameters of the window drops are

appropriately assigned based on the rules in Table 4.2.

Figure 4.10 presents our result. The y-axis shows the total drop rate for both of the queries, when

the system experiences a certain level of excess load. Similar to our earlier result, shedding load at

the earliest possible point in the query plan provides the smallest drop rate, and hence, the highest

result quality. Again, the window drop operator enables pushing drops beyond aggregates and split

points in a query plan, reducing quality degradation without sacrificing the subset guarantee.

65

Delay
5 msec

Delay
50 msec

100 msec
Delay

Aggregate

10, 10

Aggregate

20, 20

B=10

B=10

20, 20
WinDrop

B=5

(a) Shared WinDrop

Delay
50 msec

100 msec
Delay

Aggregate

10, 10

Aggregate

20, 20

B=10

B=10

WinDrop

B=10
10, 10

B=10

WinDrop
20, 20

Delay
5 msec

(b) Split WinDrop

Delay
50 msec

100 msec
Delay

B=10

B=10

Aggregate

Aggregate

20, 20

RDrop

RDrop

10, 10
Delay
5 msec

(c) Split RDrop

Figure 4.9: Drop insertion plans for the fan-out arrangement

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

to
ta

l d
ro

p
ra

te

% excess rate

Shared_WinDrop
Split_WinDrop

Split_RDrop

Figure 4.10: Comparing alternatives (fan-out)

4.11.3 Effect of Window Parameters

Next we investigate the effect of window parameters on window drop performance. We used a query

with one aggregate operator with a count function as shown in Figure 4.11. We again added delay

66

5 msecAggregateDelay
5 msec

DelayWinDrop

rate+25%

analytical
estimates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

dr
op

 r
at

e

window size

slide=winsize
slide=1

 25 50 75 100

Figure 4.11: Effect of window size

operators of 5 milliseconds each, before and after the aggregate, and set the batch size to 10.

The bar chart in Figure 4.11 shows the effect of window size on drops. An input rate that is

25% faster than the rate the system can handle at full capacity is fed into the query. For each

window size, we measure the fraction of tuples that must be dropped to bring the system load below

the capacity. We take these measurements for a window that slides by 1 (slowly sliding window)

and for a window that slides by the window size (tumbling window). In most cases, the drop rates

came out to be lower for the tumbling window case. This is because window drop can achieve early

drops in this case. A second observation is that drop rates stay almost fixed as the window size

increases. Interestingly, the formulas presented earlier in Section 4.9 also suggest that load should

be independent of the aggregate window size when δ = 1 and δ = ω (see selw1 and selw2). We also

measured average operator costs and plugged them into our formulas. The formulas estimate drop

rates to be 0.2 and 0.39 for the tumbling and the sliding window case, respectively (shown with

dotted lines). The latter case is experimentally confirmed in Figure 4.11. However, our formulas

underestimate the drop rate for the tumbling window case. In this case, the aggregate operator has a

very small selectivity. It closes a window and produces an output once every ω tuples, at which point

the downstream delay operator is scheduled. Our analysis models the average case behavior and

fails to capture cases where internal load variations may occur due to changes in operator scheduling

frequency.

Figure 4.12 details the effect of window slide on window drop performance: Figure 4.12(a) shows

our experimental result and Figure 4.12(b) plots the analytical estimates of Section 4.9. A window

size of 100 with four different slide values is used. A slide value of 1 corresponds to a large number

of simultaneously open windows, therefore, a high degree of window overlap, and high aggregate

selectivity. A slide value of 100 corresponds to one open window at a time, zero window overlap,

and low aggregate selectivity, providing more opportunity for early drops. As we increase the window

67

window size = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 10 100

dr
op

 r
at

e

window slide

rate+25%
rate+50%
rate+66%

(a) Experimental result

window size = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 10 100

dr
op

 p
ro

ba
bi

lit
y

(p
)

window slide

rate+50%
rate+66%

rate+25%

(b) Analytical estimate (from Section 4.9)

Figure 4.12: Effect of window slide

slide, the number of saved CPU cycles upstream from the aggregate increases (due to early drops)

while the number to be saved downstream from the aggregate decreases (due to low aggregate

selectivity). The required drop amount first increases, but then starts decreasing due to additional

savings from early drops. Note that this decrease is observed when slide gets above 10 (i.e., when

bω
δ c ≤ B). Window drop shows the best advantage as the degree of window overlap decreases. We

continue to observe this effect as excess load increases. Our analysis, plotted in Figure 4.12(b),

captures the general behavior very well, but as window slide grows, it shows a departure from the

measured results, for the same reason as explained in the previous paragraph.

As a brief note, we also compared our window drop with a random drop inserted after the

aggregate. For slide=1, the performance is similar (no early drops). For slide=100, random drop

fails to remove the overload, even at rate+25%. Thus, in the worst case where there is a very high

degree of window overlap and zero opportunity for early drops, window drop behaves similar to the

68

FilterWinDrop AggregateDelay
10 msec

Figure 4.13: Filtered aggregation query

window size selectivity=1.0 selectivity=0.5
25 0.99 0.96
50 0.99 0.98
75 1.0 0.98
100 1.0 1.0

Table 4.4: Throughput ratio (WinDrop(p = 0)/NoDrop)

random drop. As slide grows, window drop achieves a clear advantage.

4.11.4 Processing Overhead

Next we evaluate the overhead of adding window drop into query plans. This overhead has several

potential sources: (1) an additional operator to be scheduled in the query plan, (2) other operators

interpreting window specifications, (3) fake tuples.

In this experiment, we used the query layout shown in Figure 4.13. We varied the predicate of

the filter to obtain various selectivity values. We used a tumbling window whose window size is also

varied. Table 4.4 shows the ratio of throughput values for a query that contains a window drop that

does not drop anything (p = 0) and for the case when no window drop is present. We ran each query

for a minute, at a rate that is 50% higher than the system capacity. Since no tuples are dropped in

either case, the reduction (if any) in the number of tuples produced with window drop must be due

to the additional processing overhead. First, Table 4.4 shows that in general, the overhead is low.

Second, as the window size increases, the overhead decreases. This is due to the fact that the window

drop marks tuples less frequently. Third, for lower selectivity, the overhead seems to be higher. This

result accounts for the effect of handling fake tuples. As we mentioned earlier in Section 4.6, filter

generates fake tuples when its predicate evaluates to false but the tuple has to be retained if it is

carrying a non-negative window specification. The chance of generating fake tuples increases as the

filter selectivity decreases. This may further lead to an increased overhead of processing fake tuples

in the downstream query network. As shown in Table 4.4, we see only a slight increase in overhead

when the filter selectivity is lowered to 0.5.

4.12 Chapter Summary

In this chapter, we have shown a window-aware load shedding technique that deals with sliding

window aggregate operators. Moreover, we have done this in a way that preserves the subset result

69

guarantee. Our techniques also support load shedding in query networks in which aggregates can

be arbitrarily nested. We believe that this is very important since, in our experience with the

Aurora/Borealis system, user-defined aggregates have been used extensively in practice for many

tasks that involve operating on a subsequence of tuples. Thus, they occur quite frequently in the

interior of query networks. Our contribution is the ability to handle aggregates in a very general

way that is consistent with a subset-based error model.

We have shown that, as is expected, with the added ability to push drops past aggregates, we

can recover more load early; thereby, regaining the required CPU cycles while minimizing the total

utility loss. By focusing on dropping windows, we can better control the propagation of error through

the downstream network.

Some of the complexity in our solution is a result of the simple flat data model. For example,

not being able to denote windows as sets of tuples results in a tuple marking scheme. However, a

simple model simplifies implementation and allows for faster execution in the general case.

70

Chapter 5

Distributed Load Shedding

5.1 Overview

In this chapter, we consider the overload management problem in the context of distributed stream

processing systems. In this environment, large numbers of continuous queries are distributed onto

multiple servers. Distributed stream processing systems (e.g., [6, 13, 76, 84]) are important because

distribution is the principle way that we can scale our systems to cope with very high stream rates.

An example of an application in which this is a crucial issue is Internet-scale dissemination in

which content from many sources is aggregated and distributed to an audience of many millions

of listeners (e.g., [37, 74]). Also, many applications are naturally distributed. An example of this

kind of application is distributed sensor networks in which the processing elements are the sensors

themselves (e.g., [67]).

Data streams can arrive in bursts which can have a negative effect on result quality (e.g., through-

put, latency). Provisioning the system for worst-case load is in general not economically sensible.

On the other hand, bursts in data rates may create bottlenecks at some points along the server

chain. Bottlenecks may arise due to excessive demand on processing power at the servers or band-

width shortage at the shared physical network that connects these servers. Bottlenecks slow down

processing and network transmission, and cause delayed outputs. Load shedding in this case aims

at dropping tuples at certain points along the server chain to reduce load. Unlike TCP congestion

control, there are no retransmissions and dropped tuples are lost forever. This will have a negative

effect on the quality of the results delivered at the query outputs. The main goal is to minimize the

quality degradation.

In the previous chapters of this thesis, we focused on the single-server load shedding problem.

This chapter studies distributed load shedding. In distributed stream processing systems, each node

acts like a workload generator for its downstream nodes. Therefore, resource management decisions

at any node will affect the characteristics of the workload received by its children. Because of this

load dependency between nodes, a given node must figure out the effect of its load shedding actions

71

72

cost = 1
sel = 1.0 sel = 1.0

sel = 1.0
cost = 1 cost = 3

cost = 2

Node BNode A

sel = 1.0
rB
1rA

1 = 1

rB
2rA

2 = 1

Figure 5.1: Two continuous queries distributed onto two servers

Plan Reduced rates at A A.load A.throughput B.load B.throughput Result
0 1, 1 3 1/3, 1/3 4/3 1/4, 1/4 originally,

both nodes
are overloaded

1 1/3, 1/3 1 1/3, 1/3 4/3 1/4, 1/4 B is still
overloaded

2 1, 0 1 1, 0 3 1/3, 0 optimal plan
for A, but
increases B.load

3 0, 1/2 1 0, 1/2 1/2 0, 1/2 both nodes ok,
but not optimal

4 1/5, 2/5 1 1/5, 2/5 1 1/5, 2/5 optimal

Table 5.1: Alternate load shedding plans for node A of Figure 5.1

on the load levels of its descendant nodes. Load shedding actions at all nodes along the chain

will collectively determine the quality degradation at the outputs. This makes the problem more

challenging than its centralized counterpart. We will illustrate our point with a simple example.

5.1.1 Motivating Example

Consider the simple query network in Figure 5.1 with two queries that are distributed onto two

processing nodes, A and B. Each small box represents a subquery with a certain cost and selectivity.

Cost reflects the CPU time that it takes for one tuple to be processed by the subquery, and selectivity

represents the ratio of the number of output tuples to the number of input tuples. Both inputs arrive

at the rate of 1 tuple per second. Therefore, the total processing load on node A is 3 and the total

processing load on node B is 4/3, i.e., both of the nodes are above the capacity limit of 1. Potentially

each node can reduce load at its inputs by dropping tuples to avoid overload. Let’s consider node A.

Table 5.1 shows various ways that A can reduce its input rates and the consequences of this in terms

of the load at both A and B, as well as the throughput observed at the query outputs. Note that

we are assuming a fair scheduler that allocates CPU cycles among the subqueries in a round-robin

73

fashion. In all of these plans, A can reduce its load to the capacity limit. However, the effect of

each plan on B can be very different. In plan 1, B stays at the same overload level. In plan 2, B’s

load increases to more than twice its original load. In plan 3, B’s overload problem is also resolved,

but throughput is low. There is a better plan which removes overload from both A and B, while

delivering the highest total throughput (plan 4). However, node A can only implement this plan if

it knows about the load constraints of B. From A’s point of view, the best local plan is plan 2. This

simple example clearly shows that nodes must coordinate in their load shedding decisions to be able

to achieve high-quality query results.

5.1.2 Design Goals

An effective load shedding solution for a distributed stream processing system should have the

following properties:

• Fast reactivity to load. The main goal of load shedding is to maintain low-latency query

results even during load spikes. These situations need to be detected and addressed as soon

as possible. To achieve this, the load shedding algorithm must be light-weight and the load

shedding plans must be efficiently deployed. In a distributed setting, having even a single

overloaded node in the query pipeline is sufficient to boost latency at the outputs. Therefore,

the solution must be equally attentive to each individual node’s problem.

• Global control on output quality. While maintaining low-latency results, the algorithm

must also ensure that the quality of the query answers does not arbitrarily degrade. As

evidenced by our example above, a load shedding plan that can deliver very high-quality

results at a node locally, does not necessarily achieve similar quality at the global level. What

eventually matters to the applications is the quality of the results that they observe at the

query end-points. Therefore, regardless of where load is being shed in the node chain, the

resulting effect at the query end-points must be kept under control.

• Scalability. The load shedding algorithm should scale well with certain important perfor-

mance factors. These include the number of server nodes, the number of input streams, and

the amount of branching that may exist along the queries. Branching is important since it

causes a stream to split and replicate its contents into multiple streams, creating more load

in the system. Also, these replica streams may serve multiple different end-point applications.

Therefore, shedding load before or after a split point makes a difference in output quality.

• Adaptivity to dynamic changes. The distributed stream processing environment can be

highly dynamic. The processing requirements can change not only due to changing input

rates, but also due to changing operator selectivities, placement, and so on. The load shed-

ding algorithm should efficiently adapt to such changes, possibly making small incremental

adjustments.

74

5.1.3 Our Solution Approach

A load shedder will insert drop operators on selected arcs in order to reduce the load to a manageable

level. We call a set of drop operators with given drop levels at specific arcs a load shedding plan. In

practice, a load shedder cannot spend large amounts of time determining the best plan at runtime,

when the system is already under duress. Instead, in this and in our previous work, we run an

off-line algorithm first to build a set of plans that can be quickly invoked for different combinations

of input load.

For the distributed case, the simplest way to run the off-line algorithm is to have each node send

its requirements to a central site at which the coordinated load shedding plans are built. As we shall

see, this allows us to formalize distributed load shedding as a linear programming problem which

can be solved with a standard optimization algorithm.

Unfortunately, the centralized case does not scale as the number of nodes grows very large.

Moreover, since the solver can take a long time to run, it is not very useful as a tool for replanning

when the environment is highly dynamic. A dynamic environment is one in which the selectivities,

processing costs, and network topology are likely to change often. In these cases, the previously

computed load shedding plans will likely not be desirable, therefore, a new set of plans must be

constructed.

For these very large and potentially dynamic environments, we describe a distributed algorithm

that does not require the high-level of communication that the centralized case demands. We also

show how this distributed algorithm can incrementally compute changes to the previous plan in

response to local changes in the environment, thereby making it more responsive than a centralized

version.

5.1.4 Assumptions

We study the distributed load shedding problem in the context of our Borealis distributed stream

processing prototype system. As also described earlier in Chapter 2, Borealis accepts a collection

of continuous queries, represents them as one large network of query operators, and distributes the

processing of these queries across multiple server nodes. Each server runs Aurora as its underlying

query processing engine that is responsible for executing its share of the global query network. In

addition to this basic distributed stream processing functionality, the system also provides various

optimization, high availability, and approximation capabilities, including load shedding.

For the purposes of this chapter, we treat the query operators as black boxes with certain cost

and selectivity properties. The costs and selectivities are obtained by observing the running system

over time. As such, they are statistical in nature and combining them produces approximations.

Our operator-specific load shedding techniques that are presented in the previous chapters are com-

plementary to this work.

Bottlenecks in a distributed setting may arise both due to the lack of required processing power

and also due to bandwidth limitations. In line with the previous chapters of this thesis, we will

75

continue to limit our scope to the CPU problem.

There can be various quality metrics defined for the query outputs. The QoS model we used

in Chapter 3 is an example. In this chapter, we will focus on total query throughput as the main

quality metric (also referred to as quality score) to maximize.

Finally, in this work, we focus on tree-based server topologies, while the query network itself can

have operator splits and merges.

5.1.5 Chapter Outline

The rest of this chapter is outlined as follows. In Section 5.2, we present a precise formulation of

the distributed load shedding problem. In Section 5.3, we discuss the architectural aspects of our

solution to this problem. Our solver-based centralized approach is detailed in Section 5.4, while

Section 5.5 provides the details for our distributed alternative. In Section 5.7, we show experimental

evidence that our techniques are viable. Finally, we conclude the chapter with Section 5.8.

5.2 The Distributed Load Shedding Problem

5.2.1 Basic Formulation

We define the distributed load shedding problem as a linear optimization problem as follows. Con-

sider a query diagram as shown in Figure 5.2, that spans N nodes, each with a fixed dedicated CPU

capacity ζi, 0 < i ≤ N . Assume that we designate D arcs on this diagram as drop locations where

drop boxes can be inserted. As we showed earlier in Chapter 3, drop locations are the input arcs of

the query diagram, and the output arcs of splitting operators. In Figure 5.2, they appear only at

the input arcs since there are no operator splits. For a drop location dj on arc j, 0 < j ≤ D, let

ci,j represent the total CPU time required at node i, to process one tuple that is coming from arc

j, and similarly, let si,j represent the overall selectivity of the processing that is performed at node

i on tuples that are coming from arc j. Assume that rj represents the data rate on arc j, and sj

represents the overall selectivity of the query from arc j all the way down to the query outputs (i.e.,

sj =
∏N

i=1 si,j). Lastly, we denote the partial selectivity from arc j down to the inputs of node i by

si
j (i.e., for 1 < n ≤ N, sn

j =
∏n−1

i=1 si,j , and for n = 1, s1
j = 1.0).

Our goal is to find xj , i.e., the fraction of tuples to be kept at drop location dj (or drop selectivity

at dj), such that for all nodes i, 0 < i ≤ N :

D∑

j=1

rj × xj × si
j × ci,j ≤ ζi (5.1)

0 ≤ xj ≤ 1 (5.2)
D∑

j=1

rj × xj × sj is maximized. (5.3)

76

Node 2 Node N
drop location

Node 1

r1

rD

xD

c2,D

cN,1

cN,D

ζ1 ζ2 ζN

x1

s2
D

sN
1

sN
D

c2,1
s2,1

s2,D

sN,1

sN,D

c1,D

s1s2
1c1,1

s1,1

sD
s1,D

Figure 5.2: Linear query diagram

rj rate on arc j
xj drop selectivity on arc j
ci,j cost of processing tuples at node i coming from arc j
si,j selectivity of processing tuples at node i coming from arc j
si

j partial selectivity of processing tuples coming from arc j down to node i

sj total selectivity of processing tuples coming from arc j down to the outputs
ζi fraction of the dedicated CPU capacity at node i

Table 5.2: Linear query diagram notation

This optimization problem can be expressed as a linear program as follows. We have a set of N

linear constraints on processing load of the nodes, which we call load constraints, as given by (5.1).

We have a set of D variables xi on drop selectivities, which can range in 0 ≤ xi ≤ 1, as given by

(5.2). Our goal is to maximize a linear objective function that represents the total throughput as

given by (5.3), subject to the set of constraints (i.e., (1) and (2)). In other words, we want to make

assignments to variables that represent the fraction of tuples to be kept at the drop locations such

that load constraints for all nodes are satisfied and the total throughput at the query end-points is

maximized.

5.2.2 Operator Splits and Merges

In this section, we show how we can extend the basic problem formulation of Section 5.2.1 to query

diagrams with operator splits and operator merges.

Operator Splits

We have operator splits in a query network when output from an operator fans out to multiple

downstream operators which further lead to separate query outputs. Note that if split branches

merge downstream in the diagram, we do not consider this as a split case. Split is an interesting

case because shedding load upstream or downstream from a split may result in different quality

degradation at the outputs due to sharing. Therefore, all output arcs of a split constitute potential

drop locations [93].

77

Prefix Variables:s1

s2

x1

x2

x5

x6

x3

x4

B = x1 ∗ x2 ∗ x3
C = x1 ∗ x2 ∗ x4

A = x1 ∗ x2

D = x1 ∗ x5
E = x1 ∗ x6

c2

c5
s5

c6
s6

c3
s3

c4
s4

r

E

D

A

B

C

c1

Figure 5.3: Two levels of operator splits

We illustrate the problem formulation for operator splits on a simple single-node example with

two levels of splits shown in Figure 5.3. Let xi denote the drop selectivity on a particular drop

location, and ci and si denote the processing cost and selectivity of a given operator, respectively.

The variables shown with capital letters denote the total drop selectivity at various points in the

query network. We can formulate the optimization problem for our example as follows:

r(c1x1 + s1c2A + s1s2c3B + s1s2c4C + s1c5D + s1c6E) ≤ ζ (5.4)

0 ≤ x1 ≤ 1 (5.5)

0 ≤ A,D, E ≤ x1 (5.6)

0 ≤ B, C ≤ A (5.7)

{r(s1s2s3B + s1s2s4C + s1s5D + s1s6E)} is maximized. (5.8)

We create a variable for each path prefix (e.g., x1, A = x1x2, and B = x1x2x3), which we call

prefix variables. We express our load constraints in terms of the prefix variables, as in (5.4). We

define constraints on each prefix variable of length k such that its value is constrained between 0 and

the values of its matching prefix variables of length k− 1 (e.g., 0 ≤ x1x2x3 ≤ x1x2). We express our

objective function in terms of the longest prefix variables on each path (e.g., x1x2x3, x1x2x4, x1x5,

and x1x6). Then we solve our problem for the prefix variables. Finally, we plug in the values of the

prefix variables to obtain values of the original variables. In our example, we would solve for the

prefix variables {x1, A, B, C,D, E} to obtain the original variables {x1, x2, x3, x4, x5, x6} as follows:

x1 = x1, x2 = A
x1

, x3 = B
x1x2

, x4 = C
x1x2

, x5 = D
x1

, x5 = E
x1

.

Operator Merges

Two streams can merge on a query diagram via the Union operator. The output rate of a Union

operator will be the result of the relative rates into the Union. Consider the example query segment

in Figure 5.4. Let ci denote the box costs and si denote the box selectivities. r1s1
r1s1+r2s2

of the

78

U c4
s4

x2

r1

r2

c1
s1

c2
s2

x1

c3

s3 = 1.0

Figure 5.4: Merging two streams via Union

query output comes from stream 1 and r2s2
r1s1+r2s2

of it comes from stream 2. Therefore, we may

want to shed different amounts from these streams (e.g., shedding more from the stream whose

contribution to the query output is smaller would not affect the total throughput as much as the

other stream). Furthermore, top and bottom paths of the query may have different load factors,

resulting in different amount of gain from these paths. Thus, it may again be more advantageous

to shed more from one of the streams. We can formulate the optimization problem for this merge

example as follows:

r1(c1 + s1c3 + s1c4)x1 + r2(c2 + s2c3 + s2c4)x2 ≤ ζ (5.9)

0 ≤ x1, x2 ≤ 1 (5.10)

{r1(s1s4)x1 + r2(s2s4)x2} is maximized. (5.11)

5.3 Architectural Overview

In the previous section, we showed how to formulate one instance of the distributed load shedding

problem for a specific observation of the input rates. When we solve such a problem instance, we

obtain a load shedding plan. This plan essentially shows where drop operators should be inserted

in the query network, and what the drop selectivity should be for each of them. We will describe

how we generate a load shedding plan in Sections 5.4 and 5.5. In this section, we will discuss the

architectural aspects of our solution.

During the course of system execution, input rates and hence the load levels on the servers will

vary. Therefore, there is a need to continuously monitor the load in the system and react to it using

the appropriate load shedding plan. We identified four fundamental phases in the distributed load

shedding process:

1. Advance Planning: This is the precomputation phase. In this phase, the system prepares

itself for potential overload conditions based on available metadata about the system. The idea

is to do as much of the work as possible in advance so that the system can react to overload

fast and in a light-weight manner. More specifically, in this phase, we generate a series of load

shedding plans together with an indication of the conditions under which each of these plans

should be used.

79

Figure 5.5: Centralized approach

2. Load Monitoring: As the system runs, we continuously watch the system load by measuring

the input rates and estimating the load level on each server accordingly.

3. Plan Selection: This is the decision making phase. If an important change in system load is

detected during the monitoring phase, then we decide what action to take. This is achieved

by selecting the right load shedding plan from the many computed during Advance Planning.

4. Plan Implementation: In this final phase, the selected plan is put into effect by changing

the query network by inserting drops to overcome the current overload.

In a distributed stream processing environment, the Plan Implementation phase will always

be performed at multiple servers in a distributed fashion. The first three phases however, can be

performed in various ways. In this work, we study two general approaches, based on an architectural

distinction regarding where these three phases should be performed:

1. Centralized Approach. In the centralized approach, Advance Planning, Load Monitoring,

and Plan Selection are all performed at one central server, whereas Plan Implementation is

performed at all servers in a distributed fashion. One of the servers in the system is designated

as the “coordinator node” (see Figure 5.5). It contacts all the other participant nodes in

order to collect their local system catalogs and statistics. By doing so, it obtains the global

query network topology and the global statistics about various run-time elements in the system

(e.g., operator cost and selectivity). Based on the collected global metadata, the coordinator

generates a series of load shedding plans for other servers to apply under certain overload

conditions. These plans are then uploaded onto the associated servers together with their plan

id’s. Once the plans are precomputed and uploaded onto the nodes, the coordinator starts

monitoring the input load. If an overload situation is detected, the coordinator selects the best

plan to apply and sends the corresponding plan id to the other servers in order to trigger the

distributed implementation of the selected plan.

80

Figure 5.6: Distributed approach

2. Distributed Approach. In the distributed approach, all four phases of distributed load

shedding are performed at all of the participating nodes in a cooperative fashion. There is

no single point of control. Instead, the collective actions of all the servers result in a globally

effective load shedding plan. In this chapter, we propose a distributed approach in which

the needed coordination is achieved through metadata aggregation and propagation between

neighboring nodes. As a result of this communication, each node identifies what makes a

feasible input load for itself and its server subtree, and represents this information in a table

that we call the Feasible Input Table (FIT) (see Figure 5.6). Then using its FIT, a node can

shed load for itself and for its descendant nodes.

Table 5.3 summarizes the four phases of the distributed load shedding process and where each

phase takes place for the two general classes of approaches. In this chapter, we focus on two

specific approaches that fall under these two classes: (i) a solver-based approach, and (ii) a FIT-

based approach. The solver-based approach is fundamentally a centralized approach that requires

a coordinator, while the FIT-based approach is inherently designed as a distributed approach, but

its centralized implementation is also available. Next, we present these two alternative approaches

in detail.

5.4 Advance Planning with a Solver

As shown in Section 5.2, the distributed load shedding problem can be formulated as a linear

optimization problem. Our solver-based advance planning technique is based on solving it using the

81

Phases Centralized Distributed
Advance Planning coordinator all
Load Monitoring coordinator all
Plan Selection coordinator all

Plan Implementation all all

Table 5.3: Four phases of distributed load shedding

Simplex Method of the GNU Linear Programming Kit (GLPK) [4].

Given the global query network topology, global statistics on operator costs and selectivities, and

a specific observation of the input rates, the coordinator node first derives the necessary metadata.

These include drop locations, path prefixes, partial and total path selectivities, load and rate factors.

Basically, all variables described in Section 5.2 are computed to formulate a standard linear program

(LP) with an objective function to maximize total system throughput, load constraints one for each

node, and bounds and additional constraints on the variables representing drop selectivities for the

drop locations. The examples in Section 5.2 illustrate this process in a clear way.

After the LP is fully constructed, we then call the Simplex Method of GLPK. The solution pro-

duced by GLPK consists of value assignments to all the prefix variables and the value of the objective

function. From the prefix variables, we can obtain value assignments to all original variables, each

representing the drop selectivity on a particular drop location on the query network.

The final step is to prepare the local load shedding plans. We go through the list of all drop

locations. Each such location belongs to a specific server node. For each drop location d on node

i, we create a drop operator with its drop rate determined by the drop selectivity assignment from

the LP solution, and add that operator to the load shedding plan of node i. As a result, we obtain

one load shedding plan for each node.

5.4.1 Region-Quadtree-based Division and Indexing of the Input Rate

Space

As part of the Advance Planning phase, we need to generate not one, but a series of load shedding

plans to be able to handle any potential overload condition. In order words, we must map each

infeasible (i.e. overloaded) point in the multi-dimensional input rate space to a load shedding plan

that will make that point feasible for all the servers. Since a large query network may have many

input streams, this space can be very large. It is not practical to exhaustively consider each possible

infeasible rate combination in such a high-dimensional space. Instead, we need to carefully pick

a sample of infeasible points that will represent the whole space in a controlled fashion, and only

for that sample of points, will we generate load shedding plans. Then for the rest of the infeasible

points that are not in the sample, we will use one of those generated load shedding plans. Note that

for points not in the sample, we can not guarantee optimal plans. Instead, we relax the optimality

requirement such that we allow plans whose output score must not deviate from the score of an

82

optimal plan by more than a specific percent error value. For example, given a percent error of

ε = 10%, it would be acceptable to use an existing load shedding plan with a score ≥ 45 for an

infeasible point p whose actual optimal score would be 50.

Our solution is based on dividing the multi-dimensional input rate space into a small number

of subspaces such that all infeasible points in a given subspace can be handled using the same load

shedding plan. This kind of an approach has two main benefits: (i) it makes the Advance Planning

phase more efficient since it reduces the number of times that we need to construct and solve LP’s;

(ii) it makes the Plan Selection phase more efficient since it reduces the search space.

To divide our space into subspaces, we exploit an interesting property of the throughput metric.

The throughput score of an infeasible point p is always greater than or equal to the throughput score

of another infeasible point q, when p is larger than or equal to q along all of the dimensions. This is

because for p, the LP solver gets to choose from a larger range of rate values and therefore has more

degrees of freedom to find a solution with higher objective value. For example, given two infeasible

points p(x1, y1) and q(x2, y2) in a 2-dimensional input rate space, if x1 ≥ x2 and y1 ≥ y2, then

p.score ≥ q.score. Based on this fact, given percent error ε, if p.score − q.score ≤ ε
100 ∗ p.score,

then we can say that all infeasible points captured between p and q can use the same plan as the

plan for point q with the guarantee that the score will never deviate from the optimal by more than

ε percent.

In order to tackle the problem in a systematic way, we use a region-quadtree-based approach

to subdivide the space [81]. This approach also gives us the opportunity to build a quadtree-based

index on top of our final subspaces which will make the Plan Selection phase much more efficient.

We assume that the maximum rate along each input dimension is given so that we know the

bounds of the space that we are dealing with (e.g., (100, 100) in Figure 5.7(a)). We start by generating

load shedding plans for the two extreme points of our input rate space and comparing their scores.

Thus, we compare the score of the bottom-most point of this space (e.g., p in Figure 5.7(a)) with

the score of its top-most point (e.g., q in Figure 5.7(a)). If the percent difference is above the given ε

value, then we must further divide each dimension of this space into 2 (e.g., giving us 4 subspaces B,

C, D, E in Figure 5.7(a)). Then we repeat the same procedure for each of these 4 subspaces. When

we find that the score difference between two extreme points of a subspace is below the ε threshold,

then we stop dividing that subspace any further. All infeasible points in a given rectangle must get

assigned to the load shedding plan that corresponds to the bottom-most point of that rectangle.

For example, in Figure 5.7(a), assume that the score of point r is within ε distance from the score

of point q. Then, all infeasible points in the subspace between these two extreme points (i.e., the

subspace E) can safely use the load shedding plan generated for point r. Assume s is such a point.

In order for s to use the plan at r, s must additionally be mapped to r. This is accomplished by

an additional load shedding step. In this case, we reduce the 60 to 50 by adding a drop of 50
60 , and

similarly, we reduce the 75 to 50 with a drop of 50
75 . We can now use the plan for r = (50, 50).

Note that, during the space division process, as we get closer to the origin, we may come across

some feasible points. If we ever find that the top-most point of a subspace is already a feasible

83

r = (50, 50)

s = (60, 75)

p = (0, 0)

EC

G D

F H

K

J

M

L

q = (100, 100)

(a) Space division for Solver

B

J K L M

F G H

C D E

A

I

(b) Space index for Solver

Figure 5.7: Region-Quadtree-based space division and index for Solver

point, it means that all points in that subspace must also be feasible. Therefore, there is no need to

generate any load shedding plans for that subspace. Hence, we can stop dividing that subspace any

further (e.g., subspace F).

At each iteration of the space division process, we produce a number of new subspaces. As

an important implementation detail, we place these subspaces into a priority queue based on their

percent error. Then at each step, we pick the subspace at the top of the queue with the highest

error value to divide next. This allows us to stop the space division any time a given error threshold

is met.

At the end of the space division process, we obtain a set of disjoint subspaces, each of which is

mapped to a load shedding plan at a certain infeasible point in the space. During the Plan Selection

phase, we will have to search through these subspaces in order to locate the one that contains a

particular infeasible point. In order to make this search process more efficient, we further organize our

subspaces into an index. The subspaces can be very conveniently placed into a quadtree-based index

during the space division process described above. Figure 5.7(b) shows the index that corresponds

to the space division of Figure 5.7(a).

5.4.2 Exploiting Workload Information

We have so far assumed that all of the input rate values in the multi-dimensional space have an

even chance of occurrence. In this case, we must guarantee the same ε threshold for all of the input

rate subspaces. However, if the input rate values are expected to follow an uneven distribution

and if this distribution is known in advance, then we could exploit this information to make the

Advance Planning phase much more efficient. More specifically, given an input rate subspace with

84

probability p and percent error of e, the expected error for this subspace would be p ∗ e. We must

then subdivision the input rate space until the sum of expected errors over all disjoint subspaces

meets the ε threshold. Thus, instead of strictly satisfying the ε threshold for all subspaces, we ensure

that on the average the expected maximum error will be below some threshold. Again in this case,

we store the subspaces to be divided in a priority queue, but this time we rank them based on their

expected errors.

5.5 Advance Planning with FIT

Our distributed approach to Advance Planning is based on informing upstream nodes about their

children’s load constraints so that they can take load shedding actions that will influence their

downstream nodes in the best possible way. To achieve this, each node periodically sends metadata

in the form of a Feasible Input Table (FIT) to its parent nodes [94]. FIT is a summary of what a node

expects in terms of its input rates and how that translates into a quality score at the downstream

query end-points. When a node receives FITs from its children, it merges them into a single table.

Furthermore, the parent maps the merged table from its outputs to its inputs and removes the

entries that may be infeasible for itself. Finally, the parent propagates the resulting FIT to its own

parents. This propagation continues until the input nodes receive the FIT for all their downstream

nodes. Using its FIT, a node can shed load for itself and on behalf of its descendant nodes.

This approach follows a bottom-up traversal of the server tree starting from the leaf nodes. For

each leaf node, a FIT indicating the feasible input rate combinations for this node is created. Feasible

input rate combinations are the ones that either cause no overload in the system, or the ones that

can be best handled using a local load shedding plan. Then FITs from leaf nodes with a common

parent node are merged at the parent, while also eliminating the entries that are infeasible for the

parent. This FIT merging and propagation continues until we arrive at the root nodes. The final

outcome is one FIT for each server node, containing all feasible input rate combinations for all the

nodes in its subtree, together with their quality scores.

5.5.1 Feasible Input Table (FIT)

For each node, we maintain a Feasible Input Table (FIT). Given a node with m inputs, the FIT

for this node is a table with m + 2 columns. The first m columns represent the rates for the m

inputs; the (m+1)th column represents the corresponding output quality score; and the last column

represents the complementary local load shedding plan (if necessary) that must be used together with

that input entry. FIT essentially represents the feasible input space for a node that will keep this

node’s and all of its descendants’ CPU loads below their available capacities. It is a way for nodes

to express their load expectations from their parents. For example, Table 5.4(a) illustrates the local

FIT for Node A of Figure 5.1, Table 5.4(b) illustrates the local FIT for Node B, and Table 5.4(c)

shows the merged FIT for both of the nodes that A should maintain. In this example, no local plans

were necessary.

85

rA
1 rA

2 throughput
0 0 0
0 0.2 0.2
0 0.4 0.4

0.2 0 0.2
0.2 0.2 0.4
0.2 0.4 0.6
0.4 0 0.4
0.4 0.2 0.6
0.6 0 0.6
0.6 0.2 0.8
0.8 0 0.8
1.0 0 1.0

(a) Local FIT for Node A

rB
1 rB

2 throughput
0 0 0
0 0.2 0.2
0 0.4 0.4
0 0.6 0.6
0 0.8 0.8
0 1.0 1.0

0.2 0 0.2
0.2 0.2 0.4
0.2 0.4 0.6

(b) Local FIT for Node B

rA
1 rA

2 throughput
0 0 0
0 0.2 0.2
0 0.4 0.4

0.2 0 0.2
0.2 0.2 0.4
0.2 0.4 0.6

(c) Merged FIT for Node A and B

Table 5.4: FITs for example of Figure 5.1 (spread = 0.2)

As we will explain in more detail shortly, in some cases, a node may choose to handle some of its

excess load using a local plan which is completely transparent to its parents. In such a case, a FIT

entry may look like a feasible entry from the parent’s perspective, but is actually only feasible with

a complementary local load shedding plan (i.e., the plan stored in the (m + 2)th column). We refer

such FIT entries as “feasible with a plan”. We will show another example in Section 5.5.2 where

such complementary local plans are needed in FIT entries.

For each leaf node, we generate a FIT from scratch. For all other nodes, FIT is generated as a

result of merge and propagation of FITs from downstream nodes. Next, we will describe the FIT

generation algorithm for a leaf node.

5.5.2 FIT Generation

Leaf nodes generate their FIT based on the costs of the queries that they are assigned to execute.

Consider such a node with a single query of cost c time units per tuple, which is fed by a single

input i with rate r tuples per time unit. The node is overloaded unless r ∗ c ≤ 1. Thus, it can

handle an input rate of up to 1/c before it becomes overloaded. Let’s call this the “rate limit” for

i. Any input whose rate is smaller than its corresponding rate limit constitutes a feasible input for

this node. Next, consider a node with multiple query paths from its inputs to its outputs. Assume

that there are m inputs, input i having a rate limit of Ri. This rate limit is determined considering

the total cost of the query paths fed by i in isolation from other paths (i.e., assuming that all other

inputs have 0 rate). For each input i, we can then select a set of values between 0 and Ri. Each

different combination of the selected rate values for the input dimensions can constitute a row in

FIT if this combination is feasible. Furthermore, each such combination would lead to a certain

total query throughput. This total will be the score for that feasible input combination.

86

0.1

0.3
0.4
0.5

0.7
0.8
0.9
1.0

0.6

0.2

0

0.
03

0.
06

0.
09

0.
15

0.
21

0.
24

0.
27

0.
30

0.
18

0.
120

0.
33

sp
re

ad
 =

 0
.1

spread = 0.03

r2

r1

(a) All feasible points (εmax = 10%)

global
feasibility

boundary

local rate limit

lo
ca

l r
at

e
lim

it

x

y

infeasible

triangle

feasibility

ymax

xmax

(b) Feasibility triangle

Figure 5.8: Choosing feasible points

Choosing FIT Points

An important issue in generating the FIT is the selection of the points to include in the table. After

we determine the rate limit along each input dimension, we can include all possible feasible input

combinations given some granularity. This granularity is modeled using spread. Spread for an input

dimension determines how far apart the rate values should be selected for that dimension. The

smaller the spread, the closer we can get to the optimal feasible point. On the other hand, smaller

spread requires that we consider a larger number of feasible points, which is more costly to store

and process.

As in the solver-based approach, we can exploit the ε error tolerance to determine the spread

along each dimension. For example, consider node B in Figure 5.1. The rate upper bounds for this

node are rB
1 = 1/3 and rB

2 = 1. Assume that εmax is given to be 10%. Then spreads can be chosen

as (approximately) sB
1 = 10/100 ∗ 1/3 = 0.03, and sB

2 = 10/100 ∗ 1 = 0.1. The set of feasible points

is shown in Figure 5.8(a). Thus, the FIT for this node has 68 entries. The entry (0, 1.0) provides

the highest total throughput score of 1.0.

In most cases, only a certain subset of the combinations are really interesting for us, as we will

argue next. The main purpose of generating feasible points is to identify which rate points are

acceptable for a node so that if an infeasible point is observed, we can map that infeasible point to

an appropriate feasible point by load shedding. The goal should be to map to the point with the

highest output score. As also explained in Section 5.4.1, given two feasible points p and q in the

multi-dimensional input rate space, if p is greater than or equal to q along all of the dimensions,

then p.score ≥ q.score. Therefore, for an infeasible point r that is greater than or equal to both

p and q along all of the dimensions, p should always be preferred over q. This means that, ideally,

we are only looking for the feasible points which are on the outer boundary of the global feasibility

87

space. However, the FIT, which is initially generated at the leaf nodes, will change as it is merged

and propagated upstream towards the root nodes. Thus, we will only be able to know the exact

global feasibility boundary when the FIT reaches the root nodes. Therefore, at the leaf level, we

must generate other feasible points than just the boundary points. Furthermore, we must make sure

that we keep a representative sample so that by the time FIT reaches the root nodes, it can still

accurately represent a good sample of the feasible points.

We first identify a subset of globally feasible points which will certainly not be needed in the FIT.

We call such a subset the “feasibility triangle”. This triangle is computed by making a bottom-up

pass from our leaf node towards the root nodes, at each node keeping track of the minimum rate

limit. Next, we generate points that are locally feasible at our leaf node, excluding the ones that

are in the triangle. To clarify, in Figure 5.8(b), we illustrate a 2-dimensional input rate space. The

bottom triangle is the feasibility triangle whereas the top L-shaped region is the infeasible region.

The area between these two (shown as the white region) is guaranteed to include the global feasibility

boundary (shown with dotted lines) that we are eventually looking for. Hence, to be on the safe side,

we initially generate FIT entries for all the points in this area (with some given granularity). Note

that when a node has multiple children nodes, then children FITs must be merged at the parent

node. In this case, the feasibility triangle must not be extracted from the FITs of its children since

these points could still potentially combine with each other during the merge process.

In order to exploit the ε error tolerance, we select sample points along each input dimension with

a certain spread value. Given ε, the spread for an input dimension i with rate limit Ri is determined

as Ri ∗ ε
100 .

Complementary Local Plan

As also mentioned earlier, the query network may include operators whose output may split to

multiple paths. Each such path may have a different cost and a different path selectivity. Due to

this difference, dropping from some branches may be more desirable. However, this is completely a

local issue and need not be exposed to the parent. Instead, we allow a node to create FIT entries

which are in fact not feasible and support these entries with complementary local load shedding

plans that drop tuples at split branches. By doing this, the node can achieve higher output scores.

We will illustrate this idea with a simple example. Consider the query network in Figure 5.9.

The input splits into two branches. The top branch saves 2 units per dropped tuple at the expense of

1 output tuple, whereas the bottom branch saves 5 units per dropped output tuple. Also, dropping

from the input saves 8 units while losing 2 output tuples. Dropping from the bottom branch is

clearly the most beneficial. Therefore, the node should drop completely from the bottom branch

before dropping from its inputs. If the input rate is r, then 5 ∗ r out of the total load of 8 ∗ r should

be handled locally. In other words, the node will be able to handle an additional load of 5∗r beyond

its capacity based on local drops. Hence, the node must make sure that 8 ∗ r ≤ 1 + 5 ∗ r. Therefore,

3 ∗ r ≤ 1. Note that now the upper value bound for r must be R = 1/3. We will generate so-called

feasible points based on R. Also, for each feasible point satisfying 3 ∗ r ≤ 1, if it is also satisfying

88

sel = 1.0

sel = 1.0

cost = 5
sel = 1.0

cost = 1

cost = 2

r

Figure 5.9: Splits to be supported by complementary plans

8 ∗ r ≤ 1, then no additional local drops are needed. Otherwise, we will create additional plans

where some portion of the data on the bottom branch must be dropped locally. For example, given

r = 0.2, it satisfies the extended load constraint (3 ∗ r ≤ 1), but it does not satisfy the original

load constraint (8 ∗ r ≤ 1). We must additionally shed 60% of the load on the bottom branch. In

this case, the total throughput score becomes 0.28. (The corresponding FIT entry would look like

{0.2, 0.28, DropBox{drop1, arc3, random drop, 0.60}}.) If we instead used the original constraint,

then we would have to shed load to reduce to the nearest feasible point r = 0.125, which would give

us the highest possible score of 0.25. In other words, by using the additional local plan, we can shed

sufficient load and provide higher-quality output.

Given a point that is feasible with a local plan, we generate the plan as follows. We go through

the sorted list of drop locations, each time picking the drop location with the smallest quality/load

ratio. This resembles the “loss/gain ratio” idea that we introduced in Chapter 3. Each drop location

can save up to a certain amount of load based on its load factor. Depending on our excess load

amount, we should pick enough drop locations from the list that will in total save us the required

amount of load. The plan will then consist of drop operators to be placed at the selected drop

locations. The drop selectivity for these operators will all be 0 except the last one. The last one will

have a drop selectivity which equals 1 - (total excess load - total load saved so far)/(max load that

can be saved by the last drop).

5.5.3 FIT Merge and Propagation

Assume two server nodes A and B as in Figure 5.1, where A is upstream from B. After we compute

FIT for B, we propagate it upstream to A. The feasible points in B’s FIT are expressed in terms of

B’s inputs which correspond to the rates at A’s outputs. To be able to propagate the FIT further

upstream, we have to express B’s FIT in terms of A’s inputs.

Each input i of A follows a query path to produce a certain output. Along this path, the rate

of i changes by a factor determined by the product of the operator selectivies (say seli). Therefore,

given an output rate r, the corresponding input rate for i is r
seli

. To obtain A’s FIT, we first apply

this reverse-mapping to each row of B’s FIT; the corresponding score for each row stays the same.

Then, we eliminate from the resulting FIT the entries which may be violating A’s load constraint.

If there is a split along the path from an input i to multiple outputs, and if all child branches

of the split map to the same input rate value, then we just propagate that value as described

89

B

C

D E

F

G H

A

(a) Space division for FIT

C

BA D E

F

G H

(b) Space index for FIT

Figure 5.10: Point-Quadtree-based space division and index for FIT

above. Otherwise, we propagate the maximum of all input rates. The assumption here is that any

additional reduction will be performed by applying tuple drops at remaining branches of the split.

The additional reduction is stored as a complementary local load shedding plan associated with that

particular FIT entry, and need not be propagated further upstream.

If node A has multiple child nodes, then the FITs of these children are combined by merging

rows from each FIT with the rows from the other FITs. Any new entry violating A’s load constraint

has to be eliminated. The resulting score is the sum of the children’s row scores.

5.5.4 Point-Quadtree-based Division and Indexing of the Input Rate Space

When FITs are propagated all the way from leaves to the roots, we obtain one FIT per node that

represents the feasible points for the complete subtree under this node. Next we want to divide the

multi-dimensional input rate space for this node into subspaces where each subspace can be mapped

to a unique FIT entry. Consider a 2-dimensional space. Let p(x1, y1) be a feasible point in this

space. Any infeasible point q(x2, y2) where x2 ≥ x1 and y2 ≥ y1 could potentially be mapped to p.

In fact, if the given bounds of our 2-dimensional space are (xmax, ymax), then the complete subspace

between p and (xmax, ymax) could be mapped to p. However, we might like to map some portions

of this subspace to other FIT entries that might possibly have higher quality scores. In order to

come up with the best mapping, we do the following: Assume that t is the top-most point of our

multi-dimensional input rate space. For each FIT point p, we first map the subspace between p and

t to p. Then we compare the score of FIT entry p with the scores of the FIT entries for the already

existing subspaces. If we find a subspace S whose score is larger than the new subspace N , then we

must reduce our new subspace by subtracting S from N . On the other hand, if we find a subspace S

whose score is smaller than the new subspace N , then we must reduce S by subtracting N from S.

When we do this for each FIT entry, we end up with a disjoint space division where each subspace

90

is mapped to the FIT entry with the highest possible score. Figure 5.10(a) illustrates how such a

division may look like.

As in the solver-based approach, we build a quadtree-based index on top of our space subdivision.

However, in the FIT case, instead of dividing the space into regular subspaces and creating plans

along the way, we start with a set of plan points and create the subspaces of irregular size based on the

existing plan points. Therefore, we end up with a “point-quadtree” rather than a “region-quadtree”

[81].

5.6 Putting it All Together

In this section, we briefly summarize how the other three phases of distributed load shedding (i.e.,

Load Monitoring, Plan Selection, and Plan Implementation) are performed.

• Centralized Case. In the centralized approach, the coordinator periodically measures the

input rates at the root nodes. Based on the derived input metadata and load factors, the

coordinator can estimate the CPU load at each server for the observed input rates. If the CPU

load on one or more of the servers is estimated to be above the capacity, then the coordinator

searches the quadtree index to locate the load shedding plan to be applied. Otherwise, no

server is overloaded and any existing drops in the query plan are removed.

In the case of overload, the coordinator searches the quadtree index to find the load shedding

plan that we are looking for. The coordinator sends this plan id to each of the server nodes

to trigger the Plan Implementation phase at these servers. Furthermore, inputs may require

additional scaling so that the infeasible point exactly matches the plan point. This additional

scaling information is also sent to the servers as additional drops to complement the selected

plan.

In the Plan Implementation phase, each server node essentially locates the load shedding plan

from its precomputed plan table that was uploaded earlier by the coordinator, and changes

the query network by removing redundant drops and adding new drops as necessary.

• Distributed Case. In the distributed approach, all nodes periodically measure their local

input rates and estimate their local CPU load based on these observed input rates. If an

overload is detected, a node uses its local quadtree index (built on top of its local FIT) to

locate the appropriate local load shedding plan to be applied. Previously inserted drops, if

any, must be removed from the local query plan. Note that in all cases, except when local

complementary plans are needed due to splits, parent nodes are supposed to ensure that all

the nodes in their subtree only get feasible input rates.

The quadtree is used in a similar way as described above, except that instead of sending plan

id’s to others, each node directly applies the selected local plan. Again, inputs may require

additional scaling and these are applied in the same way as in the centralized case.

Finally, the Plan Implementation phase is the same as described for the centralized case.

91

5.7 Performance Evaluation on Borealis

5.7.1 Experimental Setup

We implemented our approaches as part of the load shedder component of our Borealis prototype

system. We conducted our experiments on a small cluster of Linux servers, each with an Athlon 64

1.8GHz processor. We created a basic set of benchmark query networks which consisted of “delay”

operators, each with a certain delay and selectivity value. A delay operator simply withholds its

input tuple for a specific amount of time as indicated by its delay parameter, busy-waiting the CPU.

The tuple is then either dropped or released to the next operator based on the selectivity value. As

such, a delay operator is a convenient way to represent a query piece with a certain CPU cost and

selectivity. We used synthetic data to represent readings from a temperature sensor as (time, value)

pairs. For our experiments, the data arrival rates and the query workload were more important than

the actual tuple contents. We used the following workload distributions for the input rates:

• standard exponential probability distribution with a λ parameter which is commonly used to

model packet inter-arrival times in the Internet, and

• real network traffic traces from the Internet Traffic Archive [5].

We present results on the following approaches:

• Solver. The centralized solver-based algorithm that is based on the maximum percent error

threshold (εmax).

• Solver-W. A variation of Solver that takes workload information into account and is based

on the expected maximum percent error threshold (E[εmax]).

• C-FIT. The centralized implementation of the FIT-based approach that is based on εmax.

• D-FIT. The distributed implementation of the FIT-based approach that is based on εmax.

5.7.2 Experimental Results

Effect of Query Load Distribution

In this experiment, we investigate the effect of query load imbalance on plan generation time.

Figure 5.11 shows the collection of query networks we used for this experiment. Each query network

simply consists of two chain queries. Each chain query is composed of two delay operators that are

deployed onto two different servers. The numbers inside the operators indicate the processing cost

in milliseconds. We apportioned the processing costs such that the total costs of the query networks

on each server are the same, while ensuring that there is some load imbalance between two chain

queries, (increasing as we go from Figure 5.11(a) to Figure 5.11(e)). In Figure 5.11, we also show

the approximate feasibility boundary for the input rates for each query network. Basically, all input

92

r1

r2
40

4056

56

10 17

10

17

r2

r1

(a) Query Network 1

10

r1

r2
32

3264

64

15

1510

r2

r1

(b) Query Network 2

10

r1

r2
24

2472

72

10

13

13

r2

r1

(c) Query Network 3

r1

10

r1

r2
16

1680

80

10

12

12

r2

(d) Query Network 4

r1

10

r2

r1

r2

8888

1011

11

8 8

(e) Query Network 5

Figure 5.11: Query networks with different query load distributions and feasibility boundaries

93

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
C−FIT

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

(a) Solver and C-FIT (εmax = 5%)

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
Solver−W

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

(b) Solver and Solver-W (λ = 5, exp. εmax = 1.44%)

Figure 5.12: Effect of query load imbalance

rate combinations below this boundary are feasible for both of the servers, while the points on the

opposite side represent overload conditions where load shedding would be needed.

In Figure 5.12(a), we compare the plan generation time for Solver and C-FIT, fixing εmax at

5%. Both of these approaches guarantee that the maximum error in total quality score will not

exceed 5%. C-FIT can generate plans with the same guarantee in significantly shorter time (note

the logarithmic y-axis), while Solver turns out to be more sensitive to query load distribution than

C-FIT. In Figure 5.12(b), we compare the plan generation time for Solver and Solver-W. In this

case, we assumed an exponential distribution for the input rate workload with λ = 5. When we ran

Solver fixing εmax at 5%, this produced plans for which E[εmax] turned out to be around 1.44 on

the average. Then we used this value as a threshold for Solver-W. As can be seen on our graph,

Solver-W takes the workload distribution into account to guarantee the given expected emax value

in much shorter time. Both approaches show similar sensitivity to query load distribution.

94

Effect of System Provision Level

Next, we investigate the effect of expected system provision level on plan generation efficiency for

the Solver-W. In order to estimate the provision level, we consider two types of workload: (i) one

with a standard exponential workload distribution with parameter λ, and (ii) a real network traffic

trace from the Internet Traffic Archive [5]. For the former case, we change the system provision

level by varying λ. For the latter case, we use an existing trace from the archive, but we change the

query cost in order to create different provision levels.

Figure 5.13(a) shows how plan generation time for the Solver-W increases with increasing λ for

the five query networks of Figure 5.11. As λ increases, fewer input rate combinations will fall below

the feasibility boundary while more will be above it (i.e., the system will appear as if it is less

provisioned). To provide more insight, in Figure 5.14, we provide a color-map of joint exponential

probability distribution for two inputs, where axes correspond to input rates and the brightness of

an area indicates the expected probability of occurrence. The high probability area shifts up as we

increase λ, affecting that area’s contribution to expected εmax. As we increase λ, we thus expect

the plan generation to take more time, as the solver has to be called for more points. Also as in the

previous section, as the query load imbalance increases, the plan generation time increases.

We repeated the same experiment with the TCP traces from the Internet Traffic Archive [5].

Figure 5.13(b) shows this workload distribution, which essentially looks a lot like an exponential

distribution. We first used the query network in Figure 5.11(b) (i.e., (64, 32)), which corresponds

to a provision level of about 20%. We then reduced the query costs proportionally (e.g., (56, 28),

(48, 24), and so on) in order to create increasingly higher provision levels with the same workload

distribution. 5.13(c) shows the result, which clearly shows that as the system is provisioned better,

the plan generation time decreases.

Effect of Operator Fan-out

To examine the effect of operator fan-out on Solver and C-FIT, we used a single server deployment

of a query tree with 2k query branches that are fed by a single input stream. These queries share

one common operator. Thus, load shedding plans would either place a drop at the input arc or

at the split arcs downstream from this common operator. As seen in Figure 5.15, as we increase

the degree of sharing in the query network, both approaches spend more time in plan generation.

Although Solver can generate plans slightly faster than C-FIT at a fan-out value of 2, C-FIT starts

to outperform Solver at higher fan-out values. Thus, C-FIT scales better with increasing operator

fan-out.

Effect of Input Dimensionality

The number of input dimensions is an important factor that can expectedly degrade the performance

of plan generation. In this section, we examine how our algorithms are affected from increasing input

dimensionality.

95

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 1
 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 2

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 3

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 5

(a) Effect of λ (exp. εmax = 1%)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200

pr
ob

ab
ili

ty
 d

en
si

ty

TCP packets per 1−second window

(b) TCP workload from ITA

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 30 40 50 60 70 80 90

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c)

% provision level

(c) Effect of provision (exp. εmax = 1%)

Figure 5.13: Effect of workload distribution and provision level on Solver-W plan generation

96

λ = 1

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a) λ = 1

λ = 2

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(b) λ = 2

λ = 3

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(c) λ = 3

λ = 4

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(d) λ = 4

λ = 5

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(e) λ = 5

λ = 6

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(f) λ = 6

λ = 7

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(g) λ = 7

λ = 8

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(h) λ = 8

λ = 9

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(i) λ = 9

Figure 5.14: Exponential workload distribution for different λ values

97

 0

 20

 40

 60

 80

 100

 2 4 8 16 32

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c)

operator fan−out

Solver
C−FIT

Figure 5.15: Effect of operator fan-out (εmax = 1%)

Figure 5.16(a) shows how the expected % maximum error converges in time for query networks

with 2, 4, and 8 input streams. In this experiment, we used the query network of 5.11(b) (i.e., (64,

32)) for the two-dimensional case. Then we increased the number of inputs while proportionally

decreasing the query costs for the higher-dimensional cases (i.e., (32, 16, 32, 16) and (16, 8, 16, 8,

16, 8, 16, 8)) and assumed an exponential distribution with λ = 3. Not surprisingly, as we increase

the number of input dimensions, the plan generation time significantly increases. As shown in Figure

5.16(b), the situation is worse for C-FIT (and similarly for the Solver, which is not shown). For

example, to ensure a 10% maximum error for 8 inputs, C-FIT needs to run for about an hour.

These results demonstrate the ”curse of dimensionality”. In practice, however, the outlook is better.

First, plan generation is an off-line process; it is performed in advance of the overload, potentially

using idle cycles. Second, the generated plans are often reusable. Finally, in our experience with

stream-oriented queries for the financial services domain, the number of input streams are generally

few.

Overhead Analysis for Distributed FIT

FIT is a distributed algorithm by design. As such, it can provide all the features of distributed

algorithms such as avoiding hot spots and single point of failures. It is hard to provide quantitative

evidence for why D-FIT would beat the coordinator-based approaches. However, as mentioned

earlier, it is clear that there are certain settings where D-FIT would be preferable (e.g., multi-hop,

resource-limited sensor networks, wide-area data dissemination trees, etc.) because of its ability to

scale and to dynamically react to changes. In this section, we analyze some overhead issues that

may be associated with D-FIT, that would bear importance in such settings.

Our main criteria in the overhead analysis is how much FIT information needs to be communi-

cated between two neighboring nodes. Since complementary local plans associated with FIT entries

are not actually being sent to the parent, FIT entry size is simply proportional to the number of

input streams. Therefore, we will focus on the number of FIT entries rather than the total byte size.

98

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536 262144

ex
pe

ct
ed

 %
 m

ax
 e

rr
or

plan generation time (msec, in logscale)

d = 2

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536 262144

ex
pe

ct
ed

 %
 m

ax
 e

rr
or

plan generation time (msec, in logscale)

d = 4

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536 262144

ex
pe

ct
ed

 %
 m

ax
 e

rr
or

plan generation time (msec, in logscale)

d = 8

(a) Convergence of exp. εmax for Solver-W

 1

 32

 1024

 32768

1048580

% max error

d = 2
d = 4
d = 8

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

 15 20 25 10

(b) Effect of dimensionality on C-FIT

Figure 5.16: Effect of input dimensionality

For the same reason, operator fan-out, which affects the size of the complementary plan column of

FIT, is not very interesting. As a result, we identified three major sources of overhead for FIT size:

(i) the number of input dimensions, (ii) magnitude of the εmax threshold, and (iii) query load.

As Table 5.5 clearly shows, for a given εmax threshold and a fixed query load, when we have more

inputs, we need to represent a higher number of feasible input combinations, which consequently

requires a higher number of FIT entries. For 2 inputs, Figure 5.17(a) details the effect of εmax and

query load. As we reduce the query load, a larger portion of the input rate space becomes feasible

and this increases the number of FIT entries. Another interesting point is that if there is operator

fan-out in the query plan, where some portion of the query can be handled with complementary

local plans, then the query appears less costly to the parent node, and therefore, we would have a

higher number of feasible point entries in the FIT. Thus, it is not the actual query load, but the load

after local plans are applied that determines the needed FIT size. Figure 5.17(a) also shows that,

if the εmax threshold is increased, allowing a larger distance from optimal quality plans, then the

99

of inputs # of FIT entries bytes/entry

2 46 52

4 984 96

8 42472 184

Table 5.5: Effect of dimensionality (εmax = 10%)

number of required FIT entries decreases in a dramatic way. This suggests that εmax can actually

be adaptively adjusted to trade off plan quality for reduced communication overhead. This could

also be used as a remedy to the high dimensionality problem.

One major advantage of D-FIT over the centralized approaches is that it enables efficient handling

of certain dynamic changes in load conditions. Depending on the nature of the change, there may

be cases where it would be sufficient to only update the local FIT, or propagate it only to a small

number of upstream nodes. Yet in other cases, it would be possible to send deltas to the parent

rather than the complete FIT. We identified two important cases to analyze: (i) changes in operator

selectivity, and (ii) changes in query load due to operator movement between neighboring nodes.

Figure 5.17(b) shows the sensitivity of FIT to operator selectivity change. In this experiment, we

used two chain queries. One of the operators in one of these queries initially has a selectivity of 1.0.

We compute the FIT to be sent to the parent node. Then we decrease the selectivity and recompute

the FIT. We then measure what fraction of the new FIT entries must be communicated to the parent

in order to stay within some distance from the actual quality score. We find that as the change in

selectivity increases, we need to send more entries in order to achieve a certain difference threshold.

Similarly, for a given selectivity change, we need to send more entries if we want to stay within a

smaller difference from the actual quality score. Figure 5.17(c) shows the sensitivity of FIT to load

movement. In this case, we again use two chain queries similar to the ones in Figure 5.11. Then

we reduce the delay parameter of a parent operator, while adding that same amount to the delay

parameter of the downstream child operator (e.g., parent-to-child-8 means that we moved 8 units of

load from parent to child). We see that as the amount of load moved gets bigger, it requires more

FIT entries to be sent to the parent. In the case for parent-to-child-24, the load movement causes a

complete reversal in load balance. Therefore, it is not even possible to to reduce the communication

overhead beyond 8%, no matter how large a difference we allow.

5.8 Chapter Summary

In this chapter, we have introduced the problem of load shedding in distributed stream processing.

We have shown how it differs from previous centralized solutions, and we have offered several new

practical algorithms for addressing the problem. We presented our main result, a distributed algo-

rithm that we call D-FIT that works by transmitting its load requirements locally to its parents.

We also investigated several centralized solutions – a linear programming solution (Solver), a variant

on Solver that takes a workload history into account (Solver-W) and a centralized version of our

100

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5

of

 F
IT

 e
nt

ri
es

% max error

14_10
28_20
42_30
56_40

(a) Effect of εmax and query load (52 bytes/entry)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.8

(b) Sensitivity to selectivity change

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
rie

s
to

 b
e

se
nt

% difference threshold in quality score

parent−to−child−8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
rie

s
to

 b
e

se
nt

% difference threshold in quality score

parent−to−child−16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
rie

s
to

 b
e

se
nt

% difference threshold in quality score

parent−to−child−24

(c) Sensitivity to load movement

Figure 5.17: D-FIT Overhead

101

distributed algorithm (C-FIT).

As we have said earlier, the purely distributed version of our algorithm D-FIT is especially useful

when the number of nodes is very large, as in an Internet-scale dissemination system or when the

underlying query environment is quite dynamic as in a distributed sensor network.

102

Chapter 6

Related Work

In this chapter, we discuss existing work related to our research. We present past work in in-

creasing order of their relevance to our work. We start with discussing other areas of computer

systems, including computer networks, network services, and multimedia systems. Then we discuss

various subareas of database systems, including multimedia databases, real-time databases, approx-

imate query processing, and parametric query optimization. Finally, we conclude with discussing

load shedding approaches proposed by various research groups working in the area of data stream

management systems.

6.1 Computer Networking

The congestion control problem in computer networks has close conceptual relevance to the overload

management problem in data stream systems [57, 59]. Both problems essentially arise when load

is temporarily greater than the level that available resources can handle. Congestion in computer

networks mainly arises when routers run out of buffer space, either because their processors can

not keep up with the incoming input traffic, or because the outgoing link has a smaller bandwidth

capacity than the incoming link [90]. This situation can be handled either preventively (e.g., traffic

shaping, resource reservation), or reactively (e.g., admission control, load shedding).

Load shedding is a network-layer congestion control technique where a router simply drops packets

when its buffers fill up. The packets to drop can be chosen randomly, or in an application-dependent

way. For example, senders can label their packets with priority levels by marking a special bit in

the packet header and the router drops the low priority packets. Dropping can also be age-based.

For real-time applications such as multimedia applications, new data is more important than older

data, hence older packets are dropped (so-called milk policy). For other applications like file transfer,

older is better, hence newer packets are dropped (so-called wine policy) [90].

Despite conceptual similarity, there are some fundamental differences between network-layer load

shedding and load shedding in a single-server data stream management system like Aurora. First,

unlike network load shedding, where routers drop packets in an uncoordinated manner, load shedding

103

104

decisions in Aurora is made by a load shedder component that has access to the entire system

state, and therefore, can potentially provide more intelligent, end-to-end load shedding decisions.

Second, Aurora uses QoS information provided by the external applications to trigger and guide

load shedding. This may require the load shedder to take tuple contents into account. Third, unlike

routers, which simply pass packets between nodes, Aurora query operators perform operations on

data tuples. Therefore, the load shedder has to deal with operator semantics.

Distributed load shedding is also relevant to the congestion control problem in computer net-

works. Various IP-layer architectures have been proposed to maintain Internet QoS including IntServ

[23] and DiffServ [22]. OverQoS [88], an overlay-based QoS architecture, uses application-level tech-

niques to prioritize packets that have higher utility for the application. Our upstream metadata

propagation technique resembles the pushback mechanism developed for aggregate congestion con-

trol [68], where a congested router can request its upstream routers to limit the rate of an aggregate

(i.e., a certain collection of packets sharing a common property) primarily to defend against DoS

attacks. In our FIT-based approach, nodes also specify their feasible input rates to their parents,

but it is the responsibility of the parent to decide how to reduce outgoing stream rates to maximize

system throughput.

6.2 Network Services

Overload management techniques for common Internet-based services such as HTTP servers and file

sharing services are also relevant to our load shedding approaches. In these applications, increase

in the rate of service requests may overload the servers, and as a result, service response times may

unpredictably grow. To control response times, servers must provide adaptive service degradation

and admission control mechanisms.

Of particular relevance is a recent work proposed by Welsh and Culler [103]. In this work,

services are constructed as a network of event-driven stages connected with explicit request queues

- an architecture called the Staged Event-Driven Architecture (SEDA) [104]. In SEDA, fine-grained

overload control is achieved by applying admission control on each event queue. If a request is

rejected at any stage of the service network, then the upstream stage is also informed to take action.

The right action can depend on various factors like the service logic, priority of the request, etc.

Additionally, depending on the application, different service degradation mechanisms (e.g. lowering

the service quality to be able to accept more requests) can be employed at each stage.

Overload management for data stream processing is fundamentally different from that for Internet

service processing, since the former has to deal with large volumes of data, and semantics of the

query operations on this data, whereas the latter has to deal with service requests. On the other

hand, the stages in SEDA highly resemble the query operators in Aurora. Unlike SEDA’s fine-

grained load control on each stage queue, however, Aurora’s load shedder component controls the

query network as a whole. This gives Aurora more direct control for optimal resource management.

105

6.3 Multimedia Streaming

Real-time streaming multimedia applications make up a significant portion of the Internet band-

width. These applications call for QoS support at multiple system layers including the network,

the operating system, and the application layers. Therefore, an important concern in multimedia

streaming has been to develop a proper QoS framework that could be supported in an end-to-end

fashion across all these layers.

A key challenge in sending continuous media over the network is matching the transmission rate

to the currently available bandwidth. To achieve this, load shedding at the network layer may be

required (as briefly mentioned in Section 6.1). Previous work has taken application performance into

account by exploiting layered encoding algorithms for transmitting video data [19]. In this work,

packets that carry base layer data are marked as highest priority whereas packets for each successive

enhancement layer are marked as successively lower priority. During times of network congestion,

low priority packets are dropped. This way, result quality is degraded in a controlled and graceful

manner.

The Quasar project developed at OGI has proposed various techniques for building a QoS-

adaptive multimedia delivery system [102]. In this work, MPEG frames are partitioned into temporal

and spatial resolution layers using a custom scalable format called SPEG. Video packets are marked

at the sender with priority levels based on user-specified utility functions along several orthogonal

QoS dimensions. Then packets below a certain priority threshold can be dropped at routers (or

possibly anywhere in the delivery pipeline) to adapt resource requirements. This priority threshold

is adjusted based on feedback from the receiver [64]. A flow and congestion control scheme for media

streaming applications, called Streaming Control Protocol (SCP), has also been proposed in scope of

the Quasar project [26]. This work identifies various drawbacks of the TCP congestion control model

for real-time media applications, and proposes a new scheme that will provide smooth streaming,

reduced jitter and predictable latency. Unlike TCP, SCP does not retransmit lost packets; the goal

is to improve network utilization and avoid unpredictable latencies. These techniques have recently

been merged into a priority drop technique [63].

As in Aurora, these techniques take application-dependent data utility into account while decid-

ing which packets to discard. In fact, Quasar’s utility functions look very similar to Aurora’s QoS

functions. However, these techniques are essentially network-layer techniques and the fundamental

differences we mentioned in Section 6.1 still apply.

More recently, the QuaSAQ project from Purdue University has proposed QoS-aware query

evaluation and optimization approaches for multimedia databases that are distributed to multiple

sites [97]. Alternative query plans are generated and sorted according to their resource consumption

level based on a cost model. QoS constraints are used to both prune the plan search space and to

pick the right plan to execute. This approach is closer to the application-layer, and follows a similar

approach as our idea of materialized load shedding plans.

Lastly, there has been some related work on resource allocation for multiple multimedia appli-

cations that share resources of a single machine. In this case, neither networking nor streaming

106

issues are involved, but load shedding may still be required when multiple applications compete for

resources for which the total demand may exceed the available supply. Compton and Tennenhouse

explored collaborative load shedding techniques for interactive multimedia applications [33]. In this

work, applications take user’s priorities into account to adjust their demand for system resources

like CPU. This work argues that applications can shed load in a much more graceful and intelli-

gent manner than the operating system itself. We also take application-specific QoS functions into

account while making load shedding decisions for a multitude of time-critical applications.

6.4 Real-Time Databases

Real-time databases are databases where transactions have deadlines or timing constraints [62, 73].

A transaction scheduler must carefully allocate available CPU cycles to transactions in order to

meet these constraints. In most cases, resource requirements may not be known in advance, either

because transaction workload dynamically changes, or because transaction execution times can not

be precisely estimated due to interactions with the disk-based I/O subsystem. The CPU may

become overloaded and some transactions may miss their deadlines. The system must provide

effective overload management techniques in such cases, in order to minimize the number of timing

constraints violated.

Typical solutions include admission control on newly arriving transactions by simply rejecting

them; or termination of already running transactions by aborting them. The transaction man-

ager can also assign priorities to transactions based on the closeness of their deadlines, or other

application-specific importance criteria. These priorities are then used to manage and resolve po-

tential scheduling conflicts among transactions.

The STanford Real-time Information Processor (STRIP) is a soft real-time system which uses

value functions and maximum age criteria to enforce soft timing constraints [11]. Transactions are

worthless if they miss their deadlines and therefore such transactions must be immediately aborted.

Additionally, if the system is overloaded, transactions that are less likely to finish on time can also

be aborted before their deadline. Transactions are assigned values based on their importance and

are prioritized based on value density, i.e., the ratio of transaction value to remaining processing

time. This system also studies the tradeoff between scheduling streams of update transactions on

materialized views and read transactions on these views [10].

The CASE-DB real-time database system uses a risk control technique on how queries should

spend their time quotas [72]. As opposed to a soft real-time system, in this system, timing constraints

are always guaranteed to be satisfied. The trick is to provide approximate answers to queries to the

extent allowed by their timing constraints. A query is rewritten into a form where it can be evaluated

on higher priority fragments of its base relations with zero risk of missing its time constraints.

Then this approximate result is iteratively improved by evaluating the query on other less critical

fragments of the relation in the remaining time quota (if any). This idea of producing monotonically

improving approximate answers to real-time queries has also been studied by the APPROXIMATE

107

query processing system [100]. This system additionally augments the approximate answer with

information on what else might be appearing in the full answer.

Hansson and Son propose an overload resolution algorithm to handle transient overloads in real-

time database systems by rejecting non-critical transactions, and selectively replacing critical ones

with lower-cost contingency transactions [50]. As in CASE-DB, transactions have hard or firm

deadlines. Hence, deadlines for admitted transactions are never missed; but instead, lower quality,

approximate results may be produced by the contingency transactions. Similar to our QoS functions,

value functions are used to represent the importance and criticality of a transaction as a function of

its completion time. Also, as in Aurora, scheduling and overload management policies are handled

in an independent fashion.

More recently, Kang et al have proposed a QoS management scheme to provide guarantees on

deadline miss ratio and data freshness [61]. As in STRIP [10], the goal is to flexibly balance user

and update transactions. Relative frequencies of updates and read-accesses are utilized to prioritize

transactions.

Real-time databases deal with streams of one-time transactions performed on relatively static,

stored datasets; whereas data stream management systems handle standing queries on continuously

arriving streams of data. The overload handling approaches for real-time databases summarized

above can be regarded as load shedding techniques, where shedding units are individual transactions,

rather than data tuples. Aurora’s load shedding approach is finer-grained since we are dealing with

individual tuples. In Aurora, dropping can be performed at any place inside the operator network

whereas in real-time databases, transactions are rejected or aborted as a complete unit. This is a

result of potential operator sharing among multiple continuous queries in Aurora.

6.5 Approximate Query Processing

Approximate query answering, where result accuracy is traded for efficient execution, relates closely

to load shedding. Approximate query processing techniques have long been studied for both tradi-

tional static data sets and continuous data streams [44].

Data reduction on large, static data sets is a common approach to producing fast approximate

answers [21]. These techniques mostly rely on pre-computing a smaller summary of the base data,

called a synopsis. Queries are then rewritten into a form that can be executed on the synopsis data

structures, significantly cutting down from the total query processing time. The synopses can be in

the form of samples [9, 30, 71], histograms [56], sketches [41], or wavelets [27, 99], and can represent

one- or multi-dimensional data. A major issue with this approach is that the synopses must be

efficiently maintained as base data gets updated.

An alternative approach to pre-computing synopses is the online query processing approach of the

CONTROL project [51]. This approach interleaves sampling with query evaluation. For aggregation

queries, running aggregate results on increasingly larger samples of the base data are presented to

the user, together with statistical error bounds [52]. The result is continuously refined until the

108

sample eventually expands to cover the complete data set. For join queries, data from multiple

joining relations are sampled at different rates to provide the highest precision confidence intervals

using a ripple join operator [49]. Unlike our system, queries are one-time and data sets are large but

finite. Moreover, the exact answer is eventually produced. The CONTROL system also reorders

data dynamically based on user preferences so that interesting items get processed early on [77].

Rather than changing the data order, we throw away some of the data since we are also concerned

with extremely high data rates and real-time answers.

Yet another approach to approximate query answering is to pre-organize data into a semantic

hierarchy (rather than a synopsis) which can be used in producing approximations as well as full

answers. Read et al propose a multi-resolution data model for producing fast low-resolution answers

to queries and then progressively refining these into full answers [78]. The Cooperative Database

System (CoBase) proposes a similar query relaxation approach [32]. In this work, data is organized

into type abstraction hierarchies and various operators are defined as an extension to standard SQL

that can be used to control the degree and form of the required relaxation. For example, similar

to our value-based QoS function, the user can specify a preference list which indicates the order of

preference between various values of a given attribute. The goal in this work is to improve both

the system performance and the answer relevance. The APPROXIMATE query processing system

also organizes data into a class hierarchy in order to provide monotonically improving approximate

answers [101]. Approximations in this work are supersets of exact answers, composed of a certain

and a possible set.

More recent work have also explored synopsis-based approximate query processing techniques

for streaming data based on constructing single-pass summaries in different forms. For example,

histogram-based techniques are used for maintaining correlated aggregates over data streams [45];

sketches and wavelet transformations are used to approximate aggregate queries [39, 46].

6.6 Parametric Query Optimization

Parametric query optimization addresses the problem of adapting query plans to changing run-time

parameters. A set of candidate query plans, each of which is optimal for some region of the parameter

space, is pre-computed. Then the appropriate plan is chosen among these candidates at run-time

based on actual values of the parameters.

The parametric query optimization concept was first proposed by Ioannidis et al [54]. This

work assumed a set of plans that are neighbors of each other in a plan search space. Randomized

algorithms are used to locate plans in this space. As the algorithm moves from one plan to another

neighbor plan, it recognizes the region changes for certain parameters. Finally, it produces a mapping

function from vector of parameters to the plan space. This work studied the optimization of join

trees with buffer size as the changing run-time parameter. It does neither provide any guarantees

about producing all parametric optimal plans nor any optimality bounds for the resulting plans. This

work has later been extended to use dynamic programming algorithms instead of the randomized

109

ones [55].

Ganguly has observed that the parameter space is partitioned into convex polyhedrons, and each

polyhedron is a region of optimality for a parametric optimal plan [43]. This work gives algorithms

for linear cost functions with one and two parameters, and then extends them to non-linear cost

functions.

A more recent work explores identifying regions of optimality for linear and piecewise linear cost

functions [53]. This work focuses on minimizing modifications to the underlying query optimizer as

well as minimizing the number of times the optimizer is invoked.

Our off-line load shedding plan generation approach (in particular, our distributed load shedding

approaches described in Chapter 5) can be regarded as an instance of parametric query optimization.

Unlike previous instances of the problem that studied standard query optimization in single-server

environments, our solution addresses throughput optimization under overloads in distributed set-

tings.

6.7 Load Shedding in Data Stream Management Systems

There has been a great deal of recent work in the area of data stream management systems [48].

Several research prototypes have been built, including Aurora [8], STREAM [70], and TelegraphCQ

[28]. Efficient resource management, adaptivity, and approximation have been the main points of

emphases in these systems. Next we discuss various load shedding approaches developed by several

research groups, and provide a detailed comparison of these against our own approaches.

6.7.1 STREAM

The STREAM System built at Stanford University [70] has proposed two major approximation

techniques to deal with resource overload problem on data streams: (i) a CPU-limited approximation

approach that handles load shedding on a collection of sliding window aggregation queries, and (ii)

a memory-limited approximation approach that focuses on discarding operator state for a collection

of windowed joins.

First, Babcock et al have proposed a sampling-based load shedding approach for aggregation

queries [17]. This work focuses on query trees that consist of a number of filters at higher levels

followed by aggregate operators at the leaf level. When the CPU time needed to process tuples

that arrive in unit time exceeds 1, random sampling operators are inserted into these query trees.

The goal is to minimize the maximum relative error across all queries. Sampling rates are adjusted

such that the relative error is the same for all queries. This is achieved using well-known statistical

bounds (e.g. Hoeffding inequality), based on mean and standard deviation statistics for windows of

tuples that are being aggregated. Our approach produces subset results and tries to minimize QoS

utility loss, hence our approximation model is quite different. Moreover, our window-aware approach

addresses a more general class of aggregation queries (nested aggregates as well as user-defined ones),

while the proposed work applies to query trees, with a single aggregate operator at the leaf level.

110

Furthermore, the suggested statistical bounds apply to only a limited set of aggregate functions (e.g.

sum, average), whereas our approach is independent of the actual aggregate functions.

Second, Srivastava and Widom have proposed a load shedding approach for windowed stream

joins in memory-limited environments [85]. This work is based on an age-based data arrival model

where it is assumed that the rate at which a tuple produces join results is solely determined by its

age, specified as an age curve. To deal with memory shortage, tuples of a certain age are selectively

discarded from the join window to make room for others, which have higher expectation of producing

matches. The goal here is to maximize the size of the resulting subset. A secondary concern in this

work is to be able to produce a random sample from the join in case that the join is followed by an

aggregate. In this case, the final output will not be a subset of the exact answer, and the overall

goal is to minimize the relative absolute error. The main difference of this work from ours is that it

investigates the memory problem rather than the CPU problem.

6.7.2 TelegraphCQ

TelegraphCQ is a continuous query processing system built at University of California, Berkeley

[28]. This system’s focus has been on adaptive and shared query processing aspects of data stream

management. The Berkeley group has worked on two independent approaches that relate to our

load shedding techniques.

Reiss and Hellerstein have proposed an adaptive load shedding approach called data triage [80].

Data triage is a query processing architecture designed to provide low latency results in the face of

bursty data streams. During bursty periods, if streams arrive faster than the rate that the system

can process them, excess data is stored in synopsis data structures. At the end of each query

window, the synopses are processed through a shadow query plan to compute an approximate result

on the summarized portion of the data. Finally, exact and approximate results are merged into one

composite result for that query window. The fundamental difference of this approach from ours is

that the excess data is not discarded but stored in some reduced form to be processed later when the

system has more time to process it 1. Additionally, data triage does not guarantee subset results;

rather uses a different error model based on Minkowski distance [79].

Chandrasekaran and Franklin have investigated a different overload scenario in TelegraphCQ,

where large number of hybrid queries are to be processed on a combination of live, real-time data

streams and historical data archived on disk [29]. In this case, disk becomes the bottleneck resource.

To keep processing of disk data up with processing of live data, a technique called OSCAR (Overload-

sensitive Stream Capture and Archive Reduction) is proposed. OSCAR organizes data on disk into

multiple resolutions of reduced summaries (such as samples of different sizes). Depending on how

fast the live data is arriving, the system picks the right resolution level to use in query processing.

This is a form of load shedding that tries to cut down from disk access cost, whereas our focus is on

reducing the demand on CPU. Also, in this approach no data is actually discarded; the full version
1The assumption is that bursts do not last longer than a time window, i.e., the system will have enough time to
process synopsis data at the end of each time window.

111

of the data is always available at the archive.

6.7.3 NiagaraCQ

NiagaraCQ is an XML-based continuous query system that has been developed at University of

Wisconsin and Portland State University [31]. Although this project’s focus has mostly been on

query optimization, a couple of publications provided optimizer extensions for dealing with resource

limitations.

Kang et al provided an analytical approach for optimized evaluation of window joins for un-

bounded streams [60]. A unit-time-based cost model is developed where total cost is broken into

two components, one for each join direction. The optimal index and join algorithm combination for

each direction is determined. The paper also looks at the resource overload problem for both CPU

and memory. The ideal rate for each input is determined and a random drop is inserted for rate

adjustment.

The optimizer-unified approach of Ayad and Naughton uses a similar analytical cost model, this

time on join trees [16]. It finds that if computational resources are enough, then all join plans have

the same throughput, however, they may substantially differ in resource utilization. If all plans are

infeasible, then load must be shed via random drops. The focus is on picking the join plan, the

locations on the plan to insert the drops and the amount of drops. Interestingly, the optimal join

plan (i.e., with the lowest utilization) when resources are sufficient may not be the optimal plan

(i.e., with the highest throughput) when resources are insufficient.

Also in the scope of the NiagaraCQ Project, Tucker et al proposed punctuations which are

special annotations embedded into data streams to specify end of a subset of data in the stream [98].

Punctuation-based query processing is devised to overcome the blocking and unbounded memory

problem in stateful stream operators. As such, punctuations constitute an alternative to windowed

processing. Our window-aware load shedding work is relevant to punctuations in the way we attach

window indicators into tuples. Although in both cases streams are annotated with information that

is important in terms of optimizing query execution, the goals are quite different. In the punctuations

case, annotations indicate some property that naturally exists in the stream, whereas in our case,

window specifications are artificially injected to cope with overload.

6.7.4 The Cornell Knowledge Broker

The Cornell Knowledge Broker architecture developed at Cornell University supports real-time con-

tinuous queries as well as offline data mining and analysis operations on both streaming and archived

data [36]. This architecture includes a load smoothing module which is responsible for handling

overload situations. During peak load, load shedding is applied, selectively eliminating tuples to

be processed later and producing approximate results. During low load, approximate results are

reprocessed into exact results, based on the tuples that were previously shed into an archive.

More specifically, this system addresses the memory limitation problem for stream joins, where

112

the maximum subset measure as the approximation metric [35]. For load shedding, an optimal offline

algorithm is developed. This algorithm requires complete future knowledge about tuple arrival and

therefore can not be used in practice, but rather theoretically bounds the best approximation that

can be achieved. Then based on a frequency-based data arrival model, two practical heuristics are

proposed: (i) PROB, which drops tuples from an input stream which had the smallest frequency

of occurrence on the opposite stream in the past (assuming that those tuples are the least likely to

produce join results also in the future); (ii) LIFE, which drops tuples from an input stream whose

product of frequency of occurrence on the opposite stream and remaining window lifetime is the

smallest (the goal is to avoid investing on soon to be expired tuples).

6.7.5 Model- and Control-based Approaches

In addition to the systems we discussed above, there have been a few other studies of interest. Jain

et al proposed a model-based approach to managing network bandwidth for streaming applications

[58]. This approach is based on Kalman Filters that can model data streams as processes with states

that evolve over time. As new tuples arrive at the source site, it is checked if the current model

installed at the remote server site can still answer the query within given precision bounds. If so,

there is no need to send the new tuple to the server, i.e., it can be discarded. Otherwise, the server

model has to be updated, hence the new tuple is transmitted. Adaptivity is achieved by adjusting

model parameters to changing load characteristics.

In another similar study by Xie et al, each stream is modeled as a stochastic process [106]. At

each time point, the probability of observing a certain value is given. Accordingly, expected benefit

of keeping a tuple in the join state is computed. Tuples with lowest benefit values are discarded.

This work generalizes the model heuristics used in some of the earlier work we discussed above

[35, 85].

More recently there has been some related work that applies control-theoretic concepts to adap-

tive load shedding on data streams [13, 96]. These approaches are based on constructing a feedback

loop that continually monitors the high-frequency variations in system parameters and makes the

necessary adjustments in the load controllers accordingly. Amini et al. [13] propose a two-tiered

approach that combines long-term operator placement and short-term CPU scheduling to maximize

throughput in a distributed stream processing system. This is a closed-loop solution that continually

adjusts the buffer sizes at each node to achieve high throughput and low latency, while ensuring

stability in the presence of varying workload and bursts. The main differences of our approach from

these in general are that our solution focuses on relatively longer duration bursts in data rates,

and uses an open-loop approach to create parametric off-line load shedding plans that can limit the

deviation from the optimal plan while reacting fast in plan selection.

Chapter 7

Conclusions and Future Work

In this thesis, we defined the load shedding problem for data stream management systems and we

proposed a general solution framework based on discarding tuples through various types of drop

operators. A key feature of our solution is that most of the analysis concerning dropping strategies

can be done statically and captured in a simple data structure. The dynamic load shedding process

involves a very cheap use of the static information. This technique makes our solution highly

efficient. Furthermore, we proposed several different types of drop operators which would guarantee

subset results at query outputs, when placed into query plans with operators of different semantics.

In particular, our window-aware approach can handle a general class of aggregation queries (with

nested as well as user-defined aggregates) while preserving the subset guarantee and achieving early

drops.

We have also presented techniques for distributed load shedding. In line with our centralized load

shedding approaches developed for Aurora, these techniques also rely heavily on creating advance

load shedding plans. Our focus in this case has been on efficient generation and storage of load

shedding plans when the search space can be very large due to various factors like large number

of processing nodes and input streams, or high degree of operator fan-out or query load imbalance

among the data flows.

We evaluated the performance of our algorithms both analytically and experimentally. As our

simulation study demonstrates, our core load shedding techniques outperform basic admission control

and its variants. We have also shown that while our probabilistic dropping technique can do fairly

well, the method that takes tuple semantics into account can do even better. Our experiments also

clearly show that as we increase the difference in importance between the most valuable tuples and

the least valuable tuples, semantic load shedding produces more striking benefits. We have also

conducted experiments on the Borealis prototype. Our prototype study demonstrates that load

on aggregation queries can be shed in an effective manner, without sacrificing the subset result

property. We have shown that, as is expected, with the added ability to push drops past aggregates,

we can recover more load early; thereby, regaining the required CPU cycles while minimizing the

total utility loss. By focusing on dropping windows, we can better control the propagation of error

113

114

through the downstream network.

7.1 Future Directions

The load shedding problem in data stream management systems is an important and broad problem,

and presents future research opportunities in various interesting directions.

7.1.1 Managing Other Resources

In the current study, we have focused on load shedding to reclaim processor cycles. In many stream-

oriented applications, cycles are not the limited resource. Often things like bandwidth or battery

power will be the resources that must be conserved. Load shedding via dropping of tuples has an

important role to play in these environments as well. We intend to investigate ways in which we

can design techniques similar to the ones discussed here that can work for other kinds of resource

management.

For example, query networks with large number of stateful operators like aggregates may also

require load shedding due to insufficient memory. An aggregate, with window size ω and window

slide δ has at most dω
δ e open window states per group. However, depending on the form of the

aggregate function (i.e., distributive/algebraic vs. holistic), a window state may become unbounded

[14]. We can easily adapt our window drop approach to such memory-constrained environments.

In the distributed setting of the Borealis system, bandwidth bottlenecks may also arise. In

bandwidth-limited environments, there are several additional issues to consider. First, metadata

propagation also takes up bandwidth, and hence metadata exchange has to be kept to a minimum.

Second, the feasible rate points in the FIT, which are defined in terms of the inputs of a node, do

not directly map to the rates at the outputs of its parent, because rates may also slow down due

to network delays. Lastly, we should also consider that under bandwidth limitations, shedding load

at the earliest node in the server chain (even though that node itself may not be overloaded) is

especially necessary. Bandwidth should not be wasted for tuples that will eventually be dropped

down in the chain. Therefore, having parents shed load on behalf of their children is important.

We are planning to tackle the CPU and the bandwidth problems under a common framework by

treating the network slow-down as just another query operator with a certain time cost (selectivity

= 1 since the network can be assumed to be reliable). Of course, this may not be so easy to achieve

in shared networks due to frequent variations in cost.

7.1.2 Other Forms of Load Reduction

We can explore other ways of reducing load. Any operator that produces fewer output tuples than it

receives as input could potentially be used for load shedding. Our previous load shedding techniques

used drop operators which horizontally reduced data streams by discarding tuples. Other alternatives

include vertically reducing data streams by using projection operators that discard columns from

115

tuples, or summarizing or compressing data streams by using aggregate operators. In bandwidth-

or memory-limited environments, any of these alternatives would be effective.

7.1.3 Other Latency Problems

In stream processing applications, operators must avoid blocking because blocking can obviously

destroy latency. Thus, it is reasonable to have an operator timeout [8] before it is certain that a

semantic condition is reached (e.g., emit an average before all the stock prices for the 3pm report

have been received). Once the timeout has happened, further tuples in the previously terminated

category (e.g., 3pm reports) have no benefit and can therefore be discarded. This is a type of pre-

planned load shedding that is needed when the data rates are too slow and tuples are delayed. We

are interested in exploring the relationship between load shedding for high loads and load shedding

(timeouts) for low loads. It would be interesting to see if there is some commonality that could be

exploited.

7.1.4 Window-awareness on Joins

Similar to aggregates, joins also operate on windows of tuples. However, the semantics is quite

different. A join window involves two input streams, A and B. It defines which tuples from input B

are in the range of a given tuple from input A so that the join predicate can be applied on them.

Unlike aggregates, where window behavior is crucial in producing subset results, this is not the main

issue for joins. Dropping inputs necessarily produces a subset and load shedding on joins is mostly

about controlling the size of that subset. Consider a query with an Aggregate followed by a Join.

Window Drop placed before the Aggregate causes Aggregate to produce a somewhat random subset

per aggregate group. This further affects the overall query result from the Join in different ways,

depending on the form of the join predicate as well as tuple values.

We would like to also be able to handle query plans where joins and aggregates coexist. However,

some of the techniques we developed for one operator may not apply well on the other one. For

example, a semantic drop which works well with a join operator, can only be pushed across an

aggregate if its predicate is defined on aggregate’s group-by field. This ensures that groups will be

dropped as a whole and subset guarantee will be preserved. Similarly, if we would like to push a

window drop across a join by replicating it onto two join inputs, we need to make sure that these two

window drops work in a coordinated fashion (i.e., decide to drop the same windows). Additionally, if

we modify the join code to be aware of the window specifications, join can also perform early drops,

possibly bringing additional cycle savings. We are planning to investigate these issues in detail as

part of our future work.

7.1.5 Prediction-based Load Shedding

Subset-based load shedding approaches lead to gaps in query results. One way for the output

application to interpret these gaps is to predict what might be missing from the result based on

116

what is delivered (e.g., based on linear interpolation). Using a prediction-based interpretation of the

subset result also gives us an opportunity to compare our approach against the relative-error based

approaches (e.g., [17]). We have conducted some preliminary experiments in this direction based on

linear interpolation. Our results on real data traces show that for small gaps (i.e, low batch size),

our approach produces results with lower average error. Additionally, we have also observed that

larger slide values result in higher error for both approaches, but our approach seems to scale better

with increasing slide. We need to conduct a more comprehensive experimental study to provide a

detailed quantitative comparison.

7.1.6 Load Management on Update Streams

Most data stream processing systems model streams as append-only sequences of data elements. In

this model, the application expects to receive a query answer on the complete stream. However,

there are many situations in which each data element in the stream is in fact an update to a previous

one, and therefore, the most recent value is all that really matters to the application. For example,

for a sensor-based application that monitors the current room temperature, it is more important

to deliver the latest temperature reading with low-latency than deliver the complete temperature

history. Furthermore, many applications such as caching and materialized view maintenance, may

reuse data until it is refreshed by a newer value. Missing or delaying a recent update would cause

such applications to work with stale data, and may drive them into incorrect actions. For all these

reasons, we believe that update streams must be processed in a different way. We have recently

started working on the problem of efficiently and correctly processing continuous queries under such

an update-based stream data model. The goal is to provide the most up-to-date answers to the

application with the lowest latency possible, while maintaining an acceptable update frequency to

minimize staleness. To achieve this, we developed a lossy tuple storage model (called an “update

queue”), which under high load, may choose to sacrifice old tuples in favor of newer ones. This

technique can correctly process queries with one or more sliding window operations, while efficiently

handling large numbers of update keys. We would like to further investigate the update-based stream

processing model. For instance, it is an interesting question how append and update streams can be

accommodated in the same system, and whether the system can automatically decide which queue

type to use for a given dataflow.

Bibliography

[1] Amalgamated Insight, Inc. http://www.aminsight.com/.

[2] Coral8, Inc. http://www.coral8.com/.

[3] Options Price Reporting Authority (OPRA). http://www.opradata.com/.

[4] The GNU Linear Programming Kit (GLPK). http://www.gnu.org/software/glpk/glpk.

html.

[5] The Internet Traffic Archive. http://ita.ee.lbl.gov/.

[6] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang, W. Lindner,

A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The Design of the

Borealis Stream Processing Engine. In CIDR Conference, Asilomar, CA, January 2005.

[7] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Ha-

toun, J. Hwang, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R.Yan,

and S. Zdonik. Aurora: A Data Stream Management System (demo description). In ACM

SIGMOD Conference, San Diego, CA, June 2003.

[8] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tat-

bul, and S. Zdonik. Aurora: A New Model and Architecture for Data Stream Management.

VLDB Journal, 12(2), 2003.

[9] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The AQUA Approximate Query

Answering System. In ACM SIGMOD Conference, Philadephia, PA, June 1999.

[10] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying Update Streams in a Soft Real-Time

Database System. In ACM SIGMOD Conference, San Jose, CA, May 1995.

[11] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford Real-time Information

Processor (STRIP). ACM SIGMOD Record, 25(1), 1996.

[12] Y. Ahmad, B. Berg, U. Çetintemel, M. Humphrey, J. Hwang, A. Jhingran, A. Maskey, O. Pa-

paemmanouil, A. Rasin, N. Tatbul, W. Xing, Y. Xing, and S. Zdonik. Distributed Operation

117

118

in the Borealis Stream Processing Engine (demo description). In ACM SIGMOD Conference,

Baltimore, MD, June 2005.

[13] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive Control of Extreme-scale

Stream Processing Systems. In IEEE ICDCS Conference, Lisboa, Portugal, July 2006.

[14] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing Memory Require-

ments for Queries over Continuous Data Streams. ACM Transactions on Database Systems

(TODS), 29(1), March 2004.

[15] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stonebraker, and

R. Tibbetts. Linear Road: A Stream Data Management Benchmark. In VLDB Conference,

Toronto, Canada, September 2004.

[16] A. Ayad and J. F. Naughton. Static Optimization of Conjunctive Queries with Sliding Windows

Over Infinite Streams. In ACM SIGMOD Conference, Paris, France, June 2004.

[17] B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation Queries over Data

Streams. In IEEE ICDE Conference, Boston, MA, March 2004.

[18] S. Babu, L. Subramanian, and J. Widom. A Data Stream Management System for Network

Traffic Management. In ACM Workshop on Network-Related Data Management (NRDM),

Santa Barbara, CA, May 2001.

[19] S. Bajaj, L. Breslau, and S. Shenker. Uniform versus Priority Dropping for Layered Video. In

ACM SIGCOMM Conference, Vancouver, Canada, August 1998.

[20] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,

E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and S. Zdonik. Retrospective

on Aurora. VLDB Journal Special Issue on Data Stream Processing, 13(4), 2004.

[21] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein, Y. E. Ioannidis, H. V.

Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, and K. C. Sevcik. The New Jersey

Data Reduction Report. IEEE Data Engineering Bulletin, 20(4), 1997.

[22] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for

Differentiated Services. IETF RFC 2475, December 1998.

[23] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: An

Overview. IETF RFC 1633, June 1994.

[24] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,

N. Tatbul, and S. Zdonik. Monitoring Streams - A New Class of Data Management Applica-

tions. In VLDB Conference, Hong Kong, China, August 2002.

119

[25] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker. Operator

Scheduling in a Data Stream Manager. In VLDB Conference, Berlin, Germany, September

2003.

[26] S. Cen, C. Pu, and J. Walpole. Flow and Congestion Control for Internet Streaming Ap-

plications. In ACM/SPIE Multimedia Computing and Networking (MMCN), San Jose, CA,

January 1998.

[27] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approximate Query Processing

Using Wavelets. In VLDB Conference, Cairo, Egypt, September 2000.

[28] S. Chandrasekaran, A. Deshpande, M. Franklin, J. Hellerstein, W. Hong, S. Krishnamurthy,

S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous Dataflow Processing

for an Uncertain World. In CIDR Conference, Asilomar, CA, January 2003.

[29] S. Chandrasekaran and M. J. Franklin. Remembrance of Streams Past: Overload-Sensitive

Management of Archived Streams. In VLDB Conference, Toronto, Canada, September 2004.

[30] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On Random Sampling over Joins. In ACM

SIGMOD Conference, Philadephia, PA, June 1999.

[31] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous Query

System for Internet Databases. In ACM SIGMOD Conference, Dallas, TX, May 2000.

[32] W. Chu, H. Yang, and G. Chow. A Cooperative Database System (CoBase) for Query Re-

laxation. In International Conference on Artificial Intelligence Planning Systems, Edinburgh,

Scotland, UK, May 1996.

[33] C. L. Compton and D. L. Tennenhouse. Collaborative Load Shedding for Media-Based Ap-

plications. In International Conference on Multimedia Computing and Systems (ICMCS),

Boston, MA, May 1994.

[34] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill,

first edition, 1998.

[35] A. Das, J. Gehrke, and M. Riedewald. Approximate Join Processing Over Data Streams. In

ACM SIGMOD Conference, San Diego, CA, June 2003.

[36] A. Demers, J. Gehrke, and M. Riedewald. The Architecture of the Cornell Knowledge Broker.

In Symposium on Intelligence and Security Informatics (ISI-2004), Tucson, AZ, June 2004.

[37] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-Scale XML Dissemination Service.

In VLDB Conference, Toronto, Canada, September 2004.

[38] Digital Bibliography & Library Project. http://www.informatik.uni-trier.de/ ley/db/.

120

[39] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing Complex Aggregate Queries

over Data Streams. In ACM SIGMOD Conference, Madison, Wisconsin, June 2002.

[40] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of pub-

lish/subscribe. ACM Computing Surveys, 35(2), 2003.

[41] P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for Database Applications.

Journal of Computer and System Sciences, 31(2), September 1985.

[42] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper,

A. Edakkunni, and W. Hong. Design Considerations for High Fan-In Systems: The HiFi

Approach. In CIDR Conference, Asilomar, CA, January 2005.

[43] S. Ganguly. Design and Analysis of Parametric Query Optimization Algorithms. In VLDB

Conference, New York City, NY, August 1998.

[44] M. Garofalakis and P. B. Gibbons. Approximate Query Processing: Taming the Megabytes.

In VLDB Conference, Rome, Italy, September 2001.

[45] J. Gehrke, F. Korn, and D. Srivastava. On Computing Correlated Aggregates over Continual

Data Streams Databases. In ACM SIGMOD Conference, Santa Barbara, CA, May 2001.

[46] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing Wavelets on Streams:

One-pass Summaries for Approximate Aggregate Queries. In VLDB Conference, Roma, Italy,

September 2001.

[47] Glossary of Astronomy Terms. http://www.seasky.org/astronomy/astronomyglossary.html.

[48] L. Golab and M. T. Özsu. Issues in Data Stream Management. ACM SIGMOD Record, 32(2),

June 2003.

[49] P. J. Haas and J. M. Hellerstein. Ripple Joins for Online Aggregation. In ACM SIGMOD

Conference, Philadephia, PA, June 1999.

[50] J. Hansson and S. H. Son. Overload Management in RTDBs. In K. Lam and T. Kuo, edi-

tors, Real-Time Database Systems: Architecture and Techniques. Kluwer Academic Publishers,

2001.

[51] J. M. Hellerstein, R. Avnur, A. Chou, C. Olston, V. Raman, T. Roth, C. Hidber, and P. J.

Haas. Interactive Data Analysis: The Control Project. IEEE Computer, 32(8), August 1999.

[52] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. In ACM SIGMOD

Conference, Tucson, AZ, May 1997.

[53] A. Hulgeri and S. Sudarshan. Parametric Query Optimization for Linear and Piecewise Linear

Cost Functions. In VLDB Conference, Hong Kong, China, August 2002.

121

[54] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query optimization. In VLDB

Conference, Vancouver, Canada, August 1992.

[55] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric Query Optimization. VLDB

Journal, 6(2), 1997.

[56] Y. E. Ioannidis and V. Poosala. Histogram-based Approximation of Set-valued Query-Answers.

In VLDB Conference, Edinburgh, Scotland, UK, September 1999.

[57] V. Jacobson. Congestion Avoidance and Control. ACM SIGCOMM Computer Communication

Review, 18(4), August 1988.

[58] A. Jain, E. Y. Chang, and Y. Wang. Adaptive Stream Resource Management using Kalman

Filters. In ACM SIGMOD Conference, Paris, France, June 2004.

[59] R. Jain. Congestion Control in Computer Networks: Issues and Trends. IEEE Network

Magazine, 4(3), 1990.

[60] J. Kang, J. Naughton, and S. Viglas. Evaluating Window Joins over Unbounded Streams. In

IEEE ICDE Conference, Bangalore, India, March 2003.

[61] K. Kang, S. Hyuk Son, J. A. Stankovic, and T. F. Abdelzaher. A QoS-Sensitive Approach for

Timeliness and Freshness Guarantees in Real-Time Databases. In IEEE Euromicro Conference

on Real-Time Systems (ECRTS), Vienna, Austria, June 2002.

[62] B. Kao and H. Garcia-Molina. An Overview of Real-Time Database Systems. In W. A.

Halang and A. D. Stoyenko, editors, NATO Advanced Study Institute on Real-Time Computing.

Springer-Verlag, 1994.

[63] C. Krasic, J. Walpole, and W. Feng. Quality-Adaptive Media Streaming by Priority Drop. In

ACM International Workshop on Network and Operating Systems Support for Digital Audio

and Video (NOSSDAV), Monterey, CA, June 2003.

[64] C. Krasic, J. Walpole, and C. Pu. QoS Scalability for Streamed Media Delivery. Technical

Report CSE-99-011, Oregon Graduate Institute School of Science and Engineering, 1999.

[65] Y. Law, H. Wang, and C. Zaniolo. Query Languages and Data Models for Database Sequences

and Data Streams. In VLDB Conference, Toronto, Canada, September 2004.

[66] U. Leonhardt and J. Magee. Multi-sensor Location Tracking. In International Conference on

Mobile Computing and Networking (MobiCom), Dallas, TX, October 1998.

[67] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An Acquisitional

Query Processing System for Sensor Networks. ACM Transactions on Database Systems,

30(1):122–173, 2005.

122

[68] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. Controlling

High Bandwidth Aggregates in the Network. ACM SIGCOMM Computer Communication

Review, 32(3), July 2002.

[69] Mesquite Software, Inc. CSIM18 Simulation Engine. http://www.mesquite.com/.

[70] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,

J. Rosenstein, and R. Varma. Query Processing, Approximation, and Resource Management

in a Data Stream Management System. In CIDR Conference, Asilomar, CA, January 2003.

[71] F. Olken and D. Rotem. Random Sampling from Databases: A Survey. Statistics and Com-

puting, 5(1), March 1995.

[72] G. Özsoyoğlu, S. Guruswamy, K. Du, and W. Hou. Time-Constrained Query Processing in

CASE-DB. IEEE Transactions on Knowledge and Data Engineering (TKDE), 7(6), December

1995.

[73] G. Özsoyoğlu and R. T. Snodgrass. Temporal and Real-Time Databases: A Survey. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 7(4), August 1995.

[74] O. Papaemmanouil, Y. Ahmad, U. Çetintemel, J. Jannotti, and Y. Yıldırım. Extensible

Optimization in Overlay Dissemination Trees. In ACM SIGMOD Conference, pages 611–622,

Chicago, IL, June 2006.

[75] N. Paton and O. Diaz. Active Database Systems. ACM Computing Surveys, 31(1), 1999.

[76] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer. Network-

Aware Operator Placement for Stream-Processing Systems. In IEEE ICDE Conference, At-

lanta, GA, April 2006.

[77] V. Raman, B. Raman, and J. M. Hellerstein. Online Dynamic Reordering. VLDB Journal,

9(3), 2000.

[78] R. L. Read, D. S. Fussell, and A. Silberschatz. A Multi-Resolution Relational Data Model. In

VLDB Conference, Vancouver, Canada, August 1992.

[79] F. Reiss and J. Hellerstein. Data Triage: An Adaptive Architecture for Load Shedding in

TelegraphCQ. Technical Report IRB-TR-04-004, Intel Research, February 2004.

[80] F. Reiss and J. Hellerstein. Data Triage: An Adaptive Architecture for Load Shedding in

TelegraphCQ. In IEEE ICDE Conference, Tokyo, Japan, April 2005.

[81] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,

16(2):187–260, June 1984.

123

[82] L. Schwiebert, S. K. S. Gupta, and J. Weinmann. Research Challenges in Wireless Networks

of Biomedical Sensors. In International Conference on Mobile Computing and Networking

(MobiCom), Rome, Italy, July 2001.

[83] P. Seshadri, M. Livny, and R. Ramakrishnan. The Design and Implementation of a Sequence

Database System. In VLDB Conference, Bombay, India, September 1996.

[84] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly-Available, Fault-Tolerant, Parallel

Dataflows. In ACM SIGMOD Conference, Paris, France, June 2004.

[85] U. Srivastava and J. Widom. Memory Limited Execution of Windowed Stream Joins. In

VLDB Conference, Toronto, Canada, September 2004.

[86] Stream Query Repository. http://www-db.stanford.edu/ stream/sqr/.

[87] StreamBase Systems, Inc. http://www.streambase.com/.

[88] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: An Overlay Based Ar-

chitecture for Enhancing Internet QoS. In NSDI Conference, San Francisco, CA, March 2004.

[89] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a Sensor Network

Expedition. In European Workshop on Wireless Sensor Networks (EWSN), Berlin, Germany,

January 2004.

[90] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[91] N. Tatbul, M. Buller, R. Hoyt, S. Mullen, and S. Zdonik. Confidence-based Data Management

for Personal Area Sensor Networks. In VLDB Workshop on Data Management for Sensor

Networks (DMSN), Toronto, Canada, September 2004.

[92] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying FIT: Scalable Load Shedding Techniques

for Distributed Stream Processing . Technical Report CS-06-13, Brown University, Computer

Science, November 2006.

[93] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load Shedding in a

Data Stream Manager. In VLDB Conference, Berlin, Germany, September 2003.

[94] N. Tatbul and S. Zdonik. Dealing with Overload in Distributed Stream Processing Systems.

In IEEE International Workshop on Networking Meets Databases (NetDB’06), Atlanta, GA,

April 2006.

[95] N. Tatbul and S. Zdonik. Window-aware Load Shedding for Aggregation Queries over Data

Streams. In International Conference on Very Large Data Bases (VLDB’06), Seoul, Korea,

September 2006.

124

[96] Y. Tu, S. Liu, S. Prabhakar, and B. Yao. Load Shedding in Stream Databases: A Control-

Based Approach. In International Conference on Very Large Data Bases (VLDB’06), Seoul,

Korea, September 2006.

[97] Y. Tu, S. Prabhakar, A. K. Elmagarmid, and R. Sion. QuaSAQ: An Approach to Enabling

End-to-End QoS for Multimedia Databases. In EDBT Conference, Crete, Greece, March 2004.

[98] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting Punctuation Semantics in

Continuous Data Streams. IEEE Transactions on Knowledge and Data Engineering (TKDE),

15(3), 2003.

[99] J. S. Vitter and M. Wang. Approximate Computation of Multidimensional Aggregates of

Sparse Data Using Wavelets. In ACM SIGMOD Conference, Philadephia, PA, June 1999.

[100] S. V. Vrbsky. A Data Model for Approximate Query Processing of Real-Time Databases. Data

and Knowledge Engineering, 21(1), December 1996.

[101] S. V. Vrbsky and J. W. S. Liu. APPROXIMATE: A Query Processor That Produces Mono-

tonically Improving Approximate Answers. IEEE Transactions on Knowledge and Data En-

gineering (TKDE), 5(6), December 1993.

[102] J. Walpole, L. Liu, D. Maier, C. Pu, and C. Krasic. Quality of Service Semantics for Multimedia

Database Systems. In IFIP 8th Working Conference on Database Semantics (DS-8): Semantic

Issues in Multimedia Systems, Rotorua, New Zealand, January 1999.

[103] M. Welsh and D. E. Culler. Adaptive Overload Control for Busy Internet Servers. In USENIX

Symposium on Internet Technologies and Systems (USITS), Seattle, WA, March 2003.

[104] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services. In ACM Symposium on Operating Systems Principles (SOSP),

Banff, Canada, October 2001.

[105] A. T. Whitney and D. Shasha. Lots o’ Ticks: Real-Time High Performance Time Series

Queries on Billions of Trades and Quotes. In ACM SIGMOD Conference, Santa Barbara, CA,

May 2001.

[106] J. Xie, J. Yang, and Y. Chen. On Joining and Caching Stochastic Streams. In ACM SIGMOD

Conference, Baltimore, MD, June 2005.

[107] Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data Streams in

Real Time. In VLDB Conference, Hong Kong, China, August 2002.

