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This dissertation presents a computational framework for integrating measured data —

such as medical images, tracked motion, and anatomy-book knowledge — into the predic-

tive modeling of anatomical joints. The framework is data-driven in the sense that it uses

sampled motion data to infer soft-tissue geometry and behavior. The framework allows the

generation of adaptable, quantifiable, predictive models and simulations of complex joints,

surpassing current measuring limitations.

I instantiate the framework in a collection of tools: 1) a sub-voxel accurate method

for tracking bone-motion from sequences of medical images;2) computational tools for

estimating soft-tissue geometry and contact; and 3) a tool for the visual and quantitative

exploration of joint biomechanics. The first tool attains accuracy improvements of more

than 74% over current tracking methods, when compared to theground truth computed

from marked data; the accuracy improvement enables the analysis of soft-tissue defor-

mation with motion in live individuals. The second tool enables us to overcome current

soft-tissuein vivo imaging limitations. The third tool facilitates the quantitative and visual

analysis of joint models and simulations.

The resulting computational models are somewhat unusual intheir hybridization of

data representations. Each representation has strengths for various aspects of the modeling

and I combine them in unique ways to achieve simple, elegant and accurate estimations of

biologically relevant measurements.

I demonstrate the application of this framework to the humanwrist and forearm. The re-

sults generated through this framework have already impacted orthopedists’ understanding

of the many diseases afflicting human joints. With such a better understanding, improve-

ments in treatment for injuries are possible as well as reductions in injuries.
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Chapter 1

Introduction

1.1 Motivation

20% of all computer users damages their wrists due to excessive typing [84]. How do these

injuries occur, and why does treatment work only for certainindividuals? Subject-specific,

computational models of anatomical joints can help answer such questions. However, de-

veloping such models poses significant computational challenges — for example, what

level of modeling detail is necessary in order to generate biologically significant measure-

ments, while keeping the resulting models efficient to simulate?

Developing such models also requires interdisciplinary collaboration between computer

scientists and life scientists. Interdisciplinary research like the one described in this disser-

tation is a meeting place for experts in different fields. While our overarching goal is

gaining insight into how anatomical joints work, the focus of each field is in general on

different domains (Fig. 1.1). For example, doctors and biologists target in general appli-

cations, bioengineers emphasize data acquisition and validation, while computer scientists

focus on developing computational modeling and analysis tools. A research project at the

intersection of the data acquisition, computational toolsand application domains is, for

example, developing an image-based automated system for tracking small animal motion.

This dissertation focuses on modeling anatomical joints. Technically, the correct term

is diarthrodial joints, joints that move freely — examples of such joints arethe knee and

1
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Figure 1.1: Inter-disciplinary research is a meeting placefor experts in different fields.
The focus of each field, however, is on a different domain: forexample, doctors and biolo-
gists target in general applications, bioengineers emphasize data acquisition and validation,
while computer scientists focus on developing computational modeling and analysis tools.

the elbow (Fig. 1.2). Diarthrodial joints are the structures that allow us to move. They occur

wherever two or more bones adjoin and move against each other; surrounding soft-tissues

stabilize the joint and protect the bones from motion-related damage.

From the application point of view, our goal is to develop tools that can generate joint

models which have: 1) subject-specific capabilities, i.e.,the models are adaptable to dif-

ferences between individuals; 2) quantifiable capabilities, i.e., the models allow users to

evaluate not only whether, for example, an injured joint differs from a normal joint, but

also how much; and 3) predictive capabilities, in predicting for example the outcome of

surgical interventions or therapy.

The impact of obtaining subject-specific, quantifiable, predictive models would be tre-

mendous. For example, such models of joints could predict, for a given individual, how

joint motion would be altered after a simulated surgical intervention or after therapy, and

therefore help doctors plan their procedures. Second, suchmodels would allow the design

of higher-performance robots and orthopedic implants. Fig. 1.3 shows a state of the art wrist

implant [6]; attempts at total wrist replacement have historically been fraught with com-

plications, most commonly prosthetic dislocation and loosening [6, 39]. Subject-specific



3

Figure 1.2: Diarthrodial joints are joints that move freely. Such joints are formed wherever
two or more bones adjoin and move against each other.

wrist models able to predict contact within the wrist could help us design more performant

prosthetics, tailored to specific individuals. Lastly, in computer animation the same models

would generate more realistic character motion than current analytical or highly simplified

musculoskeletal models. For examples of current animations generated without the help of

a large team of skilled artistic animators, seehttp://www.theseisgame.com/; in the released

clips, note in particular the unrealistic shoulder motion.Subject-specific, motion predictive

joint models would certainly help animators.

When modeling diarthrodial joints, the computer science area of expertise is the de-

velopment of computational modeling, visualization and analysis tools that take as input

individual-specific medical measurements, and generate models and simulations that can

provide insight into specific applications. In Fig. 1.4, theleft side corresponds to the data-

acquisition domain, and the right side to the applications domain; computer scientists con-

tribute primarily to the computational and analysis tools domain. The view shown here

is computer science-centric; however, the flow among the three domains is by no means

uni-directional. For example, applications generate hypotheses; hypotheses influence the

type of data acquired, and thus the development of data acquisition techniques, but also

how much we model and at what level of detail.
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Figure 1.3: State of the art orthopedic wrist implant; attempts at total wrist replacement
have historically been fraught with complications, most commonly prosthetic dislocation
and loosening.

Figure 1.4: When modeling diarthrodial joints, our goal as computer scientists is to develop
computational modeling, visualization and analysis toolsthat can take individual-specific
medical measurements and generate models and simulations that can provide insight into
specific applications.
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1.2 Anatomy Background

The anatomy of a diarthrodial joint comprises several layers (Fig. 1.5). The first and most

superficial layer is (1) skin and fat, followed by (2) the neurovascular system layer (shown

in Fig. 1.5 as brightly colored threads). Blood vessels nourish the joint tissues, and nerves

act as sensors and controls.

The next layer is formed by (3) muscles, active bundles of soft tissue that attach to bones

through tough cords called tendons (in Fig. 1.5, muscles areshown in red, and tendons in

white-pink). Muscles flex and relax as commanded by nerves; the flexing and relaxation

processes modify the length of muscle bundles, and thus the muscles through their tendons

apply forces to the joint.

The interesting observation at this point is that, if we remove the top three layers, a

joint will still hold together and move appropriately when forces are applied to it. This

observation — made thanks to clinical studies on cadaver data — is frequently used as a

simplifying assumption in biomechanical modeling [32, 52]. According to this assumption,

and depending on the specific application, the top two layersand their influence on the

joint can be neglected, and muscles and their actions can be represented as external forces

applied to a joint at tendon insertion sites.

The deeper layers that hold a joint together are: (4) ligaments, (5) cartilage, and (6)

bones. Ligaments are tough, passive bands of soft-tissue connecting bones. Their role is

to stabilize the joint during motion. While the anatomical rendering in Fig. 1.5 shows li-

gaments (in grey) as separate bands of tissue, in reality ligaments are inter-connected and

form a sac; individual ligaments can be described as thickenings of the sac. The shapes and

mechanical properties of individual ligaments are in general poorly documented; clinical

studies indicate large variation among individuals, and among ligaments of the same indi-

vidual. The sac itself contains synovial fluid; the fluid’s role is to lubricate the joint and

thus reduce friction during motion.

Articular cartilage (shown in white in Fig. 1.5) is a complex, living tissue that lines the

bony surface of joints. Its function is to provide a low friction surface cushioning the joint

bones through the range of motion. In other words, articularcartilage is a very thin shock

absorber. It is organized into five distinct layers, with each layer having different structural
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Figure 1.5: Layers in the anatomy of a human wrist — from left to right: skin and fat,
neurovascular system, muscles, a subset of wrist ligaments, cartilage, bones with muscle
and a few ligament insertion sites.

and biochemical properties. Erosion of this protective layer results in osteoarthritis. Carti-

lage is extremely slippery — 100 times more slippery than ice; as a result, cartilage contact

during motion is practically frictionless.

Bones are organs with a complex internal and external structure that allows them to be

lightweight yet strong and hard. The hard outer layer of bones is called compact (orcor-

tical) bone tissue due to its minimal gaps or spaces. This tissue gives bones their smooth,

white, and solid appearance, and accounts for 80% of the total bone mass. Filling the in-

terior of the bone is a spongy (ortrabecular) bone tissue which makes the overall bone

lighter and allows room for blood vessels and marrow. Spongybone accounts for the re-

maining 20% of total bone mass, but has nearly ten times the surface area of compact bone.

While bone is essentially brittle, it does have a significant degree of elasticity. However,

in the context of motion analysis and considering the large configuration changes normally

occurring in a joint during motion, bones in human diarthrodial joints can be considered

rigid; in contrast, bones in bat wings are believed to bend during flight [104].
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Figure 1.6: Diagram of the computational modeling process

1.3 Computational Background and Challenges

In theory, we could build diarthrodial joint models from themolecular level up to full motor

function. Constructing such a model would require accurate,well-defined inputs, including

complete digital anatomical models of all joint components, the material properties for all

components, and a detailed understanding of the applied forces. Once the model geometry

is constructed and the forces defined, algorithms and representations must be implemented

to computationally model and then simulate the interactions among joint components and

finally the behavior of the joint (Fig. 1.6).

However, building such models from the molecular level up will take a long time, and

simulating them will be enormously slow. In practice, slightly less accurate but faster

models of anatomy in which we treat bones, for instance, as rigid bodies, and tendons as

inelastic bands, could serve to advance life science in the same way that the development

of rigid body physics — while failing to take into account molecular forces and relativistic

effects — has helped advance physical science and engineering for 150 years. The first

challenge here is choosing what we need to model at what levelof detail, and developing

appropriate representations and approximations so that weobtain biologically significant

measurements while keeping the models simulatable.

The second challenge is that many of the inputs we need to build models of diarthrodial

joints are not measurable in live individuals. Somein vivo measuring restrictions come

from current limitations of imaging technology. For example, we are still unable to image
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non-invasively small structures (under 0.5mm thickness) such as wrist cartilage or liga-

ments in live individuals: there just aren’t enough imagingcapabilities to generate models

of such structures. In time, progress in imaging technologies may overcome such limita-

tions. Other measuring limitations are, however, inherently linked to in vivo investigation:

detailed subject-specific material properties and undeformed geometry cannot be acquired

without invasively disrupting the joint and thus altering its kinematics. For example, we

may never be able to determine the rest-length and elasticity of a specific ligament of a

specific individual without removing the ligament from the individual’s joint. Input entities

which are not measurable directly become, in fact, latent variables in our models. Latent

variables are variables that are not directly observed but are rather inferred from other ob-

servable variables. These variables — such as cartilage thickness and location, or ligament

rest-lengths — need to be inferred from directly measurabledata.

1.4 State of the Art in Diarthrodial Joint Modeling

Approaches to modeling diarthrodial joints can be classified in four categories, according

to the type of data they take as input and the representationsthey use: 1) the ‘stick-and-

wire’, 2) the analytical, 3) the rigid bodies, and 4) the deformable-rigid hybrid approach.

The resulting models of diarthrodial joints include only skeletal tissues: bone, ligaments,

cartilage, and muscle-tendon units.

In the ‘stick-and-wire’ approach, researchers build physical models of joints from ma-

terials such as wood, nails, wire, or epoxy-resin. The necessary medical measurements are

in general acquired by dissecting the joint. For example, Jacob et al. built a physical model

of a human wrist from joints dissectedin vitro [52]. Epoxy-resin casts were generated from

silicon-latex molds in which the exact form of the cartilagesurfaces was preserved. Li-

gaments were modeled with stout threads and attached at the locations observed duringin

vitro dissection; material-property differences observed among specimens were ignored.

Historically, the ‘stick-and-wire’ approach has generated extremely useful anatomical

knowledge and a wealth of diarthrodial joint models. Nevertheless, in this approach we

destroy the biological joint in order to study it. This limits the applicability of this approach
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to cadaver subjects. Furthermore, even in the cadaver case it is difficult to generate and

compare subject-specific models. Since in general invasivestudies alter joint kinematics

and material properties, models generated through the ‘stick-and-wire’ approach are also

difficult to validate.

The analytical approach generates simulatable, but greatly simplified and often heuris-

tically defined models of diarthrodial joints. The only inputs used in this approach are

the bone lengths and the joint range-of-motion. For example, knee joints are modeled as

hinges, and wrists as ball-and-socket devices. The resulting models are often used in com-

puter graphics; such models can roughly replicate the rangeof motion observed in live

individuals. However, the analytical approach has reducedappeal to medical applications

and realistic computer animation. Such applications require in general detailed models

tailored to subject-specific data.

In the rigid-bodies approach, joints are modeled as collections of interacting rigid bo-

dies. The inputs here are individual-specific medical measurements of bone surfaces, and

anatomy-book knowledge. Bones are modeled in general as 3D meshes. If modeled at all,

soft tissues are represented as springs or rigid shells surrounding the bones [95, 32, 51, 98].

Some bones are rigidly connected; soft-tissue wrapping anddeformation are in general

discounted. However, some of the resulting models may be able, on restricted ranges of

motion, to correctly predict some bone kinematics. For example, Blankevoort et al. [18]

built a rigid-body model of the knee with motion-predictioncapabilities. The model was

generated from medical images of the bones and anatomy book knowledge such as tendon

insertion sites and material properties; bones were constrained to not inter-penetrate during

motion. We note that, in general, deformable contact withinthe joint is not modeled in the

rigid-body approach.

The most sophisticated approach to date to modeling diarthrodial joints is the hybrid

deformable-rigid approach. The inputs in this case are again non-invasive individual-

specific medical measurements and anatomy book knowledge. In this approach, bones are

considered to be rigid bodies and the other tissues are considered to be deformable. How-

ever, the geometrical representations and properties of deformable tissues vary depending
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on the complexity of the model and the medical measurements available as input. For ex-

ample, the geometry of knee ligaments can be acquired through magnetic resonance ima-

ging, and thus can subsequently be modeled through accurate, sophisticated representations

such as finite element methods. The most recent and sophisticated models are capable of

predicting strain through entire ligamentous [41] and cartilaginous structures [113, 33, 75]

using advanced finite element analysis. In contrast, the geometry of individual-specific an-

kle ligaments cannot be currently acquiredin vivo, and thus ankle ligaments are commonly

represented as non-wrapping, line spring elements.

With the notable exception of the knee — a relatively large joint of high clinical interest,

current rigid-deformable models for most diarthrodial joints are either relatively crude or

model only a few components in high detail. They typically model the ligaments as line

springs, don’t include cartilage, or include only a few bones.

The most sophisticated hybrid model to date of a complex joint has been developed by

Carrigan et al. [24]. They created a simplified 3-D finite element model of the carpus, in

which hollowed bones were modeled through finite element modeling, then their articu-

lated surfaces were extruded to mimic cartilage. In this model several pairs of bones were

fused into single rigid bodies, and ligaments were modeled as non-wrapping line springs.

Material-property parameters were specified at the input. However, for unclear reasons, the

resulting model was not stable. In the end, bone motion was restricted artificially to certain

directions through non-physiological constraints in order to prevent the carpus from col-

lapsing under applied loads. I speculate the instability may have been due to insufficient

modeling detail; in particular, this dissertation demonstrates wrapping soft-tissues play an

important role in stabilizing the carpal joint.

Important additional limitations of the models generated through the approaches sur-

veyed in this section are the lack of kinematic validation data, and the inability to perform

comparisons between subject-specific models.

When we consider the space described by models generated through the four approa-

ches described above, an interesting trend becomes apparent. The more complex a joint,

the fewer models for it exist, and the fewer predictive capabilities these models have. For

example, knee models (3 bones, 4 ligaments) range from hingemodels able to roughly
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replicate the range of motion to models able to compute contact and strains in live indivi-

duals [118]. In contrast, wrist models (8 bones, dozens of ligaments) are far fewer and have

far simpler capabilities; the same holds true for most humanjoints, from shoulder to ankle

joints.

While the knee commands particular clinical interest, this does not quite explain the

paucity of models of more complex joints. A first observationis that joint complexity in-

fluences simulation efficiency — computing accurate contactamong 100 deformable com-

ponents is certainly more expensive than computing contactamong 3 components. This

observation ties into the first computational challenge — appropriate representations for

efficient simulations — identified in section 1.3. The second, more interesting observation

is that, in general, complex joints have smaller components. The smaller the components,

the fewer direct medical measurements are available. Unfortunately, we cannot accurately

simulate soft-tissue behavior when soft-tissue measurements are not available. In fact,

what we see is the impact of measuring limitations and hence paucity of morphological

data on the model space. The more complex a joint is, the fewerrelevant data are available,

and hence the fewer and weaker models we have. This second observation ties into the

second computational challenge — measuring limitations — which we also identified in

section 1.3.

1.5 A Data-Driven Framework

The thesis of this dissertation is that a data-driven modeling approach, when tightly cou-

pled with visualization and analysis tools, can generate adaptable, quantifiable, predictive

models of diarthrodial joints. In the computer science definition, a data-driven approach

estimates a hitherto unknown mapping (or dependency) between a system’s inputs and out-

puts from the available data [76].

I present in this dissertation a data-driven framework for the predictive modeling of

diarthrodial joints. The framework allows for the generation of adaptable, quantifiable,

predictive models of complex joints, in spite of current measuring limitations. The resulting

computational models are somewhat unusual in their hybridization of data representations.
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Figure 1.7: Data-driven framework for modeling diarthrodial joints: (1) in a first step, we
extract bone surfaces and motion from sequences of medical images (Chapter 2). (2) Next,
we use this data and anatomy-book knowledge to infer and model some of the missing data
— such as soft-tissue geometry and behavior (Chapter 3 and Chapter 4). (+) We assemble
the measured and inferred data into a predictive model of thejoint (Chapter 5). (3) Finally,
we propose quantitative measures and use them to analyze disease-related joint behavior
(Chapter 6). We call the framework ‘data-driven’ because of step (2) above, in which we
use sampled data to infer soft-tissue geometry and behavior.
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Each representation has strengths for various aspects of the modeling and we combine them

in unique ways to achieve simple, elegant and accurate estimations of biologically relevant

measurements.

The key idea behind the framework is to use sampled data to infer unknown data. The

framework uses as input currently available subject-specific medical measurements and

anatomy-book knowledge; but it uses more than one instance of such measurements. In a

first step, we augment data acquired through medical imaging— such as bone geometry —

with motion information. The idea here is that motion information can provide insight into

soft-tissue properties: for example, wider ranges of motion can be associated with laxer

soft-tissues, while narrower ranges of motion can be associated with stiffer soft-tissues.

Next, we use this augmented data and anatomy-book knowledgeto infer and model some of

the missing data — such as soft-tissue geometry and behavior. We assemble the measured

and inferred data into a model of a joint. Finally, we proposequantitative measures and use

them to analyze disease-related joint behavior.

Figure 1.7 shows the flow among the different framework components. The framework

is data-drivenbecause in step two we infer soft-tissue geometry and behavior from sampled

motion data.

In this work we model only the skeletal tissue of a joint: bones, cartilage, and liga-

ments. Muscles are represented as external forces, provided by the user. As a simplifying

assumption, in several instances we approximate tissue behavior; for example, we model

articular cartilage as a single layer, not five. Incorporating explicitly the external anatomi-

cal layers — muscles, neurovascular system, skin and fat — and modeling tissue behavior

in more detail are beyond the scope of this dissertation, andconstitute directions of future

work.

1.5.1 Framework Instantiation and Dissertation Overview

The framework instantiation described in this dissertation uses as input computed tomo-

graphy (CT) volume images of a joint. Computed-tomography imaging can be thought of

as X-ray imaging in 3D: in the resulting grayscale volume images air shows in black, bony

material in bright intensities, and soft-tissues in shadesof grey. When imaging joints, we



14

prefer CT technology over other modalities — such as magneticresonance imaging — be-

cause CT offers superior resolution and spatial accuracy. Bone surfaces are extracted from

such a reference volume image.

Next, we recover motion for each joint bone. This itself is a difficult problem: we

cannot use sensors on the skin surface to recover bone motion, because there is significant

relative motion between skin and the bones underneath. Instead, we first CT-image the joint

in a few poses, sampling the space of joint kinematics. We then track the bones across the

sequence of volume images through object registration (Chapter 2). By tracking we mean

here recovering the rigid transform that takes each bone from one sample pose to another.

Tracking accuracy is paramount when analyzing joint kinematics, because even small er-

rors — errors commensurate with the voxel size — can result infalse bone inter-penetration

during motion. Preserving inter-bone spacing is importantbecause cartilaginous soft-tissue

is, in fact, located in this spacing.

Note that the motion tracking tool we describe in Chapter 2 could be replaced by other

tracking tools, using perhaps different input data, such asbone surfaces and series of 2D

images of the moving joint. The only condition here is that alternative instantiations of this

first framework component should generate similarly accurate results. To the best of my

knowledge, currently there are no similarly accurate alternative tracking tools.

Next, we use the acquired bone-surfaces, sampled joint-kinematics and anatomy-book

knowledge to infer and model ligamentous (Chapter 3) and cartilaginous tissue (Chapter

4). This second component could be modified to incorporate directly measured geometry,

if available.

We assemble bones, ligaments, and cartilages and infer someof the model parameters

by imposing joint equilibrium at the sampled kinematic poses (Chapter 5).

The last component of our system is an automated tool for the cross-subject analysis

and visualization of anatomical joints (Chapter 6). We use this component to explore and

measure the influence of injury on joint kinematics. The analysis tool could also be replaced

by alternative, for example manually-aided, cross-parameterization techniques.

Applications of this framework instantiation are presented in Chapter 3 (forearm malu-

nion), Chapter 5 (wrist close-pack pose) and Chapter 6 (scaphoid non-union).
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Chapter 7 discusses the contributions of this work and proposes directions of future

research. Orthopedics terminology is briefly reviewed in Appendix A.

1.5.2 Contributions Overview

This dissertation presents novel representations, computational modeling, visualization and

analysis tools that are needed to integrate subject-specific data with the predictive modeling

process of diarthrodial joints.

The data-driven framework presented in this dissertation —while having certain limi-

tations as discussed in Chapter 7 — allows for the developmentof complex, automatically-

tuned subject-specific models that have predictive capabilities.

I instantiate the framework in a collection of tools: 1) a sub-voxel accurate method

for tracking bone-motion from sequences of medical images;2) computational tools for

estimating soft-tissue geometry and contact; and 3) a tool for the visual and quantitative

exploration of joint biomechanics.

The results generated through this framework instantiation have already affected ortho-

pedists’ understanding of the many diseases afflicting human joints [29]. With such a better

understanding, improvements in treatment for injuries arepossible as well as reductions in

injuries.

In addition to providing specific insight into joint mechanics, the developed tools and

resulting databases should be applicable to the study of pathology and injuries, inclu-

ding arthritis, ligament tears, bone fractures, and surgical reconstructions. The tools and

methodologies I demonstrate on forearm and wrist data will be generally useful for the

study of bone, cartilage and ligament interactions in othercomplex multi-articular joints,

including the foot and spine, as well as in other joints such as the knee, elbow, and human

shoulder. The tools will also be applicable to animal studies, in basic biology research.

Ultimately, this work has the potential to create a modelingapproach that will more simply

and efficiently explain and predict the underlying biomechanics of musculoskeletal sys-

tems.



Chapter 2

Extracting Joint Kinematics from

Medical Images

2.1 Introduction

As research areas that employ image registration techniques focus on ever-smaller features,

they require higher registration accuracy.In vivo kinematic analysis of small joints, such

as the wrist, exemplifies the need for highly-accurate intra-subject, same-modality registra-

tion. A common way to analyze joint kinematics is by CT-imaging the joint bones in several

different positions and registering them across all volumeimages. While early studies have

focused on retrieving bone pose and orientation, recent research focuses on measuring how

more subtle features like inter-bone spacing change with motion. In the first case, errors

on par with the image sampling step-size, like those introduced by existing tracking sys-

tems, may be acceptable, while in the latter case errors as small as 0.5 mm can compromise

the study by introducing inter-bone collisions. At the sametime, decreasing the image

sampling-step results in increased imaging cost and time. We need a subvoxel-accurate

method for registering features whose size is on par with theimage sampling step.

We describe in this chapter an automated intra-subject same-modality registration me-

thod that attains subvoxel-accuracy. The method is of interest to any registration applica-

tions involving datasets where the image sampling step is larger than features of interest.

16
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Figure 2.1: Our registration method works in three steps: toregister an object across two
volume images, we first extract the object surface from one volume; we generate through
tissue classification a localized distance field from each volume; we then use the object
surface and the distance fields to track the object.

2.2 Registration Method

2.2.1 Overview

The registration method works in three steps on a series of volume images. First, we extract

the surface of the object to be registered from an arbitrarily-selected reference image. Next,

in order to obtain an accurate localized distance field for registering the object, we classify

the tissues in each volume image using a probabilistic approach. Last, we register the object

by automatically adjusting its position and orientation, thereby minimizing a distance-field

derived cost function (Fig. 2.1).

In the case of multi-object structures (e.g., joints in the human body) we infer from the

distance field an object hierarchy that expands the capture range of our procedure beyond

the capabilities of previous registration methods. The capture range represents the range

of positions from which a registration algorithm can converge to the correct minimum or

maximum.

We validate our method using CT data from a cadaver with external markers, anin

vivo volunteer, and forty subjects participating in a wrist-motion study. We compare the

performance of our method against a manually aided segmentation-based method as well

as a standard grey-value-registration method.
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2.2.2 Object Surface Extraction

Through manual segmentation, thresholding, and user interaction, we extract in this first

step an object surface from a reference CT volume image [28]. Summarizing this reference,

the contours defining the outer cortical bone surfaces of each object are extracted using

thresholding and image algebra processes with a 3-D imagingsoftware package (Analyze

AVW 2.5; Biomedical Imaging Resource, Mayo Foundation, Rochester, MN). Each con-

tour is then assigned to the appropriate object using Matlabcustom code, which designates

contours based on the contiguity of their centroids. Contourlines are output as collections

of discrete points, which are distributed densely along each contour and sparsely between

different contours.

2.2.3 Localized Distance Fields

In the second step of our method, we classify the tissues in each CT volume image pro-

babilistically in order to generate a localized distance field. Our tissue classifier uses the

partial-volume technique described by Laidlaw et al.[63].This method identifies distances

from material boundaries and creates distance fields for individual materials. The technique

assumes that, due to partial-volume effects or blurring, voxels can contain more than one

material, e.g., both cortical bone and soft tissue. Each voxel is assumed to contain either a

pure material or two pure materials separated by a boundary (Fig. 2.2).

We treat each voxel as a region, by subdividing it into 8 subvoxels, and evaluating the

image intensity and its derivative at the center of each subvoxel. The intensity is interpo-

lated from the discrete data using a tricubic B-spline basis that approximates a Gaussian.

Thus, intensity and derivative evaluations can be made not only at sample locations, but

anywhere between samples as well. From this intensity and derivative information we in-

fer a histogram of each voxel, accumulating the contributions from all subvoxels. This

gives us a more refined histogram than we would obtain by evaluating only the intensity

values at the same number of points. Histograms are next fit bybasis functions, each basis

function corresponding to either one material or a mixture of two materials.



19

P1

P2

P3

A

B

Voxel region Voxel histogram

d = -0.6

d = 0

d = -0.9 d = 0.9

d = 0.6

CT intensity

F
re

q
u

e
n

c
y

CT intensity

f_
b

o
u

n
d

a
ry

Voxel basis-function family

P1

P2

P3

A

B

Mostly A Mostly B

d = -0.6

Two-material data Distance-classified data

calculate

histogram

fit basis-function

to histogram

output 

distance

P1

P3

P2

Figure 2.2: The classification algorithm computes distances from sample points to material
boundaries. PointsP1 andP2 lie inside regions of a single material, either A or B. PointP3

lies near the boundary between A and B. We treat each voxel as a region, by subdividing
it into 8 subvoxels, and taking into account information from neighboring voxels. We
evaluate the image intensity and its derivative at the center of each subvoxel. The resulting
voxel histogram is then fit to a family of basis functions (f boundary), whose shapes reflect
the estimated distanced to the material boundary. The best-fit basis instance is selected
through a maximum likelihood process (d = −0.6 fits best the histogram of pointP3). The
result is a localized distance field, that specifies, at each point, the signed distance from the
point to the material boundary.

Pure material basis-functions are Gaussians whose parameters are the mean CT grey-

scale value and standard deviation for that material. Mixture basis functions have an ad-

ditional parameter,d, describing the distance from the center of the voxel to the boundary

between materials. As the distance parameter changes, the shape of the basis function

changes (Fig. 2.2). The basis-function shape that best fits each mixture voxel histogram is

chosen through a maximum-likelihood process. The derivation of the basis-function for-

mulas and the description of the optimization process are presented in detail in [63]. We

repeat the fitting procedure for each material, and select the material basis function that fits

each voxel histogram best.
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For each tissue type, the sole input required by our tissue classifier is an initial estimate

of its CT grey-scale value’s mean and standard deviation. We estimate these measures from

sets of approximately one hundred voxel samples, one set pertissue type. We consider

three distinct pure materials: air, soft-tissue, and bone.Soft-tissue is present both outside

bones and inside bones (as bone marrow). Material samples are collected only once, from

the samein vivo dataset. We consider two instances of the mixture basis function: one

modeling mixtures along air and soft-tissue boundaries, the other modeling mixtures along

soft-tissue and bone boundaries. We initialize the basis function parameters to the same

values throughout all the datasets, including thein vitro datasets.

Through this basis-function tissue-classification process, we generate a localized dis-

tance field. The distance field is a scalar 3D grid that specifies at gridpoints the distance

to the closest boundary between two materials. The distancefield is local in the sense that

the distance estimate is specified only as far as gridpoints located within a five voxels band

around the material boundary. Distances between gridpoints are approximated through

tricubic interpolation.

The classification of a wrist volume image produces one distance field per material

type. We use the distance field corresponding to bone material (Fig. 2.3) in the tracking

stage of our registration method.

2.2.4 Tracking Procedure

In the third step of our method, we register an object througha sequence of CT volume

images classified using the process described in section II.C. For each bone, we recover

the rigid body transformation between the reference image that generated the geometrical

model and a target image. The rigid body transform is expressed as a rotation around the

bone’s center of mass, and translation.

An object’s geometric model is registered with a target image of the object when its

signature in the reference distance field,DR, is most similar with its signature in the tar-

get distance field,DT . We measure this similarity with a sum-of-squared-differences cost

function that takes into account the reference and target distance-field values of the vertices

in the geometric model. The sum is weighed by the number of vertices that are still inside
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Figure 2.3: Tissue-classified distance-fields quantify thedistance from the center of each
voxel to the closest boundary. (a) One slice from a low-resolution (0.9 x 0.9 mm) wrist CT
volume image. (b) Localized distance field corresponding tobone material. Dark pixels
have been classified as either pure soft-tissue, pure air, orsoft-tissue and air mixture. The
area of interest in the box crosses two bony boundaries and isdetailed on the right. Each
voxel in the field codifies the distance from the voxel center to the closest bony boundary;
the lighter the grey, the closer to a bone boundary the voxel is. (c) Plot of the distance
values along the strip on top. Note the two dips in the plot corresponding to the two bone
boundaries. In this particular case the bone cortex is very thin (1 voxel wide); consequen-
tially there are no samples inside the bone cortex to be associated with negative (‘inside’)
distance values; hence the distance function D(v) does not take negative values.

the target distance field after applying the current transform to the model. The cost function

is thus:

F =
1

V
Σn

j=1(DR(pj)−DT (p′
j))

2, (2.1)

wherepj are points in the geometric model,p′j are the 3D points obtained by applying the

current translation and rotation topj, n is the number of points in the geometric model, and

V is the number of points that are still insideDT after rotation and translation. Wheneverp′j

is outsideDT , DT (p′j) returns an approximation of the distance fromp′j to theDT volume,

obtained by projectingp′j on the closest face of the volume. This expands the cost-function

gradient outside the volume to register, in order to accommodate partially-scanned bones.

Note that, by incorporatingDR in the cost function, we compensate for the small errors

in boundary-point location that occur occasionally duringsegmentation of the geometric

model. Because this cost function attempts to match distance-field signatures, geometric

model vertices that diverge slightly from the true bone boundary due to segmentation-errors

will be off by the same amount in the registered image.



22

Figure 2.4: 2D illustration of the tracking procedure. In this example we search for the
optimal location of the 2D boundary of a bone (shown in white)using a 2D bone and
soft-tissue distance field (shown in grey). (Left) In a highly unlikely neighborhood the
cost function F has a high value; the bone boundary may becometrapped in local minima.
(Center) In the neighborhood of the solution the cost function F has a lower value, as some
boundary points overlap with lower distance field values. The distance field serves as a
local gradient: F decreases smoothly as the location and orientation of the white boundary
approaches the correct solution. (Right) At the correct location and orientation the cost
function F should be close to zero.

Our tracking procedure searches for the position and orientation of each bone that re-

sults in maximal distance-field similarity at registration, i.e., the rotation and translation

that minimizes F (Fig. 2.4). We use a quasi-Newton algorithmto solve the optimization

problem [1]. The distance volume serves as a smooth local gradient field, which leads to

rapid convergence when the search starts from a point where at least a few geometric model

vertices are within the capture region of the localized distance field. In practice, we begin

by applying to all the bones a rough alignment translationMcom. The translation aligns the

center of mass of the bony points in the first five slices of the distance field with the center

of mass of the five most proximal contours that define the outercortical bones in the joint

(see Section 2.2.2). For example, the alignment transform to pre-register a human wrist

would use the first five slices of a wrist distance field and the five most proximal contours

of the ulna and radius bones. This approximation suffices as asearch start point.

The quasi-Newton method is fast and robust; however, like most optimization proce-

dures, it is susceptible to being confined to sub-optimal local solutions. Consequentially,

we use 64 perturbed start positions for each bone and choose the solution that yields the

smallest value of the error function. Multiple searches perbone can be performed in pa-

rallel. The optimization procedure is stable with respect to perturbations in the space of
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possible rotations. This is consistent with the fact that rotations around a spherical object’s

center of mass are not likely to change the object’s originalcapture region. The perturbed

start positions were therefore generated by sampling the space of possible initial transla-

tions on three concentric spheres of radius 2, 4, and 8 voxelsrespectively. In our experience,

the majority of the repeated optimizations per bone returned the same minimum. The al-

ternative local minima were at least one order of magnitude higher (expressed in squared

millimeters).

2.2.5 Hierarchical Approach

The distance field formulation allows us to apply the tracking procedure hierarchically,

expanding the capture range of our method. We derive a hierarchy empirically, based

on a trial-and-error analysis of the start values of the costfunction F on a few separate

sequences of volume images. For a complex structure like thehuman wrist (Fig. 2.5), we

use threein vivosequences of volume images. Each sequence consists of ten different wrist

poses, each of which corresponds to a different human subject. All possible tree hierarchies

starting from the radius and ulna and branching towards the metacarpals were considered;

we chose the one which generated best start values of the costfunction across all sequences.

We run the optimization procedure on successive layers of the wrist bones, starting with

the forearm bones, as shown in Fig. 2.6. We iterate through bones: once we detect the mo-

tion of bonebi through cost function optimization (optimizationtransform), we propagate

the motion to all the bones that havebi as an ancestor in the tree hierarchy (propagation

transform), then we move on to the next bone. Optimization and propagation transforma-

tions are accumulated for each bone.

The hierarchical approach ensures that we always start an optimization step from a

reasonable neighborhood, thereby boosting the capture range of the registration procedure

from less than 5o rotational pose increments to a full range of wrist motion (about 180o), as

shown in Fig. 2.7.
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Figure 2.5: The human wrist is a complex structure comprising the distal end of the two
forearm bones, and eight small, tightly packed carpal bones. In this X-ray view the five
metacarpals are also included. Figure reproduced with permission from [89].

Figure 2.6: Wrist hierarchy induced from distance field information. We consider four la-
yers in ascending order from the forearm:ulna andradius; lunate andscaphoid;pisiform,
triquetrum,hamate,capitate andtrapezium; metacarpals andtrapezoid. During a propa-
gation step the motion of a bonebi is propagated to all bones in ascending levels that have
bi as an ancestor. The hierarchy indicates theradius andscaphoid may be governing the
motion of the other bones.
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Figure 2.7: Imaged wrist-poses do not necessarily come in small motion increments. The
images show the same geometric wrist model, after registration, in two different poses.
The orthogonal greyscale planes correspond to vertical andhorizontal sections through the
CT volume images (darker grey areas correspond to soft-tissue, brighter areas to bones).
Note the significant differences in bone posture, orientation, and overall wrist location in
the scan volume. As shown here, two subsequent instances of the same wrist can be outside
each other’s capture region.
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Data- Type Number of Size Voxel size
set images (mm3)

(subjects x poses)
A in vitro 1 x 4 512 x 512 x 141 0.312 x 1
B in vitro 1 x 4 171 x 171 x 141 0.942 x 1
C in vivo 1 x 2 180 x 180 x 60 0.782 x 1
D in vivo 80 x 12 100 x 100 x 80 0.942 x 1

Table 2.1: Datasets used in validation experiments

2.3 Validation Method

In this section we describe a series of experiments where themethod was used to register

wrist intra-subject CT images. In order to compare our method’s performance with earlier

results reported in the literature, we begin by evaluating our method’s accuracy on high-

resolution, markedin vitro data. We then examine our method’s robustness with respect to

practical issues such as image-resolution and perturbations in the registration start-point.

We take validation one step further by examining our method’s performance onin vivo,

unmarked data. Finally, we evaluate our method’s robustness with typical in vivo factors

such as variation in image subject and object pose.

2.3.1 Data Acquisition

Four different datasets (Table I) were used in our experiments. All datasets were acquired

using CT technology (Hispeed Advantage, General Electric Medical System, scan parame-

ters: 80kV, 80mA). All images consist of axial slices, with thex axis oriented horizontally

right to left, they axis horizontally front to back, and thez axis vertically up, such that

the image resolution is lowest in thez direction. The geometric-model point clouds have

between 2000 and 8000 points, depending on the size of the bone.
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2.3.2 Experiments

In vitro accuracy and robustness experiment

In this experiment we evaluatein vitro accuracy against the ground truth yielded by external

marker registration. We further compare ourin vitro results with those generated by grey-

value registration, implemented as described further below.

To enable comparison with earlier results reported in the literature, we use the high-

resolution dataset A, consisting of four CT images of a fixed specimen (separated forearm

and hand) in different poses. Both components — the forearm and the hand — were en-

cased in plastic resin to prevent relative bone motion. To better reflect thein vivoscanning

protocol the phantom forearm bones were only partially included in the scan field-of-view

for three poses. Seven markers (ceramic spheres of various high-tolerance diameters) were

rigidly glued to each specimen component, allowing us to establish the registration ground

truth in vitro. Marker contours were extracted from each volume image by thresholding at

600 Hounsfield units. The contour images were then processedwith a 3D imaging soft-

ware package (Analyze AVW 2.5). The centroids of the seven spherical markers (one set

per specimen component) were used to calculate rigid-body motion by a method of least

squares [79].

In both the tissue-classification method and the grey-valuemethod, the optimization

procedure is initialized with the ground truth. The resulting registration transforms should

deviate from the given true transform due to each method’s translation and rotation error. In

both methods we compute for each registered bone the error relative to the true transform.

We report the relative error (mean and standard error obtained by cross-registration of the

four images in dataset A) as a translation and rotation inhelical axis of motion(HAM)

coordinates [82]; HAM coordinates express rigid-body motion as pairs (θ, t) of rotations

around and translations along a unique helical axis.

Next, we examine our method’s robustness with image resolution, since in practice

our in vivo data’s resolution was limited by the large number of subjects participating in

motion studies and the large number of images acquired per subject. To this end, we repeat

the accuracy experiment on dataset B. Dataset B, designed to simulate lower resolution
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data, was obtained by smoothing and subsampling the images of dataset A.

Last, we examine the impact of initialization on the tracking procedure. We note that

true transform data, as yielded by external markers, is usually not availablein vivo. To

simulate this situationin vitro, we perform in this experiment a perturbation study, in

which the optimization procedure is restarted repeatedly from the ground truth yielded by

external-marker registration, plus a small random rigid-body transformation. We perform

a set of five trials, with a translational perturbation of 2mm(approx. 2 voxels in image

space) in a random direction, followed by a second set of five trials, with a translational

perturbation of 5mm in a random direction. Again, we report error relative to the ground

truth transform, mean and standard error obtained by cross-registration of the four images

in dataset B, for both our method and grey-value registration.

Grey-value registration implementationGrey-value registration is a voxel-property re-

gistration method that has been successfully used to track joint motion from sequences

of volume images. Given two or more volume images and a surface model of the joint

bones, grey-value registration attempts to find the optimumlocation of each bone across

the volume images. The method operates directly on the imagegrey values, via different

paradigms such as cross-correlation or Fourier analysis. For example, Snel et al. [99] use

chamfer matching and texture characteristics to track 3D wrist motion across sequences of

CT volume images.

Grey-value registration was implemented as in Snel et al. [99], with several modifi-

cations to increase accuracy. First, all the points, as opposed to a random 10%, with a

greyscale value greater than 600 Hounsfield units of each image were used in the calcula-

tion of the root-mean-square cost function; the values in each target image were obtained

by tricubic interpolation. We used a high-performance library implementation [2], as op-

posed to a custom implementation, of the downhill simplex method of Nelder and Mead,

with a maximum deviation from the initial transform values of ∆t = 6 voxels per axis and

∆θ = π
4
. To further boost this method’s ability to deal with partially-scanned bones, the

original cost function was also slightly modified to approximate distance to the target vo-

lume whenever the model’s points were outside the target image during matching (Section

2.2.3).
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In vivo accuracy experiment

Because it is technically impossible to know the ground truthin vivo, we evaluate our me-

thod’s accuracy by comparing results with the mean answer ofseveral manual registration

trials (described further below), and with the results generated by grey-value registration.

In this experiment we use dataset C, consisting of two low-resolution CT images of the

samein vivo left wrist, one with the wrist in a neutral pose (targeted by visually aligning

the back of the hand with the back of the forearm and the third metacarpal with the long

axis of the forearm) and one with the wrist extended.

Note that in this experiment we enhance the grey-value method with the hierarchical

approach described in Section 2.2.5. Without the hierarchical enhancement, the capture-

range capabilities of the grey-value method are surpassed by the range of joint-motion in

dataset C, rendering the method inapplicable. Results from all three methods — tissue-

classification, manual, and grey-value are further verifiedusing the following visualization

method.

Visual validation is performed by superimposing the registered bone geometric wire-

frame models with vertical and horizontal slices of the volume image. Two sliders con-

trol the vertical and horizontal slice displayed. The registration results are automatically

checked for potential erroneous collisions between objects that coexist in the same image,

at the cost of further geometrical processing. To this end, aNURBS surface is fit to each

object geometry (Raindrop GeoMagic, Research Triangle Park,NC), a level-set distance

field representation is then generated from the NURBS representation [73], and the inter-

object distance is evaluated accurately for each vertex of the NURBS surface with respect

to all neighboring objects [67]. The generated NURBS surfaceshave typically on the or-

der of 103 to 104 points. Collisions are indicated by negative inter-object distances and

reported to the user. When collisions happen, each object surface is further color-mapped

and iso-contoured according to the inter-object distance,in order to create an informative

visualization (see Section 2.4). Registration results are also evaluated numerically, by ex-

amining the final-fit cost function values. Results are visually inspected in cases where fit

values were abnormally high, i.e. above 0.01.
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Validation experiment Datasets Results compared against
in vitro accuracy and robustness A, B grey-value registration
(image resol. and start-point
perturbation)
in vivoaccuracy C grey-value registration

segmentation-based registration
visual inspection (collision detection)

in vivo robustness D visual inspection
(image subject and object pose) numerical analysis

Table 2.2: Validation experiments

Segmentation-based registrationFive medical school students, all familiar with the seg-

mentation procedure and the anatomy of the wrist, manually segmented the wrist from each

of the two volume images in dataset C. Each segmenter took several runs through the pro-

cedure, for a total of twelve runs. Registration of the carpalbones between two volume

images was subsequently accomplished with an inertia-matching method [27]. Finally, re-

lative motion to the radius was reported for each bone and run. Statistics on the registration

results (rotation and translation mean and standard deviation, per bone) were collected;

note that these statistics include intra-observer variation.

In vivo robustness experiment

Finally, we evaluate our method’sin vivo robustness with respect to object pose and human

subject data (dataset D). Dataset D consists of CT wrist images acquired from forty human

subjects. Ten to twelve low-resolution volume images of both wrists were acquired per

human subject, spanning a full range of wrist poses. The right and left wrists were subse-

quently split into separate volumes, for a total of 900 wristvolume images. Registration

results are validated both visually and numerically with the method earlier described.

Table II summarizes the datasets and validation methods used for each experiment.
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2.4 Results

1) In vitro accuracy and robustness experiment

In the in vitro accuracy experiment our tissue-classification registration method demon-

strated super-resolution accuracy, and generally had smaller translational errors than grey-

value registration. For all registrations the mean tissue-classification translational error

was less than 0.3mm, compared to a mean grey-value translational error of 0.5mm. The

mean rotational error was less than 0.4o in both methods (Fig. 2.8). The grey-value regi-

stration results are consistent with those reported by Snelet al. [99]. A one-sample t-test

(α = 0.05) on the difference between the mean results produced by the two methods con-

firmed the tissue-classification translational accuracy improvement was statistically signif-

icant (p = 0.007).

Decreased image resolution affected the accuracy of our method less than the accuracy

of the grey-value registration method (Fig. 2.8). Our method introduced a mean transla-

tional error of less than 0.4 mm (a 30% translation accuracy decrease when image resolution

drops to one third), compared to 0.9mm translation error in the grey-value method (a 80%

accuracy decrease when image resolution drops to one third). The mean rotational error

increased to 0.6o in the tissue-classification method, and 0.7o in the grey-value method,

respectively. A one-sample t-test (α = 0.05) on the difference between the mean results

produced by the two methods confirmed the tissue-classification translational accuracy im-

provement was statistically significant (p = 0.001).

The last part of thein vitro experiment showed that the tissue-classification registration

method maintains super-resolution accuracy with perturbations in the optimization start po-

sition (Fig. 2.9). The tissue-classification method was practically insensitive to perturbation

(less than 0.4mm, 0.6o mean error, 0% degradation with perturbation), while the grey-value

method’s mean rotational error doubled (0.8mm, 1.5o), as shown in Fig. 2.9, middle col-

umn. A one-sample t-test (α = 0.05) on the 2mm perturbation results confirmed that the

tissue-classification accuracy improvement was statistically significant, with respect to both

translation (p = 0.01) and rotation (p = 0.007). Increasing the amount of perturbation from
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Figure 2.8: The accuracy of tissue-classification and grey-value registration, and the influ-
ence of image resolution on both methods. For each resolution, we plot the mean and stan-
dard error obtained by registering ten carpal bones across four volume images. The tissue-
classification method introduces smaller translational errors than grey-value registration.
Tissue-classification accuracy degrades more gracefully than the accuracy of grey-value
registration.

2mm to 5mm did not further impact the results of either method(Fig. 2.9). When distor-

tions as small as 2 voxels are present in the optimization start point, the tissue-classification

method significantly outperforms grey-value registration, with an average combined (trans-

lation and rotation) accuracy improvement of over 74% (Fig.2.10).

2) In vivo accuracy experiment

The in vivo accuracy experiment showed good correlation between the results returned by

the three methods tested: tissue-classification, grey-value, and segmentation-based (Fig.
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Figure 2.9: The influence of start-point perturbation on tissue-classification and grey-value
registration accuracy. The amount of perturbation increases on the horizontal axis from
0mm to 5mm. At each point, we plot the mean and standard error obtained by registering
ten carpal bones across four volume images, in five perturbation trials. The tissue classifi-
cation method is stable with perturbation, while grey-value registration is not. Increasing
the amount of perturbation from 2mm to 5mm doesn’t impact further the accuracy of either
method.
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Figure 2.10:In vitro tissue-classification registration error and grey-value registration error
with a 2mm random perturbation in the optimization start point (top — translation, bottom
— rotation). We register each bone across four volume images. Each registration is per-
formed five times, each trial corresponding to a different initial translational perturbation
of 2mm in a random direction. For each bone, we plot the mean and standard error thus
obtained.
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2.11). Since the ground truth is not availablein vivo, this consistency with the expert

segmentation-based results, along with visual inspection, were the best indications of ac-

curacy available. The visual inspection of the grey-value registration results revealed colli-

sions between several pairs of bones. Figure 2.12 illustrates a collision detected between

the radius and scaphoid bones. No collisions were detected in the results generated us-

ing the tissue-classification method. These results indicate that the accuracy of grey-value

registration is insufficient when measuring small featuressuch as inter-bone spacing.

3) In vivo robustness experiment

In the in vivo robustness experiment more than 13,500 bones were registered through the

tissue-classification method. Visual and numerical validation showed that the method was

stable with both object poses and human subjects. In less than 0.1% of cases (8 bone

instances) numerical validation indicated suspicious fit values. For each of these cases,

further visual inspection revealed that the abnormal fit values resulted from errors in the

scanning procedure, wherein the respective bone was only partially included in the target

scan. With occasionally as much as half of a bone missing fromthe volume image, visual

verification showed that the bone was still being registeredcorrectly using the information

available.

2.5 Discussion

Our results indicate that tissue-classification registration consistently attains subvoxel accu-

racy. The method maintains subvoxel accuracy despite decreasing image resolution, and is

stable with perturbations in the initial optimization start position. Furthermore, visual and

numerical validation during clinical application (in vivorobustness experiments) shows that

the method is robust with varying object poses and subjects.

Tissue-classification should be given credit for our method’s accuracy, because the ob-

ject boundary estimated through tissue classification has super-resolution accuracy. The

comparison with grey-value registration shows that without the super-resolution boundary

estimate, the matching process is effectively reduced to using voxel-wide estimates, which
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Figure 2.11: Tissue-classification registration results versus segmentation-based registra-
tion and grey-value registration results. For each bone, weplot the mean and standard
deviation obtained by manual registration in a total of twelve runs, the tissue-classification
registration result, and the grey-value registration result. Both tissue-classification and
grey-value registration results are generally within one standard deviation of the mean ex-
pert segmentation-based registration results.
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Figure 2.12: Visual inspection shows collisions between bones registered using grey-value
registration. (Left)In vivogrey-value registration of the radio-scaphoid joint versus (right)
tissue-classification registration of the same joint from dataset C. Bones are color mapped
and contoured according to the distance between bones post-registration. The saturation
of color on bone surfaces represents the distance to the nearest point on the opposite bone.
Contour lines are drawn at 1mm intervals. (Top) Bones in their correct anatomical context
— note the two registration methods yield similar bone poses. (Bottom) Bones rotated to
show articulated surfaces more clearly. Blue corresponds tonegative inter-bone distances,
indicating collision in the grey-value registration result.
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results in lower accuracy. The resulting distance field representation further ensures that

registration results converge to the same value, regardless of perturbations in the start po-

sition. The distance field acts as a gradient guiding the search to the global minimum.

Without this gradient, the search can easily be trapped in local nearby minima, as ourin

vitro perturbation-stability experiments with grey-value registration show.

The comparison with grey-value registration reveals why tissue-classification maintains

subvoxel-accuracy with decreasing image resolution. When the sampling step is suffi-

ciently small with respect to the desired features, the raw volume image often offers rich

information: object texture-patterns can be implicitly identified and used in the matching

process. In this case,more raw information can bebetter. However, as the features of

interest become smaller, imaging noise effectively blurs the informational content of in-

dividual voxels (Fig. 2.13). In this case,quality processed information — like accurate

boundary-estimates obtained through unsupervised learning — begins to matter. As long

as we guarantee super-resolution boundary estimates, registration accuracy stays within the

subvoxel range.

In the process of developing our super-resolution accurateregistration method, we have

proposed new computational methods that are applicable to abroader scope of medical im-

age processing. Our technique uses neighborhood information throughout a volume to

generate localized distance fields directly from sampled datasets. No feature points need

to be pre-segmented per scan or subject in order to generate the distance fields. Distance

fields have been used before to expedite registration processes [110], however no previ-

ous work has generated these distance fields with super-resolution accuracy. Recovering

material boundaries from sampled datasets, as well as generating distance fields once geo-

metric models have been extracted, is a research topic in several fields [19, 115, 73]. We

build on the work of Laidlaw et al.[62], who use Bayesian probability theory to classify

accurately tissues in medical volume images. We are not aware of other work in gener-

ating super-resolution accurate distance fields directly from sampled datasets. Although

we limited the distance field computation in our experimentsto a five-voxel band around

material boundaries, this distance computation could be either performed or propagated

beyond this threshold [73]. However, we showed that the hierarchical approach described
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Figure 2.13: Image resolution impacts voxel information-value: as resolution decreases,
‘more’ raw grey-values may deliver less information than ‘fewer’ information-enhanced
voxels. From left to right: one slice from a high-resolutionCT image (0.3 x 0.3 mm), and
two slices from a low-resolution CT image (same wrist, 0.9 x 0.9 mm). Each area of interest
is detailed in the bottom row. Inter-bone distances that arenarrow in high-resolution images
(Box 1) become a mere voxel wide in low-resolution images (Box 3). Boxes 2 and 4, note
the differences in bone tissue texture; high-resolution images reveal a distinctive texture
pattern (Box 2), while detail is lost in low-resolution images (Box 4). Box 5, note how
boundaries are blurred due to partial volume effects, and Box6, note the soft or diffused
bone boundary. As shown in ourin vitro experiments, accurate boundary estimates based
on information throughout the scan contribute more information than such collections of
unprocessed grey-values.
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in section III.C can overcome potential capture region limitations without the additional

cost of extended distance computations.

Our matching procedure employs a new similarity measure that, unlike chamfer match-

ing or iterative closest point measures, incorporates distance field knowledge from both the

reference and target images. The measure also accounts for partially-scanned objects. We

believe this measure can improve the stability of other registration procedures with respect

to errors introduced both by geometric model segmentation and partially scanned objects.

While in recent literature a large number of sophisticated similarity measures have been

proposed [114], we note these measures were developed mainly for intermodality registra-

tion, and likely do not have strong advantages over sums-of-squared-differences or root-

mean-square matching when applied to images obtained through the same modality. In our

tissue-classification registration approach, sum-of-squared-differences is in fact the natural

similarity choice, since the reference and target distance-field intensities corresponding to

registered points stand, by construction, in an identity relationship.

The tissue-classified distance field approach helped us identify a motion-directed multi-

object hierarchy in the wrist-joint case. The potential physiological implications of this hi-

erarchy are beyond the scope of this chapter but the hierarchy enabled our registration me-

thod to trace motion between wrist poses that were not withineach other’s capture region.

A similar approach is likely to boost the capture-range capabilities of other local-search

registration methods.

While accurate, our tissue classification method poses computational challenges. Re-

gistering a series of twelve wrist volume images (fifteen objects per pose) takes twenty

minutes on a multi-node i686 cluster running Linux (AMDAthlonTM XP 2700+). We

emphasize however that the focus of our work is boosting accuracy, and not minimizing

running time. As no user interaction beyond the initial segmentation and potential final

visual validation is required, the registration is, after all, run off-line.

While our approach addresses successfully some common problems found in medical

image processing, it also relies on several assumptions. Our tissue-classification procedure

assumes a simple tissue-structure, in which hand soft-tissue is assimilated with marrow-

tissue. While modeling a more complex structure (for example, one that would distinguish
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between trabecular and cortical bone) would likely furtherimprove our method’s accuracy,

our results indicate the simple model suffices for subvoxel-accurate registration. In the

validation phase, we assume implicitly thatin vitro accuracy is an indicator ofin vivo

accuracy. We note that, in fact, in ourin vitro experiments the tissue-classifier misclassified

several voxels. These misclassifications can be attributedto the differences between the

material composition of a fixed specimen encased in resin with all soft tissue removed, and

the in vivo tissue model we assumed. While the inability to determine thein vivo ground

truth makes it difficult to comparein vivo andin vitro accuracy, it is reasonable to assume

that errors in the classification process reflected negatively on the registration results. We

speculate in this view that ourin vivo results, in fact, surpass the accuracy of ourin vitro

results. Last, but not least, we note that we interpret collisions or the lack of collisions in

our in vivo experiments not as a method validation measure, but as an indicator that error

size matters.

The accuracy results we obtained challenge opinions widely-held about the superiority

of voxel-property-based over segmentation-based registration methods [66]. Segmentation-

based registration aligns structures such as feature points, principal axes, moments, curves,

or surfaces. Segmentation-based methods may use deformable models, in which case an

extracted structure from one image is elastically deformedto fit the second image. They

may also use rigid models, in which case the same structures are extracted from any im-

ages to be registered. In contrast, voxel-property-based registration methods operate di-

rectly on the image grey values, without prior data reduction by the user or segmentation:

the full image content is used, via different paradigms suchas neighborhood statistics,

cross-correlation, Fourier analysis, optic flow, throughout the registration process. Voxel

property-based methods integrate segmentation and registration and are thus likely to gene-

rate accurate results; these methods have been able to generate more accurate results than

segmentation-based methods in several instances [66].

Our tissue-classification registration can be regarded as ahybrid method, combining

the strengths of the two approaches — voxel-property and segmentation-based. While

our matching procedure evaluates the correlation between source and target volume image
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values, without explicitly extracting the target object boundary (like voxel-property meth-

ods do), through tissue-classification we nevertheless discard the original volume data that

doesn’t convey object-boundary information (like most segmentation-based methods do).

The recovered object boundary can be thought of as having super-resolution, in that through

our approach boundaries are detected with higher accuracy than an image’s resolution al-

lows. Nevertheless, due to image noise and modeling assumptions, this boundary is not

perfect. Should one be able to recover more accurate object boundary information, gene-

rate a distance field from that boundary, then perform distance-field matching as described

in Section 2.2, registration accuracy would only increase.This suggests that, contrary

to current knowledge, in the long run segmentation-based methods have the potential to

surpass the accuracy of voxel-property methods.

2.6 Conclusion

We presented in this chapter a novel intra-subject method for subvoxel-accurate registration

of objects from CT volume images. Results show average accuracy improvements of 74%

over grey-value registration. The method is of particular interest to applications where

collections of tightly packed, small objects need to be registered. To this end, we showed

in a wrist data application that earlier registration methods can introduce false inter-object

collisions, while the new method does not.

The tissue-classification registration method maintains subvoxel accuracy with decreas-

ing image resolution, and is stable with perturbations in the initial optimization start posi-

tion. The method is also stable with respect to partially-scanned objects, and with varying

object pose and subject. Our approach should be of interest to any registration applications

where super-resolution accuracy is desired.



Chapter 3

Modeling Ligament Tissue from Bone

Surfaces and Motion

3.1 Introduction

We propose a method for modeling inter-bone joint space areas and ligament paths in ar-

ticulations. Inter-bone joint space areas define the cortical surface where bones articulate

with each other. Modifications in inter-bone joint space areas and ligaments correlate with

numerous joint-related post-trauma disabilities and various degenerative diseases, yet little

information about the nature of these modifications is currently available. Most articulation

and soft tissue studies are performed eitherin vitro or during clinical interventions, and thus

reveal little information on potential modifications of soft tissue biomechanics due to injury

or disease.In vitro specimens illustrating a specific trauma or disease are rarely available;

invasive studies alter inevitably joint kinematics and thus introduce false modifications.

Although in vivo 3-D techniques for studying the structure and kinematics ofjoint were

recently introduced [79, 35, 38, 111], they do not attempt tocapture more subtle details

such as potential soft-tissue constraints or modificationsin articulation. Our method suc-

cessfully identifies and highlightsin vivo and non-invasively potential focal (i.e., localized

and well-defined) changes and soft-tissue constraints in articulations.

In our approach, the structure and kinematics of an articulation are determined from

43
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segmented CT volume images. Bones in the joint are modeled further both implicitly, as

scalar distance fields, and parametrically, asmanifold surfaces. These two types of repre-

sentation have complementary strengths for different types of calculations. Manifold sur-

faces provide an accurate, smooth, and locally controllable representation of the bones [47].

Distance fields on the other hand, have important advantagesfor geometric computations

such as fast distance calculation, collision detection, and inside-outside tests [40]. Distance

fields computed from the parametric representation providethe support for estimating inter-

bone joint space areas. Once inter-bone joint space areas are calculated, focal changes in

the articulation are evaluated by comparing the area and location of the bony contact.

We assess potential soft-tissue constraints by calculating the minimum ‘length’ of li-

gaments as a function of bone kinematics. Ligament paths arealso modeled based on

the distance field representation. We model ligaments as shortest paths between ligament

insertion points — the points at which a ligament is anchoredto bones; these paths are

constrained to avoid bone penetration, and can be similarlyconstrained to avoid cartilage

penetration. Our model takes into account the ligament fiberorientation, the location of

the ligament insertion points, and the locations of adjacent bones. The ligament model

reported here is based solely on joint geometry.

We demonstrate our method by applying it to data collected from both forearms of a

volunteer diagnosed with a malunited distal radius fracture in one forearm. The distal ra-

dioulnar joint (DRUJ), a complex joint involved in forearm rotation, comprises the two

forearm bones (radius and ulna — Fig. 3.1) and a number of ligament and cartilaginous

complexes. Forearm injuries involving the DRUJ often result in a significantly decreased

range of rotational motion, decreased grip strength, and loss of wrist motion. The symp-

toms can be disabling, especially in physically active individuals or when the pathology

affects a work-related activity.

Altered soft tissues and focal changes in the DRUJ articulation may be responsible

for the abnormal functioning of the forearm in the absence ofevident bone damage, as a

recent study suggests [77]. We show that our contact-area and ligament-length model gives

unexpected insight into the biomechanics of the forearm and, more importantly, reveals

significant differences between uninjured and injured articulations at the DRUJ. Results
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Figure 3.1: The DRUJ comprises the two forearm bones — radius(R) and ulna (U). The
wrist is at the upper extremity of the drawing. During forearm rotation the DRUJ goes from
supination (left) to pronation (right).

indicate that our method could be useful in the study of the normal anatomy and kinematics

of complex joints like the wrist and may also have applications to the study of other joints

like the knee or the elbow.

3.2 Related Work

Several approaches to modeling joint surfaces are known; thin-plate splines [20], B-splines

[9, 10], and piecewise patches [92] are among them. These methods suffer from prob-

lems such as lack of generality, lack ofC2 continuity, and difficulty in enforcing boundary

constraints. Our parametric model for bone surfaces is based on manifolds [48].

Distance fields have been used in robotics [55, 65] and computer graphics [40, 44, 21,

87, 49]. Although for the results reported in this chapter weused a brute force approach to

generate distance cuboids from the manifold representation, faster techniques such as level

set-based methods [81, 96, 97] are available.

Searching for shortest paths in spaces with obstacles is a classical problem in robotics.
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A survey of the substantial literature on the shortest-pathproblem can be found in [117].

Solutions are based on computational geometry methods [91,83, 25, 11], graph search

based algorithms [57], and differential geometry and hybrid techniques [56, 15], depending

primarily on the assumed structure of the search space (polyhedral or continuous surfaces).

Our technique belongs to the differential geometry and hybrid category. In general, meth-

ods in this class generate shortest paths on surfaces. Thesemethods assume a continuous

representation of surfaces and are therefore more accurate, although they yield paths that

are only locally optimal. Our work extends this approach to 3D spaces with continuous

surface obstacles.

The two scalar data visualization techniques we use, color mapping and isocontouring,

are well known scientific visualization techniques [72].

Studies of distal radioulnar ligaments are performed in general on cadaver uninjured

wrists [36, 5, 94]. A clinicalin vivostudy involving surgery was performed by Kleinman et

al. in 1998 [58]. To our knowledge, noin vivo noninvasive studies of the distal radioulnar

ligaments have been done.

3.3 Materials and Methods

Figure 3.2 depicts our method pipeline. In the first phase, image volumes of the wrists in

multiple poses are acquired with a CT scanner (section 3.3.1). From these images bones

are manually segmented and further modeled as distance fields and manifold surfaces (sec-

tion 3.3.2). Kinematic information is recovered via surface registration of the bones (sec-

tion 3.3.3). Inter-bone joint space areas and ligament paths are estimated using both bone

representations (sections 3.3.4 and 3.3.5). We repeat the contact-area and minimum-path

computation over all joint poses for a given volunteer. Finally, inter-bone joint space areas

and ligaments of the injured and uninjured forearm of the volunteer are compared (sec-

tion 3.3.6).
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Figure 3.2: Method pipeline for measurement of inter-bone joint space areas and ligament
paths in joints. Point clouds corresponding to bone surfaces are segmented from CT vo-
lume images. Bones are further modeled as both distance fieldsand manifold surfaces.
From the ligament-path and contact-area models we extract information characterizing the
articulation that is further analyzed and presented to the user.

3.3.1 Data Acquisition

CT volume images of both wrists were obtained simultaneouslywith a GE HiSpeed Ad-

vantage CT scanner. Scout and reference scans were performedwith the forearm and wrist

in the neutral position. Additional scans were performed with the forearm at 30, 60, and

90 degrees of both pronation (i.e., forearm with the palm facing downwards) and supina-

tion (i.e., forearm with the palm facing upwards). In the forearm with limited mobility

(decreased range of pronosupination), scans were made at 30degree intervals (above),

and then at the maximum rotation that could be comfortably achieved. Approximately 45

1.0 mm CT slices were acquired at each position.
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Figure 3.3: Manifold surface representation of bones. Left: segmented point cloud corre-
sponding to the ulna. Right: parametric (manifold) model of the same bone.

3.3.2 Bone Segmentation and Modeling

Points corresponding to the outer bone cortex were manuallysegmented from each CT slice

and grouped to form a separate 3D point cloud for each bone. Wereconstruct a bone surface

by fitting a manifold surface to the corresponding cloud of 3Dpoints [47] (Fig. 3.3); the re-

sult is a smooth, locally parameterized,C2 continuous surface. The overlapped structure of

the manifold-surface representation, which is essentially inspired by differential geometry,

has several advantages including flexibility in shape adjustments without costly constraints,

and smooth transitions and uniformity among patches.

The manifold model addresses difficulties introduced by theCT scanning process, such

as dense sampling along sparse contours and noise [47]. The manifold model is analytic

and can therefore by sampled at any resolution to produce smooth distance maps. High-

resolution smooth distance maps are necessary in order to build ligament paths, as dis-

cussed in Section 3.3.5.

By convention, we reflect left forearm data in order to directly compare it with right

forearm data. The mirroring operation is purely mathematical and does not affect the data;

it merely allows easier comparisons.

Modeling inter-bone joint space areas and ligament paths requires bone-to-bone dis-

tance information (sections 3.3.4 and 3.3.5). The manifoldsurfaces provide accurate,

smooth but computationally expensive distance information. We combine the manifold
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representation with interpolated distance fields, which are slightly less accurate but more

intuitive and much faster.

Distance fields for each bone are computed using the reconstructed manifold bone mod-

els. A distance field is a scalar field that specifies the signeddistance from a point to the

bone surface (Fig. 3.4). Numerical sign is used to distinguish the inside from the outside

of the bone: negative values are inside the bone, positive values are outside the bone, zero

values are on the bone surface.

The distance field is computed from the manifold representation as follows: given a

point P in space, the closest point Q on the manifold has the property that the surface

normal at Q points in the direction P-Q. We find an approximateguess for the point Q by

finding the closest point Q on the manifold mesh, then performa gradient descent to find

the Q that meets the above criteria. The inside-outside testsimply involves counting the

number of intersections with the manifold mesh of any ray from P [8].

In order to increase the speed of lookup operations, the distance fields are sampled on a

regular grid. We call the result adistance cuboid. The distance cuboid can be regarded as a

scalar data set sampled over a regular 3D grid surrounding the bone. Distances to the bone

surface are known exactly at grid nodes. Within a grid cell, distances to the bone surface

are obtained via tricubic B-spline interpolation of the distance values at grid nodes.

The double bone representation — manifold surfaces and distance cuboids — enables

us to perform further joint-related computations, such as calculation of inter-bone joint

space areas (section 3.3.4) and estimation of ligament paths (section 3.3.5).

3.3.3 Recovery of Bone Kinematics

Recovering the bone kinematics enables us to analyze our inter-bone joint space area and

ligament measurements as functions of wrist motion. Motionof the radius with respect to

the ulna was determined for each scanned wrist rotation position. First the ulna bone was

registered with respect to its neutral position to account for global changes in forearm posi-

tioning. Next, the relative motion of the radius with respect to the ulna was calculated. The

forearm data modeled and analysed in these experiments was collected and preprocessed
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Figure 3.4: Distance field representation of bones: horizontal 2D section through a signed
distance field (ulna). The contour corresponds to the boundary of the bone. Sign distin-
guishes the inside from the outside of the bone: negative values are inside the bone, positive
values are outside the bone, zero values are on the bone surface. The dark area is the inside
of the bone.

several years before the development of the motion trackingmethod described in Chap-

ter 2. Therefore in the experiments reported in this chapterregistration was accomplished

via a manually-aided surface-distance-minimization algorithm [77]. Bone kinematics were

reported in a standard anatomic coordinate system defined inthe distal ulna as follows: the

x-axis was directed proximally along the shaft of the ulna and defined by the centroids of

the ulnar bone cross-sections, thez-axis was in a palmar direction and defined to be per-

pendicular to a plane that passed through thex-axis and the tip of the ulnar styloid, and the

y-axis was constructed perpendicular to both thex- andz-axes. The origin of the coordinate

system was defined by the intersection of thex-axis with the (ulnocarpal) articular surface

of the head of the ulna (Fig. 3.5).

3.3.4 Inter-Bone Joint Space Area Calculation

The inter-bone joint space area is defined as the cortical surface area on the bone that is

less than a prescribed threshold distance (typically 5 mm) from the cortical surface of a

neighboring bone. Estimating inter-bone joint space areasrequires computation of inter-

bone distances within the joint.

Once distance cuboids are generated, we calculate the distance from an arbitrary point,
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Figure 3.5: Anatomic coordinate system defined on the ulna. The location and orientation
of thex-axis were generated from the cross-section centroids of theulna, while thez-axis
was defined to be perpendicular to a plane that passed throughthex-axis and the tip of the
ulnar styloid. They-axis was constructed perpendicular to both thex- andz-axes.

p, and a bone surface,b, as follows. Each bone surface has a surrounding distance cuboid

fb. We remind the reader that a distance cuboid can be regarded as a sampled dataset stored

over a regular 3D grid; distance values are known exactly at grid nodes, and computed via

interpolation inside grid cells.

The pointp can be inside or outside the distance cuboidfb. We make sure that areas

of interest (i.e., articulated surfaces) are well within the distance cuboid. For simplicity,

Figure 3.6 illustrates the procedure in 2D. We evaluate two cases to find the distance:

p is inside fb: we look upfb for p

p is outside fb: we first find the distance to the nearest pointp′ on the boundary

of fb. We then add it to the distance value acquired by looking upfb for p′. Since

points outside the distance cuboid are of little interest (i.e., they are far away from

articulated surfaces), this distance sum is an acceptable approximation.

With this procedure we find distances from every vertex in thesurface model of one bone
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Figure 3.6: 2D illustration for obtaining distances from pointsp1 andp2 to boneb. fb is the
distance cuboid for boneb. Shortest distance values to boneb at the grid intersections are
known. We use tricubic interpolation to determine distancevalues within the grid. Sincep1

is inside the cuboid, the distance fromp1 to b is equal tofb(p1) = d1. Forp2, we first find
the distance to the closest pointp′2 in the distance cuboid and then the distance betweenp2

andb is approximated asd′
2 + fb(p

′
2) = d′

2 + d′′
2.

to neighbors of interest.

Using the inter-bone distance we compute isocontours on theinter-bone joint space

area, each contour showing where the distance map is equal toa constant distance. For

efficient computation, we assume that the distance map is linear over the triangular faces

that comprise the surface of the bone and thus the equal distance contours are straight line

segments over each triangle. If the distance value of a contour is within the range of the

distance values at the vertices, a contour line segment is generated over the triangle.

Figure 3.7 shows typical inter-bone joint space areas in theDRUJ; the joint was ex-

ploded to show the articulated surfaces more clearly. The color on bone surfaces codifies

the distance to the nearest point on the opposite bone; darker regions are closer.

We characterize the inter-bone joint space area by its size and by the location of its

centroid. The size is the area of the surface triangles within the 5 mm contour. The location

of the centroid is described in cylindrical coordinates with respect to the same standard

coordinate system used to report bone kinematics.

It is important to note that the articular contact calculated here is an estimate of joint

contact based upon the distance between cortical bone surfaces. Cartilage thickness, bone

and cartilage deformation and stresses in the tissues were not considered in this study.
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Figure 3.7: inter-bone joint space areas in the DRUJ. Bones are color-mapped and con-
toured. The color saturation on bone surfaces indicates thedistance to the nearest point on
the opposite bone; darker regions are closer. The joint is exploded to show the articulated
surfaces more clearly. The maximum distance visualized is 5mm; contour lines are drawn
at 1 mm intervals.

3.3.5 Ligament Path Estimation

We can also use the double bone representation to construct ligament paths. We use

anatomical landmarks to manually identify the insertion points (the points where the lig-

ament is anchored to the bone) of a given ligament on the bone surface. We generate

plausible ligament paths as shortest paths between insertion points, constrained to avoid

bone penetration.

We build shortest paths via an optimization approach that exploits the distance field

representation of the bones. Unlike graph-based minimum-length path approaches, this

technique deals effectively with a large number of bone model vertices without requiring

expensive restructuring — in terms of memory and time — of thesearch space. The result-

ing paths are also more accurate than those generated, for example, by graph approximation

algorithms, as the method allows a large number of path control points and recovers grace-

fully from obstacle penetration. We begin the description of the algorithm with a simplified

2D example, shown in Fig. 3.8. Here we are required to find a shortest path between two

pointsp0 andpn that does not penetrate the 2D obstacle on the right.

We start by attaching a local 2D coordinate system to the obstacle, so that the origin

of the system is atp0 and thex axis is the line defined byp0 andpn. We considern − 1

points in addition top0 andpn, equally spaced on thep0pn segment. We reformulate our
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Figure 3.8: Shortest path between two pointsp0 andpn (2D case); the path must not pen-
etrate the 2D obstacle on the right. Following the optimization approach, the pointsp1 to
pn− 1, initially equally distributed on thep0pn segment, increase their y coordinate so that
the nonpenetration constraint is satisfied.

problem in the following terms: “Find the coordinates of then− 1 points so that the length

of the pathp0p1p2...pn is minimum and the height of each point with respect to the obstacle

surface is nonnegative.” If we fix thex coordinates of the points so that they are initially

equally spaced on thep0pn segment, our problem amounts to minimizing the Euclidean

length of the path over theyi coordinates of the points:

argminyi
Σn−1

i=0

√

(xi+1 − xi)2 + (yi+1 − yi)2 =

= argminyi
Σn−1

i=0

√

const + (yi+1 − yi)2 (3.1)

subject tofb(xi, yi) > 0, i = 0..n− 1

wherexi+1 − xi = const, i = 0..n− 1

The formulation described above extends to 3D, where we optimize over both they and

z coordinates of the points:

argminyi,ziΣ
n−1
i=0

√

const + (yi+1 − yi)2 + (zi+1 − zi)2 (3.2)

subject tofb(xi, yi, zi) > 0, i = 0 : n− 1

The extension of the algorithm to any number of obstacles is straightforward.
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Figure 3.9: Insertion point location: insertion points arechosen manually, based on anatom-
ical information. Points are randomly distributed on the surface of the bones within a circu-
lar area with a diameter of 4 mm. Left: insertion site on the ulna. Right: dorsal and palmar
insertion sites on the radius.

We use a sequential quadratic programming method [3] to solve the optimization prob-

lem. The sequential quadratic programming method is fast and robust and handles both

nonlinear objective functions and nonlinear constraints.Although it is a general concern

that nonlinear optimizations can become trapped in suboptimal local solutions, in our ex-

perience this has not been a problem. We have found that additional iterations of the opti-

mization process with significantly different start positions converge to the same solution.

We are currently using three different start solutions:

1. points on the straightp0pn line;

2. points on a randomly displaced path;

3. points generated by the procedure in the previous pronosupination position.

The optimization procedure converges to the same solution in all three cases. This outcome

is justified by the smooth structure and fine resolution of thesearch space generated by the

distance field representation.

We considered several plausible insertion points for each ligament, as precise infor-

mation on insertion point location was not available. The insertion points were generated

by randomly distributing points around a manually chosen landmark on the surface of the

bones, within a circular area with a diameter of 4 mm (Fig. 3.9). The insertions were de-

fined on the ulna at the base of the styloid for both ligaments and on the radius at the
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Figure 3.10: Shortest paths (dark gray lines) generated by the ligament model.

dorsal and palmar prominences of the sigmoid notch, respectively. The locations of the

insertion sites and the area of insertion were derived from anatomical descriptions in the

literature [36, 5, 94, 58]. The results of the insertion point study are presented in section 3.4.

We tried several values for the number of pointsn. In the DRUJ case, asn approaches

40 the total length of the path converges to a stable value. For this value ofn the length

of each mini-segment in the path drops below 0.2 mm, which provides sufficient accuracy

to detect deflection of the ligament by the bone. Figure 3.10 shows two shortest paths

generated with our algorithm.

We characterize the ligament paths by their lengths and their ‘deflection’. Lengths are

normalized with respect to the uninjured length in neutral pronosupination. Deflection is

defined as the maximum distance across all path points to the straight line defined by the

two ligament insertion points.

The ligament-length model reported here is based solely on joint geometry. Structural

and material properties of the ligaments were not taken intoaccount in this study. While

the paths we generate are not actual ligament paths, they give a useful lower bound on the

length of these ligaments and thus help identify potential joint mobility constraints imposed

by ligaments.

3.3.6 Visualization and Analysis of Results

The software package we have developed for visualizing the results of our technique con-

sists of C++ and Open Inventor code and runs on the SUN UltraSparc and Windows plat-

forms.
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We visualize inter-bone joint space areas using color mapping and contouring. Color

maps are generated for each bone so that distance values of surface points are mapped

to varying color saturations (more saturated colors represent shorter distances). Distances

larger than the contact threshold value (5 mm) are neither colored nor contoured and are

shown as white surfaces. Contours and ligament paths are visualized as polylines.

We also analyze the results quantitatively by comparing ligament length, ligament de-

flection, inter-bone joint space area size, and inter-bone joint space area centroid location

between the injured — malunited distal radius fracture — anduninjured forearm of the

same volunteer.

3.4 Results and Discussion

Generating inter-bone joint space areas over different forearm rotation positions yields se-

quences like those in Fig. 3.11. The decreased size and shifted location of the inter-bone

joint space area in the injured case is noticeable, especially towards pronation.

Figure 3.12 quantifies the size of the ulnar inter-bone area at a threshold of 5 mm for the

volunteer’s uninjured and injured forearm. For the uninjured wrist, inter-bone joint space

area was positive for a 3 mm threshold as well. For the injuredwrist, there were several

poses, mostly pronated, in which the 3 mm inter-bone joint space area was absent. Together

with the 5 mm inter-bone joint space area changes, this suggests an increased gap between

the bones in the injured case.

We measured inter-bone joint space area as a region on the ulnar surface close to the

radius; an analogous measure on the surface of the radius canalso be defined. We found

that the area measure was somewhat larger (10-20%), but followed the same trends as the

ulnar inter-bone area. The size difference is consistent with the concave inter-bone joint

space area on the radius, which is larger because it is farther from the center of curvature

than the corresponding area on the ulna. Measures based on the ulnar area are reported

because they reside in the ulnar coordinate system; the ulnar coordinate system was chosen

because it is stationary during pronosupination.

Figure 3.13 shows the cylindrical coordinates of the ulnar inter-bone area centroid for
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Figure 3.11: Proximal and exploded lateral views of an uninjured and an injured radioulnar
joint at six rotation positions. Bones are colored accordingto the distance between them
(the closer they are, the more intense the color). The injured and non-injured views are
matched as closely as possible. Note the shift in the location of the inter-bone joint space
areas between the uninjured and the injured forearm.
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Figure 3.12: Size of the ulnar inter-bone area (5 mm threshold) for both the injured and
uninjured forearm of the same volunteer. Areas are normalized by the neutral uninjured
area. Pronosupination angles are shown on thex-axis. Note the difference in size between
the injured and uninjured forearm.

the uninjured and injured forearm. The increased height coordinate in the injured forearm

confirms a shift of the inter-bone joint space area in the proximal direction. The increased

distance from the ulnar axis is due to the shift of the inter-bone joint space area on the

surface of the ulna to a region of the ulna further from the axis. The angle coordinate plot

correlates with the limited range of motion in the injured forearm. The proximal shift in

the location of the centroid of the inter-bone joint space area is consistent with the initial

diagnosis of radial shortening.

Figure 3.14 shows distal ligament paths generated for the injured and uninjured fore-

arms of the same volunteer. The lengths generated by our approach are similar to those

reported inin vitro studies; noin vivo information is currently available, to the best of our

knowledge. Note that the injured forearm presents ligament-bone impingement for both the

dorsal and the palmar ligament. No deflection of the ligaments by the bone is present in the

uninjured forearm in any of the rotation positions. Figure 3.15 shows the dorsal radioulnar

ligament length and deflection corresponding to the entire pronosupination sequence for

the injured forearm. We also show the corresponding lengthsand deflection computed for
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Figure 3.13: Cylindrical coordinates (height, distance, and angle) of the ulnar inter-bone
area centroid for the injured and uninjured forearms of the volunteer. Heights are nor-
malized by the neutral uninjured height. Pronosupination angles are shown on thex-axis.
Note the difference in height and distance between the injured forearm ligament and the
uninjured forearm.

the matching uninjured forearm — note the difference between the two plots. Ligament im-

pingement (measured by the deflection parameter) correlates with ligament path increased

length. No ligament deflection is present in the uninjured forearm. The dorsal ligament

results generated by displacing the insertion points within the insertion site are plotted in

Fig. 3.17. Note that perturbations in the ligament attachment locations do not affect trends
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Figure 3.14: Distal radioulnar ligament paths in the injured forearm (left) and in the match-
ing uninjured forearm (right) of the same volunteer. Both forearms are in neutral prono-
supination (0o rotation angle). Note the ligament-bone impingement in theinjured forearm:
both ligaments are deflected by the head of the ulna.

in the comparison measures between the injured and uninjured forearms.

Figure 3.16 shows plots of the palmar radioulnar ligament length and deflection. Al-

though the palmar ligament length plot shows no difference between the injured and unin-

jured forearm, we note the impingement (deflection) in the injured forearm, lacking in the

uninjured case. The palmar ligament results generated by perturbing the insertion points

within the 4 mm diameter insertion sites are plotted in Fig. 3.18. Note again that perturba-

tions in the ligament attachment locations do not affect trends in the comparison measures

between the injured and uninjured forearms.

The change in the dorsal radioulnar ligament length, but notin the palmar radioul-

nar ligament length, is consistent with the original malunion (radius tilted dorsally). The

change in ligament length and the ligament-bone impingement may be one mechanism for

the limitation of forearm mobility.

While a single example cannot distinguish between normal anatomical variation and

pathological variation, clinical studies on larger sets ofpatients may establish or refute a

correlation between the differences we found here and the injury. Such studies are beyond

the scope of this chapter, but have been published as [29].
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Figure 3.15: Length (top) and maximum deflection (bottom) ofa dorsal ligament for the
injured and uninjured forearms of a volunteer. Lengths are normalized by the neutral unin-
jured length. Pronosupination angles are shown on thex-axis. Note the increased ligament
length in the injured forearm. Note also that no deflection ispresent in the uninjured fore-
arm.

3.5 Conclusion

We have demonstrated anin vivo, noninvasive technique for modeling the length of liga-

ments and joint inter-bone joint space areas from bone kinematics and surfaces. Our me-

thod uses an implicit model as well as a parametric surface model for each bone. The two

types of representation have complementary strengths for different types of calculations.
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Figure 3.16: Length (top) and maximum deflection (bottom) ofa palmar ligament for the
injured and uninjured forearms of a volunteer. Lengths are normalized by the neutral un-
injured length. Pronosupination angles are shown on thex-axis. Note that no deflection is
present in the uninjured forearm.
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Figure 3.17: The effect of insertion point perturbation on the length (top) and maximum de-
flection (bottom) of a dorsal ligament for the injured and uninjured forearms of a volunteer
(mean and standard deviation calculated over 64 measurements).

The double representation enables us to model secondary types of information from CT

data, such as joint inter-bone joint space areas, intra-joint distances, and plausible ligament

paths. Our current ligament model could be enriched by considering other intrinsic and

extrinsic ligament factors like tissue composition, muscle forces, and joint compression.

In a demonstration on the DRUJ, our approach highlights subtle modifications, other-

wise unnoted, in injured wrist kinematics. Although a previous kinematic study [77] on the

same data we analyze in this chapter found no significant differences in rigid body kine-

matics between the injured and uninjured wrist, our method identified potential soft tissue

constraints and focal changes in the articulation. The methods presented have the potential

to document changes in the joint mechanics that may influencelong-term clinical outcome.

Our technique may have applications to the study of wrist disorders such as rheumatoid

arthritis, intercarpal ligament tear or attenuation, and carpal-tunnel syndrome. Results sug-

gest that our technique could also be useful in the study of normal anatomy and kinematics

of other joints.
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Figure 3.18: The effect of insertion point perturbation on the length (top) and maximum
deflection (bottom) of a palmar ligament for both the injuredand uninjured forearm of a
volunteer (mean and standard deviation calculated over 64 measurements).



Chapter 4

Modeling Articular Cartilage from Bone

Surfaces and Motion

4.1 Introduction

Articular cartilage — the living tissue that lines the bony surface of joints — plays an im-

portant role in diarthrodial joint motion. Its function is to provide a low friction surface

cushioning the joint bones through the range of motion. In other words, articular cartilage

is a very thin, slippery shock absorber. Factors such as highimpact twisting injuries, abnor-

mal joint anatomy, joint instability, inadequate muscle strength or endurance, and medical

or genetic factors can damage the articular cartilage lining. We wish to be able to inves-

tigate articular cartilage and to track potential damage progression non-invasively, in live

individuals.

However, because it is very thin, articular cartilage may bedifficult to image in live

individuals and small animals. For example, human wrist cartilage on several of the carpal

bones averages 0.5mm in thickness. To generate highly-detailed, unloaded wrist-cartilage

geometry, we currently need to extract the bone from the joint, remove all soft-tissue except

for cartilage and perhaps ligament insertions, immerse thebone in contrast dye for 24 hours,

thenµCT-image the bone. In the resultingµCT slices, such as the one in Fig. 4.1, cartilage

shows as a soft-grey layer surrounding the bone outline.

66
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Figure 4.1: 2D slice through aµCT-volume image of a scaphoid bone and articular carti-
lage. The imaged cartilage (bone tissue shown in white, cartilage in soft grey surrounding
the bone outline) can be represented as a height-field on the supporting bony surface. The
height-field is defined as a collection of base points on the bone surface, the bone surface
normal at that point, and the height along the normal at whichthe normal intersects the
cartilage external envelope.

Because current measuring procedures like the one describedabove are invasive, their

applicability is limited toin vitro data. In this chapter I describe a data-driven, subject-

specific cartilage modeling approach that allows for the exploration of its functional role

non-invasively,in vivo. I present a method for estimating subject-specific cartilage maps —

location and thickness — directly fromin vivo kinematic data and computed tomography

(CT) volume images. I also introduce a novel algorithm for computing cartilage surface de-

formations. The resulting cartilage model, a meshless incompressible height-field, captures

the physical properties important for estimating the shape, contact area, and deformation

magnitude of cartilage at each articulation.

4.2 Related Work

There are two known approaches to generating articular cartilage geometry when direct

measurements — in terms of cartilage location and thickness— are not available. Both

approaches allow for the estimation of articular contactin vivo.

In the first approach (e.g., Thoomukuntla et al. [107]), cartilage is generated as a thin
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shell of constant thickness surrounding the bones. Thoomukuntla et al. [107] model carpal

cartilage as a uniform 1mm-thick shell wrapping articular surfaces in the human wrist.

However, there is no clear clinical evidence that cartilaginous surfaces have in general

constant thickness, nor that 1mm would be a good estimate of this thickness in carpal bones,

regardless of the individual bone size. Validation againstin vitro data showed discrepancies

between the computed articular contact and contact estimated using pressure-sensitive film.

In the second approach (e.g., Carrigan et al. [24]), articular cartilage geometry is de-

termined from the bone-spacing in one pose. Carrigan et al. [24] grow cartilage by half

the inter-bone distance in one reference pose, in the direction of the bone surface normal.

However, the cartilage map thus generated is localized to the bony areas that are close one

to another in that particular pose. Two adjacent poses may also generate different versions

of the map over the same section of the articular surface. Finally, this approach does not

account for potential cartilage default deformation in thereference pose. The resulting

articular contact was not validated.

Once the cartilage geometry has been either measured directly or generated through

one of the approaches above, it can be represented as either arigid body, a parameterized

surface, or a deformable solid. Rigid body and parameterizedsurface representations [61,

107] allow only for computation of pseudo-deformable contact. In these approaches the

nature of the objects being modeled is ignored — for example,volume preservation is

not accounted for, and physical contact surfaces are approximated based on the overlap or

interpenetration of the two modeled bodies.

In contrast, the deformable solid representation attemptsto account for characteristic

properties of soft-tissue deformation, such as elasticityor viscosity. Instantiations of this

representation are mass-spring systems, generalized particle systems, finite differences and

finite element models, and mesh-free models. Early work in physically-based deformable

models is surveyed in detail by Gibson and Mirtich [45].

We note that, in general, mass-spring systems can be difficult to fit to physical data and

do not preserve volume; they can also be over or under-determined. Generalized particle

systems include additional spring forces to prevent shear or bending, and additional non-

spring forces to enforce volume preservation. Both mass-spring systems and generalized



69

particle systems use rough approximations of physical deformation, but are relatively fast

to simulate.

In contrast, finite difference and finite element methods (FEM) use a sound deriva-

tion of deformation from continuum mechanics. These approaches are appropriate choices

for accurately modeling deformations, stresses and strains in complex materials like soft-

tissues [108, 41]. However, both finite approaches are computationally expensive. In par-

ticular, we note that modeling through FEM simultaneous cartilage contact among many

articulated surfaces in order to predict, for example, wrist-joint motion is currently compu-

tationally infeasible.

Recent work in deformable solid representations explores quasi-rigid contact through

simpler, local, analytical models. The key idea in this approach is that small deformations

can be modeled with sufficient accuracy and less computational expense than through finite

difference or finite element approaches. For example, Paulyet al. [86] use an approxima-

tion to linear elasticity in order to preserve the volume of amesh-free representation. Their

approach is similar to ours in the use of a mesh-free, point cloud surface representation,

and the computation of a local response through a surface integral formulation. The advan-

tage of using a mesh-free representation is that contact events can be modeled efficiently

and a unique contact surface can be defined without the need for retriangulation. Because

Pauly et al. use a linear complementarity formulation to impose volume preservation, their

approach can simulate, in principle, effects that are primarily dictated by contact, such as

friction. The linear complementarity formulation comes, however, with a higher compu-

tational cost. While our approach lacks sophisticated capabilities such as explicit friction

integration, it is easier to implement and faster to compute, while it generates sufficiently

accurate contact measurements.

4.3 Methods

Our computational approach proceeds in four steps. First, we acquire and segment CT

volume images of a given subject’s joint in different joint poses, then recover through

registration the bone kinematics. Next, we use the recovered bone surfaces and kinematics
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to compute the space between bones during motion. We use thisinter-bone space measure

to define cartilage map location and thickness. Finally, we model the cartilage map as a

deformable height field, and use this model to compute cartilage contact. We describe each

step below.

4.3.1 Data Acquisition and Recovery of Kinematics

Our data is generated by CT-imaging a joint in seven differentposes. The volume images

were acquired with a Hispeed Advantage scanner, General Electric Medical System, scan

parameters: 80kV, 80mA, image resolution 0.94 x 0.94 x 1 mm3. Next, bones are registered

across all volume-images. Each CT volume-image correspondsto an articulation pose, thus

sampling the space of articulation kinematics. An additional higher-resolution scan (0.31

x 0.31 x 1 mm3) is acquired in a reference neutral pose, allowing us to segment the bone

surfaces with higher accuracy.

Through manual segmentation, thresholding, and user interaction, bone surfaces are

extracted from the high-resolution reference CT volume image [28]. Bone surfaces are

further modeled as NURBS surfaces using the Geomagic softwarepackage [43]. The re-

sulting triangular meshes have each approximately 50,000 faces. Next, each bone surface

is tracked with sub-voxel accuracy through the sequence of remaining CT volume images,

as described in Chapter 2. The tracking procedure reports relative bone-motion from one

articulation pose to another. The resulting dataset consists thus of the articular-joint ge-

ometry and its sampled kinematics. Fig. 4.2 shows two recovered poses of a volunteer’s

wrist.

4.3.2 Inter-Bone Joint-Space Modeling

Using the bone geometry and kinematics recovered as described above, we compute the

inter-bone joint-space across motion, as described in Chapter 3. The inter-bone joint-

spacing defines the cortical surface where bones articulatenear each other; it is defined

as the cortical surface area on the bone that is less than a proximity thresholdp distance

from the cortical surface of a neighboring bone. The proximity thresholdp is iteratively
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Figure 4.2: Modeling inter-bone joint-spacing from bone surfaces and motion: two differ-
ent poses recovered through CT-imaging, segmentation and registration of the same wrist
joint (eight carpal, two forearm, and five metacarpal bones). Bones are color-mapped and
contoured. The color saturation on bone surfaces indicatesthe distance to the nearest point
on the opposite bone; darker regions are closer. Bone surfaces where the inter-bone dis-
tances are larger than a proximity threshold (p=2mm here) are shown in white. We trace
these minimum-distance regions across multiple poses in order to estimate cartilage-map
location and thickness.

determined, as described in the following section 4.3.3.

The key idea here is that, because cartilage coats bony surfaces wherever the bones

articulate with each other during motion, the inter-bone joint-space should correlate with

cartilage location. That is, cartilage should be located wherever two bony surfaces are

in close proximity during motion. In Fig. 4.2 inter-bone joint-spacing areas are shown

using color mapping and contouring. Color maps are generatedfor each bone so that

distance values of surface points are mapped to varying color saturations; more saturated

colors represent shorter distances. Distances larger thanthe proximity threshold valuep are

neither colored nor contoured and are shown as white surfaces. In Fig. 4.2, note the shift

in the location of red areas on the trapezoid bone (Fig. 2.5) between one pose and another.

We hypothesize that the cartilage location is given by the union of bony red areas across

motion.

Modeling the inter-bone joint spacing requires cortical bone-to-bone distance informa-

tion for multiple poses. We compute distance fields for each bone from the reconstructed

NURBS bone models using a level-set approach. We use the ClosestPoint Transform
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(CPT) level-set software package [73] to generate the distance field representation from the

surface representation. We use the distance fields to find, for each pose, distances from ev-

ery vertex in the surface model of one bone to its neighbors. Using the inter-bone distance

we also compute, for each pose, isocontours on the cortical-bone surface. Each contour

shows where the distance map is equal to a constant distance.The inter-bone joint-spacing

in a given pose is then the area of the surface triangles within thep contour for that pose.

4.3.3 Inferring the Cartilage Map Location and Thickness

We infer the cartilage map location and thickness in a three-step procedure. In the first step,

we compute the cartilage map location. To compute the cartilage map location, we need to

first select a value for the proximity parameterp. We then compute, across poses, the union

of contact areas for the selectedp value.

In the last two steps, we compute the cartilage map thickness. We note that at each

instant, any two points on the two bones that are approximately on each other’s normal

vectors must have the property that the cartilage thicknessat those points sums up to no

more than the distance between them. We hypothesize that fortwo cartilage maps in con-

tact A and B cartilage thickness is distributed evenly between map A and map B. According

to this hypothesis, to find the cartilage map thickness at a cartilage map vertexv we can ex-

trudev by half the minimum distance across poses between A and B, plusa th percentage,

in the direction of the bone surface normal at that vertexv.

Theth parameter is an extra-thickness measure of the cartilage layer, because we expect

that at each pose the cartilage map is already somewhat deformed. Accordingly, we need to

first select a value for theth parameter, and then proceed with the extrusion operation. The

collection of bone surface pointsvk, their oriented normalsnk, and their extrusion heights

hk defines the height-field representation of the cartilage map.

Let nbones be the number of bones in the joint,nposes the number of joint poses avail-

able, andRTij the joint pose (rotation and translation) associated with bone i in posej.

Let distance(RTij(v), RTlj(bl)) be the minimum distance from vertexv of bonebi to the

neighboring bonesbl in posej. We use anatomy-book knowledge and an iterative proce-

dure to determine the values ofp andth and generate the cartilage maps, as follows:
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procedure estimatecartilage

in: bone surfacesbi, i = 1 : nbones;

sampled bone kinematics(RT )ij, j = 1 : nposes;

initial estimates forp andth: p0, th0;

out: cartilage mapsCi =
⋃

k=1:|Ci| (vik, nik, hik);

//1. estimate cartilage location

for i = 1 to nbones

Ci ← ⊘

repeat

p← p0

foreach vertexv ∈ bi

for j = 1 to nposes

dist(v, j)← distance(RTij(v), RTlj(bl))

d(v) = minjdist(v, j)

if d(v) < p then

h = d(v)/2;

n = normal(v);

Ci ← Ci

⋃

(v, n, h);

endif;

increasep

until (Ci overlapsCi,anatomy−book)

//end step 1.

//2. infer th parameter

th← estimateth ( C, b, th0)

//3. estimate cartilage total thickness

for i = 1 to nbones

foreach (vk, nk, hk) ∈ Ci

hk = (1 + th)hk

//end step 3.
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In our experiments,p was initialized to 1 mm, and increased in 0.1mm increments.

In the experiments described in this chapter, the overlap between the computed cartilage

map and the anatomy-book cartilage map was evaluated visually. For example, for the

scaphoid bone shown in Fig. 4.3, increasing thep threshold above 2mm causes certain

features like the diagonal palmar strip to disappear, whiledecreasing thep threshold below

2mm introduces holes in the cartilage map. However, the overlap-evaluation step could be

automated using the cross-parameterization technique described in Chapter 6.

Technically, the most complex and delicate step in theestimate cartilage procedure is

inferring the extra-thickness parameterth. We assumeth has the same value across the

collection of joint bones. We calibrate thisth value based on anatomy-book knowledge as

follows:

procedure estimateth

in: bone surfacesbi, i = 1 : nbones;

copy of current cartilage mapCi;

initial th estimate:th0

out: th;

th← th0

select special-case bonesb∗i

repeat

foreach b∗i

foreach (v, n, h) ∈ C∗
i

h = (1 + th)h;

resolvecollisions(C∗);

computecontact(C∗);

decrease th;

until (contact w/in special-case anatomy book range);

In the experiments reported in this chapter,th was initialized to 10% and gradually
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Figure 4.3:In vivo scaphoid cartilage map generated through our kinematic modeling ap-
proach (left) versus an anatomy-book scaphoid cartilage map estimated through dissection
in vitro (right). Bone is shown in blue, cartilage in tan (light-grey in grayscale reproduc-
tions); top: palmar view, bottom: dorsal view. Note the generally similar location-on-bone
of the in vivo and in vitro cartilage-map. Despite subtle anatomical differences between
the in vivoandin vitro bone-shape, note the diagonal strip cutting through cartilage in both
palmar views, and the sliver-cut extending towards the bottom in both dorsal views.In vitro
data depicted on the right courtesy of Primal Pictures Ltd.;in vitro data does not include
cartilage-map thickness.
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decreased in 1% decrements. Theresolve collisions andcompute contact steps are pre-

sented in section 4.3.4.

In the procedure above, the special-case refers to subsets of bones for which anatomy-

book data reporting contact-size results exist. Because anatomy-book studies use pressure-

sensitive film to compute contact-size between bones, such studies in general are performed

only for joint bones that have at least one flat surface and thus can accommodate the flat

pressure-sensitive film. For example, Patterson and Viegas[85] report the contact surface

defined by the scaphoid and lunate bones on the radius flat head, when increasing loads are

applied to the wrist joint.

Note that, for each pose and pair of articulating bones we keep a list of the height-field

points whose original cortical-surface support vertices had a minimum distance belowp.

These lists are used to speed up the computation of cartilagelocal deformation.

4.3.4 Cartilage Contact Simulation

Our cartilage model is a meshless, incompressible, deformable height-field whose initial

conditions are determined as described in section 4.3.3. While cartilage is a compressible

material, the computational requirements for a multi-articular model necessitate some sim-

plifications. Given the small deformations likely to take place in unloaded joints, assuming

cartilage is incompressible but deformable is reasonable.Incompressibility is achieved by

transferring volume from compressed locations to locations not in contact.

Since we anticipate articular cartilage deformations to besmall, our deformation model

is based on the physics of linear elasticity. We represent cartilage geometry as unstructured

point clouds, i.e., sets of point primitives that sample theposition and normal of the un-

derlying surface. For each cartilage surface point we storeits height with respect to the

underlying bone surface along the cartilage surface normal. Cartilage points are allowed to

move along this cartilage normal direction.

We resolve cartilage collisions (resolve collisions) iteratively through repeated:

• collision detection,

• negative displacement in the direction of the normalnj of colliding pointsvj
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• volume preservation: positive displacement in the direction of the normalnk of the

non-colliding pointsvk ∈ the collision neighborhood,

for all the objects involved in collisions.

The size of the collision neighborhood correlates with cartilage viscosity and is defined

by the proximity thresholdp determined in section 4.3.3. The neighborhood consists of

vertices which are closer thanp to the colliding bone. Cartilage volume is preserved by

constraining each height-field response such that the integral of all displacements over the

height-field is zero. In our experiments, cartilage contactwas usually resolved within under

100 iterations. The height-field points in contact after resolving all collisions defines the

cartilage contact area (compute contact).

Figure 4.4 illustrates the cartilage deformation process in 2D. In this example we model

the contact between two flexible objects: a computer-generated flexible semicircle of radius

50 units was placed so that it collided with a horizontal flexible line-segment of length 300

units. The maximum collision depth was 10 units at the semicircle South tip. Semicircle

and line points were assumed to have variable material thickness: semicircle thickness

was maximum at the South tip and tapered off towards the equator; line-segment thickness

was also maximum in the middle of the segment and tapered off towards the segment

ends. The semicircle and line were iteratively deformed to resolve the collision while

attempting to preserve object area by constraining the integral of all displacements over

each object surface to be zero. Non-colliding points were deformed proportionally to their

material thickness. Although material thickness is only a proxy for cartilage properties,

note each object’s response is qualitatively appropriate:both objects retract in the collision

area and bulge sideways to compensate for the loss of volume thus incurred. Note that the

amount of interpenetration modeled in this example — and hence the resulting deformation

(approximately 20% of the object thickness) — is an over-estimate of the cartilage map

deformations we expect in the human wrist.
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Figure 4.4: 2D illustration of our algorithm for predictingcontact deformation of flexible
objects with a rigid skeleton (not shown) in 2D. Although material thickness is only a
proxy for cartilage properties, note each object’s response is qualitatively appropriate: both
objects retract in the collision area and bulge sideways to compensate for the loss of volume
thus incurred.

4.4 Validation and Results

We validate againstin vitro data the location of our kinematically-generated cartilage maps,

their thickness, and the computed cartilage contact areas.

Cartilage location

In Fig. 4.3 we compare the location of thein vivo cartilage map we generated through

our method for the scaphoid bone (live male individual, 25 years old, 7 poses) against a

similar cartilage map reportedin vitro (unknown gender and age;in vitro data courtesy of

Primal Pictures Ltd., London, UK). In this experiment the inferred value for the proximity

thresholdp was 2mm. Note the generally similar location-on-bone of thein vivo and in

vitro cartilage-map. Despite subtle anatomical differences between thein vivo andin vitro

bone-shape, note the diagonal strip cutting through cartilage in both palmar views, and the

bottom sliver-cut in both dorsal views.
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Figure 4.5:In vivo trapezoid cartilage map generated through our kinematic modeling ap-
proach (left) versus a trapezoid cartilage map estimated through dissectionin vitro (right).
Bone is shown in blue, cartilage in tan (light-grey in grayscale reproductions). Note the
similar location-on-bone of thein vivo andin vitro cartilage-map (tennis-shoe shape), de-
spite slight anatomical differences between thein vivoandin vitro subject.In vitro data de-
picted on the right courtesy of Primal Pictures Ltd.;in vitro data does not include cartilage-
map thickness.

Fig. 4.5 shows a similar comparison between the location of the in vivo generated car-

tilage map for the trapezoid bone (live male individual, 25 years old, 7 poses) against

a trapezoid cartilage map reportedin vitro (Primal Pictures Ltd.). Thep value inferred

through calibration was again 2mm. Again, we note the similar location-on-bone of thein

vivo andin vitro cartilage-map — tennis-shoe shape, despite slight anatomical differences

between thein vivoandin vitro subject.

Cartilage thickness

In a first experiment, to validate the thickness of our cartilage model, we use the trapezoid

bone from the left wrist of an unembalmed cadaver upper extremity (female, age 66 years)

and the trapezoid bone of a live individual (male, age 25 years). The volar fragment of

the cadaver trapezoid was immersed in contrast dye, and a 3-Dvolume image was made

of the contrast-surrounded bone using a desktopµCT scanner (µCT 20, Scanco Medical).

This technique yielded high-resolution segmentable images where the cartilage was clearly

distinguishable from the surrounding contrast dye and fromthe underlying bone tissue.

The thickness of the cartilage in the 1mm section of trapezoid evaluated in this study was

relatively uniform, with an average thickness of 0.66± 0.14 mm (min. 0.22 mm, max.

1.07 mm).



80

Table 4.1: Trapezoid cartilage thickness

Trapezoid cartilage In vitro, invasively In vivo, non-invasively
thickness (µCT-imaged) (kinem.-generated)

Mean± Std.dev. 0.66mm± 0.14mm 0.64mm± 0.19mm
Min 0.22mm 0.147mm
Max 1.07mm 1.049mm

We used the kinematics-based method presented in section 4.3 to generate the cartilage

map for the trapezoid bone of the live individual. The resulting value of the thickness

parameterth was 1%. The thickness of thein vivo cartilage model was determined by

computing the average height of the kinematically-generated trapezoid undeformed height-

field. The thickness of our model was also relatively uniform, with an average thickness of

0.64±0.19 mm. The results reported in Table 4.1 show remarkable correlation between the

in vivoandin vitro measurements. However, note that in this first thickness experiment we

comparein vivodata andin vitro data collected from different individuals.

In our second thickness experiment, we usein vitro data collected from the same in-

dividual. A cadaver wrist was CT-imaged in 12 poses, spanningthe wrist range of mo-

tion. The wrist bones were segmented and their motion tracked accurately. We used the

kinematics-based method to ‘grow’ the cartilage map for thescaphoid bone. The proximity

p and thicknessth values resulting after calibration were 2mm and 5% respectively. We

computed the average, standard deviation, minimum and maximum thickness for the radius

facet of the resulting scaphoid cartilage map.

Following CT-imaging, the wrist was dissected. All soft tissue except cartilage and lig-

ament insertion sites were removed from the scaphoid bone. The bone itself was immersed

in contrast dye for 24 hours, thenµCT-imaged at a 60 micron resolution. The resulting

µCT-imaged bone surface and cartilage map was reconstructed from the volume image

using the Geomagic software package [43]. TheµCT-ed bone surface and cartilage map

surrounding it were aligned with the CT bone surface acquiredprior to dissection. Finally,

the anatomist interactively selected the radius facet of theµCT scaphoid cartilage map. We

computed the average, standard deviation, minimum and maximum thickness for theµCT
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Table 4.2: Scaphoid cartilage thickness

Scaphoid cartilage In vitro, invasively In vitro, non-invasively
thickness (µCT-imaged) (kinem.-generated)

radial facet
Mean± Std.dev. 0.601mm± 0.21mm 0.596mm± 0.20mm

Min 0.275mm 0.276mm
Max 1.21mm 1.05mm

cartilage facet.

Table 4.2 shows the invasiveµCT thickness measurements and the non-invasive, kine-

matically generated thickness estimates; note the remarkable correlation between the two

columns. The difference between the measured and estimatedmaximum thickness value

(1.21mm measured, 1.05mm estimated) appears to be due to theaccidental inclusion of a

ligament insertion site vertex in theµCT cartilage map during the interactive facet selection

phase.

Cartilage contact

We compare the cartilage contact areas generatedin vivo through our method against the

in vitro pressure-film results reported by Patterson and Viegas [85]for the radius-scaphoid-

lunate joint. Although our results are generated for an unloaded joint while Patterson and

Viegas report (lightly) loaded joint results, we expect ourresults to extrapolate the loaded

results in the direction of the lowest loads. In Fig. 4.6 we show the cartilage contact gener-

ated through our method on the radius distal surface by the lunate and scaphoid bones, in

two different poses — neutral and extension. As in [85], the contact areas were localized

and accounted for a relatively small fraction of the joint surface (approximately 24%). The

scaphoid-radius contact-area shifted from a palmar location to a distal location as the wrist

moved from the neutral pose to the extension pose, consistent with the in vitro findings of

Patterson and Viegas. Thein vivo radius contact area was 75 mm2 in the neutral pose and

49 mm2 in the extended pose, again in agreement with thein vitro results reported in [85].

In this experiment we used cartilage maps generated with ath extra-thickness parameter
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Figure 4.6:In vivo contact area between the distal radius bone (shown) and the lunate and
scaphoid bones (not shown) in a normal unloaded wrist, neutral pose and an extension
pose. Bone is shown in blue, cartilage in tan, cartilage contact in red (largest area depicted
corresponds to the scaphoid-radius contact). The contact areas are localized and account
for a relatively small fraction of the joint surface. Note the scaphoid-radius contact-area
shift from a palmar location to a distal location as the wristmoves from the neutral pose
(left) to the extension pose (right).

value of 1%. Note that in theth calibration phase described in section 4.3.3, increasing

the 1% value generated in general contact areas close to 100 mm2; such numbers would

contradict thein vitro measurements of Patterson and Viegas [85], who found that for loads

under 23 pounds these areas stay under 100 mm2.

4.5 Discussion

The validation experiments show good correlation between our in vivo kinematically gen-

erated cartilage maps andin vitro-observed cartilage maps. Interestingly, our cartilage

thickness experiment seems to indicate that ‘growing’ cartilage by half the inter-bone dis-

tance (as previously done by Carrigan et al. [24]) is a reasonable approach when modeling

the wrist joint — larger bones in the wrist like the scaphoid may not grow thicker cartilage.

The remarkable thickness correlation between the elderly female dataset and the young

male dataset reported in our first thickness experiment indicates joint size may not influ-

ence cartilage thickness. In other words, thickness measurements performedin vitro could

be transferred toin vivodata, regardless of differences in the bone size.

Our cartilage map generation method uses two parameters, the proximity thresholdp,

and the extra-thickness parameterth. The 2mm threshold value resulting in most of our
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experiments seems to indicate that modeling carpal cartilage as a uniform 1mm-thick shell

wrapping articular surfaces — as previously done by Thoomukuntla et al [107] — is a rea-

sonable approach for at least certain bones like the trapezoid, although our measurements

for other carpal bones indicate non-uniform thicknesses.

Similarly, the resulting extra-thicknessth value of 1% to 5% may indicate that unloaded

cartilage is minimally compressed during motion. Interestingly, this observation ties in

with the results of an earlier study by Herberhold et al. [50]on thein situ measurement of

articular cartilage deformation in intact knee joints under static loading. Herberhold et al.

found that patellar cartilage deforms minimally during thefirst minute of static loading

(3% absolute deformation). These findings suggest that, during everyday motion, articular

cartilage deforms minimally even in bodyweight-bearing joints like the knee.

Our cartilage-map generation method has certain limitations. Unlike real cartilage, the

cartilage maps we generate do not recede towards the boundary of the map. This limitation

could be addressed by progressively decreasing the height of the map as we approach the

location boundary.

We also require the acquisition of poses spanning the whole space of joint kinematics.

However, since our cartilage model deforms locally, missing cartilage areas are not likely to

influence the contacts we compute. The correlation between minimum inter-bone distance

during motion and cartilage location may have in itself strong biological implications.

When extruding cartilage-location vertices according to the inter-bone distance, our

current implementation assumes an implicit correlation between the direction of the sur-

face normal and the inter-bone distance; while this correlation is present in our data, a

sounder approach would be an iterative small vertex displacement in the normal direction

and reevaluation of the distance until the opposed displaced surface collide.

Another limitation of our model is that we assume cartilage is incompressible; given the

small deformations we expect to find in the unloaded wrist during motion, assuming that

cartilage is incompressible but deformable is reasonable.This assumption may not hold

true in other anatomical joints. We note that for static, loaded poses our model can be cou-

pled with finite element analysis to enable more sophisticated computations of deformation

and stress throughout the material.
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4.6 Conclusion

We presented in this chapter a method for estimating articular cartilage geometryin vivo,

directly from CT-imaged bone geometry and joint kinematics.The resultingin vivo car-

tilage maps match wellin vitro cartilage maps. We augmented the cartilage maps with a

novel height-field computational model of cartilage deformation, and showed the resulting

contact areas replicate carpal cartilage contact observedin vitro.

The results reported in this chapter indicate that articular cartilage deforms minimally

during normal motion. The implication is that rigid or almost-rigid, fast-to-calculate rep-

resentations of cartilage are acceptable building blocks when constructing fully-predictive,

dynamic models of diarthrodial joints.



Chapter 5

Predictive Simulation of Diarthrodial

Joints

5.1 Introduction

Diarthrodial joints are arguably some of the most complex structures in the human body;

they combine in unique and ingenious ways hard-tissue and soft-tissue to allow for ev-

eryday motion and athletic activities. A thorough understanding of diarthrodial joint mo-

tor function in live individuals is essential in the treatment of injuries and degenerative

diseases like osteoarthritis, and also in the design of orthopedic implants. However, cur-

rently there is no satisfactory explanation for the motion patterns observed in most complex

joints [14, 98, 34], nor for the motion differences observedamong different live individuals.

In this chapter we present a medical-image based method for constructing and simu-

lating joint models, using data collected from live individuals. The method uses as input

medical volume images of the joint bones, tracked motion andanatomy-book knowledge.

The resulting models and simulations are adaptable to individual differences and have pre-

dictive capabilities in terms of predicting soft-tissue contact within the joint, and under-

standing the kinetic response of the joint.

The aim of this chapter is to demonstrate that data obtainedin vivo through medical

85
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Figure 5.1: Soft-tissues in the human wrist interacting directly with the scaphoid bone (data
courtesy of Primal Pictures). Left: a six-bone subset of thehuman wrist showcasing the
bones (white) and articular cartilage (yellow) interacting directly with the scaphoid bone.
This six-bone structure includes nine pairwise articulations and fifteen ligaments that may
impact scaphoid kinematics. Center: palmar wrist ligaments(red) interacting with the
scaphoid bone. Right: dorsal wrist ligaments (red) interacting with the scaphoid bone. The
human wrist presents a predictive modeling opportunity: nomuscles insert on the scaphoid
bone. Scaphoid motion is defined solely by bone shapes, bony articulations, and ligaments.

imaging can be combined with numerical simulation to develop a predictive tool for under-

standing the role of soft-tissues in the functioning of joints.

We demonstrate our model and simulation on the human wrist. The joint-subset we

use throughout our experiments includes nine pairwise articulations and fifteen ligaments

that may affect the kinematics of the scaphoid bone (Fig. 5.1). The scaphoid bone and its

surrounding articulations are of significant clinical interest: the bone is frequently subject to

fractures, and its connecting ligaments are often subject to tears and surgical intervention.

Notably, there are no muscle insertions on the scaphoid bone. This lack of muscle insertions

provides an excellent modeling opportunity: we can study scaphoid kinematics without

having to specify external muscle forces.
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5.2 Related Work

Dynamic joint simulations can be divided into two types, based upon the input and output

variables [103]: (1) inverse-dynamics simulations, and (2) forward-dynamics simulations.

In inverse-dynamics simulations the input variables are the kinematics of the bones, which

also define the end-conditions of deformable soft-tissues,and the output variables are the

corresponding forces and torques acting on the joint. From apredictive point of view, in-

verse simulations have been used not only to compute joint moments, but also to estimate

muscle forces, contact and stresses in the joint [41, 34, 118]. Such simulations have pre-

dictive capabilities in the sense that they can forecast, for example, which component of a

joint may break down due to excessive or repetitive stress.

While inverse dynamic simulations are useful for analyzing experimental data, forward

dynamics may be used to perform simulated experiments. In forward dynamics the inde-

pendent variables are the forces and torques acting on the joint, and the output variables are

the joint motion. The advantage of forward simulations is — as already stated — that they

can be used to perform simulated experiments. For example, given a set of muscle forces

and external forces, a forward-dynamics model of a joint could predict how joint motion

would be altered after a simulated tear of a ligament or aftera bone fracture.

The forces and torques resulting by solving inverse-dynamics problems could be used

in a forward-dynamics formulation to yield the complete behavior of a joint, in terms of

computed contact, stresses, and motion [13]. However, forward simulations require not

only accurate digital models of the geometry of all the objects forming the joint, but also

detailed knowledge of the material properties of each deformable object, and of the ex-

ternal forces applied. As discussed in Chapter 1, these inputs are not readily available.

Currently, forward-modeled joints use material propertiesand forces specified by the user,

based in general onin vitro studies; the values observedin vitro may well be different

from individual-specificin vivo values, due to either anatomical variability or specimen

preparation. In addition, accurately modeling deformablecontact is often costly [45].

The combined challenges of missing inputs and simulation efficiency lead to a pattern

in predictive joint modeling: small-scale, highly detailed in vivo subject-specific models

have inverse predictive capabilities (contact and stresses), while highly simplifiedin vitro
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models may have limited forward predictive capabilities (motion). The motion-prediction

capabilities ofin vitro forward-models are in general difficult to validate, and themodels

themselves currently discount individual differences.

Current models of diarthrodial joints include only skeletaltissues: bone, ligaments,

cartilage, and muscle-tendon units.

We also note that current forward models generate motion, infact, through quasi-static

analysis, and not dynamic analysis. A quasi-static analysis is one where the governing

equations are those of statics; however, quasi-static analysis can be applied to joints in

motion as long as inertial forces are negligible. The advantage of quasi-static analyses is

that they do not require the input of parameters such as mass and inertia properties, or

damping properties for which data are rarely available in the analysis of musculoskeletal

structures.

In the remainder of this section we briefly review predictiveinverse and forward joint

models, and current procedures for validating joint predictive capabilities. Work in physi-

cally based simulation is surveyed in detail by Pauly et al. [86].

Predictive Inverse Joint Models

Inverse models exist for a variety of joint substructures. Recent work by Gardiner and

Weiss [41] can predictin vivo strain through one entire knee ligament. Similar work by

Warner et al. [113], Donahue et al. [33], or Meakin et al. [75]can predictin vivo stress

through one cartilaginous structure. In general, these approaches model through finite ele-

ment methods one deformable component at a time.

A few inverse models also exist for simple joints — joints with a few components.

The inverse knee model developed by Zhu et al. [118] uses liveindividual motion capture

and the bone geometry to compute menisci contact and stresses in the joint. Similarly,

the temporomandibular joint developed by Donzelli et al. [34] uses tracked motion and the

joint geometry to predict contact and stresses in the joint.In both studies ([118] and [34]),

neither articular cartilage or soft-tissue wrapping were modeled.

Joints more complex than the knee or the jaw have proven difficult to model due to the

number of bodies involved and complexity of the soft tissue interaction [24]. With respect
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to modeling complex joints, Carrigan et al. [24] created a simplified 3-D finite element

model of the wrist. In this model 3D solid finite element meshes representing the bones

were hollowed by eliminating all elements that did not reachthe external mesh surface

in order to reduce the number of nodes and elements in the mesh, and thereby improve

model efficiency. The articulated bony surfaces were extruded to mimic cartilage. Several

pairs of bones were fused into single rigid bodies, and ligaments were modeled as line

springs. Only one static pose was modeled. In this model bonemotion had to be restricted

artificially to certain directions through non-physiological constraints in order to prevent

the wrist from collapsing under the applied load.

Wrapping soft-tissues may play an important role in stabilizing the joints during mo-

tion. However, current inverse models provide almost no insight into the role of soft-tissues

in the functioning of joints. In particular, none of the inverse models attempting to predict

contact surveyed in this section takes into account soft-tissue wrapping.

The paucity of inverse models for complex joints can be traced back to a general lack of

soft-tissue morphological data and to simulation efficiency challenges, as argued in Chap-

ter 1. We show that the data-driven approach introduced in the earlier chapters of this

dissertation can overcome such limitations.

Predictive Forward Joint Models

In current forward models, the bones are modeled as rigid bodies and the soft tissues are

modeled as tensile and compressive springs, usingin vitro-determined values. In order to

simulate the movement of the joint, forces are applied at tendon insertion sites and the el-

ements of the model move in such a way as to solve the equationsof kinetic equilibrium.

For example, thein vitro forward knee model developed by Blankevoort et al. [18] can

replicate knee-motion measuredin vitro. However, it is essential that the physical prop-

erties and dimensions of the structures used in the model areapplied correctly in order to

obtain meaningful results. Despite repeated attempts, there is currently no single model

that can be applied to anticipate the movement patterns of joints more complex than the

knee. In the case of the wrist, it has been suggested that sucha forward model cannot be

determined [37].
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Circumventing the lack of wrist soft-tissue data, Sirkett etal. [98] have built a forward

model of the wrist that uses as input only the morphology of the bones. The hypothesis

behind the model is that soft tissues play a secondary role ingoverning the movements of

the wrist bones, and that the morphology of the bones is what dictates their behavior. The

premise is that biological structures are formed using the minimum of materials necessary

to provide adequate function. In the case of joints, this is achieved by maximizing con-

tact area through the use of conforming joint surfaces. On a very limited range of motion

wrist kinematics were correctly predicted for several bones. However outside this narrow

range the model did not match kinematics observed inin vitro andin vivo studies — e.g.,

bone rolling during wrist flexion. With respect to the contact-maximization hypothesis, it

is worth noting that zoologists believe that adjacent bonescan not reach maximum congru-

ence at all poses [90]. The classical zoology interpretation is that the position where all the

bones reach maximum contact has particular mechanical significance, most likely that this

is the configuration the bones take at maximum load transfer.

Validation of Predictive Capabilities

Validating the predictive capabilities of both inverse andforward models poses signifi-

cant challenges. In general, contact and strain predictivecapabilities can only be validated

againstin vitro data. However, evenin vitro data has certain limitations. For example, to

measure joint contactin vitro, researchers typically insert pressure-sensitive film between

two articulating bones, apply a load to the joint, then remove the film and estimate the size

and location of the resulting print [85, 107]. Because only flat surfaces can accommodate

pressure-sensitive film, such measurements have been reported only for bone pairs that in-

clude at least one bone with a flat articulating surface. Furthermore, studies performed

on different individuals may lead to different measurementvalues. Evenin vitro reported

values do not always agree; there is large variation in the reported mechanical properties of

specimens: for example, for whole scapholunate ligament specimens, Mayfield [74] reports

a stiffness of 250N/mm (S.D. 90N/mm) at a displacement rate of 50mm/min, while John-

ston et al. [54] reports 66N/mm (S.D. 29N/mm) at 60mm/min. Accordingly, in general,
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validation of predictive capabilities with respect to contact and tissue mechanical proper-

ties tries to match a range of values reportedin vitro, and occasionally even extrapolate

from availablein vitro measurements. Oftentimes validation is performed throughvisual

observation, for example, observing whether in a given posea specific ligament is taut or

relaxed [36, 5].

Motion-prediction capabilities are in general validated against sampled data, oftenin

vitro motion data [61]. In general, it is essential that the physical properties and dimensions

of the structures used in the model — for example, muscle forces — are applied correctly in

order to obtain meaningful results. Unfortunately, oftentimes multiple force combinations

can result in the same meaningful result.

In this sense, the human wrist offers a unique opportunity invalidating motion predic-

tions. The wrist is a uniquely passive joint, consisting of eight small, complexly shaped

bones interposed between the distal radius and metacarpal bones. There is only one muscle

that has minor insertions on the wrist. Accordingly, motionof the bones is defined solely

by the complex, semi-congruent bone shapes, intricate bonyarticulations, and the network

of ligaments that spans the wrist. This frees a potential model from being limited by the

accuracy of the estimates of the applied muscle forces. We demonstrate our model and

simulation using wrist data.

5.3 Methods

The joint model we build integrates CT-acquired bone geometry, tracked kinematics, and

computational models of articular cartilage and ligaments. The model does not include

more superficial layers like skin, fat and the neurovascularsystem, sincein vitro studies

indicate that these layers play a relatively small role in joint motion [18, 52]. We also

do not model muscles, which may influence indirectly the joint by compressing the sac

of synovial fluid surrounding the joint, nor the synovial sacitself. Again, in vitro studies

indicate these last two components play a secondary role in the kinematics of the wrist

joint [18, 52].
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5.3.1 Data Acquisition

Our data was generated by CT-imaging the wrist bones of a male volunteer in seven dif-

ferent poses. The volume images were acquired by using a Hispeed Advantage scanner,

General Electric Medical System, scan parameters: 80kV, 80mA, image resolution 0.94 x

0.94 x 1 mm3. Each CT volume-image corresponds to an articulation pose, thus sampling

the space of articulation kinematics. An additional higher-resolution scan (0.31 x 0.31 x 1

mm3) was acquired in a reference neutral pose, allowing us to segment the bone surfaces

with higher accuracy.

Through manual segmentation, thresholding, and user interaction, bone surfaces are

extracted from the high-resolution reference CT volume image [28]. Bone surfaces are

further modeled as NURBS surfaces using the Geomagic softwarepackage [43]. Next,

each bone surface is tracked with sub-voxel accuracy through the sequence of remaining

CT volume images, as described in Chapter 2. The tracking procedure reports relative bone-

motion from one articulation pose to another. The motion of each wrist bone is reported in

coordinates relative to the fixed forearm.

5.3.2 Model Construction

The model of the wrist includes three-dimensional geometric data of the eight carpal bones,

two forearm bones, and five metacarpals. We use the bone geometry and sampled kinemat-

ics to generate cartilage maps and ligament fibers.

We generate cartilage maps from the fifteen bone surfaces andtheir kinematics, as

described in Chapter 4 (2mm proximity threshold, 1% compressed thickness).

We manually identify ligament insertion sites based on anatomical expert knowledge

[100]. We define three to four equally spaced fibers per ligament bundle to account for the

band-like structure of ligaments. For each fiber and joint pose, we automatically generate

minimum-length paths constrained to avoid bone penetration, as described in Chapter 3.

An example ligament fiber interacting with multiple bones isshown in Fig. 5.2.

For each ligament fiber we compute and report the minimum pathlength. The resulting

fiber paths are visually validated against the anatomy-bookdata.
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Figure 5.2: Ligament fiber interacting with multiple bones.The computed minimum-length
path is shown in red, the straight line between the two insertion sites is shown in blue. Note
the significant deflection of the generated path from the straight line.

In the experiments presented in this chapter we do not model ligament-cartilage in-

teractions. Ligament paths are generated over bone, not cartilage surfaces, primarily due

to a boundary-related limitation in our cartilage map generation method, as discussed in

Section 5.5.

5.3.3 Simulation

Inverse Simulation

In our inverse-dynamics experiments, we assemble bone, cartilage and the ligament fibers

resulting for each joint pose. When simulating the joint, we make the following simplifying

assumptions:

• bones are rigid; bone deformations are ignored because theyare relatively small

compared to the displacements in the joint;

• the friction between cartilaginous contact surfaces is ignored; due to the synovial

fluid, the friction coefficient between cartilage surfaces is very low (100 times smaller

than the coefficient for ice);

• for simplicity, the viscoelastic properties of ligaments and cartilage are approxi-

mated;
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• bone-mass is considered to be uniformly distributed, againfor simplicity.

Cartilage maps are characterized by their location, thickness, and stiffness coefficient.

They are modeled and simulated as incompressible, deformable height fields. For each

joint pose and pair of articulated bones we compute and report the location and size of

the articular cartilage contact. The resulting contact is validated againstin vitro data as

described in Chapter 4.

In this study, the description of deformable articular contact is based on the simplified

theory of contact from Blankevoort et al. [18] for thin layersof isotropic, linear-elastic ma-

terial bonded to a rigid foundation. This implies three assumptions for the cartilage layer.

First, the size of the contact area is assumed to be large relative to the cartilage thickness.

Second, the cartilage layer is considered to be an isotropic, linear-elastic material. Third,

the underlying bone is considered to be rigid. Deformable articular contact is used merely

as a first order approximation of the behavior of the articular contact. The simplified contact

description is then a first-order approximation of the relation between the normal surface

stressσn and the surface displacementun normalized by the surface thicknesstn:

σn = S(un/tn) (5.1)

with

S =
(1− ν)E

(1 + ν)(1− 2ν)
(5.2)

whereE is the elastic modulus andν is Poisson’s ratio. This description of articular contact

deformation is strictly linear and will only be valid for small surface displacements. The

stiffness parameterS is also known as the confined compression modulus or the aggregate

modulus [78].

Following Blankevoort et al. [18], in the present model, where two bodies are in con-

tact, the material properties of the cartilage on both bodies are assumed to be equal. The

parametertn is then equal to the total thickness of the undeformed cartilage layer. The

surface displacementun is the relative displacement of the height-field envelope, which is

obtained after resolving cartilage penetration as described in Chapter 4.
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The compressive cartilage contact force and moment are evaluated by integration of the

contact stresses over the surfaceΩ:

fcartilage = −
∫ ∫

Ω
σnn dΩ (5.3)

mcartilage = −
∫ ∫

Ω
σnc× n dΩ (5.4)

wherec is the relative position vector of the cartilage contact with respect to the center of

mass, andn the direction of the normal.

Because we generated the cartilage height-field representation by extruding the bone

triangular mesh representation (Chapter 4), we use the bone triangular grid to compute the

support area of contact point and evaluate numerically the integrals in the cartilage contact

force and moment formulas.

Ligaments are simulated as collections of elastic fibers characterized by their rest length

and elasticity coefficient. Invasive studies on the human knee show that ligaments tear

when stretched above 10% of their rest length [30]. This indicates that the ligament rest

length should be above 90.9% of the fiber length when maximally stretched. To estimate

the ligament rest length, we compute the maximum functionallength of our fibers across

the range of motion. Because the range of motion we use as inputis unlikely to stretch

ligaments to their maximum length, we estimate the fiber restlength should be around 95%

of the computed maximum length. We then evaluate fiber lengthening across poses with

respect to the estimated rest length. We consider a ligamentto be lax in the poses in which

its functional length is less than its estimated rest length.

Ligament contact forces and moments are computed separately for ligament-bone con-

tact due to ligament insertions and ligament-bone contact due to ligament wrapping. Let

m be the total number of ligament fibers modeled, andoj the number of insertions for

ligamentj. The ligament insertion contact force and moment are computed following

Blankevoort et al.[18] as:

flig.ins. =
m
∑

j=1

oj
∑

i=1

Klig

(

lj − lj0

lj0

)2

vji (5.5)

mlig.ins. =
m
∑

j=1

oj
∑

i=1

sji × flig.ins.ji
(5.6)
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wherelj0
is the rest length of ligamentj, vji is the ligament direction at the insertion site

i, andsji the relative position vector of the ligament insertion withrespect to the center of

mass.

Similarly, the ligament wrapping contact force and moment are computed as:

flig.wrap =
m
∑

j=1

nj
∑

i=1

Klig

(

lj − lj0

lj0

)2

αijpji (5.7)

mlig.wrap =
m
∑

j=1

nj
∑

i=1

sji × flig.wrapji
(5.8)

wherenj is the number of points at which ligamentj contacts the bone surface through

wrapping, lj0
is the rest length of ligamentj, pji is the sum of the ligament directions

left and right of the contact pointi, αij sums the projections of the left and right ligament

directions in thepji direction (i.e., the directional sum of forces passing on either side of

the point), andsji is the relative position vector of the ligament contact point with respect

to the center of mass.

We use anatomy-book values forScart, the cartilage stiffness parameter,Klig, the liga-

ment elasticity coefficient, and the scaphoid mass (Table 5.1) [18, 98, 107]. In the absence

of stiffness and elasticity constants for the human wrist, material parameters representative

of the human knee were used for the wrist cartilage and ligaments. All ligaments were

assumed to have the same elasticity coefficient.

Because each volume image of the joint is acquired in a quasi-static pose, the net force

and moment acting on a bone at each pose are:

fnet = fcartilage + flig.ins. + flig.wrap + fexternal (5.9)

mnet = mcartilage + mlig.ins. + mlig.wrap + mexternal (5.10)

wherefexternal andmexternal are the external force and momentum.

Because there are no muscle insertions on the scaphoid bone, at each sampled pose the

values offcartilage + flig.ins. + flig.wrap andmcartilage + mlig.ins. + mlig.wrap resulting for the

scaphoid bone when using the anatomy-book parameters in Table 5.1 should be reasonably

small — the same order of magnitude with the gravity on the scaphoid bone. We use this

(fnet, mnet) balance observation to ascertain the plausibility of the anatomy-book parameter

values in Table 5.1.
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Table 5.1: Material properties used when simulating the wrist joint

parameter value
Scart 4MPa
Klig 106N/m2

Scaphoid mass 3g

Forward Simulation

Unlike the load bearing joints of the hip and knee, where the articular cartilage is relatively

thick, cartilage depth on the carpal surfaces involved in the present study is typically around

0.7mm. Assuming maximum deformation of the cartilage is 1% to 5% of its thickness, as

determined in Chapter 4, then this equates to a maximum deviation in the surface shape

of only around 0.007mm to 0.035mm, which is small in comparison to the size of the

bones and is likely to be within the bounds of experimental error. For this reason, it was

considered a reasonable simplification to employ non-deformable surfaces when modeling

cartilage contact in the forward simulation of the joint.

Since the articular surfaces were non-deformable, any surface regions separated by less

than 0.01mm during the simulation were deemed to be in contact. The lower bound on the

proximity limit was introduced because we found that multiple small intersection regions

occurred as a consequence of surface irregularities when two bone surfaces were brought

closer together than 0.01mm, causing the bone to bounce repeatedly.

During the simulation, ligaments are allowed to deform up to10% of their estimated

rest-length (see Section 5.3.3). After this threshold, we treat ligament-bone contact as rigid.

In our forward simulations, the start conditions are given by the joint configuration in

a given pose. All the bones except for the scaphoid bone are fixed; the scaphoid bone

is free to move under the influence of contact forces and gravity. We use the explicit

forward Euler method to integrate the scaphoid state through time (0.01s time-step), and

the penalty-method (0.005 penalty factor) to resolve inter-penetrations [12].

The goal of the forward experiments described in the remainder of this section is to

clarify the role played by ligaments in stabilizing the scaphoid bone. To this end, we first
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Figure 5.3: Coordinate system defined on the wrist. The originof the coordinate system is
the center of mass of the scaphoid bone; the axes of the coordinate system are aligned with
the axes of the CT-scanner coordinate system.

validate the anatomy-book parameter values in Table 5.1 by evaluating(fnet, mnet) at each

sample joint pose. We then simulate the motion of the scaphoid bone under the action of

contact forces and gravity, when all the other bones are fixed. The start conditions of each

simulation are given by a sample joint pose.

In order to test the stability of the joint, in each simulation below we specify a different

direction for the gravitational force. We use the local coordinate system shown in Fig. 5.3

to describe the direction of this force.

We run two sets of forward experiments, each set using a different sample joint pose as

start conditions. The first set uses as start conditions the wrist in the neutral pose. In this set

of experiments we remove all ligamentous constraints. First, two simulations are run, with

the gravitational force acting in thexy plane. In the first simulation the gravitational force

pushes the scaphoid bone against the surrounding, fixed bones (direction: [−1, +1, 0]).

In the second simulation, the gravitational force pushes the scaphoid bone outside the joint

(direction:[+1,−1, 0]). For each simulation we report the total HAM motion — translation

and rotation — of the scaphoid bone.

The second set of experiments uses as start conditions the wrist in an extended pose.

We run two simulations with all ligamentous constraints removed, one simulation with the
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gravitational force pushing the scaphoid bone towards the joint (direction:[−1,−1, 0]), the

other with the gravitational force pushing the scaphoid bone outside the joint (direction:

[+1, +1, 0]). We repeat the last simulation, this time taking into account ligament-related

constraints. For each simulation we report the total scaphoid motion.

5.4 Results

The Functional Role of Wrist Ligaments

In this experiment we generated ligament-fiber paths for 15 ligament bundles in the human

wrist. We computed the lengths of these paths across the range of wrist motion.

Four computed ligament-fiber paths with their lengths are shown in Fig. 5.4; note the

fibers wrapping around the bone at the top insertion site. Also note that the resulting li-

gament fibers run more or less parallel to each other, justifying the band-like aspect of the

ligament bundle.

Table 5.2 shows the resulting minimum and maximum fiber-pathlength across the range

of motion for each of the 15 ligament bundles modeled. The table also shows the number of

poses, for each bundle, at which the fiber length was above 95%of the computed maximum

length.

Evaluation of the computed fiber lengths across the range of motion (Table 5.2) indi-

cates that most ligament fibers — 10 out of 15 bundles — are active in only a few poses.

That is, for most ligaments the computed fiber-length was above 95% of the maximum

length in only a few poses (between 1 and 3 poses, out of 7 posestotal). In contrast, note

that fibers computed for the palmar mid-carpal scaphoid bundle and the dorsal mid-carpal

bundle have almost constant length across the range of motion (10.5mm to 10.9mm, 3.8%

relative elongation, and respectively 32.0mm to 33.1mm, 3.4% relative elongation).

Wrist Close-Pack Pose

In this experiment we evaluated the size of articular contact across the wrist range of mo-

tion. The aim of the experiment was to determine whether there is one pose (or more
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Figure 5.4: Four fibers in the same ligament bundle of the human wrist. Top: an artist’s
rendering of the palmar radial-scaphoid ligament bundle ina cadaver wrist (left, Primal Pic-
tures; ligament in red, bones in white, cartilage in yellow)versus palmar radial-scaphoid li-
gament fibers generated computationally usingin vivobone surfaces and kinematics (right;
ligament in red, bones in blue, cartilage in yellow). The pictured cadaver pose and thein
vivo pose are slightly different; however, note the general similarity between the ligament
geometry estimated invasively (left) and the ligament geometry estimated non-invasively
(right). In particular, note the fiber wrapping around the bone at the top insertion site. Bot-
tom: the length of the computational ligament fibers across seven joint poses. They-axis
in this plot covers the whole range of fiber lengths across 15 ligament bundles.
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Table 5.2: Wrist ligament fiber lengths across the range of motion

Ligament bundle Minimum length Maximum length Active poses/
across fibers across fibers total poses

Dorsal 15.0± 0.3mm 16.6± 0.6mm 2/7
inter-carpal
Scapho-lunate 2.6± 0.4mm 3.0± 0.4mm 1/7
inter-dorsal
Scapho-lunate 3.5± 0.2mm 4.0± 0.2mm 1/7
inter-volar
Scapho-lunate 2.5± 0.2mm 3.3± 0.4mm 1/7
inter-median
Palmar scapho- 3.2± 0.2mm 10.0± 0.9mm 1/7
trapezium
Palmar mid-carpal 10.5± 0.7mm 10.9± 0.8mm 7/7
scaphoid
Radio-carpal 14.7± 1.2mm 18.3± 1.8mm 1/7
colateral
Radio-scapho- 4.7± 0.5mm 10.4± 0.4mm 1/7
lunate
Radio-scapho- 23.1± 2.6mm 27.4± 2.2mm 3/7
capitate
Dorsal mid-carpal 32.0± 0.1mm 33.1± 0.2mm 7/7

Dorsal mid-carpal 32.8± 0.3mm 37.6± 0.3mm 3/7
trapezoid
Dorsal mid-carpal 37.4± 0.7mm 41.9± 1.1mm 4/7
trapezium
Dorsal 24.5± 3.8mm 31.7± 2.4mm 1/7
radio-carpal
Flexor retinum 33.6± 0.9mm 36.7± 1.9mm 4/7
trapezium
Flexor retinum 29.6± 1.1mm 32.9± 0.7mm 4/7
scaphoid
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Table 5.3: Wrist articular contact size across 7 poses (mm2)

Bone/Pose 1 2 3 4 5 6 7
cap 59.35 152 51.43 37.69 8.36 76.27 126.29
lun 43.46 169.32 18.48 42.62 6.97 105.35 93.23
rad 124.17 123.91 70.28 6.62 0.25 65.03 54.49
sca 120.04 250.3 87.78 30.29 8.11 52.04 284.01
tpd 24.74 77.69 17.98 39.49 68.15 77.98 81.76
tpm 6.04 75.47 0.00 31.05 62.33 24.19 62.43

Total 377.80 848.69 245.95 187.76 154.17 400.85 702.20

Figure 5.5: Wrist maximum contact pose. The wrist pose that results in maximum contact
among bones (left; shown here palm facing) corresponds to a15◦ ulnar deviation from the
neutral pose (right).

poses) across the range of motion in which the joint bones attain maximum articular con-

tact. Maximum-contact poses are also known asclose-packposes — poses in which the

joint bones are closely packed.

Table 5.3 shows the size of articular contact across 7 poses.Note that pose 2 maximizes

the contact among bones (total contact: 848.69mm2). Pose 2 roughly corresponds to a15◦

ulnar deviation from the neutral pose (Fig. 5.5).

Note that pose 7 also results in a significantly large value oftotal articular contact (total

contact: 702.2mm2, 75% larger than the next largest value). Interestingly, both pose 2

and pose 7 fall within the radial-ulnar deviation range for which the contact-maximization

approach of Sirkett et al. [98] predicted bone motion correctly.
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Scaphoid Dislocation

To verify the plausibility of the parameter values in Table 5.1, we evaluated the values of

fcartilage + flig.ins. + flig.wrap andmcartilage + mlig.ins. + mlig.wrap for the scaphoid bone,

at each one of the sampled joint poses. The resulting values (0.15N ± 0.09N force,

0.74Nm± 0.51Nm torque) were reasonably small, comparable with the gravity on the

scaphoid bone (0.03N, 0Nm).

Next, we simulated the motion of the scaphoid bone when the start conditions are given

by the neutral pose. All bones except the scaphoid were fixed and ligament-related con-

straints were not taken into account. In each simulation thescaphoid remained stable, inside

the joint. The total scaphoid motion when the gravitationalforce pushed the scaphoid bone

towards the joint was (-0.56mm,1.41◦). The total motion when the gravitational force

pushed the scaphoid bone outside the joint was (1.41mm,1.45◦). The simulations were

stopped after 6s simulated time. These results indicate that in the neutral pose the scaphoid

bone is locked in place by the surrounding bones.

Next, we simulated the motion of the scaphoid bone when the start conditions are

given by an extended pose (pose 6 in Table 5.3). All bones except the scaphoid bone

were fixed. Initially, ligament-related constraints were not taken into account. The to-

tal scaphoid motion when the gravitational force pushed thescaphoid bone towards the

joint was (-0.07mm,3.16◦); the bone remained inside the joint. When the gravitational

force pushed the bone outside the joint, the scaphoid dislocated from the joint and con-

tinued to slide away from the joint, in the direction of the gravitational force (direction:

[+1, +1, 0]). The simulation was stopped after 15s. The total recorded scaphoid motion

was (-5.28mm,−2.45◦).

We repeated the extended-pose dislocation experiment, this time taking into account

ligament-related constraints. At the start of the simulation, we recorded five active ligament

bundles. As the simulation progressed, three of these ligaments were stretched to the maxi-

mum length, two became inactive, and one additional ligament was activated. Notably, two

of the maximally-stretched ligaments wrap around the scaphoid bone: the radio-scapho-

capitate ligament and the palmar mid-carpal scaphoid ligament. The constraints imposed
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by ligament-bone contact through ligament insertion points and wrapping points were suf-

ficient to prevent the scaphoid from becoming dislocated from the joint. The simulation

was stopped after 6s; the total recorded motion was (-0.99mm,−2.45◦).

Each simulation was computed in under 2 minutes on an AMD Athlon 64 X2 processor,

2 GHz.

5.5 Discussion

This study has successfully coupled data obtainedin vivo with numerical simulation to

develop a predictive tool for understanding the role of soft-tissues in the functioning of

the wrist joint. In particular, our results predict soft-tissue contact within the joint, the

existence of a close-pack wrist pose, and show that wrist ligaments play an important role

in stabilizing the joint.

In our experiments, evaluation of fiber lengthening across the range of motion indicated

that ligament fibers are relaxed in most poses. The interesting implication is that, in any

given pose, only a few ligaments are active. Subsequent observation of anin vitro dissected

specimen confirms this finding: wrist ligaments appeared to be lax in most poses. Our

collaborators in the Department of Orthopedics expect thatthe poses in which ligaments

become active will indicate the functional role of specific ligaments.

We also found in our experiments that in the close-pack pose contact among the bones

was maximized. Because the contact is maximized, loads applied to the wrist in this pose

get distributed on a larger contact area. The existence of a unique close-pack pose indicates

therefore that there is a joint configuration in which the human wrist can sustain impact

most effectively. This observation has interesting potential applications to athletic training

and therapy planning.

The close-pack pose finding is difficult to validate otherwise than through visual exam-

ination of medical images of the bone configuration at each pose. However, we note that

certain primates such as chimpanzees use a similar pose whenwalking on four limbs [90].

This suggests that the close-pack pose can indeed sustain loads effectively.

Our scaphoid dislocation predictions remain to be validated through invasive studies.
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However, we note that our results are consistent with earlier studies on scaphoid mo-

tion [24], in which, in the absence of ligament wrapping, thescaphoid motion had to be

artificially constrained to a plane to avoid joint collapse.

We used several modeling simplifications in our approach. Our models do not include

the top layers of a joint — muscles, the neurovascular system, fat and skin. Ligament

interconnectivity is not modeled, nor are the synovial sac and fluid. We approximate the

viscoelastic properties of ligaments and cartilage. Bones are approximated as rigid bodies

and bone-mass is assumed to be uniformly distributed. The models we generate could be

enriched by considering intrinsic and extrinsic factors such as soft tissue composition, bone

tissue composition, muscle forces, and joint compression.

When we estimate ligament rest-lengths, we assume that all ligaments are stretched to

95% of their maximum length in some of the sample joint poses.There are no guarantees

that this sampling assumption is true in general: some ligaments may be lax in all the

sampled poses. In theory, this issue could be addressed by acquiring a larger number of

samples. Furthermore, we extrapolate knee anatomy-book knowledge to the wrist when

we assume that ligaments tear when stretched above 10% of their rest length; the 10%

threshold may not be correct. We also assume that wrist ligaments are characterized by the

same elasticity coefficient. When more data about the elasticproperties of wrist ligaments

becomes available, the models we generate may need to be updated.

Although our contact model is capable of processing ligament-cartilage interaction, in

the experiments presented in this chapter this type of interaction is not modeled. Liga-

ment paths are generated over bone, not cartilage surfaces,primarily due to a boundary-

related limitation in our cartilage map generation method.Visual analysis of the resulting

wrist simulation indicates that during normal motion taut ligaments collide merely with

the boundaries of cartilage maps. In anatomical data cartilage maps should recede towards

their boundary — an aspect our kinematically-generated cartilage maps do not capture.

However, the non-collision observation may not hold in the case of injured kinematics.

Our forward simulation implementation uses the forward Euler integration method and

the penalty-method contact model. More intricate techniques exist; such techniques involve

subdividing time to find the exact moment of collisions and then applying impulses or
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resting forces as needed. Such methods provide in general more accuracy and stability,

although simulation stability has not been an issue in our experiments so far.

5.6 Conclusion

We presented in this chapter a medical-image based method for constructing and simulating

complex joint models. The method uses as input medical volume images of the joint bones,

tracked motion and anatomy-book knowledge.

The resulting models and simulations are adaptable to individual differences: we use as

input individual-specific bone surfaces and kinematics, and subsequently customize carti-

lage maps and ligament fibers according to the input information. The models we generate

have predictive capabilities in terms of predicting soft-tissue contact within the joint and

understanding the kinetic response of the joint.

The results presented in this chapter prove it is possible tocouple in vivo data with

numerical simulation to predict and understand the role of soft-tissues in the functioning

of the wrist joint. Only one bone was allowed to move freely inour forward experiments,

while the other bones were fixed. A natural next step is to apply the actual kinematics to

some of the bones in the model and concentrate predictive efforts on one bone at a time.



Chapter 6

Diarthrodial Joint Markerless

Cross-Parameterization and

Biomechanical Visualization

6.1 Overview

Orthopedists invest significant amounts of effort and time trying to understand the biome-

chanics of diarthrodial joints. While new image acquisitionand processing methods cur-

rently generate richer-than-ever geometry and kinematic datasets that are individual spe-

cific, the computational and visualization tools needed to enable the comparative analysis

and exploration of these datasets lag behind.

In this chapter, I present a framework that enables the cross-dataset visual exploration

and analysis of diarthrodial joint biomechanics. Central toour approach is a computer-

vision inspired markerless method for establishing pairwise correspondences between in-

dividual specific geometry. Manifold models are subsequently defined and deformed from

one individual specific geometry to another such that the markerless correspondences are

preserved while minimizing model distortion. The resultedmutually-consistent paramete-

rization and visualization allow the users to explore the similarities and differences between

two datasets, and to define meaningful quantitative measures.

107
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I present two applications of this framework to human wrist data: articular cartilage

transfer from cadaver data to in vivo data, and cross-dataset kinematics analysis. The

method allows our users to combine complementary geometry acquired through differ-

ent modalities, and thus overcome current imaging limitations. Results demonstrate the

technique useful in the study of normal and injured anatomy and kinematics of diarthrodial

joints.

In principle, the pairwise cross-parameterization methodapplies to all spherical topol-

ogy data from the same class, and should be particularly beneficial in instances where

identifying salient object features is a nontrivial task.

6.2 Introduction

Diarthrodial joints are the structures that allow us to move; they are formed when two bones

come together and move against each other without getting damaged. There are many

different types of joints in the human body, and some of them are remarkably complex;

for example, the human wrist involves contact among fifteen different bones. Furthermore,

the relationships among joint-bones change with motion, age or disease. As new image

acquisition and processing methods generate richer-than-ever diarthrodial joint datasets,

the inherent complexity of these data motivates a variety ofmodeling and visualization

techniques designed to assist orthopedics researchers in their analysis.

In the context of diarthrodial joint data, particular emphasis falls on the comparative

analysis and exploration of individual-specific datasets.For example, orthopedic surgeons

often compare the injured joint of an individual with the matching uninjured joint of the

same individual. In a different application, our collaborators in the Bioengineering Depart-

ment are studying the effect of in vivo motion on articular cartilage in the human wrist.

In vivo motion can only be measured in live human subjects. On the other hand, highly-

detailed, unloaded wrist-cartilage geometry can currently only be measured invasively,in

vitro. The invasive procedure involves extracting the bones and cartilage from the joint, im-

mersing them in contrast dye for 24 hours, thenµCT-imaging them. The imaged cartilage

can be represented as a height-field on the supportingin vitro bony surfaces (Fig. 6.1). Our
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Figure 6.1: 2D slice through aµCT-volume image of bone and articular cartilage. The
imaged cartilage (bone tissue shown in white, cartilage in soft grey surrounding the bone
outline) can be represented as a height-field on the supporting bony surface. The height-
field is defined as a collection of base points on the bone surface, the bone surface normal
at that point, and the height along the normal at which the normal intersects the cartilage
external envelope.

collaborators would like to be able to transfer this height field, without folding or tearing

it, on the correspondingin vivo bony surfaces; then apply to the resulted geometry thein

vivo-measured kinematics in order to estimate how cartilage deforms with motion. Both

applications — comparative analysis andin vivo - in vitro data fusion — require establish-

ing a pairwise correspondence between datasets.

Unfortunately, diarthrodial bones like the ones in the wrist or ankle are difficult to set in

correspondence, due to their round and smooth everywhere (potato-like) shape, with rare

clear salient features to aid the matching process. In general, we note that while a number

of techniques are available for modeling, visualizing, andanimating articular-joint data

acquired from a given human individual, the computational and visualization tools needed

to comparatively analyze or combine these datasets are limited.

In this chapter, we present a framework that enables the cross-dataset visual explo-

ration and analysis of diarthrodial joint biomechanics. Our key contribution is a markerless

method for establishing pairwise correspondence between individual-specific diarthrodial

joint datasets. The method is markerless in the sense that itcircumvents the need to iden-

tify corresponding salient geometry features (markers). Based on the markerless dataset

correspondence, we then propose modeling and visualization techniques for exploring and



110

analyzing cross-dataset variation. We demonstrate our framework on human wrist data,

with two applications: transfer of surface-detail (such assoft-tissue insertion sites and car-

tilage location) from cadaver data to in vivo data; and cross-dataset kinematics analysis.

6.3 Related Work

A key step in either the comparative analysis or the merging of geometric datasets is es-

tablishing pairwise correspondence between shape boundaries or surfaces. In standard

biomechanics practice, two similar surfaces are often brought in correspondence by first

aligning them through a method like the Iterative Closest Point (ICP) transform [17], and

then projecting the source surface on the target surface. Because this approach does not

explicitly use shape information, the source surface may either fold or tear during the pro-

jection phase. Alternatively, the problem of pairwise correspondence can be posed as that

of establishing a common parameterization between the two surfaces. The advantage of

cross-parameterization over ICP followed by projection is that: a) it can be constrained

to avoid surface folding and tearing; and b) it provides a convenient common frame of

reference when quantitatively analyzing the differences between two datasets.

Pairwise correspondence for cross-parameterization. While several cross parame-

terization techniques exist, they require in general the existence of an initial pairwise cor-

respondence among several points on the shapes. If the shapes have clear salient features

(e.g., extreme curvature points, or characteristic medialaxis), the pairwise correspondence

process can be automated [106, 112, 102]. In the absence of salient features, pairwise

correspondence is often established using user-defined landmarks [26, 23]; however, the

landmarking operation is time-consuming, error-prone andsubjective even in 2D. In 3D,

manual landmarking can become impractical.

Golland et al. [46] avoid 3D manual landmarking by aligning shapes so that the ob-

ject volume and the center of gravity of a distance transformis the same for all example

shapes. This approach does not guarantee anatomical feature correspondence, although the

resulting alignment is sufficient for shape classification purposes.

Brechbuhler et al [22] automate the pairwise correspondenceprocess by assigning a
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correspondence of each individual shape to the sphere (SPHARM). The correspondence of

SPHARM is determined by aligning the parameterization so that the ridges of the first order

ellipsoid coincide; inherently, the correspondence of objects with rotational symmetry in

the first order ellipsoid is ambiguously defined. The method is thus not applicable to potato-

like shapes with symmetry about a main axis like the diarthrodial shapes discussed in this

chapter. In fact, a comparative study [101] on femoral data found that, in case of rotational

symmetry in the first order ellipsoid, independent of the higher order terms, the SPHARM

correspondence is inappropriate; the correspondence could not be significantly improved

using statistical methods like the minimum description length [31] or DetCov [59].

In contrast, the markerless pairwise correspondence method proposed in this chapter is

automated, works on objects of spherical topology which lack salient features, and is not

susceptible to object rotational symmetry in the first orderellipsoid.

Our correspondence approach is inspired by work in computervision [16, 53], where

2D representations have been used in the context of same-object recognition and object-

pose recovery. Global-shape 2D histograms appear often in computer vision literature, but

in general they are targeted at same-object recognition. While in computer vision applica-

tions the focus is on selecting just a few strong correspondences that are also geometrically

consistent with a rigid-body transform, we introduce new match-selection criteria that al-

low for non-rigid shape variation. We have briefly describedthese match-selection criteria

before in [71].

Cross-parameterization. A number of statistical methods produce cross parameteriza-

tions across training sets of shapes [26, 46, 31, 59]. In these approaches, a statistical model

of shape variation is learned from a training database. The focus of the present chapter is,

however, thepairwisecross-parameterization of shapes, when a training database may not

be available.

Previous approaches [88, 60, 93] to consistent pairwise parameterization of meshes use

mesh simplification to create a base mesh, align the base meshwith each data set, then

re-mesh to establish correspondences. The correspondencedepends heavily on the assign-

ment of the base mesh triangles to patches on the surfaces. Inour shape-correspondence

approach we avoid both the patch creation and re-meshing steps by only pinning a subset
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of points and using an analytical domain.

Exploratory Visualization of Diarthrodial Joints. Cross-individual diarthrodial joint

datasets that combine geometry and kinematic information are relatively new in orthope-

dics, due to the recent development of technologies for tracking in vivo joint kinematics.

Previous attempts at the visual exploration of in vivo jointbiomechanics have therefore

been aimed mostly at understanding individual-specific kinematics [28, 99], mainly by

presenting to the user animations of a specific joint. The lack of salient features makes

finding correspondences in diarthrodial joint geometry difficult. In consequence, previous

kinematic analysis attempts in general disconnect kinematic data from the geometry, and

quantify kinematic differences across datasets by comparing numerically joint-angle se-

ries. In contrast, our approach allows the users to explore diarthrodial joint kinematics in

the context of joint geometry.

The two scalar data visualization techniques we use, color mapping and iso-contouring,

are well known scientific visualization techniques [72].

6.4 Methods

Figure 6.2 summarizes our framework. We use computed-tomography (CT) individual-

specific datasets; the data is first processed in order to extract the articulation-joint geom-

etry and the corresponding joint kinematics. Next, given two such datasets, we set their

geometry in correspondence using a computer-vision and differential-geometry based ap-

proach. We further process the resulting geometry and kinematics in order to explore the

similarities and differences between datasets, and to define meaningful quantitative mea-

sures.

6.4.1 Data Acquisition and Preprocessing

Our data is generated by CT-imaging the articulation bones ofa volunteer in up to twelve

different positions, followed by registration of the bonesacross all volume-images. Each

CT volume-image corresponds to an articulation pose, thus sampling the space of the phys-

iological range of motion.
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Figure 6.2: Biomechanics visual analytics framework. Subject-specific CT-datasets are first
processed in order to extract the relevant joint geometry and kinematics. Two such datasets
are then set automatically in correspondence. We use the correspondence to further explore
and analyze dataset differences.

Through manual segmentation, thresholding, and user interaction, bone surface points

are extracted from an arbitrarily-designated reference CT volume image [28]. Each bone

is then tracked accurately through the sequence of remaining CT volume images (Chap-

ter 2). The tracking procedure reports relative bone-motion from one articulation pose to

another. Each resulting dataset is thus individual-specific, and consists of the diarthrodial

joint geometry and its sampled kinematics.

Bones in the joint are modeled further both implicitly, asscalar distance fields, and

parametrically, asNURBS surfaces. These two types of representation have complemen-

tary strengths for different types of calculations. NURBS surfaces provide an accurate,

smooth, and locally controllable representation of the bones. We use the Geomagic soft-

ware package [43] to generate parametric bone models from the segmented bone surface

points. Distance fields on the other hand, have important advantages for geometric com-

putations such as fast distance calculation. A distance field is a scalar field that specifies

the signed distance from a point to the bone surface. Numerical sign is used to distinguish

the inside from the outside of the bone: negative values are inside the bone, positive val-

ues are outside the bone, zero values are on the bone surface.Distance fields surrounding

each bone are computed from the parametric representation.These distance fields provide
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Figure 6.3: Markerless correspondence pipeline. Corresponding bone instances S and T
are first normalized and resampled. For each surface point, we project the bone instance
on a local 2D subspace and we generate a 2D histogram (for details on the project and bin
operation, see Fig. 6.4). We evaluate all possible matches between all the points on S and all
the points on T, and keep only bipartite matches. Finally, wefilter out weaker matches from
the neighborhood of stronger matches, generating a Poisson-disk distribution of pin-points
on the surface of each mesh.

the support for evaluating kinematic changes in the articulation. We use the Closest Point

Transform (CPT) level-set software package [73] to generatethe distance field representa-

tion from the surface representation. A validation study performed on CT-imaged phantom

data [109] — in which the distance between two spheres was computed through the CPT

software — has shown average errors of under10−3% of the actual inter-sphere distance.

6.4.2 Bone Surface Correspondence

Let S and T be the source and target geometry we wish to set in correspondence. We

begin by generating a set of pin-points on S and T; the correspondence is markerless in

the sense that a pin-point doesn’t necessarily mark a geometrically-salient feature. The

corresponding pin-points are generated using global shapeinformation.

Next, we fit a manifold surface to the geometry of S, then deform the manifold to match

the geometry of T while preserving the pin-point correspondence. Essentially, the mani-

fold deformation extends the pin-point correspondence to the entire surface. The pin-point
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correspondence helps prevent manifold folds and self-intersections during the matching

process. The manifold correspondence allows us to define consistent parameterizations be-

tween datasets — a bijection (i.e., a one-to-one and onto mapping) between the geometry

of each surface and the abstract manifold representation.

We describe the markerless-correspondence and manifold-deformation steps below.

Pairwise Markerless Correspondence

Figure 6.3 summarizes the markerless corresponding procedure. We begin by resampling

the bone surfaces of S and T such that they have approximatelythe same number of ver-

tices. The resampling operation is embedded in the Geomagicpreprocessing software [43].

Corresponding bone surfaces are then normalized with respect to scale and translated so

that their centers of mass are aligned. If the two shapes are significantly far apart, the

surface-alignment is further refined using an ICP transform [17].

The fundamental shape element we use to generate pin-point correspondences is an ori-

ented point, a 3D vertex with an associated direction [53]. Following Johnson and Hebert,

we define an oriented point on the surface of an object using the surface positionp and the

surface normaln at that position. For each oriented point in a mesh we consider the tangent

plane throughp and the line parallel ton throughp. The tangent plane and the line define

a local coordinate system. All the verticesv in the mesh can be mapped on this coordinate

system using cylindrical coordinates as follows:

β(v) = n · (v − p) (6.1)

α(v) =
√

(v − p) · (v − p)− β(v)2 (6.2)

For each pointp on the surface of a bone instance from dataset S, we computeα andβ

coordinates for all the vertices in the mesh. Next, we bin thevertices based on their(α, β)

coordinates into a 2D histogram, with the bin size equal to the median edge length in the

mesh (Fig. 6.4). We found that 15×15 such bins cover in general all vertices in our models.

The result of this step is a collection of 2D histograms, one for each point in the bone mesh.

We repeat the procedure for the corresponding bone in dataset T.
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Figure 6.4: Project and bin operation. For each pointp on the mesh, we consider the local
coordinate system defined by the plane tangent top and the surface normalN at that point.
All other verticesv in the mesh are cylindrically-projected on this local system; we compute
theα andβ cylindrical coordinates (see text for details) of each vertex. Projected points
are finally binned in a 2D histogram.

Because each 2D histogram encodes the coordinates ofall the points on the surface of

an object with respect to the local (α,β) basis, it is a local description of the global shape of

the object. Since each 3D point has associated such a description, we can apply techniques

from 2D image matching to the problem of surface correspondence.

Potential pin-point correspondences between the S and T bone instances are established

by evaluating the value of all possible matches between points on the S model and points

on the T model. We define the value of a match between points on S and pointt on T as

a combination of the image-correlation index between the 2Dhistograms constructed ats

andt and the Euclidean distance between the 3D space coordinatesof s andt:

Kmatch(s, t) = Kcorrel(hist(s), hist(t)) +
1

‖p(s)− p(t)‖
(6.3)

whereKcorrel(hist(s), hist(t)) is the 2D correlation coefficient between the histogram at

s and the histogram att. This value function favors matches that have a strong image-

correlation index and were generated from points with similar space coordinates.

For each surface points, we retain the strongest matched pointt in the other instance,

i.e., the pointt that generated the highestKmatch(s, t) score. The resulting strongest cor-

respondences may not be in a bipartite relationship; i.e., point s1’s strongest match may

be pointt1, while t1’s strongest match may not bes1, but some other points2. In a first

filtering stage, we only keep correspondences that define a bipartite match.
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Figure 6.5: Two wrist bones belonging to different human subjects and their corresponding
pin-points. Pin-points in correspondence are shown in the same color. Right: the 2D-
histograms generated by the two pink corresponding pin-points on the left are remarkably
similar, indicating good shape correlation at these points. Our markerless method generated
this bipartite set of 25 Poisson-disk distributed correspondences in only a few minutes.

Next, bipartite correspondences are ordered according to their Kmatch value. Begin-

ning with the highestKmatch value, we filter out weaker correspondences through a greedy

programming approach, as follows: for each bipartite correspondenceb, in the order of

Kmatch, we remove all other bipartite correspondences which are closer tob than 10× l,

wherel is the median edge length across S and T. The result is a Poisson-disk distribution of

pin-points on the surface of each model. Note that the process through which we generate

a set of pairwise corresponding pin-points is deterministic.

Corresponding pin-points generated on two wrist bones through this markerless method

are shown in Fig. 6.5. The pairwise markerless correspondence method is implemented in

less than 2,000 lines of Matlab code.

Manifold Deformation

To align the surfaces we begin by fitting a default manifold surface to the source geom-

etry S, as described in [47, 48]. Our manifolds are smooth, locally parameterized,C2

continuous surfaces [47]. The overlapped structure of the manifold-surface representation,

which is inspired by differential geometry, has several advantages including flexibility in

shape adjustments without costly constraints, and smooth transitions and uniformity among

patches.

The default manifold we fit to S is roughly the shape of the given bone. Summarizing

the [47] reference, the fitting process essentially “shrinkwraps” the default manifold around
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Figure 6.6: Manifold deformation: default manifold surface fitted to S with pin-points
(left), the original mesh T with corresponding pin-points (middle), and the original mesh
T overimposed with the result of deforming the S manifold to fit T while preserving the
pin-point correspondence (right); in the right image, the pin-points of T and the deformed
manifold are overlapped. The resulted T manifold is free of self-intersections/folds. The
manifold defines a mutually-consistent parameterization between the S surface and the T
surface.

the specific data set. Specifically, we alternate between projecting the S data set points onto

the manifold and solving a least-squares problem to adjust the parametric surface control

points. Once the manifold surface is fit to S, we project the S pin-points onto the fitted

manifold.

Next, we deform the S manifold such that it fits the target geometry T. This time, we

introduce additional constraints into the least-squares problem that pull the S manifold pin-

points to the 3D pin points of T. Although we cannot formally guarantee no folding or self-

intersections during manifold fitting, the use of filtering and of a sufficiently-close starting

position as provided by the pin-point correspondence helpsus avoid folding problems in

practice.

Figure 6.6 shows a default manifold surface fitted to S, together with its pin-points, the

original mesh T with pin-points, and the original mesh T overimposed with the result of

deforming the S manifold to fit T while preserving the pin-point correspondence. Note

that the resulted T manifold is free of self-intersections/folds. The manifold deformation

defines a mutually consistent parameterization between theS surface and the T surface.
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6.4.3 Exploratory Visualization and Analysis

Given two datasets, the markerless correspondence method described earlier allows us to

build a mutually-consistent surface parameterization between the dataset geometries. This

mutually-consistent parameterization enables the exploration of dataset differences.

In order to contrast the kinematics of two datasets, we tracejoint kinematics on the bone

surfaces, as described in [67]. Summarizing this reference, for each bone and joint pose,

we compute at each bone vertex the distance to neighboring bones. We use the distance

field representation to find distances from every vertex in the surface model of one bone to

its neighbor.

Because joint kinematics influence how close two bones come together, and where they

articulate with each other, we can use the inter-bone joint space as a measure of kinematics.

For each bone and space, we define the inter-bone joint space as the cortical surface area on

the bone that is less than a prescribed threshold distance (typically 5mm) from the cortical

surface of a neighboring bone. As two bones move relatively one to another, tracking

through time the location and size of the inter-bone joint space provides insight into the

joint kinematics.

We also compute isocontours on the contact area, each contour showing where the inter-

bone joint space is equal to a constant distance. The area of the inter-bone joint space is

the total area of the surface triangles within the 5mm contour. We characterize the inter-

bone joint-space by its area and by the location of its centroid on the cross-parameterized

surface. These measures and the common parameterization allow our users to compare

quantitatively two datasets.

We visualize inter-bone joint-spaces using color mapping and contouring. Color maps

are generated for each bone so that distance values of surface points are mapped to vary-

ing color saturations (more saturated colors represent shorter distances). Distances larger

than the contact threshold value are neither colored nor contoured and are shown as white

surfaces (Fig. 6.7).
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Figure 6.7: A normal scapholunate joint. Bones are color mapped and contoured. The
saturation of red (darker region in black and white) on bone surfaces represents the distance
to the nearest point on the opposite bone. Redder regions are closer. The maximum distance
visualized is 5 mm. Contour lines are drawn at 0.5 mm intervals. (a) Bones in their correct
anatomical context. (b) Bones rotated to show articulated surfaces more clearly.

6.5 Results

6.5.1 Validation

Pairwise markerless correspondence. We applied our markerless correspondence tech-

nique to wrist bone instances collected from 11 individuals(9 hamate bones, and 4 lunate

bones). For each pair of bones from the same class, 13 to 22 sets of pairwise pin-points

were automatically generated through our method. Because inmedical imaging the cor-

respondence ground truth is only known for synthetic and phantom data, the correctness

of each pin-point pair was visually examined by an expert user. 99.7% of the more than

700 pin-point correspondences generated were judged to be correct (within human expert

accuracy). The bottom orange pin-points shown in Fig. 6.6 are an example of inaccurate

correspondence.

For each pair of bone instances (approx. 250 vertices each),sets of pairwise pin-points

were generated in under two minutes, a tenfold speedup compared to the human expert

performance. We note however that the focus of our work is reduction of user interaction,

and not minimizing running time.

Manifold deformation. Two separate pairs of bone instances (one hamate pair col-

lected from two different individuals, and one lunate pair collected from the same indi-

vidual, left and right arm) were cross-parameterized usingthe markerless correspondence
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followed by manifold surface deformation. The resulted parameterizations were success-

fully verified for no self-intersections and folds.

For the two surface pairs described above we also compared the curvature of the re-

sulted dense surface correspondence. The similarity-based shape comparison uses the cor-

respondence between the objects being compared, and computes the similarity between

corresponding points. The correspondence can be computed from pairs of pin points on the

objects. The similarity is measured as the difference between a shape representation called

the Curvature Map [42]. The curvature map is based on the surface curvature over a region

around a point, and is represented as a 1-D function of the distance to the point. The radius

of the region around the point determines the maximum distance over which the curvature

map can be compared; however, more localized comparisons can be generated by taking

the difference over a subset of this maximum distance. The similarity values — described

in detail in [42] — are associated with a color map in order to plot similarity on the surface

of the object (Fig 6.8). By controlling the range of values associated with the color map,

different ranges of values can be emphasized to indicate regions of similarity or the most

significant differences between corresponding locations on the shapes.

Because the two datasets featured in this experiment were collected from the same

volunteer (left and right arm), we expect curvature dissimilarities due to anatomical shape

variation to be minimal. Figure 6.8 shows that the manifold surface maps regions on S

to regions on T of similar curvature, a good indication that our method attains anatomical

feature correspondence. The small areas of dissimilar curvature appear to correlate with

actual anatomical shape variation between the S and T datasets. Manifold models were

created and deformed in under 30 minutes per dataset.

Exploratory visualization and analysis. Our visualization and analysis technique was

recently applied in a clinical study to 18 forearm datasets [29], normal and matching in-

jured forearm data collected from 9 individuals. In this study, note that the common frame

of reference was defined manually. The approach provided unexpected insight into the

biomechanics of the forearm: although an earlier numericaljoint-angle study had con-

cluded kinematics were not altered significantly by injury,visual exploration of the very

first individual highlighted localized, well-defined changes in the articulation at the distal
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Figure 6.8: Curvature comparison of source and target manifold surfaces: deforming the
manifold surface from Lunate 1 (L1) to Lunate 2 (L2) maps regions on L1 to similar curva-
ture regions on L2. The small areas of dissimilar curvature appear to correlate with actual
anatomical shape variation between the L1 and L2 datasets.

radioulnar joint and potential soft-tissue constraints (see Chapter 3). Further numerical

analysis of the location and size of inter-bone joint spacesacross the 9 individuals showed

these changes were statistically significant [29].

In this study, distance fields and inter-bone joint-spaces were precomputed in under 1

minute per bone. Joint visualizations are displayed on the fly.

6.5.2 Applications

We demonstrate our framework on two applications: bone surface-detail transfer, and

cross-dataset kinematic analysis.

Surface detail transfer. In the first application, our goal is to combine information

collected from different individuals. Limitations in current imaging technology enable

collection of wrist soft-tissue data only for cadavers. On the other hand, wrist motion is

measured in live human subjects. Combining the two types of information — soft tissue

and motion — is important when studying wrist biomechanics.

We use our framework to transfer soft-tissue detail like ligament insertion sites and
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Figure 6.9: Surface detail transfer (ligament insertion site) between the two hamate bone
instances shown in Fig. 6.5. The mutually-consistent parameterization between the two
bone instances results in no folds or tears during transfer.

Figure 6.10: Cartilage transfer between two lunate bones (bones shown in pink, cartilage
in tan). The consistent parameterization between the two lunates results in no folds and no
tears in the cartilage map during transfer.

articular cartilage from one individual to another. In Fig.6.9, the blue areas represent

synthetically-defined ligament insertion sites. The insertion site originally defined on the

pink hamate bone instance is automatically transferred to the white hamate bone instance.

In Fig. 6.10, the cartilage originally defined on the left-side bone instance is automatically

transferred to the right-side bone instance (lunate bones shown in pink, cartilage in tan). In

both examples, the mutually-consistent parameterizationbetween the two bone instances

results in no folds or tears during transfer.

Our Bioengineering Department collaborators are quite interested in using this tech-

nique to combineµCT-imaging cadaver soft-tissue data with in vivo bone surfaces and

kinematic data.

Exploratory kinematic analysis. In our second application we explore the differences
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between normal and injured (scaphoid non-union) kinematics in the wrists of a human sub-

ject. Our data was collected from the injured and uninjured wrists of the same individual.

Figure 6.11 shows a subset of three wrist bones in their correct anatomical context; note

the fractured bone in the right image. In such cases, hand surgeons usually reconstruct the

fractured bone by inserting a screw through the two fragments. Alternatively, they may not

intervene at all, or they may remove completely the bottom fragment from the joint [7].

For a given individual, we wish to understand which approachis the most appropriate.

We trace the inter-bone joint-spacing area with motion (10 joint poses) and compare

location and size using the mutually-consistent parameterization (Fig. 6.12). Visual anal-

ysis of the lunate bone with respect to the scapho-lunate articulation shows no significant

differences between the uninjured and injured joint (Fig. 6.13 first two columns). This sug-

gests that, for this individual, despite injury, the injured scaphoid and lunate bones continue

articulating correctly. Under these circumstances, reconstruction of the scaphoid bone may

appear unnecessary.

However, further analysis of the lunate bone with respect tothe radio-lunate articulation

highlights differences between the uninjured and injured joint (Fig. 6.13 last two columns).

The lunate-radius distance appears to increase in the injured wrist: note that the inner-

most iso-contour in the top images disappears in the bottom images. Also note the distal

(upwards) shift of concentric iso-contours in the injured wrist compared to the uninjured

wrist. Numerical analysis using the common cross-parameterization on the location of the

centroid of concentric iso-contours indicates a distal shift of more than 2 mm. These sur-

prising differences indicate that scaphoid injuries may not impact the articulation nearest

to the scaphoid (scapho-lunate), but the next articulation(radio-lunate).

Of course, one can not draw sweeping conclusions from the exploratory analysis of a

single individual. Our orthopedist collaborators are interested in running this type of anal-

ysis on several individuals with the same type of injury and collecting statistical evidence.

For the time being, they are interested in the exploratory analysis of all the wrist bones of

this injured individual.
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Figure 6.11: Right-wrist and left-wrist radioscapholunatejoints from the same individual.
Following injury, the left-wrist scaphoid bone has been fractured in two. Bones are color-
mapped and contoured. The color saturation on bone surfacesindicates the distance to the
nearest point on the opposite bone or bone-fragment; darkerregions are closer.

Figure 6.12: Pin-point and manifold deformation between the left and right lunate bones
in Fig. 6.11. Left-wrist lunate (injured joint) with pin-points (left), right-wrist lunate with
corresponding pin-points (middle), and the original right-wrist lunate overimposed with the
result of deforming a manifold from the left-wrist lunate tothe right-wrist lunate(right); in
the right image, the pin-points on the two surfaces are overlapped. The manifold defines a
mutually-consistent parameterization between the S surface and the T surface.
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Figure 6.13: Kinematic analysis of the radioscapholunate joint shown in Fig. 6.11 (top
row: lunate bone in the uninjured joint, bottom: lunate bonein the injured joint). The
first two columns show the lunate facet articulating with thescaphoid bone; tracing the
inter-bone joint-spacing area on the lunate shows similar kinematics between the injured
and uninjured scapho-lunate. The last two columns show the lunate facet articulating with
the radius bone. This time, note that the innermost contour in the top images disappears
in the bottom images; the centroid of the concentric iso-contours also shifts upwards in
the bottom images. This indicates that scaphoid injuries may not impact the articulation
nearest to the scaphoid, but the next articulation.
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6.6 Discussion

Our dataset-correspondence method has certain limitations. First, the geometry of the

datasets needs to be fairly similar. Second, we need to be able to resample the geome-

tries into similar distributions of points. These requirements are satisfied in the case of

diarthrodial-joint bones.

When establishing pairwise pin-point correspondences, we use a correlation coefficient

measure. The correlation coefficient is a standard, robust image similarity measure. Al-

though more sophisticated measures have been proposed for special cases where imaging

scale, rotation, and perspective distortions are present,it is not clear that the use of such

alternative measures would be beneficial in our case.

When further filtering pin-point correspondences, we use a greedy programming ap-

proach. Such an approach is not guaranteed to generate a globally optimal set of pin-points,

in terms of correlation across the set. The selected set of correspondences could be im-

proved by using a global optimization approach instead of greedy programming. We note

that summing theKmatch values of all the surviving pin-point corresponding for a given

S-T pair yields an implicit shape-similarity score betweenS and T. In our experiments, the

higher this score, the more visually similar the shapes of S and T appear to be.

When fitting manifold surfaces we rely on projection to determine the correspondence

between the data points and the domain. Problems with folding can arise if projection

gives the incorrect correspondence, for example, if the initial surface is poorly aligned with

the data. We greatly reduce these problems by using an initial surface which is roughly

the right shape and slightly bigger than the data set, and by employing an extra set of

smoothing constraints to the control shape when fitting. These smoothing constraints are

gradually relaxed as the fit is finalized. The addition of pin points also greatly reduces the

chance of folding because the pins pull the surface to the correct area without relying on

projection.
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6.7 Conclusion

I presented in this chapter a framework for the cross-dataset visual exploration and analy-

sis of diarthrodial joint biomechanics. Central to our approach is a markerless method for

establishing pairwise correspondences between individual-specific datasets. The resulted

correspondence allows the users to combine complementary geometry acquired through

different modalities, and thus overcome current imaging limitations. The pairwise cor-

respondence also enables the analysis of kinematic similarities and differences between

datasets.

The approach presented is fully automated and works on objects of spherical topol-

ogy which lack salient features. Unlike previous approaches to pairwise correspondence,

the method is not susceptible to rotational symmetry in the first order ellipsoid. In conse-

quence, our method is applicable to diarthrodial joints like the human wrist or the ankle.

Results demonstrate the technique useful in the study of normal and injured anatomy and

kinematics of diarthrodial joints.

In principle, the method applies to all spherical topology data from the same class, and

should be particularly beneficial in instances where identifying salient object features is a

nontrivial task.

Understanding and quantifying differences across groups of human subjects is impor-

tant in the study of injury mechanisms and prevention, as well as for the design of ortho-

pedic implants. Although many statistical methods for analyzing 3D shape variation exist,

they generally require good pairwise correspondence between the different input shape

samples. In the case of diarthrodial-joint data, the challenge resides in establishing corre-

spondence between inter-individual bone instances where corresponding features are diffi-

cult to identify without a high level of expertise, due to thesmooth, bean-like nature of the

diarthrodial geometry. Our markerless geometry correspondence method successfully ad-

dresses this challenge. The method should be useful as a preprocessing step in the statistical

shape analysis of wrist and ankle data.



Chapter 7

Conclusion

This dissertation presents a data-driven framework for thepredictive modeling of diarthro-

dial joints. We have shown that the data-driven approach allows us to generate subject-

specific, quantifiable, predictive models of complex joints, in spite of current measuring

limitations. The resulting computational models use a hybrid data representation, combin-

ing volumetric, meshless point-based, and manifold-basedcomponents. Each component

representation has strengths for various aspects of the modeling and we combine them

to achieve relatively simple and sufficiently accurate estimations of biologically relevant

measurements.

We instantiated the framework in a system consisting of a collection of computational

modeling, analysis and visualization tools. These tools can be used to predictively model

and understand the anatomy and dynamics of joints, with a potential positive impact on

medical diagnosis and treatment of pathology and injury.

The system we developed takes as input medical images of a joint and generates a

model and simulation of the joint. The model is adaptable to individual differences: it

uses individual-specific bone shapes extracted from the medical images, and customizes

cartilage maps and ligament fibers according to the individual-specific bone geometry and

motion. For example, should the individual develop arthritis (erosion of articular cartilage),

the disease would impact inter-bone spacing measurements,and therefore the thickness of

the cartilage maps we generate and ultimately the simulatedmotion of the joint. Similarly,

should the individual undergo athletic training, trainingcould alter the sampled range of
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motion, and be reflected in the length of the soft-tissue fibers we generate.

The resulting models and simulations are quantifiable, in the sense that they quantify

the difference between two individuals, or the differencesbetween a normal and an injured

joint. The models also have predictive capabilities, in terms of predicting soft-tissue contact

within the joint.

Specific contributions of this work include:

• a framework for the data-driven modeling of anatomical joints; the resulting models

are adaptable to individual differences, are quantifiable,and have predictive capabi-

lities;

• an instantiation of the framework in a system for the predictive modeling of joints;

the models can compute end-conditions for deformable tissues — cartilage contact

and ligament function — as a function of joint motion;

• a sub-voxel accurate method for tracking bone-motion from sequences of CT scans.

Accuracy improvements of more than 74% over the previous state-of-the-art tech-

nique, when compared to the ground-truth motion computed from marked cadaver

data, enables the analysis of soft-tissue deformation withmotion. The method has

also lead to the creation of a wrist motion database of unprecedented detail; the

database spans multiple species, including humans and baboons;

• a novel computational model of ligament fibers that models soft-tissue wrapping on

bones and the afferent motion constraints. The model requires as sole input bone

geometries and kinematics, surpassing current imaging limitations;

• a novel computational volume-preserving height-field model of cartilage maps that

only requires CT-imaged bone geometries and joint kinematics; this model allows us

to overcome current imaging technology limitations;

• a hybrid representation of diarthrodial joints, combiningvolumetric, meshless point-

based, and manifold-based components. Each representation has strengths for vari-

ous aspects of the modeling and we combine them in unique waysto achieve estima-

tions of biologically relevant measurements;
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• a markerless method for cross-individual dataset analysis. The method also allows

users to combinein vitro andin vivo joint data;

• interactive tools for the exploratory analysis of joint data;

• quantitative metrics for characterizing joint kinematics;

• application to several clinical cases: distal radioulnar joint malunion, wrist close-

pack pose, scaphoid non-union.

There are limitations to our work, some due to the data currently available, and some

due to our computational approach. From the complex anatomyof a joint, we model only

the bones, cartilages, and ligaments. Muscle-tendon unitscould be easily incorporated in

our model. However, the forces these units exercise can not be currently inferred auto-

matically from the data; these external forces would have tobe specified as an input, just

like in other joint modeling systems. We do not model skin, fat, the neurovascular system,

or the sac of synovial fluid surrounding the joints. There arelimits to the accuracy and

applicability of our tracking procedure, as discussed in Chapter 2; the method could be

further improved by modeling a more complex tissue structure — for example, one that

would distinguish between trabecular and cortical bone. There are further limitations in

our computational modeling of soft-tissues as discussed inChapters 3 and 4. Someday,

more sophisticated and accurate deformation models based for example on finite element

modeling techniques may replace our deformation approach,just like progress in imaging

technology may supersede our kinematics-based estimates of soft-tissue geometry. We

made several further assumptions in our dynamics simulation, as detailed in Chapter 5.

In terms of directions of future work, we note that the ideal,fully-predictive joint model

described in Chapter 1 still does not exist. That ideal model would allow doctors to simulate

sophisticated surgical procedures and therapies, and animators to generate automatically-

tuned, convincing character animations.

A natural next phase is trying to develop bone-cartilage-ligament models that can be

simulated dynamically. Our dynamics experiment in Chapter 5shows it is possible to

simulate the motion of one bone under the action of gravity. Next, motion interpolated

between two nearby sampled poses could be applied to all the bones but one; the free bone



132

should also interpolate the sampled poses. Next, we should be able to replicate the effect

of wrist injury on bone kinematics. For example, we could virtually fracture the scaphoid

in the healthy scapho-lunate joint of Chapter 6 and validate the resulting simulation by

comparing it with the sampled motion of the matching injuredscapho-lunate joint, also

shown in Chapter 6.

The development of fully-predictive joint models opens further research directions. For

example, what level of anatomical realism is necessary or useful when we design ortho-

pedic implants and robotic arms, versus animating Pixar-like characters? To perform such

comparisons, it would be necessary to first integrate into the joint model the superior layers

— muscles, fat and skin. Validation and quantitative evaluation tools will be increasingly

necessary. A step further, we investigate biological systems of increasing complexity. Such

systems have multiple interacting subsystems — from cellular to the full multi-level virtual

human [4]— and are currently developed independently [105,116, 118]. To interface such

subsystems, modeling and simulation standards will have tobe proposed and developed.

The collection of tools presented in this dissertation solves significant challenges in the

process of integrating measured data into the predictive modeling of diarthrodial joints. The

developed tools and applications should be beneficial in thestudy of pathology and injuries,

including arthritis, ligament tears, bone fractures, and surgical reconstructions. The tools

and methodologies we demonstrate on forearms and wrists will be generally useful for the

study of bone, cartilage and ligament interactions in othercomplex multi-articular joints,

including the foot and spine, as well as in simpler joints such as the knee, elbow, and

human shoulder. The tools are also applicable to animal studies, in basic biology research.

Ultimately, this work creates a modeling approach that has the potential to more simply and

efficiently explain and predict the underlying biomechanics of musculoskeletal systems.



Appendix A

Orthopedics Terminology

orthopedicsalsoorthopaedics, the field of medicine and surgery that deals with the injuries

and other disorders of the musculoskeletal system;

musculoskeletal of, relating to, or involving both musculature and skeleton;

diarthrodial joints also known as diarthroses or synovial joints (freely movable articula-

tions). This class includes the greater number of the jointsin the body; the other two classes

are: synarthroses or immovable joints, and amphiarthrosesor slightly movable joints. In

a diarthrodial joint the contiguous bony surfaces are covered with articular cartilage, and

connected by ligaments;

soft tissue tissues that connect, support, or surround other structures and organs of the

body. Soft tissue includes muscles, tendons, fibrous tissues, fat, blood vessels, nerves, and

synovial tissues. In this dissertation, soft-tissue denotes articular cartilage and ligaments;

articular cartilage hydrated soft tissue covering the surfaces of bones at the joint. Artic-

ular cartilage is multi-layered. A thin superficial layer provides a smooth surface for bones

to slide against each other. Deeper than that are intermediate layers, which are mechan-

ically designed to absorb shocks and distribute the load efficiently. The deepest layer is

highly calcified, and anchors the articular cartilage to thebone;
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ligament in its most common use, a band of tough fibrous connective tissue composed

mainly of long, stringy collagen fibres. Ligaments connect bones to other bones to form a

joint and provide joint stability. (They do not connect muscles to bones; that is the function

of tendons.) Some ligaments limit the mobility of articulations, or prevent certain move-

ments altogether. The whole of a diarthrosis is contained bya ligamentous sac;

synovial fluid a thick, stringy fluid found in the cavities of diarthrodial(synovial)joints.

With its egg-like consistency (synovialcomes from Latin for ”egg”), synovial fluid reduces

friction between the articular cartilage and other tissuesin joints to lubricate and cushion

them during movement;

trabecular tissue also known as spongy bone; a type of osseous tissue with a low density

and strength but very high surface area, that fills the inner cavity of bones;

cortical tissue also known as compact bone; one of two main types of osseous tissues.

Cortical bone is dense and forms the surface of bones, contributing 80% of the weight of

a human skeleton. It is extremely hard, formed of multiple stacked layers with few gaps.

The other major type of bone tissue is trabecular tissue;

focal changes localized (as opposed to whole) joint changes. For example,a focal lesion

in cartilage is a defect that is well defined, localized, suchas a small hole punched through

the cartilage. Changes in the location of the contact area between articulating bones may

indicate potential focal damage;

in vitro outside the living body and in an artificial environment;

in vivo inside the living body;

carpus wrist; the bones of the wrist;
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carpal of or relating to the carpus;

scaphoid one of the eight wrist (carpal) bones;

lunate one of the eight wrist (carpal) bones;

radius one of the two forearm bones;

radial of or relating to the radius;

ulna one of the two forearm bones;

ulnar of or relating to the ulna;

metacarpals a bone of the part of the hand or forefoot between the carpus and the pha-

langes that typically contains five more or less elongated bones when all the digits are

present;

patellar relating to thepatella, a thick flat triangular movable bone that forms the ante-

rior point of the knee and protects the front of the joint – called also kneecap;

temporomandibular of, relating to, being, or affecting the joint between the temporal

bone and the mandible (jaw) that allows for the movement of the mandible;

meniscus a fibrous cartilage within a joint especially of the knee;

distal situated away from the point of attachment or origin or a central point, especially

of the body;
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proximal next to or nearest the point of attachment or origin, a central point, or the point

of view; especially: located toward the center of the body;

volar relating to the palm of the hand or the sole of the foot; specifically: located on the

same side as the palm of the hand;

palmar of, relating to, or involving the palm of the hand;

dorsal of, relating to, or involving the back of the hand;

neutral the default, rest position of a joint;

pronation rotation of the forearm so that the palm faces backwards or downwards;

supination rotation of the forearm and hand so that the palm faces forward or upward;

pronosupination rotation of the forearm and hand, starting with the palm facing back-

wards or downwards and ending with the palm facing forward orupward;

flexion a bending movement around a joint in a limb (as the knee or elbow) that de-

creases the angle between the bones of the limb at the joint; also, a forward raising of the

arm or leg by a movement at the shoulder or hip joint;

extension an unbending movement around a joint in a limb (as the knee or elbow) that

increases the angle between the bones of the limb at the joint;

arthritis inflammation of joints due to infectious, metabolic, or constitutional causes;

also : a specific arthritic condition;

osteoarthritis arthritis marked by degeneration of the cartilage and bone of joints.
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