
Abstract of “Discriminative Methods for Label Sequence Learning” by Yasemin Altun,

Ph.D., Brown University, May 2005.

Discriminative learning framework is one of the very successful fields of machine learn-

ing. The methods of this paradigm, such as Boosting and Support Vector Machines,

have significantly advanced the state-of-the-art for classification by improving the ac-

curacy and by increasing the applicability of machine learning methods. One of the

key benefits of these methods is their ability to learn efficiently in high dimensional fea-

ture spaces, either by the use of implicit data representations via kernels or by explicit

feature induction. However, traditionally these methods do not exploit dependencies

between class labels where more than one label is predicted. Many real-world classifica-

tion problems involve sequential, temporal or structural dependencies between multiple

labels. The goal of this research is to generalize discriminative learning methods for

such scenarios. In particular, we focus on label sequence learning.

Label sequence learning is the problem of inferring a state sequence from an ob-

servation sequence, where the state sequence may encode a labeling, an annotation or

a segmentation of the sequence. Prominent examples include part-of-speech tagging,

named entity classification, information extraction, continuous speech recognition, and

secondary protein structure prediction.

In this thesis, we present three novel discriminative methods that are generalizations

of AdaBoost and multiclass Support Vector Machines (SVM) and a Gaussian Process

formulation for label sequence learning. These techniques combine the efficiency of

dynamic programming methods with the advantages of the state-of-the-art learning

methods. We present theoretical analysis and experimental evaluations on pitch accent

prediction, named entity recognition and part-of-speech tagging which demonstrate

the advantages over classical approaches like Hidden Markov Models as well as the

state-of-the-art methods like Conditional Random Fields.

ii

Discriminative Methods for Label Sequence Learning

by

Yasemin Altun

B.S., Middle East Technical University, 1997

M.Sc., Middle East Technical University, 1999

M.S., Brown University, 2003

Thesis

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in the Department of Computer Science

at Brown University.

May 2005

iii

c© Copyright 2006

by

Yasemin Altun

Date

Thomas Hofmann, Advisor

Recommended to the Graduate Council

Date

Mark Johnson, Reader

Date

Eugene Charniak,Michael Collins, Reader

Approved by the Graduate Council

Date

iii

Acknowledgements

I would like to thank Thomas Hofmann for his invaluable guidance and support over the

course of the time I was at Brown. He has been a great role model on every aspect of

academic life. I am also profoundly grateful to Mark Johnson, for his priceless advice,

very fruitful discussions and his support on the research direction I investigated. I also

would like to thank Michael Collins and Alex Smola for their excellent suggestions and

thought-provoking questions.

I want to express my appreciation to my collegues Massimiliano Ciaramita and

Ioannis Tsochantaridis for the valuable research discussions, but most of all for being

such great friends; to Aparna Nadig for always being there and taking care of me, for

all the times we had together, for all the blues, reds and yellows, for all the dances; to

Umut Ones, iyi ki yapmisiz.

My biggest thanks go to my family: to my sisters for their love and constant support,

to my mom for all the sacrifices she has made, for her unconditional love and support.

This thesis is dedicated to my grandmother: Doktor oldum anneannecigim...

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Structured Learning . 2

1.2 Discriminative Label Sequence Learning 4

1.3 Contributions . 5

2 Label Sequence Learning 8

2.1 Learning Architectures . 9

2.1.1 Feature Representation . 10

2.1.2 Kernels for Label Sequences . 11

2.2 Objective Functions . 15

2.2.1 Loss Functions for Sequences . 15

2.2.2 Logarithmic Loss and Conditional Random Fields 16

2.2.3 Marginal Loss . 17

2.3 Optimization Methods . 17

2.3.1 Optimization of Conditional Random Fields 18

2.3.2 Optimization of Marginal Loss 20

2.4 Experiments . 20

2.5 Discussion . 21

3 Sequence Boosting 23

3.1 Boosting . 24

3.2 Objective Function . 25

3.3 Optimization Methods . 27

3.3.1 Exact Optimization . 27

v

3.3.2 Sequence Boosting . 27

3.4 Analysis . 34

3.4.1 Margin Based Generalization Bounds 34

3.4.2 Margin Maximization . 35

3.5 Related Work . 36

3.6 Experiments . 38

3.7 Discussion . 41

4 Hidden Markov Support Vector Machines 43

4.1 Support Vector Machines . 44

4.2 Objective Function . 45

4.2.1 Separable Case . 46

4.2.2 Soft Margin Formulations . 47

4.3 Optimization Method . 50

4.3.1 Algorithm . 50

4.3.2 Viterbi Decoding in HM-SVM . 51

4.4 Analysis . 53

4.5 Related Work . 54

4.6 Experiments . 57

4.7 Discussion . 59

5 Gaussian Process Sequence Classification 62

5.1 Gaussian Process Classification . 63

5.2 Objective Function . 65

5.2.1 Exploiting Kernel Structure . 66

5.3 Optimization Method . 68

5.3.1 A Dense Algorithm . 69

5.3.2 A Sparse Algorithm of Observations 70

5.3.3 A Sparse Algorithm of Observation Sequences 72

5.3.4 GPSC 2nd Order Optimization Methods 73

5.4 Analysis . 74

5.5 Related Work . 76

5.6 Experiments . 77

5.7 Discussion . 80

vi

6 Conclusions and Future Work 84

A Notation 87

B Applications 88

B.1 Pitch Accent Prediction . 88

B.2 Named Entity Recognition . 90

B.3 Part-of-Speech Tagging . 92

vii

List of Tables

2.1 Per-label accuracy of Pitch Accent Prediction on CRFs, Rmg and HM-

Perceptron with window size 5. 20

2.2 F1 measure of NER on Spanish newswire corpus on CRFs, Rmg and

HM-Perceptron with window size is 3. 21

2.3 Per-label accuracy of POS tagging on PennTreeBank on CRFs, Rmg and

HM-Perceptron. 21

3.1 F1 measure of NER on Spanish newswire corpus on CRFs and Sequence

Boosting. The window size is 3 for S3. 39

3.2 Accuracy of POS tagging on PennTreeBank. 40

3.3 Features that are selected more than once in the first 100 rounds of boost-

ing with the loose bound(L), the tight bound (T) or exact optimization

of Z with the tight bound (TExact). 41

4.1 F1 measure of NER on 3000 Spanish newswire corpus on HMMs, CRFs,

dual HM-Perceptron and HM-SVMs with window size is 3. 58

5.1 Test error of NER over a window of size 3 using 5-fold cross validation. 79

5.2 Properties of discriminative label sequence learning methods. 83

B.1 Definition of probabilistic variables. 89

B.2 Observation attributes used in NER. 92

B.3 More observation attributes used in POS. 93

viii

List of Figures

1.1 Three-dimensional structure of a protein 3

1.2 Example amino acid sequence and its secondary structure 3

1.3 The parse tree of the sentence “The cat ate the mouse” 3

1.4 Example word lattice of an acoustic signal 4

2.1 Graphical representation of HMMs and CRFs. 11

3.1 An example of the tight and loose bounds on the normalization constant

Z. 32

3.2 Accuracy of pitch accent prediction on Boosting formulations, Rexp and

CRFs over a window of size 5. 39

4.1 Per-label accuracy of pitch accent prediction on CRFs, HM-SVMs and

dual HM-Perceptron over a window of size 5. 58

4.2 Example sentence, the correct named entity labeling, and a subset of the

corresponding support sequences. 60

5.1 Test accuracy of Pitch Accent Prediction task over a window of size 5

on CRFs and GPS classification. 77

5.2 Test accuracy of Pitch Accent Prediction w.r.t. the sparseness of GPS

solution. 78

5.3 Precision-Recall curves for different threshold probabilities to abstain on

Pitch Accent Prediction . 79

5.4 Exp-loss, log-loss and hinge-loss as upper bounds on zero-one loss. . . . 81

ix

Chapter 1

Introduction

Supervised learning is one of the most important areas of machine learning. Binary

classification (where the label set is {0, 1}), multi-class classification (where the label set

is {0, 1, . . . ,m}) and regression (where the label set is <) are instances of this problem.

In supervised learning, we are given a labeled training sample of observation-

response variable pairs (x, y) where x ∈ X and y ∈ Y. It is assumed that (x, y)

pairs are drawn from an unknown but fixed distribution p(x, y) defined over the joint

space X × Y. The goal is to learn a function f that predicts the best value for the

response variable y given a new observation x. Generative learning methods aim to

model the joint distribution p(x, y) of observations and response variables and predict

a label for the response variable of a new observation using the conditional probability

p(y|x) obtained by the Bayes rule. However, it has been commonly argued by many

researchers that “one should solve the [classification/regression] problem directly and

never solve a more general problem as an intermediate step” [Vapnik, 1998]. The in-

termediate step mentioned here is the modeling of the joint distribution as performed

by the methods of the generative framework. Discriminative learning methods, on the

other hand, solve the problem directly by learning a mapping from the observation

space to label space, as suggested by Vapnik.

Discriminative learning methods, such as Boosting and Support Vector Machines

are the state-of-the-art methods for supervised classification. They have improved the

classification accuracy significantly and increased the applicability of machine learning

methods. The main advantage of these methods is their ability to learn efficiently in

1

high dimensional feature spaces. This is achieved either by the use of implicit data rep-

resentations via kernels or by explicit feature induction. These methods were originally

proposed for binary classification, but have been generalized to multiclass classification

and regression frameworks successfully. The problems that we are interested in this

thesis are multi-class classification of multiple observations whose response variables

are inter-dependent.

1.1 Structured Learning

In many real world problems, the response variables that we would like to predict are

not isolated, but live within a temporal or structural dependency structure. These

structures range from sequences to trees, lattices to more general graphs. Below are a

few examples of these structures.

Sequences: An application where the response variables form a sequence dependency

structure is protein secondary structure prediction. This is an important intermediate

task for solving the protein folding problem, one of the most challenging tasks of molec-

ular biology. The protein folding problem deals with predicting the three-dimensional

structure (Figure 1.1) of a protein from a sequence of amino acids. Given the difficulty

of predicting the tertiary structure, molecular biologists designed the simpler task of

predicting the secondary structure, i.e. predicting shorter segments such as alpha he-

lices, beta strands, which are packed into the tertiary structure later on. Figure 1.2 is

an example of an amino acid sequence and its secondary structure. The dependence

between the variables is due to the fact that a number of variables must be assigned

the same label in order to construct a secondary structure.

Tree dependency: Syntactic parsing is a popular tree dependency example. Parsing

is useful for almost every task in Natural Language Processing (NLP), e.g. grammar

checking, machine translation, question answering. The task is to identify the phrase

structure of a sentence generated by the grammatical derivations in order to construct

the sentence. Figure 1.3 example of a sentence and its parse tree. The parse tree is

formed by a particular configuration of labels of the nodes of the tree.

Lattices: In speech recognition, the goal is to recognize a sentence given its acoustic

representation. Due to the very large number of similar possible realizations of the

decoding of an acoustic signal, it is common to use lattices for efficient data represen-

tation and computation. Figure 1.4 presents an example of such a mapping taken from

2

Figure 1.1: Three-dimensional structure of a protein

CCPTMAARIQYNACRALGTPRPVCAALSGCKILDVTKCPPDYRY

-EE---HHHHHHHHHHH-----HHHHHHHH--EE-------HHH

Figure 1.2: Example amino acid sequence and its secondary structure

S

NP VP

Det N VBD NP

Det N

The cat ate the mouse

Figure 1.3: The parse tree of the sentence “The cat ate the mouse”

3

the

top

stop
selling car

this
ninety seven

of nineteen

for ninty

Figure 1.4: Example word lattice of an acoustic signal

[Hall and Johnson, 2004]. A word hypothesis (such as top) may be consistent with

only a subset of the word hypotheses (such as this) and will be inconsistent with others

(such as the).

There are other dependency structures observed in real world problems. In this

thesis, we focus on the sequence dependency structures. The problem of labeling, an-

notating or segmenting observation sequences arises in many applications across a va-

riety of scientific disciplines, mostly in natural language processing (NLP), information

retrieval (IR), speech recognition, and computational biology. Prominent application

examples include part-of-speech tagging (POS), named entity classification (NER),

shallow parsing and chunking within the NLP domain [Manning and Schütze, 1999],

information extraction and text segmentation within the IR domain, continuous speech

recognition, pitch accent prediction and phoneme classification within the speech pro-

cessing domain [Jurafsky and Martin, 2000], as well as secondary protein structure

prediction, gene classification and protein homology detection within the computa-

tional biology domain [Durbin et al., 1998]. Problems of this type are commonly called

label sequence learning or sequential learning [Dietterich, 2002].

1.2 Discriminative Label Sequence Learning

One drawback of discriminative methods is that traditionally they do not exploit de-

pendencies between class labels where more than one label is predicted. For this reason,

till recently, the predominant formalism for modeling label sequences has been based

on Hidden Markov Models (HMMs) and variations thereof. Yet, despite their suc-

cess HMMs have two major shortcomings. First, HMMs are typically trained in a

non-discriminative manner using maximum likelihood estimation for a joint sampling

model of observation and label sequences 1. Second, efficient inference and learning in

1One can also train HMMs discriminatively. This method is closely related with McCallum et al.
[2000]’s the Maximum Entropy Markov Models [Smola, 2004].

4

this setting often requires making questionable conditional independence assumptions.

More precisely, in the case of HMMs, it is assumed that the Markov blanket of the

hidden label variable at time step t consists of the previous and next labels as well as

the t-th observation. This implies that all dependencies on past and future observations

are mediated through neighboring labels which is clearly violated in many applications

(especially where long distance dependencies are important).

The first problem poses the challenge of finding more appropriate objective func-

tions, i.e. alternatives to the log-likelihood that are more closely related to application-

relevant performance measures. The second problem is one of developing more powerful

architectures, for example, by allowing direct dependencies between a label and past

or future observations (overlapping features) or by efficiently handling higher-order

combinations of input features. At the same time, one would like to address these

shortcomings without sacrificing some of the benefits that HMMs offer, namely a dy-

namic programming formulation for efficient inference and learning.

To overcome the limitations of HMMs, different approaches for learning conditional

models, such as Maximum Entropy Markov Models (MEMMs) [McCallum et al., 2000,

Punyakanok and Roth, 2000], Conditional Random Fields (CRFs) [Lafferty et al., 2001,

Johnson et al., 1999], perceptron re-ranking [Collins, 2000, 2002a, Collins and Duffy,

2001] have been proposed. These methods basically have two main advantages com-

pared to HMMs: First, they are trained discriminatively by maximizing a conditional

(or pseudo-) likelihood criterion. Second, they are more flexible in modeling additional

dependencies such as direct dependencies of the t-th label on past or future observa-

tions. Among these models, CRFs are the state-of-the-art in terms of accuracy. In most

general terms, CRFs define a conditional model over label sequences given an observa-

tion sequence in terms of an exponential family. Thus, they are a natural generalization

of logistic regression to the problem of sequence learning.

1.3 Contributions

Label sequence learning In this thesis, we continue previous approaches of learn-

ing conditional models and investigate the use of other discriminative learning methods

for label sequence learning. We focus on the supervised learning setting, thus we as-

sume the availability of a set of labeled training sequences from which a mapping from

observation sequences to correct label sequences is learned. Label sequence learning

5

can then be considered as a natural extension of supervised classification where the

label space grows exponentially with the length of sequences. We propose efficient

learning and inference algorithms that overcome the tractability issues caused by the

extremely large class space by exploiting the sequence structure of the observation and

label spaces. In particular, we present generalizations of the two most competitive dis-

criminative methods for classification, Boosting and Support Vector Machines (SVMs)

the problem of label sequence learning, as well as a Gaussian Process (GP) formulation

for label sequence learning.

Sequence Boosting We first investigate different loss functions, an exponential loss

function such as the one used in boosting algorithms [Schapire and Singer, 1999, Fried-

man et al., 2000] based on ranking the entire sequence and a loss function that explicitly

minimize the zero/one loss on labels, i.e. the Hamming loss, as opposed to minimizing

the loss on the entire sequence, as alternatives to the loss function of CRFs. We also

present a boosting algorithm, Sequence AdaBoost [Altun et al., 2003a] that optimizes

the exponential loss function for label sequences. It has the advantage of performing

implicit feature selection, typically resulting in very sparse models. Feature sparse-

ness is important for model regularization as well as for efficiency in high dimensional

feature spaces.

Hidden Markov Support Vector Machines Both Sequence AdaBoost and the

previous work mentioned above lack the power of kernel-based methods due to their

explicit feature representations. We developed an architecture for learning label se-

quences which combines HMMs with SVMs in an innovative way (joint work with

Ioannis Tschochantaridis). This novel architecture is called Hidden Markov SVM (HM-

SVM) [Altun et al., 2003c]. HM-SVMs address all the shortcomings of HMMs, while

retaining some of the key advantages of HMMs, namely the Markov chain dependency

structure between labels and an efficient dynamic programming formulation. The two

crucial properties of HM-SVMs inherited from SVMs are the maximum margin princi-

ple and a kernel-centric approach to learning non-linear discriminant functions.

Gaussian Process Sequence Classification We also investigate the use of a Gaus-

sian Process (GP) formulation of label sequence learning, leading to Gaussian Prior Se-

quence (GPS) Classification [Altun et al., 2004b,a]. The main motivation for pursuing

6

this direction is to combine the best of both worlds from CRFs and SVMs. More specif-

ically, one would like to preserve the main strength of CRFs, its rigorous probabilistic

semantics. There are two important advantages of a probabilistic model. First, it is

very intuitive to incorporate prior knowledge within a probabilistic framework. Second,

in addition to predicting the best labels, one can compute posterior label probabilities

and thus derive confidence scores for predictions. This property is valuable in particu-

lar for applications that require a cascaded architecture of classifiers. Confidence scores

can be propagated to subsequent processing stages or used to abstain on certain predic-

tions. The other design goal is the ability to use kernel functions in order to construct

and learn over Reproducing Kernel Hilbert Spaces (RKHS), thereby to overcome the

limitations of (finite-dimensional) parametric statistical models. A second, indepen-

dent objective of GPS is to gain clarity with respect to two aspects on which CRFs

and the SVM-based methods differ, the first aspect being the loss function (logistic loss

vs. hinge loss) and the second aspect being the mechanism used for constructing the

hypothesis space (parametric vs. RKHS).

It is important to note that even though the techniques proposed in this study are

presented for sequences, they are immediately applicable to more general structures

for which efficient dynamic programming techniques are available, since the building

blocks of the computations in these methods are simply the sufficient statistics of the

data.

The outline of the thesis is as follows: We first present the formal setting of the label

sequence learning problem in Chapter 2. In this chapter, we also describe the details

on CRFs and a perceptron algorithm for label sequences as well as the investigation of

different loss function. Then the generalization of Boosting, Sequence AdaBoost, the

generalization of SVM, HM-SVM and a GP sequence formulation, GPSC, are proposed

in Chapters 3, 4 and 5 respectively. These chapters provide details on the objective

functions, optimization methods, theoretical analysis and experimental evaluations of

these techniques. Also, we provide an incremental comparison of these techniques at the

end of each chapter. Finally, we conclude and suggest some future work in Chapter 6.

7

Chapter 2

Label Sequence Learning

In this chapter, we present the formal framework of the label sequence learning problem.

Label sequence learning can often be cast as a problem of inferring a Markov chain

of label (or state) sequence from an observation sequence, where there is a one-to-

one mapping between observations and labels. Hence, it is a generalization of the

standard supervised classification problem where values of the random variables are

predicted not only with respect to the observations but also with respect to values

of the neighboring random variables. The goal is to learn a discriminant function for

sequences, i.e. a mapping from observation sequences x = (x1, x2, . . . , xt, . . .) to label

sequences y = (y1, y2, . . . , yt, . . .) with xt ∈ X, yt ∈ Σ. We call Σ, the label set of

observations or the micro-label set, and Y = Σl, the label set of observation sequences

or the macro-label set, where l denotes the length of label sequence y 1. Let S = |Σ|

be the size of the label set of each variable. Then, the size of the macro-label set scales

exponentially with the length of observation sequences (|Y| = Sl). We assume that a

training set of labeled sequences D ≡ {(xi,yi) : i = 1, . . . , n} where x ∈ X and y ∈ Y

is available to learn the mapping from x to y. The training set, as well as the test set

are assumed to be drawn i.i.d from an unknown, but fixed distribution P (x,y).

In a discriminative framework, the goal is to learn a mapping from X to Y. In order

to achieve this, one needs to describe three aspects of learning : a learning architecture,

namely a parameterized family of discriminant functions, an objective function and

finally an optimization method 2. In Section 2.1, we describe the learning architecture

1For sequences of different length l, Y is going to be different. When clear from the context, we
abbreviate Y

l as Y.
2A related aspect is the regularization which is exploited in the following chapters.

8

that has been proposed by previous work and is adapted in this study. In Section 2.2,

we present two loss function for label sequences, as well as some objective functions

that motivate the objective functions used for label sequence learning problem. We

then describe some optimization methods for these loss functions in Section 2.3.

2.1 Learning Architectures

A learning architecture specifies a family of Λ-parameterized discriminant functions

F (x,y; Λ) that assign a numerical score to pairs of observation/label sequences where:

F : X × Y → <. (2.1)

One can think of F (x,y; Λ) as measuring the compatibility between the observation se-

quence x and the label sequence y. Each discriminant function F induces a mapping f ,

f(x; Λ) = arg max
y

F (x,y; Λ) , (2.2)

where ties are arbitrarily broken. We initially restrict our attention to discriminant

functions that are linear in some feature representation of (x,y), Ψ(x,y) 3.

Ψ : X × Y → <d (2.3)

is a feature map defined on the joint observation-label sequence space. Hence, F has

the following general functional form:

F (x,y; Λ) =
∑

k

λkψk(x,y) = 〈Λ,Ψ(x,y)〉 . (2.4)

The model is assumed to be stationary. Thus, Λ parameters are shared by every

position t in the sequence, resulting in the following formulation of the discriminative

function:

F (x,y; Λ) =
∑

t

∑

k

λkψk(x,y; t) =
∑

t

〈Λ,Ψ(x,y; t)〉 . (2.5)

where Ψ(x,y; t) is the same feature mapping, now restricted to positions in the sequence

rather than the whole sequence. Then, one needs to define the features ψk to complete

the design of the architecture. Our main design goal in defining Ψ is to make sure that

f can be computed from F efficiently, i.e. using a Viterbi-like decoding algorithm.

3Features in maximum entropy modeling terminology are often referred as weak learners in the
boosting community.

9

2.1.1 Feature Representation

Following previous work, we focus on extracting two types of features from a sequence

pair (x,y). The first type of features capture inter-label dependencies between neigh-

boring labels:

ψsσσ̄(x,y; t) = [[ys=σ]][[yt= σ̄]], (2.6)

where σ, σ̄ ∈ Σ denote micro-labels and [[·]] denotes the indicator function of the en-

closed predicate. Here, ψsσσ̄(x,y; t) corresponds to a feature ψk(x,y; t) where k is

indexed by (s, σ, σ̄), the label σ at position s and the label σ̄. These features sim-

ply indicate the statistics of how often a particular combination of labels occur at

neighboring sites. We restrict the inter-label dependencies to neighboring labels (e.g.

s ∈ {t + 1, t + 2} for 3rd order Markov features) to achieve our design goal, i.e. to

ensure the availability of efficient dynamic programming algorithms.

The second type of features captures the dependency between a micro label and

the observation sequence. First some observation attributes Φ that are relevant for

the particular application are defined and then are combined with micro-labels. These

features indicate the statistics of how often an attribute occurs with a particular label

conjunctively

ψsrσ(x,y; t) = [[yt=σ]]φr(xs) . (2.7)

Again ψsrσ(x,y; t) corresponds to a feature ψk(x,y; t) where k is indexed by (s, r, σ),

the attribute r of the observation at position s and the label σ. For example, in Named-

Entity Recognition, if φr(x) denotes whether the word x is ’Mr.’, σ is the micro-label

denoting the continuation of a person name, and s is the position before t, s = t − 1,

then the feature ψsrσ(x,y; t) denotes whether the t-th micro label in the label sequence

y is a continuation of a person name and the previous word (the word at position t−1)

is ’Mr.’

In the discriminative framework, we condition on the observation sequence (as

opposed to generating it as in the generative framework). Hence, extracting features

from arbitrarily past or future observations does not increase the complexity of the

model. For this reason, there are no restrictions on the relationship of s and t. The

features for which s 6= t are usually called overlapping features (or sliding window

features), since the same input attribute φa(xs) is encoded in the model multiple times

10

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

x(t+1)x(t)x(t−1) x(t+1)x(t)x(t−1)

y(t+1)y(t)y(t−1) y(t+1)y(t)y(t−1)

a) HMM b) CRF and variations

Figure 2.1: Graphical representation of HMMs and CRFs.

within different contexts. These features are used widely in discriminative sequence

learning [Lafferty et al., 2001, McCallum et al., 2000, Collins, 2002a] and have been

shown to improve classification accuracy in different applications.

The common use of overlapping features is by selecting an appropriate window size

δ and defining a window centered at the current position, i.e. s ∈ {t − δ, . . . , t + δ}.

If each input is described by A attributes φa and if there are S = |Σ| possible states,

then one may extract a total of (2δ+ 1) ·S ·A features of this type by combining every

input attribute with every micro-label for each position in the sliding window.

The features extracted at a position t are simply stacked together to form Ψ(x,y; t).

Many generalizations of this feature representation are possible, such as extracting

different input features dependent of the relative distance |t− s| in the chain. We use

this representation as a proto-typical example.

Figure 2.1 illustrates the difference between the architecture of HMMs and the

architecture described in this section, which is used in CRFs and the methods proposed

in this study. Shaded areas indicate variables that the model conditions on. As the

values of the variables are given, it is computationally inexpensive to use overlapping

features in Figure 2.1b, which is not the case in HMMs.

2.1.2 Kernels for Label Sequences

To overcome the limitations of a linear discriminative function F , one may use ker-

nel functions in order to construct and learn over Reproducing Kernel Hilbert Spaces

(RKHS).

In some applications, features that are combinations of some attributes might be

highly relevant. For example, in name entity recognition task an attribute “The current

word is United and the next word is States.” is a more reliable predictor for the

beginning of a location name than having two attributes “The current word is United.”

and “The next word is States.”. If we consider only word features, then the number of

11

such n-gram features is n times of the size of the corpus, W . If features that fire often

(such as capitalization, ending with some letter, etc.) are also included in the model,

then the number of features would be some scalar c times nW , where c < W . If n, c

and/or W is large, the computation and/or the storage of these higher order features

explicitly may be intractable 4.

Kernel-based architectures provide an efficient alternative to parametric models

with their ability to perform implicit non-linear mappings to a high dimensional space

via kernel functions K(x, x̄) = 〈Φ̃(x), Φ̃(x̄)〉. In order to use kernels, we need methods

that can work in a dual representation, where the data enters the computation only

in the form of inner products of pairs of observations, which can in turn be replaced

by the kernel function. SVMs and KLR are such methods and we investigate their

generalizations to label sequence learning in Chapters 4 and 5 respectively.

The fundamental design decision for the kernel-based architecture is the engineering

of the kernel function k that determines the kernel matrix K with entries K(i,y),(j,y′) =

k((xi,y), (xj ,y′)). As in the case of the primal form of features, our choice of kernel

functions is restricted by computational constraints. We consider the kernel functions

using which the discriminative function F can be computed efficiently.

Consider the kernel functions of the form

k((x,y), (x̄, ȳ)) = 〈Ψ(x,y),Ψ(x̄, ȳ)〉 (2.8)

The inner product of the 2nd order Markov feature vectors Ψ(x,y) and Ψ(x̄, ȳ) defined

in Section 2.1.1 is given by
∑

s,t [[ys = ȳt]]〈Φ(x, s),Φ(x̄, t)〉+
∑

s,t[[ys= ȳt∧ ys+1= ȳt+1]]

where Φ(x, s) denotes a vector of attributes of x that are extracted from a window of

observations centered at position s. Kernelizing the inner product of the observation

attributes, we propose to use the kernel function k = k1 + k2 for sequences, where

k1((x,y), (x̄, ȳ)) ≡
∑

s,t

[[ys = ȳt]]g(Φ(x, s),Φ(x̄, t)) , (2.9a)

k2((x,y), (x̄, ȳ)) ≡η
∑

s,t

[[ys= ȳt∧ ys+1= ȳt+1]], (2.9b)

and g is a standard kernel function defined over observation patterns and η > 0. For

example, when g is a polynomial kernel of degree 2, g(x, x̄) = (〈x, x̄〉 + 1)2, the set

of observation-label features induced by k1 consists of all attributes Φ(x, s) and their

4The situation is more severe when the features are real values and a Gaussian kernel is used, since
this corresponds to having infinitely many features.

12

pairwise combinations conjoined with a particular label. Notice that k1 couples obser-

vations in both sequences that share the same micro-labels at the respective positions,

whereas k2 counts the number of consecutive label pairs that are common in both

label sequences (irrespective of the inputs). The scaling factor η in k2 ensures that

the inter-label dependency contributions are not overwritten by the observation-label

dependency features, as it is common to have many observation attributes and g may

increase their contribution, as in the polynomial kernel.

The following lemma provides some principles to construct complicated kernels from

simpler ones:

Lemma 1 ([Cristianini and Shawe-Taylor, 2000] Proposition 3.12). Let K1 and K2 be

kernels over X ×X,X ⊂ <n, a ∈ <+,Φ : X → <m with K3 a kernel over <m × <m.

Then the following functions are kernels:

1. K(x, z) = K1(x, z) +K2(x, z)

2. K(x, z) = aK1(x, z)

3. K(x, z) = K3(Φ(x),Φ(z))

Theorem 1. The function k given in Equation 2.9 is symmetric positive semi-definite.

Proof. k2 is a kernel by the definition of a kernel, the inner product of a feature repre-

sentation, and by Lemma 1.2. k1 is also a kernel by the kernel definition and by Lemma

1.3 (by generating possibly infinite attributes of (x, s), joining it with the label value

to form a new feature representation and taking the inner product of the new feature

representation). Then, k is a kernel by Lemma 1.1.

The rationale of performing kernelization only on the observations is the so-called

pre-image problem: One can perform a non-linear feature mapping over observations

using kernel functions during both learning and inference, since they are observed in

both cases. However, nonlinear kernelization of labels results in the pre-image problem

[Weston et al., 2002], namely the problem of projecting label sequences from high

dimensional space (induced by the kernel function over labels) to the low dimensional

(original) space during inference. This operation disturbs the linear nature of the search

problem which enables the availability of the efficient Viterbi algorithm Thus kernelizing

over labels leads to non-linear decoding schemes, which is problematic for sequences.

13

In order to avoid this problem, we restrict ourselves to linear feature maps over label

sequences, but impose no restrictions on mappings over observation sequences.

One can generalize Equation 2.9 in various ways, for example by using higher order

terms between micro-labels in both contributions, without posing major conceptual

challenges. For the sake of presentation, we stick to Equation 2.9 and use it as a

prototypical example of the more general setting.

The Representer Theorem [Kimeldorf and Wahba, 1971] describes the characteris-

tics of optimal solutions for kernel-based methods:

Theorem 2. Let k : X ∗X → Y be the kernel of the corresponding Reproducing Kernel

Hilbert Space (RKHS) H. Given a training set {(x1, y1), . . . , (xn, yn)} where xi ∈ X

and yi ∈ Y , the solution F ∈ H of

min
F∈H

n
∑

i

L(xi, yi, F) + γ‖F‖2H (2.10)

where L : X × Y ×H → < is a loss function measuring the discrepancy of F (xi) and

yi, is given by

F (x) =
n
∑

i

αik(x
i, x) (2.11)

The most important consequence of the Representer Theorem is that one can find

a finite set of parameters αi to obtain the optimal solution of Equation 2.10, instead of

dealing with the possibly infinite dimensional RKHS. This theorem holds for a variety

of cost functions such as hinge loss and logarithmic loss, hence it applies to SVMs

and kernel logistic regression. The Representer Theorem guarantees that the optimal

solution of methods in which we use the kernelized architecture, namely HM-SVMs

(Chapter 4) and GPS classification (Chapter 5), is of the following form:

F (xj ,y) =
∑

i

∑

ȳ

α(i,ȳ)k((x
i, ȳ), (xj ,y)) = αTKe(j,y) . (2.12)

where e(j,y) is the (j,y)-th unit vector. Equation 2.12 holds for suitably chosen α which

depends on the objective function to be optimized. This Representer Theorem may

not seem to be useful, since the number of α parameters scale exponentially with the

length of sequence. However, in the following chapters, we make use of the dependency

structure of α(i,.) in order to reduce the number of these parameters.

14

2.2 Objective Functions

There is no single objective function for label sequences that would give the best perfor-

mance in all situations. This choice rather depends on the specific application. In this

thesis, a number of alternatives are investigated. We first point out some loss functions

for sequence learning that are generalizations of the standard loss functions for variable

classification. Unfortunately, it is NP-complete to optimize these functions. However,

they are still worth investigating since they motivate the choice of the loss functions

used in both previous work and this study.

2.2.1 Loss Functions for Sequences

Motivated from the standard zero-one classification loss, we define the empirical risk

of label sequences for n training instances

Rzo(Λ) =
1

n

n
∑

i=1

[[f(xi; Λ) 6= yi]] . (2.13)

A second risk function we consider is based on the ranking loss [Freund et al., 1998,

Schapire and Singer, 1999] which measures the fraction of incorrect label sequences that

are ranked higher than the correct one. Although ranking loss is more appropriate for

ranking problems, it might also be advantageous over zero-one loss in classification.

When perfect classification on the training data is not achievable, the ranking loss

provides more information than the zero-one loss.

Rrk(Λ, w)=
n
∑

i=1

∑

y 6=yi

[[F (xi,y; Λ)≥F (xi,yi; Λ)]] . (2.14)

As the length of a sequence increases, the probability of achieving zero-loss on a

sequence decreases exponentially (if the micro-label accuracy is not perfect). This

motivates measuring the performance of a sequence classifier in terms of zero-one loss

for individual labels. One might hope to design better classifiers by optimizing a loss

function that is similar to the evaluation metric. Hence, we propose the Hamming risk

[Schapire and Singer, 1999] which measures the zero-one loss for individual labels.

Rhm(Λ) =

n
∑

i=1

1

li

li
∑

t=1

[[ft(x
i; Λ) 6= yit]] . (2.15)

15

where ft(x
i; Λ) is the t-th micro label of the label sequence given by f(xi; Λ) and li is

the length of the ith sequence. Normalizing by this term leads to a loss between 0 and

1. Notice that Equation 2.15 reduces to the standard empirical misclassification risk,

if the sequential nature of the data is ignored.

The three risk functions presented are discontinuous and non-convex in Λ, and are

NP-complete to optimize. Moreover, minimizing the empirical risk alone is not sufficient

to ensure good generalization. The methods discussed in this study can be understood

as minimizing an upper bound on one of these risk functions, possibly combined with

a regularization term. Below, we discuss two loss functions: the logarithmic loss and

the marginal loss as upper bounds of Rzo and Rhm respectively.

2.2.2 Logarithmic Loss and Conditional Random Fields

We now present the conditional likelihood function optimized by Conditional Random

Fields (CRFs) [Lafferty et al., 2001]. CRFs have been the state-of-the-art in label

sequence learning till recently. They are a natural generalization of logistic regression

to label sequences. The probability of a label sequence conditioning on an observation

sequence is given by

p(y|x; Λ) =
1

Z(x,Λ)
exp [F (x,y; Λ)] , (2.16)

where Z(x,Λ) =
∑

y exp [F (x,y; Λ)] is a normalization constant. This distribution is

in exponential normal form and the parameters Λ are also called natural or canonical

parameters. The corresponding sufficient statistics are given by performing the sum

over the sequence index t:
∑

t ψk(x,y; t). If the features are restricted to binary values,

these sufficient statistics simply count the number of times a feature ψk has been

“active” along the labeled sequence (x,y).

The objective in CRFs is the maximization of the conditional likelihood, or equiv-

alently the minimization of the negative logarithmic loss (conditional log-likelihood):

Rlog(Λ) = −
1

n

n
∑

i=1

log p(yi|xi; Λ) . (2.17)

When it is not regularized, the logarithmic loss is prone to overfitting, especially with

noisy data. For this reason, it is common to penalize this objective function by adding

a Gaussian prior (a term proportional to the squared norm ||Λ||2) as suggested in

[Johnson et al., 1999, Chen and Rosenfeld, 1999] to avoid overfitting the training data.

16

The negative log-likelihood provides an upper bound on the empirical zero-one risk:

Proposition 1. Rzo log 2 ≤ Rlog.

Proof. Distinguish two cases:

(i) F (xi,yi; Λ) > maxy 6=yi F (xi,y; Λ) in which case log 2[[f(xi; Λ) 6= yi]] = 0 =

− log 1 ≤ − log p(yi|xi; Λ).

(ii) F (xi,yi; Λ) ≤ maxy 6=yi F (xi,y; Λ) in which case, since p(yi|xi; Λ) ≤ 1
2 ,

log 2[[f(xi; Λ) 6= yi]] = − log 1
2 ≤ − log p(yi|xi; Λ).

Summing over all i completes the proof.

2.2.3 Marginal Loss

In many applications, one is primarily interested in the per-label zero-one loss or Ham-

ming loss [Schapire and Singer, 1999]. Here we propose a logarithmic Hamming loss

function for label sequences. Following [Kakade et al., 2002, Altun et al., 2003a], one

can define a logarithmic risk based on the marginal probabilities of the individual label

variables yit:

Rmg(Λ) = −

n
∑

i=1

1

li

li
∑

t=1

log p(yit|x; Λ) (2.18)

where p(yit|x; Λ) =
∑

y:yt=yi
t
pΛ(y|xi). This is a non-convex function and defines an

upper bound on the Hamming risk Rhm, if one uses a pointwise decoding function

Proposition 2. With ft(x; Λ) = arg maxσ p(Yt = σ|x; Λ), the following bound holds:

log 2 · Rhm(Λ) ≤ Rmg(Λ).

Proof. Distinguish two cases:

(i) ft(x) = yt, then [[ft(x) 6=yt]] = 0 ≤ − log 1 ≤ − log p(yt|x; Λ)

(ii) ft(x) 6= yt, then log 2[[ft(x) 6= yt]] = log 2 ≤ − log p(yt|x; Λ), since Pr(Yt =

yt|x; Λ) ≤ 1
2 , because there exists σ 6= yt such that p(Yt = yt|x; Λ) ≤ p(Yt = σ|x; Λ) and

p(Yt = yt|x; Λ) + p(Yt = σ|x; Λ) ≤ 1. The claim follows by summing over all sequences

and all positions in sequences and applying the bound to every term individually.

2.3 Optimization Methods

The method of optimization might have a crucial role in the effectiveness of a clas-

sification method. In general, an optimization method which converges fast, results

17

in sparse solutions or that can handle a large number of features or large data might

have advantages over other optimization methods. In some cases, an approximate op-

timization that is more efficient in one of these aspects might be preferred over an

exact method, if they have similar accuracy. It might also be that an approximation

method performs better than the exact method. For example, sparse greedy methods

perform regularization inherently, which might lead to better generalization properties

than performing regularization by adding a term to an objective function that is prone

to overfitting.

Below, we present two optimization methods for the logarithmic loss of CRFs (Sec-

tion 2.3.1), and one method for optimizing the marginal loss (Section 2.3.2).

2.3.1 Optimization of Conditional Random Fields

Exact Optimization of CRFs

A number of algorithms have been proposed to estimate Λ that minimize (2.17) exactly.

These include iterative scaling [Lafferty et al., 2001] and various flavors of conjugate

gradient descent and second order methods [Wallach, 2002, Sha and Pereira, 2003,

Minka, 2001a]. Sha and Pereira [2003] show that Limited-Memory BFSG (L-BFSG),

a quasi-Newton method, is more efficient for minimizing the convex loss function in

(2.17) than the other methods in shallow parsing.

The gradient of the negative log-likelihood is given by:

∇θR
log =

∑

i

E

[

∑

t

ψ(x,y; t)|x = xi

]

−
∑

t

ψ(xi,yi; t) (2.19)

where the expectations are computed w.r.t. p(y|x; Λ). The stationary equations then

simply state that the observed sufficient statistics should match their conditional expec-

tations. Computationally, the evaluation of
∑

t ψ(xi,yi; t) is straightforward counting,

while summing over all sequences y to compute E
[
∑

t ψ(x,y; t)|x = xi
]

can be per-

formed using dynamic programming techniques, namely forward-backward algorithm

[Manning and Schütze, 1999], since the dependency structure between labels is a simple

chain.

Approximate Optimization of CRFs: Hidden Markov Perceptron Learning

Computing the gradient of the logarithmic loss function, (2.19) might be computation-

ally expensive if the corpus is very large, since one has to compute the expectations of

18

features for every training example. In some cases, a single example might be as infor-

mative as the entire corpus to update the parameters. Then, an online algorithm that

updates the model using a single training example may converge substantially faster

than a batch algorithm. If the distribution is peaked, the contribution of the most

likely label dominates the expectation values. Assuming this, the so-called Viterbi as-

sumption, one can compute a good approximation of the gradients by considering only

the most likely label sequence according to the current model. The following online

perceptron algorithm for label sequence learning (Algorithm 1), proposed by [Collins,

2002a], makes use of these two approximations:

Algorithm 1 Hidden Markov Perceptron algorithm.

1: Initialize Λ0 = ~0
2: repeat

3: for all training patterns xi do

4: Compute ŷ = arg maxy F (xi,y; Λt)
5: if yi 6= ŷ then

6: Λt+1 ← Λt + ψ(xi,yi)− ψ(xi, ŷ)
7: end if

8: end for

9: until convergence or a maximum number of iterations reached.

At each iteration, Hidden Markov Perceptron (HM-Perceptron) computes an ap-

proximation of (2.19) using only the current training instance xi (as opposed to the

entire corpus) and the label sequence ŷ that achieves the highest score for xi (as op-

posed to all possible label sequences). ŷ can be found by Viterbi decoding [Manning

and Schütze, 1999]. In order to avoid fluctuations, one can average over the iterations

of the perceptron algorithm as described in [Freund and Schapire, 1998]. Ciaramita

and Johnson [2003] present a space-efficient implementation of the average perceptron

algorithm.

Although we describe HM-Perceptron as an approximation algorithm of CRFs, it

was originally proposed as a generalization of the perceptron algorithm, which allows

the margin interpretation and leads to online mistake bounds due to Novikoff’s Theorem

[Novikoff, 1963], as discussed in Section 4.5.

19

Pitch Accent Rlog Rmg HM-Perceptron

Accuracy 76.62 76.40 76.55

Table 2.1: Per-label accuracy of Pitch Accent Prediction on CRFs, Rmg and HM-
Perceptron with window size 5.

2.3.2 Optimization of Marginal Loss

We propose using standard numerical optimization procedures such as L-BFSG to

optimize Rmg. The gradient is given by

∇θR
mg = −

∑

i

∑

t

(

E
[

ψ(x,y; t)|x = xi, yt = yit
]

−E
[

ψ(x,y; t)|x = xi
])

(2.20)

Equation 2.20 indicates that the expected sufficient statistics are now compared not to

their empirical values, but to their expected values, conditioned on a given label value

yit. In order to evaluate these expectations, one can perform dynamic programming

using the algorithm described in [Kakade et al., 2002], which has (independently of our

work) also focused on the use of Hamming loss functions for sequences. This algorithm

has the complexity of the forward-backward algorithm scaled by a constant.

2.4 Experiments

We experimentally evaluated the objective functions described above on one speech ap-

plication, pitch accent prediction, and on two NLP applications, Named Entity Recog-

nition (NER) and part-of-speech tagging (POS). The description of these applications

and the features used can be found in Appendix B.

We ran experiments comparing the two loss functions Rlog (Equation 2.17) and

Rmg (Equation 2.18) using both BFSG. We also evaluated the performance of average

HM-Perceptron algorithm. The regularization constants of both Rlog and Rmg were

adjusted using development data. For Rmg, in order to account for the risk of local

minima, we iteratively restarted the optimization from a point that is slightly (and

randomly) perturbed from the optimal point of the last optimization step until the

value of the objective function does not improve.

The results summarized in Tables 2.1, 2.2 and 2.3 demonstrate the competitive-

ness of the Rmg with respect to Rlog. We observe that in different applications the

20

NER Rlog Rmg HM-Perceptron

F1 74.83 74.17 73.41

Table 2.2: F1 measure of NER on Spanish newswire corpus on CRFs, Rmg and HM-
Perceptron with window size is 3.

POS Rlog Rmg HM-Perceptron

Accuracy 95.68 95.71 95.91

Table 2.3: Per-label accuracy of POS tagging on PennTreeBank on CRFs, Rmg and
HM-Perceptron.

ordering of the performance of the two loss functions changes. The performance of av-

erage perceptron varies as well. In pitch accent predict and NER, average perceptron

performs slightly worse than CRF. One might consider this as not surprising, since

HM-Perceptron is an approximation of CRF. However, it performs better than CRFs

in POS tagging. This result is consistent with the results in [Collins, 2002a] and it can

be explained by the margin interpretation of HM-Perceptron and the generalization

properties of the perceptron algorithm.

2.5 Discussion

The experimental results are consistent with our intuition that there is no single ob-

jective function resulting in the best performance in all situations.

We have observed that the marginal loss gives better performance for POS tagging

whereas log-loss gives better performance for pitch accent prediction and NER. For

the rest of this thesis, we focus on objective functions that are defined over the entire

sequence rather than the ones based on the Hamming loss.

We also observed that an approximation algorithm, HM-Perceptron, can perform

better than the exact algorithm for some applications and maybe preferable over ex-

act optimization of CRF on other applications, since it is very easy to implement,

computational much more inexpensive and results in similar performance.

In the next three chapters, we present generalizations of Boosting, SVMs and kernel

logistic regression to label sequence learning problem based on the framework presented

21

in this chapter. The advantages of each of these methods over the ones described in

this chapter are also discussed.

22

Chapter 3

Sequence Boosting

Boosting [Freund and Schapire, 1997] is one of the most powerful learning ideas in-

troduced to the machine learning community in the last decade. It is a discriminative

learning technique to find a highly accurate classifier, an ensemble, by combining many

simple, low-accuracy classifiers or weak learners. AdaBoost is the best known and most

popular boosting algorithm and enjoys the advantages of the sparse feature represen-

tation.

In this chapter, we present a generalization of AdaBoost to label sequence learning,

Sequence AdaBoost [Altun et al., 2003a]. Sequence AdaBoost has all the advantages

of discriminative methods for sequence learning as well as its implicit feature selection

property. This is important for efficient inference in high dimensional feature spaces

and model regularization. Sequence AdaBoost also makes use of the availability of

a dynamic programming formulation for efficient learning and inference due to the

Markov chain dependency structure between labels.

After a short overview of Boosting (Section 3.1), we define the objective function

of Sequence Boosting in Section 3.2. Then two optimization methods of Sequence

Boosting, gradient based optimization and Sequence Adaboost, are described in Section

3.3. We present generalization properties of Sequence AdaBoost in Section 3.4 and

briefly mention related work in Section 3.5. We conclude this chapter with experimental

results (Section 3.6) and discussions (Section 3.7).

23

3.1 Boosting

Since Boosting is a very well known method in the machine learning community, we

only present a brief overview in this section.

Given a (possibly infinite) set of weak learners (features) ψi ∈ H and a training set

of n labeled examples (xi, yi) with yi ∈ {1, . . . , S} drawn i.i.d. from an unknown, but

fixed distribution P (x, y), the goal of Boosting is to find a weight vector Λ for a linear

combination of weak learners:

F (x, y; Λ) =
∑

r

λrψr(x, y) (3.1)

The label of a new observation is found by simply performing a max operation on F

over all possible labels.

The best known algorithm of Boosting is AdaBoost (Algorithm 2). We describe

AdaBoost.MR, a multiclass version of AdaBoost based on the ranking loss [Schapire

and Singer, 1999].

Algorithm 2 AdaBoost.MR

1: Initialize D0(i, y) = 1/(n(S − 1)),∀i, y 6= yi;D0(i, y
i) = 0,∀i.

2: Initialize Λ = 0
3: for r = 1, . . . , R do

4: Pick a weak learner ψk
5: Compute optimal increment 4λk
6: Update weight λk ← λk +4λk
7: Update Dr+1:

Dr+1(i, y) =
Dr(i, y) exp

(

1
2λk(ψk(x

i, y)− ψk(x
i, yi))

)

Zr
(3.2)

8: end for

AdaBoost.MR is an iterative algorithm. At each round, the goal is to find the weak

learner that minimizes the rank loss:

Rrnk(Λ) =
∑n

i=1

∑

y 6=yi D(i, y)[[F (xi, y; Λ) ≥ F (xi, yi; Λ)]] (3.3)

where D is a distribution over (xi, y) pairs ∀i ∈ {1, . . . , S},∀y. This is achieved by

finding the weak learner ψk that minimizes Zr at each round, since the rank loss is

upper bounded by Zr for all r. Then the optimal weight update of ψk is found by:

4λk =
1

2
ln

(

1− εk
εk

)

(3.4)

24

where εk = Pi∼Dr [argmaxy ψk(x
i, y) 6= yi] is the error of weak learner ψk at round

r. This serial update technique usually leads to a solution with only few non-zeros

parameters and therefore results in a sparse feature representation.

Maintaining a weight distribution over training examples is a key idea of Boosting.

This distribution is updated at every round, so that more emphasis is placed on the

misclassified examples, Equation Equation 3.2. Zr is a normalization constant chosen

so that Dr+1 is a distribution.

The choice of the optimal weight update as well as the distribution over the training

examples is based on the loss function optimized by AdaBoost, i.e. the exponential

loss:

R(Λ) =
n
∑

i=1

∑

y 6=yi

D(i, y)eF (xi,y;Λ)−F (xi,yi;Λ) (3.5)

Early studies suggested that boosting is a very robust method. This has been the-

oretical explained by the observation that it maximizes the ensemble margin [Schapire

et al., 1998]. However, more thorough experimental studies showed that boosting can,

in fact, overfit very badly with noisy data. Different regularization methods have

been proposed, such as bounding the Λ parameters from above and below [Mannor

et al., 2003], or adding a smoothing constant to the numerator and denominator in

Equation Equation 3.4 which leads to limiting the magnitude of the λ values as well

[Schapire and Singer, 1999].

3.2 Objective Function

Following Schapire et al. [1998], we propose the following objective function for label

sequences:

Rexp(Λ, w) ≡

n
∑

i=1

∑

y 6=yi

D(i,y)eF (xi,y;Λ)−F (xi,yi;Λ) (3.6)

Proposition 3. The exponential risk is an upper bound on the weighted version of the

rank risk, Equation 2.14:

n
∑

i=1

∑

y 6=yi

D(i,y)[[F (xi,y; Λ)≥F (xi,yi; Λ)]] ≤ Rexp

25

Proof. (i) If F (xi,yi; Λ) > F (xi,y; Λ) then [[F (xi,y; Λ) ≥ F (xi,yi; Λ)]] = 0 ≤ ez for

any z.

(ii) Otherwise, [[F (xi,y; Λ) ≥ F (xi,yi; Λ)]] = 1 = e0 ≤ eF (xi,y;Λ)−F (xi,yi;Λ).

Performing a weighted sum over all instances and label sequences y completes the

proof.

Interestingly, when D is uniform for all y of each training instance xi, this loss

function is simply the weighted inverse conditional probability of the correct label

sequence Equation 2.16, as pointed out by Lafferty et al. [2001].

Rexp(Λ, w) =
∑

i

D(i)

[

1

p(yi|xi; Λ)
− 1

]

. (3.7)

Another way of writing the exponential loss function is using the odds ratio which

reveals the relationship of Sequence Boost and HM-SVM as discussed in Section 4.7.

Let O be the odds ratio between two label sequences y and ȳ. For a given observation

sequence x, the odds ratio of two label sequences w.r.t. Λ is given by:

O(x,y, ȳ; Λ) =
p(y|x; Λ)

p(ȳ|x; Λ)
(3.8)

= exp[〈Λ,
∑

t

Ψ(x,y; t) −Ψ(x, ȳ; t)〉] (3.9)

Then, the exponential loss is simply the sum of odds ratio of the correct label sequence

and all the incorrect label sequences weighted w.r.t. their lengths and our goal is to

find Λ∗ which minimizes the exponential loss:

Rexp(Λ, w) ≡
∑

i

D(i)
∑

y 6=yi

O(xi,yi,y; Λ) (3.10)

Λ∗ = argmin
Λ
Rexp(Λ, w) (3.11)

What should be the form of D(i)? We consider distributions where each training

instance is weighted with respect to its length in order to account for varying sequence

length:

D(i) =
w(li)
∑

iw(li)
(3.12)

where li is the length of the i-th sequence. In the case of noisy data, the exponentiated

difference between the correct and incorrect sequence scores (Equation 3.11) might be

extremely large, scaling exponentially with the length of the sequence. Then, long

26

sequences might dominate the loss function and leave shorter sequences ineffective.

To overcome this problem, we consider weighting functions logw(li) = li log π with

π ∈ (0; 1] as plausible candidates.

3.3 Optimization Methods

Rexp is a convex function. We first discuss an exact optimization method using standard

gradient based methods, then present the Sequence AdaBoost algorithm.

3.3.1 Exact Optimization

In order to derive the gradient equations for the exponential loss, we can simply make

use of the following elementary facts:

∇Λ(− log p(Λ)) = −
∇Λp(Λ)

p(Λ)
, and ∇Λ

1

p(Λ)
= −
∇Λp(Λ)

p(Λ)2
=
∇Λ(− log p(Λ))

p(Λ)
. (3.13)

Then it is easy to see that

∇ΛR
exp(Λ, w) =

∑

i

E
[
∑

t Ψ(x,y; t)|x = xi
]

−
∑

tΨ(xi,yi; t)

p(yi|xi; Λ)
D(i) . (3.14)

The only difference between the gradient of Rlog, (2.19), and the gradient of Rexp,

(3.14), is the non-uniform weighting of different sequences by their inverse probability,

hence putting more emphasis on training label sequences that receive a small overall

(conditional) probability. In order not to emphasize long sequences excessively, the

contribution of each training example is also weighted w.r.t. its length. In the absence of

w(l) term, ∇ΛR
exp can be dominated by very long sequences since p(yi|xi; Λ) decreases

exponentiall with the length of the sequence.

Given the gradient equations, we can solve the optimization problem using a 1st

order gradient method, such as a Quasi-Newton method. Since these optimization

techniques update all the parameters in parallel, the resulting classifier lacks sparseness

properties. We now propose Sequence AdaBoost which is a optimization method for

Sequence Boosting with the advantages of feature sparseness.

3.3.2 Sequence Boosting

As an alternative to a simple gradient method, we derive a boosting algorithm that gen-

eralizes the AdaBoost.MR algorithm for multiclass classification [Schapire and Singer,

27

1999] to label sequence learning. This is an approximation algorithm (optimizing a

bound on the exponential loss function) with sequential updates. Due to this serial

update technique, the algorithm usually stops after updating only a small subset of all

parameters, therefore achieves a sparse feature representation.

Sequence AdaBoost is very similar to AdaBoost.MR. It forms a linear combination

of weak learners, an ensemble, by selecting a weak learner and its weight parameter at

each round. It also maintains a weight distribution of observation-label sequence pairs

and updates this distribution after every round of boosting.

Weight distribution of examples

We use Y l to denote all possible label sequences (macro-label set) of length l and define

a sequence of distributions Dr(i,y) over (xi,y) pairs recursively as follows:

Dr+1(i,y)≡
Dr(i,y)

Zr
e4λk(

P

t ψk(xi,y;t)−ψk(xi,yi;t)). (3.15)

Here k = k(r) denotes the feature selected in the r-th round, 4λk is the optimal

weight update ψk and Zr is the normalization constant. We initialize D0(i,y) =
w(li)

(|Y li |−1)
P

j w(lj)
and D0(i,y

i) = 0 for all i. Let 4Λk be a vector of zeros and the

value 4λk(r) at the k(r)th position. After R rounds of boosting, the parameter vector

is given by Λ =
∑R

r=14Λk. Then, at any round, the distribution is given by:

D(i,y) ≡ w(li)
exp

[

F (xi,y) − F (xi,yi)
]

∑

j w(lj)
∑

y′ 6=yj exp [F (xj ,y′)− F (xj ,yj)]
, ∀y 6= yi (3.16)

= D(i)πi(y) (3.17)

where

D(i) ≡
w(li)

[

p(yi|xi; Λ)−1 − 1
]

∑

j w(lj) [p(yj |xj ; Λ)−1 − 1]
(3.18)

πi(y) ≡
p(y|xi; Λ)

1− p(yi|xi; Λ)
, (3.19)

Equation 3.17 shows how we can split D(i,y) into a relative weight for each training

instance, given by D(i), and a relative weight of each sequence, given by πi(y), the

re-normalized conditional probability p(y|xi; Λ). Notice that D(i)→ 0 as we approach

the perfect prediction case of p(yi|xi; Λ)→ 1.

Proposition 4. For any number of rounds R, Rrk ≤
∏R
r=1 Zr.

Proof. Schapire and Singer [1999, Theorem 6]

28

Selecting optimal feature and its weight update

Since optimizing the rank loss is NP complete, our goal is to minimize its upper bound,

the partition function or weight normalization constant Zr as in standard AdaBoost.

We define a boosting algorithm which aims at minimizing Zr w.r.t. a weak learner ψr(k)

and its corresponding optimal weight update4λr(k) at each round. In order to simplify

the notation, we drop the round index r. Let ψ = ψr(k) and 4λ = 4λr(k). Then,

Z(4λ) ≡
∑

i

D(i)
∑

y 6=yi

πi(y) exp

[

4λ

(

∑

t

ψ(xi,y; t) − ψ(xi,yi; t)

)]

=
∑

b

(

∑

i

D(i)p(b|xi; Λ, ψ)

)

exp [b4λ] , (3.20)

where p(b|xi; Λ, ψ) =
∑

y∈y(b;xi,ψ) πi(y) and y(b;xi, ψ) ≡ {y : y 6= yi∧(
∑

t ψ(xi,y; t)−

ψ(xi,yi; t)) = b}. This minimization problem is only tractable if the number of fea-

tures is small, since a dynamic programming run with accumulators [Lafferty et al.,

2001] for every feature is required in order to compute the probabilities p(b|xi; Λ, ψ),

i.e. the probability for the feature ψ to be active exactly ξ times, conditioning on the

observation sequence xi, where ξ is the sum of b and the number of times ψ is observed

in (xi,yi).

In cases, where this is intractable (and we assume this is the case in most appli-

cations), one can instead minimize an upper bound on Z. To find such a bound we

exploit the convexity of the exponential function and use the following inequality valid

for x, x0 ≤ x ≤ x1, that is linear in x,

ex ≤ ex0
x1 − x

x1 − x0
+ ex1

x− x0

x1 − x0
, (3.21)

Let u(xi,y) ≡
∑

t Ψ(xi,y; t) −Ψ(xi,yi; t), where uk(x
i,y) measures the difference

between the sufficient statistics of feature k in the correct label-observation sequence

pair (xi,yi) and a label-observation sequence pair (xi,y). Let

U = max
i,y

u(xi,y) (3.22)

L = min
i,y

u(xi,y) (3.23)

where Lk ≤ uk(x
i,y) ≤ Uk, ∀k, i,y (3.24)

29

As before, fixing r let u(xi,y) = uk(r)(x
i,y), U = Uk(r) and L = Lk(r). These defini-

tions allow us to upper bound Z:

Z(4λ) =
∑

i

D(i)
∑

y 6=yi

πi(y) exp
[

4λu(xi,y)
]

(3.25)

≤
∑

i

D(i)
∑

y 6=yi

πi(y)

[

U − u(xi,y)

U − L
e4λL +

u(xi,y) − L

U − L
e4λU

]

(3.26)

= se4λL + (1− s)e4λU , where (3.27)

s ≡
∑

i

D(i)
∑

y 6=yi

πi(y)
U − u(xi,y)

U − L
(3.28)

Here, 0 ≤ s ≤ 1 can be interpreted as a measure of correlation of Ψ and the correct

label sequences with respect to the distribution Dr(i,y). We call s the pseudo-accuracy

of the feature ψ.

Taking the derivative and enforcing stationarity, we get the analytical solution of

4λ that optimizes the upper bound on Z:

4λ =
1

U − L
log

(

−Ls

U(1− s)

)

. (3.29)

Plugging Eq.Equation 3.29 into the upper bound gives:

Z ≤

(

−Ls

U(1− s)

)
L

U−L

s
U − L

U
(3.30)

Notice that this formulation is a generalization of standard Boosting. In boosting,

it is usually assumed that ψk(x,y) ∈ {−1, 1} or ψk(x,y) ∈ [−1, 1] as in [Schapire and

Singer, 1999]. The bound on the exponential function for x0 = L = −1 and x1 = U = 1

is given by:

eαx ≤
1

2
e−α(1− x) +

1

2
eα(1 + x) (3.31)

leading to the optimal update 4λ:

4λ =
1

2
log

(

s

1− s

)

. (3.32)

which is a special form of Equation 3.29. Here, s corresponds to W+ in the notation

of Schapire and Singer [1999]. In that case Equation 3.30 rewrites as Z ≤ 2
√

s(1− s).

In sequence learning, Uk and −Lk can be as large as the length of a sequence if

the feature ψk occurs frequently. The features that capture the inter-dependency of

30

micro labels are such features. Then, the bound in Equation 3.26 can be very loose,

especially when there exists a very long sequence in the training set. One can get a

better approximation by defining a bound for each sequence using the fact that the

contribution of each sentence to the loss function is combined linearly. Let

Ui = max
y

F(xi,y) (3.33)

Li = min
y

F(xi,y) (3.34)

Thus, the union of the intervals [Lik;U
i
k] for every training sequence i gives [Lk;Uk] for

all feature ψk. We can define a tighter bound on Z as:

Z(4λ) ≤
∑

i

D(i)
∑

y 6=yi

πi(y)

[

U i − u(xi,y)

U − L
e4λL +

u(xi,y)− L

U − L
e4λU

]

=
∑

i

D(i)
(

sie4λL + (1− si)e4λU
)

, where (3.35)

si ≡
∑

y 6=yi

πi(y)
U i − u(xi,y)

U i − Li
(3.36)

This corresponds to defining a piecewise linear upper bound on the exponential func-

tion, which might lead to a substantially tighter bound than Equation 3.26. Figure 3.1

illustrates the difference between the two bounds on an example of 4 observation-label

sequence pairs. Let w(li) = 1,∀i. The line labeled LB is the loose bound given by

Equation 3.21 where x0 = −3 and x1 = 4. The gap between Z (Equation 3.25) and the

loose bound (Equation 3.26) is four times the area between LB and the exponential

function. In the example, U1 = 4, L1 = −2, U2 = 3, L2 = −3, U3 = 3, L3 = 0, U4 = 2,

L4 = −1. The gap between Z and the tight bound (Equation 3.35), is the sum of the

area between each line S∗ and the exponential curve, which is much smaller than the

gap of the loose bound.

Unfortunately, there is no analytical solution of 4λ that minimizes Equation 3.35.

By taking the second derivative w.r.t. 4λ, it is easy to verify that this is a convex

function in 4λ which can be minimized with a simple line search. Since Equation 3.26

gives a looser bound, its update rule (Equation 3.29) leads to more conservative step

sizes.

It is important to see that the quantities involved in the minimization of both

bounds, s and si, are simple expectations of sufficient statistics. These values can be

computed for all features simultaneously using a single dynamic programming run per

31

−3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

S1

S2

S3

S4

LB

Figure 3.1: An example of the tight and loose bounds on the normalization constant
Z.

sequence. Thus, at each round of boosting, the complexity of selecting the feature to

include in the ensemble is O(nl) where nl denotes the total length of the training set

and is independent of the number of features. The complexity of finding the optimal

weight update is O(1) for the loose bound. Finding the optimal weight update of

the tight bound involves one dimensional function minimization. If some minor book-

keeping prior to optimization is performed (as described below in Section 3.3.2), each

iteration requires only O(lm) complexity where lm denotes the maximum length of

the sequences in training data. Thus, the complexity of this step is dominated by the

feature selection step. In our experiments, the optimum was usually found in three or

four optimization steps.

Both of the upper bounds may lead to conservative estimates of the optimal step

sizes. One might use more elaborate techniques to find the optimal 4λk, once ψk has

been selected. For example, Z(4λk) can be optimized exactly for the feature ψk that

minimizes the upper bound on Z. This involves performing a dynamic programming

with accumulators on the sequences in which ψk can be observed. The complexity of this

process is O(nl). On average, the complexity is much less if the feature representation

is sparse, as the features are active in only a few sequences.

32

Algorithm

We now describe Sequence AdaBoost with respect to the loose bound presented above.

Sequence AdaBoost initializes the distribution over observation label sequence pairs

and iteratively computes sk and Zk for every feature (by performing a single dynamic

programming run), picks the feature ψk that minimizes Z, updates the feature weights

Λ by adding the optimal feature weight update4λk and computes the new data distri-

bution. The boosting algorithm that optimizes the tighter bound is given by replacing

lines 4, 5 and 6 in Algorithm 3 accordingly. To optimize Zk exactly, one simply changes

Line 6.

Algorithm 3 Sequence AdaBoost.

1: Initialize D0(i,y) = w(li)

(|Y li |−1)
P

j w(lj)
, D0(i,yi) = 0.

2: Initialize Λ = 0.
3: for r = 1, . . . , R do

4: Perform a dynamic programming over the training data to compute sk,∀k
5: Select ψk that minimizes the upper bound in Eq.Equation 3.26.
6: Compute optimal increment 4λk using Equation 3.29.
7: Update weight λk ← λk +4λk.
8: Update Dr+1 using Eq.Equation 3.15.
9: end for

For regularization purposes, we add a smoothing term to Equation 3.29 in order to

limit the magnitude of 4λ:

4λ =
1

U − L
log

(

−Ls+ ε

U(1− s) + ε

)

. (3.37)

where ε is a small positive constant.

If the feature representation is sparse (which is the case for many applications),

some features may be active in only a small fraction of the training instances. One

can restrict the dynamic programming only to the training instances that contain the

feature that is added to the ensemble in the last round and reduce the training time

substantially. Also, the pseudo-accuracy sk of a feature ψk needs to be updated only if

the feature selected in the previous round may co-occur with ψk in a sequence. In order

to apply these computational reductions, we store the list of sequences that a feature

might be observed, SListk for all features ψk and the list of features which may be

observed in a sequence, FListi for all training sequences (xi,y). These structures are

extremely sparse. We keep a list of sequences SLr for which a dynamic programming

33

pass is required in the current boosting round r. After each round of boosting, this

list is updated to include all the sequences in which the last feature picked ψk may be

observed, SListk. We also keep a list of features FLr for which sk requires updating.

This is especially useful if we optimize Zk exactly, as the complexity of this minimization

is large. A similar technique has been used in [Collins, 2000].

Algorithm 4 A more efficient version of Sequence AdaBoost.

1: Initialize D0(i,y) = w(li)

(|Y li |−1)
P

j w(lj)
, D0(i,yi) = 0.

2: Initialize Λ = 0.
3: Store SListk, ∀k and FListi, ∀i.
4: Initialize FL1 = Ψ, SL1 = {1, . . . , n}.
5: for r = 1, . . . , R do

6: Perform a dynamic programming over SLr
7: Compute and store sk,∀k ∈ FLr
8: Select ψk ∈ Ψ that minimizes the upper bound in Eq.Equation 3.26.
9: Compute optimal increment 4λk using Equation 3.29.

10: Update weight λk ← λk +4λk.
11: Update Dr+1 using Eq.Equation 3.15.
12: Update SLr+1 =SListk, FLr+1 =FListi ∀i ∈ SL.
13: end for

When optimizing the tight bound, in order to perform efficient optimization for the

optimal weight update4λ, along with Slistk, we also store the maximum and minimum

values of each feature ψk. Once ψk is selected, one can go through Slistk to collect the

terms in the optimization function with the same exponent, leading to an optimization

step of O(lm) complexity.

3.4 Analysis

As standard Boosting, Sequence AdaBoost maximizes the ensemble margin. We first

present the generalization properties of Sequence AdaBoost based on margin bounds

in Theorem 3 (Section 3.4.1). We then prove that Sequence AdaBoost maximizes the

margin in Section 3.4.2.

3.4.1 Margin Based Generalization Bounds

Theorem 3 is proved by [Collins, 2002b] and is an extension of Theorem 6 by Schapire

et al. [1998]. It is valid for any voting method of label sequences, including Sequence

34

AdaBoost. It is based on the assumption that feature weights λk ∈ [0, 1] and
∑

k λk = 1.

Since each feature ψk ∈ H is bounded and f(x) performs a max operation, scaling Λ

leaves f(x) unchanged. As for the non-negativity constraints, we define a new feature

representation Ψ̄ ∈ <2d, where d is the size of Ψ. For each feature ψk ∈ Ψ, we define

two features in Ψ̄, ψ̄k = ψk and ψ̄d+k = −ψk. When λ̄ is restricted to <+, the class of

functions F̄ = 〈Λ̄, Ψ̄〉 and F = 〈Λ,Ψ〉 are equivalent. Thus, without loss of generality,

we can assume λk ∈ [0, 1] and
∑

k λk = 1.

Let the convex hull C of H be the set of mappings that can be generated by taking

a weighted average of classifiers from H.

C ≡

F : (x,y)→
∑

ψ∈H

l
∑

t=1

λψψ(x,y; t)|λψ ≥ 0;
∑

ψ

λψ = 1

(3.38)

where l is the maximum length of the sequences in the data set. In order to deal with

sequences of varying lengths, we assign Ψ(xi,y; t) = 0,∀i, li < t ≤ l. Let S = |Σ| be

the size of the micro-label set and γ be the margin:

γ(F,x,y) = F (x,y) −max
y′ 6=y

F (x,y′) (3.39)

Theorem 3 (Theorem 8 [Collins, 2002b]). Let D be a distribution over X ∗ Y and let

D be a sample of n examples chosen independently at random according to D. Assume

that the feature (base-classifier) space H is finite, and let δ > 0. Then with probability

at least 1 − δ over the random choice of the training set D, every function F ∈ C

satisfies the following bound for all θ > 0:

PD[γ(F,x,y) ≤ 0] ≤ PD[γ(F,x,y) ≤ θ] +O

(
√

1

n

(

R2 log(nN)

θ2
+ log

1

δ

)

)

(3.40)

where ‖Ψ(x,y) −Ψ(x, ỹ)‖ ≤ R,∀x,∀y, N = |S|l.

3.4.2 Margin Maximization

We now prove that Sequence Adaboost maximizes the number of training examples

with large margin, by a simple extension of Theorem 5 by Schapire et al. [1998]. In

Theorem 3, the margin is defined such that Λ is normalized. To achieve this, we redefine

F (x,y) =
∑

r λr
∑

t ψr(x,y; t)/
∑

r λr.

35

Theorem 4. If Sequence Adaboost (Algorithm 3) generates weighted training pseudo-

accuracy s1, . . . , st, then for all θ,

PD[γ(F,x,y) ≤ θ] ≤

R
∏

r=1

Ur − Lr
Ur

Ur−Lr

√

sUr+θ
r (1− sr)−(Lr+θ)

(

−
Lr
Ur

)Lr+θ

(3.41)

Proof. The proof is very similar to the proof given in [Schapire et al., 1998]. We repeat

it for completeness.

When γ(F,x,y) = miny′ 6=y F (x,y) − F (x,y′) ≤ θ,

min
y′ 6=y

∑

t

∑

r

λr(ψr(x,y; t) − ψr(x,y
′; t)) ≤ θ

R
∑

r=1

λr (3.42)

1 ≤ exp(θ

R
∑

r=1

λr − min
y 6=y′

∑

t

∑

r

λr(ψr(x,y; t) − ψr(x,y
′; t)) (3.43)

Therefore,

PD[γ(F,x,y)≤θ]≤ED[exp(θ

R
∑

r=1

λr − min
y′ 6=y

∑

t,r

λr(ψr(x,y; t) − ψr(x,y
′; t))] (3.44)

= exp(θ
R
∑

r=1

λr)
n
∑

i=1

exp(−min
y′ 6=yi

∑

t,r

λr(ψr(x
i,yi; t)−ψr(x

i,y′; t)))

≤ exp(θ

R
∑

r=1

λr)

n
∑

i=1

∑

yi 6=y′

exp(F (xi,y′)− F (xi,yi)) (3.45)

= exp(θ

R
∑

r=1

λr)

(

R
∏

r=1

Zr

)

n
∑

i=1

∑

yi 6=y′

DR+1(i,y
′) (3.46)

Using Equation 3.29, Equation 3.30, the definition of ε as given in the theorem and the

fact that
∑m

i=1

∑

y′ 6=yi DR+1(i,y
′) = 1 proves the theorem.

By setting U = 1 and L = −1, we see that Theorem 5 in [Schapire et al., 1998] is

a special case of our theorem.

3.5 Related Work

Boosting has been applied to a variety of problems, e.g. text categorization [Schapire

and Singer, 2000], document routing [Iyer et al., 2000], ranking [Freund et al., 1998],

as well as part-of-speech (POS) tagging [Abney et al., 1999], prepositional phrase (PP)

36

attachment [Abney et al., 1999], named entity recognition [Collins, 2002c, Wu et al.,

2002], parsing [Collins, 2000]. Most of these studies has neglected the structure of the

observation-label space (in cases where such a structure exists) with a few exceptions.

Abney et al. [1999] attempt to capture the sequence structure in the POS tagging

and PP attachment by using the correct neighboring micro-labels during the learning

phase of AdaBoost and use a Viterbi-style optimization during the inference phase.

We call this method Viterbi-AdaBoost below. Their results demonstrate that this

model performs significantly worse than independent classification of each observation

in the sequence. This observation can be explained by the mis-match between the

learning and inference phases. During learning, since the correct neighboring labels

are used, the corresponding features provide noiseless information (assuming the label

noise is negligible). Hence, if the inter-dependence between labels are important, the

classifier might adjust the weights such that it relies heavily on the noiseless label

inter-dependence features. During inference, since the neighboring labels are predicted

themselves, if the classifier is not perfect, the high confidence on the neighboring labels

might lead to the propagation of an error along a sequence resulting in accuracy worse

than independent classification of each observation in the sequence. In our method,

however, learning and inference phrases are matched, i.e. the surrounding labels are

determined via a dynamic programming technique during both training and testing

phases.

Collins [2000] presents a modified version of AdaBoost applied to the parsing prob-

lem. This study, which is the motivation for our work, proposes an optimization func-

tion similar to (3.6):

Rexp(Λ, w) ≡
∑n

i=1

∑

y∈GEN(xi),y 6=yi eF (xi,y;Λ)−F (xi,yi;Λ) (3.47)

Based on this loss function, Collins [2000, 2002c] extends boosting to the structured

observation-label classification problem. If the GEN set is small enough to be explicitly

enumerated, the problem reduces to a multiclass classification where the size of the label

set is |GEN(xi)| and can be solved efficiently with some book-keeping as described in

[Collins, 2000]. If that is not the case (which is true for most structured problems), an

external classifier is used to reduce GEN by selecting the N-best (structured) labels.

The difference between the two objective functions is the summation over labels:

The summation in Equation 3.47 ranges over a top N list generated by an external

mechanism classifier, whereas in our function the sum includes all possible sequences.

37

As demonstrated in Section 3.3, an explicit summation in Equation 3.6 is possible

because of the availability of a dynamic programming formulation to compute sums over

all sequences efficiently. One of the disadvantages of Equation 3.47 is the necessity of an

external mechanism to provide a list of likely labels. Also studying some generalization

properties of the algorithm, such as its effect on L1 norm margin, is problematic [Collins,

2002b]. The advantage of this approach is the computational efficiency as one does not

need to perform a dynamic programming at every round of AdaBoost.

3.6 Experiments

We experimentally evaluated Sequence AdaBoost on pitch accent prediction, Named

Entity Recognition (NER) and part-of-speech tagging (POS).

We ran experiments comparing the loss function of CRFs (Equation 2.17) and the

exponential loss (Equation 3.6) (Exp) optimized with the BFSG method [Benson et al.,

2004] and with different formulations of Sequence AdaBoost (SBoost). We also evalu-

ated the performance of standard AdaBoost (Boost), where the dependency between

the micro-labels are ignored. For this classification problem, the feature space consists

of all the features except the features represent the inter-label dependencies. Another

model we tested was Viterbi-AdaBoost (VBoost), which uses the correct neighboring

labels during training and performs a Viterbi decoding during testing [Abney et al.,

1999].

The constant π of the weight function w(l) in the exponential loss function is ad-

justed using the development data. Boosting was stopped when the accuracy of the

development data started decreasing. We used the tight bound (Equation 3.35) to

select the features and optimized Z exactly to find the optimal weight update for the

selected feature, unless stated otherwise.

Figure 3.2 summarizes the results for pitch accent prediction of window size 5,

i.e. when observation features are extracted from the current word, the two previous

and next words. The first observation we make is that appropriate sequence models

(CRF, Exp, SBoost) perform significantly better than standard AdaBoost and Viterbi-

Boosting. As reported by Abney et al. [1999], Viterbi-Boosting performs worse than

standard AdaBoost, which ignores the sequence structure of the problem. This result

can be explained by the mismatch between training and testing phases as argued in

Section 3.5. The difference between CRFs and the exponential risk optimization is not

38

Figure 3.2: Accuracy of pitch accent prediction on Boosting formulations, Rexp and
CRFs over a window of size 5.

NER Rlog Rexp Boost

S1 59.92 59.68 48.23

S2 70.26 69.11 69.00

S3 74.83 74.22 73.88

Table 3.1: F1 measure of NER on Spanish newswire corpus on CRFs and Sequence
Boosting. The window size is 3 for S3.

statistically significant. Sequence AdaBoost has the advantage of using only 11.56% of

the parameters, whereas the other models use all of the parameters.

In NER and POS experiments, we experimented the feature sparseness properties

of Sequence AdaBoost, by defining incremental sets of features. These results are

summarized in Table 3.1 and in Table 3.2. The optimal weight update for POS was

computed using the tight bound. The first set S1 includes only HMM features (See

Appendix B.2 for details). S2 also includes spelling features of the current word and

S3 includes features of the surrounding observations. Sequence AdaBoost performs

substantially worse than the BFSG optimization of Rexp when only HMM features

are used, since there is not much information in the features other than the identity

of the word to be labeled. Consequently, the boosting algorithm needs to include

almost all weak learners in the ensemble and cannot exploit feature sparseness. When

39

POS Rlog Rexp Boost

S1 94.91 94.57 89.42

S2 95.68 95.25 94.91

Table 3.2: Accuracy of POS tagging on PennTreeBank.

there are more detailed features such as the spelling features, the boosting algorithm

is competitive with the BFSG method, but has the advantage of generating sparser

models. For example, in POS tagging, the feature “The current word ends with -ing

and the current tag is VBG.” replaces many word features. The BFSG method uses all

of the available features, whereas boosting uses only about 10% of the features. Thus,

the sparse nature of the application is necessary for the success of Sequence AdaBoost.

We now investigate different methods of optimizing Z in Sequence AdaBoost,

namely using the loose and tight bounds (Equations 3.28 and 3.35 respectively) and

optimizing Z exactly once the optimal feature is chosen with respect to the tighter

bound. Even with the tighter bound in the boosting formulation, the same features are

selected many times, because of the conservative estimate of the step size for parame-

ter updates. We observe a speed up on the convergence of the boosting algorithm by

optimizing Z exactly. In order to evaluate this, we present the features selected in the

first 100 rounds along with the number of times each feature is selected in Table 3.3.

Table 3.3 demonstrates that the tight bound substantially improves the loose bound.

For example, a feature selected 30 times in the first 100 rounds of boosting using the

loose bound optimization, is selected only 5 times by the tight bound optimization.

The features that are selected most frequently by the loose bound are the features that

are likely to be observed at any position in the sentence, which leads to a very loose

bound (−x0 = x1 = l in Equation 3.21 where l is the maximum length of the sentences

in the training set). Also, the step sizes achieved by the exact optimization is more

accurate than the ones of the loose bound. The same feature is selected only once with

this optimization (as opposed to 5 times with the tight bound optimization).

However, we do not observe this phenomena in pitch accent prediction. In the first

100 rounds, the highest frequency of selecting the same feature using the loose bound

is 7. This can be explained by the difference of the average length of sequences in the

two tasks (7 vs 36). When the length of a sequence is around 7, the loose bound is

reasonably tight.

40

Features L T TExact

yt:I-ORG, yt−1:I-ORG 30 5 1

yt:I-PER, yt−1:B-PER 30 1 1

yt:I-MISC, first letter of xt:2 5 5 2

yt:I-LOC, xt−1 contains digit and hypen:4 3 1 1

yt:O, xt+1 contains hypen and digit:4 2 2 2

yt:I-MISC, yt−1:I-MISC 1 8 2

yt:B-PER, first letter of xt:2, 1 7 4

yt:B-PER, xt−1’s initial capitalized and ends with dot:0 1 2 2

yt:I-ORG, xt−1 is sentence initial and its initial is capitalized:2 1 2 2

yt:I-ORG, xt−1=de 1 2 1

yt:I-MISC, xt+1=” 1 2 1

yt:I-MISC, xt−1 ends with dot 1 2 0

yt:I-PER, xt ends with letter:4 0 0 2

Table 3.3: Features that are selected more than once in the first 100 rounds of boosting
with the loose bound(L), the tight bound (T) or exact optimization of Z with the tight
bound (TExact).

3.7 Discussion

We observed that the performance of Sequence AdaBoost is comparable or slightly

worse than CRFs. CRFs and Sequence AdaBoost differs in terms of the loss functions

(log vs. exp-loss) as well as the optimization method. Optimization of Rexp show

that some of this difference can be accounted to the loss function. There are boosting

algorithms that optimize different loss functions other than the exp-loss, such as Logit-

Boost [Friedman et al., 2000], which optimizes the log-loss. We are going to investigate

designing Sequence LogitBoost in our future work.

The advantage of the Sequence AdaBoost over CRFs is its implicit feature selection

property, which results in very sparse models, using about 10% of the feature space.

However, it is important that the application naturally has a sparse representation. We

should also point out that an alternative method to Boosting in order to have sparse

feature representations is regularizing the loss function with L1 norm. L1 norm, due

to its hinge at 0, generally leads to sparse feature representations.

We observed that if the possible frequency of a feature does not vary much across

sequences and the average length of sequences is small, the approximation given by the

loose bound is tight enough to achieve adequate step sizes. Then, due to its analytical

41

solution, it is preferable over the other methods. Otherwise, one should use the tighter

bound in order to select the features to include in the ensemble. The selection between

the exact optimization versus optimizing the tight bound is a tradeoff between the

number of boosting iterations and the size of the training data. When the training

data is not very large, one may choose to optimize Z directly in order to reduce the

boosting iterations.

42

Chapter 4

Hidden Markov Support Vector

Machines

Support Vector Machines (SVMs), originally developed by Vapnik [1998], are a princi-

pled and powerful method rooted in the statistical learning theory and are one of the

state-of-the-art classification methods. They are a discriminative learning method for

inducing linear classifiers in a kernel-based feature space. The hyperplanes induced by

SVMs enjoy the advantages of sparseness in the dual representation.

In this chapter, we present a generalization of SVMs to label sequence learning

[Altun et al., 2003c]. This method is named Hidden Markov Support Vector Machines

(HM-SVMs), since it combines the advantages of HMMs and SVMs. It is a discrim-

inative sequence learning method with the power of maximum (soft) margin criteria

and the strength of learning with non-linear feature mappings defined jointly on the

observation-label space by using kernel functions, two genuine properties of SVMs. It

also inherits dynamic programming techniques from HMMs to exploit the sequence

structure of labels.

We employ the kernel for sequences presented in Section 2.1.2. We first overview

SVMs in the standard setting briefly in Section 4.1. The following sections describe the

objection function and the optimization methods (Sections 4.2 and 4.3). We present

a convergence analysis of our optimization method in Section 4.4 and mention related

work in Section 4.5. We conclude this chapter with experimental results in Section 4.6.

43

4.1 Support Vector Machines

SVMs have been studied in great depth for binary classification [Vapnik, 1998, 1999,

Cortes and Vapnik, 1995]. The goal is to find a linear hyperplane that separates

two classes with maximal margin γ. If a margin of γ > 0 is achieved, it can be

made arbitrary large by scaling hyperplane parameters Λ due to the linearity of the

hyperplane. One can overcome this multiple solution problem by either fixing the norm

and maximizing the margin subject to the norm constraints or by fixing the margin to

be equal to 1 (resulting in a canonical hyperplane [Cristianini and Shawe-Taylor, 2000])

and minimizing the squared norm of Λ, ‖Λ‖2, subject to the margin constraints.

As the data is not separable in many real-world problems, slack variables are intro-

duced to allow for the violation of margin constraints. These variables are penalized

in the objective function with either L1 or L2 norm. Hence, the objective function to

minimize is given by:

R =
1

2
‖Λ‖2 + C

n
∑

i=1

ξi (4.1)

s.t. yi
[

〈Λ,xi〉+ b
]

≥ 1− ξi, ξi ≥ 0; ∀i

where we use the more common L1 norm penalty of the slack variables ξis. The dual

of this optimization problem is a quadratic program:

W (α) =

n
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαj〈x
i,xj〉 (4.2)

s.t. 0 ≤ αi ≤ C,
∑

i

αiy
i = 0 ∀i

The dual parameters that are larger than 0, αi > 0, correspond to the data points

that satisfy the (soft) margin constraints with equality and the hyperplane can be

stated in terms of these data points, support vectors:

F (x) =
∑

i

αi〈x,x
i〉 (4.3)

where the inner product can be replaced with a kernel function to allow for classification

using nonlinear feature mappings in the Reproducing Kernel Hilbert Space (RKHS).

Different formulations have been proposed to extend this framework to multiclass

classification. The approach of building a classifier for each class and using some

44

measure such as a majority vote for inference is commonly called one-against-all and

has been used widely in the machine learning community [Bottou et al., 1994, Schölkopf

et al., 1995]. Alternatively, one can train S(S − 1)/2 classifiers, where S is the size of

the class label set, separating each class label from another. This method is called one-

against-one [Kressel, 1999]. Weston and Watkins [1999] proposes to solve all pairwise

comparisons of the correct classifier jointly (training classifiers by considering all classes

at once):

R =
1

2

S
∑

y=1

‖Λy‖
2 (4.4)

s.t. 〈Λyi .xi〉 − 〈Λy.x
i〉 ≥ 2, ∀y 6= yi,∀i

The multiclass approach we pursue here, proposed by [Crammer and Singer, 2001],

is very similar to [Weston and Watkins, 1999]. Instead of discriminating the correct

class for all incorrect classes, the goal is to discriminate the correct label from the most

competitive incorrect label for each instance:

R =
1

2
‖Λ‖2 (4.5)

s.t. 〈Λyi .xi〉 −max
y 6=yi
〈Λy.x

i〉 ≥ 2, ∀i

The advantage of this approach over [Weston and Watkins, 1999] is the reduced number

of slack variables in the soft margin formulation: Instead of having S parameters, there

is only one slack variable for each training instance.

The classification rule is given by:

f(x) = argmax
y
〈Λy, x〉 (4.6)

This approach is also advantageous over one-against-all and one-against-one meth-

ods, as it does not reduce the problem into many smaller problems which leads to a

substantial reduction of information available in the training data. We now consider a

generalization of this formulation to label sequence learning.

4.2 Objective Function

As in standard SVM classification, we start by defining the margin. We propose the

margin defined in Equation 3.39 for the analysis of Sequence AdaBoost:

γ(x,y; Λ) ≡ F (x,y; Λ) −max
y′ 6=y

F (x,y′; Λ) (4.7)

45

This is simply the generalization of the multiclass separation margin in [Crammer and

Singer, 2001] to label sequences. Notice that γ(xi,yi) > 0 implies that the observation

sequence xi is correctly classified, since the correct label sequence yi receives the highest

score.

In the maximum margin setting, the goal is to find a hyperplane that not only

separates the correct label sequence yi from the incorrect macro-labels y 6= yi for

each observation sequence, but also separates them with maximal margin. This can

be achieved by measuring the difference of the scores of the correct macro-label and

the maximally scored incorrect macro-label, γ(xi,yi) for all training sequences and by

setting Λ to maximize the minimum of the margins:

Λ∗ = argmax
Λ

min
i
γ(xi,yi; Λ) (4.8)

Notice that the margin γ(x,y) is simply the minimum of the log-odds ratio of an

observation-label sequence pair (x,y) as defined in Equation 3.9. Then, the optimiza-

tion can be stated in terms of log-odds ratios to reveal the similarity between the

objective functions of Sequence Boosting, Equation 3.11, and of HM-SVMs:

Λ∗ = argmax
Λ

min
i

min
y 6=yi

logO(xi,yi,y; Λ) (4.9)

4.2.1 Separable Case

As in standard SVMs, the margin can be made arbitrary large by scaling Λ, if a minimal

margin of γ > 0 can be achieved. We overcome this multiple solution problem by fixing

the margin to be equal to 1 and minimizing the squared norm of Λ, ‖Λ‖2 subject to

the margin constraints:

SVM0: min
Λ

1

2
‖Λ‖2 (4.10)

s.t. F (xi,yi; Λ)− F (xi,y; Λ) ≥ 1, ∀i,y 6= yi (4.11)

Here each non-convex constraint has been expanded into linear inequalities, resulting

in a total of Sl − 1 inequalities for a training sequence of length l where S = |Σ|. In

the separable case, the solution Λ∗ to SVM0 achieves Rzo(Λ∗) = 0.

As stated in Section 2.1.2 1, the optimal solution of the above optimization is given

1We derive this solution for the non-separable case below.

46

by (2.12), namely:

F (xj ,y) =
∑

i

∑

ȳ

α(i,ȳ)K(i,ȳ),(j,y) = αTKe(j,y) . (4.12)

4.2.2 Soft Margin Formulations

In general, the data will not be separable. One can generalize the above formulation

to allow margin violations for non-separable cases as in standard SVMs. Here, we

investigate three formulations. First, one may add one slack variable ξ(i) for every

training sequence, such that ξ(i) is shared across the macro-label set of xi. A soft-

margin SVM problem with L1 penalty on slack variables can then be formulated as

SVM1: min
Λ,ξ

1

2
‖Λ‖2 + C

n
∑

i=1

ξ(i), s.t. ξ(i) ≥ 0, ∀i

F (xi,yi; Λ)− F (xi,y; Λ) ≥ 1− ξ(i), ∀i,y 6= yi

where the optimal solution of the slack variables can be found wrt the Λ parameters,

ξ(i; Λ) = max{0, 1 − γ(xi,yi; Λ)}.

Proposition 5. The risk Rsvm(Λ) = 1
n

∑n
i=1 ξ(i; Λ) ≥ Rzo(Λ)

Proof. (i) If ξ(i; Λ) < 1, then one gets F (xi,yi; Λ)−maxy 6=yi F (xi,y; Λ) = γ(xi,yi) > 0

which means the data point is correctly classified and [[f(xi; Λ) 6= yi]] = 0 ≤ ξ(i; Λ).

(ii) If ξ(i; Λ) ≥ 1, then the bound holds automatically, since [[f(xi; Λ) 6= yi]] ≤ 1 ≤

ξ(i; Λ).

Summing over all i completes the proof.

A second alternative is using the less common L2 penalty with the same set of slack

variables.

SVM2: min
Λ,ξ

1

2
‖Λ‖2 +C

n
∑

i=1

ξ2(i), s.t. ξ(i) ≥ 0, ∀i

F (xi,yi; Λ)− F (xi,y; Λ) ≥ 1− ξ(i), ∀i,y 6= yi

Proposition 6. The risk Rsvm(Λ) = 1
n

∑n
i=1 ξ

2(i; Λ) ≥ Rzo(Λ)

Proof. Analogous to L1 penalty.

47

As a third alternative, one can introduce one slack variable for every training in-

stance and every sequence y:

SVM3: min
Λ,ξ

1

2
‖Λ‖2 + C

n
∑

i=1

∑

y

ξ(i,y), s.t. ξ(i,y) ≥ 0, ∀i,y 6= yi

F (xi,yi; Λ)− F (xi,y; Λ) ≥ 1− ξ(i,y), ∀i,y 6= yi

with the optimal solution of the slack variables is given by ξ(i,y; Λ) = max{0, 1 −

F (xi,yi) + F (xi,y)}. This loss function provides an upper bound on the rank loss,

Equation 2.14:

Proposition 7. 1
n

∑n
i=1

∑

y 6=yi ξ(i,y; Λ) ≥ Rrk(Λ,w).

Proof. (i) If ξ(i,y; Λ) < 1, then F (xi,yi; Λ) > F (xi,y; Λ) which implies that y is

ranked lower than yi, in which case ξ(i,y; Λ) ≥ 0 establishes the bound.

(ii) If ξ(i,y; Λ) ≥ 1, then the bound holds trivially, since the contribution of every pair

(xi,y) to Rrk can be at most 1.

In this chapter, we focus on SVM1, as we expect the number of active inequalities

in SVM1 to be much smaller compared to SVM3, since SVM1 only penalizes the

largest margin violation for each example. We also prefer SVM1 over SVM2 due to

the more common penalty used in SVM1.

The corresponding Lagrangian of SVM1 is given by:

L(Λ, ξ, α, r) =
1

2
‖Λ‖2 +C

n
∑

i=1

ξ(i) (4.13)

−
∑

i,y 6=yi

α(i,y)

(

F (xi,yi; Λ)− F (xi,y; Λ) − 1 + ξ(i)
)

−

n
∑

i=1

riξ(i)

for α(i,y) ≥ 0, ri ≥ 0 where we introduced Lagrange multipliers α(i,y) associated with

(xi,y) pair for every margin inequality. To find the corresponding dual, we differentiate

L with respect to Λ and ξ and equate to 0:

∇ΛL = Λ−
∑

i,y 6=yi

α(i,y)(Ψ(xi,yi)−Ψ(xi,y)) = 0 (4.14a)

∇ξiL = C −
∑

y 6=yi

α(i,y) − ri = 0 (4.14b)

48

Let 4Ψ(i,y) = Ψ(xi,yi) − Ψ(xi,y). Substituting Equation 4.14 into the primal, we

obtain the dual quadratic program (QP) of SVM1:

max
α

∑

i,y 6=yi

α(i,y) −
1

2

∑

i,y 6=yi

∑

j,ȳ

α(i,y)α(j,ȳ 6=yj)4Ψ(i,y)4Ψ(j, ȳ) (4.15)

We define z(i,y) ∈ {−1, 1} as a function indicating whether y is the correct macro-

label for the observation sequence xi or not:

z(i,y) =

{

1 y = yi

−1 o.w.

}

We also introduce the dummy Lagrange parameter

α(i,yi) =
∑

y 6=yi

α(i,y) (4.16)

Using these definitions in order to replace the sum over y 6= yi with the sum over

y ∈ Y, we can rewrite Equation 4.15 as

DSVM1: maxα
1
2

∑

i,y α(i,y) −
1
2

∑

i,y

∑

j,ȳ α(i,y)α(j,ȳ)z(i,y)z(j,ȳ)〈Ψ(xi,y),Ψ(xj , ȳ)〉

(4.17a)

s.t. α(i,y) ≥ 0, (4.17b)
∑

y α(i,y) ≤ 2C, (4.17c)
∑

y z(i,y)α(i,y) = 0 ; ∀i,y (4.17d)

The introduction of the z function allows us to convert the optimization to a binary

classification problem where the incorrect macro-labels of each observation sequence is

separated from the correct one. We call the incorrect observation-label sequence pairs

negative pseudo-examples as they are generated only implicitly.

Since ri ≥ 0, Equation 4.14b enforces the upper bound on the Lagrange parameters,

Equation 4.17c. The difference between DSVM1 and the standard binary classification

problem is the coupling of Lagrange multipliers: the additional interaction among the

observation-label sequence pairs for every observation sequence.

Karush-Kuhn-Tucker (KKT) conditions are given by:

α(i,y)

[

F (xi,yi; Λ)− F (xi,y; Λ) − 1 + ξi
]

= 0, ∀i,∀y 6= yi (4.18a)

ξi(
∑

y

α(i,y) − 2C) = 0, ∀i (4.18b)

49

Notice that Equation 4.18b implies that the non-zero slack variables ξi > 0 can only

occur when
∑

y α(i,y) = 2C. Then due to the equality constraints in Equation 4.17d,

α(i,yi) =
∑

y 6=yi

α(i,y) = C (4.19)

when ξ(i) > 0. Also, Equation 4.17d generalizes the standard constraints of binary

classification SVMs and implies that α(i,y) = 0, if α(i,yi) = 0. Hence, negative pseudo-

examples can be support vectors, only if the the positive example (xi,yi) is a support

vector.

From Equation 4.14a and the definition of α(i,yi), the optimal solution of DSVM1

is given by:

F (x,y) =
∑

i

∑

y

α(i,y)〈Ψ(x,y),Ψ(xi,y)〉 (4.20)

4.3 Optimization Method

DSVM1 is a quadratic program parameterized with Lagrange parameters α, whose

number scales exponentially with the length of the sequences. However, we expect that

only a very small fraction of these parameters (corresponding to support sequences)

will be active at the solution because of two reasons. First, the hinge loss leads sparse

solutions as in standard SVMs. Second, and more importantly, many of the parameters

are closely related because of the sequence structure, i.e. large amount of overlap of

the information represented by each parameter.

The interactions between these parameters are limited to parameters of the same

training instances, thus the parameters of the observation sequence xi, α(i,.), are in-

dependent of the parameters of other observation sequences, α(j,.). Our optimiza-

tion method exploits this dependency structure of the parameters and the anticipated

sparseness of the solution to achieve computational efficiency.

4.3.1 Algorithm

We propose to use a row selection or working set procedure to incrementally add

inequalities to the problem, similar to the one proposed in [Crammer and Singer, 2001].

We maintain an active set of macro labels, Si, for every instance which are initially {yi},

the correct label sequences. We call these sets working sets and define the optimization

50

problem only in terms of the Lagrange parameters corresponding to the working set

of a particular observation sequence. We incrementally update the working sets by

adding Lagrange parameter(s) (corresponding to observation-label sequence pair(s)) to

the optimization problem. This is done by iterating over training sequences and finding

the macro-label y that achieves a best score with respect to the current classifier F

other than the correct one. Such a sequence is found by performing a two-best Viterbi

decoding [Schwarz and Chow, 1990] as described in Section 4.3.2. The satisfaction of

the margin constraint by this macro-label implies that all the other macro-labels satisfy

their margin constraints as well. If y violates the margin constraint, we add it into the

working set of xi and optimize the quadratic program with respect to the Lagrange

parameters in the working set of xi, while keeping the remaining variables fixed. Thus,

we add at most one negative pseudo-example to the working set at each iteration. This

procedure can be viewed as a version of a cyclic coordinate ascent. The algorithm is

described in Algorithm 5.

Algorithm 5 Working set optimization for HM-SVM.

1: Initialize Si ← {yi}, α(i,.) = 0, ∀i
2: repeat

3: for i = 1, . . . , n do

4: Compute ŷ = arg maxy 6=yi F (xi,y;α)
5: if F (xi,yi;α)− F (xi, ŷ;α) < 1− ξi then

6: Si ← Si ∪ {ŷ}
7: Optimize DSVM1 over α(i,y),∀y ∈ S

i

8: end if

9: Remove y ∈ Si with α(i,y) < ε
10: end for

11: until no margin constraint is violated

4.3.2 Viterbi Decoding in HM-SVM

One can replace the inner product in the optimal solution of DSVM1 (Equation 4.20)

with a kernel function:

F (x,y) =
∑

i

∑

ȳ

α(i,ȳ)k((x
i, ȳ), (x,y)) . (4.21)

51

We employ the kernel for sequences presented in Section 2.1.2 which is repeated below:

k((x,y), (x̄, ȳ)) ≡k1((x,y), (x̄, ȳ)) + k2((x,y), (x̄, ȳ)) (4.22a)

k1((x,y), (x̄, ȳ)) =
∑

s,t

[[ys = ȳt]]g(Φ(x, s),Φ(x̄, t)) , (4.22b)

k2((x,y), (x̄, ȳ)) =η
∑

s,t

[[ys= ȳt∧ ys+1= ȳt+1]]. (4.22c)

One can exploit the kernel structure and decompose F into two contributions,

F (x,y) = F1(x,y) + F2(x,y), where

F1(x,y) =
∑

s,σ

[[ys=σ]]
∑

i,t

β(i, t, σ)g(Ψ(x, s),Ψ(xi , t)), (4.23a)

β(i, t, σ) =
∑

y

[[yt = σ]]α(i,y) . (4.23b)

and where

F2(x,y) = η
∑

σ,τ

δ(σ, τ)
∑

s

[[ys−1=σ∧ys=τ]] , (4.24a)

δ(σ, τ) =
∑

i,ȳ

α(i,ȳ)

∑

t

[[ȳt−1 = σ ∧ ȳt = τ]] (4.24b)

Thus, we only need to keep track of the number of times a micro-label pair (σ, τ)

was predicted incorrectly and the number of times a particular observation xis was

incorrectly classified. This representation leads to an efficient computation as it is

independent of the number of incorrect sequences ŷ.

In order to perform the Viterbi decoding, we have to compute the transition cost

matrix and the observation cost matrix H i for the i-th sequence. The latter is given

by

H i
sσ =

∑

j

∑

t

β(j, t, σ)g(Ψ(xi , s),Ψ(xj , t)) (4.25)

The coefficients of the transition matrix are simply given by the values δ(σ, τ). Once the

computation of the observation cost matrix and the transition cost matrix is completed,

Viterbi decoding amounts to finding the values that maximizes the potential function

at each position in the sequence.

52

4.4 Analysis

In this section, we show that the coordinate descent method in Algorithm 5 strictly im-

proves the objective function at each iteration. Since our objective function is bounded,

the algorithm converges to the minima. We first present the following two Lemmata

that allow us to prove Proposition 8.

Lemma 2. Assume ᾱ is a solution of DSVM1, then ᾱ(i,y) = 0 for all pairs (xi,y) for

which F (xi,y; ᾱ) < maxȳ 6=yi F (xi, ȳ; ᾱ).

Proof. Proof by contradiction. Define F̃ (xi;α) = maxy 6=yi F (xi,yi;α). Hence if ᾱ is a

solution, then

F (xi,yi; ᾱ)− F̃ (xi; ᾱ) ≥ 1− ξ(i) (4.26)

Assume ᾱ(i,y) > 0. If y is a label sequence such that F (xi,y; ᾱ) < F̃ (xi; ᾱ) then

F (xi,yi; ᾱ)− F (xi,y; ᾱ) > F (xi,yi; ᾱ)− F̃ (xi; ᾱ) ≥ 1− ξi (4.27)

This contradicts the KKT complementary condition Equation 4.18a, given the assump-

tion ᾱ(i,y) > 0.

Lemma 3. Let D = zTKz for z = (z(i,y))i,y. Then α′De(i,y) = z(i,y)F (xi,y), where

e(i,y) refers to the canonical basis vector corresponding to the dimension of α(i,y).

Proof. α′De(i,y) = z(i,y)

∑

j,y′ α(j,y′)z(j,y′)k((x
i,y), (xj ,y′)) = z(i,y)F (xi,y).

Algorithm 5 optimizes DSVMi
1 ≡DSVM1(α(i,.); {α(j,.) : j 6= i}) over the argu-

ments α(i,.) while keeping all other α(j,.)’s fixed. Adopting the proof presented in

Osuna et al. [1997], we prove that Algorithm 5 strictly improves the objective function

every time it expands the working set.

Proposition 8. Assume a working set Si ⊆ Y with yi ∈ Si is given and that a

solution for the working set has been obtained, i.e. α(i,y),∀y ∈ S
i maximize the objective

DSVMi
1 subject to the constraints that α(i,y) = 0 for all y 6∈ Si. If there exists a

negative pseudo-example (xi, ŷ) with ŷ 6∈ Si such that the margin constraints are not

satisfied, then adding ŷ to the working set S′ ≡ Si∪{ŷ} and optimizing over S′ subject

to α(i,y) = 0 for y 6∈ S′ yields a strict improvement of the objective function.

53

Proof. Case I: If the training example (xi,yi) is not a support vector, then there are no

support vector of xi, since α(i,yi) =
∑

y 6=yi α(i,y) = 0. Consider ᾱi = δe(i,yi) + δe(i,ŷ),

for some δ > 0. Then, the difference in cost function can be written as:

DSVMi
1(ᾱ

i; {α(j,.) : j 6= i})−DSVMi
1(0; {α(j,.) : j 6= i})

= (δe(i,yi) + δe(i,ŷ))
T1− αTD(δe(i,yi) + δe(i,ŷi))

−
1

2
(δe(i,yi) + δe(i,ŷi))

TD(δe(i,yi) + δe(i,ŷi)) (4.28)

= 2δ − δ
(

F (xi,yi)−F (xi, ŷi)
)

−O(δ2) ≥ δ−O(δ2) (4.29)

since F (xi,yi)−F (xi, ŷi) < 1. By choosing δ small enough we can make δ−O(δ2) > 0.

Case II: If the training example is a support vector, α(i,yi) > 0, then there has to be a

negative pseudo-example ȳ with α(i,ȳ) > 0. Consider ᾱi = α(i,.) + δe(i,ŷi) − δe(i,ȳi).

DSVMi
1(ᾱ

i; {α(j,.) : j 6= i}) −DSVMi
1(α(i,.); {α(j,.) : j 6= i})

= (δe(i,ŷ) − δe(i,ȳ))
T1− αTD(δe(i,ŷ) − δe(i,ȳ))−O(δ2) (4.30)

= δ(F (xi, ŷ)− F (xi, ȳ))−O(δ2) (4.31)

Hence we have to show that F (xi, ŷ) − F (xi, ȳ) ≥ ε > 0 independent of δ. From

the KKT conditions we know that F (xi,yi) − F (xi, ȳ) = 1. The margin constraint

of (xi, ŷ) is violated if F (xi,yi) − F (xi, ŷ) < 1. Setting ε = 1 + F (xi, ŷ) − F (xi,yi)

concludes the proof.

4.5 Related Work

SVMs have been applied to many problems that can be modelled as a label sequence

learning problem without exploiting the dependency structure of the labels. NER

[Takeuchi and Collier, 2002] and protein secondary structure [Hua and Sun, 2001]

are such examples. There are few exceptions to this trend such as protein secondory

structure prediction study by Kudo and Matsumoto [2001] where individual classifiers

are trained using on the correct neighboring labels as well as the observation sequence

and the sequence structure is exploited with dynamic programming techniques during

inference. This is the SVM version of Viterbi approach described in Section 3.5 and

it may fail if label dependencies play an crucial role and the per-label accuracy is less

than perfect, since it results in over-confidence on the neighboring labels.

54

In the last two years, there have been many studies on maximum margin formu-

lations in structured observation-label domains. Weston et. al. [Weston et al., 2002]

proposed Kernel Density Estimation (KDE) one of the first studies that exploits the

structure of the observation and label spaces within a kernel-based framework. They

extract independent features for input and output spaces. The goal is to learn a map-

ping from the feature space of observations, Ψ(x) to the feature space of labels Ψ̄(y).

This is achieved by finding the principal components of Ψ̄(y) using Kernel Principal

Component Analysis (KPCA) and learning a mapping from Ψ(x) to each of these com-

ponents independently. The prediction is then given by solving a pre-image problem,

i.e. constructing the label y from the feature representation Ψ̄(y).

The key idea of our approach is to extract features jointly from observation-label

pairs, not independently from the observation and label spaces. This is the main dif-

ference between our approach and KDE. The compatibility of an observation sequence

x and a label sequence y may depend on a particular property of x in conjunction with

a particular property of y, since y has an internal structure that can be expressed with

some features. These features in turn may interact in non-trivial ways with certain

properties of the observation sequence patterns. Also, the pre-image phase of KDE

involves a search over the possible label set which is problematic for domains like label

sequence learning where the size of the possible label set grows exponentially with the

length of sequences.

We presented the primal formulation of a perceptron algorithm for label sequence

learning in Section 2.3.1. In order to avoid an explicit evaluation of the feature map as

well as a direct (i.e. primal) representation of the discriminant function, one can derive

an equivalent dual formulation of the perceptron algorithm. The dual perceptron for

structured domains (Algorithm 6) was first proposed by Collins and Duffy [2001] in NLP

context. The key difference between this method and HM-SVMs is that the perceptron

terminates when the correct macro-label receives the maximum score, whereas HM-

SVMs continue the optimization until the maximal margin is achieved. Each iteration

of the dual HM-Perceptron is more efficient than HM-SVMs’ since its update rule is a

simple increment rather than a QP solution as in HM-SVMs.

The generalization properties of this algorithm can be defined by its online mistake

bounds. The number of mistakes made by the perceptron algorithm is at most (R/γ)2

where R ≥ ‖Ψ(xi,yi)−Ψ(xi,y)‖,∀i,∀y ∈ GEN(xi) and γ is the maximum achievable

margin on all sequences [Collins, 2002a, Theorem 1].

55

Algorithm 6 Dual form of Hidden Markov Perceptron algorithm.

1: Initialize all α(i,y) = 0
2: repeat

3: for all training patterns xi do

4: Compute ŷi = arg maxy∈Y F (xi,y), where
F (xi,y) =

∑

j

∑

ȳ α(j,ȳ)〈Ψ(xi,y),Ψ(xj , ȳ)〉

5: if yi 6= ŷi then

6: α(i,yi) ← α(i,yi) + 1
7: α(i,ŷi) ← α(i,ŷi) − 1
8: end if

9: end for

10: until no more errors

Collins [2002b] presents a generalization of SVMs for structured observation label

spaces, applied to parsing. The goal is to find the maximal margin where margin is

defined as

γ(xi; Λ) =
1

‖Λ‖

(

F (xi,yi)− max
y∈GEN(xi),y 6=yi

F (xi,y)

)

(4.32)

and GEN(xi) is the N -best macro-label set generated by an external mechanism.

The problem is formulated as a quadratic optimization, reducing to a large multiclass

SVM. The difference between this work and our approach is the use (and need) of an

external classifier and the restriction of the possible label set to GEN(x). However,

each iteration of this method is more efficient than HM-SVMs as it does not require a

2-best Viterbi decoding.

Taskar et al. [2004] proposed Max-Margin Markov (M3) Networks, published after

this work. This is also a maximum margin formulation for structured observation

and label domains and is very similar to HM-SVMs. The main difference is in their

definition of the margin constraints:

F (xi,yi; Λ)−max
y 6=yi

F (xi,y; Λ) ≥ 4(yi,y), ∀i (4.33)

where 4(a, b) denotes the Hamming distance between a and b. Our margin constraints

are given in Equation 4.11:

F (xi,yi; Λ) −max
y 6=yi

F (xi,y; Λ) ≥ 1, ∀i

They propose to reparameterize the quadratic program, leading to a substantial reduc-

tion on the number of constraints, scaling only linearly with the length of sequences.

56

In our formulation, on the other hand, the number of constraints scale exponentially.

However, the margin constraints in the exponential parameter space translate into poly-

nomial number of constraints that are coupled due to proper marginalization. Because

of this coupling, the optimization is in fact performed in the exponential space, leading

to an algorithm very similar to Algorithm 5.

In a recent study, Tsochantaridis et al. [2004] generalized the framework of HM-

SVMs and MMMs by defining re-scaled slack variable and re-scaled margin formulation

where the margin constraints are given below (respectively):

F (xi,yi; Λ)−max
y 6=yi

F (xi,y; Λ) ≥ 1−
ξi

4(yi,y)
, ∀i (4.34)

F (xi,yi; Λ)−max
y 6=yi

F (xi,y; Λ) ≥ 4(yi,y) − ξi, ∀i (4.35)

Tsochantaridis et al. [2004] propose a generalization of Algorithm 5 and show that

it terminates in polynomial number of steps with respect to the length of sequences.

Thus, even though there are exponential number of constraints, the optimal solution

can be obtained by evaluating only a very small percent of the total constraints, only

a polynomial number of constraints.

4.6 Experiments

We first compare the performance of HM-SVMs with CRFs and dual HM-Perceptron

on pitch accent prediction. Features were extracted from on window of size 5 and

development data was used to adjust the regularization constant in CRFs. We used

polynomial kernel of degrees 1, 2 and 3 from HM-SVMs and degree 2 for dual HM-

Perceptron. C of HM-SVMs was set to 1 and no optimization was performed for this

parameter. SVM∗ denotes HM-SVMs using polynomial kernel function of degree ∗.

The results in Figure 4.1 demonstrate that HM-SVMs perform better than the other

sequence learning techniques. Trained with 1st order features, CRFs achieve a much

better score than the equivalently informed HM-SVM (SVM1). However, using second

and third order features, HM-SVM3 improves over CRFs. It is important to note that

extracting second order features explicitly corresponding to features in the order of 10

millions are quite slow. The difference between the performance of HM-Perceptron2 and

HM-SVM2 demonstrates the validity of the maximum margin framework for sequence

labelling. It is rather surprising that the accuracy of HM-Perceptron2 is about 0.8%

57

Figure 4.1: Per-label accuracy of pitch accent prediction on CRFs, HM-SVMs and dual
HM-Perceptron over a window of size 5.

NER HMM CRF Percep2 SVM2 SVM3

F1 69.11 72.62 72.15 72.77 73.15

Table 4.1: F1 measure of NER on 3000 Spanish newswire corpus on HMMs, CRFs,
dual HM-Perceptron and HM-SVMs with window size is 3.

worse than CRFs even though HM-Perceptron2 uses 2nd order features and that the

primal HM-Perceptron achieves an accuracy of 76.55%, only using the 1st order features.

This can be explained by the averaging operation of the primal form of HM-Perceptron.

We evaluated sparseness properties of HM-SVMs. We report average values over 10

folds. There are 5716 support sequences, whereas there are 2.8166e+ 14 many margin

constraints. Also, 41.73% of the training sequences satisfy the margin constraints,

so the dual parameters of these examples are 0. Only 4.2435 support sequences per

support examples are selected, which is extremely sparse considering the average length

of the sequences is 7.

We also compared the performance of HM-SVMs with HMMs, CRFs and the dual

HM-Perceptron on NER. The experimental setup was the same as pitch accent exper-

iments, except the window size was 3. We randomly extracted 3000 sentences that

are shorter than 60 and contained at least 3 name micro-labels and performed 5 fold

cross-validation. Although in a generative model like an HMM, overlapping features

58

violate the model, our empirical evaluations showed that HMMs using the overlapping

features outperformed the ordinary HMMs on NER. For this reason, we only report

the results of HMMs with overlapping features.

The results summarized in Table 4.1 demonstrate the competitiveness of HM-SVMs.

As expected, HMMs are outperformed by all the other methods. Again, CRFs perform

better than the HM-Perceptron algorithm using polynomial kernel of degree 2. HM-

SVMs achieve the best results, which validates our approach of explicitly maximizing

a soft margin criterion.

Figure 4.2 illustrates the nature of the extracted support sequences 2. The example

sentence along with the correct macro-label is given on the top of the figure. N stands

for non-name entities. The upper case letters stand for the beginning and the lower case

letters stand for the continuation of the types of name entities (e.g. M: Miscellaneous

beginning, o: Organization continuation). We also present a subset of the support

sequences y with maximal α(i,y). The first sequence is the correct macro-label. The

other support sequences are depicted at the positions where they differ from the correct

one. The example illustrates a regular pattern of support sequences such that most of

the pseudo-negative support sequences differ from the correct label sequence only in

a few positions, leading to sparse solutions. In this particular example, there are 29

support sequences, whereas the size of macro-label set for this sequence is 916.

4.7 Discussion

HM-SVMs differ from the previous sequence learning methods that we have investi-

gated, namely CRFs and Sequence Boosting, in two main aspects: the loss function and

the mechanism to construct the hyperspace. HM-SVMs optimize the hinge loss and

have the ability to use kernel function to construct and learn over RKHS. On the other

hand, CRFs and Sequence AdaBoost operate in the parameteric space (performing

computations explicitly in the feature space) and optimize the log-loss and the hinge

loss respectively. Given their power of representation (due to the kernel functions),

HM-SVMs are expected to be more successful where (possibly infinitely many) higher

order features are relevant for the application. However, this requires computing the

kernel matrix iteratively, which may be computationally expensive when the data set

is large.

2This example is from a smaller experiment with 300 sentences.

59

PP ESTUDIA YA PROYECTO LEY TV REGIONAL REMITIDO

O N N N M m m N

POR LA JUNTA Merida (EFE) .

N N O L N O N N

ONNNMmmNNNOLNONN

--------M-------

------N---------

----------P-----

----N-----------

N---P-----------

-------m--------

-----------o----

Figure 4.2: Example sentence, the correct named entity labeling, and a subset of the
corresponding support sequences.

The ability to use kernel functions is because of the L2-norm optimization, which

leads to an inner product in feature spaces. Thus, the norm of the margin does not only

serve as a regularizer, but can also provide kernelization properties. In the next chapter,

we investigate a GP formulation for sequence classification which can be considered as

a method that combines the best of both worlds: HM-SVMs’ RKHS property due to

the L2 norm optimization and CRFs’ advantages of a probabilistic framework due to

the log-loss function.

As stated earlier, the objective function of HM-SVMs and Sequence Boosting can

be expressed in terms of the log-odds ratio or the margin. HM-SVMs aim to maximize

the minimum margin, whereas the loss function of Sequence Boosting considers the

odds ratio of all observation-label sequence pairs:

Λ∗ =arg max
Λ

min
i

min
y 6=yi

O(xi,yi,y; Λ)

Λ∗ =argmin
Λ

∑

i

D(i)
∑

y 6=yi

O(xi,y,yi; Λ)

where O(xi,y, ȳ) = exp(F (x,y) − F (x, ȳ)).

60

Boosting and SVMs are large-margin classifiers, which are known to have good

generalization properties. In general, the margin of an example and a hyperplane can

be defined wrt an arbitrary norm. For example, in binary classification, Lp norm margin

of an observation xi is given by

γp(xi; Λ) =
yi〈xi,Λ〉

‖Λ‖p
(4.36)

Breiman [1999] shows that Arc-GV boosting algorithm solves a linear program to max-

imize the L1 margin. For margin γ > 0, this is also true for AdaBoost [Freund and

Schapire, 1996, Ratsch et al., 2000] and consequently for Sequence AdaBoost. We have

seen that, in SVMs, as well as HM-SVMs, a quadratic program is solved to maximize

L2 norm margin.

Mangasarian [1999, Theorem 2.2] gives an insight of the geometrical properties

of margin maximization for arbitrary norm projections: Normalizing the hyperplane

parameters Λ wrt an Lp norm corresponds to measuring a distance of a point x to the

hyperplane with respect to Lq norm measure, where 1/p + 1/q = 1. This means that

Boosting requires a bound on the maximum absolute value (L∞) of the data, whereas

SVM requires a bound on the L2-norm of the data. Thus, Boosting is expected to

perform better when weak learners have a similar output range. In sequence labeling

framework, this corresponds to problems where the length of the sequences are balanced

across the data set and the variance of the expectations of features is small. This might

constraint the possible application set of Sequence Boosting severely. To partially

overcome this limitation, we introduce w(li) to the optimization function of Sequence

Boosting. This term scales exponentially with the length of sequences and therefore

compensates for varying sequence lengths. One can also divide longer sequences into

subsequences.

Sequence AdaBoost induces classifiers that have feature sparseness in the primal

form, due to the greedy optimization method. HM-SVMs also return sparse classifiers,

but w.r.t. the dual parameters. This sparseness is because of the hinge loss, max(0, 1+

F (xi,y)−F (xi,yi)), which is truncated to 0 when the corresponding margin constraint

is satisfied. Thus, sparseness is inherent to the objective function of HM-SVMs, as long

as some (soft) margin is achievable.

61

Chapter 5

Gaussian Process Sequence

Classification

Gaussian Processes (GPs) are non-parametric tools making use of the kernel trick to

work in high (possibly infinite) dimensional spaces like SVMs. As other discriminative

methods, they predict single variables and traditionally do not take into account any

dependency structure in case of multiple label predictions. Our goal in this chapter is

to formulate the problem of label sequence learning as a Gaussian Process and develop

an optimization method for this formulation, namely Gaussian Process Sequence clas-

sification (GPS). GPS can be thought of as the dual formulation of CRFs. It combines

the advantages of CRFs, which we see in its rigorous probabilistic semantics and the

advantages of kernel-based methods.

We first overview Gaussian Processes (GPs) in Section 5.1 and then present the

objective function of GPS (Section 5.2). Exploiting the compositionality of the kernel

function, we derive a 1st order gradient-based optimization method for the GPS clas-

sification in Section 5.3 and provide theoretical analysis of the GPS classification in

Section 5.4. Section 5.5 presents related work and we conclude this chapter with some

experimental results in Section 5.6 and a comparison of GPS classification with other

label sequence learning methods.

For notational convenience, we will assume that all training sequences are of the

same length l in this chapter.

62

5.1 Gaussian Process Classification

In supervised classification, we are given a training set of n labeled instances or obser-

vations (xi, yi) with yi ∈ {1, . . . ,m}, drawn i.i.d. from an unknown, but fixed, distribu-

tion P (x, y). We denote the training observations and labels by x = (x1, . . . , xn) and

y = (y1, . . . , yn), respectively. We introduce an intermediate, unobserved stochastic

process F ≡ (F (x, y)) 1. Given an instantiation of the stochastic process, we assume

that the conditional probability p(y|x,F) depends only on the values of F at the ob-

servation x via a multinomial response model, i.e.

p(y|x,F) = p(y|F (x, ·)) =
exp(F (x, y))

∑m
y′=1 exp(F (x, y′))

(5.1)

For notational convenience, we will identify F with the relevant restriction of F to

the training patterns x and represent it as a n ×m matrix. For simplicity we will (in

slight abuse of notation) also think of F as a vector with multi-index (i, y).

In a Bayesian framework, the prediction of a label for a new observation x is ob-

tained by computing the posterior probability distribution over labels and selecting the

label that has the highest probability:

p(y|x,y, x) =

∫

p(y|F(x, ·)) p(F|x,y) dF (5.2)

Thus, one needs to integrate out all n ·m latent variables of F. Since this is in gen-

eral intractable, it is common to perform a saddle-point approximation of the integral

around the optimal point estimate, which is the maximum a posterior (MAP) estimate:

p(y|x,y, x) ≈ p(y|Fmap(x, ·)) where Fmap = argmaxF log p(F|x,y). Exploiting the con-

ditional independence assumptions, the posterior of F can – up to a multiplicative

constant – be written as

p(F|x,y) ∝ p(F)p(y|F,x) = p(F)

n
∏

i=1

p(yi|F(xi, ·)) (5.3)

The key idea of Gaussian Processes is to define the prior p(F|x,y) directly within the

function space, without parameterizing F. In particular, this distribution is assumed

to be Gaussian, making F a Gaussian Process:

1The output of the function F at a data point (x, y) is a random variable. Then the set of output
values of all data points F ≡ (F (x, y)) are correlated random variables, so called a stochastic process.

63

Definition 1 ([Gibbs, 1997]). A Gaussian Process is a collection of random variables

F = (F (x1), F (x2), . . .) which have a joint Gaussian distribution

p(F|{xn},K) =
1

Z
exp

(

−
1

2
(F− µ)TK−1(F− µ)

)

(5.4)

for any collection of inputs {xn}, where µ is the mean and K is the covariance matrix

of the data defined by the covariance function C.

It is common to use zero mean Gaussian processes with a kernel function C as

the covariance function. In multiclass classification, it is generally assumed that the

processes F(·, y) and F(·, y′) are uncorrelated for y 6= y′ [Williams and Barber, 1998].

We denote by K the kernel matrix with entries K(i,y),(j,y′) = C((xi, y), (xj , y′)). Notice

that under the above assumptions K has a block diagonal structure with blocks K(y) =

(Kij(y)), Kij(y) ≡ Cy(x
i, xj), where Cy is a class-specific covariance function.

Combining the GP prior over F and the conditional model in Equation 5.1 yields

the more specific expression:

log p(F|x,y) =
n
∑

i=1

F (xi, yi)− log
m
∑

y=1

exp(F (xi, y))

 −
1

2
FTK−1F + const. (5.5)

As stated in Section 2.1.2, the Representer Theorem [Kimeldorf and Wahba, 1971]

guarantees that the maximizer of Equation 5.5 is of the form:

Fmap(xi, y) =

n
∑

j=1

m
∑

y′=1

α(j,y′)K(i,y),(j,y′) = αTKe(i,y) (5.6)

with suitably chosen coefficients α where α(j,y) is a coefficient of the training example

xi and the label y, and e(i,y) is the (i, y)-th unit vector. In the block diagonal case,

K(i,y),(j,y′) = 0 for y 6= y′ and this reduces to the simpler form:

Fmap(xi, y) =

n
∑

j=1

α(j,y)Cy(x
i, xj). (5.7)

Using the representation in Equation 5.6, we can rewrite the optimization problem

as an objective R which is the negative of Equation 5.5 parameterized by α:

R(α|x,y) = αTKα−

n
∑

i=1

log p(yi|xi, α)

= αTKα−
n
∑

i=1

αTKe(i,yi) +
n
∑

i=1

log
∑

y

exp(αTKe(i,y)) (5.8)

64

A comparison between Equation 5.8 and a similar multiclass SVM formulation Equa-

tion 4.5 [Crammer and Singer, 2001] clarifies the connection to SVMs. Their difference

lies primarily in the utilized loss functions: logistic loss vs. hinge loss. Because the

hinge loss truncates values smaller than ε to 0, it enforces sparseness in terms of the α

parameters. This is not the case for logistic regression as well as other choices of loss

functions.2

As explained in [Gibbs, 1997], Gaussian Processes have been studied since 1960’s,

starting with Matheron [1963]’s kriging which is identical to the Gaussian Process re-

gression. In the last ten years, many researchers studied the Bayesian inference of Gaus-

sian Process regression, e.g. [Neal, 1996, 1997, Williams and Rasmussen, 1996]. For

Gaussian Process classification, on the other hand, there are well-established approxi-

mate Bayesian inference techniques [Mackay, 1992, Neal, 1996]. Other Bayesian approx-

imation methods are Laplace approximation [Williams and Barber, 1998, Williams and

Seeger, 2000], variational methods [Tommi and Jordan, 1996], mean field approxima-

tions [Opper and Winther, 2000], and expectation propagation [Minka, 2001b, Seeger

et al., 2003].

Following the early literature on Gaussian Process regression, we presented a clas-

sification method for Gaussian Process using a MAP estimate, rather than a Bayesian

inference method. This is because the generalization of Bayesian Gaussian Process clas-

sification leads to a computationally very expensive method, posing serious scalability

problems. Then, our Gaussian Process formulation for label sequences is equivalent to

the generalization of kernel logistic regression to sequences.

5.2 Objective Function

In sequence labeling problem, we simply replace the observation-label pairs (x, y) with

observation-label sequence pairs (x,y). Then, the problem can be considered as a mul-

ticlass classification where the input is an observation sequence x and for an observation

sequence of length l, the corresponding label set Y is of size m = Sl, where S = |Σ| is

the size of the micro-label set.

We use the sequence kernel described in Section 2.1.2 for the covariance function.

Notice that the use of a block diagonal kernel matrix is not an option in the current

2Several studies focused on finding sparse solutions of Equation 5.8 or optimization problems similar
to Equation 5.8 [Bennett et al., 2002, Girosi, 1998, Smola and Schölkopf, 2000, Zhu and Hastie, 2001].

65

setting, since it would prohibit generalizing across label sequences that differ in as little

as a single micro-label. The kernel function Equation 2.9 indeed allows for generaliza-

tion across label sequences as it simply compares the micro labels of the observation

pairs in each sequence at any position due to the stationarity assumption.

Given this setup, one can naively follow the same line of argumentation as in the

GP classification case of Section 5.1, evoke the Representer Theorem and ultimately

arrive at the objective in Equation 5.8. Since we need it for subsequent derivations, we

restate the objective here

R(α|Z) = αTKα−
n
∑

i=1

αTKe(i,yi) +
n
∑

i=1

log
∑

y∈Y

exp
(

αTKe(i,y)

)

(5.9)

whose optimal solution is given by Equation 5.6 as restated below:

F (xi,y;α) = αTKe(i,y) =
n
∑

j=1

∑

ȳ∈Y

α(j,ȳ)K(i,y),(j,ȳ) (5.10)

Notice that the sum over the macro-label set, Y, which grows exponentially in the

sequence length and unfortunately, unlike hinge loss, log loss does not enforce sparseness

in terms of the α parameters. Therefore, this view suffers from the large cardinality

of Y. In order to re-establish tractability of this formulation, we use a trick similar

to the one deployed in [Taskar et al., 2004] and reparameterize the objective in terms

of an equivalent lower dimensional set of parameters. The crucial observation is that

the definition of k in Equation 2.9 is homogeneous (or stationary). Thus, the absolute

positions of patterns and labels in the sequence are irrelevant. This observation can

be exploited by re-arranging the sums inside the kernel function with the outer sums,

i.e. the sums in the objective function.

5.2.1 Exploiting Kernel Structure

In order to carry out the reparameterization more formally, we proceed in two steps.

The first step consists of finding an appropriate low-dimensional summary of α. In

particular, we are looking for a parameterization that does not scale with m = Sl.

The second step consists of re-writing the objective function in terms of these new

parameters.

As we prove subsequently, the following linear map Θ extracts the information in

66

α that is relevant for solving Equation 5.9:

γ ≡ Θα, Θ ∈ {0, 1}n·l·S
2×n·m (5.11)

where

θ(j,t,σ,τ),(i,y) ≡ δij [[yt = σ ∧ yt+1 = τ]] (5.12)

Notice that each variable θ(j,t,σ,τ),(i,y) encodes whether the input sequence is the

j-th training sequence and whether the macro-label y contains micro-labels σ and τ at

position t and t + 1, respectively. Hence, γ(j,t,σ,τ) is simply the sum of all α(j,y) over

macro-labels y that contain the στ -motif at position t:

γ(j,t,σ,τ) =
∑

y∈Y

α(j,y)[[yt = σ ∧ yt+1 = τ]]. (5.13)

We define two reductions derived from γ via further linear dimension reduction,

γ(1)≡ Pγ, with P(i,s,σ),(j,t,τ,ρ) = δijδstδστ , (5.14a)

γ(2)≡ Qγ, with Q(i,σ,ζ),(j,t,τ,ρ) = δijδστ δζρ . (5.14b)

Intuitively, γ(1) and γ(2) are the marginals: γ
(2)
(i,σ,τ) is the sum of all α(i,y) over every

position in the macro-label y that contains στ -motif. γ
(1)
(i,s,σ), on the other hand, is the

sum of all α(i,y) that has σ micro-label at position s in macro-label y:

γ
(1)
(i,s,σ) =

∑

y

α(i,y)[[ys = σ]] , (5.15a)

γ
(2)
(i,σ,τ) =

∑

y,t

α(i,y)[[ys = σ ∧ ys+1 = τ]] (5.15b)

We can now show how to represent the kernel matrix using the previously defined

matrices Θ, P, Q and the gram matrix G with G(i,s),(j,t) = g(xis, x
j
t).

Proposition 9. With the definitions from above:

K = ΘTK′Θ, K′ ≡
(

PTHP + QTQ
)

where H = diag(G, . . . ,G).

Proof. By definition, the elements of the reparameterized kernel is given by:

K ′
(i,t,σ,τ),(j,s,σ̄,τ̄) = [[σ = σ̄ ∧ τ = τ̄]] + [[σ = σ̄]]g(Φ(xi, t),Φ(xj , s)). (5.16)

The proof follows through by elementary comparison of coefficients.

67

We now have S2 parameters for every observation xs in the training data, leading

to a total of nlS2 parameters. We can rewrite the optimal solution in terms of these

variables:

F (xi,y) = αTKe(i,y) (5.17)

=
∑

s,σ,τ

[[ys = σ ∧ ys+1 = τ]]
∑

j,t,ȳ∈Y

[[ȳt = σ ∧ ȳt+1 = τ]]α(j,ȳ)

+
∑

s,σ

[[ys = σ]]
∑

j,t,ȳ∈Y

[[ȳt = σ]]α(j,ȳ)g(Φ(xi, t),Φ(xj , s))

=
∑

s

∑

j,t,σ,τ

γ(j,t,σ,τ)

(

[[ys = σ ∧ ys+1 = τ]] + [[ys = σ]]k(xis, x
j
t)
)

=
∑

s

∑

j,t,σ,τ

γ(j,t,σ,τ)K
′
(i,s,ys,ys+1),(j,t,σ,τ)

= γTK′Θe(i,y) (5.18)

as well as the objective function:

R(γ|Z) = γTK′γ −
n
∑

i=1

γTK′Θe(i,yi) +
n
∑

i=1

log
∑

y∈Y

exp
(

γTK′Θe(i,y)

)

(5.19)

During the reparameterization process, we suppressed the dependency of γ param-

eters on α parameters. α’s impose marginalization constraints on γ’s (to ensure the

consistency of the distribution over each label), leading to coupling of γ parameters.

Optimization over this constraint space is extremely difficult. However, due to the

strict convexity of the optimization function (with respect to both γ and α) and due to

the Representer Theorem, the unique solution in the γ space is guaranteed to coincide

with the unique solution in the α space. Therefore, we can safely ignore the constraints

and perform optimization over the complete γ space.

5.3 Optimization Method

The optimization methods mentioned in Section 5.1 require the computation of the

Hessian matrix. In sequence labeling, this corresponds to computing the expectations

of micro-labels within different cliques (see Equation 5.31), which may not be tractable

to compute exactly for large training sets. In order to minimize R with respect to

γ, we propose 1st order optimization methods. In Section 5.3.1, we present an exact

optimization method, which we call Dense Gaussian Process Sequence Classification

68

(DGPS). To ensure scalability, we present two sparse methods in Sections 5.3.2 and

5.3.3. We give the formulation of how the Hessian of R can be computed in Section

5.3.4 in order to point out the complexity.

5.3.1 A Dense Algorithm

It is well-known that the derivative of the log partition function with respect to γ is

simply the expectation of sufficient statistics:

∇γ

log
∑

y∈Y

exp
(

γTK′Θe(i,y)

)

= K′Ey

[

Θe(i,y)

]

(5.20)

where Ey denotes an expectation with respect to the conditional distribution of the

macro-label y given the observation sequence xi. Then, the gradients of R are trivially

given by:

∇γR=2K′γ −

n
∑

i=1

K′Θe(i,yi) +

n
∑

i=1

K′Ey

[

Θe(i,y)

]

(5.21)

As the first two terms involve simple matrix multiplications, the remaining challenge is

to come-up with an efficient way to compute the expectations. First of all, let us more

explicitly examine these quantities:

Ey[(Θe(i,y))(j,t,σ,τ)]=δijEy[[[yt=σ∧yt+1 =τ]]] (5.22)

In order to compute the above expectations one can once again exploit the structure

of the kernel and is left with the problem of computing probabilities for every neighbor-

ing micro-label pair (σ, τ) at positions (t, t+1) for all training sequences xi. The latter

can be accomplished by performing the forward-backward algorithm over the training

data using the transition matrix T and the observation matrices O(i), which are simply

decompositions and reshapings of K′:

γ̄(2)≡ Rγ(2), with R(σ,ζ),(i,τ,ρ) = δστ δζρ (5.23a)

T≡ [γ̄(2)]S,S (5.23b)

O(i) = [γ(1)]n·l,SG(i,.),(.,.) (5.23c)

where [x]m,n denotes the reshaping operation of a vector x into an m ∗ n matrix, AI,J

denotes the |I| ∗ |J | sub-matrix of A and (.) denotes the set of all possible indices.

69

Termwise equations for the transition and observation matrices are given as follows:

T(σ,τ) =
∑

i,t

γ(i,t,σ,τ) (5.24a)

O
(i)
(t,σ) =

∑

j,s,τ

γ(j,s,σ,τ)g(Φ(xi, t),Φ(xj , s)) (5.24b)

Algorithm 7 One optimization step of Dense Gaussian Process Sequence Classification
(DGPS)

Require: Training data (xi,yi)i=1:n; Proposed parameter values γc

1: Initialize γ
(1)
c , γ

(2)
c (Equation 5.14).

2: Compute T wrt γ
(2)
c (Equation 5.23b).

3: for i = 1, . . . , n do

4: Compute O(i) wrt γ
(1)
c (Equation 5.23c).

5: Compute p(yi|xi, γc) and Ey[[[yt=σ∧yt+1 =τ]]] for all t, σ, τ via forward-
backward algorithm using O(i) and T

6: end for

7: Compute ∇γR (Equation 5.21).

A single optimization step of DGPS is described in Algorithm 7. Note that the

only matrices computed are O(i) and T . The other matrices are introduced only for

reparameterization and are never computed. The complexity of one optimization step

is O(t2) dominated by the computation of O(i) for all i where t = nlr2. We propose to

use a quasi-Newton method for the optimization process. Then, the overall complexity

is given by O(ηt2) where η < t2. We only need to store the γ parameters. Thus, the

memory requirement is given by the size of γ, O(t).

During inference, one can find the most likely label sequence for an observation

sequence x by performing a Viterbi decoding using the transition and observation

probability matrices.

5.3.2 A Sparse Algorithm of Observations

While the above method is attractive for small data sets, the computation or the storage

of K′ (thus the observation and transition matrices O(i) and T) poses a serious problem

when the data set is large. Also, classification of a new observation involves evaluating

the covariance function at nl observations, which is more than acceptable for many

applications. Hence, one has to find a method for sparse solutions in terms of the γ

parameters to speed up the training and prediction stages.

70

We propose a sparse greedy method, Sparse Gaussian Process Sequence Classifica-

tion (SGPS), that is similar to the method presented by [Bennett et al., 2002]. In order

to motivate this algorithm, we present the following lower bound on convex functions

which is simply a tangent of the convex function.

Lemma 4 (Lower Bound on Convex Functions). Let C : Θ→ < be a convex function

on a vector space, let θ0 ∈ Θ and denote by g ∈ ∂θC(θ0) a vector in the subdifferential

of C at θ0. Then

min
θ∈Θ

C(θ) + ‖θ‖2 ≥ C(θ0) + ‖θ0‖
2 − ‖g + θ0‖

2. (5.25)

Proof. Since C is convex, it follows that for any subdifferential g ∈ ∂θC(θ0) we have

C(θ) ≥ C(θ0) + g>δθ. Consequently,

min
θ∈Θ

C(θ) + ‖θ‖2 ≥ min
δθ∈Θ

C(θ0) + g>δθ + ‖θ0 + δθ‖2. (5.26)

The minimum is obtained for δθ = −(2g + θ0), which proves the claim.

This bound provides a valuable selection and stopping criterion for the inclusion of

subspaces during the greedy optimization process. Note in particular that g+ θ0 is the

gradient of the optimization problem in Equation 5.25, hence we obtain a lower bound

on the objective function in terms of the L2 norm of the gradient. This means that

optimization over a subspace spanned by a (set of) parameter(s) is only useful if the

gradient in the corresponding direction is large enough.

SGPS starts with an empty matrix K̂. At each iteration, SGPS selects a training

instance xi and computes the gradients of the parameters associated with xi, γ(i,.),

to select the d coordinates with the largest absolute value of the gradient vector of

R over this subspace. Then K̂ is augmented with the columns associated with the

selected parameters and SGPS performs optimization of the current problem using a

Quasi-Newton method. This process is repeated until the gradients vanish (i.e. they

are smaller than a threshold value η) or a maximum number p of coordinates are

selected (i.e. some sparseness level is achieved). Since the bottleneck of this method is

the computation of the expectations, Ey[[[yt=σ∧yt+1 =τ]]], once the expectations are

computed, we can pick not only one, but d coordinates.

One has two options to compute the optimal γ at every iteration: by updating all of

the γ parameters selected until now, or alternatively, by updating only the parameters

selected in the last iteration. We prefer the latter because of its less expensive iterations.

71

This approach is in the spirit of a boosting algorithm or the cyclic coordinate descent

optimization method.

We consider two alternatives for picking the training sequence at each iteration.

One can select the sequence one of whose gradients has the highest magnitude or select

a random sequence. The former criteria does not necessarily give the best improve-

ment when the number of coordinates to be selected d > 1. Also, its complexity is

significantly higher than selecting a training sequence at random.

Algorithm 8 Sparse Gaussian Process Sequence Classification (SGPS) algorithm.

Require: Training data (xi,yi)i=1:n; Maximum number of coordinates to be selected,
p, p < nlr2; Threshold value η for gradients

1: K← []
2: repeat

3: Pick i:
4: (1) Pick i = arg maxi′ |∇γ(i′,.)R|, or

5: (2) Pick i ∈ {1, . . . , n} randomly
6: Compute ∇γ(i,.)R (Equation 5.21).
7: s← d coordinates of ∇γ(i,.)R with largest absolute value

8: K̂← [K̂;K′es]
9: Optimize R wrt s.

10: until ∇γ < η or p coordinates selected.

SGPS is described in Algorithm 8. When the training sequences are selected ran-

domly, the complexity is O(p2t) where p is the maximum number of coordinates al-

lowed. The complexity increases by a factor of nl, the number of training sequences,

when the best training sequences is selected (Line 4). The storage complexity is of

O(pt), dominated by K′.

5.3.3 A Sparse Algorithm of Observation Sequences

One can also design a similar algorithm that optimizes R(α|Z) in Equation 5.9 to

obtain sparse solutions in terms of observation-label sequence pairs (x,y).

In order to find the steepest descent direction for this formulation, we need to

compute the gradient:

∇αR = 2Kα −
n
∑

i=1

Ke(i,yi) +
n
∑

i=1

Eȳ[Ke(i,ȳ)] . (5.27)

72

where the expectation is with respect to the conditional distribution of the label

sequence y given the observation sequence xi. Not surprisingly, these expectations are

the sum of the expectations with respect to the reduced parameters, in Equation 5.22:

Ey[(Ke(i,y))(j,ȳ)] =
∑

t

K′Ey[(Θe(i,y))(j,t,ȳt,ȳt+1)] (5.28)

The Viterbi decoding as well as the expectations can be computed as described in

Section 4.3.2.

5.3.4 GPSC 2nd Order Optimization Methods

The MAP estimate which we performed in the previous section might lead to over-

fitting the posterior P (F|Z), since the MAP estimate does not control the variance.

This might lead to a non-high probability mass around the peak of the posterior dis-

tribution. To approximate the probability mass of the posterior, one can perform a

Laplace approximation which fits a Gaussian centered at the MAP estimate and com-

putes the volume under the Gaussian, based on the justification that under certain

regularity conditions, the posterior distribution approaches to a Gaussian distribution

as the number of samples grows [Williams and Barber, 1998]. Finding the maximum

can be achieved by performing iteratively Newton-Ralphson updates.

It is well known that for twice differentiable convex functions L(θ) the Newton

updates

θ ← θ − [∇2
θL(θ)]−1∇θL(θ) (5.29)

converges to the minimum quadratically. The first gradients can be computed readily

by Equation 5.21. The Hessian is given by:

∇2
γR=2K′ +

n
∑

i=1

K′Vary

[

Θe(i,y)

]

(5.30)

The complexity of this computation is more obvious when expressed termwise:

∇2
γ(j,t,σ,τ),γ(k,r,σ̄,τ̄)

R =

N
∑

i

∑

s,p

Ey

[

K ′
(i,s,ys,ys+1),(j,t,σ,τ)

K ′
(i,p,yp,yp+1),(k,r,σ̄,τ̄)

]

−

N
∑

i

∑

s,p

Ey

[

K ′
(i,s,ys,ys+1),(j,t,σ,τ)

]

Ey

[

K ′
(i,p,yp,yp+1),(k,r,σ̄,τ̄)

]

+ 2K ′
(j,t,σ,τ),(k,r,σ̄,τ̄) (5.31)

73

Computing the second and the third terms in Equation 5.31 poses no computational

challenge. However, the computation of the first term involves finding the joint expec-

tations Ey[ys = σ ∧ yt = σ̄] and Ey[ys = σ ∧ ys−1 = τ ∧ yt = σ̄ ∧ yt−1 = τ̄] over all

possible macro-labels y of an observation sequence x for all possible s, t pairs. As this

computation scales quadratically with the length of the sequence, repeated computa-

tion of the Hessian exactly is intractable in general. To alleviate this problem, as Altun

et al. [2004b] propose to approximate the Hessian by ignoring the correlations which

go beyond the clique boundaries, leading to approximating the Hessian by a block-

diagonal matrix. In this case, Newton’s method turns into a block-preconditioned

gradient descent, also known as a block-Jacobi method. The price for this approxima-

tion is the slower convergence, which in the worst case is linear rather than quadratic.

For coherence, we restrict our attention to 1st order methods in the following sections.

5.4 Analysis

In this section, we provide approximation analysis of the sparse Gaussian Process clas-

sification. We apply the Gauss-Southwell approximation bound analysis to the SGPS

algorithm that chooses the best sequence. We also point out the asymptotic conver-

gence of the SGPS algorithm that chooses a random sequence at every iteration.

In the following analysis, we assume γk > 0,∀k. Thus, the hypothesis space is the

convex hull C of H, where H is the set defined by the column sum of K′Θ matrix:

C ≡

{

F : (xi,y)→

j
∑

k=1

γkuk| uk = (K′Θe(i,y))k γk > 0,∀k;

}

(5.32)

Optimization over C is obviously a special case of the GPS classification problem

presented previously. However, as argued in Section 3.4, since we are interested in

the macro-label that maximizes F (x,y), introducing −uk for each uk enables us to

generalize the non-negativity constraint. Therefore, we can assume the above definition

of the hypothesis space without loss of generality.

The optimization method described in Algorithm 8 with the best training sequence

selection criteria (Line 4) is closely related to a well-known iterative method for func-

tion minimization which is known as coordinate descent method, coordinate relaxation

method, Gauss-Seidel method, or SOR (Successive overrelaxation method) 3 and can be

3In fact, Gauss-Seidel method is a special case of SOR method.

74

stated in its most general form as follows [Luo and Tseng, 2001, Ortega and Rheinboldt,

2000, Hackbusch, 1994, Murty, 1998]:

Iteration 0: Choose arbitrary x0 ∈ <k

Iteration r+1: Given an xr, choose an i ∈ {1, . . . , k}, and compute a new iterate

xr+1 satisfying:

xr+1
i = arg min

xi

f(xr1, . . . , x
r
i−1, xi, x

r
i+1, . . . , x

r
k) (5.33)

where the goal is to minimize f(x). When f is convex, the sequence generated by this

method is guaranteed to converge to the unique minimum irrespective of the initial

vector x0 [Murty, 1998].

A special case of this method is Gauss-Southwell method. Its selection criteria of

xi is given by |xr+1
i − xri | ≤ βmaxi′ |x

r+1
i′ − xri′ |. It is proved by Luo and Tseng [2001]

that for

f(x) = g(x) + bTx (5.34)

where g is twice continuously differentiable and strictly convex, thus the Hessian∇2g(x)

is positive definite, Gauss-Southwell method converges at least linearly:

f(xr+1)− f(x∗) ≤

(

1−
1

η

)

(f(xr)− f(x∗)) (5.35)

where x∗ denotes the optimal solution, and 1 < η <∞. Thus

f(xr)− f(x∗) ≤

(

1−
1

η

)t

(f(x0)− f(x∗)) (5.36)

and for a given precision ε, one needs to perform O(log(1/ε)) iterations. Ratsch et al.

[2002] extends the proof for an approximate Gauss-Southwell method where at each

iteration the coordinate that has the largest absolute value in the gradient vector is

selected:

i = arg max
i′∈{1,...,k}

|(∇f(x))i′ | (5.37)

and points out that

η < O

(

ρσk4n2

β2

)

(5.38)

75

where ρ is the Lipschitz constant of ∇g, σ is a lower bound on the eigenvalues of

∇2g(xr) for all iterates r, n is the size of the training set and β scales with the ratio of

the upper and lower bounds on the Hessian.

In Equation 5.34, let b = 0 and g = R in Equation 5.19. Since the Hessian of

the negative log function is positive definite, the Hessian constraint of the theorem is

satisfied due to additivity. Let d in Algorithm 8 be 1 and i be selected by Line 4. If

the maximum number of coordinates, p in Algorithm 8, is selected large enough, the

algorithm is equivalent to a Gauss-Southwell method and is proved to converge to the

optimal solution linearly. Clearly, p > 1 only increases the rate of convergence. As for

the bound on η, we note that ρ and n scale linearly with the length of the sequences,

whereas β scales quadratically.

Unfortunately, Algorithm 8 with the best training sequence criteria may not be

feasible for large data sets. Algorithm 8 with random sequence selection, on the other

hand, is an instance of a Gauss-Seidel method. As discussed above, Gauss-Seidel

methods are guaranteed to converge asymptotically. However, this yields significantly

slower convergence of random selection than best selection algorithm.

5.5 Related Work

In a recent study [Lafferty et al., 2004], independent of our work, a formulation sim-

ilar to GPSC has been presented from a different perspective: kernelized Conditional

Random Fields (KCRFs). KCRFs are a generalization of CRFs by introducing a more

sophisticated regularizer than the one used in CRFs: an L2 norm regularizer associated

with an RKHS. As state in Section 4.7, this form of regularizer results in kernelized

methods, KCRFs in this case. As regular CRFs, KCRFs can be defined on general

graph structures. The Representer Theorem assures the optimal solution of KCRFs is

a linear combination of the cliques of the graph g:

F (.) =
∑

i

∑

c∈C(gi)

∑

yc∈Y |c|

α(i,c,yc)Kc(x
i, yc; .) (5.39)

where c is a clique among all the cliques of the graph gi denoted by C(gi). Lafferty

et al. [2004] also extend this framework to semi-supervised learning. We believe this is

a very exciting direction to pursue and still has lots of challenges to explore.

Altun et al. [2004b] approach the problem in general graph structure as well and

propose a method to approximate the Hessian making the 2nd order methods tractable

76

Figure 5.1: Test accuracy of Pitch Accent Prediction task over a window of size 5 on
CRFs and GPS classification.

for Gaussian Process Sequence classification. This is achieved by ignoring correlations

that go beyond the clique boundaries. Proofs of decomposition results of undirected

graphical models and constructions for kernels are presented.

5.6 Experiments

We compared the performance of CRFs and HM-SVMs with the GPSC dense and

sparse methods according to their test accuracy on pitch accent prediction. When

performing experiments on DGPS, we used polynomial kernels with different degrees

(denoted with DGPSX in Figure 5.1 where X ∈ {1, 2, 3} is the degree of the polynomial

kernel). We used third order polynomial kernel in HM-SVMs (denoted with SVM3 in

Figure 5.1). As expected, CRFs and DGPS1 performed very similar. When 2nd order

features were incorporated implicitly using second degree polynomial kernel (DGPS2),

the performance increased dramatically. Extracting 2nd order features explicitly results

in a 12 million dimensional feature space, where CRFs slow down dramatically. We

observed that 3rd order features do not provide significant improvement over DGPS2.

HM-SVM3 performs slightly worse than DGPS2.

To investigate how the sparsity of SGPS affects its performance, we report the

test accuracy with respect to the sparseness of SGPS solution in Figure 5.2 using the

random training sequence selection criteria. The results reported here and below are

obtained using a different set of features where the performance of DGPS is 76.48%.

77

0 1 2 3 4 5 6 7 8
0.72

0.73

0.74

0.75

0.76

0.77

A
cc

ur
ac

y

Sparseness %

DGPS2

SGPS2

Figure 5.2: Test accuracy of Pitch Accent Prediction w.r.t. the sparseness of GPS
solution.

Sparseness is measured by the percentage of the parameters selected by SGPS. The

straight line is the performance of DGPS using second degree polynomial kernel. Using

1% of the parameters, SGPS achieves 75% accuracy (1.48% less than the accuracy of

DGPS). When 7.8% of the parameters are selected, the accuracy is 76.18% which is

not significantly different than the performance of DGPS (76.48%). We observed that

these parameters were related to 6.2% of the observations along with 1.13 label pairs

on average. Thus, during inference one needs to evaluate the kernel function only at

6% of the observations which reduces the inference time dramatically.

In order to experimentally verify how useful the predictive probabilities are as

confidence scores, we forced DGPS to abstain from predicting a label

when the probability of a micro-label is lower than a threshold value. In Figure 5.3,

we plot precision-recall values for different thresholds. We observed that the error rate

for DGPS decreased 8.54%, abstaining on 14.93% of the test data. The improvement

on the error rate shows the validity of the probabilities generated by DGPS.

Because our current implementation of GPSC is in Matlab, the size of the data

sets are limited in our experiments. We used the Spanish newswire corpus to randomly

select 1000 sentences (21K words). We used the word and its spelling properties of the

current, previous and next observations.

78

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

Threshold

Precision

Recall

Figure 5.3: Precision-Recall curves for different threshold probabilities to abstain on
Pitch Accent Prediction

DGPS1 DGPS2 SGPS2 CRF CRF-B

Error 4.58 4.39 4.48 4.92 4.56

Table 5.1: Test error of NER over a window of size 3 using 5-fold cross validation.

The experimental setup was similar to pitch accent prediction task. We compared

the performance of CRFs with and without the regularizer term (CRF-R, CRF) with

the GPSC dense and sparse methods. Qualitatively, the behavior of the different

optimization methods is comparable to the pitch accent prediction task. The results

are summarized in Table 5.1. Second degree polynomial DGPS outperformed the other

methods. We set the sparseness parameter of SGPS to 25%, i.e. p = 0.25nlr2, where

r = 9 and nl = 21K on average. SGPS with 25% sparseness achieves an accuracy that

is only 0.1% below DGPS. We observed that 19% of the observations are selected along

with 1.32 label pairs on average, which means that one needs to compute only one fifth

of the gram matrix.

We also tried a sparse algorithm that does not exploit the kernel structure and

optimizes Equation 5.9 to obtain sparse solutions in terms of observation sequences

x and macro-label y, as opposed to SPGS, where the sparse solution is in terms of

79

observations and label pairs. This method achieved 92.7% of accuracy, hence, was

clearly outperformed by all the other methods. The failure of the method can be

explained by the fact that the algorithm is searching for a single parameter αi,y for a

sequence that consists of many position that might have different behavior and needed

to be explained separately (with different parameter assignments). This is, in fact, the

case in the other sparse method.

The nature of the extracted support sequences chosen by the GPS classification are

very different than the ones chosen by HM-SVMs. In HM-SMVs, most of the support

sequences only differ in a few positions from the correct label sequence, resulting in

sparse solutions, whereas in GPS classification the support sequences are different from

the correct label sequence in many positions.

5.7 Discussion

We now briefly point out the relationship between GPS classification and other dis-

criminative methods of sequence learning, in particular, CRFs, dual HM-Perceptron,

HM-SVMs and MMMs.

We mentioned previously that CRF is a natural generalization of logistic regression

to label sequence learning whose objective function is the minimization of the negative

conditional likelihood of training data. To avoid overfitting, we multiply the conditional

likelihood by a Gaussian with zero mean and diagonal covariance matrix K, resulting

in an additive term in log scale.

log p(θ|x,y) = −
n
∑

i=1

log p(yi|xi, θ) + θTKθ (5.40)

From a Bayesian point of view, CRFs assume a uniform prior p(F), if there is no

regularization term. When regularized, CRFs define a Gaussian distribution over a

finite vector space θ. In GPSC, on the other hand, the prior is defined as a Gaussian

distribution over the function space of possibly infinite dimension. Thus, GPSC gen-

eralizes CRFs by defining a more sophisticated prior on the discriminative function F .

This prior leads to the ability of using kernel function in order to construct and learn

over Reproducing Kernel Hilbert Spaces. So, GPSC can overcome the limitations of

CRFs by generalizing a parametric statistical model. When the kernel that defines the

covariance matrix K in GPSC is linear, F in both models become equivalent.

80

0

0.5

1

1.5

2

2.5

3

3.5

f(
F

(x
i ,y

;Λ
)−

F
(x

i ,y
i ;Λ

))

F(xi,y;Λ)−F(xi,yi;Λ)

Penalization of loss functions

0−1 loss

exp−loss

log−loss

hinge loss

Figure 5.4: Exp-loss, log-loss and hinge-loss as upper bounds on zero-one loss.

As the primal form of HM-Perceptron can be viewed as an approximation of CRFs,

dual HM-Perceptron can be interpreted as an approximation of dense GPSC, where

instead of using the exact derivatives, the approximation is used due to an online update

(only one training instance is considered) and the Viterbi assumption (only the most

likely macro label is considered).

The difference between SVM and GP formulations to sequence learning is the uti-

lized loss function over the training data, i.e. hinge loss vs. log loss. GPSC objective

function parameterized with α, Equation 5.9, corresponds to HM-SVMs where the

number of parameters scale exponentially with the length of sequences. The objec-

tive function parameterized with γ, Equation 5.19, corresponds to MMMs, where the

number of parameters scale only linearly. GPSC has the advantage of providing a

probabilistic framework, which is advantageous for cascaded architecture of classifiers

and the incorporation of prior knowledge.

Kernel logistic regression is commonly interpreted as a large margin method [Bartlett

et al., 2003]. This interpretation can be readily extended to GPSC and unifies the

techniques presented in this study as large margin methods for label sequence learning

optimizing different loss functions: exp loss of Sequence Boosting, hinge loss of HM-

SVMs and log-loss of GPS classification. These functions are upper bounds on the

zero-one loss. Figure 5.4 shows these loss functions on binary classification.

81

It is well known that if the model is correct, logistic regression, performing the

maximum likelihood estimate, may lead to Bayes optimal classification error under

some regularity conditions [Zhang, 2004]. If the model is not correct, then it computes

the estimate that is closest to the true distribution with respect to the relative entropy.

If the intrinsic loss function (optimized by the Bayes rule) is the zero-one loss, GPSC

is consistent, i.e. it achieves the the optimal Bayes error rate in the large sample

limit. Sequence AdaBoost also enjoys this property, since the multi-class exponential

loss function, Equation 3.5, is proved to be consistent [Zhang, 2004]. Unfortunately,

HM-SVM is not infinite sample consistent, since

L(F (x, y)−max
ȳ 6=y

F (x, ȳ)) (5.41)

is shown to be inconsistent in general for convex loss functions L, thus for hinge loss as

well [Zhang, 2004]. We should also note that even though the asymptotic theoretical

analysis provides useful statistical insights, the performance of a learning method on

small-sample problems do not necessarily coincide with its performance on infinite

sample. In fact, our experimental results show that HM-SVM which are inconsistent

achieve better results than Sequence Boosting on all the applications.

Table 5.2 summarizes important properties of the three discriminative learning

methods proposed in this study as well as CRFs. All of these methods optimize an

upper bound on the 0/1 loss function and enjoy the properties of discriminative learn-

ing methods, such as efficient and easy incorporation of overlapping features into the

model. They perform regularization by either adding a penalty term (CRFs), max-

imizing the margin (HM-SVMs) and the ensemble margin (Sequence Boost), or by

enforcing a Gaussian prior over the function space (GPSC). Sequence Boosting pro-

vides sparse feature representations in the primal form, whereas HM-SVMs provide

sparse representation in the dual form in terms of support vectors. CRFs and GPSC

have the advantage of probabilistic interpretation. HM-SVMs and GPSC overcome

the limitations of parametric models by using kernels. The basic computation block

of HM-SVM is the Viterbi decoding, whereas in the other models Forward-Backward

algorithm is used to compute the expectations.

82

CRF SBoost HM-SVM GPSC

Loss function Log Exp Hinge Log

Overlapping features Yes Yes Yes Yes

Regularization Penalty Ensemble margin Margin Gaussian prior

Feature sparseness No Yes No No

Probabilistic Semantics Yes No No Yes

Implicit features(kernels) No No Yes Yes

Computation Forw-Backw Forw-Backw Viterbi Forw-Backw

Table 5.2: Properties of discriminative label sequence learning methods.

83

Chapter 6

Conclusions and Future Work

In many real world problems, the goal is to predict best values for multiple inter-

dependent response variables. The guiding line of this thesis was to generalize the

most competitive discriminative learning techniques to such scenarios. We focused on

structures where response variables form a sequence and we restricted ourselves to a

supervised classification framework. We presented three novel discriminative learning

techniques for the label sequence learning problem, namely a generalization of boosting,

Sequence Boosting, a generalization of Support Vector Machines, Hidden Markov Sup-

port Vector Machines, and a Gaussian Process formulation for label sequence learning,

Gaussian Process Sequence Classification. The key idea of these methods is to learn a

(kernelized) linear discriminative function of a feature representation defined over the

joint observation-label space. These methods optimize various loss functions that are

upper bounds on the zero-one loss which is NP complete to optimize. The discrimi-

native nature of these methods provide advantages over generative methods, such as

HMMs.

Sequence Boosting, a generalization of Boosting to label sequence learning, is an

ensemble method optimizing an exponential loss function of sequences. It implicitly

minimizes the ensemble margin defined over sequences. Taking advantage of the con-

vexity of the exponential function, we defined an efficient algorithm that chooses the

best weak learner at each iteration by using the Forward-Backward algorithm. Its

performance in accuracy is competitive with the state-of-the-art sequence model of

recent years, CRFs. As in standard AdaBoost, Sequence Boosting induces sparse solu-

tions and therefore is preferable over CRFs or other sequence methods, in case where

84

efficiency during inference is crucial.

We presented a generalization of SVMs to label sequence learning problem, HM-

SVMs. They inherit the the maximum-margin principle and the kernel-centric approach

of SVMs. The training problem can be represented as a quadratic program and is expo-

nential in terms of the length of the sequence. We presented an algorithm that makes

use of the sparseness properties of the hinge loss and the structure of the parameters.

This algorithm is proved to convergence in polynomial time in terms of the length of

the sequences. Experimental results show that the algorithm outperforms CRFs in

terms of accuracy and is computationally feasible.

We also investigated a Gaussian Process formulation for label sequence learning,

GPSC. This method combines the advantages of CRFs and HM-SVMs, leading to a

kernel based sequence method with a probabilistic interpretation. The original training

problem which is exponential in the length of the sequence is re-parameterized so that

it scales only polynomially with the length of the sequence. We used sparse greedy

approximation methods in order to apply our approach to large scale problems. GPSC

achieved the best accuracy among the methods we have investigated.

In this thesis, we focused on a sequence structure of inter-dependent variables.

However, the methods presented here are exactly applicable to dependency structure for

which there is an efficient dynamic programming algorithm to compute the best labeling

of the observations or to compute the expectations with respect to some parameter

settings. For example, results on parsing using HM-SVM algorithm have been published

in [Tsochantaridis et al., 2004].

Using this line of research as a foundation, one may investigate a variety of problems

on discriminative methods for graphical models.

The first natural direction is extending the proposed methods to more general

graphs, for which computation of the best labeling or the sufficient statistics exactly

is not tractable. One possible approach is to reformulate the optimization problem as

an iterative search and update method using the ideas in [Collins and Roark, 2004] to

approximate the intractable computations.

A second exciting direction is pursuing a semi-supervised or unsupervised approach

to discriminative graphical models as proposed by Lafferty et al. [2004]. There is an ex-

tensive literature on semi-supervised learning. The ideas from the manifold techniques,

where the assumption is that similar observations should have the same label, can be

85

extended to inter-dependent multiple variables. There are different settings of semi-

supervised learning in structured problems. There might be partial or no labeling of

some subset of the training data. It might be also be the case that some of the response

variables are never observed. An interesting instance of such a problem is a sequence

model where there is not a one-to-one mapping between the observations and labels.

The correspondence between the observations and the response variables, commonly

called alignments, may never be observed. One can treat the alignments and the labels

as a joint structured response variable. Machine translation and pronunciation system

are possible applications of such problems.

The last, but not the least direction is the investigation of the kernel design for

applications with different characteristics. In kernel based methods, such as HM-SVM

and GPSC, the design of the kernel plays a crucial role for reliable inference. Hence, the

kernels should be tailored with respect to the characteristics of the problem. For exam-

ple, a kernel designed for NLP applications, where the segments within a sequence are

relatively short, is not appropriate for protein sequence applications, where a sequence

usually consists of long segments of the same label.

The research on discriminative learning techniques for structured problems is still

in its early stages and is a promising and exciting field of machine learning.

86

Appendix A

Notation

n Number of training instances

xi ith observation sequence in the training set

xt Observation at the tth position in the sequence x

y Label sequence, macro-label

yt Label at the tth position, micro-label

Σ Micro-label set

Y Macro-label set

S Size of the micro-label set, |Σ|

li Length of xi

Ψ Feature representation (defined jointly on x and y)

Φ Attributes (defined on x)

λk Weight of feature ψk

87

Appendix B

Applications

B.1 Pitch Accent Prediction

The detection of prosodic characteristics is an important aspect of both speech syn-

thesis and speech recognition. Pitch Accent Prediction is the task of identifying more

prominent words in a sentence. The goal, then, is to label each word in a sentence with

’A’, accented, or ’N’, not accented (|Σ| = 2). Correct placement of pitch accents aids

in more natural sounding speech, while automatic detection of accents can contribute

to better word-level recognition and better textual understanding.

Pitch accents are never absolute; they are relative to individual speakers, gender,

dialect, discourse context, local context, phonological environment, and many other

factors. Two of these factors are rhythm and timing. A word that might typically

be accented may be unaccented because the surrounding words also bear pitch accent.

Intonational phrase boundaries also affect pitch accent: the first word of intonational

phrases (IP) is less likely to be accented while the last word of an IP tends be accented.

In short, accented words within the same IP are not independent of each other. Because

of this dependency, we model this problem as a label sequence learning problem.

Previous work on pitch accent prediction, however, neglected the dependency be-

tween the labels. Different machine learning techniques, such as decision trees [Hirschberg,

1993], rule induction systems [Pan and Keown, 1999], bagging [Sun, 2002], boosting

[Sun, 2002] have been used in a scenario where the accent of each word is predicted

independently. One exception to this line of research is the use of Hidden Markov

Models (HMM) for pitch accent prediction [Pan and Keown, 1999, Conkie et al., 1999]

88

Variable Definition Example

Unigram log p(wi) and, I

Bigram log p(wi|wi−1) roughing it

Rev Bigram log p(wi|wi+1) rid of, wound up

Joint log p(wi−1, wi) and I, kind of

Rev Joint log p(wi, wi+1) and I, kind of

Table B.1: Definition of probabilistic variables.

where only acoustic cues or part of speech tags combined with word frequency are used

as features.

As the methods proposed in this study are discriminative, one can use many differ-

ent incorporate that influence pitch accent prediction in to the model. In particular, we

use probabilistic, syntactic, and phonological features in a sequence labelling setting.

The only syntactic category we used was a four-way classification for part of speech:

Function, Noun, Verb, Other, where Other includes all adjectives and adverbs.

The probabilistic variables we used were the unigram frequency, the predictability

of a word given the preceding and following words, and the joint probability of a word

with the preceding and following word. Table B.1 provides the definition for these, as

well as high probability examples from the corpus.

The phonological variables ranged from information regarding the number of syl-

lables and phones of a word to information involving rhythm and timing, including

normalized word durations, speech rate, IP length and where in the IP the target word

falls. We have also included variables such as surrounding pauses and filled pauses.

The variable set includes:

• Log of duration in milliseconds normalized by number of canonical phones

• Number of canonical Syllables

• Number of canonical and transcribed Phones

• Log Speech Rate; calculated on strings of speech bounded on either side by pauses

of 300 ms or greater

• The length of the IP

• Preceding or following IP boundary

89

• Preceding or following pause

• Preceding or following filled pause (uh, um)

Gregory and Altun [2004] gives a detailed explanation of most of the features ex-

tracted from the data.

The data for this study were taken from the Switchboard Corpus [Godfrey et al.,

1992] which consists of 2430 telephone conversations between adult speakers (approxi-

mately 2.4 million words). Participants were both male and female and represented all

major dialects of American English. We used a portion of this corpus that was phonet-

ically hand-transcribed [Greenberg et al., 1996] and segmented into speech boundaries

at turn boundaries or pauses of more than 500 ms on both sides. This corpus con-

sists of 1824 fragments of seven words length on average. Additionally, each word was

coded for probabilistic and contextual information, such as word frequency, conditional

probabilities, the rate of speech, and the canonical pronunciation [Fosler-Lussier and

Morgan, 1998].

We extracted observation-label features from a window of size {1, 3, 5} centered

at the word to be labeled and extracted 1st order Markov features to capture the

dependencies between neighboring labels. Since our current implementation of CRF

and boosting only accepts categorical variables, all probabilistic variables were binned

into 25 equal categories.

The experiments were run with 10-fold cross validation. In order to adjust some

free variables, we extracted 1/10’th of the training data to use as development data.

We computed the baseline by simply assigning the most common label, unaccented.

The per-label accuracy was 60.53%. Previous research has demonstrated that part of

speech and frequency, or a combination of these two, are very reliable predictors of

pitch accent. HMMs using these features achieved an accuracy of 68.62%.

B.2 Named Entity Recognition

Named Entity Recognition (NER) is a subtask of Information Extraction. The goal is

to find the phrases that contain person, location and organization names, times and

quantities. Each word is tagged with the type of the name as well as its position in the

name phrase (i.e. whether it is the first item of the phrase or not) in order to represent

the boundary information.

90

We used three different feature sets:

• S1 is the set of HMM-features, i.e. the features of the form “The current word is

X and the current label is σ” and the features of the form “The previous label is

τ and the current label is σ”.

• S2 consists of S1 features and spelling attributes of the current word conjoined

with the current tags, e.g. ”The current word capitalized and the current tag

is σ”. The list of the spelling attributes, which are mostly adapted from [Bikel

et al., 1999] are given in Table B.2.

• S3 includes S2 features not only for the current word but also for the words

within a fixed window of size w. An example of S3 features for w ≥ 3 is “The

previous word ends with a dot and the current tag is σ”.

Notice that S2 is an instance of S3 where w = 1.

We used a Spanish corpus which was provided for the Special Session of CoNLL2002

on NER [Tjong Kim Sang, 2002]. The data is a collection of news wire articles and

is labelled for person, organization, location and miscellaneous names. Thus, micro

label set consists of 9 labels: the beginning and continuation of Person, Organization,

Location and Miscellaneous names and nonname tags. By definition, continuation of a

name type has to be preceeding by the beginning or the continuation of the same type.

We fixed the value of the inter-label dependency features to some value forcing such a

combination to be impossible. This value varied across optimization methods.

The training data consists of 7230 sentences of average length 36 1. We used

esp.testa for testing and esp.testb for development purposes.

The best results reported on this data set is 78.47% on F1-measure by [Carreras

et al., 2002], where separate recognition and classification modules are trained as well

as the use of POS tags and gazetteer features such as geographical names, surnames

and first names. The results we report are significantly lower than this performance due

to these differences. As our goal is not to induce the state-of-the art classifier NER, but

rather comparte our methods wrt other classifiers, the current feature setting suffices

our needs.

1A weather report has been coded as a sentence of length 1238. We divided this sequence into
subsequences of average length 36 without dividing a name into pieces.

91

CUR WORD

SENT INI

TYPE FIRST LETTER

ENDINGS ONE

CAP INI SENT INI

CAP INI DOT END

CAP INI CONTAINS DOT

CAP INI CONTAINS HYPEN

CAP INI CONTAINS DIGIT

CONTAINS DOT CONTAINS DIGIT

CONTAINS DOT CONTAINS HYPEN

CONTAINS DIGIT CONTAINS HYPEN

ALL CAPS

CAP INI

CONTAINS DIGIT

DOT END

Table B.2: Observation attributes used in NER.

B.3 Part-of-Speech Tagging

We used the Penn TreeBank corpus for the part-of-speech tagging experiments. This

corpus consists of approximately 7 million words of Part-of-Speech tagged Wall Street

Journal articles. We used the standard experiment setup for Penn TreeBank: Sections

2-21 training, Sections 24 development, Section 23 testing. The observation attributes

consist of the ones in Table B.2 as well as some more spelling features that were designed

specifically for POS tagging task (Table B.3).

92

ENDS WITH ING

ENDS WITH ED

ENDS WITH EN

ENDS WITH LY

ENDS WITH ER

ENDS WITH EST

ENDS WITH TH

BEGINS WITH WH

Table B.3: More observation attributes used in POS.

93

Bibliography

Steve Abney, Robert Schapire, and Yoram Singer. Boosting applied to tagging and pp

attachment. In Proceedings of the Joint SIGDAT Conference on Empirical Methods

in Natural Language Processing and Very Large Corpora, pages 38–45, 1999.

Yasemin Altun, Thomas Hofmann, and Mark Johnson. Discriminative learning for label

sequences via boosting. In Proceedings of Advances in Neural Information Processing

Systems (NIPS*15), pages 977–984, 2003a.

Yasemin Altun, Mark Johnson, and Thomas Hofmann. Loss functions and optimization

methods for discriminative learning of label sequences. In Proceedings of Empirical

Methods of Natural Language Processing (EMNLP), pages 145–152, 2003b.

Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden markov support

vector machines. In Proceedings of ICML ’03: Twentieth international conference

on Machine learning, 2003c.

Yasemin Altun, Thomas Hofmann, and Alexander J. Smola. Gaussian process clas-

sification for segmenting and annotating sequences. In Proceedings of ICML ’04:

Twenty-first international conference on Machine learning, 2004a.

Yasemin Altun, Alex J. Smola, and Thomas Hofmann. Exponential families for condi-

tional random fields. In Proceedings of AUAI ’04: Twentieth conference on Uncer-

tainty in artificial intelligence, pages 2–9, 2004b.

PeterL. Bartlett, MichaelI. Jordan, and JonD. McAuliffe. Large margin classifiers:

convex loss, low noise, and convergence rates. In Proc. Conf. Advances in Neural

Information Processing Systems, NIPS, 2003.

Kristin P. Bennett, Michinari Momma, and Mark J. Embrechts. Mark: a boosting

algorithm for heterogeneous kernel models. In Proceedings of KDD ’02: Eighth ACM

94

SIGKDD international conference on Knowledge discovery and data mining, pages

24–31, 2002.

Steven J. Benson, Lois Curfman McInnes, Jorge Moré, and Jason Sarich. TAO user

manual (revision 1.7). Technical Report ANL/MCS-TM-242, Mathematics and Com-

puter Science Division, Argonne National Laboratory, 2004.

Daniel M. Bikel, Richard L. Schwartz, and Ralph M. Weischedel. An algorithm that

learns what’s in a name. Machine Learning, 34(1-3):211–231, 1999.

L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. le Cun, U. Muller,

E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: A case

study in handwriting digit recognition. In Proceedings of International Conference

on Pattern Recognition ICPR94, pages 77–87, 1994.

Leo Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):

1493–1517, 1999.

Xavier Carreras, Llúıs Màrques, and Llúıs Padró. Named entity extraction using

adaboost. In Proceedings of The sixth Conference on Natural Language Learning,

CoNLL-2002, pages 167–170, 2002.

Stenley F. Chen and Ronald Rosenfeld. A Gaussian prior for smoothing maximum

entropy models. Technical Report CMUCS-99-108, Carnegie Mellon University, 1999.

Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns

in wordnet. In Proceedings of Empirical Methods of Natural Language Processing

(EMNLP), pages 168–175, 2003.

Michael Collins. Discriminative reranking for natural language parsing. In Proceedings

of ICML’ 00: Seventeenth International Conference on Machine Learning, pages

175–182, 2000.

Michael Collins. Discriminative training methods for Hidden Markov Models: Theory

and experiments with perceptron algorithms. In Proceedings of Empirical Methods

of Natural Language Processing (EMNLP), pages 1–8, 2002a.

Michael Collins. Parameter estimation for statistical parsing models: Theory and

practice of distribution-free methods. In Harry Bunt, John Carroll and Giorgio

Satta, editors, New Developments in Parsing Technology, 2002b.

95

Michael Collins. Ranking algorithms for named-entity extraction: Boosting and

the voted perceptron. In Proceedings of Association of Computational Linguistics,

ACL’02, pages 489–496, 2002c.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Proceed-

ings of Advances in Neural Information Processing Systems (NIPS), 2001.

Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm.

In Proceedings of Association of Computational Linguistics, ACL’04, 2004.

Alistair Conkie, Guiseppe Riccardi, and Richard Rose. Prosody recognition from speech

utterances using acoustic and linguistic based models of prosodic events. In Pro-

ceedings of Fourth European Conference of Speech Communication and Technology,

EUROSPEECH’99, pages 523–526, 1999.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20

(3):273–297, 1995.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,

2001.

Nello Cristianini and John Shawe-Taylor. Introduction to Support Vector Machines and

other kernel-based learning methods. Cambridge University Press, 2000.

Thomas G. Dietterich. Machine learning for sequential data: A review. In T. Caelli

(Ed.) Lecture Notes in Computer Science. Springer-Verlag., 2002.

Richard Durbin, Sean Eddy, Anders Krogh, and Graema Mitchison. Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University

Press, 1998.

Eric Fosler-Lussier and Nelson Morgan. Effects of speaking rate and word frequency

on conversational pronunciations. In Proceedings of the Workshop on Modeling Pro-

nunciation Variation for Automatic Speech Recognition, pages 35–40, 1998.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

55(1):119–139, 1997.

96

Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting.

In Computational Learing Theory, pages 325–332, 1996.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron

algorithm. In Computational Learing Theory, pages 209–217, 1998.

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-

ing algorithm for combining preferences. In Proceedings of ICML ’98: Fifteenth

International Conference on Machine Learning, pages 170–178, 1998.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:

a statistical view of boosting. Annals of Statistics, 28:337–374, 2000.

Mark N. Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD

thesis, University of Cambridge, 1997.

Federico Girosi. An equivalence between sparse approximation and support vector

machines. Neural Computation, 10(6):1455–1480, 1998.

James Godfrey, Ellen Holliman, and John McDaniel. SWITCHBOARD: Telephone

speech corpus for research and develo pment. In Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing, pages 517–520, 1992.

Steven Greenberg, Dan Ellis, and Joy Hollenback. In praise of imprecision:insights into

spoken language gleaned from phonetic transcription of the Switchboard corpus. In

Proceedings of the 1996 CLSP/JHU Workshop on Innovative Techniques for Large

Vocabulary Continous Speech Recognition, 1996.

Michelle Gregory and Yasemin Altun. Using conditional random fields to predict pitch

accents in conversational speech. In Proceedings of ACL’04:Fourty-second Annual

Meeting of the Association for Computational Linguistics, 2004.

Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems of Equations.

Springer-Verlag, 1994.

Keith Hall and Mark Johnson. Attention shifting for parsing speech. In Proceedings of

Association of Computational Linguistics, ACL’04, 2004.

Julia Hirschberg. Pitch accent in context: Predicting intonational prominence from

text. Artificial Intelligence, 63(1-2):305–340, 1993.

97

Sujun Hua and Zhirong Sun. A novel method for protein secondary structure prediction

with high segment overlap measure: Support vector machine approach. Journal of

Molecular Biology, 308:397–407, 2001.

Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, and Amit Singhal.

Boosting for document routing. In Proceedings of CIKM ’00: Ninth international

conference on Information and knowledge management, pages 70–77, 2000.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. Esti-

mators for stochastic ”unification-based” grammars. In Proceedings of the Thirty-

seventh Conference on Association for Computational Linguistics, pages 535–541,

1999.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduc-

tion to Natural Language Processing, Speech Recognition, and Computational Lin-

guistics. Prentice-Hall, 2000.

Sham Kakade, Yee Whye Teh, and Sam Roweis. An alternate objective function for

Markovian fields. In Proceedings of the Nineteenth International Conference (ICML

2002), 2002.

George Kimeldorf and Grace Wahba. Some results on tchebychean spline functions.

Journal of Mathematics Analysis and Applications, 33:82–95, 1971.

Ulrich Kressel. Pairwise classification and support vector machines. In B. Scholkopf,

C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support

Vector Learning, 1999.

Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In Proceed-

ings North American Association of Computational Linguistics NAACL’01, 2001.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceedings of

Eighteenth International Conference on Machine Learning (ICML01), pages 282–289,

2001.

John Lafferty, Yan Liu, and Xiaojin Zhu. Kernel conditional random fields: Represen-

tation, clique selection, and semi-supervised learning. In Proceedings of ICML ’04:

Twenty-first international conference on Machine learning, 2004.

98

Zhang Q. Luo and Paul Tseng. Convergence of block coordinate descent method for

non-differentiable minimization,. Journal of Optimization Theory and Applications,

72(1):7–35, January 2001.

David J. C. Mackay. The evidence framework applied to classification networks. Neural

Computation, 4(5):698–714, 1992.

Olvi Mangasarian. Arbitrary-norm separating plane. Operations Research Letters,

24(1-2):15–23, 1999.

Chris Manning and Hinrich Schütze. Foundations of Statistical Natural Language Pro-

cessing. MIT Press, 1999.

Shie Mannor, Ron Meir, and Tong Zhang. Greedy algorithms for classification - con-

sistency, convergence rates and adaptivity. Journal of Machine Learning Research,

4:713:741, 2003.

Georges Matheron. Principles of geostatistics. Economic Geology, 58:1246–66, 1963.

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy

markov models for information extraction and segmentation. In Proceedings of ICML

’00: Seventeenth International Conference on Machine Learning, pages 591–598,

2000.

Thomas Minka. Algorithms for maximum-likelihood logistic regression. Technical re-

port, CMU, Department of Statistics, TR 758, 2001a.

Thomas Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,

MIT Media Lab, 2001b.

Katta G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Hel-

dermann Verlag, 1998.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York,

Inc., 1996.

Radford M. Neal. Monte carlo implementation of gaussian process models for bayesian

regression and classification, 1997.

99

Alexander Novikoff. On convergence proofs of perceptron. Proceedings of the Sypmo-

sium on the Mathematical Theory of Automata, 12:615–622, 1963.

Manfred Opper and Ole Winther. Gaussian processes for classification: Mean-field

algorithms. Neural Computation, 12(11):2655–2684, 2000.

James M. Ortega and Werner C. Rheinboldt. Iterative solution of nonlinear equations

in several variables. Society for Industrial and Applied Mathematics, 2000.

Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector machines:

an application to face detection. In Proceedings of CVPR ’97: Conference on Com-

puter Vision and Pattern Recognition (CVPR ’97), pages 130–138, 1997.

Shimei Pan and Kathleen Keown. Word informativeness and automatic pitch accent

modeling, 1999.

Vasin Punyakanok and Dan Roth. The use of classifiers in sequential inference. In

Advances in Neural Information Processing Systems (NIPS), pages 995–1001, 2000.

Gunnar Ratsch, Manfred K. Warmuth, Sebastian Mika, Takashi Onoda, Steven Lemm,

and Klaus-Robert Muller. Barrier boosting. In Proceedings of the Thirteenth Annual

Conference on Computational Learning Theory, pages 170–179, 2000.

Gunnar Ratsch, Sebastian Mika, and Manfred K. Warmuth. On the convergence of

leveraging. In Advances in Neural Information Processing Systems (NIPS), 2002.

Robert Schapire and Yoram Singer. Improved boosting algorithms using confidence-

rated predictions. Machine Learning, 37(3):297–336, 1999.

Robert Schapire and Yoram Singer. Boostexter: A boosting-based system for text

categorization. Machine Learning, 39, 2000.

Robert Schapire, Yoav Freund, Peter Bartlett, and Wee S.Lee. Boosting the margin:

A new explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651–1686, 1998.

Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik. Extracting support data for a

given task. In Proceedings of First International Conference on Knowledge Discovery

and Data Mining., 1995.

100

Richard Schwarz and Yen-Lu Chow. The n-best algorithm: An efficient and exact

procedure for finding the n most likely hypotheses. In IEEE International Conference

on Acoustics, Speech and Signal Processing, pages 81–84, 1990.

Matthias Seeger, Neil D. Lawrence, and Ralf Herbrich. Fast sparse gaussian process

methods: The informative vector machine. In in Advances in Neural Information

Processing Systems, pages 609–616, 2003.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In

Proceedings of Human Language Technology-NAACL, 2003.

Alex Smola. Discriminative hidden markov models are conditional random fields. Tech-

nical report, Machine Learning Program, National ICT Australia, 2004.

Alex J. Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for ma-

chine learning. In Proc. 17th International Conf. on Machine Learning, pages 911–

918. Morgan Kaufmann, San Francisco, CA, 2000.

Xuejing Sun. Pitch accent prediction using ensemble machine learning. In Proceedings

of the International Conference on Spoken Language Processing (ICSLP), pages 953–

956, 2002.

Koichi Takeuchi and Nigel Collier. Use of support vector machines in extended named

entity recognition. In Proceedings of Computational Natural Language Learning-2002,

2002.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In

Proceedings of Advances in Neural Information Processing Systems, 2004.

Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-

independent named entity recognition. In Proceedings of Computational Natural

Language Learning-2002, pages 155–158, 2002.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.

Support vector machine learning for interdependent and structured output spaces. In

Proceedings of ICML ’04: Twenty-first international conference on Machine learning,

2004.

Vladimir Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

101

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1999.

Hannah Wallach. Efficient training of conditional random fields. Master’s thesis, Uni-

versity of Edinburgh, 2002.

Jason Weston and Chris Watkins. Support vector machines for multi-class pattern

recognition. In Proceedings European Symposium on Artificial Neural Networks, 1999.

Jason Weston, Oliver Chapelle, Andre Elisseeff, Bernhard Schölkopf, and Vladimir

Vapnik. Kernel dependency estimation. Technical report, Max Planck Institute for

Biological Cybernetics, Tübingen, Germany, August 2002.

Chris K. I. Williams and Matthias Seeger. Using the nystrom method to speed up

kernel machines. In in Advances in Neural Information Processing Systems, 2000.

Christopher K. I. Williams and David Barber. Bayesian classification with gaussian

processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):

1342–1351, 1998.

Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes for re-

gression. In Proc. Conf. Advances in Neural Information Processing Systems, NIPS,

1996.

Dekai Wu, Grace Ngai, Marine Carpuat, Jeppe Larsen, and Yongsheng Yang. Boosting

for named entity recognition. In Proceedings of Compuational Natural Language

Learning -2002, 2002.

Tong Zhang. Statistical analysis of some multi-category large margin classification

methods. Journal of Machine Learning Research, 5:1225–1251, 2004.

Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine.

In Advances in Neural Information Processing Systems (NIPS), 2001.

Jaakkola Tommi and Michael Jordan. Computing upper and lower bounds on likeli-

hoods in intractable networks. In Proceedings of the Twelfth Annual Conference on

Uncertainty in Artificial Intelligence (UAI-96), pages 340–348, 1996.

102

