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Abstract of “Application-Aware Resource Scheduling” by Donald P. Carney, Ph.D., Brown
University, May 2005.

The proliferation of the Internet and World Wide Web, the development of wireless
networks, the availability of asymmetric high-bandwidth links to the home, and the recent
emergence of small-scale computing devices have fueled the development of applications with
wide and varied data needs. The data-intensive environments in which these applications
exist are characterized by very high data rates, the scale and variety of autonomous data
sources, and the diverse needs of users and applications. Often, the resources (CPU, mem-
ory, bandwidth, etc.) in these environments are constrained and data management plays
an important role in providing fast responsive systems through the effective scheduling of
resources.

Databases have long benefited from the use of application-level knowledge to make
decisions. Often, this application-level awareness comes from a priori knowledge of user
interests. In these new networked environments there is evidence that more responsive
systems can be delivered if users provide either some general indication of their interest or
even better, a detailed query. We call this specification of user interest a “profile”.

This dissertation focuses on two applications domains. In the first application domain,
the process of synchronizing a database to improve the freshness of copies is studied. In
the second application domain, we study the timely processing of large volumes of con-
tinuous high-rate data streams in the context of the Aurora stream processing engine. In
both cases, profiles show promise in improving resource scheduling to provide effective data

management.
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Chapter 1

Introduction

1.1 A Brave New World

The proliferation of the Internet and World Wide Web, the development of wireless net-
works, the availability of asymmetric high-bandwidth links to the home, and the recent
emergence of small-scale computing devices have fueled the development of applications
with wide and varied data needs. The data-intensive environments in which these applica-
tions exist are characterized by the amount and rate of data flowing, the scale and variety of
data sources, and the specific needs of the applications. Data Management has played and
important role in dealing with these new environments. Recent research has included work
in data-dissemination technology, continuous query systems, and data stream management
systems.

Managing resources has always been an issue as Data Management adapts to changing
technology. Generally, the environments in which resources are constrained provide the
most interesting problems. The limited resources can be in the machines which are making
the decisions, for example, CPU, disk, or memory. Or, the resource can be the bandwidth
available between machines.

Whenever resources are constrained, scheduling plays an important role in providing

fast responsive systems through the effective use of resources. Multiprogrammed operating
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systems use process scheduling to maximize CPU utilization. Disk controllers re-order read
requests to improve performance. Real-time systems schedule tasks in an attempt to satisty
deadlines. Databases schedule transactions to run in parallel using both the CPU and I/O

system to improve throughput and resource utilization.

1.2 The Problem: Application-Aware Resource Scheduling

Databases have long benefited from the use of application-level knowledge to make decisions.
For example, database indices are built on attributes that are known to be commonly used.
Often, this application-level awareness comes from a priori knowledge of user interests. In
modern networked environments such as the internet there is evidence that more responsive
systems can be delivered if users provide either some general indication of their interest or
even better, a detailed query.

Many research and commercial systems rely on user input to make data management
decisions. Tivo users specify their viewing interests and the local Tivo box manages a
cache of television programs. MyCNN and MyYahoo allow users to personalize their web
interfaces to news and information. Several financial data sources allow users subscribe to
stock feeds and are promised a certain level of ”freshness” of the data (e.g. quotes that are
no older than 20 minutes, and, in some cases users can receive "real-time” quotes) These
systems provide a higher level of satisfaction to users by allowing them to specify interests.

This thesis focuses on two environments which can benefit from the use of application-

level knowledge to make decisions about scheduling resources.

1.2.1 Data Freshening

Replication is a well-known data management technique for improving the performance
and availability of a distributed computing system. Internet mirror sites geographically
distribute the load for popular information sources. Data warehouses replicate data from
the transactional database in order to provide a platform for decision support queries that

does not interfere with the originating source.
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Of course, as updates occur at the underlying data sources, the replicas can drift out
of synch. In tightly coupled distributed systems, algorithms exist for atomically installing
an update to all replicas. In more loosely coupled systems like the Internet, heavy-weight
synchronization schemes are not feasible. Instead methods that respect the independence of
the participants are much more common. For example, a site that stores copies may itself
be responsible for detecting changes in the underlying source and for updating its local copy
accordingly.

While a good solution might involve an active server that pushes updates to the mirror,
most existing data providers do not support this. Without cooperation from the source, the
site with a local copy must poll the source in order to detect changes. If this is done too
often with respect to the update frequency, resources are wasted. If it does not occur often
enough, data freshness suffers. The goal, then, is to pick an appropriate polling frequency
for each local copy that balances these two needs.

Data management has always benefited when we can use application-level knowledge to
make decisions. For example, database indices are built on attributes that are known to be
commonly used. In modern networked environments such as the Internet, there is evidence
that more responsive systems can be delivered if users supply a description of their interests
(a.k.a. a profile). Consider MyYahoo and Tivo, the personal video recording system. In
these systems, users supply profiles to create personalized content; however, personalization
is only one application of profiles. In the case of Tivo, the profile is also used as a way to
manage the local cache in the Tivo box. This notion can be extended to a wide range of
data management situations. In particular, we show that profiles can be used effectively to
control replica management policies.

Others [CGMOOD] have studied techniques for managing the process of updating local
copies. In these studies, the goal has been to maximize the average freshness of a collection
of copies. This is accomplished by producing a schedule for polling master copies to see if
they have changed. For our contribution, we will show that there is much to be gained from

taking user interests into account when producing a schedule for freshening. Intuitively, it
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makes little sense to spend freshening resources on items that no one wants.

1.2.2 Data Stream Management Systems

Applications that deal with potentially unbounded, continuous streams of data are becoming
increasingly popular due to a confluence of advances in real-time, wide-area data dissemi-
nation technologies and the emergence of small-scale computing devices (such as GPSs and
micro-sensors) that continually emit data obtained from their physical environment. Ex-
ample applications include sensor networks, position tracking, fabrication line management,
network management, and financial portfolio management. All these applications require
timely processing of large volumes of continuous, potentially rapid and asynchronous data
streams.

We have designed a system called Aurora [CCCT02], a data stream manager that ad-
dresses the performance and processing requirements of stream-based applications. Aurora
supports multiple concurrent continuous queries, each of which produces results to one
or more stream-based applications. Each continuous query consists of a directed acyclic
graph of a well-defined set of operators (or boxes in Aurora terminology). Applications
define their service expectations using Quality-of-Service (QoS) specifications, which guide
Aurora’s resource allocation decisions.

A key component of Aurora, or any data stream management architecture for that
matter, is the operator scheduler that decides which operators to execute and how long
to execute them. A naive approach to scheduling would pick a tuple to run through an
operator, schedule that operator, then loop back to pick another tuple. For operators
with very low execution costs (e.g. filter or union), this tuple-at-a-time approach would
experience serious performance problems because it does not take various execution and
scheduling overheads into account. When operator costs are low, such overheads become
dominant and scheduling without considering overhead leads to system degradation.

The traditional model for structuring database servers is thread-based execution, which

is supported widely by traditional programming languages and environments. The basic
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approach is to assign a thread to each query or operator. The operating system (OS) is
responsible for providing a virtual machine for each thread and overlapping computation
and I/0 by switching among the threads. The primary advantage of this model is that it
is very easy to program, as the OS does most of the job. On the other hand, especially
when the number of threads is large, the thread-based execution model incurs significant
overhead due to cache misses, lock contention, and switching. More importantly for our
purposes, the OS handles the scheduling and does not allow the overlaying software to have
fine-grained control over resource management.

We suggest using a state-based execution model. In this model, there is a single scheduler
thread that tracks system state and maintains the execution queue. The execution queue is
shared among a small number of worker threads responsible for executing the queue entries,
where each entry is a sequence of operators belonging to a (sub-)query. This state-based
model avoids the mentioned limitations of the thread-based model, enabling fine-grained
allocation of resources according to application-specific targets (such as QoS). Furthermore,
this model also enables effective batching of operators and tuples, which we expect to have
a significant effect on system performance as it cuts down the scheduling and box execution
overheads.

An important challenge with the state-based model is that of designing an intelligent but
low-overhead scheduler. In this model, the scheduler becomes solely responsible for keeping
track of system context and deciding when and for how long to execute each operator. In
order to meet application-specific QoS requirements, the scheduler should carefully multi-
plex the processing of multiple continuous queries. At the same time, the scheduler should
try to minimize the system overheads, time not spent doing useful work (i.e., processing),

with no or acceptable degradation in its effectiveness.
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Chapter 2

Resource Scheduling for Data

Refreshing

2.1 Introduction

Distributed databases and other networked information systems use copies or mirrors to
reduce latency and to increase availability. Copies need to be refreshed. In a loosely
coupled system, the copy sites are typically responsible for synchronizing their own copies.
This involves polling and can be quite expensive if not done in a disciplined way. This
chapter explores the topic of how to determine a refresh schedule given knowledge of the
update frequencies and limited bandwidth. The emphasis here is on how to use additional
information about the aggregate interest of the user community in each of the copies in
order to maximize the perceived freshness of the copies. A model and optimal solution are
developed for small cases. Next, several heuristic algorithms that work for large cases are
presented. Then, the impact of object size on the refresh schedule is explored. This chapter

also presents experimental evidence that our algorithms perform quite well.
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2.2 Perceived Freshness

We are concerned with the problem of keeping a set of copies as up to date as possible with
respect to a master data source. We will speak of the set of copies as the mirror and the
master data source as the source. A single member of the mirror will be referred to as a
local copy. The computer that is responsible for maintaining the currency of the mirror will
be called the mirror site. Intuitively, the freshness of a mirror is the fraction of its local
copies whose value reflects the current value in the source. It is important to note that
copies are not added or deleted at the mirror.

The mirror site is connected to the source with a fixed and limited bandwidth. The
limitation in bandwidth will determine how many refresh operations can be performed
per unit time. The work in this chapter is concerned with planning the best use of this
bandwidth by determining a refresh schedule that will maximize the freshness of the mirror.

Our work follows closely from the work presented in [CGMO0O0b]. Thus, we briefly sum-
marize their notion of freshness for a local database S consisting of N elements (S =
e1, ++,en). It should be noted that as in [CGMOO0b|, we initially assume all objects have
the same fixed size and, therefore, take up the same amount of space in the mirror. In

Section 2.5, we relax this assumption to determine the impact of object size.

Definition 1 The freshness of a local element e; at time t is
1 ; if e; is up-to-date at time t
F(ejt) =

0 ; otherwise

Definition 2 The freshness of a local database S at time ¢
1
F(S;t) = — E Fe;t
( ) ) Ni~1 (627 )

Freshness of an element is binary. At any instant, the element at the mirror is either
up-to-date (1) or not (0). The freshness of a local database at any instant is the average
freshness of all elements at the local database at that instant.

The freshness metrics given above make perfect sense for the case in which no knowledge

of the access patterns exists. After all, in the absence of profiles, it is reasonable to assume
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that all accesses to local copies are equally likely. However, if all accesses are not equally
likely, we can define a freshness metric that weights the contribution of each local copy by
its popularity (expected number of accesses per unit time). We call our metric perceived
freshness. Perceived freshness captures what users see as they use the mirror. Awerage
Perceived Freshness measures the freshness that users observe as they access various portions
of the mirror. If a given item is never accessed, it does not contribute to the average
perceived freshness regardless of how stale its value is.

We assume that many users frequently access the mirror site. In order to improve
their chances of getting fresh data, they each submit a profile. Simply stated, a profile
is a declarative specification of the relative importance of each copy in the mirror. This
could be written in a sophisticated profile language [CFZ01]; however, for our purposes, we
assume that the profile is a distribution of access frequencies. If the access frequencies are
scaled by the total number of accesses per unit time, the profile can be viewed as an access
probability distribution. The assumption is that a user will access important items more
often than unimportant items. This is, of course, not in general required, but it simplifies
our discussion.

The mirror collects all the user profiles and aggregates them into one master profile that
is a combined frequency distribution for all users. Our algorithms make decisions based on
the master profile. Thus, we use the term profile in what follows, to refer to the master
profile.

It is important to note that our profile model is a very simple one. We assume that
user interest in an element x is directly proportional to the frequency with which that user
accesses x. This is clearly not always the case. We can imagine more sophisticated profiles
[CFZ01], but find it useful for the purposes of this study to restrict our attention to a
limited, but plausible model. It should also be noted that it is not difficult to modify our
profile model to be a density function over any measurable attribute of our objects. For
example, in a stock market application, a profile might be cast as a plot of importance vs.

ticker symbol. Also, individual profiles can be weighted before they are aggregated into the
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master profile, so as to give higher priority to more important users (e.g., generals or higher

paying customers).

2.2.1 Problem Definition

Suppose that over some period of time the mirror experiences a set of M accesses called
the access set that we denote as A = a1, -+,apy. A given a; names an element e; in the
mirror. The access set A can contain more than one access to a given element. If we denote
the number of accesses for an element e; as M;, then M = Zfil M;. Tt follows that each
element e; has an access probability, p; = % (note that Zf\f__l p=1).

While average overall freshness is an interesting system metric, it is not that relevant
to individual users. A user might rate the quality of the mirror by “keeping score” at each
access. If the user gets a fresh copy, score a point. If the user gets a stale copy, score
nothing. In this way, the score would reflect how well the system is freshening those items
that user actually references. Perceived freshness captures this idea.

Let F(a;;t) be the freshness of the element referenced by access a;. We define perceived

freshness as follows.
Definition 3 The perceived freshness of a set of accesses A at time t is
1 M
F(A;t) = — > Fl(a;t
(4:0) = 57 3 Flasst)
Intuitively, PF(A;t) is the fraction of accesses that see an up-to-date copy.

Definition 4 The time averaged perceived freshness of a set of local database accesses A is

t
PF(A) = lim ~ [ PF(4;1)dt

t—oo T J,

The time averaged perceived freshness for a mirror S that experiences an access set A
is PF(S). Tt is this last quantity, PF(S), that is important to our algorithms. From the
definitions, we can prove that PF(S) = PF(A) = YN, p;F(e;) where F(e;) is the time-

averaged freshness of element e;. (For a detailed proof, refer to Section 2.6 and [CLZ02}).
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We assume that it is possible to obtain the number of updates to an element over some
time period. Prior work has shown how the source can use estimation [CGMO00a| and
sampling [CN02] techniques to obtain a good estimate of these update frequencies. These
frequency estimates would be periodically communicated to the mirror.

Given these definitions and assumptions, we can now formulate our problem more pre-

cisely.

2.2.1.0.1 Core Problem Given an update frequency A; for each element at the source
and an access probability p; for each of the local copies in the mirror (z = 1,2,..., N), find

the refresh frequencies f; (¢ = 1,2,..., N) which maximize
PF(S) :ZpiF(ei) :ZpiF(fia/\i) (2.1)
i=1 i=1
satisfying the following constraint
N
Zfi = TotalBandwidth and f; >0(i=12,...,N) (2.2)
i=1

In equation 2.1, we write _F—( fiy Ai) to represent the time averaged freshness for e; given
its synchronization frequency f; and its change rate A;.

Note that the bandwidth is given in terms of the number of refreshes that are allowed
over some time period. The refresh frequencies f; are computed as the number of refreshes

of local copy 7 that should be scheduled over the same time period.

2.2.2 The Optimal Solution

In this section, we examine the optimal solution to the core problem.

Solving the core problem produces a bandwidth allocation for each local copy. Given
such an allocation, we must further determine how those allocations should be ordered in
time. In [CGMOOb], a Fixed Order synchronization-order policy is shown to give the best
performance. In this policy, all objects are synchronized in the same order repeatedly, each

at a fixed interval. Since we can determine a closed form of p; F();, f;), it is possible to solve
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Figure 2.1: Relationship among f, A, p

the core problem by the method of Lagrange multipliers. We show the general solution of
the problem in Section 2.7.

To solve the problem we must solve an optimization problem with a non-linear objective
function and with a linear constraint on the overall available bandwidth. This problem is
solved using non-linear programming to produce a schedule with a fixed synchronization
rate for each local copy. Such a solution will optimally produce a schedule that maximizes
the freshness of the mirror given the constraint on bandwidth. Since the complexity of
non-linear programming is bounded by a high-order polynomial, this approach is feasible
for small sets of objects only.

From the solution, we can produce the graph in Figure 2.1. We can understand the
relationships among f;, A; and p; better by examining the graphs for various p;’s. Figure
2.1 shows three curves on which solutions are located respectively for objects with access
probabilities p; = {§, p, 2u}. Again, we assume the Fixed Order refresh policy. It clearly
shows that for any given change rate (\) an element e; needs to get more bandwidth as its
access probability p; increases. For example, a point Y on the graph for p; = p moves to
point X as p; is increased to p; = 2u. Again, starting from point Y, as p; is decreased to half
its original value, we move to point Z. However, note that increasing p; means that some
other p;(i # j) needs to be decreased since ) p; = 1. Elements with large p; will get higher
fi than elements with lower p; and the same A. In Figure 2.1, an element with A = 1.2
does not get any bandwidth when p; = u. However, it will require significant bandwidth
as its p; becomes 2. This suggests the general principle that elements with large \; need

increasing bandwidth as their p;’s increase.
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2.2.2.1 Some Intuition

Here we illustrate the characteristics of the solution for perceived freshness versus the so-
lution given in [CGMOO0b] for average freshness which ignores user interest. We will base

these observations on a toy example that was used in [CGMOOb)].

2.2.2.1.1 Example The database consists of five equal-sized elements, which change
at the frequencies of 1,2,---, 5 (times/day). Let’s assume that there are 3 sets of access
probabilities for these five elements as follows. P1 = (1/5, 1/5, 1/5, 1/5, 1/5), P2= (1/15,
2/15, 3/15, 4/15, 5/15) and P3= (5/15, 4/15, 3/15, 2/15, 1/15). P1 represents a uniform
access distribution for the five elements, while P2 and P3 represent skewed access distribu-
tions. P2 represents the case for which the hottest elements change most frequently. P3
represents the opposite case. We assume that freshening the local database can only occur
at a rate of 5 elements/day (the bandwidth constraint). We can solve this example problem
numerically to determine the best freshening schedule.

Table 2.1 shows the results. Row (a) in table 2.1 shows change frequencies for each
element. Row (b) shows the optimal synchronization frequencies for the uniform distribution
case (P1) which coincide with the results in [CGMO0Ob|. However, as rows (c¢) and (d) show,
optimal synchronization frequencies for non-uniform access distributions are much different
from the result for the uniform distribution case. Especially in row (c), for which the most
frequently changing element (e5) now needs to get the highest synchronization frequency
(instead of 0 as in row (b)). This implies that frequently changing elements may need to be
synchronized much more than less frequently changing elements if they are more likely to
be accessed. This case, where users are more interested in items which change frequently,
is not uncommon in practice (for example, volatile stocks might be more interesting to
day-traders purely due to their volatility). In the case of less frequently changing elements,
row (d) shows that they should receive more freshening bandwidth if the access frequency

for them is high. O
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Table 2.1: Optimal sync frequencies for example

€1 €92 €3 €4 €5
(a)change freq 1 2 3 4 5
(b)sync freq (P1) | 1.15 | 1.36 | 1.35 | 1.14 | 0.00
(

(

¢)sync freq (P2) | 0.33 | 0.67 | 1.00 | 1.33 | 1.67
d)sync freq (P3) | 1.68 | 1.83 | 1.49 | 0.00 | 0.00

We will show how differences in optimal synchronization frequencies such as those illus-

trated above will affect the perceived freshness in Section 2.2.2.2.

2.2.2.2 Solving Optimally for Small Cases

We can solve the synchronization problem optimally for a small number of objects. Table
2.2 shows the setup we use. As in [CGMOOb] we assume a gamma distribution for the
distribution of change frequencies of database objects. We use a Zipfian ! distribution to
model user profiles from which we generate a master profile of user interest. It has been
shown in practice that  can be as high as 1.6 [PQ00]. The example we use is a database with
500 objects and each object is updated on average twice during a synchronization period
(the per interval update rate of individual objects is determined by the gamma distribution
- the mean of the gamma is 2). We provide a sensitivity analysis study of these parameters
in [CLZ02]. We assume no relationship between these parameters and object size, and, for
now, assume that all objects have the same size (we relax this restriction later).

In this section the GF technique refers to General Freshening (proposed in [CGMO0Ob])
which optimizes average freshness and the PF technique refers to Perceived Freshening (our
approach). In both cases, we measure the average perceived freshness achieved with the
resulting schedule. While it is not too surprising that the Perceived Freshening technique

does better when you measure perceived freshness, it is interesting to note exactly where

the benefits lie.

! A Zipfian distribution is commonly used to model non-uniform data access. As its parameter 0 increases,

the access pattern becomes increasingly skewed. The probability of accessing any object ¢ is proportional
to (1/4)°.
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We chose three possible alignments of change and access frequency. Figure 2.2 shows two
of these configurations. Note that the shapes of the curves in the figure are for demonstration
purposes and that their actual shapes would be determined by their distributions. In the
aligned case, objects that change frequently are of highest interest and in the reverse case,
volatile objects are less interesting to users. A third case shuffles the change rates from
the gamma distribution randomly across the elements so that no relationship exits between

interest and updates. We call this shuffled-change.

Access Frequency
---- Change Frequency

Access Frey,

===~ Change Freq,

Frequency
Frequency

Page Page

(a) aligned (b) reverse

Figure 2.2: Alignment options

Figures 2.3(a)-2.3(c) shows the perceived freshness results. The graphs all share the same
characteristic: when the users’ interests are considered in the synchronization algorithm,
the users’ perceived freshness increases as users’ interests become more skewed. Note that
in all cases, when € = 0, perceived freshness equals general freshness. This is because 8 = 0
corresponds to a uniform distribution. Both synchronization techniques produce the exact
same schedule because all data items have the same access probability.

As expected, the PF technique outperforms the GF technique as the interest skew in-
creases. The most significant difference is the aligned case in which perceived freshness

approaches 0 for high interest skew when user interest is ignored.

2.3 Scalability and Heuristic Approaches

While the optimization of freshness and perceived freshness presented in section 2.2 are
interesting for studying the effectiveness of refresh algorithms, they are not accurately

computable in practice for large problems.
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Table 2.2: Setup for Ideal Experiments

NumObjects 500
NumUpdatesPerPeriod 1000
NumSyncsPerPeriod 250
Theta (8) 0.0-1.6
UpdateStdDev(4) 1.0

! IPF_TECHNIQUE —— !
BF_TECHNIQUE - © -

iPF_TECHNIQUE - i
F_TECHNIQUE --C&

IPE_TECHNIQUE - -{
F_TECHNIQUE

.8 08 08

0.6 0.6 0.6

0.4 0.4 0.4

0.2 02 02

PERCEIVED FRESHNESS
PERCEIVED FRESHNESS

PERCEIVED FRESHNESS

0 o g 0
0 02 04 08 08 1 12 14 18 G 02 04 €6 C8 1 12 14 186 © 02 C4 08 0B 1 12 14 16
ZIPF SKEW (THETA) ZIPF SKEW (THETA) ZIPF SKEW (THETA)
(a) Shuffle-Change (b) Aligned (¢) Reverse

Figure 2.3: The Ideal Case for Perceived Freshness and General Freshness

The problem is classified as a convex optimization problem with a non-linear objective
function®. It is known that convex optimization problems have polynomial complexity.
However, it is still not scalable for a huge number of variables. Even for a convex optimiza-
tion problem with a linear objective function, the worst case complexity is O(n®) where
n is the number of variables [Kar84]. For non-linear objective functions the complexity is
worse. Empirically, we have observed that running our non-linear programming package is
manageable for problems with fewer than a thousand items; however, as we increase the
size of the problem to hundreds of thousands of items, the package runs for days without
terminating.

Managing mirrors with millions of elements is common in many real-world applications
such as web search engines or data warehouses. For large real-world problems for which the

contents of the mirror or the user interests might change, we would need to periodically solve

the Core Problem to ensure that the freshening schedule still produces good results. The

2We can verify that p; F(\, fi) is convex over f; by computing second order derivatives of the analytic
form for the Fixed Order policy.
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time needed to solve for the optimal result will be intolerable. Previous work [CGMO0Ob]
does not consider this. In this section, we will explain several heuristic algorithms that
reduce the problem size. We will also show that, for the most part, the accuracy of these
algorithms compares favorably to the optimal solution.

The heuristic approaches we present in this section consist of two steps. The first step
divides elements in a database into G partitions such that the number of elements in each
of G partitions is 71,75, -+ ,T¢ and ZZG:l T, =N.

In the second step, we pick a representative element from each of the partitions and solve
the optimization problem for each of these G elements. This solution allocates bandwidth
to each partition. This bandwidth is divided evenly among the elements of that partition.

The quality of the solution will depend on how the partitions are constructed and how
the original optimization problem is transformed to a smaller more manageable problem.
In the following, we describe our set of alternatives for partitioning and for constructing

the smaller optimization problem.

2.3.1 Partitioning Alternatives

We define four partitioning techniques. Each of our techniques creates partitions in the
same way. All N elements are sorted. Then N/G successive elements are assigned to a
partition. When N is divisible by G, the number of elements in each partition will be
equal. If N is not divisible by G, some of the partitions will have fewer elements. The effect
on the performance from this difference will be negligible for very large N and relatively
small G, which will be the usual case.

Clearly, p and A will have an effect on the result, thus, we consider each of them as well

as two ways of combining them as our sorting criteria.

2.3.1.0.1 p-Partitioning In this approach, all N elements in the database are sorted
by access frequency (p) and therefore, elements in each partition will have similar access

probabilities.
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2.3.1.0.2 A-Partitioning This approach is similar to P-Partitioning except that the
elements in the database are sorted by change frequency (A). This technique is included for

completeness.

2.3.1.0.3 §-Partitioning This partitioning alternative orders elements by (p/X). The
intuition behind this approach comes from the fundamental results found in [CGMOOb]
and in section 2.2. As change rate increases, synchronization frequency allocation should
decrease and second, as access probability increases, synchronization frequency allocation

should increase. Quantity § reflects these properties.

2.3.1.0.4 PF-Partitioning Though the partitioning techniques described above can
identify similarities between elements based on their characteristics (p and A) they do not
reflect the relative importance of access probability and change frequency on perceived
freshness. The PF-Partitioning approach orders elements by their perceived freshness (PF')
given a fixed synchronization frequency 3. The exact synchronization frequency used in our

calculations is not important. We use a synchronization frequency of 1.0.

2.3.2 Optimization

After the partitioning phase, we need to solve an optimization problem to determine the
best synchronization frequencies. We first treat all elements in a partition as identical. For
identical elements, synchronization frequencies will be the same. The optimization problem
on groups of identical elements is transformed to an equivalent problem in which the same
objective function (but over fewer elements) and bandwidth constraint operate on a data
set that includes one representative from each partition. This yields a bandwidth allocation
for each partition which, then, must be allocated proportionately to each element in that
partition. In this approach, optimization can be done in one step.

A second approach would transform the original problem into a number of smaller

. —xi/e .
3 When we use the Fixed-order synchronization policy, PF(e;) = p; X l‘i.,-/c/ where c is the fixed

synchronization frequency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

problems, in which only a small number of elements participate. Then G optimization
problems are solved, each with a small number of elements. This approach requires multiple
steps. We considered this approach but it does not make sense for large problems because
it is still very costly to run. Whereas solving each individual subproblem is feasible, the
sheer number of subproblems is too large. For example, if it is tolerable (solvable within an
hour) to solve the optimization problem over 1000 elements, you would have to solve 1000
such problems for a database with 1,000,000 elements. Thus we did not report the results
of these multi-stage algorithms.

To be clear, we formalize our optimization step. For G partitions, partition ¢ (i < G) is
regarded as having 7T; identical elements. A representative must be chosen that reflects the
similarity among these elements. For each partition C; with 7; elements, a representative
element is determined by averaging the access probabilities and the change frequencies of
all elements in the partition. Thus, a representative element v; for partition ¢ has access
probability(p;) and change frequency()\;) as follows.

pi = > pi/hi, A= > M /T
e;€ partition i e;€ partition i

The original optimization problem is converted to a smaller problem with G represen-
tative elements as shown below. Note that the objective function and constraint for the
original problem have been changed by scaling the terms by the number of elements in each

partition.

¢ Transformed Problem Given \;’s and p;’s (i = 1,2,..., G) for each representative

element, find the values of f;’s(: = 1,2,..., G) which maximize
— G —
PF(S) =Y piF(fi, \)T;
i=1
when f;’s satisfy the constraint

G
ZTifi = Total Bandwidth and f; >0
i=1

Solving for f; gives an amount of bandwidth that is assigned to each of the elements of

partition <.
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2.4 Experiments

In this section we describe and analyze performance results for large numbers of elements

for which we use our approximation techniques.

TFreshiness Y
Lvaluator Scheduler

/

Sync Request User
Updaie Source Mirror Request
Generator Generator
Response

Figure 2.4: Simulation Model

A detailed simulation was built to demonstrate various synchronization algorithms. Fig-

ure 2.4 shows the model for the simulation. The parameters for the simulator are described

below.

- NumObjects: number of objects in the database. In the current simulation, all

objects have the same size.
- PeriodLength: length of a sync period in simulation clock time

- NumSyncsPerPeriod: number of syncs per period (can be characterized as the

sync bandwidth)
- UpdateStdDev(§): standard deviation of update distribution (gamma)
- Theta(0): skew of the access distribution (zipf)

The Synchronization Scheduler has knowledge of the master profile and object change
frequencies. From these it creates the schedule of synchronization requests for the Mirror.
We use IMSL [IMS98] libraries to solve the non-linear objective function.

The Freshness Evaluator operates in two modes. It can analytically calculate freshness
metrics based on simulated access and update workloads, or it can track system activity
by monitoring updates and user requests and computing the metrics. The results shown in

the next section have been verified using both modes.
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2.4.1 Heuristic Case - Comparing the Techniques

In this section we show the results from our simulator for the approximation techniques
described in section 2.3. We first compare the techniques to each other and to the optimal
case for relatively small problem sizes. Next we demonstrate the differences between the
techniques for much larger cases for which solving optimally is infeasible. We also show
empirically that our solutions scale.

We compare techniques based on the quality of the result and the scalability of the

technique.

2.4.1.1 Quality of the Result

We use the set of parameters specified in Table 2.2 to compare the heuristic approaches.
Recall from section 2.2.2.2 we study three alignment cases: aligned, reverse, and shuffled-
change. Figure 2.5 shows the relative performance of our four partitioning techniques for
these cases. With any of these techniques, as the number of partitions increases, the number
of items in each partition decreases, and the approximate solution naturally approaches the
ideal solution. The plots verify this and show that as the number of partitions increases the
solution grows closer to the ideal case. The astute reader will notice that there is little dif-
ference between the techniques in Figures 2.5(b) and 2.5(c). This is because the partitioning
techniques for the aligned and reverse alignments produce nearly identical results. In the
aligned case, it is obvious that the partitions would be roughly the same for p-Partitioning
and A-Partitioning (both distributions have similar shape). Since access probability domi-
nates the Perceived Freshness equation, PF-Partitioning and p-Partitioning generate very
similar partitions for the case where the access is skewed. In both alignment cases, £-
Partitioning will order based on whichever parameter is more highly skewed, therefore it
follows that {%—Partitioning will be nearly the same as the other three.

Hereafter we will only consider the shuffled-change alignment for comparing partitioning
techniques. We do this because the independence of p and A presents more of an average

case rather than the extrema represented by aligned and reverse alignments and the average
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case demonstrates the differences between the partitioning techniques more plainly.
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Figure 2.5: Comparing the Techniques

Examination of the graph in Figure 2.5(a) reveals that some techniques approach the
optimal solution more quickly (with a smaller number of partitions) than others under
shuffled-change alignment . Note that p, PF, and § Partitioning approach the optimal
solution more quickly than A Partitioning. As we had seen from the optimal case in section
2.2.2.2, Perceived Freshness is dominated by access frequency. Figure 2.6 shows this more
clearly. In the figure, the A Partitioning technique can not achieve the same level of perceived
freshness as 9 is increased. Also notice that the plots have the same general shape as those
for Perceived Freshness in Figure 2.3. The plot shows that as 8 increases, perceived freshness

increases for all of the techniques. The reason for this is that for high 6 a small number of the
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elements that have a high access probability receive the bulk of synchronization bandwidth.
For low 8, elements with high change frequencies only have modest interest, therefore, A

dominates the impact on Perceived Freshness.
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Figure 2.6: Sensitivity of Partitioning to Zipf Skew () in Shuffle-Change Alignment

2.4.1.2 Scalability of the Techniques

All of the approximation techniques we have studied share the same basic principle: divide
the search space into pieces and solve. The time required to solve the problem is based on
the technique used to divide the search space and the resultant optimization problem(s).
For large cases, the goal is to use the smallest number of partitions to achieve a good

approximate answer.

Table 2.3: Setup for Partitioning Experiments

NumObjects 500000
NumUpdatesPerPeriod | 1000000
NumSyncsPerPeriod 250000
Theta (6) 1.0
UpdateStdDev(d) 2.00

Table 2.3 shows the parameter setup used to demonstrate the performance of the two
techniques. Figure 2.7 shows plots similar to those in figure 2.5, however, the size of the

problem is much larger. Though we cannot verify the ideal solutions for the cases shown
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here, the shape of the graph suggests the results from previous runs.
Notice that PF-PARTITIONING is still the clear winner and that the solutions using

more than 100 partitions do not appreciably improve the answer.
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Figure 2.7: Big Case

2.4.1.3 An Additional Improvement

Empirically we have seen that the partitions can be improved by running several iterations
of a k-Means clustering algorithm. In this technique, we start with partitions (clusters) as
before, and we use k-Means clustering to clean up any clustering problems in our initial
partitions. The distance metric we use for clustering is Euclidean Distance as described

below:

¢ Euclidean Distance The Euclidean distance between two elements, e;(p1, A1) and
ea(p2, A2), is defined as follows. Note that \;’s are normalized into Xi’s so that

N di=land0< X\, <1

Egist(e1,e2) = \/(Pl —p2)? + (A - )’ (2.3)

During each iteration of k-Means clustering, each element is compared with the mean
(average p and M) of each partition (or cluster) and moved to the closest one. With each

successive iteration, a better clustering is obtained. See Figure 2.8. In each iteration of the
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clustering, there are N x k comparisons for N elements and k clusters. Thus, it is possible
to improve the result in two different ways. We can increase the number of partitions, or
we can run more iterations of k-Means clustering to improve the quality of the partitions.
Figure 2.9 demonstrates this tradeoff. In the figure, the x-axis is time, and the thick line
in the figure labeled ”CLUSTER LINE” contains the points for the 70 iterations” case in
Figure 2.8. That is, if you changed the x-axis of Figure 2.8 to time, the "0 iterations”
plot would correspond to the "CLUSTER LINE” plot in figure 2.9. The other plots in
Figure 2.9 show how Perceived Freshness improves using the k-Means clustering step. The
first point on each of those plots (the point on ”CLUSTER LINE”) is 0 iterations, the
next successive for each plot is 1 iteration followed by 3, 5, 7, 10, 15, and 25 iterations
(when they fall within range on the graph). The very interesting phenomena is that with
very few iterations, significant gains are seen in Perceived Freshness when clustering is used
to improve the partitions created by PF-Partitioning. For this particular setup, a good

solution is found earliest with 50 partitions and 10 iterations which finishes in 62 seconds.

0.9 . - . :
0 iterations —&—
1 iterations -+
085 | 3 iterations -0~
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10 iterations ---w---
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20 40 60 80 100 120 140 160 180 200
NUMBER OF PARTITIONS

Figure 2.8: Improvement in Perceived Freshness after Clustering
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Figure 2.9: Improvement in Perceived Freshness after Clustering
2.5 Object Size Considerations

2.5.1 Problem Extension

We now relax the fixed object size assumption. Clearly, freshening a large object will
take more bandwidth than a small object. For example, if an object whose size is 3 units
of bandwidth is synchronized 2 times during a period, it will now consume 6 units of
bandwidth. Recall from the earlier discussion of the Core Problem that for fixed size
objects the linear constraint requires the sum of the refresh frequencies to be equal to the
total bandwidth available (equation 2.2). For variable sized objects, this constraint becomes
the sum of the products of sync frequencies (f;) and object sizes (s;) must be less than or
equal to the total bandwidth (equation 2.4).
N

> sifi < TotalBandwidth and s >0, f; >0 (2.4)

i=1
2.5.2 Freshening Approaches
Since the extended problem is different from the core problem only in its constraint speci-
fication, the optimal freshening problem can be solved with little difficulty.

For the freshening of a large number of variable-sized elements where heuristics are

needed, we take the same steps of partitioning and optimization as described in section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

2.3. In the partitioning step, we have to change the calculation of Perceived Freshness for
PF-Partitioning. When we do not consider object size, we assume a constant amount of
bandwidth for each element (see footnote 3). When considering object size, it is not fair to
assume a constant bandwidth, because one sync of a big page costs more bandwidth than
one sync of a small page. Therefore, we divide the constant bandwidth by the object size.
We call this PFS-Partitioning.

The optimization alternatives are basically the same except that the constraint now
becomes % T;5;f; = Total Bandwidth. The average of the size of elements in the same

i=1
partition is represented as ;.

2.5.3 Results and Further Analysis

Other studies [KRO1] have shown that object size on the web tends to follow a Pareto’
distribution. Figure 2.10 shows the optimal allocation of synchronization resources for two
different page size distributions (uniform, where each object has the same size (1.0) and
Pareto, where the object sizes follow a Pareto and have a mean of 1.0). For simplicity,
access is uniform (# = 0.0) and change rate is aligned (object 1 has the highest change
rate). Page size is also aligned (object 1 is largest). Figure 2.10(a) shows the number of
synchronizations given to each item. Figure 2.10(b) shows the amount of synchronization
bandwidth allocated to each item. Because the Pareto case has a large number of small
objects, the total number of syncs is larger while the total amount of synchronization
bandwidth is the same. It is important to note that when object size is variable, a smaller
object can be given more synchronizations while consuming less bandwidth. For both cases,
notice that all of the sync resources are given to the pages with the lowest change rates.
For large cases, there are important considerations to take into account concerning
bandwidth allocation. There are two possible approaches for bandwidth allocation to the

elements in the same partition:

4A Pareto distribution typically captures the highly variable size of objects, where F'(z) = (k/z)%, 2 > k
a is the shape and k is the scale. The distribution has a mean of ka/(a — 1).
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Figure 2.10: Optimal Sync Resource Distribution

1. Fixed Refresh Frequency Allocation(FFA) : All the elements get the same fre-
quency of refresh. This technique was appropriate when all elements were of the same
size. However, now this leads to disproportional bandwidth allocation. To address

this we introduce the following technique.

2. Fixed Bandwidth Allocation(FBA) : The same amount of bandwidth is allocated
for every element in the same partition. They will have different freshening frequencies
which are determined by (assigned bandwidth®) / s;. As a result, smaller objects will
get higher number of refreshes than larger objects although they are in the same

partition.

Figure 2.11 shows the relative performance of the allocation approaches described for
PFS-Partitioning. For the experiment, the alignments of change rate and object size are
reversed, and access is shuffled. (object 1 has a high change rate and a low size). This
scenario seems to make sense for the real world. For instance, on the web, large objects
like images and movies rarely change, whereas small objects like stock quotes and weather
reports change quite often.

Notice that Fixed Bandwidth Allocation (FBA) approaches a better solution earlier

(with fewer partitions) than with the Fixed Frequency Allocation (FFA). We have seen

®Note that the bandwidth for a representative element for a partition ¢ from the optimization step will
be S X fz
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through empirical study of these allocation policies for small and large setups that FBA

always outperforms FFA.
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Figure 2.11: Sync Allocation

We have also applied the clustering improvement described in section 2.4.1.2 to the
object size case and have found that it again improves the solutions within a small number
of iterations . We also implemented SIZE-Partitioning which orders elements by size.
Like p and A-Partitioning, ordering by size only does not capture the relationship between
elements so as to improve Perceived Freshness as much as PFS-Partitioning.

To summarize, in the experiments of (fig. 2.10(a)), the synchronization frequencies that
are produced when we ignore object size (uniform distribution) yield a perceived freshness
of 0.312. Whereas the synchronization frequencies that are produced when we take the
size distribution into account (Pareto) yield a perceived freshness of 0.586. As shown in
fig. 2.10(b) when we ignore object size, too much bandwidth is given to large objects
which robs bandwidth from smaller objects, thereby, making suboptimal use of bandwidth.

Furthermore, in our heuristic algorithms, the bandwidth allocation policy is effected by the

variation in object size. Objects should be given a fixed bandwidth allotment.

SBuclidean Distance between two elements is Faistsize(€1,e2) = \/(p1 —p2)2 + (A1 — N2)2 4 (51 — 52)2.
The s;’s are normalized so that Ziil s =1
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2.6 Time average of perceived freshness

The perceived freshness of a mirror S is the sum of the freshness of its local copies observed
by every access on a local copy in the mirror. The perceived freshness of S averaged over
time should be the sum of the perceived freshness of its local copies averaged over time.
The proof of the following theorem demonstrates this.

We assume that an access set, A = ay,---,ap;, represents all the accesses over some
period for mirror S with N local copies, eq, -, eny. When we denote the number of accesses
for a local copy e; as M;, then M = Zf\il M; holds. Note that the access probability for a
local copy e; becomes p; = %IL and Zfil p; = 1. When a local copy, eg, is not included in

A, its My, and py are 0.
Theorem 1

N
W(A) = —P-F—(S) = sz—F_(ez)

i=1

Proof 1
¢
PF(A) = lim = [ PF(A;t)dt
(from Definition 4)
1t 1 &

= Jlim - i (——;PF(az,t))dt

(from Definition 3)

We can reformulate the above equation in the contest of a database S as follows.

N

PF(S) = Y (PF(e) x =)

N J—
= (Fle;) x pj)

=1
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2.7 Solution for the Core Problem

Here we address the solution of the Core Problem as expressed by equations 2.1 and 2.2.

The perceived freshness of database S

PF(S) =Y piF(e)) =Y piF(fi M)
i=1 =1

takes its maximum, when all f;’s satisfy the equations

w =y and i\’: fi = Total Bandwidth
ofi i=1

The solution consists of (N +1) equations (N equations of dp;F(X;, fi)/0f; = p and one
equation of Efil fi = TotalBandwidth) with (N+1) unknown variables (f1, f2, ..., v, i)
by introducing another variable p, which is a typical way to apply method of Lagrange
multipliers. We can solve these (N +1) equations for the f;’s, since we know the closed form
of p;F(A;, fi). From the solution, we can see that all optimal f;’s satisfy dp,F(fi, \i)/0fi =
e

To compute the optimal f; for each A; and p;, we need to solve the equation
OpiF(fi, \i)/0fi = p (2.5)

for f;. When the Fixed-order policy is applied, F(f;, \;) is derived as 1—%& Unfortu-
nately, Equation 2.5 is a non-linear equation which does not have a closed-form solution.
Moreover, the equation has a parameter p, whose value depends on the distribution of A;’s
and p;’s. Therefore, we may get totally different solution f for different distributions of A;’s
and p;’s. Cho et al.[CGMOO0b] proved that the solutions of Equation 2.5 are essentially the

same, independently of y when p;’s are equal.

Equation 2.5 can be rewritten as

OF (fi, \)/0fi = = (2.6)

T

Equation 2.67 implies that a solution for an element e;(p;, A;) which satisty dp; F(fi, Ai)/0f; =

"For the Fixed-order policy, this becomes %e"\"/f“' +%(1~e‘)"’/f") = —1’;#‘ after applying partial derivation.
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p is on the graph of OF(fi, \;)/0f; = 4~ When such p; = p, the solution will be on the
graph of OF(f;, \;)/0f; = L.

2.8 Summary

This chapter presented a new criterion called perceived freshness for optimizing the freshness
of a mirror given limited bandwidth. Unlike previous studies, we take into account the access
frequencies for each copy.

We analyzed the optimal solution to the problem of maximizing perceived freshness,
but observed that the solution for large problems takes far too much time. For cases in
which we need to revisit the refresh schedule often (e.g., frequent updates to the mirror),
the high cost of the optimal solution is unacceptable. Thus, several heuristic partitioning
techniques that produce approximate solutions at drastically reduced costs were studied.
The PFE-Partitioning technique is shown to perform best and is shown to track the ideal
solution for modest problem sizes. We further show that for very large problems, these
techniques can produce good results in reasonable solution times.

The most surprising result was that reclustering partitions before running the optimiza-
tion algorithm had dramatic effects on the results at a small cost in running time. Thus,
using a small number of simple partitions as a starting point for reclustering was shown to
be the best approach.

Next we analyze the impact of object size on the problem and the approaches. It
was shown that there is an important distinction between synchronization frequency and
synchronization bandwidth. We also present how to proportionally allocate synchronization
bandwidth across different sized objects.

These results are relevant to many Internet-scale applications. They depend on the
ability to gather information on user access-patterns, but this is feasible through direct
feedback from users or from a simple learning algorithm that monitors the system request

log.
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Chapter 3

Resource Scheduling for the

Management of Data Streams

3.1 Introduction

Many stream-based applications have sophisticated data processing requirements and real-
time performance expectations that need to be met under high-volume, time-varying data
streams. In order to address these challenges, novel operator scheduling approaches are
introduced that specify (1) which operators to schedule (2) in which order to schedule
the operators, and (3) how many tuples to process at each execution step. We study our
approaches in the context of the Aurora data stream manager.

We show that a fine-grained scheduling approach in combination with various scheduling
techniques (such as batching of operators and tuples) can significantly improve system
efficiency by reducing various system overheads. Prototype-based experimental results are
shown that characterize the efficiency and effectiveness of our approaches under various

stream workloads and processing scenarios.

33
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3.2 Aurora Overview

3.2.1 Aurora System Model

Aurora data is assumed to come from a variety of data sources such as computer programs
that generate values (at regular or irregular intervals) or hardware sensors. We will use the
term data source for either case. In addition, a data stream is the term we will use for the
collection of data values that are presented by a data source. Each data source is assumed
to have a unique source identifier and Aurora timestamps every incoming tuple to monitor

the prevailing QoS.

Box Inpul Queuves

Input Data
Streams

Output to
Applications

q
N

()pcm‘l‘ovr Boxes Continuous & Ad-hoe
w Queries

Figure 3.1: Aurora System Model

The basic job of Aurora is to process incoming data streams in the way defined by an
application administrator. Figure 3.1 illustrates Aurora’s high-level system model. Aurora
is fundamentally a data-flow system and uses the popular boxes and arrows paradigm found
in most process flow and workflow systems. Hence, tuples flow through a loop-free, directed
graph of processing operations (a.k.a. boxes). Ultimately, output streams are presented
to applications, which must be programmed to deal with output tuples that are generated
asynchronously. Aurora can also maintain historical storage, primarily in order to support
ad-hoc queries.

Tuples generated by data sources arrive at the input and are queued for processing.
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Boxes with waiting tuples are selected and execute on one or more of their input tuples.
The output tuples of a box are queued at the input of the next box in sequence. In this way,
tuples make their way from the inputs to the outputs. Each output is associated with one
or more Quality of Service (QoS) specifications, which define the utility of stale or imprecise
results to the corresponding application.

The primary performance-related QoS is based on the notion of the latency (i.e., delay)
of output tuples. Output tuples should be produced in a timely fashion, otherwise, QoS
will degrade as latencies get longer. We will only deal with latency-based QoS graphs;
for a discussion of other types of QoS graphs and how they are utilized, please refer to
[ACCT03, CCC*02]. Aurora assumes that all QoS graphs are normalized, and are thus
quantitatively comparable. Aurora further assumes that the QoS requirements are feasible;
i.e., under normal operation (i.e., no peak overload), Aurora will be able to deliver maximum
possible QoS for each individual output.

Aurora contains built-in support for a set of primitive operations for expressing its
stream processing requirements. Some operators manipulate the items in the stream, others
transform individual items in the stream to other items, while other operators, such as the
aggregates (e.g., moving average), apply a function across a window of values in a stream.

A description of the operators can be found in [ACC*03, CCCt02].

3.2.2 Architecture

Figure 3.2 illustrates the architecture of the basic Aurora run-time engine. The Storage
Manager is responsible for maintaining the box queues and managing memory buffers used
to store the queues. Boxes are selected for execution by the Scheduler which ascertains
how many tuples to process from corresponding input queues, and pushes a pointer to box
and queue descriptions (together with pointers to box state) onto an ezecution queue. A
pool of Worker Threads individually pop ezecution queue elements and execute appropri-
ate operations. Output tuples are forwarded to downstream queues. The scheduler then

ascertains the next processing step and the cycle repeats. A Catalog contains information
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regarding the network topology, inputs, outputs, and QoS information. Relevant statistics
(e.g., selectivity, average box processing costs) are gathered and system performance (e.g.

QoS) is continually monitored by a Run-time Statistics Monitor.
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Figure 3.2: Aurora Run-Time

Scheduling in Aurora is a complex problem due to the need to simultaneously address
several issues including large system scale, real-time performance requirements, and de-
pendencies between box executions. Furthermore, tuple processing in Aurora spans many
scheduling and execution steps (i.e., an input tuple typically needs to go through many boxes
before potentially contributing to an output stream) and may involve multiple accesses to
secondary storage. Basing scheduling decisions solely on QoS requirements, thereby failing
to address end-to-end tuple processing costs, might lead to drastic performance degrada-
tion especially under resource constraints. To this end, Aurora not only aims to maximize

overall QoS but also makes an explicit attempt to reduce overall tuple execution costs.

3.2.3 Basic Execution Model

The traditional model for structuring database servers is thread-based execution, which
is supported widely by traditional programming languages and environments. The basic
approach is to assign a thread to each query or operator. The operating system (OS) is

responsible for providing a virtual machine for each thread and overlapping computation
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and I/O by switching among the threads. The primary advantage of this model is that it
is very easy to program, as the OS does most of the job. On the other hand, especially
when the number of threads is large, the thread-based execution model incurs significant
overhead due to cache misses, lock contention, and switching. More importantly for our
purposes, the OS handles the scheduling and does not allow the overlaying software to have
fine-grained control over resource management.

Instead, Aurora uses a state-based execution model. In this model, there is a single
scheduler thread that tracks system state and maintains the execution queue. The execution
queue is shared among a small number of worker threads responsible for executing the
queue entries (as we discuss below, each entry is a sequence of boxes). This state-based
model avoids the mentioned limitations of the thread-based model, enabling fine- grained
allocation of resources according to application- specific targets (such as QoS). Furthermore,
this model also enables effective batching of operators and tuples, which we show has drastic

effects on the performance of the system as it cuts down the scheduling and box execution

overheads.
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Figure 3.3: High-level comparison of stream execution models

In order to illustrate the basic performance benefits of Aurora’s state-based model over

the traditional thread- based model (where each operator is assigned a single thread), we
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ran a simple processing network consisting of multiple queries, each consisting of a chain of
five filter operators (see Section 3.4.1 for a description of our experimental testbed). Figure
3.3 shows the tuple latencies observed as a function of the total number of operators.
As we increase the system workload in terms of number of operators, the performance
degrades in both cases, however much less in the Aurora case. In fact, performance degrades
almost linearly in Aurora and exponentially in the thread-per-box case, a result that clearly
supports the aforementioned scalability arguments.

An important challenge with the state-based model is that of designing an intelligent but
low-overhead scheduler. In this model, the scheduler becomes solely responsible for keeping
track of system context and deciding when and for how long to execute each operator. In
order to meet application-specific QoS requirements, the scheduler should carefully multi-
plex the processing of multiple continuous queries. At the same time, the scheduler should
try to minimize the system overheads, time not spent doing "useful work” (i.e., processing),

with no or acceptable degradation in its effectiveness.

3.3 Two-Level Scheduling

Aurora uses a two-level scheduling approach to address the execution of multiple simultane-
ous queries. The first-level decision involves determining which continuous query to process.
This is followed by a second-level decision that then decides how exactly the selected query
should be processed. The former decision entails dynamically assigning priorities to op-
erators at run-time, typically according to QoS specifications, whereas the latter decision
entails choosing the order in which the operators involved in the query will be executed.
The outcome of these decisions is a sequence of operators, referred to as a scheduling plan,
to be executed one after another. Scheduling plans are inserted into an execution queue to
be picked up and executed by a worker thread.

In order to reduce the scheduling and operator overheads, Aurora heavily relies on
batching (i.e., grouping) during scheduling. We developed and implemented algorithms

that batch both operators and tuples. In both cases, we observed significant performance
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gains over the non-batching cases. We now describe in detail our batching approaches for

constructing scheduling plans.

3.3.1 Operator Batching - Superbox Processing

A superbox is a sequence of boxes that is scheduled and executed as an atomic group.
Superboxes are useful for decreasing the overall execution costs and improving scalability
as (1) they significantly reduce scheduling overheads by scheduling multiple boxes as a
single unit, thereby decreasing the number of scheduling steps; (2) they eliminate the need
to access the storage manager for each individual box execution by having the storage
manager allocate memory and load all the required tuples at once .

Conceptually, a superbox can be an arbitrary connected subset of the Aurora network.
However, we do constrain the form of superboxes such that each is always a tree of boxes
rooted at an output box (i.e., a box whose output tuples are forwarded to an external ap-
plication). The reasons that underlie this constraint are twofold. First, only the tuples that
are produced by an output box provide any utility value to the system. Second, even though
allowing arbitrary superboxes provide the highest flexibility and increase opportunities for
optimization, this will also make the search space for superbox selection intractable for large
Aurora networks.

A note about query topology: Though we speak of queries as trees, Aurora queries can
actually take the form of a graph like that shown in Figure 3.4. The figure shows two
applications with overlapping queries (they have operator boxes in common). Also, boxes
bs, by, and bs form a subgraph which could not be contained in a tree. For our purposes,
a query tree is defined as a digraph where each node (operator) has an out-degree of one.
In this dissertation, we assume that all queries are trees. However, in Chapter 6 we discuss
future research directions which consider overlapping queries (common subexpressions) and
methods for composing superboxes from query graphs.

The following subsections discuss the two key issues to deal with when scheduling su-

perboxes, namely superbox selection and superbox traversal.
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Figure 3.4: Sample Query Graph
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3.3.1.1 Superbox Selection

The first-level scheduling issue involves determining which superboxes to schedule. Fun-
damentally, there are two different approaches to superbox selection: static and dynamic.
Static approaches identify potential superboxes statically before run time, whereas the dy-
namic approaches identify useful superboxes at run time.

In Aurora, we implemented a static superbox selection approach, called application-at-
a-time (AAAT). AAAT statically defines one superbox for each query tree. As a result, the
number of superboxes is always equal to the number of continuous queries (or applications)
in the Aurora network. Figure 3.5 illustrates a simple query tree that consists of six boxes
(the tree is rooted at box b1). Once the superboxes are identified, they can be scheduled

using various scheduling policies (e.g., round-robin).

Output Box (root)

b4 b2

b5

bl ——  Application

Query Tree

Figure 3.5: Sample Query Tree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

3.3.1.2 Superbox Traversal

Once it is determined which superboxes need to be executed, a second-level decision process
specifies the ordering of component boxes. This is accomplished by traversing the superbox.
The goal of superbox traversal is to process all the tuples that are queued within the
superbox (i.e., those tuples that reside on the input queues of all boxes that constitute the
superbox).

We investigate three traversal algorithms that primarily differ in the performance-related
metric they strive to optimize: throughput, latency, and memory consumption.

Min-Cost (MC): The first traversal technique attempts to optimize per-output-tuple
processing costs (or average throughput). The goal here is to do the least amount of work
per unit time. Given a query and a set of input tuples, the amount of box processing
is constant, and the opportunity to reduce the cost of executing the query comes from
overhead reduction. We can do this by minimizing the number of box calls per output
tuple. One call per box in the query is minimum. Therefore, a traversal which processes all
tuples for a query with only one box-call per query operator would achieve this minimum
overhead. This can be accomplished by traversing the superbox in post order, where a box
is scheduled for execution only after all the boxes in its sub-tree are scheduled. Notice that
a superbox execution based on an MC traversal consumes all tuples (available at the start
of execution) while executing each box only once.

Consider the query tree shown in Figure 3.5 and assume for illustration purposes that a
superbox that covers the entire tree is defined. Also, assume that each box has a processing
cost per tuple of p, a box call overhead of o, and a selectivity equal to one. Furthermore,
assume that each box has exactly one non-empty input queue that contains a single tuple.

An MC traversal of the superbox executes each box only once:
b4—>b5—>b3;>b2—>bcﬂbl

There are 15 tuples which have to be processed and this traversal requires 6 box calls

to process them through to the output. Table 3.1 steps through the processing of tuples.
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Note that the processing of tuples through box b; has been expanded to show individual
output latencies. Note that the total execution cost of the superbox (i.e., the time it takes
to produce all the output tuples) is 15p + 60 and that the minimum call overhead (60) has
been achieved. The average output tuple latency for this example is 12.5p + 60. We next

consider an traversal which reduces average output tuple latency.

Box | Processing (p) Call Overhead (o) Output Tuple Latency

by 1 1

bs 1 1

b3 2 1

by 4 1

be 1 1

b1 1 1 10p + 6o

by 1 0 11p + 60

b 1 0 12p + 6o

by 1 0 13p + 6o

by 1 0 14p 4 6o

by 1 0 15p + 6o
Total Processing: | Total Call Overhead: | Average Latency:
15p 6o 12.5p + 6o

Table 3.1: Stepping Through Min-Cost Traversal

Min-Latency (ML): Average latency of the output tuples can be reduced by producing
initial output tuples as fast as possible. In order to accomplish this, we define a cost metric
for each box b, referred to as the output cost of b, output_cost(b). This value is an estimate
of the latency incurred in producing one output tuple using the tuples at b’s queue and
processing them downstream all the way to the corresponding output.

This value can be computed using the following formulas:

o-sel(b) = H sel(k)
keD(b)

output_cost(b) = Z cost(k)/o_sel(k)
keD(b)

where D(b) is the set of boxes downstream from b and including b, and sel(b) is the estimated

selectivity of b. In Figure 3.5, D(bs) is b3 — by — b1, and D(b1) is b;. The output selectivity
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of a box b, o_sel(b), estimates how many tuples should be processed from b’s queue to
produce one tuple at the output.

We start with an empty traversal sequence. To come up with the traversal order, the
boxes are first sorted in increasing order of their output_cost. Then, for each box, b, in this
sorted list, D(b) is appended to the traversal sequence. This will create a traversal which

consumes all tuples in the query. For example, an ML traversal of the superbox of Figure

3.5 is:
b1 — by — by — bg — by — by — by — by — bg — by — by — by — by — by — by

Table 3.2 steps through the traversal. The ML traversal incurs nine extra box calls over
an MC traversal (which only incurs six box calls). In this case, the total execution cost is

15p + 150, and the average latency is 7.17p + 7.170.

Box | Processing (p) Call Overhead (o) Output Tuple Latency

by |1 1 Ip + 1o

ba 1 1

b1 1 1 3p+ 30

be 1 1

by 1 1 5p + 5o

b4 1 1

by 1 1

b1 1 1 8p + 8o

by |1 1

ba 1 1

by |1 1 11p + 110

bs 1 1

b3 1 1

by 1 1

b1 1 1 15p + 150
Total Processing: | Total Call Overhead: | Average Latency:
15p 150 717p+7.170

Table 3.2: Stepping Through Min-Latency Traversal
In general, MC achieves a lower total execution time than ML. This is an important

improvement especially when the system is under CPU stress, as it effectively increases the

throughput of the system. There are exceptions where ML may achieve the same execution
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time as MC. This is true whenever ML and MC produce the same traversal. For example,

consider this query which consists of a chain of boxes:
—> by —> by —> by —> b —

If only b4 has input tuples, then both MC and ML will execute the same schedule (b4, b3, b, b1).
Of course, this negates the overhead that an ML scheduler would incur determining that
only by has input tuples.

ML may achieve lower latency than MC depending on the ratio of box processing costs
to box overheads. In the example traversals shown in Tables 3.1 and 3.2, ML yields lower
latency if

12.5p+ 60> 7.17Tp+ 7.170

or, 2> 0.22. That is, if processing a box is greater than 22% of the overhead of executing a
box. Note that as the box processing cost becomes negligible (or overhead increases), MC
produces tuples with lower average latencies than ML.

Min-Memory (MM): This traversal is used to maximize the consumption of data per
unit time. In other words, we schedule boxes in an order that yields the maximum increase

in available memory (per unit time).

tsize(b) x (1 — selectivity(b))

mem-r = cost(b)

The above formula is the expected memory reduction rate for a box b (tsize(b) is the size
of a tuple that reside on b’s input queue). Once the expected memory reduction rates are
computed for each box, the traversal order is computed. Boxes are placed in the traversal
sequence in order of decreasing mem.rr. For each box b placed in the traversal sequence,
the boxes in D(b) are tested in sequence for higher mem_rr. As mem_rr increases for the
boxes in D(b), those boxes are also placed in the traversal. Pseudocode for this procedure

follows:
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// boxes sorted by mem rr is a vector of boxes sorted by mem rr

// traversal[] is the traversal

// D{(box) is a function which returns a vector of boxes

// representing D(b), the downstream boxes from box, including box

// mem_rr(box) is a function which returns the mem rr of box

index = 0;

for (i = 0; 1 < boxes_sorted by mem rr.size(); i++ )

box = boxes_sorted_by mem_rrlil;
index = index + 1;

traversal [index] = box;
downstream = D (box) ;

for ( j = 1; j < downstream.size(); Jj++ )

{

if ( mem_rr(downstream(j]) > mem_rr{(box) )

{

box = downstream([j];
index = index + 1;

traversal [index] = box;

Let’s now consider the MM traversal of the superbox in Figure 3.5, this time with the
box selectivities and costs shown in Table 3.3. Assuming that all trains are of size one, the

mem_rr for all the boxes is also shown in Table 3.3. Therefore, the MM traversal is:
by — by — by — bg — by — by — by — by — by — by — by — by — by

Note that this traversal might be shorter at run time: for example, if b5 consumes all of its
input tuples and produces none on the output, the execution of b3 after bb will clearly be

unrnecessary.
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Box | Selectivity | Cost | mem_rr
b1 0.9 2 0.05

ba 0.4 2 0.3

b3 0.5 1 0.5

by 1.0 2 0

b 0.4 3 0.2

bg 0.6 1 0.4

Table 3.3: Costs, Selectivities, and mem_rr for Min-Memory Traversal Example

3.3.2 Tuple Batching - Train Processing

A tuple train (or simply a train) is a sequence of tuples executed as a batch within a single
box call. Tuple train processing reduces overall tuple processing costs. This happens for
several reasons: First, given a fixed number of tuples to process, train processing decreases
the total number of box executions required to process those tuples, thereby cutting down
low-level overheads such as scheduling overhead (including maintenance of the execution
queue and memory management), reducing calls to the box code, and decreasing context
switches. Second, as in the case of superbox scheduling, train processing also improves
memory utilization when the system operates under memory stress (see Section 3.3.1). A
third reason, which we have not yet explored, is that some operators may optimize their
execution better with larger number of tuples available in their queues. For instance, a box
can materialize intermediate results and reuse them in the case of windowed operations, or
use merge-join instead of nested loops in the case of joins.

In general, a scheduled box consumes the entire train of tuples in its input queue when
it executes. In a later section (section 3.4.4) we explore different train sizes and their impact

on system performance.
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3.4 Experimental Evaluation

3.4.1 Experimental Testbed

We use the Aurora prototype system to study our operator scheduling techniques. The
reference run-time architecture is defined in Section 3.2.2.

The prototype is implemented on top of Debian GNU/Linux using C++. In the exper-
iments, we used a dedicated Linux workstation with a 2.0 GHz Pentium IV processor and
512M of RAM. The machine was isolated from the network to avoid external interference.

Due to the fact that the domain of stream-based applications is still emerging and that
there are no established benchmarks, we decided to artificially generate data streams and
continuous queries to characterize the performance of our algorithms, as described below.

We generated an artificial Aurora network as a collection of continuous queries, each
feeding output tuples to individual applications. We modeled a continuous query as a
tree of boxes rooted at an output box (i.e., a box whose outputs are fed to one or more
applications). We refer to such a query tree as an application tree. Each query is then
specified by two parameters: depth and fan-out. Depth of a query specifies the number of
levels in the application tree and fan-out specifies the average number of children for each
box.

For ease of experimentation, we implemented a generic, universal box whose per-tuple
processing cost and selectivity can be set. Using this box, we can model a variety of
stateless stream-based operators such as filter, map, and union. For simplicity, we chose
not to model stateful operators as their behavior is highly- dependent on the semantics
they implement, which would introduce another dimension to our performance evaluation
and restrict the generality of our conclusions. This would complicate the understanding of
the results without making a substantial contribution to the understanding of the relative
merits of the algorithms.

An Aurora network consists of a given number of query trees. All queries are then

associated with latency- based QoS graphs, a piece-wise linear function specified by three
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points: (1) maximum utility at time zero, (2) the latest latency value where this maximal
utility can be achieved, and (3) the deadline latency point after which output tuples provide
zero utility.

To meaningfully compare different queries with different shapes and costs, we use an
abstract capacity parameter that specifies the overall load as an estimated fraction of the
ideal capacity of the system. For example, a capacity value of .9 implies that 90% of
all system cycles are required for processing the input tuples. Once the target capacity
value is set, the corresponding input rates (uniformly distributed across all inputs) are
determined using an open-loop computation. Because of various system overheads, the
CPU will saturate typically much below a capacity of one.

The graphs presented here provide average figures of six independent runs, each process-
ing 100K input tuples. Unless otherwise stated, the fan-out parameter is set to three; the
depth is set to five; the selectivities of the boxes are set to one; and the per-tuple processing

costs are selected from the range [0.0001 sec/tuple - 0.001sec/tuple].

3.4.2 Operator Batching - Superbox Scheduling

We investigate the benefits of superbox scheduling by comparing the performance of box-at-
a-time (BAAT) with application-at-a-time (AAAT). For both, we used a round-robin (RR)
scheduler which in the case of AAAT, cycles through applications, running each with an
MC traversal. In the case of BAAT, it cycles through runnable! boxes in a pre-determined
random order.

Figure 3.6 shows the average tuple latencies of these approaches as a function of the
input rate (as defined relative to the capacity of the system) for five application trees. As
the arrival rate increases, the queues eventually saturate and latency increases arbitrarily.
The interesting feature of the curves in the figure is the location of the inflection point. RR-
BAAT does particularly badly. In these cases, the scheduling overhead of the box-at-a-time

approach is very evident. This overhead effectively steals processing capability from the

*a runnable box is one which has at least one input tuple to process.
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Figure 3.6: Box vs. Application Scheduling

normal network processing, causing saturation at much earlier points. On the other hand,
the MC_AAAT algorithm performs quite well in the sense that it is resistant to high load.
This technique experiences fewer scheduler calls and, thus, have more processing capacity

and is able to hang on at input rates of over 90% of the theoretical capacity.

3.4.3 Superbox Traversal

We first investigate the performance characteristics of the Min-Cost (MC) and Min-Latency
(ML) superbox traversal algorithms. In this experiment, we use a single application tree
and a capacity of 0.5. Note that as box and application costs change, to maintain a fixed
capacity, input rates must change.

Figure 3.7 shows the average output tuple latency as a function of per-tuple box process-
ing cost. As expected, both approaches perform worse with increasing processing demands.
For most of the cost value range shown, ML not surprisingly performs better than MC
as it is designed to optimize for output latency. Interestingly, we also observe that MC
performs better than ML for relatively small processing cost values. The reason is due
to the relationship between the box processing cost and box call overhead, which is the
operational cost of making a box call. The box call overhead is a measure of how much

time is spent outside the box versus inside the box (processing tuples and doing real work).
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Figure 3.7: Box vs. Application Scheduling

As we decrease the box processing costs, box call overheads become non-negligible and, in
fact, they start to dominate the overall costs incurred by the algorithms. As we explained
in Section 3.3.1.2, an MC traversal always requires fewer box calls than ML does. We thus
see a cross-over effect: for smaller box processing costs, box call overheads dominate overall
costs and MC wins. For larger processing costs, ML wins as it optimizes the traversal for
minimizing output latency.

MC incurs less overall box overhead as it minimizes the number of box calls. The
difference increases as the applications become deeper and increase in the number of boxes.
In fact, the overhead difference between the two traversals is proportional to the depth of
the traversed tree.

These key results can be utilized for improving the scheduling and overall system perfor-
mance. It is possible to statically examine an Aurora network, obtain box- processing costs,
and then compare them to the (more or less fixed) box processing overheads. Based on the
comparison and using the above results, we can then statically determine which traversal
algorithm to use. A similar finer-grained approach can be taken dynamically. Using a sim-
ple cost model, it is straightforward to compute which traversal algorithm should do better
for a particular superbox.

Figure 3.8 demonstrates the amount of memory used over the time of superbox run.
The curves are normalized with respect to the MM values. ML is most inefficient in its use

of memory with MC performing second. MC minimizes the amount of box overhead. As a
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result MC discards more tuples per unit of time than ML,
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Figure 3.8: Memory requirements of traversal algorithms

MM loses its advantage towards the end since all three traversals are executed on a
common query network. Even though each chooses a different execution sequence and
incurs different overhead, all three traversals push the same tuples through the same tree
of boxes. The crossover towards the end of the time period is a consequence of different
traversals taking different amounts of times to finish. In general, MC has the smallest total
execution time and as a result catches up with MM towards the end of the shown execution

range.

3.4.4 Tuple Batching - Train Scheduling

Train scheduling is only relevant in cases in which multiple tuples are waiting at the inputs
to boxes. This does not happen when the system is very lightly loaded. In order to see how
train scheduling affects performance, we needed to create queues without saturating the
system. We achieved this by creating a bursty (or clustered) workload that simply gathers
tuples in our previously studied workloads and delivers them as a group. In other words, if
our original workload delivered n tuples evenly spaced in a given time interval T, the bursty
version of this delivers n tuples as a group and then delivers nothing more for the next T

time units. Thus, the bursty workload is the same in terms of average number of tuples
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Figure 3.9: Train scheduling effects

The graph in Figure 3.9 shows how the train scheduling algorithm behaves for several
bursty workloads. In this experiment, we have a single application tree with a fan- out
of two and a depth of five. In order to isolate the effects of operator scheduling, we use
round-robin BAAT for this experiment. The train size (x-axis) is given as a percentage of
the queue size. As we move to the right, the trains bite off increasingly larger portions of
the queues. With a burst size of one, all tuples are evenly spaced. This is equivalent to the
normal workload. Notice that the curve for this workload is flat. If there are no bursts,
train scheduling has no effect. For the other two curves, however, as the burst size increases,
the effect gets more pronounced. With a train size of 0.2, the effect on the overhead (ie.,
total execution time less processing time) of increasing the burst size is substantial. For
a burst size of 4, we quadruple the average overhead. Now as we increase the train size,
we markedly reduce the average overhead for the bursty cases. In fact, when the train size
is equal to one (the entire queue), the average overhead approaches the overhead for the
non-bursty case. Trains improve the situation because tuples do not wait at the inputs
while other tuples are being pushed through the network. It is interesting to note that the

bursty loads do not completely converge to the non- bursty case even when the train size is
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one (i.e., the whole queue). This is because the tuples still need to be processed in order.
Since the bursty workload generation delivers n-1 of the tuples early, their latency clock is
ticking while the tuples in front of them are being processed. In the non-bursty case, the
tuples arrive spaced out in time, and a fair amount of processing can be done on queued

tuples before more tuples arrive.

3.4.5 Overhead Distribution

Figure 3.10 shows a comparison of the relative execution overheads and how they are dis-
tributed for TAAT (tuple- at-a-time), BAAT (tuple trains), and MC (superbox), for four
application trees. Each bar is divided into three fundamental cost components: the worker
thread overhead, the storage management overhead, and the scheduler overhead. The num-

ber at the top of each bar shows the actual time for processing 100K tuples in the system.

Total running time: 410 secs 15 secs 8.5 secs
100% ~
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Figure 3.10: Distribution of execution overheads

Looking at the total running times, the first thing to notice is that TAAT is significantly
worse than the other two methods, underscoring our conclusion that train and superbox
scheduling are important techniques for minimizing various system overheads and improv-
ing the overall system throughput. Additionally, this graph shows clearly the benefits of
superbox scheduling, which decreased the overall execution time of the system running tuple

trains almost by 50%.
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Finally, we note the interesting trend in the relative component costs for each approach.
While the percentages of the worker thread and storage manager overheads decrease, as we
go from the leftmost bar to the right, the percentage of the scheduler overhead increases and
starts to dominate the rest. The reason is that, as batching is increased, more tuples are
processed at each scheduling step. In other words, the number of scheduling steps to process
a specific number of tuples decreases, but the number of box executions decreases more.
Because the worker thread and storage management overheads are primarily associated
with the number of box executions, their overheads decrease more relatively to that of
the scheduler. Another contributing factor is that, again as we go from left to right, the
scheduler algorithms become increasingly more intelligent and sophisticated, taking more

time to generate the scheduling plans.

3.5 Summary

This chapter presented an experimental investigation of scheduling algorithms for stream
data management systems. It demonstrated that the effect of system overheads (e.g., num-
ber of scheduler calls) can have a profound impact on real system performance. Experiments
were run on the Aurora prototype since simulators do not reveal the intricacies of system
implementation penalties.

The naive approach of using a thread per box was shown not to scale. It was further
shown that train scheduling and superbox scheduling help a lot to reduce system over-
heads. Exactly how these overheads are affected in a running stream data manager was
also discussed. In particular, these algorithms require tuning parameters like train size and
superbox traversal methods.

The overriding message of this chapter is that to build a practical data stream man-
agement system, one must ensure that scheduler overhead be small relative to useful work.

Some interesting results were provided in this direction by focusing on batching techniques.
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Chapter 4
Scheduling for QoS in Aurora

4.1 Introduction

Many of the applications for which a Stream Processing Engine (SPE) is designed fall
in the class of "monitoring” applications. Monitoring applications are applications that
monitor continuous data streams. Many of these applications have a low tolerance for stale
data and a SPE must employ intelligent resource management. As described in [CCC*02],
many monitoring applications have latency-based QoS expectations. Here, we present new
techniques for achieving the best level of QoS through scheduling in the Aurora Stream
Processing Engine.

The Aurora architecture was described in Chapter 3. Queries in Aurora are built with
operators (bozes) which process input tuples and pass resulting tuples to downstream boxes.
In a running Aurora system, tuples arrive at the inputs to boxes and a scheduler runs
periodically to determine which tuples to process and the order in which the tuples should
be processed 1. This schedule is passed to the box processor which then executes boxes.

Aurora applications specify latency-based QoS graphs which indicate the utility of a
tuple relative to the amount of time it took to process the tuple. Aurora’s scheduler deter-

mines the order in which to process tuples based on the ability to meet QoS expectations.

ITuples that arrive at the input of a box will always be processed by the box in the order they arrive,
that is, in FIFO order

55
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Therefore, the scheduler uses QoS expectations and the cost of processing tuples through
to an output in its decision.

In this chapter, we explore scheduling techniques to achieve the best level of QoS. In
particular, we focus on the creation of static and dynamic schedules. A scheduler which
uses a static schedule always schedules boxes in the same order. A scheduler which uses a
dynamic schedule determines at run-time the order in which boxes should be executed.

This chapter presents our static and dynamic scheduling techniques and provides exper-

imental results.

4.2 QoS-Aware Scheduling

This section describes our static and dynamic approaches to QoS-aware scheduling. The
goal here is to explain the details of both Fixed-Priority (static) and SlopeSlack (dynamic).

A discussion of their relative performance is presented in section 4.3

4.2.1 Static Schedules

In Aurora, a static schedule consists of an ordering of boxes which remains fixed for a
particular Aurora query network. The system determines a priori a schedule for the exe-
cution of boxes. Each time the scheduler is invoked, the runnable boxes? are sorted in that

pre-determined order and run. We consider two types of static schedules:

- Round-Robin: When the scheduler runs, all runnable boxes are scheduled in a pre-

determined random order.

- Fized-Priority: Boxes are prioritized a priori based on their QoS constraints. Each

time the scheduler runs, it schedules the top N priority runnable boxes.

The Round-Robin schedule is not created with any application specific QoS information,

and, since we are concerned with measuring the QoS of output tuples, it should not perform

2As in the previous chapter, a runnable box is one which has at least one input tuple to process.
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well. It is used as a baseline from which to compare our QoS-aware schedulers. Without the
use of a QoS-aware scheduler, Aurora would rely on the operating system scheduler which
would essentially schedule boxes in round-robin order.

The Fixed-Priority scheduler uses application QoS constraints to determine per box
priority. A box’s priority is based on the amount of slack left in the QoS graph after
accounting for the latency an input tuple would incur due to downstream box costs. Slack
is a measure of how close an output tuple’s latency value is to a critical point on a QoS
graph; i.e. a point where the QoS drops sharply. The Fixed-Priority schedule is an ordering

on these slack-based box priorities. For example, consider the following applications:
— by — by — by — Applicationy

— bg — by — by — Applicationg

For simplicity, consider that each box costs 1 time unit to process a single tuple. Also,
since QoS graphs essentially specify soft deadlines for applications to meet, let’s say that
their QoS graphs specify the following deadlines after which output tuples produce reduced
utility:

Applicationy deadline : 4 time units
Applications deadline : 8 time units

A tuple queued at the input to by would incur 3 time units of latency due to required
processing through boxes bs, ba, and by. This tuple has a slack ‘value of 1 since its application
deadline is 4 time units. Table 4.1 gives the slack values for all boxes in the above example.
Note that the slack values are also the priorities of the boxes. The Fixed-Priority schedule
for this example is: b, ba, b1, bg, b5, by

The Fixed-Priority scheduler is adapted from real-time systems deadline-monotonic

scheduling [LW82] where tasks are ordered by deadline (shortest deadline first).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Box | Slack (Priority)
by
ba
b3
bg
bs
bg

O N~ N W

Table 4.1: Box Priorities for Fixed-Priority Scheduling Example

4.2.2 Dynamic Schedules

A dynamic schedule is created at each scheduling event. When the scheduler runs, it
prioritizes a box based on the expected latency of the tuples in its input queues. The basic
approach is to keep track of the latency of tuples that reside at the queues and pick for
processing the tuples whose execution will provide the highest expected increase in the
aggregate QoS delivered to the applications. Taking this approach per tuple is not scalable.
We therefore maintain latency information at the granularity of individual boxes and define
the latency of a box as the averaged latencies of the tuples in its input queue(s).

Our priority assignment approach is to order the boxes in terms of their wtility and
urgency. We define the utility of a box b in terms of its expected slope value, slope(b), and
define its urgency in terms of its expected slack time, slack(b).

We compute the utility of b as follows:
utility(b) = gradient(eol(b)) (4.1)

This value is the gradient, or slope, of the QoS-latency curve for b’s corresponding output
at the latency value eol(b), where eol(b) is the expected output latency of b. This value is an
estimation of where b’s tuples currently are on the QoS-latency curve at the corresponding
output. In other words, this value provides a lower bound on the expected latency of the
corresponding tuples at the output (assuming that the tuples are pushed all the way to the

output without further delay). eol(b) is computed by adding the current latency value to
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the expected computation time for a given output as follows:
eol(b) = latency(b) + ect(D(b))

where D(b) is the set of boxes including b and those downstream from b and ect(D(b)) is
an estimate of how long it will take to process the tuples downstream from b. This expected
computation time, ect(b), of the tuples in the input queues of box b can be calculated using

this formula:

ect(b) = Z (train(k) x (cost(k)/o-sel(k)))

keD(b)

The output selectivity of a box b, o_sel(b), estimates how many tuples should be processed
from b’s queue to produce one tuple at the output. train(k) represents the number of
tuples in the input queues of box k (i.e. the train size). train(k) is included in the equation
because all tuples preceding the tuple who’s expected output latency is being calculated
must first be processed through to the output. The utility function shown in equation 4.1
is a measure of the expected QoS (per unit time) that will be lost if the box is not chosen
for execution.
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Figure 4.1: Critical points and expected output delay

The ezpected slack time, est(b), is an indication of how close a box is to a critical
point; i.c., a point where the QoS changes sharply. Urgency can be trivially computed by
subtracting the expected output latency from the latency value that corresponds to the

critical point. If there are multiple critical points, est(b) always corresponds to the distance
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to the closest critical point. These concepts are illustrated in Figure 4.1, where the QoS is
specified as a piece-wise linear function of latency with three critical points.

The expected latency value maps to a slope and slack value on the QoS graph and
based on those values, the priority of a box can be determined. To be more precise, at
each scheduling point in time, we can order the boxes with respect to their priority tuple,

or p-tuple :

priority(b) = (utility(b), —est(b))

In other words, we first choose for execution those boxes that have the highest utility,
and then choose from among those that have the same utility, the ones that have the
minimum (i.e., least) slack time. We call this scheduling technique p-tuple scheduling or
SlopeSlack scheduling.

SlopeSlack scheduling is adapted from Farliest Deadline First scheduling [LL73] in real-

time systems where tasks are ordered at run-time based on closest deadlines.

4.3 Comparing Fixed-Priority and SlopeSlack

This section first provides an intuition for how scheduling decisions are made at run-time by
both Fixed-Priority and Slope-Slack. Then, we compare the performance of both schedulers.

Two issues are recognized which can lead to improvements in our techniques:

o Overhead is an issue for these box-at-a-time approaches. The size of the schedule

trades off scheduling accuracy with reduction in overhead.

e Boxes are scheduled based on how urgently the tuples in their input queues must
get to outputs. Scheduling boxes other than those immediately downstream from an

urgent tuple causes the tuple to incur latency which may cause it to miss its deadline.
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4.3.1 A Look at the Run-time Schedules

To fully understand the scheduling decisions made at run-time, we can look at individual
tuple latencies at the output. This will allow us to infer the scheduling order selected by the
schedulers. For simplicity, we consider a simple case with 10 applications and only one box
per application. We use a box cost of 0.0001 for each box. Applications are assigned one of 2
QoS graphs: the tighter QoS graph has the following coordinates: {(0,1),(0.01,1),(0.0101,0)}
and the looser QoS graph has these coordinates: {(0,1),(0.02,1),(0.0201,0)}. The QoS
graphs are assigned alternately to each application (odd numbered applications have loose
QoS constraints and even numbered applications have tight constraints). Specific QoS graph
coordinates were chosen carefully for this example after multiple test runs. The goal of the
test runs was to properly provision the system for this network. Provisioning the system
entails verifying that for a particular workload, a set of QoS graphs are feasible. That is,
under a particular workload, it is possible to achieve a very high level of QoS.

We ran an experiment which passes 100,000 tuples through the query network at a rate
of 8000 tuples per second. Figure 4.2 shows the output latencies for all tuples resulting from
a run which used the Fixed-Priority scheduler. Each individual point plotted in the figure
represents the latency for one tuple. The points in the figure are grouped by application.
Values for tuples associated with a particular application are labeled (for example, all tuples
output from application 7 are above ”AT7”). There are 100,000 points plotted and notice
that there are 10 clusters of points at various latency values. These clusters represent
the latencies experienced by the vast majority of tuples for each application. In fact, the
execution order of the boxes (or applications since there is one box per application) can
be determined by associating latency with order. We can see that A2's tuples are always
output with the lowest latency. This is due to the schedule determined by the Fixed-Priority

Scheduler. The actual schedule chosen by the Fixed-Priority scheduler is:
A2, A0, A8, A6, A4, A1, A9, A7, A5, A3

Note from the figure that A0’s tuples generally have the second lowest latency, A8’s tuples
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have the third, and so forth. Also note that the tuples from even numbered applications
have lower latencies than those from odd numbered applications. This is because the fixed
schedule always orders tighter constrained (even numbered applications) before looser con-
strained applications (odd numbered applications). Since all even numbered applications
have the same QoS graph, an arbitrary order is selected among them a priori. Finally, it
is important to note that nearly all tuples arrive before their respective application’s QoS
deadline. Most even numbered application’s tuples arrive before 0.01 seconds have elapsed.
And, most tuples for odd numbered applications arrive before 0.02 seconds have elapsed.
The average QoS across applications for this experiment was 0.99 out of a possible 1.0.

Figure 4.3 shows the resulting tuple latencies when the SlopeSlack scheduler is used for
the same network and workload described above. There is a striking difference between
the figures. This actually demonstrates the key difference between Slope-Slack and Fized-
Priority. Slope-Slack selects the execution order of boxes at run-time. In the figure, there
appear to be 5 clusters for the latencies of the tuples for each application. In Figure 4.2
we saw that there were a total of 10 clusters (5 clusters for the even numbered applications
and 5 clusters for the odd numbered applications). The difference between the plots is
due to the fact that the SlopeSlack scheduler determines box priority at run-time based
on tuple urgency. Therefore, any one of the even numbered applications can be scheduled
before another, and likewise for the odd numbered applications. The average QoS for this
experiment was also 0.99.

In both experiments, a high level of average QoS was achieved. However, the run-time
decisions made by each scheduling technique were different. SlopeSlack dynamically adapts
to tuples which need to be processed more urgently whereas the Fixed scheduler remains
very rigid in its scheduling decisions. Whereas, these experiments provide some intuition
for the run-time decisions made by each of our schedulers, they do not give any insight into
their relative performance. Next we consider how the techniques compare as we stress the

system with increasingly higher load.
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Figure 4.2: Tuple Latencies for Fixed Scheduler
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Figure 4.3: Tuple Latencies for SlopeSlack Scheduler

4.3.2 Meeting QoS Deadlines as Load Increases

We now look at a set of experiments where each application consists of more than one box.

The network setup is shown in Table 4.2.
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Num Apps 20

App Depth 5

Fanout 1

Total Num Boxes 100

Box Cost 0.0001 seconds
Tight QoS Deadline | 0.01 seconds
Loose QoS Deadline | 2.00 seconds

Table 4.2: Experimental Setup

A note on the experimental setup and QoS deadlines. We use a piece-wise linear latency-
based QoS graph as described earlier. The network consists of 20 applications and 2 classes
of QoS graphs: 10 with the same tight QoS deadline, and 10 with the same loose QoS
deadline. The QoS deadlines listed in Table 4.2 represent the first critical point of their
respective QoS graphs and the second critical point is 0.0001 seconds further for each (there
is a steep decline in QoS after missing the first critical point).

This simple, relatively small network is used here to aid the discussion comparing various
scheduling techniques. In a later section we provide experimental evidence that our results
apply to many network configurations of varying scale.

Figure 4.4 shows the QoS performance among the three schedulers we have discussed so
far. The Average QoS shown in the results refers to the average QoS across all applications.
This is computed by first averaging the QoS of all tuples output for each application, then
averaging across applications. Since we are measuring Average QoS, it is not surprising to
see the Round-Robin Scheduler not performing well. Though it is interesting to see that the
two QoS-aware schedulers are able to sustain a high level of QoS for a significantly higher
load.

There is also a difference in performance between the dynamic scheduler (SlopeSlack)
and the static scheduler (Fixed-Priority). It is not surprising to see that the static sched-
uler outperforms the dynamic scheduler. Although SlopeSlack dynamically adapts to urgent

tuples, each scheduling decision has a higher cost than the simple scheduling decisions of
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Fixed-Priority. The remainder of this chapter focuses on techniques for improving the per-
formance of our scheduling approaches. In particular, the techniques address the following

combination of issues which have a significant impact on performance:

o Overhead is an issue for these box-at-a-time approaches. Overhead manifests itself in
two ways: the amount of work required by the scheduler to make scheduling decisions,
and the frequency with which the scheduler has to make its decision. We address the

issues associated with overhead reduction in section 4.4.

¢ Boxes are scheduled based on how urgently the tuples in their input queues must
get to outputs. Scheduling boxes other than those immediately downstream from an

urgent tuple causes the tuple to incur latency which may cause it to miss its deadline.

We address this issue in section 4.5.
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4.4 Overhead Reduction

As mentioned in the previous section, the overhead experienced due to scheduling has two
forms. The first overhead results from the frequency with which scheduling decisions are
made. Scheduling is considered overhead (the actual useful work is done by the boxes).
Each time the scheduler is invoked, it must at least determine which boxes are runnable
and sort them. Though invoking the scheduler may not be extremely costly, if done with
high frequency, the cumulative cost can grow significantly. So, reducing the number of
times the scheduler is invoked can reduce overall overhead. The frequency with which the
scheduler must run is a function of the number of tuples processed per scheduling decision.
The more tuples processed per scheduling decision, the less frequently the scheduler must
run, thus, the lower the overhead. Therefore, the more boxes scheduled per scheduling
decision, the lower the overhead. This translates to choosing the correct schedule size so as
to trade off the benefit of reducing overhead with the ability to meet QoS deadlines.

The second overhead comes from the amount of processing (CPU time) it takes to make
a single scheduling decision. The Fixed-Priority scheduler simply determines which boxes
are runnable and sorts them based on an a priori ordering. The Slope-Slack scheduler is a
bit more involved. It first determines which boxes are runnable, then scans the box’s input
queues for tuple latency values, then boxes are sorted as described in Section 4.2.2.

In this section, we first show the impact of schedule size on overhead and QoS, then we

present a method to reduce the overhead of the dynamic scheduler.

4.4,1 Schedule Size Matters

Figures 4.5 and 4.6 demonstrate the tradeoffs in selecting various schedule sizes. The figures
correspond to the experiment which uses an input rate of 1200 tuples per second from
Figure 4.4. Figure 4.5 shows the cumulative overhead (CPU time) incurred for schedule
sizes ranging from 1 to 100 (note that there are 100 boxes in the query network). As with
any schedule size, the Aurora scheduler will always sort the set of runnable boxes, then

select the highest N priority boxes to run. With a schedule size of 1, the scheduler incurs
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the significant penalty of sorting all boxes just to run one box. Even for small networks like
the one used in this experiment (100 boxes) the scheduling overhead is much too significant
to schedule one box at a time. Note that the SlopeSlack and Fixed schedules used in Figure
4.4 used a schedule size of 10. The plots shown in Figure 4.6 show the tradeoff between
reducing overhead by using a large schedule size and being able to achieve a high level of
QoS. Figures 4.5 and 4.6 show this relationship between overhead and QoS. Notice that
QoS is very low when overhead is high (this corresponds to a schedule size of 1). Too
much time is spent making scheduling decisions and not doing the useful work of processing
tuples. Also notice that when overhead is low (schedule size 20-100) not enough time is
spent scheduling urgent tuples and QoS suffers. This demonstrates the tradeoff between

reducing overhead and achieving better QoS.
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4.4.2 Approximation for Scalability

As shown in Sections 4.3.2 and 4.4.1, the Fixed-Priority scheduler is able to sustain a
higher level of QoS under heavier load. Here, we will show that by using an approximation
technique we can reduce the overhead of the SlopeSlack scheduler and thereby improve its
performance.

A straightforward implementation of the SlopeSlack scheduling approach requires, at
each scheduling point, computing the p-tuple for each box and then sorting the boxes with
respect to their p-tuples. This is an O(n x logn) operation, where n is the number of
boxes. In order to scale to very large networks, we use a combination of (1) approximation
(via bucketing) and (2) pre-computation. The approach is to partition the utility- urgency
space into discrete buckets, and efficiently assign boxes to individual buckets based on their
p-tuple values at run time. During scheduling, buckets can be traversed in the order of
decreasing p-tuples (illustrated in Figure 4.7(a)), and the corresponding boxes are placed in
the execution queue. Given a latency value, our first goal is to compute the corresponding
bucket assignment in O(1). To do this, we make use of two auxiliary graphs, gradient- and
slack-latency graphs.

We divide the range of the gradient (i.e., utility) values into g buckets (Figure 4.7(b)

shows an example with four buckets; the cross symbols highlight the latency values where
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bucket transitions take place). All gradient values in the same bucket are treated as the
same. The width of each bucket, thus, defines a bound on the inaccuracy (or variance)
that we are willing to tolerate in terms of the potential deviation from the highest possible
gradient value. In other words, the width of a bucket is a measure of the bound on the
quantitative deviation from the optimal (with respect to the heuristic) scheduling decision.

Similarly, we divide the slack values into s buckets (Figure 4.7(c)) and treat all the slack
values within a single bucket as equal. Again, the width of a bucket is an indication of the
level of approximation we make with regards to the slack values.

Given pre-computed gradient-latency graphs, it is possible to pre-compute the application-

specific latency ranges that correspond to each bucket. For example, by will be in bucket,
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beyond latency = 5 and in buckets beyond latency = 15; whereas b3 will be in bucket; till
latency = 12 and in buckety afterwards. Slack-latency graphs can be interpreted in a similar
fashion as illustrated in the figure: by falls in buckety when latency is between 5 and 10,
and in buckety for other latency values.

Let’s look at a more detailed example, In this example, there are two applications
with the QoS graphs shown in Figure 4.8. Figures 4.9 and 4.10 identify the possible slack
and slope bucket assignments for tuples in these applications. Consider a tuple queued up
in front of application 1. Accounting for downstream box costs, let’s say the tuple has a
latency of 1.5 time units. When mapped to the QoS graph in Figure 4.8(a) this tuple is at
a location which has a gradient of 1 and a slack of 1.5. Recall that gradient is the slope of
the QoS curve at a particular latency and slack is the amount of time until the next critical
point. Note that the latency value of 1.5 maps directly to Slack Bucket 2 in Figure 4.9(a)
The latency value also maps directly to Slope Bucket 2 in Figure 4.10(a). These bucket
mappings can be directly associated with bucketss in the bucket traversal graph shown in

Figure 4.11. Table 4.3 gives some examples of bucketing assignments.

Application | Tuple Latency | Slack Bucket | Slope Bucket | Traversal Bucket
1 1.5 2 2 bucketso
1 0.5 1 1 bucketqy
1 3.5 1 4 bucketqq
2 1.5 4 2 bucketsq
2 2.5 3 2 bucketss

Table 4.3: Bucketing Examples

4.4.2.1 Time Complexity

When the execution queue is about to become empty, the scheduler wakes up and performs
bucket assignment by going through the boxes and assigning them into their current buckets.
A straightforward implementation of bucket assignment takes O(n) time by going through
all the boxes, computing the bucket for each box in O(1). This approach has the potential

drawback of redundantly reassigning buckets for each box, even if the box’s bucket has
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not been changed since the last assignment. In particular, we want the bucket assignment
overhead to be proportional to the number of boxes that made a transition to another
bucket. In order to accomplish this, we use a calendar queue [Bro88], which is a multi-list
priority queue that exhibits O(1) amortized time complexity for the relevant operations
(insertion, deletion, and extract- min) under popular event distributions. As a result, we

can implement all phases of bucket assignment in constant amortized time.

4.4.3 Bucketing Results

We ran the slope-slack (p-tuple) algorithm and our bucketing algorithm on a network with
200 non-overlapping straight-line applications, each with five boxes. The results are shown
in Figure 4.12. The x-axis represents the number of partitions for each of the QoS-gradient
and the slack time ranges. We assume that these two dimensions are partitioned equally.
Thus, for example, 10 partitions represent 100 buckets.

The slope-slack method produced a measured QoS of 0.796, which is shown for reference
on the graph as a horizontal line. When there is only one bucket, the observed QoS is a very

poor 0.427. This is because with one bucket all runnable boxes end up in a single grouping
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which is then equivalent to round-robin scheduling. Notice, however, that as we increase the
number of buckets, the QoS rises sharply; until at 20 partitions we reach a maximum QoS
value of 0.85. We manage to exceed the slope-slack value (although only by 7%) because
the decrease in scheduler overhead dominates the loss of precision in scheduling decisions
introduced by bucketing.

Increasing the number of partitions and thus the number of buckets improves the ac-
curacy of scheduling decisions. Working against this effect, though, is the fact that as
the number of buckets grows past some moderate level (approximately 30 partitions), the
scheduler overhead begins to increase as can be seen in Figure 4.13. Simply having a very
large number of buckets becomes a bookkeeping problem. Thus, the scheduler overhead
will begin to dominate the incremental gain in accuracy which we see in Figure 4.12 as the
QoS curve steadily declines from its maximum and eventually drops below the slope- slack

technique at about 260 partitions.

4.5 Superboxes: Immediately Pushing Tuples to Outputs

Until this point, all experiments in this chapter have used boz-at-a-time scheduling. Box-at-

a-time schedulers schedule tuples through individual boxes. This is especially problematic
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for the Slope-Slack scheduler since it orders tuples based on their expected latency if im-
mediately passed through to the output. However, downstream boxes are not scheduled at
the time that the tuples were determined to be urgent. Instead, the tuples wait until the
scheduler runs again. For example, consider the following network with three applications

and 12 boxes:

— by — by — by — by — application,
— by — bg — by — bg — applications
— bg — b1g — b11 — bi1o — applications

For simplicity, consider that each box costs 1 time unit to process a single tuple. If the

we assign the following deadlines (with some slack) for the applications:
application; deadline : 6 time units

applicationg deadline : 10 time units
applicationsg deadline : 14 time units

Observe that applicationy has the tightest deadline and applications has the loosest. Now,

consider that 3 input tuples have arrived at the three network inputs. One possible schedule
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to satisfy all deadlines is:

b1, bo, b3, by, bs, be, b7, b, by, b1p, b11, b12

Ignoring scheduling overhead, application;’s tuple arrives after 4 time units and applications’s
tuple arrives after 12 time units. This assumes that the scheduler has recognized that the
tuple for application, should be scheduled first (as would both Slope-Slack and Fixed-
Priority). It also assumes that the scheduler scheduled only one box each time a scheduling
decision is made. However, as we saw in section 4.4.1 and in figure 4.5, scheduling one-box
at a time incurs too much overhead. Therefore, a scheduler must schedule multiple boxes
with each scheduling decision. In the example above, if the scheduler were to schedule
2 boxes with each scheduling decision, Fixed-Priority would come up with the following

schedule:

b17 b57 b27b67 b37 b7a b47 b8) bga b101 bll, b12

and Slope-Slack would come up with this schedule:
b17 b57 b27 b67 b37 b77 b87 b97 blOa b4) blla b12

Both schedules result in application’s tuple arriving later than its deadline of 6 time units.
Note that the Slope-Slack scheduler reduces the priority of a tuple if it cannot meet its
deadline given its expected output latency (i.e. the late scheduling of by above). If the
scheduler were to schedule 3 boxes at a time, the Slope-Slack scheduler would actually miss

two application’s deadlines with the following schedule:
bla b57 bga b2) b67 blOa b77 b117 b37 b12; b41 b8

Notice that b3 was scheduled even though it has already missed its deadline due to latency
incurred by executing other boxes. Since the schedule size is 3, b3 had to be scheduled to
fill in the extra schedule slot. The Fixed-Priority scheduler would only miss applicationi’s
deadline for a schedule size of 3.

To solve this problem we next present a technique we call push-through which allows for

making several scheduling decisions at once while also meeting urgent tuple’s deadlines. The
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basic idea is simple. When a box is scheduled, all downstream boxes are also scheduled to
run in sequence immediately after the first box is run. This creates a superboz (see Chapter
3) which is a path from input to output. This push-through technique can be applied to
both the Slope-Slack and Fixed-Priority schedulers. In addition to the benefits gained from
the scheduling of superboxes (lower overhead), scheduling decisions result in more timely
output tuples with respect to their associated QoS graphs. We can use the above example
to demonstrate. When the scheduler runs, it determines that the input tuple for by is the
most urgent based on application,’s QoS deadline. The scheduler then creates a superbox
which includes boxes by, ba, b3 and b4 and is ordered such that the tuple is processed through
to the output (note that the superbox and its execution order can be determined a priori

and stored). The superboxes in the above example are:

{bla b27 b37 b4}’ {b5a b67 b7a b8}7 {b97 bloy blla b12}

When a superbox is executed, input tuples are processed such that no further scheduling
decisions are required in order for them to reach outputs. Scheduling superboxes reduces
the total number of scheduling decisions required per tuple.

We explore two push-through schedulers. Both prioritize input boxes and schedule the
path of boxes from the input box to the output as a unit. The FizedPriorityPushThrough
scheduler prioritizes input boxes based on an a priori ordering created in the way described
in Section 4.2.1 The SlopeSlackPushThrough scheduler prioritizes input boxes dynamically
based on the urgency of tuples in the way described in Section 4.2.2.

We ran the same experiment as shown in Figure 4.4 using the FixedPriorityPushThrough
and SlopeSlackPushThrough schedulers. The result is shown in Figure 4.14(a). The results
for Fixed-Priority and Slope-Slack (box-at-a-time schedulers) are included for comparison.
Notice that a significant improvement is seen for SlopeSlackPushThrough when compared
with its box-at-a-time pre-cursor, SlopeSlack. This is due to now pushing urgent tuples
to outputs. Also notice that not much of an improvement is gained for Fixed with push-
through. This result demonstrates two things. First, SlopeSlack without push-through

has a fundamental flaw. It determines that tuples are urgent and should be processed
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to outputs immediately, however, it does not schedule to process those tuples to outputs.
Second, for relatively small, shallow query networks, creating superboxes provides only
modest improvements in scheduler performance.

The network used for the experiment in Figure 4.14(a) is very shallow (5 boxes deep).
A box-at-a-time scheduler suffers from significant scheduling overhead especially with deep
queries. Figure 4.14(b) demonstrates the impact deeper queries have on box-at-a-time
schedulers versus the push-through versions. This new network also has 20 applications and
the same QoS graph assignments as that used for the experiment in figure 4.14(a). However,
each application is 4 times as deep (20 boxes) and each box has 1 the cost (0.000025 seconds).
Notice from the plots that the push-through schedulers demonstrate similar performance
in both experiments. From a scheduling perspective, the two query networks appear very
similar with regard to push-through scheduling. There are four superboxes to schedule in
both cases. In contrast, for the box-at-a-time schedulers, the applications are very different.
Each application has four times as many boxes which means significantly higher scheduling

overhead compared to the more shallow applications.
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Figure 4.14: Scheduling superboxes
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4.5.1 Very Large Query Networks with Superboxes and Approximation

In section 4.4.2 we presented an approximation technique for scaling the SlopeSlack sched-
uler to larger query networks. In that section, we applied the approximation to the the box-
at-a-time SlopeSlack scheduler. Here, we combine the approximation with the PushThrough
technique (hereafter called the BucketingPushThrough scheduler). This is done in the same
way it is done for SlopeSlack and FixedPriority. Tuples enter the system and boxes nearest
the inputs become runnable. Those boxes are prioritized by the BucketingPushThrough
scheduler. For each prioritized box, the superbox which forms the path from that input box
to its downstream output box is run. The combination of reduced overhead from the use of
superboxes, immediately pushing tuples to outputs, and the reduced scheduling overhead
of the approximation result in a scheduler which provides the highest level of QoS under
heavier load.

Here we show the performance of our scheduling techniques on a large query network. We
consider a very large network with 10,000 operator boxes. Table 4.4 shows the experimental
setup for this query network. Note that four QoS deadlines are used and are assigned

alternately to each of the applications.

Num Apps 1000

App Depth 10

Fanout 1

Box Cost 0.00000500 seconds

QoS Deadline 1 | 0.075 seconds
QoS Deadline 2 | 0.150 seconds
QoS Deadline 3 | 0.225 seconds
QoS Deadline 4 | 0.300 seconds

Table 4.4: Experimental Setup for Large Network

Figure 4.15 shows the QoS results for this experiment. We tested several schedule sizes
for this experiment and found that a schedule size of 300 enabled both the FixedPriori-
tyPushThrough and SlopeSlackPushThrough schedulers to sustain the highest workloads.

Also, we tested several bucket values for the BucketingPushThrough scheduler and found
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that good performance was achieved with 50 buckets. The BucketingPushThrough sched-
uler is able to sustain almost perfect QoS until a rate of 4500 tuples per second. This is
nearly a 30% improvement over the 3500 tuples per second that both of the other schedulers
are able to sustain. Examining the overhead for particular points in the graph reveals the
reason for the performance differences. Table 4.5 shows the overhead of each scheduler as a
percentage of run-time execution at an input rate of 4000 tuples per second. It is interesting
to see that SlopeSlackPushThrough incurs more than twice the overhead of the FixedPri-
orityPushThrough scheduler yet provides nearly comparable performance. This indicates
that it is making good run-time scheduling decisions, however, it is impeded by its own
overhead. This is validated in the performance of the BucketingPushThrough scheduler.
Decisions made by the BucketingPushThrough scheduler represent approximations of those
which would be made by the SlopeSlackPushThrough scheduler but with significantly lower

overhead.

BucketingPushThrough 4%
FixedPriorityPushThrough | 7.5%
SlopeSlackPushThrough 16%

Table 4.5: Scheduling overhead as a percentage of run-time
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Figure 4.15: Bucketing makes best scheduling decisions for large query networks
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4.6 Overload

The workload presented to "monitoring” applications is often inconsistent and bursty. We
present two overload conditions and show that the Slope-Slack scheduler adapts dynamically
resulting in a higher level of QoS.

There are two types of overload that can occur in Aurora. Capacity-overload occurs
when there are not enough resources (usually CPU) to handle the workload. For example,
if a box can process 1 tuple per time unit and the rate of tuples into the box is greater
than 1 tuple per time unit, there will not be enough CPU capacity to handle the input rate.

Another type of overload is QoS-overload. Consider this example network with 2 boxes:
— by — by — application

If the application has a QoS deadline of 2 time units and each box costs 1 time unit, then
on average % tuple per time unit is the max load that this application can handle. In a
real environment, tuples will appear at inputs in batches and queues of tuples will naturally
form. So, although this application can handle % tuple per time unit, two tuples may appear
at the same time. Since Aurora runs tuple trains through boxes, the QoS deadline will not
be met. Both tuples will pass through b; before either passes through be. This is an example
of QoS-overload.

Based on queueing theory, Capacity Overload implies QoS Overload (if the rate of tuples
entering is greater than the rate at which they can be processed, queues will back up and
tuple latency will grow monotonically). However, QoS Overload does not imply Capacity
Overload. In general, we expect that Aurora networks and their associated QoS graphs are
provisioned so as to not be either QoS-overloaded or Capacity-overloaded. However, since
Aurora is a stream processing engine designed to handle monitoring applications, one must
expect inconsistent workloads which could lead to brief or sustained periods of overload on
either individual inputs or all inputs. Here we will look at two specific overload conditions

which have significant impact on our schedulers:

- Sustained Overload: Some number of tightly constrained applications experience input
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overload for the duration of an experiment.

- Fluctuating workload: All inputs experience an overloading burst for some period of

time, then return to a normal underload input rate.

4.6.1 Sustained Overload

The fundamental difference between SlopeSlack and Fixed-Priority is the ability to adapt to
changes in workload. We begin our discussion with a simple experiment. In this experiment,
we use the same setup as that presented in earlier sections (see Table 4.2), however, we use
a different workload. Here, one input is experiencing a heavy workload for the duration of
the experiment. In fact, the workload overloads the application in both capacity and QoS.
Figure 4.16 shows the latencies of the tuples. For simplicity, the overloaded application is the
most tightly constrained application (A19 in the example). Fized would give this application
the highest priority and since this application is receiving an overload, it generally always
has tuples to process each time the scheduler makes a decision. Therefore, it is always
scheduled. Also, due to the overload, a significant amount of CPU is used to process these
tuples. This comes at a cost to other applications which usually have to wait until all of
A19’s tuples have been processed. This has a significant negative impact on overall QoS,
and, as can be seen in Figure 4.16, all tightly constrained applications (even numbered
applications) output a significant proportion of tuples which miss their QoS deadline of
0.01 seconds. The average QoS for this experiment was 0.65.

In contrast, the Slope-Slack scheduler adapts to the overload situation. Slope-Slack
recognizes when tuples will not meet a QoS deadline. It prioritizes tuples based on their
expected utility. Tuples which arrive at outputs beyond a QoS deadline will provide no
utility and are therefore given very low priority. Figure 4.17 demonstrates this. The result
shown in Figure 4.17 uses the same experimental setup as Figure 4.16, but the SlopeS-
lackPushThrough scheduler is executed. Notice that the tuples for A19 experience higher
latency than other application’s tuples. This is due to the SlopeSlack scheduler recognizing

that A19’s tuples will not meet QoS deadlines and that CPU resources would be wasted
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processing A19’s tuples. Instead, CPU is allocated for the processing of tuples which will
meet QoS deadlines. This results in a higher average QoS of 0.9.

Table 4.6 shows an important difference between measuring for missed deadlines versus
measuring for overall QoS. Average Per Tuple QoS measures the QoS achieved by each
tuple and averages across all tuples. Awerage QoS averages the QoS achieved by each
application. The values in the table indicate that FixedPriorityPushThrough misses fewer
total deadlines whereas SlopeSlackPushThrough provides higher overall QoS. Average QoS
is a measure of the happiness across applications.

This example is presented for illustrative purposes. In this particular example, there
is a way to make FixedPriorityPushThrough behave in a manner that provides a higher
level of QoS. If the train size (number of tuples processed by a box) is fixed at some small
number, then the overload of tuples on the one application will not cause the majority of
processing time to be spent on the one application. If the schedule size is larger than the
number of inputs which are overloaded, other inputs will receive some processing resource.
In the example shown, the schedule size is 10, which does give some processing to other
applications. It is the fact that A19 processes all available tuples in its input queue each time
it is scheduled which causes significant delay for all other applications. However, decreasing
the train size does not entirely solve the problem. Consider the case where the number
of applications which are overloaded is equal to the schedule size. In this case, whenever
the scheduler runs those overloaded inputs will most certainly have tuples to process and
will be scheduled leaving the underloaded inputs unscheduled. The schedule size could be
increased, however, as we discussed earlier under normal (non-overloaded) circumstances
the best QoS would not be achieved (see Figure 4.6). The point here is not that there
is an appropriate schedule or train size to select to best provision for sustained overload
conditions. Rather, it is important to note that the SlopeSlack scheduler is able to adapt

to changes in workload.
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Table 4.6: This table shows the QoS results for Figures 4.16 and 4.17
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4.6.2 Fluctuating Workload

The primary goal of the Aurora Stream Processing Engine is to support monitoring appli-
cations. The data being analyzed often comes from high-rate feeds which have variable and
fluctuating rates. Because of this, the Aurora scheduler must be able to adapt to changes
in workload. We now study an experiment where the workload changes over time. In par-
ticular we look at the case where overload occurs during bursts of higher-than-normal input
rates. In this experiment, the system receives a load which is 60% of its capacity for long
durations (40000 tuples). Periodically, the load on the system increases to 130% of capacity
for a short duration (15000 tuples).

Figures 4.18 and 4.19 demonstrate how FixedPriorityPushThrough and SlopeSlack-
PushThrough react during this bursty workload. Again, we are using the same experimental
set up shown earlier (see Table 4.2). Figure 4.18 shows the Running Average QoS as each
of the 500,000 tuples are processed. During periods of overload, the system cannot sustain
a high level of QoS and during underload, the system is able to recover. Notice the saw-
tooth shape of each of the plots in the figure. The declining edge corresponds to a period
of overload, and likewise, the increasing edge corresponds to a period of underload. The
metric Average QoS can be slightly misleading. This is the running average QoS meaning
that it is the average of all tuples which have been output since the experiment started.
Notice that the sawtooth becomes less jagged as the number of tuples increases as should
be expected when measuring running average. It is important to note that the average QoS
for the SlopeSlackPushThrough scheduler is just above 0.81 and the Average QoS for the
FixedPriorityPushThrough scheduler is 0.7.

Figure 4.19 provides a better view of what is actually happening as tuples are output.
For every 1000 tuples output, the plots show the average QoS for those 1000 tuples. In
this way, we can see what the applications would experience as the system runs and bursts
occur. The bursts are easy to identify in the figure. The first burst begins at 40,000 and
ends at 55,000 tuples. For the duration of a burst, the level of QoS that both schedulers are

able to sustain drops dramatically. What is interesting is how quickly each drops. Notice
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that the level of QoS for the FixedPriorityPushThrough scheduler case drops immediately
to 0.5 whereas the level of QoS for the SlopeSlackPushThrough declines less rapidly. The
SlopeSlackPushThrough scheduler adapts to bursts by essentially shutting off applications
whose tuples will not satisfy QoS constraints. It does this at run-time as it calculates the
expected output latencies of input tuples. Any queues of tuples which will not meet a QoS
deadline receive a very low priority in lieu of tuples which will meet deadlines and provide
non-zero QoS.

During overload, the SlopeSlackPushThrough scheduler reacts in an non-intuitive way.
In fact, it reacts in a way which is exactly opposite that of the FixedPriorityPushThrough
scheduler. Whereas the FixedPriorityPushThrough scheduler always gives highest prior-
ity to tightly constrained applications, the SlopeSlackPushThrough prioritizes loosely con-
strained applications during overload. In general, loosely constrained applications have
more slack which allow them to tolerate longer trains of tuples which is exactly what hap-
pens during an overload situation. The more tightly constrained applications have less
slack and cannot tolerate long trains. So, while the FixedPriorityPushThrough scheduler is
busy scheduling tuples which will never meet QoS deadlines, the SlopeSlackPushThrough
scheduler is focusing on tuples which have a better chance of meeting QoS deadlines. In
fact, the FixedPriorityPushThrough scheduler is blind to the fact that QoS deadlines will
not be met.

The barcharts shown in figure 4.20 depict the number of tuples which missed deadlines
during the execution of this experiment. Each bar represents the number of tuples which
missed deadlines for a particular application. The application numbers are listed along
the x-axis. Even numbered applications are tightly constrained. Figure 4.20(b) shows all
missed deadlines when the SlopeSlackPushThrough scheduler was used. Notice that there
is a clear distinction in Figure 4.20(b) between odd and even numbered applications. Each
of the even numbered applications had nearly 3000 tuples which missed deadlines. The
odd numbered applications missed considerably fewer deadlines. When compared to missed

deadlines by the FixedPriorityPushThrough scheduler shown in Figure 4.20(a) we notice
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that the number of missed deadlines for even numbered applications is comparable. But,
there is a significant difference when comparing the odd numbered applications.

To further understand the run-time decisions made by each of the schedulers and the
differences between the barcharts of Figure 4.20, we tagged each tuple generated as either
generated during overload or generated during underload. Figures 4.21 and 4.22 show each
of these cases. Figure 4.21(a) and Figure 4.22(a) show that both schedulers are not able
to meet the deadlines for the tightly constrained applications for the tuples generated dur-
ing overload. Even though the deadlines cannot be met, the FixedPushThrough scheduler
schedules them anyway at the expense of missing deadlines for the looser constrained appli-
cations. In contrast, Figure 4.22(a) shows that the tuples generated during overload for the
looser constrained applications do meet QoS deadlines. A summary of the missed deadlines
is shown in Table 4.7.

So, what happens to those tuples which are not scheduled during the overload? The
queues back up for those applications and the system must wait for the underload to catch
up. Figure 4.22(b) depicts this ”catch-up” time for the SlopeSlackPushThrough scheduler.
Any tuples generated at the beginning of the underload period must wait until the backed
up queues are emptied. This incurs latency and causes the initial tuples generated during
underload to miss QoS deadlines. The figure shows tuples for even numbered applications
missing deadlines. Notice that again, no tuples for odd numbered applications miss dead-
lines. In contrast, Figure 4.21(b) shows that tuples for all applications miss deadlines.

The above results show that the SlopeSlackPushThrough scheduler is more adaptive to
overload and during overload provides resources first to tuples which will provide utility to

applications.
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Overload Missed

Overload Made

FIXED-PRIORITY | 41965 3073
SLOPESLACK 25596 19426

Underload Missed | Underload Made
FIXED-PRIORITY | 8221 146741
SLOPESLACK 7513 147465

10 12 14 16 18 20

89

Table 4.7: Summary of Missed Deadlines

4.7 Sensitivity to Network Topology

All of the experiments in this chapter have used query networks where each query has a
fanout of one (each query is a single path from input to output). Whereas these query
topologies aid in the understanding of our scheduling techniques, the results shown also
generalize to more complex query topologies (e.g. query trees where the fanout is greater
than one)

Since we consider only non-stateful boxes (filter, map, union, etc.) in our work, query
trees do not pose any more complex scheduling problems while using a single CPU machine
for the techniques discussed in this chapter. Consider the query trees shown in Figurcs 4.23
and 4.24. For the moment, assume that all outputs from the queries shown in Figure 4.24

have the same QoS graph as the query shown in figure 4.23. Also, assume that all boxes
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have the same cost and selectivity.
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Figure 4.23: Fanout Query
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Figure 4.24: Straight Query

To the PushThrough techniques described earlier, the query network in figure 4.23 ap-
pears very much like the query shown in figure 4.24. That is, there are 4 paths in both
which are essentially treated the same by the scheduler. Tuples queued in the input stream
of box on the left-hand side are processed through all down-stream boxes as a result of one
scheduling decision. Note that we are only considering single CPU machines in our studies,
therefore, there is no conflict over processing the same operator box on different CPUs at
the same time.

The performance of boz-at-a-time scheduling techniques is relative to the number of

boxes in a query network. Therefore, the same assessment cannot be made of box-at-a-time
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techniques. Obviously, there are fewer boxes in Figure 4.23 than in Figure 4.24. As a
general rule, box-at-a-time scheduling does not provide as high a level of performance as
does PushThrough scheduling and we do not consider them here.

We now show a set of experiments which demonstrate the above. In the first experi-
ment, we consider a query network with 10 applications each of which has a fanout of 2
and a depth of 4. Each application has 8 inputs and 1 output and a total of 15 boxes.
There are a total of 80 inputs and 10 outputs. Half of the applications have a tight QoS
constraint ((0,1), (0.04,1), (0.0401,0)) and the other half have a loose QoS constraint ((0,1),
(3.04,1), (3.0401,0)). The QoS graphs are alternately assigned. Figure 4.25 shows the rela-
tive performance of our three PushThrough schedulers. Note that as in earlier studies, the
BucketingPushThrough scheduler is able to sustain a higher load than both FixedPriority-
PushThrough and SlopeSlackPushThrough.

To demonstrate the above claim regarding fanout queries being comparable to single
path queries, we also consider an experiment with 80 applications each of which has a
fanout of 1 and a depth of 4. Like the first experiment, the same QoS graphs are alternately
assigned. Based on the above argument, the PushThrough schedulers should provide very
similar performance for both experiments. Figure 4.26 show the results of this experiment.

Notice that the results in Figures 4.25 and 4.26 are essentially the same.
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Figure 4.25: QoS results for Fanout Query
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4.8 Summary of QoS Scheduling for Aurora

Here we summarize our two basic techniques for QoS scheduling in the Aurora Stream
Processing Engine.

A Stream Processing Engine (SPE) executes applications which monitor continuous
streams of data. These applications have a low tolerance for stale data (tolerance is defined
utility specified in a latency-based QoS graph). Therefore, a SPE must employ intelligent
resource management. This resource management is performed by a scheduler which must
allocate sufficient resources to urgent tuples while not consuming too much of the resource
itself while making the scheduling decision. There are two approaches to scheduling in
Aurora which take QoS into account. The approaches trade off scheduling overhead with
scheduling accuracy.

First, a static approach to scheduling determines a priori the scheduling order for op-
erators. The Fixed-Priority scheduler described in this chapter is a static Aurora scheduler
which orders operators based on application QoS graphs. The main advantages of this
scheduler are that it is very straight-forward, easy to implement, and requires little state.
In general, this scheduler provides good performance under high load for applications with
very consistent workloads and attainable QoS expectations (i.e. the application has been

properly provisioned). The Fixed-Priority scheduler does not use the current state of QoS
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in scheduling decisions, therefore, QoS suffers when this static scheduler allocates resources
to tuples which have no hope of meeting a deadline. This can happen during the overloads
caused by bursty or fluctuating workloads (see section 4.6).

A second scheduling approach dynamically determines a schedule at each scheduling
event. The SlopSlack scheduler described in this chapter is a dynamic Aurora scheduler
which orders the execution of operators based on the urgency of tuples and their potential
contribution to QoS. The implementation of the SlopeSlack scheduler is non-trivial. It
requires both maintaining the state of tuple latencies and using an approximation technique
(described in section 4.4.2) which reduces its overhead. The benefit of the SlopeSlack
scheduler is that it adapts to changes in workload so that tuples can meet QoS deadlines.
This ability to adapt is especially important when the application is subject to workloads
which temporarily overload the system (see section 4.6).

In summary, the Fixed-Priority scheduler is a simple, low-overhead scheduler which
uses little run-time information to make scheduling decisions. The SlopeSlack scheduler is
a higher overhead approach which adapts scheduling decisions based on the current state
of QoS. When approximation is used to reduce the overhead of the SlopeSlack scheduler,
it often outperforms the Fixed-Priority scheduler under consistent workloads and is always

the best choice when adapting to bursty workloads is necessary.

4.9 Conclusion

This chapter presented an experimental investigation of QoS-aware schedulers for the Au-
rora Stream Processing Engine. In particular, two scheduling approaches were introduced.
First, a static approach which uses a pre-determined schedule was shown to perform well
under consistent load. Second, a dynamic approach which determines its schedule at run-
time was shown to perform well when when combined with an approximation technique
to reduce its overhead.. Both techniques perform well because they allocate resources to
urgent tuples. A study of the two scheduling approaches under bursty workloads revealed

that the dynamic scheduler is better able to adapt to changes in workload which overload
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the system temporarily by recognizing which tuples will meet QoS deadlines.

Superboxes (used in ”push-through” scheduling) were effectively applied to both schedul-
ing approaches. When applied to these QoS-aware schedulers, the use of superboxes signif-
icantly reduces scheduling overhead and as a result better levels of QoS are achieved.

In general, effective QoS-aware schedulers reduce scheduling overhead so that more sys-
tem resources can be allocated for the useful work of processing tuples while still recognizing

which tuples are urgent.
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Chapter 5

Related Work

5.1 Related Work - Freshness

There has been a great deal of work on managing replicas in distributed computing sys-
tems [Son88, KA0O, Her86]. Much of this work requires careful cooperation and standard
protocols between the participating sites in order to produce the appearance of perfectly
synchronized replicas. Because of the autonomy of sites as well as severe performance re-
quirements, Many networked applications cannot support this level of cooperation. Thus,
copies are aliowed to drift out of synchronization and a freshening system like that de-
scribed in Chapter 2 and [CLZ03, CLZ02] will periodically intervene to pull them back into
agreement.

In data warehousing, much work has been done on managing materialized views effi-
ciently [ZGMHW95]. However, the major focus of most of this work is on issues such as
minimizing view size or reducing the view update time.

Data freshening shares some similarities with data caching in that they both must deal
with the problem of out of date local copies. The problem of managing the freshness of
local copies has been explored in the web caching area|Wan99]. Here, however, the model of
synchronization is based on freshening actions that happen on explicit data requests from

the clients or by updates pushed from server.

95
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Recent work has addressed the maintenance of local copies for environments where exact
consistency is not possible due to the limited resources. For pull-based approaches, clients
decide on a refresh schedule based on knowledge of the change frequency of documents. This
information can be obtained using Time-To-Live(TTL)[DP96] information, application of
a probabilistic distributions/CGMO00a], or sampling from servers|[CN02]. A TTL represents
the estimated period a web document will remain fresh and is widely used for web cache
consistency. One study [CGMO00a] discusses how frequency of change can be modeled by a
Poisson process and can be estimated from observed data.

In [CGMOOb|, a freshness metric and synchronization policies are suggested and dis-
cussed. The work reported in Chapter 2 extends their work. Their goal was to maximize
the average freshness of a collection of copies. However, their work did not consider the
user’s access patterns. As a result, their freshening approach may not produce the most
productive solution from the point of view of what a user actually sees. Further, their
approach is not scalable for a very large number of data items, which could be impractical
in many applications.

Sampling-based refresh policies [CN02] initially poll some portion of the documents from
each server to determine the relative ratio of the changed documents in the samples. Based
on the ranking of this ratio, a greedy method that refreshes documents starting from the
highest ranked server produces the best result.

Furthermore, our analysis and simulation results reveal that access probability domi-
nates change frequency when the access distribution is highly skewed which is typical in the
Internet. As the access probability can be obtained easily at the mirror site, our approach
is applicable even in the case with imperfect knowledge of change frequency.

Profiles can be more specific as in [BR02] where a refresh policy using clients’ preferences
about the recency and latency is known. This work does not consider limited bandwidth.
Refresh is done by explicit client request. Our approach could be combined with theirs to

provide a more aggressive refresh approach.
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When data sources can notify clients of changes, clients can either determine the ex-
act time to pull the changed documents[LR01], or data sources can push the changes to
clients[OWO02]. Update propagation strategies for the materialized WebView|[LRO1] have
been proposed thereby determining the WebView update schedule based on exact knowl-
edge of when objects are updated at the servers. [OWO02| proposes a push-based refresh
approach in which clients and servers cooperate with each other to determine refresh sched-
ules dynamically based on variable bandwidth. However, there are many environments
including the Web where this push-based approach can not be applied because data sources
do not inform clients of changes.

In order to gain fine-grained control over the tradeoff between precision and performance,
adaptive refresh on replicated data has been studied OW00, OLWO01]. The primary goal of
this work is to control the amount of refresh over replicated approximate data to satisfy
given data precision constraints. The client informs the server about what level of precision

it requires, and the server sends the client a new value when the precision interval is violated.

5.2 Related Work - Aurora Scheduling

There has been extensive research on scheduling tasks under real-time performance ex-
pectations both in operating systems [JRR97, Loc88, NL97, RS94] and database systems
[AGM92, HCL93, HL.C91, 0595, Ram93]. To the best of our knowledge, Aurora’s schedul-
ing approach that combines priority assignment and dynamic scheduling plan construction
is the first comprehensive proposal for scheduling continuous queries over real-time data
streams and QoS expectations. Our solutions no doubt borrow a lot from the myriad of
existing work on scheduling,.

Scheduling proposals for real-time systems commonly considered the issue of priority
assignment and consequent task scheduling based on static (table- or priority-driven) ap-
proaches or dynamic (planning or best-effort) approaches [Ram93]. Static approaches are

inherently ill suited for the potentially unpredictable, aperiodic workloads we assume, as
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they assume a static set of highly periodic tasks. Dynamic planning approaches perform fea-
sibility analysis at run-time to determine the set of tasks that can meet their deadlines, and
rejecting the others that cannot [JRR97]. This decision is based on two key observations:
First, our priority assignment algorithm is based on a variation of Earliest-Deadline-First
(EDF) algorithm [Loc88], which is well known to have optimal behavior as long as no over-
loads occur. Second, Aurora employs a load shedding mechanism (not described here but
can be found in [CCC*02]) that is initiated when an overload situation is detected and that
selectively sheds load to get rid of excess load in a way that least degrades the QoS. This
allows our scheduling algorithm to focus only on underload situations. We note here that
Haritsa et al. [HLC91] proposed an extension of EDF that is designed to handle overloads
through adaptive admission control.

Real-time database systems [AGM92, HCL93, HLC91, KGM94, 0S95, Ram93] attempt
to satisfy deadlines associates with each incoming transaction, with the goal of minimizing
the number of transactions that miss their deadlines. These systems commonly support
short-running, independent transactions, whereas Aurora deals with long-running contin-
uous queries over streaming data Leaving aside these differences, of particular relevance
to Aurora scheduling is the work of Haritsa et al. [HCL93] that studied a model where
transactions have non-uniform values (or utilities) that drop to zero immediately after their
deadlines. They studied different priority assignment algorithms that combine deadline and
value information in various ways, one of which is a bucketing technique. This technique is
similar to ours in that it assigns schedulable processing units into buckets based on their
utility. The differences are that (1) we use bucketing to trade off scheduling quality for
scheduling overhead and, consequently, for scalability; and (2) we also use bucketing for
keeping track of slack values.

Also related to Aurora scheduling is the work on adaptive query processing and schedul-
ing techniques [AH00, HFCT00, UF01]. These techniques address efficient query execution

in unpredictable and dynamic environments by revising the query execution plan as the
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characteristics of incoming data changes. Eddies [AHO00] tuple-at-a-time scheduling pro-
vides extreme adaptability but has limited scalability for the types of applications and
workloads we address. Urhan’s work [UF01] on rate-based pipeline scheduling prioritizes
and schedules the flow of data between pipelined operators so that the resulting output rate
is maximized. This work does not address multiple query plans (i.e., multiple outputs) or
deal with and support the notion of QoS issues (and neither does Eddies).

Related work on continuous queries by Viglas and Naughton [VNO02] discusses rate-
based query optimization for streaming wide-area information sources in the context of
NiagaraCQ [CDTWO00]. Similar to Aurora, the STREAM project [BWO01] also attempts to
provide comprehensive data stream management and processing functionality. The Chain
scheduling algorithm [BBDMO03] attempts to minimize intermediate queue sizes, an issue
that we do not directly address in this thesis. Neither NiagaraCQ nor STREAM has the

notion of QoS.
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Chapter 6

Future Work

6.1 Introduction

There are many avenues to continue the work presented in this thesis. Here we present
several nascent ideas which present opportunities for directions of future study. The future
research is conveniently broken up into two subsections. One subsection for future oppor-
tunities in the area of data freshening, and one subsection for future directions for Aurora

scheduling.

6.2 Future research directions for Data Freshening

6.2.1 Expected Freshness

An interesting problem exists in the current solution where certain elements receive no syn-
chronization bandwidth and therefore never get refreshed. Consider the following scenario.
A site might want to ensure that the items it copies maintain some level of freshness (for
example, some stock quote sites try to ensure that stock prices are no more than 20 min-
utes old ). To do this a site can simply poll the server for each item at a certain interval
(every 20 minutes in the example above). The problem with this simple approach is that

bandwidth is wasted on items that change much less frequently than that interval and the
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overall freshness of the mirror is not optimized (in the example above, financial instruments
that are highly volatile like options should be updated more often than every 20 minutes or
else, the data is useless). There can be defined threshold for freshness per data item. (in
the example above, stock quotes have a 20 minute threshold, and more volatile instruments
might have a 5 minute threshold)

If the site owner is willing to relax the requirement that data items be no more that
some amount of time old and instead accept that probabilistically the data will not be more
than a certain age, he may be able to maintain a higher overall level of freshness.

The proposed solution is to first require that some level of freshness is maintained for
each element. If you know the change rate of an element, you can assign a synchronization
frequency to it so as to obtain a given freshness (in addition, if you know the access probabil-
ity and size of the object you can also find a suitable synchronization frequency). A simple
binary search per item can obtain this minimal synchronization frequency. (Doing this on a
larger scale might require some heuristics). Thereafter, and with the remaining bandwidth,

you assign to items synchronization bandwidth according to our heuristic techniques.

6.2.2 Is bandwidth free?

This problem deals with the development cost model for determining cost/performance
tradeoff between bandwidth and perceived freshness. Figure 6.1 shows what might be the
relationship between bandwidth and perceived freshness. At some point, there may be
the opportunity to significantly reduce bandwidth usage with only a small reduction in
perceived freshness. For example, the point A located in the figure can be moved in either
x direction with little impact on Perceived Freshness. However, a small x move for point B
would have a significant irhpact on Perceived Freshness. An obvious opportunity here is to
reduced bandwidth cost with little freshness loss.

The goal for this problem might actually be different. If you could reduce bandwidth
usage with minimal impact on freshness, you might be able to use the bandwidth to some

benefit. The problem described in section 6.2.4 explores one possibility.
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Perceived Freshness

Bandwidth

Figure 6.1: Bandwidth/Perceived Freshness Tradeoff

6.2.3 Gathering Statistics

Much of the previous work on Data Freshening with knowledge of change rates assumes
perfect knowledge of the change rates of individual data items. In our work to date, we
have seen that user interest dominates synchronization bandwidth allocation. Without
knowledge of change rates, the only synchronization policies that would make sense would
be those which use user interest to allocate synchronization bandwidth. However, since
we have seen that change rates play an important role in data freshening, any information
about the change rates of data could improve synchronization policies based solely on user
interest. The proposal here is to gather statistics about the rates of change of items as
they are synchronized. The synchronization server could recognize whether a data item has
changed when it is synchronized. If it hasn’t, then perhaps its synchronization bandwidth

allotment can be reduced while the allotment for another item can be increased.

6.2.4 Split Sync Bandwidth for a Dynamic Synchronization Policy

This problem follows from that described in section 6.2.2. The basic idea is to split the
synchronization bandwidth between a fixed synchronization schedule and a dynamic syn-
chronization replacement policy.

In the current model, the synchronization schedule is fixed - this is limiting, as data
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changes, and user interests change, the synchronization policy should adapt. As an ex-
ample, consider the case where a copy of stock prices are being maintained at the mirror
site. Enron had been a stock with a fairly stable price, however, on the day the company
declared bankruptcy, the stock plummeted, then became very volatile. For our synchro-
nization system, the data item representing Enron’s share price would have a new change
rate. Synchronization is now in a less than optimal state. The only current solution is to
recalculate the entire synchronization schedule. It is likely that for many types of data,
this type of occurrence is common. Therefore, an approach that allows for more flexible
synchronization is in order.

The proposal here is to develop a dynamic synchronization algorithm which will take
advantage of the bandwidth /perceived freshness tradeoff (from section 6.2.2). The dynamic
synchronization algorithm can be thought of much like a cache replacement policy, such as
LRU. As the rate of changes to a data item increases or the number of requests for the item
increases, it moves up the replacement policy chain. Another thought for the policy is to
use an on-demand broadcast scheduling policy such as LWF where requests compound the
movement along the replacement chain.

To clarify the problem a bit more, Given that a total of B bandwidth is available for
synchronization, find a By (bandwidth allocated to static synchronization schedule) and By
(bandwidth allocated to dynamic synchronization) such that B, + By = B and freshness is
maximized. Such an approach might maintain a histogram of requests and changes for data
items like that shown in fig 6.2. Any page past m would not be eligible for synchronization.

A more complex profile is necessary for this problem. The profile has to associate utility
with data values. The solution could include context-dependent profiles which specify how
user interests change as the conditions of the data change. The profiles would control the
the dynamic caching policy.

Another approach might be to incrementally modify the schedule, where some portion
of the schedule is changed (perhaps the schedule of some subset of data objects) This

incremental approach tries to reallocate bandwidth (synchronizations) to objects that need
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Num Requests

Figure 6.2: Bandwidth/Perceived Freshness Tradeoff

it from objects that require less. From which object(s) can you take X amount of bandwidth
away, so as to have the least impact on Perceived Freshness? (this may be related to load

shedding)

6.2.5 Pushing to reduce staleness in conjunction with synchronization of

cache

An alternative to the use of extra bandwidth proposed in section 6.2.4 is to push changes
to users. In the current model, pages are pulled from cache and DB (web). If bandwidth
between the user and cache is not free and is not infinite, can you do better by pushing some
pages to users (Similar to the schedule that is generated for synchronization, a schedule can
be generated for pushing data to users). Question: How much bandwidth is allocated for
pushing and how much is allocated for pulling? You have to take synchronization into
account (i.e. if a page is going to be synchronized soon, then maybe it should not be

pushed).
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6.2.6 Page Replacement

Question: How do LRU and profile-driven cache replacement differ? In the current model,
the cache is a fixed set of pages, what if you want to synchronize 100,000 pages, but you
only have space for 50,000. Is it better to fix the cache at 50,000 with the sync algorithm,
or is it better to try to sync all 100,000 and replace pages using a cost function or LRU.

And, if the page that you will replace is fresh, should you push it to a user?

6.2.7 Multiple levels of cache

If there are multiple caches (see Figure 6.3) which store objects between the user and the
data source, the question of which objects to store in which cache becomes a question.
Latency is the issue here - the latency to get the freshest value. If the cache that holds
the object that is interesting to the user is far away, then a request for the object incurs a
penalty in network latency.

Question: are all of the caches storing the same data? Is it like the memory hierarchy

of a computer?

Figure 6.3: Levels of Cache

Multiple levels of cache form a memory hierarchy and objects can be in any level. The
users connect to the leaves of the hierarchy. For very large networks, each cache cannot
maintain knowledge of the entire network

In Figure 6.3 some function must be devised that determines which objects satisty
profiles and where those objects should be stored. A method must be also devised to

identify where objects are located in the network of caches.
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6.3 Future research directions for Aurora Scheduling

6.3.1 Selecting Superboxes

A simple approach to scheduling in Aurora would construct superboxes out of applications.
That is, the subnetwork that comprises a single application would be the superbox. Also,
the execution plan for the superbox would execute each box once over a train of input
tuples. However, overlapping queries (common subexpressions, or, common subgraphs in
an Aurora network) and more complex operators complicate scheduling.

Dealing with common subexpressions is common in database systems. Similarly, Aurora
networks can have common subgraphs. Figure 6.4 shows an Aurora network with three
applications which share operators. For example, box 1 is shared by applications A and B,

and, box 2 is shared by all three applications.

Application A

Application B

Application C

Figure 6.4: Example Aurora Network with overlapping queries

The naive superbox construction and execution technique (constructing superboxes of
entire applications) runs into problems when applied to the network in the figure. To start
with, only one superbox can be executed at a time since two seperate worker threads cannot
execute the same box at the same time without a complex synchronization or dependency
scheme. Therefore, when a superbox is executed by a workerthread, all boxes contained in
the superbox are essentially locked to prevent other threads from executing the boxes.

The Aurora query language consists of operators which vary in complexity, from a simple
union which incurs very little overhead to aggregate and SQL operators which potentially
incur very high processing or overhead costs. Consider the following portion of a query

network:
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NRNAR n Application A

Figure 6.5: High Cost Windowed Operator Example

And, consider this example scenario. Box 4 is a windowed operator with a cost of 1
time unit for each tuple in its window ( its window contains 5 tuples and therefore, it takes
5 time units to process a full window). Box 4 also produces only one output tuple for each
full window. Box 6 costs .5 time units and Box 8 costs .5 time units. One tuple arrives at
the input to Box 4 per each time unit. So, after 5 units of time, Box 4 can execute over the
window and output a tuple. Also consider that a new window is used for every group of
5 tuples. An example execution of this superbox while using tuple trains might work like
this: let’s say we have a tuple train of size 100. There are 20 windows worth of tuples. The
first tuple arrives at time #; and the 100th tuple arrives at time £109. Using the superbox
and train method described above, the first tuple will be output from box 4 at time £105
and the 20th tuple will be output at time fogp. Then the tuples pass through box 6 (the
first tuple at time #2005 and the last tuple at time #219) then through box 8 ( first tuple
at time tg10.5 and the last tuple at togg). The average latency of the tuples output to the
application is 210.

If instead, for each tuple output from box by, we then execute box bg and then box
bg, the first tuple will reach the application at time t19¢ and the 20th tuple will reach the
application at time ta99. The average latency in this scheme for output tuples is 163.

A very high ovelrhead traversal which dynamically considers the tradeoffs of cost and QoS
on a per-tuple basis could be considered here. However, simply breaking up the superbox
into 2 superboxes might be very effective. We end up with box 4 in its own superbox and
boxes 6 and 8 combined as a superbox. Then, if the two superboxes are are being executed
by two concurrently running threads, one thread could essentially be feeding tuples to the
second thread and thereby improving system performance.

There is something to consider here. On a uniprocessor system, the first thread will

only yield the processor to the second thread when it is either finished processing or if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

it is pre-empted for some reason, maybe for an I/O operation (which may be the reason
box 4 has such a high cost). Also, if the first thread does not yield the processor, then a

preemptive scheduler may be in order.

6.3.2 Superbox Priority Assignment

Since the quality of Aurora output is measured with QoS graphs, assigning priority to boxes
or superboxes becomes more challenging when queries share subexpressions. Defining the
QoS graph for a box which is shared by two operators which have different QoS graphs is
not straight-forward. Also, assigning priorities to boxes might not be the best way achieve
high levels of QoS. Instead, it might be better to assign priority to superboxes. This also is

not straight-forward.

6.3.3 Superbox Compositing

Given that subexpressions can be shared, perhaps some sort of Application sharing should
be performed. This would entail considering two applications to be the same, combining
their QoS specifications and performing their executions together. Perhaps clustering could

be used to create superboxes.

6.3.4 Actual Priority Assignment

It may be the case that instead of specifying QoS graphs, applications instead specify prior-
ities. In this case, a priority-based scheduler must be developed which handles application
priorities. Operating systems use techniques such as lottery scheduling or stride scheduling
[WW95] to slice CPU allocation into discrete time slices (quanta) and assign resource rights

(tickets) to processes. Techniques like these may be applied to Aurora Scheduling.

6.3.5 More interesting queries

A more robust model of experimental query networks must be built. In the model used for

the results shown in Chapter 3, query networks are automatically generated using depth
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and fan-out (from the application) parameters. All boxes are essentially Union boxes with
optional cost and selectivity parameters. While the model is sufficient for studying the
scheduling of independent queries, it lacks being able to more realistically model the ex-
pected query environment which may include common subexpressions (overlapping query
graphs). Therefore, experimental query networks should be generated with a degree of
overlap.

It would be interesting to do a performance evaluation which studies the degree of

overlap between 2 queries and compares this to overhead of multiple superbox selection

techniques.

In [CCR'03] experimental studies were performed on query networks with very simple
boxes. The boxes were essentially union boxes, however, they were specific to experimen-
tation in that a processing cost and selectivity could be assigned per box. In this way, all
possible Aurora network topologies could be studied. However, more complex operators
such as Join, Aggregate, and SQL Bozes could not be modeled. To more realistically study
scheduling in Aurora we must define a model for such operators and examine their impact

on scheduling decisions.

6.3.6 Proposed Scheduling Algorithms

Given that queries will overlap, and aggregates, joins, and SQL boxes may stall super-
box execution, our original [CCR103] approaches to superbox construction and priority
assignment should be modified appropriately. Below we discuss some possibilities for these

modifications.

6.3.6.1 Heuristics for choosing superboxes

In order to address the real-time requirements of an Aurora system, heuristics will be used
to select boxes for execution. Here we discuss possible heuristics to use for assembling

superboxes. We focus our discussion on static and dynamic heuristics:

e static heuristics: a set of superboxes are selected ahead of time. This would create a
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static partitioning of the query network (ad-hoc queries are added as new partitions).
If such a heuristic were used, the superbox with the highest accumulated priority is

run first. Priority assignment for superboxes is discussed later.

Note: The ordering of superboxes for scheduling might not be straight-forward. If
superbox B feeds tuples to superbox A, but A has a higher priority, it might be better

to execute B first.

o dynamic heuristics: superboxes are assembled on the fly. That is, once an application
or box is selected for execution, other boxes which have a relationship to the box
or application are assembled into a superbox. In general, the selection of boxes is
based on following paths in either the upstream direction or downstream direction, or
both. The characteristics of the queues and boxes along the path are considered as
the superbox is built. Further heuristics will include the number of empty queues to

skip while moving upstream. Should you stop at an empty queue?

6.3.6.1.1 Static Heuristics
Below we describe 3 different heuristics that could be used to select static superboxes.

1. Application Trees: Each application has a sub-network of boxes associated with it.
The sub-network is a tree which is rooted at the output port of the application. This
is the approach, AAAT, used in Chapter 3.

e Advantage: easy to generate

e Disadvantage: Application trees overlap. Running one application tree, and
then running another which has significant overlap with the first, runs the same
computation twice. This might be wasteful since it incurs significantly higher

box call overhead.

2. Intersections of application trees: Application trees overlap and the overlap can
be clearly determined. Whenever a split is found in the network, the subnetwork

rooted at the split is a new superbox.
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e Advantage: easy to generate, computation is shared between applications

e Disadvantage: isolating boxes (or superboxes) per application is not as straight

forward as for the AAAT approach described above.

3. Trains of single input boxes: Boxes can be executed if they have enough data
in their respective queues for evaluation. It is difficult to determine if all the boxes
of a superbox which contains a complex sub-network will have a sufficient number of
tuples so that each box will execute over input tuples. Therefore, one should avoid
using complex sub-networks as superboxes because other overlapping application trees

might stall, waiting for execution which never happens.

¢ Advantage: easy to generate

o Disadvantage: superboxes have limited sizes especially in large and complex

query networks.

6.3.6.1.2 Dynamic Heuristics

Dynamic scheduling techniques will assign priorities to boxes. From these priorities super-

boxes must be assembled. The goal for assembling these superboxes is to prepare trains for

scheduling. Determining which boxes to include in a superbox is not straight-forward.
The following lists several examples of choices for assembling superboxes, given a prior-

itized list of boxes.

1. Tree rooted at an application: This technique is called Top-k-spanner. This
algorithm creates, at run-time, a tree that spans the top k highest priority boxes for a
given application. Note that this algorithm is equivalent to an application tree when

k is equivalent to the number of boxes in the application tree.

The problem with this approach is that some boxes downstream will have multiple
inputs (e.g. Join or Merge). And, those boxes will require the other input queues to
contain a sufficient number of tuples to be executed. Those tuples may have to come

from their respective upstream boxes. Figure 6.6 shows this more clearly. If B1 is the
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box which has been identified as having a high priority, the downstream boxes are B2,
B5 and B6. However, B5 has two inputs (from B2 and B4). The superbox would be
most effective if all of the tuples from Bl were processed through to the application.
If the inputs to B5 depend on each other (in the case of Join or Merge) there should

be a balance in the input queues. Therefore, an upstream traversal through B4 is

required.

]

Figure 6.6: Example Aurora SubNetwork

In order for superbox scheduling to be effective, all boxes in the superbox should exe-
cute. Any imbalance in the inputs to a multiple-input box could cause the execution

of a superbox to stall and result in not all boxes in the superbox being executed.

A simple solution to this problem is to require that superboxes only be composed
of boxes with single inputs (except for the first box in the superbox). (i.e. a path
of boxes is created towards the application until a multiple input box is found). Of
course, the problem here is that the tuples which were identified as critical to the

application do not make it to the output.

2. Center of mass: Given a box, create a superbox with the closest high priority boxes.
Starting at a box, perform a breadth-first search of the network in both the upstream
and downstream direction to a certain depth. For each box of a certain priority level,
in the first search, perform a new breadth-first search. Continue until a certain number

of boxes have been added to the superbox.

This method is application independent. It also tries to attack masses of congestion
within an Aurora network. Unfortunately, this approach has two problems. First, it
does not necessarily push tuples towards or all the way through to outputs. Second,

a lot of overhead might be incurred dynamically creating these superboxes.
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3. Tree rooted at a box: Given a box, a superbox is assembled with an upstream
post-order traversal of the tree rooted at the box containing source-streams (inputs)

as leaves.

There is a problem with this approach. The box (root) was identified to have a high
priority because its queue has tuples which are nearing a critical point (the tuples
are getting old). This approach will only move those tuples one box closer to the
application. Subsequent scheduling decisions would be responsible for moving tuples

closer to outputs.

Because of the problems associated with items 2 and 3 above, one should not consider

these approaches seriously.

6.3.7 Dealing with high cost boxes

High cost boxes can cause the stalling of execution of superboxes. An interesting question
is how to determine what constitutes a "high cost” box. The question becomes, how can
you determine if a box will cause a superbox to stall? For the purpose of simulating query
networks, we will consider two types of high-cost boxes. The first type is boxes which
consume the CPU while executing. The second type is boxes which require a long time to
execute but may yield the CPU while processing (e.g. SQL boxes which go to disk to find
an answer).

After high-cost boxes have been identified, one of two approaches can be used to deal

with this problem.

o Superboxes should not include high cost boxes as interior nodes. This will allow
other threads to execute over the output of these high cost boxes while the upstream
superbox churns away. This would be especially beneficial for non-CPU intensive high-
cost boxes. For example, an SQL box might spend much of its time going to disk to
retrieve results. As the results are being produced, superboxes executing downstream

boxes ”eat” the output as it is produced.
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e Very high cost boxes can become superboxes on their own (i.e. one box superbox).

Yielding the CPU becomes an important issue for high cost boxes. The example in
section 6.3.1 in Figure 6.5 provides an argument for this problem. As shown in that exam-
ple, a high cost operator can "hog” the CPU and cause average tuple latency to be high.
Therefore, high-cost boxes must yield the CPU to lower cost downstream boxes. Of course,

this may have an impact on the various traversal techniques being used.

6.3.8 Superbox Priority Assignment

We need a better way to assign priority to superboxes. Currently, we select the superbox
with the highest priority single box. This could be changed to be the application with the
highest priority n boxes. However, this does not seem to be either efficient, or, the correct
way to do things. Perhaps a feedback method could be used at the application or superbox
level. If we use Intersections of Application Trees, we could focus on feedback from the root
node of each superbox (assuming that a QoS graph could be created which represents the
QoS for such a superbox).

A simple approach might turn out to be very effective. QoS graphs could be determined
for an entire superbox and an approximation for average tuple latency for the superbox
could be used to determine superbox priority. This is a very low-overhead approach which

approximates the correct priority assignment.
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