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Distributed and parallel computing environments are becoming inexpensive and commonplace.

The availability of large numbers of CPU’s makes it possible to process more data at higher

speeds. Stream-processing systems are becoming more important, as broad classes of applications

require results in real-time. Since load can vary in unpredictable ways, exploiting the abundant

processor cycles requires effective load management techniques. Although load distribution has

been extensively studied for the traditional pull-based systems, it has not yet been fully studied

in the context of push-based continuous query processing.

Push-based data streams commonly exhibit significant variations in their rates and burstiness over

all time-scales. Even though medium-to-long term load variations can be dealt with using dynamic

load migration techniques rather effectively, short-term variations are much more problematic -

since capturing such variations and reactively migrating load can be prohibitively expensive or

even impractical. We need robust solutions whose performances do not degrade significantly in

the presence of time-varying load.

In this dissertation, we present both a static operator distribution technique and a dynamic op-

erator re-distribution technique for a cluster of stream processing engines. First, for operators

that are impractical to be moved between processing engines on the fly, we propose a resilient

static operator distribution algorithm that aims at avoiding overload by maximizing the feasible

space of the operator distribution plan. Second, for operators with relatively small load migration

overheads, we propose a correlation-based dynamic operator distribution algorithm that aims at

minimizing end-to-end latency by minimizing load variance and maximizing load correlation. Our

experiment results quantify the effectiveness of the proposed approaches and demonstrate that

they significantly outperform traditional operator distribution approaches.
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Chapter 1

Introduction

Recently, a new class of applications has emerged in which high-speed streaming data must be

processed in real-time with very low latency. Prime examples of such applications include Finan-

cial data processing (e.g., high-frequency automated trading, real-time risk management), network

traffic monitoring and intrusion detection, sensor-based environment monitoring (e.g. building tem-

perature monitoring, highway traffic monitoring), moving object tracking (e.g., battlefield vehicle

tracking), RFID-based equipment tracking (e.g., theft prevention, library book tracking), medical

applications (e.g., patient health condition monitoring) and multiple user real-time on-line games.

It has been widely recognized that traditional Database Management Systems (DBMSs), which

have been oriented towards business data with low update frequencies, are inadequate to process

large volumes of continuous data streams with high speed [20, 11, 40, 8]. As a result, a new

class of Stream Data Management Systems (SDMSs) has been developed, including Aurora [4],

STREAM [58], TelegraphCQ [23] and Niagara [25]. SDMS breaks the traditional paradigm of

request-response style processing, in which a finite answer is generated for each query sent to the

system. Instead, users register queries in an SDMS that specifies their interests over potentially

unbounded data streams. Based on these queries, SDMS continuously processes the incoming data

streams from external data sources and delivers potentially unbounded results to the user. These

specialized queries are also called continuous queries.

The Aurora Stream Processing Engine, which was developed at Brandies University, Brown

University and M.I.T., is a data-flow-based continuous query processing engine. In Aurora, queries

are represented by directed acyclic data-flow diagrams, as shown in Figure 1.1. Such queries are

also called query graphs or query networks. The boxes in a query graph represent continuous

query operators, which process and refine the input steams continuously to produce results for

waiting applications. The arrows in a query graph represent data streams flowing through the

continuous query operators. These operators are typically modifications of the familiar operators

of the relational algebra to deal with the ordered and infinite nature of streams. In Aurora, queries

are pre-registered in the processing engine; input data streams are pushed to the system from

external data sources and get processed when they pass through the query graphs.
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Figure 1.1: Stream processing query graph.
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Figure 1.2: Distributed Stream Processing.

In stream processing domains, one observes increasing stream rates as more and more data

is captured electronically, putting stress on the processing ability of stream processing systems.

At the same time, the utility of results decays quickly demanding shorter and shorter latencies.

Clusters of inexpensive processors allow us to bring distributed processing techniques to bear on

these problems. Consequently, Distributed Stream Processing Systems (DSPSs) become a natural

extension to the centralized stream processing engines to enable the scalability and availability

that stream-based applications demand [26, 73, 13, 92].

Borealis [3] is a follow-on project of the Aurora system. It extends the core stream processing

functionality from Aurora and enables queries to be processed in a distributed fashion. Figure 1.2

illustrates a typical configuration of the Borealis DSPS in which a query network is distributed

across multiple machines. A Borealis DSPS contains multiple Borealis nodes (machines) with each

node running a single Aurora engine. These nodes collaborate with each other for the benefit of

the whole system. For example, if one node become overloaded, some operators can be moved out
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Figure 1.3: Stream rate variations in network traffic traces.

of the overloaded node to lightly loaded nodes.

The specific operator distribution plan has an enormous impact on the performance of the

resulting system. As the load changes, this mapping will need to change in order to deal with new

hot spots. The process of forming the initial mapping and of dynamically redistributing operators

is the topic of this dissertation.

1.1 Challenges

While load distribution has been studied extensively in traditional parallel and distributed sys-

tems [34, 42, 15], the operator distribution problem has not yet been fully studied in the context

of push-based stream processing. Distributed stream processing systems have two fundamental

characteristics that differentiate them from traditional parallel database systems. First, stream

processing tasks are long-running continuous queries rather than one-time parallel queries. In tra-

ditional parallel systems, the optimization goal is often minimizing the completion time of a finite

task. In contrast, a continuous query has no completion time; therefore, we are more concerned

with the latency of individual results.

Second, the data in stream processing systems is pushed from external data sources. Load in-

formation needed by task allocation algorithms is often not available in advance, not controllable,

and varies significantly and over all time-scales. Medium and long term variations arise typically

due to application-specific behavior; e.g., flash-crowds reacting to breaking news, closing of a stock

market at the end of a business day, temperature dropping during night time, etc. Short-term

variations, on the other hand, happen primarily because of the event-based aperiodic nature of

stream sources as well as the influence of the network interconnecting data sources. Figure 1.3

illustrates such variations using three real-world traces [1]: a wide-area packet traffic trace (PKT),

a wide-area TCP connection trace (TCP), and an HTTP request trace (HTTP). The figure plots



4

the normalized stream rates as a function of time and indicates their standard deviation. Note

that similar behavior is observed at other time-scales due to the self-similar nature of these work-

loads [30, 51].

A common way to deal with time-varying, unpredictable load variations in a distributed setting

is dynamic load distribution. This approach can effectively handle medium-to-long term variations

as (1) these persist for relatively long periods of time and are thus rather easy to capture, and (2)

the overhead of load redistribution is amortized over time. Neither of these properties holds in

the presence of short-term load variations. Capturing such transient variations requires frequent

statistics gathering and analysis across distributed machines. Reactive load distribution requires

operator migration, a process which involves multi-node synchronization and state migration. As

a concrete example of the cost of this process, in Borealis DSPS, run-time operator migration

for stateless operators takes on the order of few hundreds of milliseconds in a LAN environment.

Operators with larger state size, such as aggregate operators with many intermediate results and

SQL read/write operators, may take much longer migration time depending on how much data has

to be transferred. Even worse, some systems do not even provide support for dynamic migration

and thus need to interrupt processing to re-distribute the operators. After an operator migration

process finishes, the load burst that triggers this process might have disappeared. And very likely,

another load burst may cause these operators to be moved again. As a result, dealing with short-

term load fluctuations by moving operators frequently can be prohibitively expensive or even

impractical.

Moreover, even for medium-to-long term load variations and operators with relatively small

migration overheads, we should avoid moving operators as much as possible. Moving operators

from one node to another node often incurs undesirable performance during the migration process

because the execution of the operators to be moved needs to suspended and all their input data

items must be delayed in this process. The jitters in the end-to-end latency caused by operator

migration can be very bad for time-sensitive applications such as missile tracking and real-time

stock trading. Therefore, we need a robust operator distribution plan that can sustain load bursts

without moving operators or, at least, minimize the use of operator migration.

On the other hand, traditional dynamic load balancing strategies that only consider the av-

erage load of the processing operators do not yield good performance in the presence of bursty

or fluctuating input stream rates. These algorithms are designed for pull-based systems where

load fluctuation occurs as different queries are sent to the system. In a push-based system, load

fluctuation occurs in the arrival rates of the streams. In this case, even when the average load of a

node is not very high, a node may experience a temporary load spike and data processing latencies

can be significantly affected by the duration of the spike.

Example 1: For instance, consider two operator chains with bursty input data. Let each

operator chain contain two identical operators with a selectivity of one. When the average input

rates of the two input streams are the same, the average load of all operators are the same. Now
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Figure 1.4: Two operator distribution plans of the same query graph.
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Figure 1.5: Comparison of different operator mapping plans with fluctuating load.

consider two operator mapping plans on two processing nodes. In the first plan, we put each of

the two connected operator chains on the same node (call this the connected plan, as shown in

Figure 1.4(a)). In the second plan, we place each component of a chain on different nodes (call this

the cut plan, as shown in Figure 1.4(b)). Assume that the CPU overhead for data communication

is negligible, and bandwidth is not a bottleneck of the system. There is no difference between

these two plans if we only want to balance the average load of the two nodes. However, suppose

the load burst of the two input streams happens at different times, i.e., when the input rate of the

first chain is high, the input rate for the second chain is low and vice versa. Then very different

performances will result from these two mapping plans. Figure 1.5 shows an example performance

graph for this kind of workload in which the burst duration and the normal duration are both 5

seconds, and the high (bursty) input rate is twice the low (normal) input rate.

Putting connected operators on different nodes, in this case, achieves much better performance

than putting them on the same node (ignoring bandwidth considerations for now). The main
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Figure 1.6: Feasible set on input stream rate space.

difference between these two mapping plans is that since the two input bursts are out of phase, the

cut plan ensures that the load variation on each node is very small. In the connected plan, it is

much larger. This simple example shows that the average load level is not the only important factor

in load distribution. The variation of the load is also a key factor in determining the performance

of a push-based system. Thus, to minimize data processing latencies we need an approach that

can avoid temporary overload and minimize load variance on each node as much as possible.

1.2 Contributions

In this dissertation, we propose two novel operator distribution algorithms to cope with bursty

and unpredictable load variations. One of the algorithms focuses on the static distribution of the

operators with relatively large migration overheads (e.g., SQL read/write operators). We call these

operators “sticky” operators. The optimization goal of this algorithm is to keep the system feasible

for unpredictable load variations without the action of operator migration. The other algorithm

focuses on the initial distribution and dynamic re-distribution of the operators with relatively small

migration overheads (e.g., Filter, Union operators). We call these operators “floating” operators.

The optimization goal of this algorithm is to minimize the average end-to-end data processing

latency and avoid frequent operator migration under bursty workloads.

1.2.1 Static Operator Distribution Contributions

For the static distribution of sticky operators, we seek a resilient operator distribution plan that

does not become overloaded easily in the presence of unpredictable input rates. Standard load

distribution algorithms optimize system performance with respect to a single load point, which is

typically the load perceived by the system in some recent time period. The effectiveness of such an

approach can become arbitrarily poor and even infeasible when the observed load characteristics

are different from what the system was originally optimized for. Resilient distribution, on the other

hand, does not try to optimize for a single load point. Instead, it enables the system to “tolerate”

a large set of load points without operator migration.

More specifically, we model the load of each operator as a function of the system’s input
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stream rates. For given input stream rates and a given operator distribution plan, the system is

either feasible (none of the nodes are overloaded) or overloaded. The set of all feasible input rate

combinations defines a feasible set. Figure 1.6 illustrate an example of a feasible set for two input

streams. For unpredictable workloads, we want to make the system feasible for as many input rate

points as possible. Thus, the optimization goal of resilient operator distribution is to maximize

the size of the feasible set.

In general, finding the optimal operator distribution plan requires comparing the feasible set

size of different operator distribution plans. This problem is intractable for a large number of

operators or a large number of input streams. In this dissertation, we present a greedy operator

distribution algorithm that can find suboptimal solutions without actually computing the feasible

set size of any operator distribution plan.

More specifically, we formalize the resilient operator distribution problem for systems with

linear load models, where the load of each operator can be expressed as a linear function of system

input stream rates. We identify a tight superset of all possible feasible sets called the ideal feasible

set. When this set is achieved, the load from each input stream is perfectly balanced across all

nodes (in proportion to the nodes’ CPU capacity). As a result, in this case, the loads of all nodes

are always perfectly balanced no matter what the system’s input stream rates are.

The ideal feasible set is in general unachievable, because the load of each input stream can

not be arbitrarily partitioned. We propose two novel operator distribution heuristics to make the

achieved feasible set as close to the ideal feasible set as possible. The first heuristic tries to balance

the load of each input stream across all nodes. The second heuristic focuses on the combination

of the “impact” of different input streams on each node to avoid creating system bottlenecks. We

then present a resilient operator distribution algorithm that seamlessly combines both heuristics.

In addition, we present algorithm extensions that take into account the communications costs

and knowledge of specific workload characteristics (i.e., lower bound on input stream rates) to

optimize system performance.

Furthermore, we present a generalization of our approach that can transform a nonlinear load

model into a linear load model by introducing new variables. Using this transformation, our

resilient algorithm can be applied to any system.

Our study is based on extensive experiments that evaluate the relative performance of our

algorithm against several other load distribution techniques. We conduct these experiments using

both a simulator and the Borealis prototype on real-world network traffic traces. The results

demonstrate that our algorithm is much more robust to unpredictable or bursty workloads than

traditional load distribution algorithms.

1.2.2 Dynamic Operator Distribution Contributions

For the floating operators, we propose a correlation-based dynamic operator distribution algorithm

that redistributes operators adaptively according to the most recent load patterns. Traditional dy-

namic load distribution algorithms balance the average load of processing nodes to eliminate hot
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spots. However, for a push-based system with bursty workload, even when the average load of a

node is not very high, a node may experience a temporary load spike and data processing latencies

can be significantly affected by the duration of the spike. The correlation-based operator distribu-

tion algorithm, on the other hand, not only balances the average load of the nodes dynamically,

but also minimizes the load variance on each node. The latter goal is achieved by exploiting the

ways in which the stream rates correlate across the operators.

More specifically, we represent operator and node loads as fixed length time series. The cor-

relation of two load time series is measured by the correlation coefficient, which is a real number

between -1 and 1. Its intuitive meaning is that when two time series have a positive correlation

coefficient, then if the value of one time series at certain index is relatively large (in comparison

to its mean), the value of the other time series at the same index also tends to be relatively large.

On the other hand, if the correlation coefficient is negative, then when the value of one time series

is relatively large, the value of the other tends to be relatively small. Our algorithm is inspired

by the observation that if the correlation coefficient of the load time series of two operators is

small, then putting these operators together on the same node helps in minimizing the total load

variance in the system. On the other hand, if the correlation coefficient of the load time series of

two operators is large, then separating the operators to different nodes is better.

The intuition of correlation is also the foundation of the other idea in our algorithm; when

making operator allocation decisions, we try to maximize the correlation coefficient between the

load time series of different nodes. When the load correlation coefficient between two nodes is

large, if the load of one node increases, the load of the other node also tends to increase, and if the

load of one node decreases, the load of the other node also tends to decrease. As a result, the load

of the two nodes are naturally balanced without operator migration. By maximizing the average

load correlation between all node pairs, we can minimize the number of load migrations needed.

Later, we will see that minimizing the average load variance also helps in maximizing the

average load correlation, and vice versa. Thus, the main goal of our load distribution algorithms

is to produce a balanced operator mapping plan where the average load variance is minimized or

the average node load correlation is maximized. Finding the optimal solution for such a problem

requires exhaustive search and is, similar to the graph partitioning problem, NP hard [38]. In this

dissertation, we propose a greedy algorithm that finds a sub-optimal solution in polynomial time.

The key idea of our algorithm is to favor putting an operator on a node if the operator and the

node have a small load correlation coefficient, and to avoid putting an operator on a node if they

have a large load correlation coefficient.

We present both a global operator mapping algorithm and some pair-wise load redistribution

algorithms. The global algorithm is mainly used for the initial placement of floating operators

(after the static placement of the sticky operators). After global distribution, we will use pair-wise

algorithms to move floating operators to adapt to load changes. The advantage of using pair-wise

algorithms is that it does not require as much load migration as the global algorithm.

Our experimental results show that the performance of our algorithm is very close to the
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optimal solution and the correlation based dynamic operator distribution algorithm significantly

outperforms the traditional dynamic operator distribution algorithms under a bursty workload.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we present an overview of

the Aurora/Borealis stream processing prototype. In addition, we introduce the load models and

other definitions and notations used throughout this dissertation. In Chapter 3, we formalize the

static and dynamic operator distribution problem for distributed stream processing. We represent

the detail load management techniques for static operator distribution and dynamic operator

distribution algorithm in Chapter 4 and Chapter 5 respectively. We discuss the experimental

results in Chapter 6 and present the related work in Chapter 7. Finally, in Chapter 8, we conclude

and discuss possible areas for future work.



Chapter 2

Background

Our work is an integrated part of the Aurora/Borealis stream-processing project. In this chapter,

we provide an overview of the Aurora Data Stream Processing Engine and the Borealis Distributed

Stream Processing System.

2.1 The Aurora Stream Processing Engine

Aurora is a data stream processing engine on a single machine that is designed to process continuous

queries over unbounded data streams. It is one of the pioneers of stream data management systems

that were developed in recent years. In what follows, we provide an overview of the major features

of Aurora.

2.1.1 Data Model

In Aurora, a data stream is defined as a sequence of data items ordered by some attributes of

the data or by the sequence number of the data. Each data item (also called a tuple) in a stream

constrains several fields called attributes. The data type and length of each attribute is defined as

the schema of the stream. All data items of a stream must have the same schema. A data stream

is an append-only data structure in that no data item can be deleted from a stream and newly

arrived data are always appended to the end of the stream.

2.1.2 Query Model

Aurora uses acyclic boxes-and-arrows-based data-flow diagrams to represent data processing tasks,

with boxes representing continuous query operators and arrows representing data streams. The

output steam of an operator can split to multiple data streams and go to different downstream

operators. Some operators have multiple input streams.

To make the applications easy to write, Aurora provides a set of primitive operators that

can filter, aggregate, transform and merge input data streams to produce output of interest. In

10
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addition, it also supports user defined operators to accomplish more complicated tasks. We now

describe the core Aurora operators that are commonly used in stream processing applications.

More detailed description of these operators appears in Abadi et al. [4].

• Filter extends the Selection operator in the relational algebra. The simplest Filter operator

applies predicates to input tuples and outputs those that satisfy the predicates. It can also

act like a switch statement that routes input tuples to alternative streams based on non-

overlapping predicates.

• Map is a generalized Projection operator in the relational algebra. It transforms an input

tuple into an output tuple by applying a function to the attributes of the input tuple.

• Union merges two or more input streams into a simple output stream. All its input streams

must have the same schema. Union does not enforce any order on the output stream. Tuples

are usually processed first-in-first-out.

• An Aggregate operator applies an aggregate function such as sum, count, average, maximum

and minimum on sub-sequences of its input stream. Because data streams are potentially un-

bounded and stream processing operators cannot hold infinitely many data items to produce

output results, Aurora defines windows over data streams so that operators can be applied on

subsequences of data streams instead of entire data streams. A window on a data stream is

defined as an interval over the ordering attributes of the stream or over the sequence number

of the stream. A sliding window is defined as a sequence of windows with the same inter-

val size but different starting values. The difference between the starting times of adjacent

windows in a sliding widow is called the advance step. For example, suppose stream S has

timestamp attribute T and another attribute A. If we want to know the average value of

attribute A over the most recent one minute every second, we can use an Aggregate operator

that computes the average value of A over a sliding with size one minute and advance step

one second.

The input stream of an Aggregate operator can be partitioned into sub-streams using the

group by statement. Each sub-stream has its own sliding window. A window is opened in an

Aggregate operator when the first tuple that falls into this window arrives. It is closed after

all tuples in this window arrive, or when this window times out (the longest time a window

can stays open is specified by the timeout statement.). An output tuple is generated when

a window is closed. Before all the tuples of an open window arrive, an Aggregate operator

must keep certain information about this open window (usually a summary of all the tuples

that have arrived) in order to produce the output tuple. These data are collectively called

the state of the Aggregate operator. The state size of an Aggregate operator is usually

proportional to the number of open windows of the operator.

• Join extends the Join operator in the relational algebra. To deal with the unbounded nature

of data streams, it enforces a window on the tuple pairs that can be matched against each
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Figure 2.1: Network traffic monitoring query example.

other. For example, suppose a Join operator with predicate P has input stream S1 ordered

by attribute A, and input stream S2 ordered by attribute B. It defines a window w on the

ordering attributes. If tuple u from S1 and tuple v from S2 satisfy the condition

|u.A − v.B| ≤ w

and predicate P , then an output tuple is produced by concatenating u and v. A Join operator

must keep tuples that previously arrived available to match with tuples that will arrive in

the future. A tuple can be discarded only if no future tuples can match with this tuple. The

state of a Join operator consists of all history tuples that are kept in the operator. The state

size of a Join operator is usually proportional to the product of its window size and input

stream rates.

• SQL-read and SQL-write operators query and update relational database tables for each

tuple received. The database tables can be considered as the states of these operators.

Example 2: Figure 2.1 illustrates a network traffic monitoring query diagram, which is com-

posed of commonly used operators introduced above. The input streams of this query diagram

are the network packet traces collected from different network traffic monitors. Each input tuple

contains the following fields: timestamp, source IP address, source port, destination IP address,

destination port and packet size. The input streams from different monitors are merged together

by a Union operator. The output of the Union operator splits into two streams. One streams goes

to an aggregate operator that counts the number of packets from each source endpoint (IP and

port) in each second. The other stream goes to an aggregate operator that computes the average
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Figure 2.2: Aurora stream processing model.

packet size of each source endpoint in each second. The Filter operator following the first Aggre-

gate operator is used to output the source endpoints that send many packets in each second. The

Filter operator following the second Aggregate operators is used to output the source endpoints

that send small packets on average in each second. The Join operator matches the output tuples

of the two Filter operators to output the source endpoints that send many small packets in each

second.

2.1.3 Processing Model

Figure 2.2 illustrates the basic stream processing model in Aurora. When an input tuple arrives

in the system, it is first put into the input queue of the operator that processes this tuple. All

operators with non-empty input queues are eligible for processing. The scheduler determines the

processing sequence of all eligible operators based on certain scheduling policy [21]. The output

tuple of an operator is either routed back to the input queues of its downstream operators or

pushed out of the system.

2.2 The Borealis Distributed Stream Processing System

Borealis is a second-generation distributed stream processing engine. It inherits core stream pro-

cessing functionality from Aurora and distribution functionality from Medusa [2, 95]. It extends

both systems with the ability to
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Figure 2.3: Borealis node architecture.

• Distribute queries across multiple machines and operates collaboratively.

• Support dynamic load migration by moving operators from one machine to another machine

on the fly.

• Tolerate node and network failures and accomplish fast recovery.

• Integrate various optimization techniques such as load management, load shedding and high

availability in a single framework.

More features and optimization techniques of Borealis are presented in Abadi et.al. [3]. In what

follows, we present the high level architecture of the Borealis system to set the context of the work

of this dissertation.

2.2.1 Borealis Node

The core components of the Borealis Distribute Stream Processing System are the Borealis nodes.

Each Borealis node is a single stream processing engine on a physical machine. It collaborates

with its peer Borealis nodes as well as other components in the system through Remote Procedure

Calls (RPCs) [17].

Figure 2.3 illustrates the major components of a Borealis node. The actual stream processing

takes place in the Query Processor. We now briefly introduce each of its components:

• The Data Path component is responsible for the data communication of the Borealis Node.

It receives data streams from data sources or other Borealis nodes. It also sends data stream

to application clients or other Borealis nodes.
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• Admin is an interface between the local Query Processor and all other Borealis nodes, clients,

and other components in the system. It handles incoming requests in the form of Remote

Procedure Calls. These requests can modify the local query diagram by adding, deleting or

moving operators. The Admin component handles all the detailed steps of these modifica-

tions.

• The Local Catalog holds the meta-data of the local query diagram. The meta-data include

stream schemas, operator and stream descriptions and the topology of query diagrams.

• The Statistics Manager holds the runtime statistics about the local stream processing engine,

such as data rates, CPU utilization of various operators etc.. Other Borealis nodes or other

components in the system can request these statistics through the Remote Procedure Calls.

• The embedded Aurora stream processing engine is the core piece of a Borealis node. It

receives input streams through the Data Path component, processes these data streams, and

sends output streams to other nodes or clients through the Data Path component. It also

collects runtime statistics and stores them in the Statistics Manager.

Other than the Query Processor, a Borealis node also has monitors, which monitor the state

of the local Borealis node and its peer Borealis nodes, and optimizers, which communicate with

their peers to take collaborative optimization actions. All the control messages between these

components and between the Borealis nodes go through a transport independent RPC layer which

enables the components to communicate in the same manner no matter whether they are local or

remote.

2.2.2 System Architecture

Borealis nodes can be configured to fit different processing environments with processing elements

as small as sensors and as large as servers. In this dissertation, we assume a physical architecture

of a loosely coupled shared-nothing computer cluster. Each Borealis node runs on a server of the

cluster. All Borealis nodes are connected by a high bandwidth local network.

Figure 2.4 illustrates a typical setup of a Borealis stream processing cluster with a centralized

optimizer that coordinates the processing and resource allocation of the Borealis nodes. The Global

Optimizer may contain components other than the ones shown in Figure 2.4. In this dissertation,

we we only present the components that are related to the load management problem below:

• As its name indicates, the Proxy component acts as a proxy between users and Borealis

nodes. Users send queries to the system through the Proxy server. They can also specify

how to deploy the queries initially. The Proxy server parses the queries and deploys the

operators over the Borealis nodes.

• The Global Catalog is part of the Global Optimizer. It holds the meta-data about all query

diagrams in the system. Whenever an operator is added or removed from a node, the Local
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Figure 2.4: Borealis system architecture.

Catalog of the node sends an update message to the Global Catalog. Thus, the Global

Catalog always contains the complete description of all the operators in the system as well

as their locations with some delay.

• The Global Load Manager is part of the Global Optimizer. It reads the topology and deploy-

ment information of the query diagrams from the Global Catalog. It also requests runtime

statistics of each node from the nodes’ Statistics Manager components. After gathering all

the necessary information in a warm up period, the Global Load Manager determines a new

initial operator distribution plan. It then moves operators between the nodes according to

the new plan. If there are operators that can not be moved between the nodes, it simply

restarts the system with the new operator distribution plan as the initial plan. The Global

Load Manager also monitors the load of the nodes and operators during the entire stream

processing process. Periodically, it determines whether some operators should be moved

from one node to another node. The algorithms that the Global Load Manager follows to

place the opreators initially and to re-distribute the operators on the fly are introduce in the

remainder of this dissertation.

2.2.3 Operator Migration

In Borealis, most operators (e.g., Filter, Map, Union, Aggregate, Join) provide interfaces that

allow them to be moved on the fly. For practical purposes, we consider SQL-read and SQL-write
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Figure 2.5: Operator migration time for moving a set of stateless operators.

operators to be immovable since their effective state can be huge. We also avoid moving Aggregate

and Join operators if their state sizes are very large.

To move a set of operators from one node to another node, the Global Load Manager sends

a PRC request to the sending node telling it to move a set of boxes to the receiving node. The

sending node then coordinates with the receiving node through RPC calls for the rest of the

operator migration process. The migration operation applies through the following steps:

1. The sending node first suspends the execution of the operators to be moved. It then serializes

the states of these operators. After serializing all operators, it creates a package that contains

the meta-data of the operators to be moved, the meta-data of the streams that connect to

these operators, and the state of the operators. Then, it sends the whole package to the

receiving node.

2. After receiving all the data, the receiving node first adds the meta-data of the operators and

streams to its Local Catalog. Then it instantiates these operators with the given states and

establishes data connection to appropriate nodes. After the execution of these operators can

be resumed, the receiving node sends a request to the sending node telling it that it is now

safe to remove the operators.

3. Upon receiving this message, the sending node deletes those suspended operators locally and

updates its local catalog.

To avoid simultaneous operator migration among the nodes, which may cause inconsistency in

the system, after moving operators between a node pair, the Global Load Manager waits sufficiently

long before it schedules operator migration between the next node pair.

The operator migration process is not trivial because it involves multiple Remote Procedure

Calls, serialization and deserialization of operators, modification of Local Catalogs and internal
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Figure 2.6: Operator migration time for moving a single aggregate operator with different state
sizes.

data structures of query processors. Figure 2.5 shows the operator migration time to move a set of

stateless operators from one node to another node in one single operator migration process in the

Borealis prototype. Obviously, there is a linear relationship between the number of operators moved

in this process and the operator migration time. The basic communication overhead between the

two nodes takes about 60 milliseconds. Packing and unpacking the information of each stateless

operators takes an additional 80 milliseconds.

The operator migration time for stateful operators usually depends on the state size of the

operators. Figure 2.6 shows the operator migration time to move one aggregate operator from one

node to another node with different state size. The x-axis shows the number of open windows

of the aggregate operator being moved, which is in proportion to the state size of the operator.

Figure 2.6 indicates that there is a linear relationship between the state size of the operator and

its operator migration time.

Figure 2.7 shows the operator migration time to move different number of aggregate operators

in one single operator migration process. Each of the aggregate operators has 10000 open windows.

From Figure 2.7, we can see that the operator migration time to move a set of operators together

is very close to the total operator migration time to move each of the operator separately. This is

because the packing and unpacking time of each single operator dominates the basic communication

time between the two nodes.

Note that operators with very large state size are very common in stream processing applica-

tions. For example, in network traffic monitoring applications, aggregate operators are often used

to count the number of packets or compute the average packet size of packets from different sources.

The number of groups in such aggregate operators can be very large. We fed a network traffic

trace obtained from the Internet Traffic Archive [18] to an aggregate operator, which computes the

average packet size grouped by source and destination IP address. The operator migration time

of this operator on the trace takes about 1.4 second.

Because the execution of the operators to be moved are suspended during the migration process,
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Figure 2.7: Operator migration time for moving a set of stateful operators.

moving operators can results in delays varying from several hundred milliseconds to several seconds.

A lot of applications are very sensitive to such large delays in the output tuples. Therefore, avoiding

moving operators frequently without scarifying performance is a crucial problem in distributed

stream processing.



Chapter 3

Load Model and Problem

Statement

In this chapter, we formally present the load management problems addressed by this dissertation.

3.1 Load Models

Before presenting the problems, we first introduced the basic definitions, notations, and the load

models our problems are based on.

3.1.1 Basic Definitions and Notations

We assume there are n nodes (denoted by Ni, i = 1, · · · , n), m operators (denoted by oj , j =

1, · · ·,m), and d input streams (denoted by Ik, k = 1, · · ·, d) in the system.

Because the runtime statistics of the operators and nodes vary over time, we first define the

average statistics based on a given time interval below:

• The stream rate is defined as the number of data items (tuples) that arrive at a data stream

in the given time interval divided by the duration of the time interval.

• The cost of an operator is defined as the number of CPU cycles needed to process the input

tuples arrived in the given time interval divided by the number of input tuples (or the number

of tuple pairs for Join) arrived in that interval. It is also the average number of CPU cycles

needed per tuple (or tuple pair for Join).

• The selectivity of an operator with a single input stream and a single output stream is defined

as the number of output tuples of the operator divided by the number of input tuples of the

operator in the give time interval. In general, an operator may have multiple input streams

(e.g. Union, Join) and/or multiple output streams (e.g. switch style Filter). The selectivity

20
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Figure 3.1: Example query graph (a).

of a Union operator is always one. The selectivity of a Join operator is defined as the number

of output tuples divided by the number of input tuple pairs in the given time interval. Other

operators with multiple inputs and outputs has multiple selectivities with each selectivity

defined on each input-output stream pair as the number of output tuples divided by the

number of input tuples. For the ease of presentation, in this dissertation, we assume that all

the operators in the system are either Union operators or operators with with single input

and single output, unless otherwise stated.

• The CPU capacity of a node is defined as the number of CPU cycles available for stream

processing per unit time.

• The load of an operator is defined as the number of CPU cycles needed to process all input

tuples of the operator in the given time interval divided by the duration of the time interval.

It can be computed as the product of the input stream rate of the operator and cost of the

operator.

• The load of a node is defined as the number of CPU cycles needed to process all input tuples

of the node in the given time interval divided by the duration of the time interval. It can be

computed as the sum of load of all operators allocated at the node.

We denote the the stream rate of system input stream Ik by rk, denote the selectivity of

operators oj by sj , denote the cost of operator oj by cj , denote the CPU capacity of node Ni

by Ci, denote the load of operator oj by l(oj) and denote the load of node Ni by l(Ni). These

notations are summarized in Table 3.1

To measure these statistics, the scheduler of the of the query processor in each Borealis node

keeps track of number of CPU cycles used by each operator and the number of input and output

tuples of each operator in each statistics measurement interval. The scheduler then computes the

stream rates, operator costs and selectivities periodically and stores the statistics in the Statistics

Manager of the local node. The global load manager periodically collects statistics from all nodes

and the system. Using the system input rates, cost and selectivies of all operators, the global load

manager can compute the load of all operators and nodes in the system.

Example 3: For instance, consider the simple query graph shown in Figure 3.1. The load of
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Table 3.1: Notations used throughout the dissertation.

n number of nodes

m number of operators

d number of system input streams

Ni the ith node

oj the jth operator

Ik the kth input stream

Ci the CPU capacity of node Ni

rk the stream rate of system input stream Ik

cj the cost of operator oj

sj the selectivity of operator oj

l(oj) the load of operator oj

l(Ni) the load of node Ni

the operators can be easily computed as

l(o1) = c1r1

l(o2) = c2s1r1

l(o3) = c3r2

l(o4) = c4s3r2 .

3.1.2 Linear Load Model

We say a system has a linear load model if the load of all operators in the system can be written

as linear functions, i.e.

l(oj) = lj1x1 + · · · + ljdxd, j = 1, · · · ,m,

where x1, · · · , xd are variables and ljk are constants, for j = 1, · · · ,m, k = 1, · · · , d .

For instance, in Example 3, if c1 to c4 and s1, s2 are constant, then the system has a linear

load model with variable r1 and r2.

For simplicity of exposition, we first assume that the system input stream rates are variables

and the operator costs and selectivities are constant when we study static operator distribution

algorithms. Under this assumption, all operator load functions are linear functions of system input

stream rates. Assuming stable selectivity, operators that satisfy this assumption include Union,
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Map, Aggregate and Filter, etc. We relax this assumption and discuss how to transform a non-

linear load model into a linear load model in Section 4.4.2, in which we consider operators with

varying costs and selectivities, as well as Join operators.

Definition and Notations

We now introduce the key definitions and notations that are related to the linear load model.

We express the load functions of the operators and nodes as:

l(oj) = loj1r1 + loj2r2 + · · · + lojdrd , j = 1, · · · ,m,

l(Ni) = lni1r1 + lni2r2 + · · · + lnidrd , i = 1, · · · , n,

where lojk is the load coefficient of operator oj for input stream Ik, and lnik is the load coefficient

of node Ni for input stream Ik (we use superscripts to distinguish load coefficients for operators

and load coefficients for nodes), for i = 1, · · · , n, j = 1, · · · ,m, and k = 1, · · · , d. As shown in

Example 3 above, these load coefficients can be computed using the costs and selectivities of the

operators and are assumed to be constant unless otherwise specified.

Putting the load coefficients of the operators together, we get a m by d operator load coefficient

matrix :

Lo =























lo11 lo12 · · · lo1d

lo21 lo22 · · · lo2d

...
...

. . .
...

lom1 lom2 · · · lomd























.

Putting the load coefficients of the nodes of together, we get a n by d node load coefficient

matrix :

Ln =























ln11 ln12 · · · ln1d

ln21 ln22 · · · ln2d

...
...

. . .
...

lnn1 lnn2 · · · lnnd























.

We represent the distribution of operators on the nodes of the system by the n by m operator

allocation matrix :

A =























a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm























,
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Figure 3.2: Three operator distribution plans for query graph (a).

where aij = 1 if operator oj is assigned to node Ni and aij = 0 otherwise.

It follows from the definition of A that

Ln = ALo.

Because the sum of the load coefficients of any input stream is fixed regardless of the operator

allocation plan, we have that

n
∑

i=1

lnik =
m

∑

j=1

lojk , k = 1, · · · d.

We also denote the total load coefficient of stream Ik by lk.

Example 4: We now present a simple example of these notations using Query graph (a)

(shown in Figure 3.1). Assume the following operator costs and selectivities: c1= 14, c2= 6, c3=

9, c4= 14 and s1= 1, s3= 0.5. Further assume that there are two nodes in the system, N1 and N2,

with capacities C1 and C2, respectively. In Figure 3.2, we show three different operator distribution

plans (Plan (a), Plan (b), and Plan(c)). In Table 3.2, we show the corresponding operator load

coefficient matrix Lo and, for each of the above plans, the resulting operator allocation matrix A

and node load coefficient matrix Ln.

Next, we introduce further notations to provide a formal definition for the feasible set of an

operator distribution plan.

Let

C =























C1

C2

...

Cn























be the vector of CPU capacities of the nodes.
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Table 3.2: Three operator distribution plans.

Lo Plan A Ln

















14 0

6 0

0 9

0 7

















(a)





1 1 0 0

0 0 1 1









20 0

0 16





(b)





1 0 1 0

0 1 0 1









14 9

6 7





(c)





1 0 0 1

0 1 1 0









14 7

6 9





Let

R =























r1

r2

...

rd























be the vector of system input stream rates.

Let Ln
i be the ith row of matrix Ln, i.e.

Ln
i =

(

lni1 lni2 · · · lnid

)

.

Then, the load of node Ni can then be written as

Ln
i R.

Node Ni is feasible if and only if

Ln
i R ≤ Ci.

The system is feasible if and only if all nodes in the system are feasible, i.e.

LnR ≤ C

or equivalently

ALoR ≤ C.

The set of all possible input stream rate points is called the workload set and is referred to by

D. For example, if there are no constraints on the input stream rates, then

D =
{

R : R ≥ (0, · · · , 0)T
}

.



26

 

0 r1 

r2 

0 r1 

r2 

0 r1 

r2 

20
1C

16
2C

14
1C

7
2C

9
1C

6
2C

14
1C

6
2C

7
1C

9
2C

Plan (a) Plan (b) Plan (c) 

Figure 3.3: Feasible sets of various distribution plans.

Definition 1 (Feasible Set): Given a CPU capacity vector C, an operator load coefficient

matrix Lo, and a workload set D, the feasible set of the system under operator distribution plan A

(denoted by F (A)) is defined as the set of all points in the workload set D for which the system is

feasible, i.e.,

F (A) = {R : R ∈ D, ALoR ≤ C} .

In Figure 3.3, we show the feasible sets (the shaded regions) of the distribution plans of Ex-

ample 4. We can see that different operator distribution plans can result in very different feasible

sets.

The notations introduced in this section as well as some notations that are related to the linear

load model and used in the later chapters are summarized in Table 3.3.

3.1.3 Time Series Load Model

For the dynamic operator distribution algorithm, we use the statistics collected in the most recent

time intervals to make operator distribution decisions. The basic assumption is what has been

observed in the most recent past can be used to predict what will happen in the near future.

In this load model, we measure the average system input stream rates, operator costs and

selectivities periodically. The load of the operators and nodes are computedd in each time period

using the measured statistics. Note that, in this model, we don’t assume that operator costs or

selectivities are constant.

The statistics measurement period should be long enough so that the computed load is inde-

pendent of the scheduling policy, and any high frequency load fluctuation is smoothed out. The

load values of the most recent h periods are kept in the system for decision making. The total

time of the h statistics measurements is called the statistics window of the system. It should be

selected large enough to avoid operator migration thrashing. The time series of the h load values
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Table 3.3: Notations related to linear load model.

C = (C1, · · ·, Cn)
T

available CPU capacity vector

R = (r1, · · · , rd)
T

system input stream rate vector

lnik load coefficient of Ni for Ik

lojk load coefficient of oj for Ik

Ln = {lnik}n×d
node load coefficient matrix

Lo =
{

lojk

}

m×d
operator load coefficient matrix

A = {aij}n×m
operator allocation matrix

D workload set

F (A) feasible set of A

CT total node CPU capacities

lk total load coefficients of Ik

of an operator or a node is called the load time series of the operator or the node.

Given a load time series X = (x1, x2, · · · , xh), its mean EX and variance varX are defined as

follows:

EX =
1

h

h
∑

i=1

xi,

varX =
1

h

h
∑

i=1

x2
i −

(

1

h

h
∑

i=1

xi

)2

.

Given two load time series X1 = (x11, x12, · · · , x1h) and X2 = (x21, x22, · · · , x2h), their co-

variance cov (X1,X2) and correlation coefficient cor (X1,X2) (often denoted by ρ12) are defined as

follows:

cov (X1,X2) =
1

h

h
∑

i=1

x1ix2i − EX1EX2,

cor(X1,X2) =
cov (X1,X2)√
varX1 ·

√
varX2

.

In this dissertation, the variance of the load time series of an operator or node is also called

the load variance of that operator or node. The correlation coefficient of the load time series of
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Figure 3.4: Stream with attribute A feeding different filters.

two operators or nodes is also called the load correlation of the two operators or nodes. The mean

of the load time series of an operator or node is called the average load of that operator or node.

Traditional load balancing algorithms attempt to balance the average load of the nodes. Our

algorithm not only tries to balance the average load, but also considers the load variances of the

nodes as well as the load correlations between the node pairs.

Our algorithm is based on the observation that load correlations vary among operators. This

variation is a result of more than the fluctuation of different input rates. It also results from the

nature of the queries. This is best illustrated by an simple example:

Example 5: Consider a stream with attribute A feeding three filter operators as depicted in

Figure 3.4. The filtering predicates of o1, o2 and o3 are A < 3, A > 3 and A > 4 respectively. It

is not difficult to see that no matter how the input stream rate fluctuates, operators o1, o2 and o3

always have a pair-wise load correlation 1. In addition, operator o4 tends to have negative load

correlations with operators o5 and o6. Operators o5 and o6 tend to have a positive load correlation.

Such query-determined correlations are stable or relatively stable in comparison to input-

determined correlations. This feature is important to our operator distribution algorithms because

we use the correlations to determine the locations of the operators. If the correlations are highly

volatile, the decisions made may soon lose their effectiveness.

The notations related to the time series load model are summarized in Table 3.4.

3.2 Problem Statement

In this dissertation, we assume that each single query operator is the minimum unit for load

migration. In other words, we can only move operators if we want to move some load from one node

to another node. In this sense, the load management problem is actually the operator allocation

problem. Therefore, we want to find good operator mapping plans such that the performance of
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Table 3.4: Notations related to time series load model.

X = (x1, x2 · · · , xh) load time series

EX average load

varX load variance

cov(X1,X2) load covariance

cor(X1,X2) load correlation

the system is optimized.

Our operator distribution problem can be further divided into two problems: a static operator

distribution problem and a dynamic operator distribution problem. In the first problem, we want

to find resilient or robust operator distribution plans for operators that are impractical to be

moved between nodes. Its optimization goal is to keep the system feasible for unpredictable load

variations without operator migration. In the dynamic operator distribution problem, we focus

on operators with relatively small load migration overheads. The optimization goal is to minimize

the average end-to-end latency of the output tuples and avoid frequent operator migration.

3.2.1 The Static Operator Distribution Problem

In this problem, we assume a linear load model with constant operator costs and selectivities.

Therefore, the load variations of the operators are only the results of the variations of the system

input stream rates. In order to be resilient to time-varying, unpredictable workloads and maintain

quality of service (i.e., consistently produce low latency results), we aim to maximize the size of

the feasible set of the system through intelligent operator distribution. We state the corresponding

optimization problem more formally below:

Problem 1 (The Resilient Operator Distribution (ROD) problem): Given a CPU

capacity vector C, an operator load coefficient matrix Lo, and a workload set D, find an operator

allocation matrix A∗ that achieves the largest feasible set size among all operator allocation plans,

i.e., find

A∗ = arg max
A

∫

· · ·
∫

F (A)

1 dr1 · · · drd,

where

F (A) = {R : R ∈ D, ALoR ≤ C} .

In the equation above, the multiple integral over F (A) represents the size of the feasible set of

A. Note that A∗ may not be unique.
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ROD is different from the canonical linear programming and nonlinear programming problems

with linear constraints on feasible sets. The latter two problems aim to maximize or minimize a

(linear or nonlinear) objective function on a fixed feasible set (with fixed linear constraints) [32,

64], whereas in our problem, we attempt to maximize the size of feasible set by appropriately

constructing the linear constraints through operator distribution. To the best of our knowledge,

our work is the first to study this problem in the context of load distribution.

3.2.2 The Dynamic Operator Distribution Problem

The dynamic operator distribution problem aims at the initial and dynamic re-distribution of

operators with relatively small load migration overheads. In this problem, we use the time series

load model to adapt to the most recent load changes dynamically.

A stream processing system is also a queuing system. Therefore, to minimize average end-to-

end latency, we should try to minimize the average queueing latency in the system. Unfortunately,

due to the complexity and variety of stream-based applications, it is very hard to solve this problem

using precise mathematical queuing models. The commonly used models are either not suitable for

stream processing systems (e.g. the M/M/1 model) or hardly can be used to estimate the average

queueing time for different operator distribution plans (e.g. the G/G/1 models). However, despite

the difficulty of finding precise optimal solutions, we can still use queueing theory as a guide to

find approximate sub-optimal solutions.

From the G/G/1 model of queueing theory [82], we know that the average queueing latency of

a single server is often approximately in proportional to

u

1 − u
.

where u is the CPU utilization of the server. As depicted by Figure 3.5, when u increases from 0

to 1, the curve of the function is very flat at the beginning and becomes very steep when the u

approaches 1. From this curve, it is not hard to see that if two machines have the same average
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CPU utilization, but different variances in CPU utilization, the one with smaller variance tends to

have smaller average queuing latency. Therefore, the optimization goal of minimizing the average

end-to-end latency can be approached by balancing the average load of the nodes and minimizing

the load variance of each node.

In addition to this optimization goal, we also want to minimize the number of operator mi-

grations to avoid jitters in end-to-end latency. As stated before, this goal can be approached by

maximizing the load correlations of the node pairs in the system so that the loads of the nodes

tend to be naturally balanced even when the load changes.

We will see later that, when the average load variance of the nodes is minimized, the average

load correlation of the node pairs is maximized (assuming the total load of the system can be

arbitrarily partitioned), i.e. the two optimization goals are achieved at the same time in the ideal

case. Thus, the dynamic operator distribution problem can be formalized as the follows:

Problem 2 (The dynamic operator distribution problem): Let Xi denote the load time

series of node Ni and ρij denote the correlation coefficient of Xi and Xj for 1 ≤ i, j ≤ n. We

want to find and maintain operator mapping plans with the following properties:

1. EX1 ≈ EX2 ≈ · · · ≈ EXn

2. 1
n

n
∑

i=1

varXi is minimized and

3.
∑

1≤i<j≤n

ρij is maximized

When the load of the operators changes, the performance of an initially good operator distribu-

tion plan may deteriorate over time. In this case, operators need to be moved between the nodes

to achieve a better load distribution plan. When moving an operator from on node to another

node, the execution of the operator must be suspended. Without considering the CPU overhead

for operator migration, if no tuple arrives at the operator being moved, then moving this operator

does not result in any extra delay in the end-to-end latency. On the other hand, if the load of the

operator being moved is large, then moving this operator may result in large delays in end-to-end

latency, because not only the tuples arrived during the operator migration process are delayed,

but also the tuples arrived after the operator migration process are delayed since the receiving

node must first process the accumulated tuples of the received operators. Thus, for dynamic load

re-distribution, we want to avoid moving too much load betweent the nodes.

There is usually a trade off between the performance of the system during the operator mi-

gration process and the performance after the migration process. Moving more load may result

in a better load distribution plan than moving less load; thus, result in better performance after

the load re-distribution process. However, moving more load also tends to result in larger end-

to-end latency due to the operator migration process. How to move less load and achieve good

performance is a common problem faced by many dynamic load distribution algorithms. In this
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dissertation, we try to achieve a good balance between the amount of load moved in the dynamic

load distribution process and the performance of the resulting load distribution plan.



Chapter 4

Static Operator Distribution

In this chapter, we present our Resilient Operator Distribution (ROD) algorithm, which aims at

allocating operators that can not be moved between nodes on the fly or operators with very large

migration overheads.

Our algorithm is guided by the theoretical analysis of an ideal load distribution plan, where

the load of all nodes stays balanced no matter how the workload of the system varies over time.

Such an ideal plan is usually unachievable given the constraint that each operator is the minimum

load distribution unit. We then explore two operator distribution heuristics that aim at making

the achieved feasible set close the feasible set in the ideal case as much as possible. Both heuristics

try to maximize the size of of a subset of the achieved feasible set. The subset in the first heuristic

is a polytope. The subset in the second heuristic is a partial hypersphere. Thus, these heuristics

are actually maximizing the two lower bounds of the achieved feasible set size. Our operator

distribution algorithm is a greedy algorithm the seamlessly combines both heuristics.

In this chapter, we first assume a linear load model with fixed operator costs and selectivities.

We also assume that there is no constraint or extra information about the system input stream

rates. In addition, we assume that the CPU overhead for data communication is negligible and

network bandwidth is not a bottleneck of the system. These assumption are relaxed in Section 4.4,

where we present extensions to the basic algorithm. More specifically, we present how to use the

lower bound on system input stream rates to further maximize feasible set size, how to transform

a non-linear load model into a linear load model, and how to cluster operators as a pre-processing

step of ROD to reduce data communication CPU overhead and network bandwidth consumption.

At the end of this chapter, we discuss the computation complexity of the algorithm.

4.1 Optimization Fundamentals

A straightforward solution to ROD requires enumerating all possible allocation plans and com-

paring their feasible set sizes. Unfortunately, the number of different distribution plans is nm/n!.

33
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Figure 4.1: Feasible set and hyperplane example.

Moreover, even computing the feasible set size of a single plan (i.e., a d dimensional multiple in-

tegral) is expensive; since the Monte Carlo integration method, which is commonly used in high

dimensional integration, requires at least O(2d) sample points [76]. As a result, finding the optimal

solution for this problem is intractable for large d or large m.

Given the intractability of ROD, we explore a heuristic-driven strategy. We first explore the

characteristics of an “ideal” plan using a linear algebraic model and the corresponding geometrical

interpretation. We then use this insight to derive our solution.

4.1.1 Feasible Set and Node Hyperplanes

We here examine the relationship between the feasible set size and the node load coefficient matrix.

Initially, we make no assumptions about the expected workload and assume that

D =
{

R : R ≥ (0, · · · , 0)T
}

.

(we relax this assumption in Section 4.4.1).

Given a node load coefficient matrix Ln, the feasible set determined by Ln is denoted by

F ′(Ln) = {R : R ∈ D,LnR ≤ C} .

This is a convex polytope [88] in the nonnegative space below n hyperplanes, where the hyperplanes

are defined by

lni1r1 + lni2r2 + · · · + lnidrd = Ci, i = 1, · · · , n.

Example 6: Figure 4.1 illustrates an example feasible set in a system with two input streams

and three nodes. The lines correspond to the hyperplanes and the shaded area below the lines is

the feasible set.
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Note that the ith hyperplane consists of all points that render node Ni fully loaded. If a point

is above this hyperplane, then Ni is overloaded at that point. The system is feasible at a point if

and only if the point is on or below all of the n hyperplanes defined by

LnR = C.

We refer to these hyperplanes as node hyperplanes.

For instance, in Figure 3.3, the node hyperplanes correspond to the lines above the feasible

sets. Because the node hyperplanes collectively determine the shape and size of the feasible set,

the feasible set size can be optimized by constructing “good” node hyperplanes or, equivalently,

by constructing “good” node load coefficient matrices.

4.1.2 Ideal Node Load Coefficient Matrix

We now present and prove a theorem that characterizes an “ideal load distribution plan”. The

node load coefficient matrix that yields this ideal load distribution plan is called the ideal node

load coefficient matrix.

Theorem 1: Given operator load coefficient matrix Lo =
{

lojk

}

m×d
and node capacity vector

C = (C1, · · · , Cn)
T
, among all n by d matrices Ln = {lnik}n×d

that satisfy the constraint

n
∑

i=1

lnik =

m
∑

j=1

lojk

.
= lk, for k = 1, · · · , d (4.1)

the matrix Ln∗ = {ln∗ik }
n×d

with

ln∗ik = lk
Ci

CT

,

where

CT =

n
∑

i=1

Ci,

achieves the maximum feasible set size, i.e.,

Ln∗ = arg max
Ln

∫

· · ·
∫

F ′(Ln)

1 dr1 · · · drd,

Proof. All node load coefficient matrices must satisfy constraint 4.1. Ln∗ also satisfies this con-

straint because
n

∑

i=1

ln∗ik =

n
∑

i=1

lk
Ci

CT

= lk

∑n
i=1 Ci

CT

= lk.

Now, it suffices to show that Ln∗ has the largest feasible set size among all Ln that satisfy

constraint 4.1.
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From LnR ≤ C, we have that

(1 1 · · · 1)























ln11 ln12 · · · ln1d

ln21 ln22 · · · ln2d

...
...

. . .
...

lnn1 lnn2 · · · lnnd













































r1

r2

...

rd























≤ (1 · · · 1)























C1

C2

...

Cn























,

which can be written as

l1r1 + l2r2 + · · · + ldrd ≤ CT . (4.2)

Thus, any feasible point must belong to the set

F ∗ = {R : R ∈ D, l1r1 + l2r2 + · · · + ldrd ≤ CT } .

In other words, F ∗is the superset of any feasible set. It then suffices to show that F ′(Ln∗) = F ∗.

There are n constraints in Ln∗R ≤ C (each row is one constraint). For the ith row, we have

that

l1
Ci

CT

r1 + l2
Ci

CT

r2 + · · · + ld
Ci

CT

rd ≤ Ci ,

which is equivalent to inequality 4.2. Since all n constraints are the same, we have that

F ′(Ln∗) = F ∗.

Intuitively, Theorem 1 says that the feasible set size is maximized if the load coefficient of each

input stream is perfectly balanced across all nodes (in proportion to the relative CPU capacity

of each node). In this case, the load of all nodes are also perfectly balanced across all nodes (in

proportion to the relative CPU capacity of each node) regardless of what the system input stream

rates are. Therefore, no matter how the input stream rates vary, there is no need to move operators

in the system at all. Note that the ideal coefficient matrix is independent of the workload set D.

Such a load coefficient matrix may not be realizable by using operator distribution, i.e., there

may not exist operator allocation matrix A such that ALo = Ln∗ (the reason why Ln∗ is referred

to as “ideal”).

The largest feasible set achieved by the ideal load coefficient matrix is called the ideal feasible

set (denoted by F ∗). It consists of all points that fall below or on the ideal hyperplane

l1r1 + l2r2 + · · · + ldrd = CT .

When the ideal node load coefficient matrix is obtained, all node hyperplanes overlap with the

ideal hyperplane.

We can compute the size of the ideal feasible set as:

V (F ∗) =

∫

· · ·
∫

1

F∗

dr1 · · · drd =
(CT )d

d!
·

d
∏

k=1

1

lk
.



37

 

r2 

r1 r1 r1 

r2 r2 

0 0 0 

20
21 CC +

Plan (a) Plan (b) Plan (c) 

16
21 CC +

16
21 CC +

20
21 CC +

20
21 CC +

16
21 CC +

Figure 4.2: Ideal hyperplanes and feasible sets.

Figure 4.2 illustrates the ideal hyperplanes (represented by the thick lines) and the feasible sets

of Plan (a), (b) and (c) in Example 4. It is easy to see that none of the shown distribution plans

are ideal. In fact, all distribution plans for Example 4 can not achieve the ideal feasible set.

4.1.3 Optimization Guidelines

The key high-level guideline that we will rely on to maximize feasible set size is to make the node

hyperplanes as close to the ideal hyperplane as possible.

To accomplish this, we first normalize the ideal feasible set by changing the coordinate system.

The normalization step is necessary to smooth out high variations in the values of load coefficients

of different input streams, which may adversely bias the optimization.

Let xk = lkrk/CT . In the new coordinate system with axis x1 to xk, the corresponding node

hyperplanes are defined by

lni1
l1

x1 +
lni2
l2

x2 + · · · + lnid
ld

xd =
Ci

CT

, i = 1, · · · , n.

The corresponding ideal hyperplane is defined by

x1 + x2 + · · · + xd = 1.

By the change of variable theorem for multiple integrals [86], we have that the size of the

original feasible set equals a constant c times the size of the normalized feasible set, where

c =
(CT )d

∏d
k=1 lk

.

Therefore, the goal of maximizing the original feasible set size can be achieved by maximizing the

normalized feasible set size.

We now define our goal more formally using our algebraic model:

Let matrix

W = {wik}n×d =

{

lnik
ln∗ik

}

n×d

.
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From ln∗ik = lkCi/CT , we have that

wik =
lnik/lk
Ci/CT

.

In other words, wik is the percentage of the load from stream Ik on node Ni divided by the

normalized CPU capacity of Ni (Ci/CT ). Thus, we can view wik as the “weight” of stream Ik on

node Ni and view matrix W as a normalized form of a load distribution plan. Matrix W is also

called the weight matrix.

Note that the equations of the node hyperplanes in the normalize space is equivalent to

wi1x1 + wi2x2 + · · · + widxd = 1, i = 1, · · · , n.

Our goal is then to make the normalized node hyperplanes close to the normalized ideal hyperplane,

i.e. make

Wi = (wi1 wi2 · · · wid) close to (1 1 · · · 1) ,

for i = 1, · · · , n.

For brevity, in the rest of this paper, we assume that all terms such as hyperplane, feasible set

and ideal feasible set refer to the ones in the normalized space, unless stated otherwise.

4.2 Heuristics

We now present two heuristics that are guided by the formal analysis presented in the previous

section. For simplicity of exposition, we motivate and describe the heuristics from a geometrical

point of view. We also formally present the pertinent algebraic foundations as appropriate.

4.2.1 Heuristic 1: MaxMin Axis Distance

Recall that we aim to make the node hyperplanes converge to the ideal hyperplane as much as

possible. In the first heuristic, we try to push the intersection points of the node hyperplanes with

each axis to the intersection points of the ideal hyperplane with each axis as much as possible.

In other words, we would like to make the axis distance of each node hyperplane as close to that

of the ideal hyperplane as possible. We define the axis distance of hyperplane h on axis a as the

distance from the origin to the intersection point of h and a.

Example 7: Figure 4.3(a) shows the plane distance of two node hyperplanes. The axis

distance of node Ni is 1
wi1

on axis x1 and 1
wi2

on axis x2. The plane distance of node Nj is 1
wj1

on

axis x1 and 1
wj2

on axis x2. The axis distance of the ideal hyperplanes is one on both axis.

In general, the axis distance of the ith node hyperplane on the kth axis is

1

wik

.
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Figure 4.3: Heuristic 1 example.

The axis distance of the ideal hyperplane is one on all axis. Thus, from the algebraic point of view,

by making each axis distance as close to one as possible, this heuristic is trying to making each

entry of Wi as close to one as possible.

Because
∑

i lnik is fixed for each k, the optimization goal of making wik close to one for all k is

equivalent to balancing the load of each input stream across the nodes in proportion to the nodes’

CPU capacities. This goal can be achieved by maximizing the minimum axis distance of the node

hyperplanes on each axis; i.e., we want to maximize

min
i

1

wik

, for k = 1, · · · , d.

We therefore refer to this heuristic as MaxMin Axis Distance (MMAD). For example, this heuristic

prefers the plan in Figure 4.3(b) to the one in Figure 4.3(a). The arrows in Figure 4.3(b) illustrate

how MMAD pushes the intersection points of the node hyperplanes that are closest to the origin

to that of the ideal hyperplane.

It can be proven that when the minimum axis distance is maximized for axis k, all the node hy-

perplane intersection points along axis k converge to that of the ideal hyperplane. This conclusion

can be formally stated as the follows:

Theorem 2: The minimum axis distance of all node hyperplanes on a given axis is maximized

if and only if the axis distance of all node hyperplanes on that axis is equal to the axis distance of

the ideal hyperplane on that axis.

To prove this theorem, we first state and prove the following lemma:

Lemma 1: Given n non-negative numbers a1, a2, · · · , an. For all non-negative variables
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b1, b2, · · · , bn that satisfy the constraint

n
∑

i=1

aibi = 1, (4.3)

the value of

min
i

1

bi

is maximized if and only if

b1 = b2 = · · · = bn =
1

∑n
i=1 ai

.

Thus

max
b1···bn

min
i

1

bi

=

n
∑

i=1

ai.

Proof. Let

b∗
.
=

1
∑n

i=1 ai

.

Since
n

∑

i=1

aib
∗ = b∗ ·

n
∑

i=1

ai = 1,

which means that b1 = b2 = · · · = bn = b∗ satisfy constraint 4.3, we have that

max
b1···bn

min
i

1

bi

≥ 1

b∗
. (4.4)

Suppose there exist 1 ≤ i1 ≤ i2 ≤ · · · ≤ iv ≤ n (v ≥ 1), such that

bi1 = bi2 = ... = biv
= min

i
bi < b∗.

Then there must exist 1 ≤ u ≤ n such that bu > b∗. Otherwise, we would have

n
∑

i=1

aibi <

n
∑

i=1

aib
∗ = 1.

Therefore we have that

max
i

bi ≥ b∗ (4.5)

and the equality holds if and only if

b1 = b2 = · · · = bn = b∗.

Inequality 4.5 can also be written as

min
i

1

bi

≤ 1

b∗
.

Thus we have

max
b1···bn

min
i

1

bi

≤ 1

b∗
. (4.6)

Combining Inequalities 4.4 and 4.6, we have that

max
b1···bn

min
i

1

bi

=
1

b∗
. (4.7)
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The equality holds if and only if

b1 = b2 = · · · = bn = b∗.

Next, we give the proof of Theorem 2.

Proof. Without loss of generality, we consider the kth axis. Let

ai =
Ci

CT

, bi = wik.

Since
n

∑

i=1

aibi =

n
∑

i=1

Ci

CT

· lnik/lk
Ci/CT

=

∑n
i=1 lnik
lk

= 1,

following Lemma 1, we have that

min
i

1

wik

is maximized if and only if

w1k = w2k = · · · = wnk =
1

∑n
i=1 Ci/CT

= 1,

MMAD tries to maximize the minimum axis distance for each axis. When the minimum axis

distance is maximized on all axes, we achieved the ideal feasible set.

From a geographic point of view, MMAP can be considered as maximizing the size of a polytope

subset of the achieved feasible set. This subset is the polytope below the hyperplane

(

max
i

wi1

)

x1 +
(

max
i

wi2

)

x2 + · · · +
(

max
i

wik

)

xk = 1. (4.8)

In the non-negative space, any node hyperplane is above, or overlaps with, the hyperplane defined

by Equation 4.8. Thus, the set below this hyperplane is a polytope subset of the feasible set.

Figure 4.4 illustrates an example of this subset (denoted by G) in a system with three nodes and

two input streams.

The size of this subset can be computed as

V (G) =
1

d!
·

d
∏

k=1

1

maxi wik

=
1

d!
·

d
∏

k=1

min
i

1

wik

.

Notice that
1

d!

is the size of the normalized feasible set size. Therefore, the original feasible set size is bounded by

V (F ∗) ·
d

∏

k=1

min
i

1

wik
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Figure 4.4: A polytope subset of the feasible set.
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Figure 4.5: Relationship between g and feasible set size.

from below, where V (F ∗) is the size of the original ideal feasible set. In other words, the product

of minimum axis distance on all axes determines a lower bound on feasible set size. Thus, MMAD

is trying to maximize a lower bound for feasible set size. This lower bound is close to the ideal

value when all axis distances can be well balanced.

Let

g
.
=

d
∏

k=1

min
i

1

wik

.

To further examine the relationship between g and the feasible set size, we generated random node

load coefficient matrices and plotted the ratios of their feasible-set-size / ideal-feasible-set-size vs.

g. Figure 4.5 shows the results of 10000 random load coefficient matrices with 10 nodes and 3

input streams. We see a trend: both the upper bound and lower bound of the feasible-set-size

ratio increase when g increases.

On the downside, the key limitation of MMAD is that it does not take into consideration how
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Figure 4.6: Heuristic 2 example.

to combine the weights of different input streams at each node. This is best illustrated by a simple

example as depicted by Figure 4.6. Both plans in Figure 4.6 are deemed equivalent by MMAD,

since their axis intersection points are exactly the same. They do, however, have significantly

different feasible sets.

If we draw a vertical line in Figure 4.5, we can also see that plans with the same g have very

different feasible set sizes. We should avoid those points that are close to the lower bound and try

to achieved the points that are close to the upper bound.

Obviously, if the largest weights for each input stream are put on the same node (e.g., the one

with the lowest hyperplane in Figure 4.6(a)), the corresponding node becomes the bottleneck of

the system because it always has more load than the other node. The resulting feasible set size is

equal to the lower bound determined by g. Using MMAD only can not avoid this situation. Next,

we describe another heuristic that addresses this limitation.

4.2.2 Heuristic 2: MaxMin Plane Distance

Intuitively, MMAD pushes the intersection points of the node hyperplanes closer to those of the

ideal hyperplane using the axis distance metric. Our second heuristic, on the other hand, pushes

the node hyperplanes directly towards the ideal hyperplane using the plane distance metric. The

plane distance of an hyperplane h is the distance from the origin to h. For example, the plane

distance of a node hyperplane in Figure 4.6(a) is the length of the arrow that points to this plane.

Our goal is to maximize the minimum plane distance of all node hyperplanes. We refer to this

heuristic as MaxMin Plane Distance (MMPD).

Another way to think about this heuristic is to imagine a partial hypersphere that has its center

at the origin and its radius r equal to the minimum plane distance (e.g. Figure 4.6). Obviously,

MMAD prefers Figure 4.6(b) to Figure 4.6(a) because the former has larger r. The small arrow
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Figure 4.7: Relationship between r and feasible set size.

in Figure 4.6(b) illustrates how MMPD pushes the hyperplane that is the closest to the origin in

terms of plane distance towards the ideal hyperplane.

The plane distance of the ith hyperplane is computed as:

1
√

w2
i1 + · · · + w2

id

=
1

‖Wi‖ ,

where ‖Wi‖ denotes the second norm of the ith row vector of W . Thus, the value we would like

to maximize is:

r = min
i

1

‖Wi‖
.

By maximizing r, i.e. maximizing the size of the partial hypersphere (a subset of the achieved

feasible set), we are actually maximizing a lower bound of the achieved feasible set size. This lower

bound is rd [87] multiplied by a constant,

To further examine the relationship between r and the feasible set size, we plotted the ratios of

their feasible-set-size / ideal-feasible-set-size vs. the ratios of r/ r∗ for randomly generated node

load coefficient matrices. Figure 4.7 shows the results of 10000 random load coefficient matrices

with 10 nodes and 3 input streams. The curve in the graph is the computed lower bound using the

volume function of hyperspheres [87]. Similar to the trend in Figure 4.5, both the upper bound

and lower bound of the feasible-set-size ratio increase when r/ r∗ increases. The lower bound in

Figure 4.5 follows a linear function. The lower bound in Figure 4.5 is very close to a function

in proportional to rd because the volume of the subset hypersphere is a constant times rd. For

different n and d, the upper bound and lower bound differs from each other; however, the trend

remains intact. This trend is an important ground for the effectiveness of MMPD.

Intuitively, by maximizing r, i.e., minimizing the largest weight vector norm of the nodes, we

avoid having nodes with large weights arising from multiple input streams. Nodes with relatively

larger weights often have larger load/capacity ratios than other nodes at many stream rate points.
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Therefore, MMPD can also be said to balance the load of the nodes (in proportion to the nodes’

capacity) for multiple workload points. Notice that this approach sharply contrasts with traditional

load balancing schemes that optimize for single workload points.

4.3 ROD Algorithm

We now present a greedy operator distribution algorithm that seamlessly combines the heuristics

discussed in the previous section.

In this section, we assume that the load coefficients of all operators are known. Operators

that read or write the same table are grouped as a single allocation unit so that they are always

assigned to the same node. In other words, we treat the operators that read or write the same

table as a single operator in ROD algorithm. The load coefficients of this “grouped” operator are

the summation of the load coefficients of all operators in the group.

The algorithm consists of two phases: the first phase orders the operators and the second one

greedily places them on the available nodes.

4.3.1 Phase 1: Operator Ordering

This phase sorts the operators in descending order based on the second norm of their load coefficient

vectors. The reason for this sorting order is to enable the second phase to place “high impact”

operators (i.e., those with large norms) early on in the process, since dealing with such operators

late may cause the system to significantly deviate from the optimal results. Similar sorting orders

are commonly used in greedy load balancing and bin packing algorithms [28].

4.3.2 Phase 2: Operator Assignment

The second phase goes through the ordered list of operators and iteratively assigns each to one

of the n candidate nodes. Our basic destination node selection policy is greedy: at each operator

assignment step, the assignment that minimally reduces the final feasible set is chosen.

At each step, we separate nodes into two classes. Class I nodes consist of those that, if chosen

for assignment, will not lead to a reduction in the final feasible set. Class II nodes are the remaining

ones. If it exists, one of the nodes in Class I is chosen using a goodness function (more about this

below). If not, then the operator is assigned to the Class II node with the maximum candidate

plane distance (i.e., the distance after the assignment).

Let us now describe the algorithm in more detail while providing geometrical intuition. Initially,

all the nodes are empty. Thus, all the node hyperplanes are at “infinity”. The node hyperplanes

move closer to the origin as operators get assigned. The feasible set size at each step is given

by the space that is below all the node hyperplanes. Class I nodes are those whose candidate

hyperplanes are above the ideal hyperplane, whereas the candidate hyperplanes of Class II nodes
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Figure 4.8: Node selection policy example.

are either entirely below, or intersect with, the ideal hyperplane. Figure 4.8(a) and 4.8(b) show,

respectively, the current and candidate hyperplanes of three nodes, as well as the ideal hyperplane.

Since we know that the feasible set size is bounded by the ideal hyperplane, at a given step,

choosing a node in Class I will not reduce the possible space for the final feasible set. Figure 4.8(c)

shows an example of the hyperplane of a Class I node. Notice that as we assign operators to Class

I nodes, we push the axis intersection points closer to those of the ideal hyperplane, thus follow the

MMAD heuristic. If no Class I nodes exist, then we have to use a Class II node and, as a result,

we inevitably reduce the feasible set. An example of two Class II nodes and the resulting decrease

in the feasible set size are shown in Figure 4.8(d). In this case, we follow the MMPD heuristic and

use the plane distance to make our decision by selecting the node that has the largest candidate

plane distance.

As described above, choosing any node from Class I does not affect the final feasible set size in

this step. Therefore, a random node can be selected or we can choose the destination node using

some other criteria. For example, we can choose the node that results in the minimum number of

inter-node streams to reduce data communication overheads for scenarios where this is a concern.

The pseudocode of the algorithm is shown in Figure 4.9.
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Initialization
CT ← C1 + · · · + Cn

for k = 1, · · ·, d, lk ← lo1k + · · · + lomk

for i = 1, · · ·, n, j = 1, · · ·,m, aij ← 0
for i = 1, · · ·, n, k = 1, · · ·, d, lnik ← 0

Operator Ordering

Sort operators by
√

loj1
2+, · · · ,+lojd

2 in descending order

(let h1, · · ·, hm be the sorted operator indices)

Operator Assignment
for j = h1, · · ·, hm

(assign operator oj)
class I nodes ← φ, class II nodes ← φ
for i = 1, · · ·, n

(classify node Ni)

for k = 1, · · ·, d, w′
ik ←

((

lnik + lojk

)

/lk

)

/ (Ci/CT )

if w′
ik ≤ 1 for all k = 1, · · ·, d
add Ni to class I nodes

else
add Ni to class II nodes

if class I is not empty
select a destination node from class I

else
select the node with min

i

1
q

w
′

i1

2
+···+w

′

id

2
from class II

Assign oj to Ns (assume Ns is selected)
asj ← 1;
for k = 1, · · · , d, lnsk ← 1n

sk + lojk

Figure 4.9: ROD algorithm pseudocode.

4.4 Algorithm Extensions

4.4.1 General Lower Bounds on Input Rates

We have so far leveraged no knowledge about the expected workload, assuming

D =
{

R : R ≥ (0, · · · , 0)T
}

.

We now present an extension where we allow more general, non-zero lower bound values for the

stream rates, assuming:

D = {R : R ≥ RL, RL = (rL1, · · · , rLd)
T , rLk ≥ 0 for k = 1, · · · , d}.

This general lower bound extension is useful in cases where it is known that the input stream

rates are strictly, or likely, larger than a workload point RL. Using point RL as the lower bound

is equivalent to ignoring those workload points that never or seldom happen; i.e., we optimize the

system for workloads that are more likely to happen.
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Figure 4.10: Feasible set with lower bound B′.

The operator distribution algorithm for the general lower bound is similar to the base algo-

rithm discussed before. Recall that the ideal node load coefficient matrix does not depend on D.

Therefore, our first heuristic, MMAD, remains the same. In the second heuristic, MMPD, because

the lower bound of the feasible set size changes, the center of the partial hypersphere should also

change. In the normalized space, the lower bound corresponds to the point

R
′

L =















rL1l1
CT

...

rLdld
CT















.

In this case, we want to maximize the radius of the partial hypersphere centered at R
′

L within the

normalized feasible set (e.g., Figure 4.10). The formula of the radius r is

r = min
i

1 − WiR
′

L

‖Wi‖
.

With this extension, the ROD algorithm needs to be changed slightly: when we choose a class

II node, we simply replace the distance from the origin to the candidate node hyperplanes with

the distance from the lower bound point to the candidate node hyperplanes.

Remark: This extension is necessary only when the real lower bound point is not close to the

origin and when the weights of some input streams can not be well balanced. Recall that the ideal

feasible set does not depend on the workload set D. If the weights of all input streams can be

well balanced using the origin as the lower bound, the resulting plan will be close to the ideal load

distribution plan, which is good regardless of the extra information of system input stream rates

lower bound.
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Figure 4.11: A chain query graph for Example 8.
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Figure 4.12: Linear pieces of the chain query graph in Example 8.

4.4.2 Nonlinear Load Models

Our discussion so far has assumed linear systems; i.e., those that use linear load models. In this

section, we generalize our discussion to deal with nonlinear systems.

Our key technique is to introduce new variables such that the load functions of all operators

can be expressed as linear functions of the actual system input stream rates as well as the newly

introduced variables. Our linearization technique is best illustrated with two simple examples.

Example 8: First, consider a chain of operators as depicted in Figure 4.11. The load functions

of the operators in this chain can be computed as

l(o1) = c1 · r1

l(oj) =

(

j−1
∏

k=1

sk

)

· cj · r1 , j = 2, · · · ,m.

Assume that all operator costs and selectivities except for the selectivity of operator ou are constant.

In this case, the load functions of operator o1 to ou are linear functions of r1, but the load functions

of ou+1 to om are not linear because they contain su · r1. To transform the load functions of ou+1

to om to linear functions, we add the input stream rate of operator ou+1 as a new variable r2. The

load functions of operator ou+1 to om are then written as

l(ou+1) = cu+1 · r2

l(oj) =

(

j−1
∏

k=u+1

sk

)

· cj · r2 , j = u + 2, · · · ,m,

which are linear functions of r2.

This linearization technique can also be considered as “cutting” a nonlinear query graph into

linear pieces. For example, the above transformed load model is the same as the linear load model

of the query graph in Figure 4.12.
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Figure 4.13: A query graph with a Join operator for Example 9.
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Figure 4.14: Linear pieces of the query graph in Example 9.

Example 9: Consider the query graph in Figure 4.13. Assume that the selectivities and costs

of all operators are constants. Operator o5 is a Join operator that matches tuples whose timestamps

are within a give time window w. Let o5’s input stream rates be ru and rv, its selectivity (per

tuple pair) be s5, and its processing cost be c5 CPU cycles per tuple pair. The number of tuple

pairs to be processed in unit time is wrurv. The load of o5 is thus c5wrurv and the output stream

rate of this operator is s5wrurv. As a result, it is easy to see that the load function of o5 cannot

be expressed as a linear function of r1 and r2. In addition, the input to o6 cannot be expressed

as a linear function of r1 and r2 either. The solution is to introduce the output stream rate of

operator o5 as a new variable r3. It is easy to see that the load of operator o6 can be written as a

linear function of r3. Less apparent is the fact that the load of operator o5 can also be written as

(c5/s5)r3, which is a linear function of r3 (assuming c5 and s5 are constant). Therefore, the load

functions of the entire query graph can be expressed as linear functions of four variables r1 to r3.

The linear pieces of this query graph is shown in Figure 4.14

This linearization technique is general; i.e., it can transform any nonlinear load model into a

linear load model by introducing additional input variables. Once the system is linear, the analysis

and techniques presented earlier apply. However, because the performance of ROD depends on

whether the weights of each variable can be well balanced across the nodes, we aim to introduce

as few additional variables as possible.

4.4.3 Extension with Communication CPU Overhead Consideration

So far, we have ignored the CPU overhead of data communication. We now address this issue by

introducing operator clustering as a pre-processing step to be applied before ROD.
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Table 4.1: Notations related to communication overhead.

g number of streams

St the tth stream

cc
t the communication cost of stream St

lc(St) the communication load of stream St

lctk the communication load coefficient of stream St for input Ik

rc
tu the communication ratio between St and ou

rc
t the communication clustering ratio of St

wc
t the clustering weight of St

ηc the communication clustering ratio threshold

ψ the clustering weight upper bound

Before discussing how to cluster operators, we first introduce some definitions and notations

that are related to the data communication overhead. These notations are also summarized in

Table 4.1. We denote the streams in the system by S1, · · · , Sg. We define the following statistics

based on a given time interval:

• The communication cost of a stream is defined as the average number of CPU cycles needed

to transfer a tuple on this stream from one node to another node (sending CPU cycles plus

receiving CPU cycles). The communication cost of stream St is denote by cc
t .

• The communication load of a stream is defined as the number of CPU cycles needed to

transfer all tuples of that stream in the given time interval divided by the duration of the

time interval. It can be computed as the product of the communication cost and the data

rate of the stream. The communication load of stream St is denoted by lc(St).

• In a linear system, the communication load of all streams can be written as linear functions

of system input stream rates. We express the communication load function of stream St as

l(St) = lct1r1 + lct2r2 + · · · + lctdrd,

where lctk is called the communication load coefficient of stream St for input stream Ik. The

communication load coefficients of the steams can be computed from the communication cost

of the streams and the selectivities of the operators.

• Suppose stream St is connected to operator ou and ov. We define

rc
tu

.
= max

k

lctk
louk
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as the communication ratio between St and ou, and

rc
tv

.
= max

k

lctk
lovk

as the communication ratio between between St and ov.

• We define

rc
t

.
= max (rc

tu, rc
tv)

as the communication clustering ratio of stream St.

Obviously, if the communication ratios between all streams and their connected operators are

very small, then the percentage of CPU cycles used for data communication is very small regardless

of the system input stream rates and the operator distribution plan. In this case, operator clustering

is not necessary because data communication overhead is negligible.

On the other hand, if the communication ratio between a stream and one of its connected oper-

ators is large, then separating the operators connected by this stream to different nodes may result

in large data communication overhead. To avoid such situations, we cluster operators connected

by such streams into super-operators, and then use ROD to distribute the super-operators. We

studied two greedy operator clustering approaches. Both approaches follow the following steps:

1. Compute the communication clustering ratio of each stream.

2. Select a stream with communication clustering ratio larger than a given threshold ηc.

3. Cluster the end-operators of the selected stream as a new super-operator.

4. Update the communication clustering ratio of the streams connected to the new super-

operator.

5. Repeat step 2 to 4 until no more operators can be clustered.

The two greedy approaches differ in how they select a stream in step 2. The first approach,

called Largest-Ratio-First, selects the stream with the largest communication clustering ratio. A

potential problem with this method is that it may create operator clusters with very large weights.

Therefore, the second approach tries to avoid this by choosing the stream with the minimum

clustering weight. The clustering weight of stream St that connects super-operator ou and ov is

defined as

wc
t

.
= max

k

n (louk + lovk)

lk
.

This approach is then called Min-Weight-First. To avoid having super-operators with very large

weights, we set an upper bound (ψ) on the clustering weight of the selected streams in both

approaches. In other words, we do not cluster super-operators connected by a stream if the

clustering weight of the stream is larger than ψ.

The pseudocode for these two operator clustering approaches is shown in Figure 4.15
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Initialization
Ω ← {o1, · · · , om} (initialize the set of operator clusters or super-operators)
Γ ← φ (initialize the set of candidate streams as an empty set)
for t = 1, · · ·, g

(suppose stream St is connected to operator ou and ov)

rc
tu ← maxk

lctk

lo
uk

, rc
tv ← maxk

lctk

lo
vk

rc
t ← max (rc

tu, rc
tv)

wc
t ← maxk

n(louk+lovk)
lk

if rc
t > ηc and wc

t < ψ, add St to Γ
Sream Ordering

if clustering approach is Max-Min-First
order streams in Γ by communication clustering ratio in descending order

if clustering approach is Min-Weight-First
order streams in Γ by clustering weight in ascending order

Operator Clustering
while Γ is not empty

let St be the first candidate stream in Γ
(suppose St is connected to super-operator ou and ov)
cluster the operators connected by St to a new super-operator oc

for k = 1, · · · , d, lock ← louk + lovk

delete ou and ov from Ω
add oc to Ω

for each stream (denoted by Se) connected to oc

(suppose stream Se is connected to oc and of )
delete Se from Γ

rc
ec ← maxk

lcek

lo
ck

, rc
ef ← maxk

lcek

lo
fk

rc
e ← max

(

rc
ec, rc

ef

)

wc
e ← maxk

n(lock+lovk)
lk

if rc
e > ηc and wc

e < ψ
add Se to ordered Γ

delete St from Γ

Figure 4.15: The operator clustering pseudocode for communication overhead reduction.

By varying ηc and ψ, we obtain different operator distribution plans. Our experimental analysis

of these approaches did not yield a clear winner when considering various query graphs. Our

current practical solution is to generate a small number of operator clustering plans for each of

these approaches by systematically varying ηc and ψ. Then, we use ROD to distribute the super-

operators without considering data communication overhead. After the operators are distributed,

we update the node load functions by adding the communication load coefficients. Finally, we pick

the operator distribution plan with the maximum plane distance.

4.4.4 Extension with Network Bandwidth Consideration

Our system consists of a cluster of Borealis interconnected by a high bandwidth local network.

For most stream based applications, network bandwidth is usually not a bottleneck of the system.
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Table 4.2: Notations related to bandwidth constraints.

Cb
i the bandwidth capacity of node Ni

Cb =
(

Cb
1, · · · , Cb

n

)

the node bandwidth capacity vector

Cb
T the total bandwidth capacity of the system

b(St) the bandwidth of stream St

b(Ni) the bandwidth consumption of node Ni

bs
tk the bandwidth coefficient of stream St for input Ik

bn
ik the bandwidth coefficient of node Ni for input Ik

Bn the bandwidth coefficient matrix

rb
tu the bandwidth ratio between St and ou

rb
t the bandwidth clustering ratio of St

ηb the bandwidth clustering ratio threshold

However, if the system consists of many operators with very small costs (such as Filter and Union

operators), the network bandwidth may become saturated before the nodes are overloaded. For

example, we ran a single filter on a Borealis node on a machine with a Athlon 2800+ CPU, and

100Mbps Ethernet connection. When we increased the input stream rate of the operator, and

when the tuples size was larger than 70 bytes, the network bandwidth became saturated before

the CPU of the node was overloaded

For applications that could stress the network bandwidth resource, we also cluster operators as

a pre-processing step of ROD to reduce network bandwidth consumption. The operator clustering

algorithm is similar to the strategy introduced above. The difference is that we will extend the

definition of feasible set to incorporate bandwidth constraints, and we will use different ratios in

the Max-Ratio-First approach. In what follows, we first introduce the definitions and notations

that are related to the bandwidth constrains. These notations are summarized in Table 4.2. Then

we present the operator clustering algorithm.

Definitions and Notations

We define the bandwidth of a stream as the tuple size of the stream times its stream rate. We say

a system has a linear bandwidth model if the bandwidth of all its streams can be written as linear

functions. For example, if all operator selectivies are constants, then the bandwidths of all streams

can be written as linear functions of system input stream rates.

Under the linear bandwidth model, we express the bandwidth functions of all stream as

b(St) = bs
t1r1 + bs

t2r2 + · · · + bs
tdrd, t = 1, · · · , g,
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Figure 4.16: Example 10 query graph.

where bs
tk is called the bandwidth coefficient of stream St for input stream Ik. The bandwidth

coefficients can be computed from the selectivities of the operators and the tuple size of the

streams.

Example 10: Consider the query graph in Figure 4.16. Suppose the tuple size of stream St

is ht. Then the bandwidth of the streams are computed as the follows:

b(S1) = h1

b(S2) = s1 · h2

b(S3) = s1 · s2 · h3.

Given an operator distribution plan, the bandwidth consumption of a node is defined as the

total bandwidth of all inter-node streams between the node and other nodes. We express the

bandwidth functions of all nodes in the system as

b(Ni) = bn
i1r1 + bn

i2r2 + · · · + bn
idrd, i = 1, · · · , n,

where bn
ik is called the bandwidth coefficient of node Ni for input stream Ik. We express the total

bandwidth consumption of all nodes in the system as

bT = b1r1 + b2r2 + · · · + bdrd, i = 1, · · · , n,

where bi called the bandwidth coefficient of the system. The bandwidth coefficients of the nodes

and the system can be computed from the bandwidth coefficients of the inter-node streams.

Putting the bandwidth coefficients in a matrix, we get a n by d bandwidth coefficient matrix

Bn =























bn
11 bn

12 · · · bn
1d

bn
21 bn

22 · · · bn
2d

...
...

. . .
...

bn
n1 bn

n2 · · · bn
nd























.

Let Cb
i denote the bandwidth capacity between node Ni and the local network, for i = 1, · · · ,
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n. Let Cb
T denote the total bandwidth of the local network. Let

Cb .
=























Cb
1

Cb
2

...

Cb
n























,

and

BT
.
=

(

b1 b2 · · · bd

)

.

Then the network of the system is feasible if and only if

Bn
i R ≤ Cb

i for i = 1, · · · , n

and

BT R ≤ Cb
T .

We say the system is feasible if and only if all nodes in the system are feasible and the network

of the system is feasible. Thus, we extend the definition of feasible set as follows:

Definition 2 (Extended Feasible Set): Given a CPU capacity vector C, an operator load

coefficient matrix Lo, a workload set D, a bandwidth capacity vector Cb, a total bandwidth capacity

Cb
T , and the bandwidth coefficients of all streams, the feasible set of the system under operator

distribution plan A (denoted by F (A)) is defined as the set of all points in the workload set D for

which the system is feasible, i.e.,

F (A) =
{

R : R ∈ D, ALoR ≤ C, BnR ≤ Cb, BT R ≤ Cb
T

}

,

where Bn is the node bandwidth coefficient matrix under operator distribution plan A.

The bandwidth resource constraints add n+1 linear constraints to the definition of feasible set.

The first n constraints define n node bandwidth hyperplanes. The last constraint defines an extra

bandwidth hyperplane for the total bandwidth consumption of the shared network. The feasible

set is the set bellow all of the 2n + 1 hyperplanes (n node load hyperplane and n + 1 bandwidth

hyperplane).

Figure 4.17 and 4.18 illustrate two example feasible sets when n = 2 and d = 2. The solid lines

correspond to the node hyperplanes. The dashed lines correspond to the bandwidth hyperplanes.

The thick solid line corresponds to the ideal hyperplane. The feasible sets are the shaded areas

below all lines.

In Figure 4.17, all the bandwidth hyperplanes are above the node hyperplanes. Therefore, the

shape of the feasible set is determined by the node hyperplanes only. We say a system is under

abundant bandwidth situation if, no matter how the operators are distributed in the system, the
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Figure 4.17: Feasible set under abundant bandwidth situation.

bandwidth hyperplane of any node in the system is always above the load hyperplane of that

node, and the total bandwidth hyperplane is always above the ideal hyperplane. In this case, the

feasible sets are always determined by the node hyperplanes only. Thus, we do not need to consider

bandwidth constraints at all when distributing the operators. Next, we discuss how to determine

whether a system is under abundant bandwidth situation.

Let bo
jk denote the total bandwidth coefficients of all streams that connect to operator oj for

input stream Ik. Suppose oj is put on node Ni and no other operators are on Ni. If

max
k

bo
jk

lojk

<
Bi

Ci

, (4.9)

then the CPU usage (percentage of busy time) of Ni is always larger then the bandwidth usage

of Ni no mater what the input streams rate are. In addition, if all operators on node Ni satisfy

condition 4.9, then the CPU usage of the node is always larger than the bandwidth usage of the

node, and the node hyperplane of Ni is lower than the bandwidth hyperplane of Ni. Therefore, if

all operators in the system satisfy

max
k

bo
jk

lojk

< min
i

Bi

Ci

, (4.10)

no matter how the operators are distributed on the nodes, all node hyperplanes in the system are

always below the bandwidth hyperplane for the same node. On the other hand, If some operator

does not satisfy condition 4.10, then, there exist operator distribution plans that will make the

bandwidth hyperplane of a node either be below, or intersect with, its node hyperplane.

In addition, the total bandwidth hyperplane of the system is above the ideal hyperplane if and
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Figure 4.18: Feasible set under limited bandwidth situation.

only if

max
k

∑w
t=1 bs

tk
∑m

j=1 lojk

<

∑n
i=1 Ci

∑n
i=1 Bi

.

Therefore, we have that

Theorem 3: A system is under abundant bandwidth situation if and only if

max
k

bo
jk

lojk

< min
i

Bi

Ci

for j = 1, · · · , m,

max
k

∑w
t=1 bs

tk
∑m

j=1 lojk

<

∑n
i=1 Ci

∑n
i=1 Bi

.

We call the other cases in which the above two inequalities do not hold the limited bandwidth

situation (e.g. Figure 4.18). In this case, the bandwidth hyperplanes can be lower than the ideal

hyperplane and affect the size of the achieved feasible set. In other words, the network bandwidth

may become saturated before the CPU of the nodes are overloaded. In this situation, we must

consider the bandwidth constraints in the operator placement algorithm.

Operator Clustering Under Limited Bandwidth Situation

The impact of operator placement on the bandwidth hyperplanes are very different from its impact

on the load hyperplanes. By clustering connected operators, we can reduce network bandwidth

consumption, and thus make the bandwidth hyperplanes far from the origin. However, such

effort may lower the node load hyperplanes, because it may result in large node load coefficients.
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Therefore, we need to find a good balance between the positions of the bandwidth hyperplanes

and node load hyperplanes.

Our solution is to use an operator clustering algorithm, which is similar to the one introduced

previously, to generate a set of operator clustering plans. Then we apply ROD on the clustered

super-operators without considering the bandwidth constraints. Finally, we compare the minimum

plane distance of the resulting plans and pick the one with the largest minimum plane distance.

The minimum plane distance is now defined as the minimum distance from the lower bound point

to all hyperplanes (including both the node load hyperplanes and the bandwidth hyperplanes).

The operator clustering algorithm for bandwidth usage reduction is very similar to the operator

clustering algorithm that we introduced earlier for communication CPU overhead reduction.

In the operator clustering algorithm, we also use two greedy operator clustering approaches:

Max-Ratio-First and Min-Weight-First. These approaches are similar to the approaches introduced

previously for data communication CPU overhead reduction. The difference is that the commu-

nication clustering ratio used in the previous approaches is replaced by the bandwidth clustering

ratio. We define the bandwidth ratio between stream St and its end-operators (or super-operators)

ou and ov as

rb
ut

.
= max

k

bs
tk

louk

,

rb
vt

.
= max

k

bs
tk

lovk

.

The bandwidth clustering ratio of stream St is then defined as

rb
t

.
= max

(

rb
ut, r

b
vt

)

.

We also replace the communication clustering ratio threshold ηc in the previous Max-Ratio-First

approach by the bandwidth clustering ratio threshold ηb in the new Max-Ratio-First approach.

The rest of the Max-Ratio-First approach and the Min-Weight-First approach remain the same.

The pseudocode for these operator clustering approaches is shown in Figure 4.19

Combining the Two Operator Clustering Algorithms

We have introduced two operator clustering algorithms separately: one for reducing the communi-

cation CPU overhead, the other one for reducing the network bandwidth consumption. Next, we

discuss how to integrate both operator clustering algorithms in a single framework.

Given ηc, ηb, and ψ, we now consider a stream as a candidate stream for operator clustering if

its clustering weight is less than ψ and either its communication clustering ratio is larger than ηc or

its bandwidth clustering ratio is larger than ηb. We use a greedy strategy to select a stream from

the candidate streams and cluster the operators connected by the selected stream. This stream

selection and operator clustering process is repeated until no more candidate streams are available.

We use two stream selection policies to generate operator clustering plans. In the Min-Weight-

First policy, we always select the stream with the minimum clustering weight. In the Max-Ratio-

First policy, we separate the candidate streams into three classes. The streams in the first class
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Initialization
Ω ← {o1, · · · , om} (initialize the set of operator clusters or super-operators)
Γ ← φ (initialize the set of candidate streams as an empty set)
for t = 1, · · ·, g

(suppose stream St is connected to operator ou and ov)

rb
tu ← maxk

bs
tk

lo
uk

, rb
tv ← maxk

bs
tk

lo
vk

rb
t ← max

(

rb
tu, rb

tv

)

wc
t ← maxk

n(louk+lovk)
lk

if rb
t > ηb and wc

t < ψ, add St to Γ
Sream Ordering

if operator clustering approach is Max-Min-First
order streams in Γ by bandwidth clustering ratio in descending order

if operator clustering approach is Min-Weight-First
order streams in Γ by clustering weight in ascending order

Operator Clustering
while Γ is not empty

let St be the first candidate stream in Γ
(suppose St is connected to super-operator ou and ov)
cluster the operators connected by St to a new super-operator oc

for k = 1, · · · , d, lock ← louk + lovk

delete ou and ov from Ω
add oc to Ω

for each stream (denoted by Se) connected to oc

(suppose stream Se is connected to oc and of )
delete Se from Γ

rb
ec ← maxk

bs
ek

lo
ck

, rb
ef ← maxk

bs
ek

lo
fk

rb
e ← max

(

rb
ec, rb

ef

)

wc
e ← maxk

n(lock+lovk)
lk

if rc
e > ηc and wc

e < ψ
add Se to ordered Γ

delete St from Γ

Figure 4.19: The operator clustering pseudocode for network bandwidth consumption reduction.

have both a communication clustering ratio larger than ηc and a bandwidth clustering ratio larger

than ηb. The streams in the second class only have a communication clustering ratio larger than

ηc. The streams in the third class only have a bandwidth clustering ratio larger than ηb. We

can either choose to consider the communication clustering ratio first or consider the bandwidth

clustering ratio first. For example, if we consider the communication clustering ratio first, then

we order the streams in the first class by the communication clustering ratio. When selecting

streams, if the first class is not empty, we select the stream from this class with the with the

largest communication clustering ratio. Otherwise, if the second class is not empty, we select the

stream in the second class with the largest communication ratio. If both the first and the second

classes are empty, we select the stream from the third class with the largest bandwidth clustering

ratio.
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Again, by varying ηc, ηb and ψ, we obtain multiple operator clustering plans. We then compare

the minimum plane distance (considering both load hyperplanes and bandwidth hyperplanes)

of different operator distribution plans after applying ROD and select the one with the largest

minimum plane distance.

4.5 Complexity Analysis

The computation of ROD can be divided into four phases:

1. Statistics initialization, which include

• Computing the load coefficients of the operators

• Computing the communication load coefficients of the streams

• Computing the bandwidth coefficients of the streams

2. Operator clustering.

3. Operator ordering.

4. Operator assignment.

The last three phases are repeated several times with different operator clustering parameters.

The computation complexity of the statistic initialization process is O(md + gd), where com-

puting the operator load coefficients takes time O(md) and computing the stream communication

load coefficients and bandwidth coefficients takes time O(gd).

The computation complexity of the operator clustering phase is computed as the follows:

1. Checking whether the system is under abundant bandwidth situation takes time O(md).

2. Computing the communication clustering ratios and the bandwidth clustering ratios of all

streams takes time O(gd).

3. Ordering the streams takes time O(g log g)).

4. Clustering two operators takes constant time.

5. Updating the stream clustering ratio in the ordered stream queue takes time O(log g).

6. The above two steps are repeated at the most g times.

Thus, the computation complexity of the operator clustering phase is O(md + gd + g log g).

The computation complexity of the operator ordering phase is O(md + m log m), where com-

puting the second norm of the load vectors of the operators takes time O(md) and ordering the

m operators takes time O(m log m). The pseudocode of the operator assignment phase contains

three nested loops (see 4.9). Thus, its computation complexity is O(mnd). Therefore, the total

computation complexity of the basic ROD algorithm is O(m log m + mnd).
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If operator clusterings are repeated p times, then the ROD algorithm is also repeated p times.

Thus, the total computation complexity of whole process is O (p(gd + w log w + m log m + mnd)).



Chapter 5

Dynamic Operator Distribution

In this chapter, we address the dynamic operator distribution problem. We assume that the

operators are first clustered using the operator clustering algorithm introduced in the previous

chapter so that the CPU overhead for data communication is negligible and the network bandwidth

is not a bottleneck of the system. We further assume that all operator clusters that contain

operators that are impractical to be moved on the fly are already distributed to the nodes by

ROD. In this chapter, we only consider the the initial and dynamic re-distribution of operator

clusters with relatively small load migration overheads. For simplicity of exposition, we treat each

operator cluster as a single operator.

In order to adapt to the most recent load changes dynamically, our algorithms use the time

series load model to make operator distribution decisions (the load time series of an operator

cluster is the total load time series of all operators in the cluster). We refer the average load of

a time series as its load for simplicity. Our optimization goal is to produce and maintain load

balanced operator mapping plans where the average variance of the load time series of all nodes is

minimized and the average load correlation of all node pairs is maximized.

In this chapter, we first discuss how to minimize the average load variance and maximize the

average load variation in the ideal case, in which we assume that the total load time series of the

system can be arbitrarily distributed to the nodes. Given the insights obtained from the ideal case,

we then explore heuristics-based operator distribution algorithms that assign operators to nodes

in a greedy manner. We present both a global algorithm for initial operator placement and some

pair-wise algorithms for dynamic operator migration. The key idea underlying these algorithms is

to separate operators with large load correlation to different nodes and put operators with small

load correlation on the same node. For simplicity of exposition, we first assume that all nodes are

homogeneous. This assumption is relaxed in Section 5.3, in which we extend our algorithms to

deal with heterogeneous nodes. At the end of the chapter, we discuss the computation complexity

of the presented algorithms.
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5.1 Optimization Fundamentals

Before discussing our algorithm, it is beneficial to know how to minimize average load variance in

the ideal case. In this section, we assume that the total load time series X of the system is fixed,

and it can be arbitrarily partitioned across n nodes (this is usually unachievable). We want to find

the load partition with minimum average load variance. The result is illustrated by the following

theorem:

Theorem 4: Let the total load of the system be denoted by time series X. Let Xi be the load

time series of node i, 1 ≤ i ≤ n, i.e. X = X1 + X2 + · · · + Xn. Then among all load balanced

mapping plans with EX1 = EX2 = · · · = EXn, the average load variance

1

n

n
∑

i=1

varXi

is minimized if and only if

X1 = X2 = · · · = Xn =
X

n
.

Proof. Let ρij be the correlation coefficient between Xi and Xj . Since X = X1 + X2 + · · · + Xn,

we have that

varX =

n
∑

i=1

varXi + 2
∑

1≤i<j≤n

ρij

√

varXi

√

varXj

Since

−1 ≤ ρij ≤ 1

and
√

varXi

√

varXj ≤ varXi + varXj

2
(5.1)

(the equality holds if and only if varXi = varXj), we have that

varX ≤
n

∑

i=1

varXi +
∑

1≤i<j≤n

(varXi + varXj)

=

n
∑

i=1

varXi + (n − 1)

n
∑

i=1

varXi

= n

n
∑

i=1

varXi,

the equality holds if and only if ρij = 1 and varXi = varXj for all 1 ≤ i, j ≤ n.

When

X1 = X2 = · · · = Xn,

we have that

n

n
∑

i=1

Xi = n

n
∑

i=1

var
X

n
= varX,
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i.e., varX is maximized.

Now, it suffices to show that when ρij = 1 and varXi = varXj for all 1 ≤ i, j ≤ n,

X1 = X2 = · · · = Xn.

Given ρij = 1, varXi = varXj and EXi = EXj , we have that

cov (Xi,Xj) =
√

varXi ·
√

varXj (since ρij = 1)

= varXi (since varXi = varXj)

= EX2
i − (EXi)

2
(by definition)

= EX2
i − EXiEXj (since EXi = EXj)

= EX2
j − EXiEXj (by symetry)

= EXiXj − EXiEXj (by corvariance definition).

Therefore, we have that

EX2
i + EX2

j − 2EXiXj = 0,

i.e.

1

n

h
∑

k=1

x2
ik +

1

n

h
∑

k=1

x2
jk − 2

1

n

h
∑

k=1

xikxjk

=
1

n

h
∑

k=1

(

x2
ik + x2

jk − 2xikxjk

)

=
1

n

h
∑

k=1

(xik − xjk)
2

= 0.

This gives that xik = xjk for k = 1, · · · , h, and it holds for any 1 ≤ i, j ≤ n. Thus

X1 = X2 = · · · = Xn.

Notice that in the ideal case, when the average load variance of the system is minimized, the

average load correlation of the system is also maximized. Naturally, we want to know whether

the average load variance is monotonically decreasing with the average load correlation. If so,

minimizing average load variance and maximizing average load correlation are then the same.

Unfortunately, such a conclusion does not hold in general. It is very easy to find an counter

example through simulation. However, in the case of n = 2, we can prove that when ρ12 > 0, the

lower bound of the average load variance is a monotone decreasing function of the load correlation

coefficient and when ρ12 < 0, the upper bound of the average load variance is a monotone decreasing

function of the load correlation coefficient. The conclusion is shown as follows:
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Theorem 5: Given load time series X and X1, X2, with X = X1 + X2. If ρ12 > 0, then

varX

1 + ρ12
≤ varX1 + varX2 ≤ varX.

If ρ12 < 0, then

varX ≤ varX1 + varX2 ≤ varX

1 + ρ12
.

Proof. Given X = X1 + X2, we have that

varX = varX1 + varX2 + 2ρ12

√

varX1

√

varX2.

Obviously, when ρ12 > 0,

varX1 + varX2 ≤ varX,

and when ρ12 < 0,

varX1 + varX2 ≥ varX.

Since
√

varX1

√

varX2 ≤ varX1 + varX2

2
,

if ρ12 > 0, we have that

varX ≤ varX1 + varX2 + ρ12 (varX1 + varX2)

= (1 + ρ12) (varX1 + varX2) .

Thus

varX1 + varX2 ≥ varX

1 + ρ12

when ρ12 > 0.

If ρ12 > 0, we have that

varX ≥ varX1 + varX2 + ρ12 (varX1 + varX2)

= (1 + ρ12) (varX1 + varX2) .

Thus

varX1 + varX2 ≤ varX

1 + ρ12

when ρ12 < 0.

The relationship between the correlation coefficient and the average load variance of two time

series can be better illustrated by Figure 5.1. For a given positive time series X, we randomly

generate positive time series pairs X1 and X2 with X1 + X2 = X. For each pair of time series,

we plot their correlation coefficient vs. average variance in Figure 5.1. We also show varX and

varX/(1 + ρ12) in the figure as the bounds for the average variance.

Because correlation coefficients are bounded between [−1, 1], it is very easy to use them to check

whether a given mapping plan is near optimal and to determine whether redistributing operators

between a node pair is necessary. This observation is a very important foundation for one of our

optimization techniques.
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Figure 5.1: The relationship between the correlation coefficient and the average variance of two
time series.

5.2 The Correlation-Based Algorithm

In this section, we present a greedy algorithm which not only balances the load of the system, but

also tries to minimize the average load variance and maximize the average load correlation of the

system. In addition, when moving operators between the nodes, we want to achieve a good balance

between the amount of load moved between the nodes and the performance of the resulting load

distribution plans.

Our algorithm can be divided into two parts. First, we use a global algorithm to make the

initial operator distribution. Then, we switch to a dynamic load redistribution algorithm which

moves operators between nodes in a pair-wise fashion. In the global algorithm, we only care about

the quality of the resulting mapping plan without considering how many operators are moved. In

the pair-wise algorithm, we try to find a good tradeoff between the amount of load moved and the

quality of the resulting mapping plan.

Both algorithms are based on the basic load-balancing scheme. Thus, if the load of the system

does not fluctuate, our algorithm reduces to a load balancing algorithm with a random operator

selection policy. When the load of the system fluctuates, we can get load-balanced operator-

distribution plans with smaller average load variance and larger average load correlation than the

traditional load balancing algorithms.

Since it is easier to understand how to minimize the average load variance between a node pair

than among all nodes in the system, we will first discuss the pair-wise algorithm, and then the

global algorithm.

In all algorithms, we first obtain the operator distribution plan among all nodes without moving

the physical operators. When we say move an operator from one node to another, we only move
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the operators in the mapping plan. The physical operator are moved only after all changes to the

operator distribution plans are finished.

5.2.1 Pair-wise Algorithms

For simplicity, we assume that there is a centralized coordinator in the system and the load

information of all nodes is reported periodically to the coordinator. After each statistics collection

period, the coordinator orders all nodes by their average load. Then the ith node in the ordered

list is paired with the (n− i + 1)th node in the list. In other words, the node with the largest load

is paired with the node with the smallest load; the node with the second largest load is paired with

the node with the second smallest load, and so on. If the load difference between a node pair is

greater than a predefined threshold ε, operators will be moved between the nodes to balance their

average load.

Now, given a selected node pair, we will focus on how to move operators to minimize their

average load variance. As we know that there is a tradeoff between the amount of load moved

and the quality of the resulting mapping plan, we will first discuss an algorithm that moves the

minimum amount of load, and then discuss an algorithm that achieves the best operator mapping

quality, and finally, present an algorithm that balances the two goals well.

One-way Correlation-Based Load Balancing

In this algorithm, only the more loaded node is allowed to offload to the less loaded node. Therefore,

the load movement overhead is minimized.

Let N1 denote the more loaded node and N2 denote the less loaded node. Let the load of N1

be L1 and the load of N2 be L2. Our greedy algorithm will select operators from N1 one by one

with total selected load less than
L1 − L2

2

until no more operators can be selected. The operator selection policy is inspired by the following

observation:

Assume we have only two operators and two nodes. Let the load time series of the operators

be Y1 and Y2 respectively and the load correlation coefficient of the two operators be ρ12. Putting

the operators on different nodes will result in an average load variance of

(varY1 + varY2) /2

and putting the operators on different nodes will result in an average load variance of

var (Y1 + Y2) /2.

From the definition of correlation coefficient, we have that

var(Y1 + Y2)

2
− varY1 + varY2

2
= ρ12

√

varY1

√

varY2.
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Initialization
Ψ ← φ (initialize the set of operators be moved as an empty set)
Ω ← φ (initialize the set of candidate operators as an empty set)
X1 ← load time series of N1

X2 ← load time series of N2

l ← EX1−EX2

2 (compute the total amount of load to be moved)
for each movable operator oj on node N1

Yj ← the load time series of oj

if EYj < l
add oj to Ω
S(oj , N1) ← cor(Yj ,X1 − Yj)
S(oj , N2) ← cor(Yj ,X2)

S(oj) ← S(oj ,N1)−S(oj ,N2)
2

Operator Selection
while Ω is not empty

let os be the operator in Ω with the largest score
add os to Ψ
delete os from Ω
X1 ← X1 − Ys

X2 ← X2 + Ys

l ← l − EYs

for each operator oj in Ω
(update candidate operators and compute their score)
if EYj < l

S(oj , N1) ← cor(Yj ,X1 − Yj)
S(oj , N2) ← cor(Yj ,X2)

S(oj) ← S(oj ,N1)−S(oj ,N2)
2

else
delete oj from Ω

Figure 5.2: The pseudocode of the one-way correlation-based load balancing algorithm.

Obviously, to minimize average load variance, when ρ12 < 0, it is better to put the operators

together on the same node, and when ρ12 > 0, it is better to separate them onto different nodes.

Now consider moving operators from N1 to N2 following this intuition. Let Xi denote the load

time series of node Ni, and Yj denote the load time series of operators oj . Let ρ(oj , Ni) denote

the correlation coefficient between the load time series of operator oj and the total (sum of) load

time series of all operators on Ni except oj ; i.e.

ρ(oj , Ni) =















cor(Yj ,Xi − Yj) if oj is on Ni

cor(Yj ,Xi) if oj is not on Ni

Then from N1’s point of view, it is good to move out an operator that has a large ρ(oj , N1), and

from N2’s point of view, it is good to move in an operator that has a small ρ(oj , N2). Considering
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both nodes together, we prefer to move operators with large

ρ(oj , N1) − ρ(oj , N2).

Define

S(oj) =
ρ(oj , N1) − ρ(oj , N2)

2

as the score of operator oj with respect to N2. Our greedy operator selection policy then selects

operators from N1 one by one with the largest score first.

As the score function in this algorithm is based on the correlation coefficients, and the operators

can only be moved from one node to the other, this algorithm is called the one-way correlation-based

load balancing algorithm. The pseudocode of this algorithm is shown in Figure 5.2.

Two-way Correlation-Based Redistribution

In this algorithm, we redistribute all operators on a given node pair without considering the former

locations of the operators. With this freedom, it is possible to achieve better operator mapping

quality than the previous algorithm.

The operator selection policy in this algorithm is also a score based greedy algorithm. We first

start from two “empty” nodes (nodes with non-movable operators only), and then assign movable

operators to these nodes one by one. In order to balance the load of the two nodes, for each

assignment, we select the less loaded node as the receiver node. Then from all operators that

have not been assigned yet, we compute their score with respect to the receiver node and assign

the operator with the largest score to that node. This process is repeated until all operators are

assigned. Finally, we use the above one-way algorithm to further balance the load of the two nodes.

The score function used here is the same as the score function used in the one way algorithm.

It can also be generalized into the following form:

S(oj , Ni) =
ρ(oj , N1) + ρ(oj , N2)

2
− ρ(oj , Ni),

where S(oj , Ni) is called the score of operator oj with respect to node Ni, i = 1, 2. The intuition

behind the use of S(oj , Ni) is that the larger the score, the better it is to put oj on Ni instead of

on the other node.

As this algorithm will move operators in both directions, it is called the two-way correlation-

based operator redistribution algorithm. The pseudocode of this algorithm is shown in Figure 5.3.

The final mapping achieved by this algorithm can be much better than the one-way algorithm.

However, as it does not consider the former locations of the operators, this algorithm tends to

move more load than necessary, especially when the former mapping is relatively good. In the

following section, we present an algorithm that can get a good operator mapping plan by only

moving a small fraction of operators from the existing mapping plan.



71

Initialization
Ω ← {all operators on N1 and N2 that can be moved }
Ψ1 ← φ (initialize the set of operators to be assigned to N1 as an empty set)
Ψ2 ← φ (initialize the set of operators to be assigned to N2 as an empty set)
X1 ← total load time series of all non-movable operators on N1

X2 ← total load time series of all non-movable operators on N2

for each operator oj ∈ Ω
Yj ← the load time series of oj

ρ(oj , N1) ← cor(Yj ,X1)
ρ(oj , N2) ← cor(Yj ,X2)

Operator Distribution
while Ω is not empty

(determine the less loaded node)
if EX1 < EX2

i ← 1
else

i ← 2
(compute operator scores with respect to the less loaded node)
for each operator oj ∈ Ω

S(oj , Ni) ← ρ(oj ,N1)+ρ(oj ,N2)
2 − ρ(oj , Ni)

let os be the operator in Ω with the largest score
(assign selected operator to the less loaded node)
add os to Ψi

delete os from Ω
Xi ← Xi + Ys

(update load correlation between Ni and all candidate operators)
for each operator oj in Ω

ρ(oj , Ni) ← cor(Yj ,Xi)

Further Load Balancing
balance the load of N1 and N2 using the one-way correlation-based load
balancing algorithm

Figure 5.3: The pseudocode of the two-way correlation-based operator redistribution algorithm.

Two-way Correlation-Based Selective Exchange

In this algorithm, we allow both nodes to send load to each other. However, only the operators

whose score is greater than a certain threshold δ can be moved. The score function used is the

same as the one in the one-way algorithm. Recall that if the score of an operator on node Ni ,

i = 1, 2, is greater than zero, then it is better to put that operator on Nk (k 6= i) instead of on

Ni. Thus, by choosing δ > 0, we only move operators that are good candidates. By varying the

threshold δ, we can control the tradeoff between the amount of load moved and the quality of the

resulting mapping plan. If δ is large, then only a small amount of load will be moved. If δ is

small (still greater than zero), then more load will be moved, but better mapping quality can be

achieved.
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One-way Load Balancing
balance the load of N1 and N2 using the one-way correlation-based load
balancing algorithm

Operator Exchange Initialization
Ψ1 ← {all movable operators assigned to N1 after one-way load balancing}
Ψ2 ← {all movable operators assigned to N2 after one-way load balancing}
X1 ← total load time series of all operators assigned to N1

X2 ← total load time series of all operators assigned to N2

count ← total number of operators on in Ψ1 and Ψ2

Operator Exchange
while count > 0

if EX1 > EX2

s ← 1, r ← 2
else

s ← 2, r ← 1
for each operator oj ∈ Ψs

Yj ← load time series of oj

ρ(oj , N1) ← cor(Yj ,X1), ρ(oj , N2) ← cor(Yj ,X2)

S(oj , Nr) ← ρ(oj ,N1)+ρ(oj ,N2)
2 − ρ(oj , Nr)

let os be the operator in Ψs with the largest score
if S(os, Nr) > δ

move os from Ψs to Ψr

Xs ← Xs − Ys, Xr ← Xr − Ys

else
break

count ← count − 1

Further Load Balancing
balance the load of N1 and N2 using the one-way correlation-based load
balancing algorithm

Figure 5.4: The pseudocode of the two-way correlation-based selective operator exchange algo-
rithm.

The details of the algorithm are as follows: (1) Balance the load of the two nodes using the

above one-way algorithm. (2) From the more loaded node1, check whether there is an operator

whose score is greater than δ. If so, move this operator to the less loaded node. (3) Repeat step

(2) until no more operators can be moved or the number of iterations equals to the number of

operators on the two nodes. (5) Balance the load of the nodes using the one-way algorithm.

As this algorithm only selects good operators to move, it is called two-way correlation-based

selective operator exchange algorithm. The pseudocode of this algorithm is shown in Figure 5.4.

1The load of the nodes cannot be exactly the same.
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Pair-wise Load Balancing
balancing the load of the nodes pair-wisely using one of the two-way algorithms

Correlation Improved Initialization
Ψi ← {all movable operators assigned to Ni after load balancing}
Xi ← load time series of Ni after load balancing

Correlation Improvement
for i = 1, · · · , n

if EXi +
√

varXi > 1
(select the node with the minimum load correlation with Ni)
s = 0 (s is the index of the node to be selected)
t ← θ
for j = 1, · · · , n

if j 6= i and cor(Xi,Xj) < t
t ← cor(Xi,Xj)
s ← j

if s 6= 0
(copy the old mapping plan)

Ψ
′

i ← Ψi, Ψ
′

j ← Ψj

X
′

i ← Xi, X
′

j ← Xj

apply one of the two-way algorithms between Ni and Ns and
update Ψi, Ψs, Xi, Xs

if cor(Xi,Xs) ≤ t
(use the old operator distribution plan)

Ψi ← Ψ
′

i, Ψj ← Ψ
′

j

Xi ← X
′

i , Xj ← X
′

j

Figure 5.5: The pseudocode of the improved two-way algorithms.

Improved Two-way Algorithms

In all the above algorithms, operator migration is only triggered by load balancing. In other words,

if an existing operator mapping plan is balanced, then no operator can be moved even if the load

variance of some nodes is very large. To solve this problem and also maximize the average load

correlation of the system, we add a correlation improvement step after each load balancing step in

the above two-way algorithms.

Recall that if the load correlation coefficient of a node pair is small, then it is possible to further

minimize the average load variance of the node pair. Thus, in the correlation improvement step, we

move operators within a node-pair if their load correlation coefficient is below a certain threshold

θ. Because we want to avoid unnecessary load migrations, the correlation improvement step is

only triggered when some node is likely to get temporarily overloaded. The details of this step are

as follows:

We define the “divergent load level” of each node as its average load plus its load standard

deviation (i.e., square root of load variance). For each node with a divergent load level more than

one (it is likely to get temporarily overloaded), apply the following steps: (1) compute the load
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correlation coefficients between this node and all other nodes. (2) Select the minimum correlation

coefficient. If it is less than θ, then apply one of the two way algorithms on the corresponding node

pair (without moving the operators). (3) Compute the new correlation coefficient. If it is greater

than the old one, then move the operators.

Notice that this is only for the two-way algorithms since no operators can be moved in the

one-way algorithm when load is balanced. The resulting algorithms are called improved two-way

algorithms. The pseudocode of this algorithm is shown in Figure 5.5.

5.2.2 Global Algorithm

In this section we discuss a global algorithm which distributes all operators on n nodes without

considering the former location of the operators. This algorithm is used to achieve a good initial

operator distribution when the system starts. Because we need load statistics to make operator

distribution decisions, the algorithm should be applied after a statistics collection warm up period.

The algorithm consists of two major steps. In the first step, we distribute all operators using

a greedy algorithm which tries to minimize the average load variance as well as balance the load

of the nodes. In the second step, we try to maximize the average load correlation of the system.

The greedy algorithm is similar to the one used in the two-way operator redistribution algo-

rithm. This time, we start with n “empty” nodes (i.e., nodes with non-movable operators only).

The movable operators are assigned to the nodes one by one. Each time, the node with the lowest

load is selected as the receiver node and the operator with the largest score with respect to this

node is assigned to it. Finally, the load of the nodes is further balanced using one round of the

pair-wise one-way correlation-based load balancing algorithm.

The major difference between the global algorithm and the former pair-wise algorithm is that

the score function used here is generalized to consider n nodes together. The score function of

operator oj with respect to Node Ni, i = 1, · · ·, n, is defined as follows:

S(oj , Ni) =
1

n

n
∑

k=1

ρ(oj , Nk) − ρ(oj , Ni),

The intuition behind S(oj , Ni) is that the larger the score, the better it is, on average, to put

operator oj on node Ni instead of putting it elsewhere. It is easy to verify that the score functions

used in the pair-wise algorithms are just special cases of this form.

After all operators are distributed, a pair-wise correlation improvement step is then used to

maximize the average load correlation of the system. First, we check whether the average load

correlation of all node pairs is no less than a given threshold θ. If not, the node pairs with load

correlation less than θ are selected as the candidate node pairs for operators redistribution. From

this list, we first select the node pair with the minimum load correlation and use the two-way

operator redistribution algorithm to obtain a new mapping plan among them. The new mapping

plan is accepted only if the resulting correlation coefficient is greater than the old one. If operators

are moved between the selected node pair, we must update their load correlations with the rest of
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Initialization
Ω ← {all movable operators in the system}
for i = 1, · · · , n

Ψi ← φ (initialize the set of operators to be assigned to Ni as an empty set)
Xi ← total load time series of all non-movable operators on Ni

for each oj ∈ Ω
Yj ← the time series of oj

for i = 1, · · · , n
ρ(oj , Ni) ← cor(Yj ,Xi)

Operator Distribution
order all nodes by average load (EXi)
while Ω is not empty

let Nr be the least loaded node
(compute operator scores with respect to the lest loaded node)
for each operator oj ∈ Ω

S(oj , Nr) ← 1
n

∑n
i=1 ρ(oj , Ni) − ρ(oj , Nr)

let os be the operator in Ω with the largest score
(assign selected operator to the lest loaded node)
add os to Ψr

delete os from Ω
Xr ← Xr + Ys

(update load correlation between Ni and all candidate operators)
for each operator oj in Ω

ρ(oj , Nr) ← cor(Yj ,Xr)

Further Load Balancing
balancing the load of nodes pair-wisely using the one-way correlation-based
load balancing algorithm

Correlation Improvement
(see pseudocode for pair-wise correlation improvement in Figure 5.7)

Figure 5.6: The pseudocode of the global correlation-based operator distribution algorithm.

the nodes and update the candidate node pair list accordingly. This process is repeated until no

more candidate node pairs are available or the number of iterations reaches the number of node

pairs in the system.

The pseudocode of the global correlation-based operator distribution algorithm is shown in Fig-

ures 5.6 and 5.7.

5.3 Extension

So far, we have assumed that all nodes are homogeneous. In this section, we generalize our

algorithm to deal with nodes with different CPU capacities. The basic idea and approach of our

algorithm remains the same. The only change here is related to the load measurement of the nodes.

Instead of balancing the absolute load (number of CPU cycles needed in a given time interval
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Initialization
Γ ← φ (initialize the set of candidate node pairs as an empty set)
for i = 1, · · · , n

for j = i + 1, · · · , n
ρij ← cor(Xi,Xj)
if ρij < θ

insert ρij to Γ and keep Γ in ascending order
count ← n(n − 1)

Correlation Improvement
while count > 0 and Γ is not empty

let (Ni, Nj) be the node pair with the minimum load correlation in Γ
delete ρij from Γ
(copy the old mapping plan)

Ψ
′

i ← Ψi, Ψ
′

j ← Ψj

X
′

i ← Xi, X
′

j ← Xj

redistribute operators on Ni and Nj using the two-way correlation-based
operator redistribution algorithm and update Xi and Xj

if cor(Xi,Xj) > ρij (ρij is the old one)
(apply the new plan and update the candidate node pairs)
for k = 1, · · · , n

if k 6= i and k 6= j
if old ρik or ρki or ρjk or ρkj ∈ Γ

delete them from Γ
ρik ← cor(Xi,Xk), ρjk ← cor(Xj ,Xk)
if ρik < θ

add ρik to Γ
else

(use the old plan)

Ψi ← Ψ
′

i, Ψj ← Ψ
′

j

Xi ← X
′

i , Xj ← X
′

j

count ← count − 1

Figure 5.7: The pseudocode for the pair-wise correlation improvement step in the global operators
distribution algorithm.

divided by the duration of the interval) of the nodes, we now balance the relative load of the nodes

which is defined as the absolute load of the node divided by the CPU capacity of the node (number

of CPU cycles the node has in the given time interval).

In the previous operator distribution algorithms, we always assign operators to the least load

node or move operators from a more loaded node to a less loaded node. For heterogeneous nodes,

we use relative load instead of absolute load for load comparison. Thus, by least loaded node, we

mean the node with the minimum relative load; by more loaded node, we mean the node with

larger relative load; and by less loaded node, we mean the node with smaller relative load.

When we balance the load of two homogeneous nodes with absolute loads L1 and L2, we move
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operators with total absolute load
|L1 − L2|

2

from the more loaded node to the less loaded node.

Now suppose the two nodes N1 and N2 have CPU capacity C1 and C2 respectively, and assume

L1/C1 > L2/C2. To balance the relative load of the nodes, we move absolute load ∆L from N1 to

N2 such that
L1 − ∆L

C1
=

L2 + ∆L

C2
.

Thus

∆L =
L1C2 − L2C1

C1 + C2
.

After making the above changes, the rest of the algorithms remain the same. We do not need

to change the score functions because correlation coefficient is already a normalized term.

5.4 Complexity Analysis

In this section, we analyze the computation complexity of the above algorithms and compare it

with a traditional load balancing algorithm. The basic load balancing scheme of the two algorithms

are the same. The latter algorithm always selects operators with the largest average load first.

5.4.1 Statistics Collection Overhead

Assume each node has m/n operators on average and each load sample takes D bytes. Then the

load statistics of each node takes (m/n+1)hD bytes on average. Since the standard load balancing

algorithm only uses the average load of each statistics window, the storage needed for statistics by

the correlation based algorithm is h times that of the traditional load balancing algorithm.

On a high bandwidth network, the network delay for statistics transfer is usually negligible with

regard to the load distribution time period. For example, we test the statistics transfer time on an

Ethernet with 100M bps connection between the machines. Establishing the TCP connection takes

2ms on average. When m/n = 20, h = 20, the statistics transfer time is 1ms per node on average.

Considering the TCP connection time together with the data transfer time, the difference between

the correlation-based algorithm and the traditional load balancing algorithm is not significant.

5.4.2 Computation Complexity

First, consider the one-way correlation-based load balancing algorithm. In each load distribution

period, it takes O(n log n) time to order the nodes and select the node pairs. For a given node

pair, before selecting each operator, the scores of the candidate operators must be computed.

Computing the correlation coefficient of a time series takes time O(h). Thus, in a pair-wise

algorithm, computing the score of an operator also takes time O(h). Assume there are m1 operators

on the sender node, thus the total operator selection time is at most O(hm2
1). In the traditional load
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balancing algorithm, it is not necessary to compute the scores of the operators, thus the operator

selection time of the one-way correlation-based algorithm is O(h) times that of the traditional

load balancing algorithm. Similarly, for the two-way correlation-based load balancing algorithms,

assume there are m1 + m2 operators on the two nodes, then it takes time O(h(m1 + m2)
2) to

redistribute the operators.

For the global algorithm, the score computation takes O(nh) time for each operator. As there

are m operators all together, its operator distribution time is O(m2nh). Thus the computation

time of the greedy operator distribution step of the correlation-based global algorithm is O(nh)

times that of the traditional load balancing algorithm.

Finally, consider the computation complexity of the correlation improvement steps. In the pair-

wise algorithms, computing the divergent load level of all nodes takes time O(nh). If a node is

temporarily overloaded, selecting a node pair takes time O(nh), and to redistribute load between

them takes time at the most O(hm2). There are at the most n temporarily overloaded nodes.

Thus, the whole process takes time O(n2h + hm2n)

In the global algorithm, it takes time O(n2h) to compute the correlation matrix in the first

iteration. In the following iterations, whenever operators are redistributed between a node pair,

it takes O(nh) time to update the correlation matrix. Selecting a node pair takes time O(n2).

Redistributing operators on a node pair takes time O(hm2). Thus, each complete iteration takes

time O(nh + n2 + hm2). There are at most n(n − 1) iterations. Therefore, the total correlation

improvement step takes time O(n3h + n4 + m2n2h).

Although the correlation-based algorithms are in polynomial time, they can still be very expen-

sive when m,n, h are large. Thus, we must work with reasonable m,n, h to make these algorithms

feasible.

5.4.3 Parameter Selection

Obviously, the global algorithm and the centralized pair-wise algorithm cannot scale when n is

large. However, we can partition the whole system into either overlapping or non-overlapping

sub-domains. In each domain, both the global and the pair-wise algorithm can be applied locally.

In addition, as the pair-wise algorithm is repeated periodically, we must make sure that its

computation time is small in comparison to the load distribution period. Obviously, when the

number of operators on a node is large, a lot of operators must have very small average loads. As

it is not necessary to consider each operator with a small load individually, the operators can be

clustered into super-operators such that the load of each super-operator is no less than a certain

threshold. By grouping operators, we can control the number of operators on each node.

Moreover, we can also choose h to achieve a tradeoff between the computation time and the

performance of the algorithm. For a larger h, the correlation coefficients are more accurate, and

thus the distribution plans are better. At the other extreme, when h is 1, our algorithm reduces

to load balancing with a random operator selection policy.

Finally, we would like to point out that it is not hard to find reasonable m, h, and domain size
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Table 5.1: Computation time with different number of nodes.

n 10 20 50

Computation Time 0.5sec 3.4sec 0.9min

n. For example, we tested the algorithms on a machine with an AMD AthlonTM 3200+ 2GHz

processor and 1GB memory. When h = 10 and the average number of operators on each node

is 10, the computation time of the pair-wise operator redistribution algorithm is only 6ms for

each node pair. If the load distribution interval is 1 second, the pair-wise algorithms only take

a small fraction of the CPU time in each distribution period. Since the pair-wise algorithm can

be easily extended to a decentralized and asynchronous implementation, it is potentially scalable.

The computation time of the global algorithm with different n is shown in Table 5.1. Note that

the global algorithm runs infrequently and on a separate node. It would only be used to correct

global imbalances.



Chapter 6

Experimental Results

In this chapter, we evaluate the performance of our static operator distribution algorithm and

dynamic operator distribution algorithms. We compare our algorithms with traditional operator

distribution algorithms through various experiments with different parameters.

6.1 Static Operator Distribution Experimental Results

In this section, we study the performance of ROD by comparing it with several alternative schemes

using the Borealis distributed stream-processing system [3] and a custom-built simulator. We use

real network traffic data and an aggregation-heavy traffic monitoring workload, and report results

on feasible set size as well as processing latencies.

6.1.1 Experimental Setup

Unless otherwise stated, we assume the system has 10 homogeneous nodes. We also assume

that the operators can not be moved in this section. In addition to the aggregation-based traffic

monitoring queries, we used random query graphs generated as a a collection of operator trees

rooted at input operators. Because the maximum achievable feasible set size is determined by how

well the weight of each input stream can be balanced, we let each operator tree consist of the

same number of operators and vary this number in the experiments. For ease of experimentation,

we also implemented a “universal” operator whose per-tuple processing cost and selectivity can

be adjusted. To measure the operator costs and selectivities in the prototype implementation, we

randomly distribute the operators and run the system for a sufficiently long time to gather stable

statistics.

In Borealis, we compute the feasible set size by randomly generating 100 workload points,

all within the ideal feasible set. We compute the ideal feasible set based on operator cost and

selectivity statistics collected from trial runs. For each workload point, we run the system for a

sufficiently long period and monitor the CPU utilization of all the nodes. The system is deemed

80
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feasible if none of the nodes experience 100% utilization. The ratio of the number of feasible points

to the total number of runs is the ratio of the achievable feasible set size to the ideal one.

In the simulator, the feasible set size of the load distribution plans are computed using Quasi

Monte Carlo integration [60]. Due to the computational complexity of computing multiple inte-

grals, most of our experiments are based on query graphs with five input streams (unless otherwise

specified). However, the observable trends in experiments with different numbers of input streams

suggest that our conclusions are general.

6.1.2 Algorithms Studied

We compare ROD with four alternative load distribution approaches. Three of these algorithms

attempt to balance the load while the fourth produces a random placement while maintaining an

equal number of operators on each node. Each of the three load balancing techniques tries to

balance the load of the nodes according to the average input stream rates. The first one, called

Connected-Load-Balancing, prefers to put connected operators on the same node to minimize data

communication overhead. This algorithm is commonly used in traditional distributed systems. The

second algorithm, called Largest-Load First (LLF) Load Balancing, orders the operators by their

average load-level and assigns operators in descending order to the currently least loaded node.

The third algorithm is our global Correlation-based Load Balancing algorithm. This algorithm is

not designed for static operator distribution. However, because it tries to separate operators with

large correlations to different nodes, operators from the same input stream tend to be separated

to different nodes.

6.1.3 Experiment Results

Resiliency Results

First, we compare the feasible set size achieved by different operator distribution algorithms in

Borealis. We repeat each algorithm except ROD 10 times. For the Random algorithm we use

different random seeds for each run. For the load balancing algorithms, we use random input stream

rates, and for the Correlation-based algorithm, we generate random stream-rate time series. ROD

does not need to be repeated because it does not depend on the input stream rates and produces

only one operator distribution plan. Figure 6.1 shows the average feasible set size achieved by each

algorithm divided by the ideal feasible set size on query graphs with different number of operators.

It is obvious that the performance of ROD is significantly better than the average performance

of all other algorithms. The Connected algorithm fares the worst because it tries to keep all

connected operators on the same node. This is a bad choice because a spike in an input rate

cannot be shared (i.e., collectively absorbed) among multiple processors. The Correlation-Based

algorithm does fairly well compared to the other load balancing algorithms because it tends to do

the opposite from the Connected algorithm. That is, operators that are downstream from a given

input have high load correlation and thus tend to be separated onto different nodes. The Random
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Figure 6.1: The ratio of the average feasible set size achieved by different algorithms to the ideal
feasible set size (in Borealis).

25 50 100 200
0

0.2

0.4

0.6

0.8

1

Number of Operators

A
ve

ra
ge

 F
ea

si
bl

e 
S

et
 S

iz
e 

R
at

io
 (

A
 / 

R
O

D
)

 

 

A = Correlation−Based
A = LLF−Load−Balancing
A = Random
A = Connected−Load−Balancing

Figure 6.2: The ratio of the average feasible set size achieved by different algorithms to the feasible
set size achieved by ROD (in Borealis).

algorithm and the LLF Load Balancing algorithm lie between the previous two algorithms because,

although they do not explicitly try to separate operators from the same input stream, the inherent

randomness in these algorithms tends to spread operators out to some extent. ROD is superior

because it not only separates operators from each input stream, but also tries to avoid placing

“heavy” operators from different input streams on the same node, thus avoiding bottlenecks.

As the number of operators increases, ROD approaches the ideal case and most of the other

algorithms improve because there is a greater chance that the load of a given input stream will

be spread across multiple nodes. On the other hand, even for fewer operators, our method retains

roughly the same relative performance improvement (Figure 6.2).

Notice that the two hundred operators case is not unrealistic. It is important to realize that an

operator graph does not correspond to a single query. In fact, it is typical for a given application
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Figure 6.3: The ratio of the average feasible set size achieved by different algorithms to the ideal
feasible set size (in the simulator).

to actually consist of many queries which, in total, account for large query graphs. In our experi-

ence with the financial services domain, applications often consist of related queries with common

sub-expressions, so query graphs tend to get very wide (but not necessarily as deep). For example,

a real-time proof-of-concept compliance application we built for 3 compliance rules required 25

operators. A full-blown compliance application might have hundreds of rules, thus requiring very

large query graphs. Even in cases where the user-specified query graph is rather small, paralleliza-

tion techniques (e.g., range-based data partitioning) significantly increase the number of operator

instances, thus creating much wider, larger graphs.

We also ran the same experiments in our distributed stream-processing simulator. The ratio

of the average feasible set size achieved by each algorithm to the ideal feasible set size is shown

in Figure 6.3. Comparing this graph with the graph in Figure 6.1, we can see that the simulator

results tracked the results in Borealis very closely, thus allowing us to trust the simulator for

experiments in which the total running time in Borealis would be prohibitive.

We then run each algorithm except ROD 500 times in the simulator. Figure 6.4 shows the ratio

of the feasible set size of these algorithms to the feasible set size of ROD in each experiment (each

ratio correspond to a point in the graph). The ratios of each algorithm under a given query graph

are shown in the same vertical line. The position of the markers in the graph shows the median ratio

for each algorithm. The key thing this figure reveals is that the performance of different algorithms

except ROD varies significantly given random input stream rates or random seed. Although these

algorithms may result in feasible set size that are close to that of ROD sometimes, they are also

likely to result in very small feasible set sizes, thus making the system very vulnerable. Having such

uncertainty is even worse than what their average performance indicates, because time sensitive

applications would be risk-averse.

In addition, we can see that the best-case performances of those algorithms are also worse than

ROD in most cases. Thus, even if we can use those algorithms to generate a set of plans and choose
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Figure 6.4: The ratio of the feasible set size achieved by different operator distribution algorithm
to the feasible set size achieved by ROD (in the simulator).
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Figure 6.5: Impact of the number of input streams on feasible set size ratio.

the best one, they still can not beat ROD in most cases. Besides, for large numbers of input stream

rates, comparing the feasible set size of different plans is itself computational infeasible.

Varying the Number of Inputs

Our previous results are based on a fixed number of input streams (i.e., dimensions). We now

examine the relative performance of different algorithms for varying number of dimensions using

the simulator.

Figure 6.5 shows the ratio of the feasible set size of the competing approaches to that of ROD,

averaged over multiple independent runs. We observe that as additional inputs are used, the

relative performance of ROD gets increasingly better. In fact, each additional dimension seems to

bring to ROD a constant relative percentage improvement, as implied by the linearity of the tails

of the curves. Notice that the case with two inputs exhibits a higher ratio than that estimated by

the tail, as the relatively few operators per node in this case significantly limits the possible load
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Figure 6.6: Penalty for not using the lower bound (using origin as the lower bound ).

distribution choices. As a result, all approaches make more or less the same distribution decisions.

For example, when the number of operators equals the number of nodes, all algorithms produce

practically equivalent operator distribution plans by assigning one operator to each node.

Using a Known Lower-bound

As discussed in Section 4.4, having knowledge of a lower bound on one or more input rates can

produce results that are closer to the ideal. We verify this analysis in this next set of experiments

in the simulator.

We generate random points Bi in the ideal feasible space anchored at the origin to use as the

lower bounds of each experiment. For each Bi, we generate two operator distribution plans, one

that uses Bi as the lower bound and one that uses the origin. We then compute the feasible set

size for these two plans relative to Bi. Let us call the feasible set size for the former plan FFS(Bi)

and the feasible set size for the later FSS(O). We compute the penalty for not knowing the lower

bound as (FFS(Bi) − FSS(O)) /FSS(Bi)

We now run our experiment on a network of 50 operators. We plot the penalty in Figure 6.6

with the x-axis as the ratio of the distance from Bi to the ideal hyperplane to the distance from

the origin to the ideal hyperplane. Notice that, when this ratio is small (Bi is very close to the

ideal hyperplane), the penalty is large because without knowing the lower bound it is likely that

we will sacrifice the small actual feasible set in order to satisfy points that will not occur. As Bi

approaches the origin (i.e., the ratio gets bigger), the penalty drops off as expected.

The next experiment quantifies the impact of inaccurate knowledge of the lower bound val-

ues. In Figure 6.7, we run the same experiment as above except that, instead of using the ori-

gin as the assumed lower bound, we use another randomly generated point. As in the above

experiment, we compute a penalty for being wrong. In this case, the penalty is computed as

(FFS(Bi) − FSS(Zi)) /FSS(Bi) where Bi is the real lower bound, as before, and Zi is the assumed

lower bound. The x axis is the distance between Bi and Zi in the normalized space. As one might
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Figure 6.7: Penalty for using a wrong lower bound.

Table 6.1: Average penalty.

number of operators 25 50 100 200

origin as the lower bound 0.90 0.79 0.56 0.35

Zi as the lower bound 0.89 0.83 0.55 0.32

expect, when the real and the assumed lower bounds are close to each other, the penalty is low.

As the distance increases, the penalty also increases (Figure 6.7).

As one might expect, when the real and the assumed lower bounds are close to each other, the

penalty is low. As the distance increases, the penalty also increases, reaching its maximum possible

value at a normalized distance of about 4. Once the distance gets this big, the two points must

be close to the ideal hyperplane because they would not be able to be that far from each other

otherwise. With two such points, there would be little overlap in their feasible sets, so making

them farther away has no further effect.

The penalty is also dependent on the number of operators in our query network. We redo our

experiments for different networks with 25 to 200 operators leaving everything else unchanged.

Looking at Table 6.1, we see that for these four different networks, the average penalty drops as we

increase the number of operators. For very large numbers of operators, the penalty will converge

to zero since, at that point, all the hyperplanes can be very close to the ideal case given the greater

opportunity for load balancing.

Adding Data Communication Overhead

In this section, we address data communication overheads and study the impact of operator clus-

tering in the simulator. For simplicity, we let each arc have the same per-tuple data communication

cost and each operator have the same per tuple data processing cost. We vary the ratio of data
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Figure 6.8: Feasible set size ratio of ROD with operator clustering vs. ROD without operator
clustering after adding data communication overhead.
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Figure 6.9: Feasible set size ratio of ROD with operator clustering vs. Connected-Load-Balancing
after adding data communication overhead.

communication cost over data processing cost (from 0 to 1) and compare ROD with and without

operator clustering. The results shown in Figure 6.8 are consistent with the intuition that operator

clustering becomes more important when relative communication cost increases.

We also compare the performance of clustered ROD with Connected Load Balancing in Fig-

ure 6.1.3. Our first observation is that clustered ROD consistently performs better than Connected

Load Balancing regardless of the data communication overhead. Secondly, we observe that clus-

tered ROD can do increasingly better with increasing number of operators per input stream—more

operators means more clustering alternatives and more flexibility in balancing the weight of each

input stream across machines.
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Adding Bandwidth Constraint

In this section, we add bandwidth constraints in the simulator. We assume that the bandwidth

between each node the Ethernet network is 100M bps and the total bandwidth capacity of the

Ethernet network is 1G bps. For simplicity, we let each stream have the same tuple size and let

all operators have the same processing cost. The selectivities of all operators are one. In this

configuration, the bandwidth ratios between all streams and their connected operators are the

same. We then vary the bandwidth ratio in different experiments.

Figure 6.10 illustrates the ratio of the feasible set size achieved by ROD with operator clus-

tering to the feasible set size of ROD without operator clustering in these experiments. For each

experiment, we show, in the x-axis, the ratio of the bandwidth utilization to the CPU utilization

of a node if a single operator (with a single input stream and a single output stream) is put on

the node. When this ratio is low (e.g. 0.2, 0.8) , the bandwidth resources are not the bottleneck

of the system. Thus, the performance of ROD with operator clustering is the same as that of

ROD without operator clustering. When this ratio is one, if all operators in the system have a

single input stream and a single output stream and no connected operators are put on the same

node, then the bandwidth resource of a node and its CPU resource are always overloaded at the

same time. This is the edge case between the abundant bandwidth situation and the limited band-

width situation. In our randomly generated query graphs, an operator may have multiple output

streams. Thus, when the ratio in the x-axis is one, the bandwidth resource of a node can become

saturated before the CPU resource of the node is overloaded. Therefore, in this case, ROD with

operator clustering can perform better than ROD without operator clustering. When the values

in the x-axis are big (e.g. 2 and 10 in Figure 6.10), the bandwidth resource becomes the major

bottleneck of the system. In these cases, ROD with operator clustering performs much better than

ROD without operator clustering.

We also compared the performance of ROD with operator clustering vs. the Connected-Load-

Balancing algorithm in Figure 6.11. We can see that whether the CPU resource is the bottleneck

of the system or the bandwidth resource is the bottleneck of the system, ROD with operator

clustering consistently performs better than the Connected-Load-Balancing algorithm.

Latency Results

While the abstract optimization of goal of this paper is to maximize the feasible set size (or

minimize the probability of an overload situation), stream processing systems must, in general,

produce low latency results. In this section, we evaluate the latency performance of ROD against

the alternative approaches. The results are based on the Borealis prototype with five machines for

aggregation-based network traffic monitoring queries on real network traces.

As input streams, we use an hour’s worth of TCP packet traces (obtained from the Internet

Traffic Archive [18]). For workload, we use 16 aggregation operators that compute the number

of packets and the average packet size for each second and each minute (using non-overlapping

time windows), and for the most recent 10 seconds and most recent one minute (using overlapping
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Figure 6.10: Feasible set size ratio of ROD with operator clustering vs. ROD without operator
clustering after adding bandwidth constraints.

sliding windows), grouped by the source IP address or source-destination address pairs. Such multi-

resolution aggregation queries are commonly used for various network monitoring tasks including

denial of service (DoS) attack detection.

To give more flexibility to the load distributor and enable higher data parallelism, we partition

the input traces into 10 sub-streams based on the IP addresses, with each sub-stream having

roughly one tenth of the source IP addresses. We then apply the aggregation operators to each

sub-stream and thus end up with 160 “physical” operators. Note that this approach does not yield

perfectly uniform parallelism as the rates of the sub-streams are non-uniform and independent.

It is therefore not possible to assign equal number of sub-streams along with their corresponding

query graphs to different nodes and expect to have load balanced across the nodes (i.e. expect

that the ideal feasible set can be achieved by pure data-partitioning based parallelism).

In addition to the algorithms described earlier, we introduce yet another alternative, Max-Rate-

Load-Balancing, that operates similar to LLF-Load-Balancing, but differs from it in that the new

algorithm balances the maximum load of the nodes using the maximum stream rate (as observed

during the statistics collection period).

In order to test the algorithms with different stream rates, we scale the rate of the inputs by a

constant. Figure 6.12 and 6.13 show the average end-to-end latency and the maximum end-to-end

latency results for the algorithms when the input rate multiplier is 1, 2, 3, and 3.5, respectively.

These multipliers correspond to 26%, 48%, 69% and 79% average CPU utilization for ROD. For

this application, overall ROD performs better than all others not only because it produces the

largest feasible set size (i.e., it is the least likely to be overloaded), but also because it tends to

balance the load of the nodes under multiple input rate combinations. When we further increase

the input rate multiplier to 4, all approaches except ROD fail due to overload (i.e., the machines

run out of memory as input tuples queue up and overflow the system memory). At this point,

ROD operates with approximately 91% CPU utilization.
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Figure 6.11: Feasible set size ratio of ROD with operator clustering vs. Connected-Load-Balancing
after adding bandwidth constraints.
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Figure 6.12: Average end-to-end latency achieved by different operator distribution algorithms.

The results demonstrate that, for a representative workload and data set, ROD (1) sustains

longer and is more resilient than the alternatives, and (2) despite its high resiliency, it does not

sacrifice latency performance.

6.2 Dynamic Operator Distribution Experimental Results

In this section, we study the performance of our dynamic operator distribution algorithms based

on a simulator that we built using the CSIM library [56].
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Figure 6.13: Maximum end-to-end latency achieved by different operator distribution algorithms.

6.2.1 Experimental Setup

Queries

For these experiments, we use several independent linear operator chains as our query graphs. The

selectivity of each operator is randomly assigned based on a uniform distribution and, once set,

never changes. The continuouse execution time of each operator is, at most, 0.1 second. We also

treat all operators in the system as movable.

Workload

We used two kinds of workloads for our experiments. The first models a periodically fluctuating

load for which the average input rate of each input stream alternates periodically between a high

rate and a low rate. Within each period, the duration of the high rate interval equals the duration

of the low rate interval. In each interval, the inter-arrival times follow an exponential distribution

with a mean set to the current average data rate. We artificially varied the load correlation

coefficients between the operators from –1 to 1 by aligning data rate modes of each input stream

with a different offset.

The second workload is based on the classical On-Off model that has been widely used to model

network traffic [5, 91]. We further simplified this model as follows: each input stream alternates

between an active period and an idle period. During the active period, data arrives periodically

whereas no data arrives during the idle period. The durations of the active and idle periods

are generated from an exponential distribution. This workload models an unpredictably bursty

workload. In order to get different load correlations from -1 to 1, we first generate some input

streams independently and then let the other input streams be either the opposite of one of these

streams (when steam A is active, its opposite stream is idle and vise versa) or the same as one of

these streams with the initial active period starting at a different time.

We use the periodically fluctuating workload to evaluate the global algorithm alone and to
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compare the pair-wise algorithms with the global algorithm. The bursty workload is used to test

both algorithms together, as the global load distribution easily becomes ineffective under such

workload.

Experiments

Unless specified, the operators are randomly placed on all nodes when a simulation starts. All

experiments have an initial warm up period, when the load statistics can be collected. In this

period, a node only offloads to another node if it is overloaded. After the warm up period, different

load distribution algorithms are applied and the end-to-end latencies at the output are recorded.

We test each algorithm at different system load levels. The system load level is defined as the

ratio of the sum of the busy time of all nodes over the product of the number of nodes and the

simulation duration. For each simulation, we first determine the system load level, then compute

the average rate of each input streams (to achieve the given load level) as follows: (1) Randomly

generate a rate from a uniform distribution. (2) Compute the system load level using the generated

steam rates. (3) Multiply each stream rate by the ratio of the given system load level over the

computed system load level.

To avoid bias in the results, we repeated each experiment five times with different random seeds,

and we report the average result. In order to make the average end-to-end latency of different runs

comparable, we make each operator chain contain the same number of operators each with the

same processing delay. In this setting, the end-to-end processing delay of all output tuples is the

same. (i.e., no dependency on the randomly generated query graph).

Because the average end-to-end latency depends on the number of operators in each chain as

well as the processing delay of each operator, we use the ratio of the average end-to-end latency

over the end-to-end processing delay as the normalized performance measurement. This ratio is

called the latency ratio.

Unless otherwise specified, all the experiments are based on the simulation parameters sum-

marized in Table 6.2.

6.2.2 Algorithms Studied

We compare our correlation-based algorithms with a traditional load balancing algorithm which

always selects the operator with largest load first, and a randomized load balancing algorithm

which randomly picks the operators. Each of the latter two algorithms has both a global version

and a pair-wise version. Operators are only moved from the more loaded nodes to the less loaded

nodes.



93

Table 6.2: Simulation Parameters.

Number of nodes (n) 20

number of operators (m) 200

Number of operators in each chain 10

Operator selectivity distribution U (0.8, 1.2)

Operator processing delay (per tuple) 1ms

Input rate generating distribution U(0.8, 1.2)

Input rate fluctuation period 10sec

Input rate fluctuation ratio (high rate/low rate) 4

Operator migration time 200ms

Network bandwidth 100Mbps

Statistics window Size 10sec

# of samples in statistics window (h) 10

Load distribution period 1sec

Load balancing threshold (ε) 0.1

Score threshold for operator exchange (δ) 0.2

Correlation improvement threshold (θ) 0.8

6.2.3 Experiment Results

The Global Algorithms

First, we compare the three global operator allocation algorithms. They are the correlation-based

algorithm (COR-GLB), the randomized load balancing algorithm (RAND-GLB) and the largest-

load-first load balancing algorithm (LLF-GLB).

• Static Performance of the Global Algorithms

In the first experiment, the global algorithms are applied after the warm up period and no

operator is moved after that. The latency ratios of these algorithms at different system load levels

are shown in Figure 6.14. Obviously, the correlation-based algorithm performs much better than

the other two algorithms. Figure 6.15 depicts the average load standard deviation of all nodes

in the system after the global algorithms are applied. The COR-GLB algorithm results in a load

variance that is much smaller than the other two algorithms. This further confirms that small

load variance leads to small end-to-end latency. We also show the lower bound of the average load

standard deviation (marked by MINIMUM) in Figure 6.15. It is the standard deviation of the

overall system load time series divided by n (according to Theorem 1). The results show that the
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Figure 6.14: Latency ratio of the global algorithms.
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Figure 6.15: Average load standard deviation of the global algorithms.

average load variance of the COR-GLB algorithm is very close to optimal in this experiment.

In addition, we measured the average load correlation of all node pairs after the global dis-

tributions. The results of one algorithm at different load levels are similar to each other and the

average results are shown in Table 6.3. Notice that the average load correlation of the RAND-GLB

and the LLF-GLB algorithms are around zero, showing that their performance is not worst case.

If an algorithm tends to put highly correlated operators (for instance, connected operators with

fixed selectivity) together, it may result in an average load correlation close to -1. This would get

much worse performance under a fluctuating workload.

The benefit of having large average load correlation is not obvious in the first experiment. The

above results seem to indicate that when the system load level is lower than 0.5, it does not matter

which algorithm is used. However, this is not true. In the second experiment, we show the effect

of the different average load correlations achieved by these algorithms.
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Table 6.3: Average load correlation of the global algorithms.

COR-GLB RAND-GLB LLF-GLB
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Figure 6.16: Latency ratio after load increase.

• Dynamic Performance of the Global Algorithms

In this experiment, we first set the system load level to be 0.5 and use different global algorithms

to get initial operator distribution plans. Then, we increase the system load level to 0.8 and use the

largest-load-first pair-wise load balancing algorithm to balance the load of the system. The latency

ratios after the load increase is shown in Figure 6.16. The amount of load moved 1 after the load

increase is shown in Figure 6.17. Because the COR-GLB algorithm results in large average load

correlation, the load of the nodes is naturally balanced even when the system load level changes.

On the other hand, the RAND-GLB and the LLF-GLB algorithms are not robust to load changes

as they only have average load correlations around zero. Therefore, the correlation-based algorithm

is still potentially better than the other two algorithms even if the current system load level is not

high.

The Pair-wise Algorithms

For the pair-wise algorithms, we want to test how fast and how well they can adapt to load changes.

Thus, in the following experiments, we let the system start from connected mapping plans where a

connected query graph is placed on a single node. Different pair-wise algorithms are applied after

the warm up period and the worse case recovery performance of these algorithms is compared.

1Whenever an operator is moved, its average load is added to the amount of load moved.
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Figure 6.17: Amount of load moved after load increase.
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Figure 6.18: Latency ratio of the one-way pair-wise algorithms and the correlation-based global
algorithm.

• One-way Pair-wise Load Balancing Algorithms

First the three one-way pair-wise algorithms are compared. They are the correlation-based load

balancing algorithm (COR-BAL), the randomized load balancing algorithm (RAND-BAL) and the

largest-load-first load balancing algorithm (LLF-BAL). Figure 6.18 depicts the latency ratios of

these algorithms at different system load levels. Obviously, the COR-BAL algorithm has the best

performance. Because the amount of load moved for these algorithms is almost the same, the result

indicates that the operators selected by the correlation base algorithm are better than those selected

by the other two algorithms. The latency ratios of the correlation-based global algorithm are added

in Figure 6.18 for comparison. It shows that the performance of these pair-wise algorithms is much

worse than that of the correlation-based global algorithm.
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Figure 6.19: Latency ratio of correlation-based algorithms.

• Improved two-way pair-wise algorithms

In this experiment, we compare two improved correlation-based two-way algorithms. They

are the improved operator redistribution algorithm (COR-RE-IMP) and the improved selective

operator exchange algorithm (COR-SE-IMP). The latency ratios of the COR-BAL and the COR-

GLB algorithms are added in Figure 6.19 for comparison. The results show that the latency

ratios of the improved two-way pair-wise algorithms are much smaller than the one-way algorithm.

Thus, the benefit of getting better operator distribution plans exceeds the penalty of moving more

operators.

To look at these algorithms more closely, we plot several metrics with respect to the simulation

time when the system load level is 0.9 in Figure 6.20. Obviously, the COR-RE-IMP algorithm

moves much more load than the COR-SE-IMP algorithm. Thus, although the quality of its final

plan is closer to that of the global algorithm, its average performance is worse than that of the

COR-SE-IMP algorithm. For different applications, which two-way algorithm performs better on

average usually depends on the workload of the system and the operator migration time.

We can also see from Figure 6.20 that the global algorithm moves less load than the COR-

RE-IMP algorithm but achieves better performance. Thus, although it is possible to use pair-wise

algorithms only, it is still sensible to use a global algorithm for initial operator distribution.

Sensitivity Analysis

Here, we inspect whether the correlation-based algorithms are sensitive to different simulation

parameters. In these experiments, the COR-GLB and the COR-SE-IMP algorithms are compared

with the LLF-GLB and the LLF-BAL algorithms when the system load level is 0.9. We vary the

number of nodes (n), the average number of operators on each node (m), the size of the statistics

window, the number of samples in each statistics window (k), the input rate fluctuation period,

and the input rate fluctuation ratio (high rate / low rate).
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(b) Accumulated amount of load moved.
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(c) Average load standard deviation of the nodes.
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(d) Average load correlation of the node pairs.

Figure 6.20: Dynamic performance of the correlation-based algorithms when system load level is
0.9.

The results in Figure 6.21 show that the correlation-based algorithms are not sensitive to these

parameters except when m is very small, in which case, the load of the system cannot be well

balanced. On the other hand, the largest-load-first load balancing algorithms are sensitive to these

parameters. They perform badly, especially when the number of nodes is small, or the average

number of operators on each node is small, or the load fluctuation period is long, or the load

fluctuation ratio is large,

Notice that when m is large, the static performance of the largest-load-first algorithm is almost

as good as the correlation-based algorithms. This is because when each operator has only a

small amount of load and the load of all operators fluctuate differently, putting a lot of operators

together can smooth out load variation. However, when the dynamic performance is considered,

the correlation-based algorithm still performs better than the largest-load-first algorithm because



99

it results in a positive average load correlation and can naturally balance the load when the load

changes.

In addition, these results show that the correlation-based algorithms are not very sensitive

to the precision of the measured correlations. They work pretty well even when the size of the

statistics window is only half of the load fluctuation period (i.e., when load fluctuation period is 20

in Figure 6.21(e)). Thus, when the precision of the load correlations must be sacrificed to reduce

the computation overhead, we can still expect relatively good performance.

Bursty Workload

Finally, we use the bursty workload to test the robustness of our algorithms. The mean of the active

period durations and the mean of the idle periods are both 5 seconds, and the statistics window

size is still 10 seconds. As the duration of the active periods and the idle periods are exponentially

distributed, the measured load correlations vary over time, and they are not precise. In this

experiment, the global algorithms are combined with their corresponding pair-wise algorithms. The

combined algorithms are identified by the names of the pair-wise algorithms with GLB inserted.

The experimental results in Figure 6.22 confirm the effectiveness of the correlation-based algorithms

under such workloads.
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Figure 6.21: Experiments with different parameters.
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Figure 6.22: Bursty workloads.



Chapter 7

Related Work

In this chapter, we present the existing works that are related to our research. Our work is related

both to the work on load distribution techniques in traditional distributed systems, and to the work

on the load management techniques in distributed stream processing systems. In this chapter, we

first give a brief overview of the existing work, and then discuss their relation to our work, as well

as their difference from our work.

7.1 Load Distribution in Traditional Distributed Systems

Due to its critical role in high-performance computing, the load distribution issue has been studied

extensively in traditional distributed systems [74, 15, 34]. Load distribution usually takes two

forms: load balancing and load sharing [42]. Load balancing algorithms attempt to distribute the

computation load across all nodes as evenly as possible. Load sharing is a weaker version of load

balancing which only tries to avoid unshared states (some nodes are overloaded while some other

nodes lies idle or underloaded) [54] .

7.1.1 Load Distribution Process

Generally, a load distribution process consists of three phases:

1. Information Collection, in which a load distributor gathers information about the load levels

of the nodes.

2. Decision making, in which a load distributor determines a load distribution plan.

3. Task routing or migration, in which new tasks are routed to appropriate nodes or excess

loads from heavily loaded nodes are transfered to underloaded ones.

102
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7.1.2 Load Distribution Classification

Based on the different policies used in the three phases, load distribution schemes can be classified

in the following dimensions:

1. Centralized vs. Distributed Schemes

Load distribution schemes may be centralized, distributed or some hybrid form of both. In

centralized schemes, there is only one load distributer in the system and it collects information

from all nodes in the system. This load distributer is responsible for dispatching workload

to the nodes or schedule load migration between the nodes.

Distributed load balancing allows each node to collect load information and initiate the load

migration process. It can be further divided into the following schemes:

• Sender initiated scheme, in which heavily loaded nodes decide how much load to be

moved to which underloaded node in the system.

• Receiver initiated scheme, in which underloaded nodes request loads from heavily loaded

nodes in the system.

• Sender and Receiver initiated scheme, in which both heavily loaded nodes and under-

loaded nodes can initiate load migration.

In a hybrid form of both centralized and distributed load distribution, the nodes in the

system are partitioned into sub-domains or organized into a hierarchy. The load distribution

within a sub-domain or a level is centralized. The load distribution between the sub-domains

is distributed [46, 53].

2. Global vs. Local schemes

In a global scheme, load distribution decisions are made based on the global knowledge of the

system. In a local scheme, a load distributer only collects local information from its logical

or physical neighbors. The decisions are thus based on partial knowledge of the system.

3. Static vs. Dynamic Schemes

Static schemes assume that the total workload information is available a priori and a task

is distributed only once before its execution [22]. In these schemes, tasks can be finished

in a relatively short time, and, therefore, there is no need to consider time-varying load

models and perform load migration. Static load distribution is advantageous in terms of

low overheads, since the decision is made only once and there is no extra load migration

overhead during task execution. Parallel computations, such as solving large-scale partial

differential equations and finite element methods, often use static load balancing [37]. In these

applications, the given computation can be divided into a large number of small computation

tasks, and these tasks are distributed among the processors in a load-balanced manner. Much

of the extensive literature on load distribution in fact belongs to the static schemes.
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Dynamic load distribution receives attention for systems with long running tasks, such as

large scientific computations and simulations. The static load distribution techniques are

applicable for certain problems in which the computation can be divided into alternating

balancing and processing phases. For most applications, however, it is desirable to have

a process that monitors the system and redistributes the load continuously. For example,

in many parallel mesh computations, the mesh regions are frequently refined or coarsened,

which changes the distribution of load in the system continuously. Dynamic load distribution

is required in a wide variety of applications, such as operating systems [61, 57, 62], parallel

database systems [19, 69], and adaptive mesh partitioning [90, 27].

4. System-Level vs. Application-Level Schemes

System-Level load distribution, also known as distributed scheduling, aims at maximizing

the process throughput of the system or the overall utilization of the machines in the system.

In this scheme, load distribution is often achieved by routing new jobs to underloaded ma-

chines [85] or transferring tasks from congested machines to other machines [36]. Application-

level load distribution focuses on the mapping and re-mapping of parallel task graphs onto

multiple processors. Its optimization goal is often to minimize the completion time of the

parallel tasks.

7.1.3 Load Distribution Algorithms

Next, we briefly present some well known load distribution algorithms. Each of these algorithms

may have many variations.

• Balls-in-Bins

The most simple load balancing problem can be considered as a “balls-in-bins” problem, in

which m balls have to be placed in n bins. The balls correspond to tasks with similar or

unknown execution times, and the bins correspond to homogeneous machines. Commonly

used distribution strategies include

– Round Robin strategy, in which the fullest bin have dm/ne balls.

– Random strategy, which places each ball at a random bin and the fullest bin have

O( log m
log log m

) balls with high probability [10].

– Semi-Random strategy, in which k bins are asked for their load in each placement and

a ball is placed into the lightest one. In this case, the fullest bin has log log m
log k

+ O(1)

balls with hight probability [10].

• Master/Slave

In this scheme, there is a single node in the system (called master node) that manages a

work pool. All other nodes are called slave nodes and they request work from the master

node if they are underloaded [36].
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• Centralized Load Balancing

Songnian Zhou [96] proposed a centralized algorithm in which each node sends their load

information to a load distributor periodically. When the load distributor receives a request

for a load transfer from a heavily loaded node, it select the least loaded node in the system

and inform the originating node to send tasks there.

• Random Location Load Sharing

Eager et al. [36] present a random load sharing scheme, in which a heavily loaded node

forwards tasks to a randomly selected node in the system. To avoid the situation that tasks

are transfered back and forth between nodes without being executed (which may happen if

most nodes in the system are heavily loaded), an upper limit is set on on the number of

times that a task can be transferred. This scheme has very small overhead because it does

not require load information to be exchanged among the nodes. Yet, it yields substantial

performance gain over the non-load sharing schemes.

• Probing

This is a demand-driven policy, in which a node that wants to participate in a load transfer

probes other nodes to find out whether it is beneficial to initiate a load transfer [74, 36, 96].

Both sender nodes and receiver nodes can probe other nodes. A node may probe either

serially or in parallel. A node can select a probing node randomly, from a neighboring node,

or based on the information collected in previous probes.

• Bidding

There are two procedures in contract bidding algorithms: normal and reverse. In the normal

case, a node that wants to distribute load first broadcasts a request for bids. The nodes that

are willing to take the load then submit a bid based on the availability of their own resources.

Later, the requesting node selects a best bid and sends some tasks to the bidding node [78].

In the reversed procedure, under loaded nodes send request-for-bid messages to broadcast

their willingness to share load. The performances of the class of bidding-based algorithms

depend on how well the bids are computed.

• Diffusion Method

In diffusion methods [29, 79], any processor that invokes a load balancing operation compares

its load with those of its nearest neighbors, and then offloads to, or takes in certain amount

of load from, each neighbor. Depending on how to compute the amount of load to be moved

between the neighboring nodes, diffusion methods can be divided into local average diffusion,

which takes the average load of the neighboring nodes [45, 68], and optimally tuned diffusion,

which tries to maximize efficiency in static and synchronous balancing [94, 31].

• Dimension Exchange
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The Dimension Exchange strategy [31, 93] was conceptually designed for a hypercube sys-

tem, but may be applied to other topologies with some modification. In the case of an n

processor hypercube configuration, load balancing is performed iteratively in each of the log n

dimensions.

• Gradient Model

This model [52] classifies nodes into three classes: underloaded, normal, and highly loaded.

It employs a gradient map of the “proximities” of each node to the underloaded nodes as a

guide for the direction of load migration. When a node become highly loaded, it offloads to

its nearest neighbor with the maximum proximity.

• Hierarchical Load Balancing

In hierarchical load balancing [89], the nodes in the system are organized in a tree hierarchy

where the root of the tree encompasses the entire system. Load balancing is initiated at the

lowest levels and then ascends to higher levels. In each level, the load balancing is centralized.

• Graph Partitioning

Graph partitioning problems involve partitioning a connected task graph into uniformly

loaded subgraphs, while minimizing the total “weight” (often the data communication cost)

of the cutting edges among the subgraphs. If changes in load lead to unbalanced subgraphs,

the graph can be re-partitioned (often by moving boundary vertices of the subgraphs) to

re-balance the overall system load.

The graph partitioning problem is known to be NP-hard [38]. It is, therefore , not possible to

compute optimal partition for graphs with large numbers of vertices in general. This fact has

led to the development of several heuristic approaches. Static graph partitioning techniques

are usually classified as geometric techniques [16, 39], combinatorial techniques [33, 43, 14],

spectral techniques [66, 67, 44, 75], or multilevel methods [48, 49]. Dynamic graph re-

partitioning techniques include scratch-remap techniques [63], cut-and-paste methods [71],

and diffusion-based schemes [35, 70]. A survey of these methods can be found in Schloegel

et al. [71] and Walshaw et al. [27].

Our work is different from the work in traditional distributed systems both in terms of op-

timization goals and load distribution method. Our correlation-based algorithm is a centralized

load balancing algorithm. However, it not only aims at balancing the average load of the nodes,

but also at minimizing the average load variance and maximizing the average load correlation. To

the best of our knowledge, this optimization goal has not been addressed by the previous load

distribution works yet.

Our resilient operator distribution algorithm, on the other hand, does not try to balance the

load of the system for any given input stream rates. Instead, it aims at achieving a load distribution

plan that is resilient to load changes. We seek load distribution plans that are close to an ideal load

distribution plan, in which the load of the system is balanced no matter what the input stream
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rates are. In this sense, our algorithm can be considered as trying to balance the load of the system

for multiple input stream rate points rather than one set of input stream rates. This is in sharp

contrast with the traditional load balancing algorithms.

7.2 Stream Processing Engines

Our work is motivated by the new challenges brought by the emerging stream based applications.

These applications are different from traditional parallel computation applications in that the input

data are potentially unbounded and the input stream rates are determined by the external data

sources. Many stream processing query languages and stream data management systems have

been developed in recent years. We now provide an overview of the related projects on stream

data processing.

Tapestry [83] is one of the first systems that proposed the notion of continuous queries. It adds

continuous semantics to conventional database queries such that the queries are issued once and

henceforth run continuously. It restricts to append-only relational databases where deletions and

in place modifications are disallowed. Users issue queries for content-based filtering (e.g. filtering

email and bulletin board messages). These queries are then rewritten into incremental queries,

which are executed by the Tapestry query processing engine periodically. The contribution of

this system is that it makes monitoring tasks no more difficult to write than traditional database

queries, and only requires small changes from regular databases to process continuous queries. The

limitation of this system is that it does not scale to high stream rates and the response time is

relatively large due to its store-and-process execution nature.

Tribeca [80, 81] is a stream-oriented database management system which is designed to support

network traffic analysis. It can read a stream of data from a single source and apply a data-

follow based query language on the stream. It defines “Demultiplex” and “Multiplex” operators

to separate and recombine sub-streams derived from the source. It also defines windows on data

streams to perform aggregate and join operations. Although it is an application-specific engine,

its query language is actually very general.

NiagaraCQ [25, 59] is an XML-based continuous query processing system which is designed

to enable users to pose XML queries over the Internet. It supports a declarative high level query

language which is transformed internally into a data-flow oriented query execution plan. In order to

process a large number of queries registered by millions of users, NiagaraCQ explores the similarities

between the query execution plans and share the computation of similar query plans.

TelegraphCQ [23, 50] is an adaptive stream processing engine which was developed at UC

Berkeley. It grew out of the earlier Eddy project [9] on adaptive relational query processing

and extends it to support shared processing over data streams [55, 24]. TelegraphCQ expresses

continuous queries as SQL statements enhanced by windowing clauses. These queries are then

translated into a set of commutable operators connected by an Eddy. The Eddy routes tuples

between the operators based on changing conditions. The advantage of this system is that the
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query execution plans are highly adaptive. However, the price of such high adaptivity is the high

overhead in per tuple routing decision making.

STREAM [58, 41] is a continuous query processing engine on data streams developed at Stanford

University. It both allows direct input of query plans (similar to the Aurora approach), and

supports a declarative query language which is an extended version of SQL with sliding window

specification and an optional sampling clause. In addition, STREAM introduces special operators

that can transform streams into relations and relations to streams so that the continuous query in

STREAM can be applied both on streams and relations [7].

The work presented in this dissertation is based on the Aurora/Borealis stream processing

engine. Nevertheless, it is general enough to be applied to other distributed stream processing

systems if they have data-flow based stream processing engines (such as Tribeca, NiagaraCQ, and

STREAM) as processing nodes.

7.3 Distributed Stream Processing

The requirement for scalable and highly-available stream processing services led to the research on

distributed stream processing [26]. Research in this area includes adaptive distributed continuous

query processing [84, 97, 98], fault tolerance and high availability [47, 72, 12], load management [13,

73, 92] , and operator placement [77, 6, 65]. We now discuss in more detail the related work on

load management and operator placement for distributed stream processing.

7.3.1 Load Management

Shah et al. [73] present a dynamic load distribution approach for a parallel continuous query pro-

cessing system, called Flux. In Flux, a single continuous query operator is processed cooperatively

by multiple shared-nothing servers. Each copy of this operator on a server is also called a con-

sumer operator. The upstream operators of the consumer operators are also called the producer

operators. A Flux middle-ware operator is interposed between the producer operators and con-

sumer operators. The Flux operator partitions the output streams from the producer operators

into sub-streams and feeds these sub-streams to the consumer operators. It also absorbs short

term load imbalance by buffering and reordering tuples. When long term imbalance is detected

(from buffer overflow), Flux re-partitions the data streams to re-balance the load of the consumer

operators. This is done by balancing the load of the consumer operators (or servers) pair-wisely.

The most loaded server is paired with least loaded server. The second most loaded server is paired

with the second least loaded server, and so on and so forth. When certain data partitions are to be

moved from one server to another server, Flux first moves the states of the data partition from the

sending sever to the receiving server and then starts to send data of this partition to the receiving

server. In summary, Flux performs dynamic “intra-operator” load balancing by repartitioning

data streams on the fly. Our work is orthogonal to Flux, as we address the “inter-operator” load

distribution problem.
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Balazinska et al. [13] explore the dynamic load management problem for distributed stream

processing in a federated environment. In this setting, each participant node owns and adminis-

ters a set of resources that it uses to run tasks on behalf of its own clients. These autonomous

participants do not collaborate for the benefit of the whole system, but aim to maximize their

own benefit. Load management in this system is achieved by a Bounded-Price Mechanism. In this

scheme, the nodes negotiate pairwise contracts, which set tightly bounded prices for migrating each

unit of load between two participants and specify the set of tasks that each is willing to execute

on behalf of the other. These contracts are negotiated off-line. Runtime load transfer occurs only

between participants that have pre-negotiated contracts, and at a unit price within the contracted

range. If a node finds that the local processing cost of a task is larger than the price that it

would have to pay another participant for processing the same load (plus the migration cost), it

will move the task to the other participant. The analysis and experiment of the work show that

this mechanism provides enough incentives for selfish participants to handle each other’s excess

load, and thus improve the system’s load distribution. Our scheme is different from this scheme

in that all nodes in our system collaborate with each other for the benefit of the whole system. In

addition, the Bounded-Price Mechanism only aims at converging to some feasible solution quickly

by constructing good contracts, whereas, we try to optimize the performance of the system in

terms of resiliency and end-to-end data processing latency.

7.3.2 Operator Placement

Srivastava et al. [77] address the problem of operator placement in a sensor network environment. In

this system, data are collected from low-capability edge devices and then processed and transmitted

through a hierarchy of network nodes and links with progressively increasing computation power

and network bandwidth. In order to reduce network bandwidth consumption, this system pushes

some or all of the query execution task to nodes lower in the hierarchy. They define the per

tuple execution cost of an operator on a node as a function of the type of the operator and the

processing power of the the node. An operator has a larger cost if it is placed on a node with less

processing power than its cost if it is place on a node with more processing power. The network

transmission cost of a tuple on a link is defined as a constant, which is assumed to include an

appropriate multiplicative factor that can convert transmission cost into a quantity that can be

treated at par with computation cost. The cost of a query execution plan is defined as execution

cost of the query plus the network transmission costs on all links per input tuple. The optimization

goal of the work is then to minimize the total cost of the query execution plan by proper operator

placement. They provide an optimal solution for uncorrelated filters and an approximate solution

for correlated filters. This work is different from our work in two major aspects: First, this work

is based on a hierarchy of processing nodes with increasing processing power from leaf to root;

while we consider a cluster of blade farm servers connected by a high bandwidth local network.

Second, this work does not consider the constraint that each node can only process limited amount

of work; in other words, they only consider scenarios that none of the nodes are overloaded. This



110

is in sharp contrast with our work, in which the feasibility and load balancing of the nodes are the

major concerns.

Amand and Çetintemel [6] present a distributed query processing system for stream-based

applications in a wide area environment. This system is built on top of a Distributed Hash Table

that determines the locations of data sources. This work presents three algorithms to determine

the location of the operators with the optimization goal of minimizing total mapping cost. The

first algorithm models the cost of a link as a non zero constant if the end-operators of the link are

placed at different nodes. The second algorithm extends the first algorithm by taking into account

in the cost function the pair-wise transmission latencies between the nodes. Both algorithms only

place operators either at the consumer side, or at the producer side. The third algorithm, called In-

Network operator placement, considers a carefully selected subset of network locations, in addition

to the locations of the procurers and consumers of the operators, when making placement decisions.

Pietzuch et al. [65] present another stream-based overlay network (called SBON) in a wide

area environment. SBON is a layer between a stream processing system and the physical network

that manages operator placement. In SBON, every node maintains its coordinates in a cost space.

The distance between two nodes in this space represents the network overhead for routing data

between them. The SBON determines the placement of query operators in this virtual space using

a spring relaxation algorithm. This algorithm models the overlay network of queries as a collection

of operators connected by springs (operator links). Some operators have a fixed location, and other

operators can move freely. By using link latency as the spring extension factor, using link data

rate as the spring constant, and minimizing the energy of the system, this algorithm minimizes

the network usage of the system, where the network usage is defined as the total weighted latency

of the used links used, with the weight of a link being the data rate of the link. After placing the

operators in the virtual space, the locations are mapped back to physical nodes. When choosing

physical nodes, the SBON selects nodes with sufficient resources to process the operators that are

closest to the locations determined in the virtual space. The SBON nodes also re-evaluate operator

placement plans dynamically and migrate operator to new hosts based on changing conditions. Our

work is orthogonal to these works, in that we consider a cluster of servers connected by a high

bandwidth local network, and the network transfer latencies in this environment is negligible.
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Conclusion

In this dissertation, we have addressed the load management problem for distributed stream pro-

cessing. We have studied in-depth a class of algorithms that statically finds a good operator

placement and that dynamically moves operators to adapt to load changes.

Unlike traditional databases where data can be pulled from secondary storage in a controlled

and predictable manner, queries over streams must be prepared to deal with unpredictable spikes

in input load. Our experience with the Borealis prototype reveals that moving operators can be

quite expensive. We therefore sought a radically different solution for operator placement that

is resilient in the sense that it produces load distribution plans that are highly tolerant to load

variations, thereby resisting overload and, therefore, the need to reposition operators.

In addition, we also tried to adapt to load changes dynamically by strategically moving opera-

tors with relatively small load migration overheads. The traditional algorithm tends to reflect input

spikes as spikes in end-to-end latency as a result of saturation of one or more of the component

machines. Our approach, which is based on load correlation, effectively smoothes out the effects

of the input load variations. Thus, load re-balancing is triggered less often and the associated

short-term latency increase is avoided.

The main contribution and results of our techniques are summarized bellow:

8.1 Resilient Operator Distribution

We introduced the notion of a resilient operator placement plan that optimizes the size of the input

space that will not overload the system. In this way, the system will be able to better withstand

short term input bursts.

Our model is based on reducing the query processing graph to segments that are linear in the

sense that the load functions can be expressed as a set of linear constraints. In this context, we

identified an ideal load distribution plan, which balanced the load of each input stream perfectly

across all nodes, and proved that such a plan achieves the maximum feasible set size. We presented

two operator distribution heuristics that aim at making the achieved load distribution plan close

111



112

to the ideal load distribution plan as much as possible. Intuitively, the first heuristic balances the

load of each input stream across all nodes, and the second tries to keep the load on each node

evenly distributed. From a geometric point of view, the first heuristic tries to maximize the size of

a polytope subset of the achieved feasible set, and the second heuristic tries to maximize the size

of hypersphere subset of the achieved feasible set.

We presented a greedy operator distribution algorithm (ROD) that seamlessly combines both

heuristics. The algorithm assigns operators to nodes one by one from the operator with the largest

impact to the load distribution plan to the operator with the least impact. Each time an operator

is assigned, the algorithm tries to make the reduction in feasible set size as small as possible.

We extended ROD to deal with known lower bounds on system input stream rates. We pre-

sented techniques that can transform a non-linear load model to a linear load model so that ROD

can be applied to any systems. We also presented some operator clustering techniques to be ap-

plied before ROD to avoid unnecessary data communication overheads and network bandwidth

consumption.

We have shown experimentally that there is much to be gained with this approach. It is

possible to increase the size of the allowable input set over standard approaches. We also show

that the average latency of our resilient distribution plans is reasonable. Thus, this technique

is widely applicable to any modern distributed stream processor. Initial operator placement is

useful whether or not dynamic operator movement is available. For systems that support dynamic

operator migration, this technique can be used to place operators with large migration time to

minimize the movement of those operators, and thus avoid big delays in end-to-end latency that

results from operator migration.

8.2 Correlation-Based Operator Distribution

We have showed that for stream processing systems, average load is not the only important fac-

tor that determines the average end-to-end latency of the output tuples. The variance in CPU

utilization also has a strong impact to the performance of the system too. Thus, in addition

to the optimization goal of balancing the average load of the nodes, we proposed another novel

optimization strategy that aims at minimizing the variance of the CPU utilization of the nodes.

Furthermore, we try to maximize the average load correlations of all node pairs in the system to

avoid unbalanced situation.

We proved that in the ideal case, where the total load of the system can be arbitrarily parti-

tioned, the above optimization goals are achieved at the same time (when all nodes in the system

have the same load time series). Such a load distribution is usually unachievable in practice. We

then presented greedy operator distribution algorithms based on heuristics. We presented both a

global operator distribution algorithm for initial operator placement and some pairwise algorithms

for dynamic operator re-distribution. The key ideal underlying these algorithms is to separate oper-

ators with large load correlations to different nodes and put operators with small load correlations



113

on the same nodes.

Our experimental results have shown that our techniques are superier to conventional load

management techniques. This illustrates how the streaming environment is fundamentally different

from other parallel processing approaches. The nature of the operators and the way that data flows

through the network can be exploited, as we have done, to provide a much better solution.

8.3 Combining the Two Approaches

The combination of the resilient operator distribution and the correlation-based operator distri-

bution is straightforward. First, we separate the operators into two classes. One class contains

the “sticky” operators that are impractical to be moved on the fly. The other class contains the

“floating” operators that have relatively small load migration overheads. We used the resilient

operator distribution algorithm to distribute the sticky operators first. After the sticky operators

are distributed, we use the correlation-based global operator distribution algorithm to distribute

the remaining floating operators and balance the load of the system. As the load varies over time

and the system becomes unbalanced, we use the pairwise correlation-based algorithm to move the

floating operators pair-wisely to re-balance the load of the system. Sticky operators are moved

only if a node become overloaded and there are no floating operators on the node.

Note that, although the resilient algorithm can be used to place all operators initially, it is

better to use it to place the sticky operators only. This is because we want to keep the feasible set

size for sticky operators to be large so that those operators do not need to be moved frequently.

If we maximize the feasible set size for all operators together, we may put many sticky operators

together and have to move them in the future.

8.4 Open Issues

Our study of the load management problem in distributed stream processing opens several issues

to be explored in this area.

We have assumed that each operator is the minimum load distribution unit and have explored

pipelined parallelism in distributed stream processing in this dissertation. Data partitioning based

parallelism is another technique that can be used in load management. For example, if an Aggregate

operator has a “group by” statement, we can create several copies of this operator and put these

copies on different nodes. The input stream of this operator is then partitioned into sub-streams

based on the group-by attribute, where each sub-stream feeds one copy of the aggregate operator.

Finally, the results of the operator replicas are merged together by an Union operator and then

sent to the downstream operator.

We have shown in resilient operator distribution that the ideal load distribution plan is achieved

when the weights of each input stream is perfectly balanced across all nodes. It is natural to

think that such a load distribution plan may be achieved by creating replicas of all operators and
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partitioning all input streams accordingly. However, such a plan is difficult to achieve in practice

because: (1) some operators do not support data partitioning based parallelism, (2) even if all

operators in the system support data partitioning based parallelism, it is difficult to partition the

input steams evenly at all times. For example, in the network traffic monitoring experiment with

aggregate queries, we partitioned the input stream into 10 sub-streams based on the group-by

attribute. Each sub-stream contained the same number of randomly chosen group-by values. We

observed that the stream rates of all sub-streams varied significantly and the variations of different

sub-streams were independent from each other. Therefore, these sub-streams should be considered

as ten independent input streams rather than a certain percentage of the same input stream.

Ideally, we would like to partition an input stream such that the stream rate time series of

the sub-streams have a pairwise correlation equal to one. Such a partition is good both for static

operator distribution and dynamic operator distribution. The partitioning of an input stream into

sub-streams with large stream rate correlation is a very challenging problem and is application

dependent. However, it is worth exploring given its potential gains. In addition, even if we

can partition an input stream into positively correlated sub-streams, we still need to answer the

following questions:

1. Is it beneficial to partition the data streams and create operator replicas?

2. How many sub-streams and operator replicas to create?

3. What is the data percentage on each sub-stream?

All these questions open up future directions for further exploration.

Another open issue in resilient operator distribution is how to utilize extra information, such as

upper bounds on input stream rates, variations on input stream rates etc., to further optimize the

operator distribution plan. This information can be thought of as an extra constrains on workload

set D. Recall that the ideal feasible set is independent of D. Thus, it is not necessary to consider

the shape of D if the weights of all input streams can be well balanced. Otherwise, considering the

shape of D may result in a large improvement because we can ignore the areas that never happen

and optimize for the right area. However, due to the complexity of computing multiple integrals

and the large number of possible operator distribution plans, incorporating extra information in

the operator distribution algorithm is not trivial. For each kind of new information, new heuristics

need to be explored and integrated into the operator distribution algorithm.

Finally, it would be interesting to investigate whether there are better ways to deal with systems

with non-linear load models, rather than transforming their load models into linear ones.



Appendix A

Computing the Ideal Feasible Set

Size

Lemma 2: Let

F = {(x1, x2, · · · , xd)
T : a1x1 + a2x2 + · · · + adxd ≤ b}.

Then
∫

· · ·
∫

F

1 dx1 · · · dxd =
bd

d!
· 1
∏d

k=1 ak

.

Proof.

∫

· · ·
∫

F

1 dx1 · · · dxd =

∫ b
ad

0

∫

b−adxd
ad−1

0

∫

b−adxd−ad−1
xd−1

ad−2

0

· · ·
∫

b−adxd−···−a2x2

a1

0

1 dx1 · · · dxd

Let

y0 = b − adxd − · · · − a3x3 − a2x2 − a1x1

y1 = b − adxd − · · · − a3x3 − a2x2

y2 = b − adxd − · · · a3x3

...

yd−1 = b − adxd.

yd = b.
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Then

x1 =
y1 − y0

a1

x2 =
y2 − y1

a2

...

xd =
yd − yd−1
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.

Thus
∫
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0
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=
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1
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· bd

The ideal feasible set is defined by

F ∗ = {R : R ∈ D, l1r1 + l2r2 + · · · + ldrd ≤ CT } .

Thus, the ideal feasible set size is

V (F ∗) =

∫

· · ·
∫

1

F∗

dr1 · · · drd =
(CT )d

d!
·

d
∏

k=1

1

lk
.
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Table B.1: System Parameters

n number of nodes

m number of operators

d number of system input streams

g number of streams

Ni the ith node

oj the jth operator

Ik the kth input stream

St the tth stream

Ci the CPU capacity of node Ni

C the CPU capacity vector

CT total node CPU capacities

Cb
i the bandwidth capacity of node Ni

Cb the node bandwidth capacity vector

Cb
T the total bandwidth capacity of the system

Table B.2: Runtime statistics.

rk the stream rate of system input stream Ik

R system input stream rate vector

cj the cost of operator oj

sj the selectivity of operator oj

cc
t the communication cost of stream St

l(oj) the load of operator oj

l(Ni) the load of node Ni

lc(St) the communication load of stream St

b(St) the bandwidth of stream St

b(Ni) the bandwidth consumption of node Ni
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Table B.3: Notations related to static operator distribution.

D workload set

A operator allocation matrix

F (A) feasible set of A

F∗ ideal feasible set

V (F∗) ideal feasible set size

lnik load coefficient of node Ni for stream Ik

lojk load coefficient of operator oj for stream Ik

lk total load coefficient of stream Ik

Lo operator load coefficient matrix

Ln node load coefficient matrix

F ′(Ln) feasible set of of Ln

wik (lnik/lk) / (Ci/CT ), weight of Ik on Ni

W weight matrix

r minimum plane distance

r∗ ideal plane distance

lctk the communication load coefficient of stream St for input Ik

rc
tu the communication ratio between St and ou

rc
t the communication clustering ratio of St

bs
tk the bandwidth coefficient of stream St for input Ik

bn
ik the bandwidth coefficient of node Ni for input Ik

Bn the bandwidth coefficient matrix

rb
tu the bandwidth ratio between St and ou

rb
t the bandwidth clustering ratio of St

ηc the communication clustering ratio threshold

ηb the bandwidth clustering ratio threshold

wc
t the clustering weight of St

ψ the clustering weight upper bound
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Table B.4: Notations related to dynamic operator distribution.

X system total load time series

Xi load time series of node Ni

EXi average load of node Ni

varXi load variance of node Ni

ρij load correlation of node Ni and node Nj

ρ(oj , Ni) correlation coefficient between load time series of operator oj and

the total load time series of all operators on Ni except oj

S(oj , Ni) score of operators oj with respect to node Nj

h number of samples on load time series

ε load balancing threshold

δ score threshold for operator exchange

θ correlation improvement threshold
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