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Chapter 1

Introduction

This work concerns the automatic control of complex physical systems such as spacecraft
or life support systems even in the face of equipment failures or other unexpected events.
The first section of this introductory chapter provides a high level introduction to the con-
cept of a control system. The second section motivates why additional research is needed
when very successful control systems have been developed for everything from automobile
engines to cruise missiles to Furby dolls. The third section briefly introduces the subject
of this work, a type of control system that attempts to achieve robustness by performing
a significant amount of reasoning about the physical device it controls. The final section

introduces the remaining chapters of the document.

1.1 The Impact of Control Systems

Over the past few decades, many common machines have slowly evolved into marvels of
functionality, efficiency and reliability. At the same time they have, to the casual observer,
kept their familiar forms. Passenger aircraft, looking much like the military transports from
which they were derived a half century ago, routinely fly thousands of miles over oceans
on autopilot with four, and now only two, engines. Catastrophic failure rates measure once
in millions of flights. Automotive disc brakes, first developed in the 1890’s, now bring
automobiles to a halt on ice or gravel without loss of control and without any special skill
on the part of the driver. Internal combustion engines, first used in the mid-nineteenth

century, can now power an automobile for a decade without adjustment, with significantly



greater power and less pollution than was possible in the recent past. In order to explore
one of the factors driving this evolution, let’s consider how automobile engines evolved

between 1965 and 1995.

An internal combustion engine repeatedly draws air and fuel into an internal chamber
where a spark is applied, producing power from the resulting small explosions. While re-
liable for its day, an engine built in 1965 is a temperamental beast compared to its modemn
brethren. It’s prone to hard starting at extreme temperatures, requires adjustment every few
thousand miles, and is apt to spew unburnt fuel and other pollutants from its exhaust. If
clogged filters, component failures or deliberate modifications create minor alterations in
the way air or fuel are delivered to the engine, it loses power or ceases functioning, leaving
the owner to divine what needs to be replaced or adjusted. A 1995 engine starts imme-
diately regardless of conditions, goes 100,000 miles without adjustment, and produces an
order of magnitude less pollution than its predecessor. The 1995 engine is impervious to
any reasonable change in how fuel and air are delivered. If component failures prevent
smooth power production, the engine can often enter a “limp home” mode that reliably
produces minimal power, and report the cause of the problem to the user. This revolution
in efficiency, reliability and robustness may not seem surprising given how the world can
change in three decades. What is interesting to note is that the vast majority, of the com-
ponents that make up the 1965 Ford engine the author has in mind, perhaps some 80%
by weight, would be indistinguishable to the casual observer from the corresponding com-
ponents of the 1995 derivative. Many of the parts are in fact interchangeable. The sole

significant difference between these two machines lies in their control systems.

As illustrated in Figure 1.1, the purpose of a closed-loop control system is to receive
observations from a physical system, estimate the current state of the system, and take
actions that move the system to a desired state of operation. This general description of
the problem can be applied whether one is attempting to run an engine efficiently, land
an airplane automatically, or regulate the human heart with a pacemaker. In the case of
the automobile engine, the control system must determine how much fuel to add to the

air that is entering the engine and decide at exactly what point in time to apply the spark
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Figure 1.1: Typical Control System Schematic

to keep the process running smoothly. A control system may be extremely simple. In
older home thermostats, a metal spring expands or contracts with variation in temperature
and-an attached switch turns the house’s heater on or off. A control system may also be
an extremely complex affair, wherein thousands of measurements are used by a team of
humans and computers to determine what action to take to control a complex process such
as refueling the space shuttle.

Conceptually, the difference between the 1965 and 1995 engines is to what extent the
control system of each is aware of the engine’s conditions and how flexibly it can respond.
The control system for the 1965 engine is designed to virtually eliminate the need for on-
board decision making. When the driver depresses the accelerator pedal, a flap opens to
allow more air to rush into the engine. The rushing air flows past a fuel source, drawing
fuel with it. At the factory, a fuel opening is chosen such that the amount of air that usually
rushes through the engine will draw enough fuel to provide adequate performance across
a range of usual conditions. If the air flow, air density, or fuel flow change significantly,
the opening no longer provides the right amount of fuel. The combustion process loses
efficiency or simply stops. The driver then provides the necessary expertise to change the

environment to suit the control system, perhaps by letting the car warm up before using it,



spraying starting fluid in the engine, or letting excess fuel evaporate.

In contrast, the 1995 engine is controlled by a software system that captures the expertise
of Ford’s control engineers. Sensors determine the temperature and mass of the air rushing
into the engine for each firing. The engine temperature, barometric pressure, and a number
of other measurements are also taken. Based upon these measurements, the control soft-
ware running on a computer under the dashboard determines how much fuel is required
for optimal combustion. It instructs fuel injectors in the engine to open just long enough
to spray the desired amount of fuel into the engine, and similarly controls the moment at
which the air/fuel mixture will be ignited. In the exhaust stream that results from combus-
tion, oxygen sensors inform the computer whether the ratio of air to fuel being burned is
correct. If too little or excess fuel is being delivered, either a sensor or the fuel injector must
not be responding properly and commands to the injectors must be adjusted accordingly.
Similarly, the computer continually monitors the output of all sensors for indications that
a sensor may be malfunctioning. In this case, the output of the sensor is ignored and the
computer does its best to operate the engine using only the remaining sensors. Then engine
can even be ordered to run through a self test, wherein it changes the commands to the fuel
injectors and sparking system and watches for the appropriate responses on the sensors in
an attempt to single out problematic components. All failures, whether discovered during
normal operations or active testing, are reported to the user and can be downloaded to a

diagnostic system along with any anomalous sensor readings for further investigation.

This section was intended to suggest the following intuitions:

o The job of a control system is to adjust a machine or physical process based upon an

estimate of the current conditions of the process, in order to optimize performance.

o The estimation method and types of adjustments made in response may be very simple

or quite complex.

o A machine can be made more robust to failures or environmental change if those changes
are identified and the machine is adjusted based upon how the changes will effect its

operation.



o Increasing the complexity of a machine, by adding sensors, actuators and control soft-
ware, can paradoxically increase its robustness and the simplicity with which it is oper-

ated.

1.2 Problems in Machine Regulation at NASA

In this work, we will focus on situations in which the internal state of a machine must be
estimated and controlled. NASA has an endless variety of problems involving the internal
regulation of complex machines where the system must continue to operate even in the
face of failures. These include operation of human life support systems for Earth-orbit
and future missions to the moon and Mars, operation of automated propellant production
systems on Mars to enable future exploration, and diagnosis and control of vehicles in the
atmosphere, Earth orbit or deep space. Given these exciting and critical applications for
control systems, an important question to ask is, why aren’t existing methods for develop-
ing control systems adequate? The answer lies in the significant differences between these
applications and those handled so successfully by industry.

Most importantly, the economics at NASA and a manufacturer such as Ford Motor Com-
pany are reversed. Ford released version one of its electronic engine control system in
1984, and by the time version five was released in 1995, it had been installed in tens of
millions of relatively similar engines in Ford vehicles. A large amount of effort could be
expended to develop the initial control system, as that cost would be amortized over many
automobiles. Detailed analysis by engineers to improve performance or reduce per-unit
cost could potentially be justified by the profit produced by selling millions of units. In
addition, new versions of the system could be developed incrementally at a relatively slow
rate, drawing upon the experience gained from running millions of copies of the system
under varying conditions for several years. At NASA, the current practice is to develop
each spacecraft design almost from scratch over a period of two to three years and produce
only one or two copies of each design. The fully integrated spacecraft system will often be
run for only a few hundred hours or not at all before being deployed in space. Thus our

requirements upon the control system development process include:

o Control systems must be developed cheaply and quickly in parallel with the hardware



Figure 1.2: Simple propulsion system

system.
o They must also be easy to modify once the fully integrated system is tested and deployed.

A second important distinction is the range of failures over which the control system is
expected to operate. If an automobile engine experiences a severe failure or a set of failures
that was thought to be highly unlikely, the control system need not continue functioning.
The driver can consult the owner’s manual for a solution or the automobile can be towed
to a shop and repaired. A small amount of down time over the life of an automobile is
potentially acceptable, and understandable if a primary component fails. In contrast, many
NASA systems such as deep space probes travel far beyond the reach of easy repair. If a
component fails very early in a long mission, the control system must continue performing
state estimation and control as best it can without that component. In addition, there are
critical periods when a short down time will render useless a multi-year spacecraft mission
costing hundreds of millions of dollars. For example, if a failure were to prevent a space-
craft from properly decelerating as it approaches a planet or other body it’s attempting to
orbit, it might burn up in the atmosphere or be flung uselessly into space. For spacecraft
attempting to orbit the more distant planets, by the time mission controllers on Earth re-
ceived a radio signal indicating that something was amiss, it would be too late to respond.
Spacecraft must therefore carry their spare parts with them in the form of multiple copies of
critical components (called block redundancy) or multiple methods for achieving the same

control action using different components (called functional redundancy).

Example 1 Consider the schematic of a simple, notional rocket propulsion system shown
in Figure 1.2. The purpose of the system is to provide just the right amount of acceleration

by combining fuel and an oxidizer in an engine for a specified amount of time. The helium
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Figure 1.3: Cassini propulsion system schematic.

tank is filled with helium under high pressure. Conceptually, the control problem is quite
simple. When the valve is opened, the high pressure normally forces oxygen and fuel into
the engine where it is ignited to produce thrust. When sufficient thrust is achieved, the
valve is closed. While this system is simple, it has the disadvantage that if any component

fails, it ceases to operate.

Figure 1.3 illustrates the redundant propulsion system used in the Cassini spacecraft,
designed to last a seven year cruise to Saturn and autonomously insert itself into orbit
around Saturn. Two engines are provided in the case that one fails. Each engine is supplied
with fuel and oxidizer through a complex arrangement of valves. Valves or pipe branches
in parallel ensure that if valves stick closed, a redundant parallel valve can be used to
allow fluid flow. Valves in series ensure that if valves stick open, an upstream valve can
be closed to prevent fluid flow. Not shown are valve drivers that control the latch valves
and a set of flow, pressure and acceleration sensors that provide partial observability of
the system. There are approximately 10'5 possible Eonﬁgurations of the system including
failures. Several hundred of those configurations produce thrust, depending upon which
valves are open or closed. Given a set of failures, thrust configurations that can be reached
without using a pyro valve are preferred, as pyro valves can only be opened or closed once.
Regardless of the number of failures that occur, we’d like the control system to determine
the current configuration of the propulsion system and find the best viable configuration of

the system that will produce thrust.



The desire for robust operation over long periods without repair, and the resulting com-

plex, redundant systems, introduce additional control system requirements:

o Due to the number of combinations of failures that could occur over time, the control

system must be able to control the system from a very large number of possible states.

o Due to the large number of possible states, the control system cannot explicitly record

what action to take in each state.

o The control system must determine the best action, rather than simply a sufficient action,

to take in order to reach the goal configuration.

o The control system must include discrete decisions (e.g., Should a valve be opened or

closed?, and Should engine A or B be fired? )

o Because number of sensors is limited compared to the complexity of the system, the state
of the system will not be directly observable from the sensors. The control system will

need to generate an estimate of the state and act upon it.

The first three requirements above suggest that a control system cannot explicitly encode
what action to take for each possible combination of sensor readings it receives. Instead, it
must have at its disposal a general method for determining the best action to take given the
sensor readings. Conceptually, such a general method can be quite simple. For example,
if we could directly measure the amount of air flowing into an internal combustion engine,
basic chemistry would require that we provide fuel in the ratio of 14.7 to 1 to the air. Our
parameter (the amount of air) can vary continuously across the real numbers, and the same
control law (fuel = air/14.7) informs us how to continuously vary the fuel in response.
Unfortunately the fourth and fifth requirements make the application of traditional continu-
ous control laws impractical. A continuous mathematical function that takes as an input the
current configuration of the valves in the Cassini propulsion system and computes which
valve to open or close first would be quite difficult to derive, encode and understand. A
continuous mathematical function that takes as input the current sensor readings and re-
turns the position of each valve in the Cassini system, taking into account sensor failures,

redundant information from flow sensors along the same pipe, and so on, would be equally



unmanageable. What we require is a method of simply and compactly specifying a discrete

controller that applies over all possible states of the system.

Because of the number of states, we cannot specify the discrete control system as a table
of sensor values and the discrete decisions that must be made in response. Specifying a
control system via rules that determine what action to take, such as in an expert system or
in the “if then else” statements of a program, has the advantage that the rules can be fired
regardless of the sensor values that are received. The disadvantage is that it can be quite
difficult to determine what states a set of rules or program statements actually cover and
how the addition of new rules will affect the behavior of any existing rules. In the case of
Cassini, spacecraft engineers performed a large amount of analysis to determine the most
likely failures of the system, how to diagnose those failures from the sensor values, and the
appropriate response to each. While this provided a highly capable discrete control system,
the analysis and software development required came at a cost of over a million dollars per

_critical segment of the mission (e.g., orbital insertion) and the overall development time
was several years. Thus our requirements that control systems be fast and inexpensive to

develop is not met.

What makes these techniques difficult and expensive to employ on complex systems is
that they are aimed at encoding the discrete decision processes that will be used to perform
state identification and control. In essence, encoding the process requires the control system
developer to perform the decision process by thinking through how a component failure will
effect the behavior of the overall hardware system, how that failure will be diagnosable
given the sensors, and what the response should be. If the control system must identify and
account for failures in sensors or actuators that will change how the overall hardware system
responds, performing the system level reasoning required to create the control system can
be quite complex. The more components and subsystems comprising the hardware being
controlled, the more complex this system-level reasoning grows, and the more expensive

and less maintainable the resulting encoding becomes.

One approach to avoiding the cost of encoding a complex process is to encode it only

once. Computer graphics are a good analogy. An artist using a computer graphics system



does not encode a specialized process for drawing a still life. Instead, the artist describes
the local properties of the objects in the scene, such as shape, texture and position. In or-
der to generate a photo-realistic picture of the entire scene, the computer applies standard
graphics algorithms to the local descriptions of the objects. When the local properties of an
object are changed, the algorithms are re-applied and a new scene is correctly generated.
In essence the artist describes what is in the scene, while the graphics algorithms capture
how to draw any scene that can be described in a scene description language. Similarly,
our approach will be to introduce standard, reusable algorithms for discrete state identifica-
tion and control that build upon techniques from the model-based diagnosis literature. To
use the algorithms, the control system developer will describe, or model, the local charac-
teristics of the components of a hardware system using a modeling language. These local
models will then be combined by the algorithms to perform system level state identification
and control over any state the model can attain. We will refer to the resulting system as a
model-based discrete control system. The nature of the models and algorithms that make
up a model-based discrete control system, and how they satisfy all of the requirements we

have introduced, are the subject of the next section.

1.3 Model-based Discrete Control Systems

In order to develop a model-based discrete control system, we require a language for spec-
ifying a model of the components of our hardware, and a set of algorithms that make use
of our models to perform control. This section provides an overview of the models and

algorithms used in this work through an example.

Example 2 Figure 1.4 represents a simple valve system that will be used as an example
throughout this document. The helium tank pressurizes the system and the valves, if open,
allow a gas flow. The valve driver unit (VDU) commands two valves via the data bus rep-
resented by dashed lines. The valves are commanded in parallel. The VDU can command

both valves open or both valves closed.
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Figure 1.4: The Valve Driver Example
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Figure 1.5: The Automaton Representing a Valve

A model of this hardware system must specify the components of the system (e.g., there
are two valves, a tank and a driver). For each component, the model must specify the pos-
sible states, referred to as modes, the component may occupy (e.g., a valve may be open,
closed, stuck open, or stuck closed). For each mode, the model must specify the compo-
nent’s behavior (e.g., a closed valve prevents flow) and transitions (e.g., when commanded
open, a closed valve usually opens but may stick closed with some probability p). All of
this information can be encoded using an automaton to represent each component. For
example, a valve might be represented as shown in Figure 1.5.

The ovals in Figure 1.5 represent the possible modes of the valve, open, closed, stuck
open and stuck closed. Each mode includes a partial description of how the valve behaves
in that mode. For example, when the valve is in the closed mode, the flow through the
valve is zero. The arcs specify how the mode changes when an action is taken. Starting
in the closed mode, when the command to open is given, the most likely outcome is that
the valve moves to the open mode via the darker arc. The lighter arcs represent less likely

failure transitions to the stuck open or stuck closed mode that may occur.
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Using a single component, we can develop a basic intuition for how a discrete control
algorithm might work. For the sake of simplicity, the algorithm is broken down into a
method for estimating the state of the system given the sensors and a method for determin-
ing the best action to take given the state estimate. Suppose we know a valve to be in the
closed mode, and we issue the command to open the valve. We then receive an observation
of the flow and pressure, and wish to determine the new state of the valve. Suppose the
flow reported by the sensor is zero and the pressure is high. We investigate each possible
transition from the closed mode in turn. If the valve took the likely transition to the open
mode, the flow through the valve would be proportional to the pressure. It is not, so this
transition, although likely, is ruled out. Similarly, the less likely transition to the stuck open
mode is ruled out by the observations. The only transition consistent with the observations
is the stuck closed mode, and this becomes our state estimate. The basic intuition is that
state identification is a search over the transitions of the hardware model to find a mode
that is consistent with the observations.

Choice of a control action is accomplished in a similar manner. Suppose we again know
the valve to be in the closed mode. We wish to have flow through the valve. We first
check to see if the current mode allows flow. It does not, so we must find a path to a2 mode
that does. We cannot use any of the arcs to failure modes in our path, as we cannot force
failures to occur. Instead, we must use only the commandable (darker) arcs. In this case,
there is only one arc from the closed mode to the open mode. Fortunately, in the open
mode there must be flow and our search ends. The basic intuition is that action selection is
a search over the transitions of the hardware model to find a mode that enforces the desired
conditions. In the next two sections, we present an overview of the challenges in creating
diagnosis and action selection algorithms based upon these intuitions, and the techniques

we will use to address them.

1.4 Overview of State Estimation

We can represent the basic features of the automaton of Figure 1.5 in an influence diagram,
as shown in Figure 1.6. Each arc represents the existence of one or more constraints be-

tween two variables. The straight arcs represent that the current mode of the valve, the valve
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Current State Next State

Figure 1.6: An Influence Diagram for the Valve

command and the transition taken determine the next mode of the valve. The curved arc
represents that in each state the pressure and mode of the valve determine whether there is
flow at the valve. As with the automaton, we can perform state identification by performing
a search over the possible transitions and examining how each influences the observations
in the next state. We can also develop an automaton for the VDU and helium tank and
represent them as influence diagrams. A combined influence diagram for the VDU system
is shown in Figure 1.7. There are variables representing the modes and transitions of the
two valves, the VDU and the tank, as well as other variables. As in the valve diagram of
Figure 1.6, the pressure in the system influences the flow through the valves. In addition,
the mode of the helium tank (i.e., OK or ruptured) determines whether there is pressure.
Similarly, the mode and command input to the VDU determines the commands sent to the
valves. As with the simpler model, we can perform state identification via a search on the
transitions. However, there are now four transitions which require choices, leading to 64
possible combinations for this small model. This highlights that state identification can be
cast as a combinatorial optimization problem: we are interested in the best (in this case,
maximum probability) combinations of choices for the transitions that make the next state
consistent with the observations. In Figure 1.8 we see the influence diagram for the VDU
system as it is commanded four times. Note how the pressure at valve V1 at time step 2
is dependent upon the valve mode at time step 2. The mode is in turn dependent upon the
mode at time step 1, the V1 transition at time step 1, and so on. Thus, computing a state
estimate for time step 4 requires a search over all of the transitions in the model. We’ll

refer to a sequence of transitions as a trajectory. If there are 64 transition combinations per
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Figure 1.7: An Influence Diagram for the VDU, Two Valves and a Tank. Some arcs not
shown for clarity.

time step, and we require a trajectory made up of a sequence of four trajectory combina-
tions, then there are 16,777,216 possible trajectories. While the simple method of choosing
trajectories by considering each possible trajectory and what observations it predicts is cor-
rect, it clearly cannot be used in practice because of the number of possible trajectories.
We must therefore employ a technique that does not require us to consider every possible

trajectory.

Given a model of a physical system and a sequence of commands and observations re-
ceived over time, we can represent the problem of determining the system’s state using
a hidden Markov model or HMM, a standard representation from operations research and
computer science. Given a two-step influence diagram such as Figure 1.7, standard HMM
techniques can compute a state estimate after an arbitrary number of commands and obser-
vations have been received. This state estimate takes the form of a belief state. A belief
state expresses the likelihood of each possible configuration of the system. The belief state

is a sufficient statistic, in that it captures all knowledge about the current state of the system
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Figure 1.8: An Influence Diagram for the VDU System over 4 Time Steps

contained within the history of commands and observations. Once the belief state is com-
puted, there is no need to retain or re-examine any previous commands or observations.
Thus we do not need to enumerate every possible trajectory of the system over time. Un-
fortunately, computation of the belief state still requires computing the probability of every
possible state of the system, which is out of the question for problems of the size we hope

to address.

It is important to note that while we cannot compute the probability of every possible state
of the systern, we also cannot go to the other extreme and assume that we will be able to
uniquely identify and track the one true state of the system given the observations we have
received. Many complex physical systems are only partially observable, or observations
may be costly. For example, sensors dedicated to measuring the internal state of spacecraft
are usually quite minimal due to power and weight constraints. Thus, if we diagnose a fault
aboard a spacecraft, it may be impossible to do better than finding a small set of failures
that are equally likely given the limited set of observations. For example, consider the

simplified propulsion system of figure Figure 1.9. If the engine fails to produce thrust, we
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Figure 1.9: Simplified propulsion system schematic.

may not be able to immediately distinguish whether the valve at position 1, 2 or 3 is stuck
closed. We must therefore be able to track multiple trajectories of the system.

Rather than computing a complete belief state that accounts for every trajectory after each
command, as we would do with a traditional HMM technique, we will focus on maintaining
the most likely trajectories of the system given the commands and observations received
thus far. Each of these trajectories ends in a current state of the system that we consider to
be among the most likely. Unfortunately, subsequent observations may provide additional
information that forces us to reduce the likelihood or rule out some of states of the system
we previously considered likely. The new most likely trajectory is then one we have not yet
considered, and finding it will require re-examination of the history of the system. Thus we
are back to performing trajectory identification on growing structures similar to Figure 1.8.
The naive approach of simply growing the model each time the system is commanded
and performing a complete search over the trajectories is clearly insufficient. We will
first consider modifying the search algorithm for state identification. Using algorithms
inspired by work in the field of model-based diagnosis, we will in the average case vastly
speed up the search process. One such technique is to implicitly rule out large numbers of
trajectories that are inconsistent with the observations without ever explicitly considering
them. We will then limit the size of the model that is to be searched through techniques such
as not explicitly representing every variable at every time step. These techniques together
comprise a practical state estimation algorithm that has been demonstrated on complex
models.

In summary, our state estimation technique will track the trajectories of the system that

appear most likely given the observations received thus far, and in doing so yield a set of
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likely current states. As we receive additional observations, it may be the case that the
trajectories we have chosen to track were very unlikely to have produced the new observa-
tions, or could not have possibly produced the new observations at all. We will then use
history information to generate additional trajectories we previously considered unlikely in

order to replenish our set of likely current states.

1.5 Overview of Planning

The preceding section gave provided an overview of how we will compute a set of likely
current states of a physical apparatus, and how we will maintain that set over time. Given
that the control system no longer knows with certainty what state the apparatus occupies,
the question arises of how should one choose actions. We would like to choose actions
that move the apparatus from its current state to a state that has some desirable property,
referred to as a goal state. Our problem is that we need to generate a sequence of actions,
or a plan, that achieves our goals even though the exact failure that occurred, and thus the
exact state of the apparatus in which our plan will execute, cannot be determined. One
simple approach is to plan as if the apparatus were in one of the states, and hope that the
observations received during execution of the plan will reveal which state is the actual state.
For example, again consider the simplified propulsion system of Figure 1.9 and imagine
that we have diagnosed that one of the valves at position 1, 2 or 3 is stuck closed. We might
assume that it is valve 1, the oxidizer valve, that is stuck, and choose actions that open the
backup valve adjacent to valve 1.

Unfortunately, an action that achieves some desirable goal when the apparatus is in one
possible state may be ineffective or precipitate a disaster if the apparatus is in fact in another
state. For example, it is equally likely that valve 3 and not valve 1 is stuck closed, and
therefore the oxidizer tank is not being pressurized by the helium tank. Consider if it
is not safe to adjust the valving on the oxidizer tank when it is not pressurized, perhaps
because of reversion. In this case, our actions chosen only to operate correctly in a single
state would be dangerous if another equally likely state were actually in force. Thus when
choosing actions we must in some manner consider each possible state that the apparatus

may occupy when we begin executing actions.
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One formulation of planning that suits our application is the conformant planning prob-
lem. Intuitively, conformant planning is the problem of generating a plan that moves a
system from any one of a number of possible initial states to a state that satisfies a set of
goal predicates. The challenge of conformant planning lies in the fact that the effects of a
plan when executed in one state may be different and highly undesirable when the plan is
executed in a different state. Thus one cannot choose an action based on its desired effect
given one possible initial state of the system (called a world in the conformant planning
literature) without in some way considering its unintended effects when it is executed in
all other possible initial states. The traditional approach to conformant planning has been
to consider the effects of each action under consideration across all worlds simultaneously.
This of course has a large impact on the computation and space required to generate a plan.
In this work, we take a unique approach to conformant planning in that we attempt find a
plan that works in a single world and extend it to work in all worlds. To do this, we plan
in a single world at a time using a deterministic planner. We use the plan generated in
each world to influence how plans are generated in the remaining worlds, in order guide
the planner toward producing a plan that works in all worlds. In effect, we attempt to di-
vide a complex, conformant planning problem into a set of simpler, single-world planning
problems. This conformant planning technique, referred to as fragment-based conformant
planning problem. We have implemented several variations of fragment-based conformant
planners, and have tested them on conformant planning problems from domain of space-

craft reconfiguration and from the planning literature.

A conformant plan is a plan that achieves all of our goals from any of the possible initial
states of our apparatus. Our experience suggests that conformant planning is too restrictive
for the type of robust, autonomous operations we seek in spacecraft and other real-world
systems. Simply put, it may be the case that no conformant plan can be found, because one
or more of the possible initial states of the system contain severe failures and no conformant
plan exists, or because we cannot find a conformant plan by the time we need to begin
executing actions. In this case, we will not be able to generate a plan that achieves all

goals from any initial state. It may however be possible to find plans that achieve some of
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the goals from all initial states, all goals from some initial states, or different sets of goals
in different sets of initial states, each of which has a different utility to the user. Since
we are interested in autonomous systems, we require a way to automatically reduce the
scope of the planning problem when a conformant plan that achieves all goals in all worlds
cannot be found in the available time. This will require a strategy for choosing the goals
and worlds for which a plan will be attempted when a plan cannot be found for all. For
many applications, we would like the strategy to ensure that some valid plan of action is
available when we must act. The strategy for must also take into consideration the utility
or relative importance the user assigns to various combinations of goals to be achieved and
initial states to be handled.

We have developed a planning algorithm, the Safe, Conformant, Optimizing Planning
Engine, or SCOPE, that has these properties. SCOPE attempts to find a conformant plan
for a subset of the complete sets of initial states and goals of its choosing. It chooses states
and goals so as to attempt to respect the user’s utility assignments, and can employ various
strategies for ensuring a plan exists whenever planning is interrupted (anytime planning)
or exploring which worlds or goals are making a problem difficult to solve (learning).
Our fragment-based conformant planner, which is unique in its ability to incrementally
expand the set of worlds upon which its plan is conformant, is used as a subroutine to the
SCOPE planner. The SCOPE planner has been implemented, and a variety of strategies for

choosing initial states and goals have been explored.

1.6 A Model-based Health Maintenance Capability

By combining a state estimation capability with planning, we can form a model-based ca-
pability for system health maintenance or control, similar to those provided by Livingstone
(Williams & Nayak 1996) and demonstrated on a spacecraft as a part of the Remote Agent
system (Bernard et al. 1998). In such a system, a model of the apparatus being controlled
is combined with observations received from the system by a diagnosis or state estima-
tion algorithm to determine the current state of the apparatus. The planner then finds a
sequence of actions that move the apparatus from its current state to a goal state. As the

actions are executed, the new current state is determined from the resulting observations,
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Figure 1.10: Model-based Health Maintenance

and the process repeats. The spacecraft is considered reliable enough that when finding
a reconfiguration to mitigate the initial failure, we do not consider the effect of possible
additional failures during the reconfiguration. If reconfiguration fails, we simply diagnose
the additional failure and find a new reconfiguration. A model-based health maintenance

system is illustrated schematically in Figure 1.10.

A control system making use of our diagnosis and planning capabilities builds on systems
such as Livingstone primarily in two ways. First, it handles uncertainty in a more explicit
manner. Our diagnosis work explicitly tracks the multiple possible current states caused
by partial observability, and the planning work attempts to find actions that take all of
these states into account. Livingstone and similar systems in model-based diagnosis and
robotic control commit to one of the possible states, and plan as if that state were the true
state. Second, our planner is able to balance the conflicting concerns of goal achievement,
uncertainty and resource management. If a plan for all goals and possible states cannot be
found within time and memory bounds, the planner discards goals or possible states in an
order specified by the system designer. Livingstone’s recovery capability and many other
planners return no plan if the full set of goals cannot be satisfied within the time and space

alloted for computation.

In addition to being more robust to uncertainty and resource constraints, we have the
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opportunity to investigate alternative ways of integrating the diagnosis and planning com-
ponents of this type of architecture. For example, a plan will be generated that applies in
potentially many initial states. An early action in the plan might result in observations that
rule out many of the states for which the plan applies. While this does not prevent the plan
from reaching its goals in the remaining states, simpler plans or plans that reach additional
goals from the reduced set of states may exist. Thus while the initial portion of the original
plan is still executing, we may wish to regenerate the remainder of the plan without the

worlds that have been ruled out by the execution thus far.

1.7 Document Overview

In the following chapters we first address state identification. We begin with a background
in state identification from the areas of partially observable Markov decision processes and
model-based diagnosis. We then relate state identification to trajectory identification. We
introduce the trajectory system representation that implements, in propositional logic, the
intuitions of the influence diagrams presented above. Then follows a discussion of several
search algorithms for the trajectory identification within the transition system representa-
tion. Turning to the issue of model size, we introduce optimizations and approximations
that prevent the transition system representation from growing unboundedly as time passes.
These modifications maintain the ability of a trajectory search algorithm to revise its as-
sessment of how the system evolved in the past in order to reconsider trajectories it had
previously dismissed as unlikely. Finally on the subject of state identification we present
the results of testing a system that embodies these ideas, L2 (for Livingstone2), on scenarios
developed while applying Livingstone and L2 within NASA.

On the subject of action selection, we first introduce our novel approach to conformant
planning, fragment-based conformant planning, followed by experimental results compar-
ing our fragment-based conformant planner against the best conformant planners currently
available. We then motivate the expansion of our planning algorithm from a conformant
planner to an optimizing planner, SCOPE, that selects a subset of goals and initial states
for which it will attempt to find a conformant plan. We then present results for SCOPE

and a survey of related work. Finally, we conclude with an analysis of how this work has
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impacted the state of the art, which types of problems are best suited for solution by this

approach, and areas for future work.
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Chapter 2

Related Work in State Identification

In this chapter, we begin discussion of the state estimation portion of a discrete controller.
Intuitively, we will be commanding a system that is not completely reliable and will be re-
ceiving observations in response. The task of state estimation is to determine the likelihood
of each possible state of the system based upon the commands and observations received
thus far. Based upon these likelihoods, the appropriate next action may then be selected.

We begin the discussion with basic definitions.

Definition 1 A belief state is a probability distribution over the possible states of the sys-
tem. The likelihood assigned to a state by the belief state represents the controller’s belief
that the system is currently occupying that state. If s is a system state, we will write b(s)

for the probability value assigned to state s by belief state b.

Definition 2 The task of state estimation is as follows. Given a model of a system, a
sequence of non-deterministic actions taken by the system, and a sequence of observations,

compute the belief state.

The state estimation techniques developed in this document draw upon the techniques from
two existing formulations of the discrete control problem. The first formulation is the
partially observable Markov decision process. The second formulation, model-based diag-
nosis, is a related but independently developed formulation of the problem that brings with
it a powerful set of algorithms. The two formulations, the basic techniques associated with

them, and their shortcomings with respect to our domains of interest are discussed below.
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2.1 Partially Observable Markov Decision Processes

A commonly used formalization of the discrete control problem is as a Markov decision
process (Sondik 1971). For a process to be Markov, the current state and action must
provide all of the information available for predicting the next state. That is, if we know
the current state of the system, knowing the previous state of the system cannot not add
information when attempting to predict the next state of the system. We define a Markov

decision process as follows.
" Definition 3 A Markov decision process is defined by the tuple (S, A, T, R), where

o S is the finite set of states of the system being tracked
e A is a finite set of actions

o T is a state transition model of the environment, which is a function mapping elements of
S x A into discrete probability distributions over S. The actions are non-deterministic, so
we write T'(s, a, s') for the probability that the environment will make a transition from

state s to state s’ when action a is taken.

e R is areward function mapping S to R that specifies the instantaneous reward that the
agent derives from entering state s. The reward is used in action selection, and is not

discussed further in this chapter.

In a Markov decision process, the state of the system is assumed to be directly observable.
The probability that an action executed in the current state s will result in a new state s’ is
determined by T'(s, a, ). Once the action is taken, the resulting state is directly observed.
Hence there is no state estimation problem. When the state is not completely observable,

we must add a model of observations, to create a partially observable Markov model.

Definition 4 A partially observable Markov decision process is defined by the tuple
(S,A4,0,0,7T,R), where

o O is a finite set of possible observations

e O is an observation function, mapping S into discrete probability distributions over O.

We write O(s, o) for the probability of making observation o from state s.
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Though the current state is not known with certainty in a POMDP, the Markov assumption
that knowledge about previous states will not improve our prediction of the next state will
still prove useful in designing a state estimator. Such an estimator can be constructed out of
T and O by straightforward application of Bayes’ rule. Given a belief state b, the output of
the state estimator is an updated belief state, &'. For each state s’, &'(s’) can be determined
from the previous belief state b, the previous action a, and the current observation o. We
will compute &'(s’) in two steps. Given our current belief state, we first can compute our
new belief the system is in state s’ after executing action a, but prior to receiving any
observations, denoted p(s’),

p(s) = ZT(s,a,s’)b(s). 2.1

SES
This equation is a simple consequence of the Markov property. Intuitively, every state s we

could have been in has some likelihood of depositing us into s’ given the action a. Each s
contributes to s’ according to the likelihood we were in state s and the likelihood that that
state s transitioned to s’. Once p is computed, we find the new belief in s’ conditioned upon

the observation o we have received.

re N __ O(s,0)p(s")
V() = Frorenr 22

This is simply Bayes’ rule. Intuitively, conditioning on the observation using Bayes’ rule
redistributes the probability mass according to how much more likely or unlikely it was
to see the observed observation o in state s’ than in general. Pr(o | a,b) is simply a
normalizing factor that represents the likelihood of seeing o at all given our previous belief
state. Specifically, Pr(o | a,b) is the marginalized likelihood of seeing o given action a
and our previous belief state b, defined as

Pr(o|a,b) = Z O(a,s',0) ZT(S, a,s)b(s) . (2.3)

s€S seS

The resulting b(s") function ensures that the current belief state accurately summarizes all
available knowledge. That is, by repeatedly applying Equation 2.2, we maintain a belief
state that captures all information contained in an arbitrarily long stream of actions and

observations. Thus we have a very simple and elegant solution to discrete state estimation.
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Figure 2.1: Propulsion system schematic.

Unfortunately, it is not practical to directly apply this state estimator in the domains we
seek to address.

Consider the problem of determining the likelihood of the possible states of the propul-
sion subsystem of Figure 2.1. Computing a belief state via Equation 2.2 requires enumera-
tion of the state space. That is, to compute b(s") we must consider b(s) for every s € S. The
propulsion subsystem has 38 components with an average of 3 states each. The size of S
is approximately 10*®. More complete spacecraft models capture 150 or more components
averaging 4 states, yielding a state space of 2°%° or more ! and making exact computation
of b(s") implausible.

One alternative is to track an approximation whose computation does not require enumer-
ation of the state space. Boyen and Koller (Boyen & Koller 1998), for example, provide an
approximate, factored belief state with a bounded error that can be updated without enu-
merating the state space. Intuitively, the error bound relies upon the stochasticity of the
underlying system, parameterized by the problem’s mixing rate, to continually smear both
the approximate and true distributions, exponentially reducing rather than compounding
errors over time. Unfortunately, the systems we consider have inadequate mixing rates.
Intuitively, when monitoring the internal state of a complex device such as a spacecraft, the
device may behave as if it were deterministic for long periods, then exhibit a failure, then
return to apparent determinism. There is no process in place with sufficient stochasticity
to quickly contract an arbitrary error introduced by a factored approximation. A particle

filter (Isard & Blake 1998; Doucet 1998) is another approximate representation for a belief
'or
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706,183.397,376
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state that does not require enumerating the entire state space. A particle filter approximates
the belief state via sampling. Initially, a subset of the states of the statespace are selected
for representation. This selection may be uniform over the statespace, or represent some
knowledge about the initial state of the system being tracked. Conceptually, there is a par-
ticle at that point in the space. When an action is taken and an observation received, the
likelihood of the state each particle represents is updated via Equations 2.1 and 2.2. The
state space is then re-sampled, using the updated likelihoods of the particles as a bias. States
near likely particles are more likely to be sampled, while particles that represent states that
have become unlikely may be eliminated. Conceptually, the particles condense toward re-
gions of the state space that predict the current behavior of the system. Unfortunately, a
particle filter is not well-suited to tracking the kind of abrupt, discontinuous failures we
seek to diagnose. Intuitively, the re-sampling step of the algorithm is unlikely to place par-
ticles into failure states, since the likelihood of entering a failure state is low. Thus when
a failure occurs, it is unlikely that the particle filter will have a particle representing that
state and its likelihood. Dearden and Clancy (Dearden & Clancy 2002) and Thrun et al.
(Thrun, Langford, & Verma 2002) suggest methods for modifying the re-sampling step of

the particle filter algorithm in an attempt to address this shortcoming.

2.2 Model-Based Diagnosis

Techniques from model-based diagnosis take a different approach, incrementally gener-
ating members of the belief state in most-likely first order (de Kleer & Williams 1987;
1989). In this approach, the device is typically modeled as a set of components. Each
component has a set of variables and one or more states, or modes, that it can occupy. Each
mode has a (typically) propositional model that constrains the values of the components
variables. Thus, setting the mode of each component induces a set of constraints on the
variables of the complete model. Some of these variables are directly observable from the
device, meaning that certain assignments of the modes will not be consistent with the ob-
servations. The task is then to assign each component’s mode so as to cause consistency
with the observations.

Component modes that represent failures are assigned a cost corresponding to the prior
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probability of that failure occurring in that component. An assumption is generally made
that failures of components occur independently. Thus the probability of a set of mode
assignments is the product of the probability of the mode assignments. Thus starting with
the lowest cost assignment (each device in its nominal mode) we can consider all com-
plete mode assignments in order of total likelihood until an assignment consistent with the
observations is found. This mode assignment represents the most likely state of the sys-
tem. Using this simple best-first procedure, many inconsistent mode assignments may be
found before a consistent assignment is found. Note however that if a partial assignment
to the modes introduces a set of constraints that causes an inconsistency, every full assign-
ment that contains this partial assignment is also inconsistent. This partial assignment to
the modes and observations is called a conflict. As candidate mode assignments are ruled
out because they are inconsistent, conflicts are found and recorded. No assignment that
contains a known conflict will ever be brought up for consideration. This has the effect
of potentially ruling out large portions of the statespace from consideration, and can dra-
matically focus the search for a consistent assignment. Conflict-directed best first search,
CBFS, performs best-first search on those parts of the search space not yet known to con-
tain a conflict. Sherlock (de Kleer & Williams 1989) introduces CBFS and the application
of diagnosing the failure modes within a stateless system such as combinatorial circuits.
Conceptually, this type of system tracks for a single step a limited HMMwhere there is a
single action, specified compositionally across the modes, that either has no effect or causes
some number of components to fail. The belief state for the HMMafter this one action is
executed is incrementally generated until the desired number of possible states or amount

of probability mass is accumulated.

Livingstone (Williams & Nayak 1996) adds to Sherlock the ability to transition a compo-
nent’s modes between nominal modes in response to an action in addition to moving from
anominal mode to a failure. After each action is performed, Livingstone uses CBFS to enu-
merate a small number of most likely mode assignments given the current observations and
the previous mode assignments. Each partial belief state is made up of only descendants of

the previous n most likely states, which were determined using only previous observations.
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Figure 2.2: Evolution of a Valve Driver Unit and Valves

Livingstone tracks the n approximately most likely states of the system. This approxima-
tion is extremely efficient and well suited to the problem of tracking the internal state of a
machine, where the likelihood of the nominal or expected transition dominates, and imme-
diate observations often rule out the nominal trajectory when a failure occurs. The task then
becomes one of diagnosing the most likely system transition, chosen from combinations of
component transitions, that would be consistent with the unexpected observations. Using
this technique, Livingstone is able to perform approximate state identification and recon-
figuration of systems with hundreds of state variables. It has been applied to the control of
a number of systems within NASA and is an integral part of the Remote Agent architecture
demonstrated in-flight on the Deep Space 1 spacecraft in 1999 (Muscettola et al. 1998;
Bernard et al. 1998). Unfortunately, the true trajectory may not be among the most likely

given only the current observations. Consider the following example.

Example 3 Figure 2.2 reintroduces the valve system from Figure 1.4. Recall that the he-
lium tank pressurizes the system and the VDU commands the valves to open or close in
parallel. The graph to the right represents the probability of two possible trajectories. The
filled circles represent the true state of the system. At time O the VDU is off, the valves
are closed and pressure is observed at the outlet of the helium tank. At time O the VDU is
commanded on. For the sake of illustration, consider an approximate belief state of size 1.
The state wherein the VDU is on is placed into the belief state. The true state wherein the
VDU is failed is discarded. At time 1, the VDU is commanded to open its valves. Since

the only state in the belief state assumes the VDU is on, the single state in the updated
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belief state has the VDU on and all valves open. In the true, untracked state the valves
are closed, as they never received a command. After commanding the valves to open, no
flow is observed downstream of the valves. Failure of the helium tank has zero probability,
given the observations. Failure of the VDU in the current time step has no effect on the
valves. Thus, the most likely next state consistent with the observations requires that all
valves spontaneously and independently shut. Regardless of the number of valves and the
unlikeliness of spontaneous closure, this transition must be taken if it exists. If it does not

exist, the belief state approximation becomes empty.

While only one trajectory is tracked in this example, adding a fixed number of trajectories
will not help in the general case. For any fraction of the trajectories that are tracked, an
example can be constructed wherein the actual state of the system falls outside the tracked
fraction. In this case, the error in the approximate list of most likely states may become
arbitrarily large. The true state of the system will not be in this list of “most likely” states,
and the states that are maintained on the list need not be very likely at all. Intuitively, as the
true state of the system evolves and produces observations, the incorrectly tracked subset
of states may need to undergo arbitrarily unlikely transitions in order to remain consistent
with the observations. This mis-diagnosis can cause a controller that is relying upon this
state estimate to take incorrect and potentially damaging actions. In the next chapter, we
therefore propose an alternative to committing to a subset of the current belief state or

maintaining an approximation of the entire belief state.
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Chapter 3

Trajectory Identification

3.1 Introduction

In this chapter, we propose to maintain the information necessary to begin incrementally
generating the current belief state in best-first order at any point in time. Since we do not
update the entire belief state, we do not have a sufficient statistic, so a history must be
maintained. We introduce a variable to represent every state variable, command and obser-
vation at every point in time and an algorithm for incrementally generating the exact belief
state at any point. Duplicating the entire set of variables at each point in the history seems
impractical except for short duration tasks. We apply two approximations motivated by our
experience modeling physical systems for Livingstone. The first duplicates only a small
number of carefully selected variables at each time point. This approximation is conser-
vative in that does not eliminate any feasible trajectories but may admit certain infeasible
trajectories. These may be eliminated by future observations. The second limits the length
of the history that is maintained by absorbing older variables into a single variable that
grossly approximates them. This allows an approximate belief state to be generated at any
point in time from a constant number of variables. The variables represent an exact model
of system evolution over the recent past, an approximate model over the intermediate past,
and a gross summarization over the more distant past. This allows assignment of the most
likely past transitions to be revisited as new observations become available. The fewest
variables, and thus the least flexibility, are allocated to segments of the system trajectory

that have remained consistent with the system’s observed evolution for the longest time.
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Figure 3.1: A Simplified Valve Automaton

cmdIn=close

We wish to represent the possible histories of a system composed of non-deterministic,
concurrent automata given the commands issued to the automata and their output. Fig-
ure 3.1 is a slightly simplified version of the valve from Chapter 1. One failure state has
been removed solely for the purpose of clarity. From these automata, we would like to
create a structure for representing all possible evolutions of the valve over time. We would
also like a propositional encoding so we may take advantage of techniques and intuitions
developed in the model-based diagnosis world. Based on these desires, in this chapter we
introduce a propositional representation of non-deterministic automata that is an extension
of the formalism used in Livingstone. We then frame the trajectory identification problem.

Before precisely defining the representation, we will develop an intuition using Fig-
ure 3.1. Representing the behavior of the automaton within each state is straightforward.
Let Valve be a variable representing the possible states of the automaton. The domain of
Valve is {open, closed, stuck}. Let Flow be a variable representing the flow through the
valve, of domain {zero, nonzero}. A propositional model of the open state of the automa-
ton is then simply:

Valve = closed == Flow = zero

The constraints within each of the other states of the automaton can be similarly captured.
For our future convenience, we will refer to the set of formulas introduced to model the
behavior of all of the states of all automata in the system as My. Capturing the transitions
of the valve automaton in propositional logic is slightly more challenging. There is no
operator to capture that when a command is given to the valve, it non-deterministically

chooses with some probability to transition from open to closed or open to stuck closed. A
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Figure 3.2: Simplified Valve Automaton with 7 Variables

simple way to capture this non-determinism in the valve is to introduce a choice variable
Twalve- Figure 3.2 illustrates the augmented automaton. We may now simply mode! the
choice of transitions taken from the closed state, for example, as the choice of assignments
to the free variable 7,41 To represent the possible outcomes of the open command at time
t, we must introduce variables to represent the valve at times ¢ and ¢ + 1, and a variable to
represent the non-deterministic choice T,z at time £. The transitions from the closed state

of the valve automaton can then be modeled by the following formulas:

Valve, = closed A Tyaiwer = nominal =—> Valvei; = open

Tealvet = Stick = Valvey; = stuck

For our future convenience, we will refer to the set of formulas introduced to model the
behavior the transitions of each automaton in the system as M. A trajectory of the valve
is an assignment to the variables T aive 0, Tvalve,1; Tvalve,2, - - -- The prior probability of the
valve sticking at any point can be captured as the probability that Nature makes the assign-
ment Tyaue: = Stick. Given the appropriate independence assumptions, the set of valve
trajectories can be incrementally enumerated in order of prior probability. Trajectories that
are inconsistent with Mg given the observations such as the actual flow observed, need
not be considered. This is the kernel of the our approach to state estimation problem. The
remainder of this chapter introduces the transition system formalism more precisely and

elaborates on the assumptions being made.

3.2 Transition systems

Definition § A transition system T is a tuple (X,7,D,C, Mg, M ,T’), where
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3 1s a set of state variables representing the state of each automaton. Let n denote
the number of automata and m denote the number of discrete, synchronous time steps
over which the state is to be tracked. ¥ then contains m X n variables. ¥, will denote
the set of state variables representing the state of the system at time step ¢. Each state
variable y ranges over a finite domain denoted 6(y). The temporal variable representing
the occurrence of variable y at time step ¢ is denoted y;.

T is a set of transition variables. The transition variable that represents the non-
determinism in the transition of state variable y from time ¢ to £ + 1 is denoted 7, ;.
Timat is, if there are n non-deterministic outcomes of the transition in the value of y, 7,
will have a domain of size n.

T represents a likelihood function on 7. The exact nature of I" is discussed below. Con-
ceptually I'(7, ;) represents the probability distribution over the outcomes of the transi-
tions of variable y.

D is a finite set of dependent variables.

C is a finite set of command variables.

State s; is an assignment to £,U7 ,UD,UC;

My is a propositional formula over ; and D, that specifies the feasible subset of the
state space. A state is feasible if it makes an assignment to £,UD; that is consistent with
Ms.

M is a propositional formula over X4, D;, C;, T and %, that specifies the feasible
sequences of states. M7 is a conjunction of transition formulas modeling possible

evolutions of y; to y;.; of the form
KGN (T =7") = Y1 =y"

where ¢; is a propositional formula over £,UD,UC;, and 7*, representing a choice among
the non-deterministic transitions of ¥, is in §(7, ). The sequence s;, s;1; is feasible if the

assignment made by s;Us;1 is consistent with M.

Example 4 We introduce a transition system to model a VDU and two valves. For the
sake of brevity we have omitted the helium tank. The variables corresponding to the VDU
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consist of a state variable vdu representing the possible VDU states (on, off, or failed), the
transition variable 7,4,, 2 command variable cmdin representing commands to the VDU
or its associated valves (on, off, open, close, none), and a dependent variable cmdout
representing the command the VDU passes on to its valves (open, close, or none). The
feasible states of the VDU are specified by the formulas below that belong to Ms:

vdu = off => cmdout = none

vdu = failed =—> cmdout = none

vdu = on => cmdin = open = cmdout = open A
cmdin = close = cmdout = close A

cmdin # open A cmdin # close = cmdout = none

together with formulas like (vdu = on) V (vdu = off) V (vdu = failed) and (vdu #
on) V (vdu # off ) ... that assert that variables have unique values. The time step subscript
is omitted, indicating that all formulas refer to variables within the same time step. M
for T,a, is as follows, where nom is an abbreviation for nominal:

Tedut = fail = vduiy = failed

Todut =NOM == vdus = off Acmding =on vdutel = on
vdus = off A emdin # on vduyy = off
vdugry = off

vdugyy = on

vdu = on A emding = off

> > > >

vdu; = on A emding # off

vdu; = failed

Lreel

vdugq = failed

The valves vl and v2 each have a state variable of domain (open, closed, or stuck), a
transition variable 7,; and a dependent variable flow,; of domain (zero, nonzero). The
feasible states of vl are specified by the formula below. The feasible states of v2 are
specified similarly.

vl=open = flow, =nonzero
vl = closed = flow,; = zero

vl = stuck = flow, = zero
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M for 7, is shown below. 7,2 has the same constraints as 7,,;.

Torg = stick = vl = stuck

Toig =nom = vl = closed A cmdout, = open vlgp1 =open A
vl; = closed A emdout; # open vl = closed A
vl; = open A emdouty = closed vl = closed A
vl = open A cmdout; # close vl =open A

vl = stuck

Ll

vl; = stuck

3.3 Trajectory Identification

Definition 6 A trajectory for T is a sequence of states s, S1,. .. S, such that for all ¢,
0 <t < m, s; is consistent with My andforall ¢,0 <t < (m — 1), s;Us;; is consistent
with M.

Consider the problem of determining the state of a physical process modeled by a transi-
tion system T at each point in a trajectory Sp . . . S,. The subset of the dependent variables
D whose assignment corresponds to a measurement from the process will be referred to
as the observations, . We are given an assignment for the initial state, £y. In addition
we are given assignments to commands C; and observations O; for all 0 < ¢t < m. The
task is to choose assignments to 7, for all ¥ and £ so as to ensure consistency with Mg
and M7 and maximize the likelihood of the trajectory. That is to say, given a starting
state, a set of commands and a set of observations, we must find the most likely sequence
of transitions such that each state is consistent with the state model My and the transitions

are consistent with the transition model M. We define trajectory likelihood to be

Z Z D(7ys)

t=0 y=1
This definition makes the assumption that the likelihood of the assignment to each transi-

tion variable is independent of all others. That is, 7, ; is independent of 7.4, Ty ¢+ and 73 ¢ ;.
This is a common assumption and has been an adequate approximation in practice. Note
that this assumption does not effect the handling of single failures that manifest themselves

at multiple points throughout the system (e.g., a power failure causing all lights to go out).
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3.4 Infinitesimals

In order to complete the transition system model shown in Example 4, we require the proba-
bility of each 7, ; assignment, representing the prior probability of each possible component
transition. Experience with Livingstone suggests that an order-of-magnitude probability
scale is sufficient for two reasons. First, the internal behavior of a machine is usually far
less stochastic than its interaction with its environment. There is an expected or nominal
behavior that a component will exhibit for a given state and input. Failures are one or more
orders of magnitude less likely. Second, precise estimates for these priors are often either
inaccessible or unknown. In the case of spacecraft, the components may be unique or they
may be destined for a new operating environment. However, the relative plausibility of each
failure mode during operation can be elicited quite easily. In this work, we formalize and
capitalize on these characteristics of the priors by making use of infinitesimals (Goldszmidt

& Pearl 1992) to model the relative likelihoods of failures.

An infinitesimal probability is represented by an infinitesimally small constant raised to
an exponent referred to as the rank. The rank can be considered the degree of unbeliev-
ability. Intuitively, one would not consider a rank 2 infinitesimal believable unless all rank
0 and rank 1 possibilities had been eliminated. Composition of infinitesimals has many
desirable properties. If A and B are independent events, then

Rank(AB) = Rank(A) + Rank(B)
Rank(AV B) = min(Rank(A), Rank(B))

Thus an outcome that can occur through multiple independent events has rank ¢ if one
event has rank ¢ and the remaining events, even if arbitrarily many, have ranks of ¢ or more.
This property is key. It allows us to consider only the most likely trajectories leading to a
state: if a sequence of events of rank ¢ ends in state s;, then an arbitrary number of higher
rank (i.e. less likely) trajectories leading to s; will not change the of s;. Similarly, if
state s; is reached by a trajectory of rank i, and no trajectory of rank ¢ or less reaches s,
then s; is more likely than s;. We need not consider the possibility that a vast number of
unlikely trajectories lead to s and together increase its likelihood above that of s;. Thus
I'(7y, = 7*) returns the rank of the likelihood of that assignment. We frame our algorithms

in terms of most likely trajectories, knowing there is a direct correspondence to most likely

37



states given the infinitesimal interpretation of the priors.

3.5 Correspondence to the POMDP Formulation

The correspondence between a domain specified as a POMDP and a problem P specified as
a transition system is straightforward. The state set S of P is the subset of the cross product
of the variables of ¥ that is consistent with My. Similarly, a set of a system-wide actions
A must be formed from the the factored commands C. If the transition system is limited
to receiving one command per time step, then the action set .4 is formed by considering
each possible value for each command, and augmenting it with the idle value for all other
commands. If the model-based controller may issue commands in parallel, then .A consists
of the consistent cross-product of the command values. The observation set O consists of
the subset of the cross product of the variables O that is consistent with Mys. My and
M provide a very compact encoding for the observation and transition functions O, T
Let s be a state of the POMDP we are constructing to correspond to the transition system
P and and o be an observation. Note that s is assignment to all variables in ¥ and o is an
assignment to the variables of O. For a state s and an observation o, the POMDP observation
function O is as follows, where assignment of a set of values to a set of variables simply

assigns each value to the corresponding variable:

O(s,0) =1 if(ZE=s)A MgE(0O=0)
O(s,00=0 fE=8s)A MsA(O=0)=L

That is, if the assignment of the state variables in the transition system model entails the ob-
servation assignment, the probability of the observation given the state in the corresponding
POMDP is one. If the observation assignment and state assignment are inconsistent given
the transition system state model, the probability is zero. The question arises as to the value
of O(s, 0) if (O = o) is neither inconsistent with nor entailed by (£ = s) A Mg. This is-
sue generally arises when using model-based diagnosis algorithms and is not an issue with
viewing the problem as a POMDP per se. Often the choice is to make O(s, o) uniform over
the consistent values of O. In other cases, algorithms are constructed to implicitly model

O(s,0) = 1 in the absence of any other information. O(s, 0) is then no longer a probability
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distribution, as it sums to more than one when marginalized on s.

The transition function T is similarly specified. T'(s, a,s’) is the probability of the as-
signment to 7 ; that transitions the system from s to s°, or O if no such consistent assignment
exists. Given the independence assumptions, the probability of an assignment to 7'; is sim-~
ply the product of the probabilities of the individual assignments to each variable. Recall
that the belief state update algorithm for a POMDP is derived from the Markov property and
Bayes’ rule, and is specified by the following formulas:

p(shb) = > T(s,a,s)b(s)
SES
O(s', 0)p(s', b)
Pr(o| a,b)

In the next chapter, we consider a number of belief state generation algorithms for the

b'(s")

transition system formulation. These algorithms at their core use the same belief state
update algorithm, but take advantage of the structure of Mg and M. First, we need
not consider any state that is inconsistent with the observations. That is, we may disregard
any s’ such that S A Mg Ao = 1, as O(s’,0) = 0 and thus ¥(s") = 0. If a partial
assignment to X, ¢, is such that c A Mg A o |= L, then all states s’ € ¢ can immediately
be eliminated from consideration. The partial assignment ¢ U o is referred to as a conflict
and conflict-directed searches use the conflicts they have discovered to greatly reduce the
number of states they must examine. Second, T'(s, a, s’) is the product of the independent
probabilities of assignments to members of 7 ;. Best-first search techniques take advantage
of the compositionality of a trajectory’s probability to construct assignments to 7; so as
to consider transitions T'(s, a, ) in order of probability. Together, these two observations
will allow us to construct algorithms that incrementally generate the non-zero members of

the belief state in order of probability.
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Chapter 4

Trajectory Tracking Algorithms

4.1 The CBFS-track Trajectory Tracking Algorithm

The transition-system formulation suggests an intuitive procedure to begin enumerating the
belief state at any point. The transition system is initialized with My and a copy of all
variables, representing the initial state. At time step ¢, we introduce the structure needed
to represent the feasible next states of the system. We first create a copy of all variables
and extend Mg, conceptually introducing a new copy of the state constraints where the
variables have new time indices, to model the constraints between the variables within the
new time step. We then extend M, representing the constraints between the variables
in the current and next time steps. Finally, we assign C; and O;..; according to how the

system was commanded and the observations that resulted.

Example 5 Figure 4.1 illustrates a trajectory-tracking problem of length three for the
model of Example 2.2. Each box represents an variable. The command is emdin and
the observations are flow,; and flow,s. These variables are assigned by the problem,
as is the start state. The highlighted 7, assignments must be chosen. The remaining
variables will be constrained based upon these assignments. The arcs represent con-
straints from M. Constraints from Mg are not shown. For all 7, we will assume
Rank(ry; = nominal) = 0 and Rank(7,; # nominal) = 1.

Trajectories may be enumerated in order by enumerating assignments to all 7, ; in order of
the sum of the ranks, then testing for consistency with M7 and Ms. Conflict-directed,
best-first search, or CBFS (Dressler & Struss 1992; de Kleer & Williams 1989; Williams
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Figure 4.1: Evolution of the VDU/valve system

proc CBFS-track()

problem X = 25 U Dy

Assign X to initial state;

loop
X=X UT;UC UZXstq UDyy torepresent new time step ¢ + 1;
Assign C; and Ogy; according commands and observations received;
Result = n most likely consistent assignments to 7 returned by CBFS ( X, M7A Mg, f)
report Result;

}
} CBFS-track

Figure 4.2: CBFS-based trajectory tracking algorithm

& Nayak 1996) greatly focuses this process by using conflicts. In this context, a conflict is
a partial assignment to 7 and O that is inconsistent. When a candidate solution is found
to be inconsistent, the conflict is recorded in a database, ConflictDB. No further candidates

that contain a known conflict are generated.

We begin with a representation of the initial state of the system in X. At each time step,
we extend X with the variables necessary to represent the transition to the next state. We
then assign C; and O, according to how the system was commanded and the observations
that resulted. CBFS is then used to enumerate consistent assignments to 7 in best-first
order. The enumeration could be continued until n assignments are found, until the rank
of the next assignment found decreases, or until some other stopping criterion computable

from the solutions found thus far is met. The process is then repeated for the next time step.
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Figure 4.3: Two evolutions of the system

At each time step, this procedure recomputes from scratch the most likely assignments
to the transition variables given all observations. A trajectory ¢ that was most likely given
only previous observations might only be consistent with a new observation if it is extended
to ¢ by a very unlikely assignment to the most recently added transition variables. Since
CBFS-track reconsiders all transition assignments at each time step in best-first order, ¢’ will
only be considered if there are no consistent trajectories whose probability lies between ¢
and ¢'. Thus at all time points CBFS-track recomputes the most likely members of the

belief state given all available commands and observations.

Example 6 Figure 4.3 illustrates the two lowest-cost solutions to the above problem that
would be found by CBFS. They represent a single failure of rank 1 at time 1 and a double
failure of rank 2 at time 2, respectively.

While this algorithm does compute the most likely states at each time step, it has several
significant drawbacks. First, the memoryless quality that allows CBFS-track to avoid over
committing to seemingly likely trajectories also forces the algorithm to rediscover past
failures at each time step the system is tracked. Since failures are the exception rather than
the rule, we would like a tracking procedure that minimizes computation when no failures
have occurred, and when failures do occur, scales the computation required with the inverse
of their likelihood. More importantly, the size of the CBFS problem to be solved is very
large for any given trajectory length and grows unboundedly as the trajectory is extended

over time. CBFS-track does nothing to eliminate variables within a time step based upon
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the structure of the problem, nor does it attempt to truncate the trajectory representation to

maintain a bounded problem size.

4.2 The Livingstone Algorithm
The Livingstone system (Williams & Nayak 1996) uses CBFS to perform both state iden-

tification and control. In this section we will focus on the use of CBFS for state identifica-
tion. While Livingstone was not developed from exactly the transition system formalism
described in this paper, it seeks to solve the same underlying problem and can be can be
described in this framework.

In order to avoid the problem of an ever increasing number of variables to assign that
CBFS-track encounters, Livingstone does not track the most likely states or trajectories
given the commands and observations thus far. It instead approximates the problem of
tracking the most likely trajectories given all available information as a recurring trajectory
tracking problem of length one. In this problem, the current state is assumed to be known
or to be contained in a small set, and the task is to identify the most likely next states given
the assignments to C; and O;;. The true current state is then assumed to be in the set of
currently most likely states, and the problem recurs. The Livingstone algorithm solving this
problem is illustrated in Figure 4.4. The parameter n specifies how many states Livingstone
will track. Livingstone in fact represents a class of algorithms that solve the following
problem: Given that the system was in one of n states m time steps ago, determine the
most likely state given the intervening commands and observations, and then use this as
an approximation for the most likely portion of the belief state given the entire trajectory.
The current Livingstone implementation sets n = 1 and m = 1 in order to solve problems
such as Figure 1.3 with sub-second response time using the relatively weak CPU’s found
on spacecraft (Bernard ez al. 1998).

Livingstone does not share the commitment-less property of CBFS-track in that it does
not reconsider all transition assignments at each time step. It is still the case that a trajectory
t that was most likely given only previous observations might only be consistent with a
new observation if it is extended to ¢’ by a very unlikely assignment to a transition variable.

Livingstone considers only the newest transition assignment, in essence committing to all
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proc Livingstone(n)
problem X =5 UDoUToUCoUE, UDy
for (i=0;i<n;i=i+1)
Worlds;=initial state;

}
loop
Assign Cp and O according to new commands and observations received;
for (i=0;i<n;i=i+1)
So=Worlds;
To = most likely consistent assignment to 7 returned by CBFS ( X, MA Mg, f)
Worlds;= X as entailed by Lo ACo ATo A M

}
Report Worlds

} Livingstone

Figure 4.4: Livingstone trajectory tracking algorithm

previous assignments. There is no choice but to extend t to ¢/, even if an assignment of
greater likelihood than ¢’ could be found by reconsidering the assignments represented by
t. Thus Livingstone does not track the most likely states of a system. Rather, Livingstone
determines the n most likely successors, given the next set of commands and observations,
of the states that were the most likely successors given the previous set of commands and
observations. Thus each partial belief state is made up of only descendants of the previous
approximation of the » most likely states, which were determined using only previous
observations. This approach is tractable but fairly vulnerable to ambiguity. Consider the

following examples.

Example 7 Recall the VDU system from Figure 2.2. In the first time step we turn the VDU
on. From that point onward, the VDU may be on or failed. The only way to distinguish
between the two is to attempt to command the valves. Before performing that action, it is
much more likely that the VDU is on. Livingstone therefore commits to the state wherein
the VDU is on. The next state of the system must now evolve from the state wherein the
VDU is on. Suppose we now command the valves to open, and receive the observations
that there is no flow at either valve. All evolutions from the state wherein the VDU is
on and the valves are being commanded open to a state where there is no flow involves

all of the valves moving to the stuck state. This holds whether we have two valves or
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one hundred. Clearly if we had considered the entire trajectory of commanding the VDU
then commanding the valves, then conditioning on the multiple flow observations, the most

likely trajectory would involve the single failure of the VDU command.

Example 8 Consider a computer that can fail in two ways: its software can hang, in which
case it needs to be reset, or its hardware can hang, in which case it needs to be power
cycled. Software hangs are significantly more likely than hardware hangs. In either case,
the computer fails to respond to keyboard input. Suppose we receive the observation that
the computer is not responding to input. It is ambiguous as to which failure the computer
is experiencing, so Livingstone commits to the software hang. If a reset command fails to
revive the computer, Livingstone will search for the most likely transition given that the
computer was experiencing a software hang, and a reset command failed to revive it. Given
the prior probabilities, the most likely failure is a software failure. Since Livingstone always
considers the most likely extension to the current trajectory, rather than the globally most
likely trajectory, there is never an opportunity to consider the hardware failure. Livingstone

will thus continually consider a software failure, reset, and consider a software failure.

4.3 The Conflict Coverage Algorithm

Note that unlike CBFS-track or Livingstone, this algorithm should neither rediscover previ-
ous failures nor irrevocably commit to a trajectory or set of trajectories that are most likely
given the only the current observations. If properly constructed, our procedure will have

the following properties:
o It tracks all consistent trajectories at the most likely probability level.

e As long as trajectories at the current probability level remain, very little computation is

required.

e As soon as it’s no longer consistent to believe the system is in a state at the current proba-
bility level, the procedure finds and begins tracking all trajectories at the next probability

level.
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o Conflicts discovered at each probability level are accrued, ensuring that future conflict-
directed searches are highly focused and do not reconsider trajectories that have previ-

ously been ruled out.

The strengths of efficiently tracking a partial belief state are merged with the flexibil-
ity of incrementally enumerating belief states in the CoverTrack procedure of Figure 4.5.
TSet is a superset of all consistent trajectories of rank -, as returned by a previous call
to CoverTrack. As described above, extend adds to the transition system the variables
needed to represent the outcomes of the current command. All trajectories are augmented
by the new transition variables, which are assigned nominal transition, and checked for
consistency. Any inconsistent trajectory requires additional failures above rank +, and is
discarded as relatively implausible. The survivors are a superset of all consistent trajecto-
ries of rank «. If this set is not empty, it is returned. Otherwise, the most likely trajectory
has a rank greater than y. The GenerateCover algorithm generates all assignments to 7~
of a given rank that cover all known conflicts. A conflict is covered if at least one of the
variables in the conflict is assigned to an assignment that does not appear in the conflict.
Intuitively, we leave the 7, ; at their zero rank values, introducing reassignment only to
avoid conflicts, with a total cost of . This is the NP-hard hitting set problem. The contents
of ConflictDB and « will determine whether this problem is tractable. Because of the
loss of observations at past time points, GenerateCover returns superset of all consistent
rank < trajectories. If at least one trajectory is consistent with the current observations, it is

returned. If not, « is increased.

4.4 Additional Related Work

A more inclusive synthesis of the literature on belief revision and belief update was per-
formed by Friedman and Halpern (Friedman & Halpern 1999). It describes a general,
plausibility-based temporal logic framework for describing belief revision methods, into
which our work can be placed. The trajectory tracking method described here differs from
that described by Friedman and Halpern and the other approximations of which the authors

are aware in that it uses history to compensate for not having a sufficient statistic.
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proc CoverTrack(cmd, obs, T'Set, ConflictDB, ) {
/*Extend the system adding £; to 2, 74 to T%/
extend(Z,7, emd);
/*Extend trajectories at current 7y */
Assign 7 to nominal, 0 rank assignment.
for trajectory in T'Set
trajectory = trajectory U7 ¢;
/*Check trajectories for consistency, up v if needed*/
Assign O according to obs received;
Survivors = §;
loop{
for trajectory in T'Set {
conflict=checkConsistency(trajectory);
if (conflict) then
push(conflict, Con flict DB);
else
push(trajectory,survivors); }
if(survivors) then return survivors;
/*Ran out of trajectories. Find more at next rank™/
TY=7+1
T Set=GenerateCover(T ,Con flictDB,v);

Figure 4.5: Conflict Coverage Tracking Procedure
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Chapter 5

Decreasing the problem size

While applying CBFS or CBFS-cover to the full transition system exactly enumerates the
most likely trajectories, and thus states, in order, problem size is a significant issue. Let p
denote the number of propositions needed to represent each possible value of each variable
in 7UXUCUDUQ. These propositions are constrained by a copy of M- and My ateach
time step. Testing consistency of an m-step candidate trajectory is a consistency problem
of m x p propositions and m x | MU My | clauses. For the Deep Space 1 model, this
is m x 4041 propositions and m X 13, 503 clauses.

Let v be the number of ways to choose a variable from 7 and assign a failure value
(rank > Q) value to it. There are m x n variables in 7. Let f denote the average number
of failure assignments per variable. Thus, v = m x n X f To find the most likely consistent
candidate assuming a single failure, the number of consistency checks that would have
to be performed on this large theory would be O(v) in the worst case: any 7;; could be
assigned to any failure value in its domain. Finding an arbitrary combination of failures
would require a number of consistency checks exponential in v.

In this chapter, we reduce the structure needed to represent the evolution of the system
at a time point from a complete copy of the system model to a small number of variables
and clauses. Intuitively, when a command is issued to the system, only a small number of
components participate in transmitting that command through the system or transitioning
in response to the command. Consider Figure 5.1. The squares represent state variables,

the lines sets of constraints from M. As of time 7, the valves, pump and VDU have not
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Figure 5.2: Evolution upon commanding the valves

been commanded nor have they interacted with other components by passing a command.
If we had not detected a failure of any of these components, we can represent the possibility
that they remained idle or failed in a localized and unobservable way with a single set of
variables and constraints as illustrated. At time 7 we command the valves on. We require
variables v1lg and v2g to represent the new states of the valves. M suggests vduz, vlr
and v2; will interact with v1lg and v2g. These variables, along with necessary transition
variables T4y 7, Tv1,7 and, T2 7, are introduced to the system with the appropriate clauses
from M. For each other variable y, the variable representing y; is adequate to represent
ys. Figure 5.2 illustrates this process. In order to derive a well-founded algorithm from
these intuitions, we first place a natural restriction on M. that does not impact correct-
ness. Second we introduce an approximation involving Mg that, importantly, does not
rule out consistent trajectories. Instead, some trajectories that are not consistent with past
observations may be admitted, with the possibility that future observations will eliminate
them. These problem modifications avoid replication of many variables in  and D, as well

as corresponding constraints from M4 and Ms.

5.1 Restricting M

We restrict M- in the same manner Livingstone and Burton (Williams & Nayak 1997):
a component moves to a failure state with equal probability from any state, and, except for
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failures, a component that does not receive a command idles in its current state. M- is
limited to the forms:

(Tyt = Tfait) ==  Yt+1 = Yfail
(Cyt =C )N Gt A(Tyt =nom) => gy =9y"

(Cye =idle) A (Tye =nom) = Y11=y

where ¢; is a propositional formula over ,UD;, C* € §(C,;), nom € 8(7,) and 744 €
0(7y,¢). Formulas of the first form model failures while formulas of the second form model
nominal, commanded transitions. Formula of the third form are frame axioms that encode
our assumption that devices that do not receive a command remain in their current state.
We replace ¢, with implicant 7;, an equivalent formula involving only ;. Intuitively &,
is a formula involving D that, given My and an assignment to X, allows us to infer if
Cy,: propagates through a set of components to component y. To form m;, we replace
each assignment to D, with a set of assignments from £, that imply the D, assignment
under Mg. We expect that for the type of clauses M contains, growth in 7, will be
proportional to the length of the component chain that transmits C,;, which ranged from
1 to 5 in (Bernard et al. 1998). Our experience supports this hypothesis. This growth is
offset as non-idle, non-failure clauses take the following form which is independent of D:

(Cyt =CINATL A (Tyg =nom) = y1 =y~

Given a Cy; which is not idle, in order to determine consistency with M we now need

only introduce C,, 7, ; and those select members of X, that appear in ;.

5.2 Eliminating intermediate observations

M5 remains, and requires introduction of all variables in ; and D; in order to check con-
sistency against O;. We proceed by eliminating all variables O; for values of ¢ sufficiently
far in the past. That is to say, transition choices are only constrained by consistency be-
tween the trajectories they imply and recent observations. As the system evolves, variables
representing older observations and the copies of Mg that constrain them are unneeded.
For the portions of the trajectory where My is not introduced, we need not introduce D
and need only introduce the limited portion of X; required by M. This is of course an

approximation. It is now possible to choose transition assignments that are inconsistent
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with the discarded observations, resulting in an “imposter” trajectory. This approximation
has several important features. First, it is a conservative approximation in that no consistent
trajectories are eliminated. Second, all trajectories are checked against new observations,
and impostors are eliminated as soon as they fail to describe the on-going evolution of the
system. Finally if conflicts are recorded in ConflictDB, no partial assignment to 7 that was
discovered to be in conflict with the observations will be reconsidered, even after obser-
vations are discarded. Thus we can only admit an imposter in the case where a transition
choice is in conflict with an observation, but the choice is not considered until after the

conflicting observation has been discarded.

5.3 Selective Model Extension

Based upon these restrictions, the procedure extend introduces into time step ¢ only the
small fraction of the model involved with the evolution of the system due to the command
Cy;: = C*. Recall that the transition system model M7 is a set of formulas that for each
component represent the possibility that the component has idled, has failed, or has transi-
tioned based upon some command. The transition model for each commanded component
has been compiled into a prime implicant form ;. The intuition is that at a given time
step components that are neither commanded nor influence the behavior of components
that are commanded do not need to be explicitly represented. Thus the resulting problem
size per time step is proportional to | 7 | for the commanded components. Conceptually,
Theorem 1 allows us to determine which constraints can be eliminated without impacting
the logical consistency of our transition system model. For the purpose of discussion we
will assume that for each time step ¢ there exists only one y for which C,; # idle. The

proofs can be extended to parallel commanding.

Theorem 1 Assume Cy; = C*, C* # idle, and for all z # y, C; = idle. Consider the
formula of M

Cor =C)ATA (g =n0om) = ypu=y"

For all state variables z;, * # y, if z: € 7, then an equivalent consistency problem is
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formed by replacing x;, T, and all formulas of M involving these variables with a

constraint between x;_, and Ty1.

Intuitively, there are no witnesses to the value of z; except for z;_; and z;,,, which can
be constrained directly. If z; is as described, then the only clauses involving z; are of the

form:

(Cop-1 =C)NG—1 A (Tzge1 =nOM) = z=2"
(Czp-1 =idle) A (Tgp—1 =nOM) == =14
(Tzp-1=T fail) = It = Tfail
(Crp =idle) A (Tzz =nom) = i =1¢
(T2t = Tfail) => Tt41 = Tfaul

The variable z; can only impact the consistency of the system via the assignments to 7,3
and 7. Given the independence assumptions, assigning failures to both is indistinguish-
able from and less likely than assigning 7 ;-1 = nom and 7, to a failure, while assigning
a failure to one is equivalent to assigning a failure to the other. Thus we need only consider
Tzt—1 = Tzt = nomand Ty ¢_1 = NOM, Tzt = Tfey- In the nominal case, z; is equivalent
to z;4+; and can be eliminated. In the failure case, the assignment to z; has no impact on
Z:+1 and can be eliminated. The above formula are rendered equivalent to the following

reduced set:

(Crp—1 =C*) ATty A (Tpp-1 =mOM) = zZ411=2"
(Czp-1 =tdle) A (T g1 =nOM) = Tp41 = T4
(Tapt-1 = Tfail) == Tes1 = Tfaul
In fact, at time ¢ we will know whether ornot C;;—; = id{e, and therefore we need only
introduce one of the first two formulas. The extend procedure repeatedly applies the re-

formulation suggested by Theorem 1 to avoid introducing a variable or constraints for z,

when there have been no witnesses to z; and it is possible to constrain z;,; directly from
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Figure 5.3: Expansion of the VDU Problem to Depth m = 3.

z;—1. When a command is introduced, the compiled M- determines what clauses should
be added to constrain the nominal transition of y; under C, ;. State variables appearing in
the introduced clauses are added, along with constraints representing their idle or failure
transitions. By reducing the number of variables and clauses introduced at each time step,
we reduce the consistency problem involved in checking a trajectory to a number of vari-
ables proportional to m X | 7 |. The number of clauses is proportional to m x (| 7 | + k)

where k is the number of failure values per 7, domain.

5.4 Finite Horizons

While selective extension reduces the variables per time step, we still require an unbounded
number of variables over time. We avoid this requirement by setting a finite horizon h
steps in the past, beyond which all assignments are summarized by a single assignment.
We summarize the [ most likely assignments to all variables 7,,; where ¢ < (m — h) into
[ different assignments to a single variable History. All other possible assignments to the
initial 7 variables are discarded. The horizon point (m — k) is fixed relative to the present,
and therefore only a bounded number of variables are required.

While a finite horizon is most useful when m has become large, we will illustrate the con-
cept with a small example. Consider Figure 5.3. The VDU systern has been tracked for 3
time steps and the model has been expanded accordingly. The variables 74,0 through 7,4, 2
and 7, o through 7, » have been introduced to represent choices in the system’s evolution.
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While tracking the system, we have incrementally generated the most likely consistent tra-
jectories, represented by the most likely consistent assignments to all 7. Let us consider
the case where the most likely trajectories given the observations thus far have been deter-
mined to be a VDU failure at t = 0 or a double valve failure at ¢ = 1. These are represented
by the following assignments:

{Tvdup = Hang, Tugu,1 = NOM, Ty1t = NOM, Ty1,1 = NOM, Tyt = NOM, Tya,1 = nom} (5.1)

{Tudu,0 = NOM, Tydu,1 = NOM, Ty1,90 = NOM, Ty1,2 = Stick, 72 0 = nom, Tya 2 = Stick} (5.2)

Note that these are the most likely assignments to 7, and 7, ; given the observations re-
ceived in the first three steps. Note that each assignment entails a set of values for Z,. For
each likely full assignment, we can introduce a single variable assignment that summarizes
the full assignment. Consider Figure 5.4. At the left of the figure, we have installed assign-
ment 5.1, thus entailing values for the variables at ¢t = 2. At the right, we have eliminated
all variables at t = 0 and ¢ = 1 and directly constrained the variables of ¢ = 2 from a new
assignment, History = Hang. If we define I'(History=Hang) to be equal to the rank of
assignment 5.1, then we have an equivalent representation of this trajectory with far fewer
variables. Similarly, in Figure 5.5 we represent the trajectory of assignment 5.2 with the
assignment History = 2Stick. Once we have summarized a sufficient number of trajec-
tories (here two) with unique assignments to History, the variables att = 0 and¢ = 1 are
discarded.
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Figure 5.5: Summarization of the initial trajectory {7, 1=Stick, 72,;=Stick}.

likely trajectories. Each m-step trajectory contains an initial segment that is most likely
given a large number of observations received during time steps O through m. When m is
sufficiently long to give us confidence that our most likely initial trajectories include the
actual trajectory, or if we simply can only afford to store m steps, we apply the summariza-
tion. We replace each of [ likely assignments to 7, through 7, () With an assignment
History = choice; that has the same rank. We then entail the equivalent values in X. For
each value y, = y* that was previously entailed by the non-truncated representation, we
introduce a clause of the form History = choice, = yn = y*.

This summarization may be applied repeatedly. If we expand the summarized represen-
tation of Figure 5.4 and Figure 5.5, we may then summarize the [ most likely assignments
to History and all 7, 2 into a new variable History’. We may also summarize the oldest time
step or several time steps leading to the oldest time step. By repeatedly applying the sum-
marization as we extend the transition system, we can maintain a fixed size representation.
The summary variable History restricts choices for the initial portion of the trajectory to
the partial trajectories that appeared most likely after being extended for some time. Intu-
itively, we are trading the ability to represent an exponential number of initial trajectories

with increasingly unlikely prior probabilities for a constant problem size and search space.
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Unlike the previous approximation, this approximation is not conservative. If the true tra-
jectory involves an assignment to an old 7 variable that is not captured in a summarization,
it is lost. This case can only arise when a failure too unlikely to be tracked has occurred,
yet it was able to remain consistent with the observations until that part of the history was
truncated.

Figure 5.6 shows a complete representation making use of both the conservative approx-
imation and a finite horizon. At the right of the figure, new variables are introduced to
represent the time steps. Here, where the trajectory assignments have not yet been condi-
tioned on a large number of variables, we have a full model of the system. As variables
age, they are moved into a conservative approximation. The assignments here have already
been conditioned on observations within their time step before aging. They will now be
conditioned upon how they effect the evolution of the system and whether they maintain
consistency with incoming observations. Assignments that have both been conditioned on
observations within their time step and later on how they impact newer observations, and
have remained consistent, are summarized into the history variable. Thus the most space

and search is reserved for the portion of the trajectory of which we are the least certain.
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Chapter 6

Results for Diagnosis

We have implemented the transition system representation and the algorithms presented
here in a software system called L2 for Livingstone 2. In this chapter, we describe four L2
applications, X-34, X-37, CB, ISPP, and Valves. All of these applications were developed
by NASA engineers, except for Valves which was developed by the author. The X-34 and
X-37 are two of NASA’s experimental spacecraft programs. Experimental diagnosis sys-
tems for these spacecraft were developed at the NASA Ames Research Center. CB refers
" to a tutorial circuit breaker model developed by Charlie Goodrich at the NASA Kennedy
Space Center. ISPP refers to an prototype in-situ propellant production plant also devel-
oped at NASA Kennedy Space Center. The Valves model is an instantiation of the tutorial
problem presented in Figure 2.2. We first describe use of L2 by NASA spacecraft engi-
neers to illustrate how L2 can be integrated into a control system and to convey the level of
validation and testing the L2 system has undergone. We then describe a set of experiments
conducted by the author using the Valves, CB and ISPP models.

6.1 Validation By NASA Spacecraft Engineers

L2 has been used to develop experimental diagnosis systems for two NASA experimental
spacecraft programs. The X-37, developed by Boeing, is shown in an artist’s rendition in
Figure 6.1. The X-37 was designed to be carried into orbit by the space shuttle, where it
would orbit the earth for 21 days before autonomously landing. The X-34, developed by
Orbital Sciences, is shown at NASA Dryden Flight Research Center in Figure 6.2. The
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Figure 6.1: The X-37 Vehicle
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Figure 6.2: The X-34 Vehicle
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X-34 was designed to be carried into the upper atmosphere where its rocket engine would
ignite, propelling the craft to hypersonic speed. Figure 6.3 shows the typical deployment
architecture for L2. The L2 algorithms developed in the preceding chapters, labeled Living-
stone in the Figure, are loaded with the spacecraft onto an embedded processor running a
real-time operating system, typically a PowerPC running VxWorks. Sensors on the vehicle
provide real-time input. Since L2 reasons about discrete systems only, a set of software
components called monitors abstract the continuous sensor input into a discrete space upon
which the L2 model is based. Diagnoses are generated based upon the commands and
the discretized sensor input received by L2 and either feed back into the vehicle’s control

system or reported to ground controllers.

For the X-37 application (Schwabacher, Samuels, & Brownston 2002), a model consist-
ing 86 components was developed by NASA engineers to model the electro-mechanical
portion of the craft, including power buses, power controllers, and electronic actuators for
control surfaces. Twenty-eight failure scenarios were developed by the engineers to test
the L2 system and their models. In addition, the software was run on a a real-time embed-
ded computer for 21 days, the nominal mission duration. Unfortunately, the X-37 program
was canceled for unrelated reasons before construction of the vehicle was completed, so no

flight tests of this L2 application was performed.

For the X-34 application (Bajwa & Sweet 2002), NASA engineers developed a model
of the vehicle’s propulsion system consisting of approximately fifty components, shown in
Figure 6.4. This is the portion of the propulsion system that stores liquid oxygen (LOX) and
rocket fuel, called RP1, and provides them to the rocket engine during thrusting. Figure 6.5
shows detail of the components used to model the LOX portion of the propulsion system.
The large cannister-type objects are LOX tanks, the square icons represent valves, and the
small circles are temperature and pressure sensors. Figure 6.6 illustrates the details of the
RP1 portion of the system. Figure 6.7 lists a subset of the failure scenarios used to test L2
and the X-34 model. The first column is the scenario number, while the second column is
a text description of the failure. Each row in the fourth column is a diagnosis, listing the

names of the failed components in the diagnosis. Column 5 lists the rank, based on the
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Figure 6.3: Typical L2 Deployment Architecture

use of the infinitesimal probability model described, for each diagnosis. Note that in many
cases there are insufficient sensors to provide a unique diagnosis of the listed failure, so
multiple diagnoses are generated and tracked. Unfortunately, the X-34 program was also
canceled by NASA for unrelated reasons. L2 was integrated with the necessary monitor
and support code and tested on an embedded processor, using a simulation of the X-34

developed by NASA to provide continuous sensor data.

6.2 Experiments

In this section, we discuss a set of experiments performed by the author using the Valves,
CB, ISPP models. L2 is implemented in C++ in a modular form that allows alternative

search and consistency procedures to be plugged into the transition system framework.
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Figure 6.4: X-34 Model Schematic

These experiments were performed using CoverTrack for the search. Consistency was de-
termined via a propositional consistency checker that used unit propagation and a truth
maintenance system to cache inferences. Other consistency engines that allow use of inte-
ger or interval constraints and provide a complete inference mechanism can be developed.
Use of unit propagation, which is an incomplete inference procedure in general, has no
impact for the models presented in this chapter.

The embedded applications of L2 described in the previous section use a very short hori-
zon of length 2 to 5 in order meet their real-time deadlines. In this section, an infinite
horizon was selected, and the transition system structure was allowed to grow to lengths
of up to approximately 700 time steps. Observations were applied to the model at only the
time step representing the present. The tests were run under Windows NT on a 550MHz

Pentium II.

6.2.1 Valves

The Valves model is an implementation of the valve and VDU model introduced in Chapter
1. It was developed simply to verify that L2 correctly tracks the canonical scenarios known

to confound Livingstone. We discuss it here simply to reinforce the Livingstone2 diagnosis
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PITEX DESCRIPTION [TIME DIAGNOSIS Rank
Scenario IOF
FAULT
3301.70 Microswitch MMSW205X failed 3
Open microswitch. MMSW205X, fails on the] and oy, . . v
1 [ OX ventirelief solenoid valve. SV31. 72608 Bvo) Failed Closed and LOX venrelief valve VRO
[Failed Open
. ] 9410.00 [Closed microswitch MMSW213X Failed 3
5 [Close microswitch, MMSW213X. fails on the}
= [LOX feed valve, PVO3.
] 9359.00 [PVO02 Stuck Closed 2
3 -1 feed valve, PVO2, fails closed after the ISV32 Stuck Closed 2
-1 bleed has been initiated.
IRP ] R — }9379.00 [VRO6 Stuck Open 2
4 -1 ventrelicf pneumatic valve, VRO6. fail IMPRE103P faulty 2
lopen.
9383.86 [SVO02 Stuck Closed 2
: . — V02 Stuck Closed and SV02.openMicroswitch faulty] 5
s [rimary RP.1 tank pressurization valve. SVO2 V02.openMicroswitch faulty and MPREIO3P faulty | 5
: V02 unknown fault 5
R e 9384.71 [SVO2 Stuck Open 3
¢ (Primary RP-1 tank pressurization valve, SVO2 V02.0penMicroswitch faulty 3
Jsticks open. V02 unknown fault 5
Open microswitch. MMSW205X. fails on the| 3301.70 [SV31 Stuck Closed and SV31.openMicroswitch fault 5
7 [LOX ventrelicf solenoid valve, SV31. Aftes VROI Stuck Closed and SV31.openMicroswitch | 5
fthat SV31 fails closed. faulty
N . 5000.00 MPREIO3P faulty 2
g [CHe pressurization system pressure regulators, [RG11 regulates high and RGOI regulates high 4
IRG11 and RGOL. both regulate high.
0.00 [MPRE202P faulty and MPREZI2P faulty )
° [Two of the LOX vent line pressure sensors MPRE202P biased and MPRE212P biased 4
IMPRE202P and MPRE212P., fail high. IMPRE202P faulty and MPRE212P biased 4
MPRE202P biased and MPRE212P faulty 4
0.00 [MPRE202P faulty and MPREZI2P faulty 3
10 [Two of the LOX vent line pressure sensors MPRE202P biased and MPRE212P biased 4
MPRE202P and MPRE212P. fail low. IMPRE202P faulty and MPRE212P biased rt
IMPRE202P biased and MPRE212P faulty 4
Figure 6.7: X-34 Diagnosis Scenarios
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Figure 6.8: Evolution of a Valve Driver Unit and Valves




process. Figure 6.8 reintroduces the valve system. Recall that the helium tank pressurizes
the system and the VDU commands the valves to open or close in parallel. Our canonical
scenario was that at time 0 the VDU is off, the valves are closed and pressure is observed at
the outlet of the helium tank. At time 0 the VDU is commanded on, but it fails. This failure
is not immediately observable. At time 1, the VDU is commanded to open its valves. Since
the VDU is failed, the valves do not change state. At time step 2, it is observed that there

is no flow from any of the valves.

When the observations of no flow are received, Livingstone finds two conflicts in the
current mode assignments: valve vl cannot be open, and valve v2 cannot be open. Without
the ability to revisit its assumption that the VDU was operating properly when the valves
were commanded, the only explanation for the observed behavior is the incorrect diagnosis
that all valves have failed simultaneously. The sequence of states Livingstone returns as its

diagnoses are labeled as open circles in Figure 6.8.

Like Livingstone, L2 initially tracks only the mode where the VDU is on at time step 1.
However, its transition system data structure allows it to efficiently record that this state
depends upon the assumption that the VDU did not fail at time step 0. When the valves
are assumed to open at time step 2, their dependency upon the state of the VDU is also
captured. Thus when L2 receives the observations of no flow, it generates the following
conflicts: {VDU, v1}, {VDU,v2}. The lowest cost covering of this conflict set is to fail the
VDU at time step O rather than to fail both vl and v2. The initial trajectory being tracked

is therefor discarded and trajectory shown in closed circles in Figure 6.8 replaces it.

Many more interesting scenarios were developed to check L2’s ability to incorporate
new observations and correctly update the trajectories being tracked. We briefly outline
two to illustrate the flexibility of this approach. Suppose the VDU is failed and only v1 is
commanded open. We receive an unexpected observation of no flow only at v1, since v2
is expected to be closed. Assuming a valve failure is more likely than the VDU failure,
the trajectory where v1 is stuck chosen over the trajectory where the VDU is failed. Now
suppose v2 is later commanded, and no flow is reported at v2. Now lack of flow at vl and

v2 must be explained. The trajectory that contains just the failure of v1 is now no longer
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Figure 6.9: The Circuit Breaker (CB) Model

consistent. It will be extended or replaced. Let us assume two independent valve failures
are less likely than the VDU failure. In this case, L2 revisits its assumptions that v1 has
failed and the VDU has not. It finds the trajectory where the VDU had failed at step 0 and
in fact vl never failed before considering that v2 had failed in addition to the previously
hypothesized failure of v1.

Consider if we extend the example so that the VDU has two failure modes. A likely
software failure can be cleared by resetting the device, and a hardware failure is unlikely
and permanent. When both valves are commanded and no flow observations result, the first
trajectory to be tracked includes a software failure in the VDU. If the VDU is then reset in
this state, it will move back to it’s nominal state. Suppose that the VDU is and the valves
are commanded again. If there is still no flow, L2 may find a trajectory where both valves
were stuck all along, may find a trajectory that replaces the past resettable VDU failure

with a permanent failure, or both, depending upon the ranks of the various failures.

6.2.2 CB and ISPP

Additional experiments were performed to investigate how the performance of L2 would
scale as the number of time steps being tracked in the trajectory increased. The Circuit
Breaker, CB, model of 24 electrical components connected in series and parallel is illus-

trated in Figure 6.9. The cb components represent circuit breakers which can be turned
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on and off. They can also spontaneously fail into a tripped mode. Resetting a tripped circuit
breaker returns it to its off mode. The 1ed components represent light emitting diodes
that light if there is a path of circuit breakers that are on between the diode and the power
source. This model was developed as a tutorial by Livingstone user Charlie Goodrich of
NASA Kennedy Space Center. It features a large space of possible states and 256 different
observations. This model was tracked in runs of 618 steps.

The in-situ propellant production model, ISPP, has 59 components and represents a
chemical processor designed to produce rocket fuel from the Martian atmosphere. Fig-
ure 6.10 illustrates the ISPP hardware, though the components in the upper right quadrant
have not yet been modeled in Livingstone. The Martian atmosphere would enter the sys-
tem’s sorption pump at the top left. At Kennedy Space Center, a substitute for the Martian
atmosphere consisting largely of carbon dioxide, (CO,), was used to test the apparatus. The
CO, is combined with hydrogen (H») to produce methane (CH,) and liquid oxygen (Os).
The methane and oxygen can then be burned by vehicles returning from Mars to Earth. The
ISPP model was chosen over other, larger models because failures involving gas flows in
the system require far more time for diagnosis under Livingstone than any other scenario
we have encountered for any model. The ISPP system is designed to be run during the
Martian day and shut down at night. This model was tracked through scenarios of 33 steps,
approximating one day’s worth of commands. Additional runs were made on both the CB

and ISPP models. Our results suggest the following.

o Model growth per time step is small.

The ISPP model begins at 2933 clauses. This is the number of clauses needed to represent
the ISPP system at a single time step, including the full state model Msg. At each
time step created by commanding the ISPP system, the transition system structure grows
an average of 36 clauses per time step. This small growth is due to the optimizations
developed in Chapter 5. Only the component that is currently being commanded and
components whose failure could effect it are explicitly modeled at each time by inclusion
of a small portion of the transition model, M. Similarly, the CB begins at 1126 clauses

and grows by an average of 44 clauses per time step.
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o Tracking time steps where no failure occurs takes a very small amount of CPU time.

Consider Figure 6.11. It illustrates execution time for a CB scenario. The horizontal axis
of the graph represents the time steps in the scenario, one time step per each of the 624
commands issued in the scenario. The vertical axis reports the amount of time required
by L2 at that step in order to continue tracking trajectories. The odd appearance of the
graph is explained by the fact that each step of the scenario requires less than the available
clock resolution of 0.016 seconds. Thus the time reported bounces between 0 seconds

and 0.016 seconds.

In the first 16 steps, a subset of the circuit breakers are turned off then turned on again.
This sequence is then repeated 38 additional times. On the final cycle, one of the circuit
breakers fails. Since there are no failures until the final time step, only one trajectory
is tracked in this example. Our techniques for adding an additional time step onto an
existing trajectory data structure and testing the result for consistency were designed to
perform very little work at each time step. Figure 6.11 shows negligible growth in execu-
tion time to track a consistent trajectory as the trajectory’s length grows. The consistency
checking problem is linear in the number of clauses in the model, which is growing very

slowly compared to the initial model size.

Figure 6.12 illustrates a 33 step scenario for the ISPP model. The horizontal x-axis of this
graph represents the time steps in the scenario. The right vertical axis reports the amount
of time required by L2 at that step in order to continue tracking trajectories, denoted by
the solid line. The left vertical axis is the number of trajectories being tracked at each
point in the scenario, as denoted by the triangles. A failure that occurs at time step 27

cannot be uniquely diagnosed, so multiple trajectories are tracked.

During time steps O through 26, no failures occur. During this period, only the nominal
trajectory is tracked, and again there is no sign of computational growth per time step.
On the 27t step, a very tricky flow-related failure becomes visible. The result is eight
consistent diagnoses for this failure that are most likely. Between steps 27 and 32, these
eight trajectories are extended by nominal transitions and remain consistent. We see an

increase in computation per time step versus steps O through 26 as there are multiple now
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Figure 6.12: ISPP - Independent failures at steps 27, 32 33

trajectories to be extended and checked for consistency. However there is not a significant
increase in time as we track the 8 trajectories until additional failures begin to occur at

time step 32.

Keeping a history does not induce an unreasonable cost when diagnosing a single fail-
ure.

The CPU time for a single CB failure scenario is below clock resolution whether 15 or
nearly 600 nominal steps, as in Figure 6.11, precede the failure. This is expected. Con-
sider that when we are tracking the nominal trajectory and it is first made inconsistent
by a failure, this inconsistency introduces a single long conflict. The maximum cost of a
covering of the conflict set, -, is initially 1. Intuitively, each diagnosis selects a replace-
ment for one nominal transition in the conflict. We then test the diagnosis for consistency
using a linear time procedure. We therefore expect a worst case linear increase in cost

for diagnosing a single failure as we increase the length of the trajectory.

® Because of the accumulation of conflicts, tracking the system through k failures spread

over time can be an easier problem than diagnosing a single failure of cardinality k.
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Consider the run of Figure 6.12. On step 27, the flow failure occurs. It requires 0.19
seconds to find that there are eight equally likely consistent diagnoses. Eight trajectories
result and are tracked until step 32. On step 32, a simpler, unrelated failure occurs, and
none of the 8 trajectories is consistent when extended by the nominal transition. Note
that L2 must now re-diagnose the entire history of the system including the fiow failure.
It does so in just 0.08 seconds, less than half of the time required to diagnose the flow
failure alone. The key to this behavior is the conflicts. On step 27, the nominal trajectory
is ruled out and ConflictDB contains a single conflict. GenerateCover returns 28 candi-
date trajectories, 20 of which are ruled out, adding another 15 candidates to ConflictDB.
Intuitively, these additional conflicts memoize the result of finding and eliminating the 20
Inconsistent candidate trajectories, and any extensions of them. If we call GenerateCover
with the same v on the expanded conflict set, it returns only the 8 consistent candidates
and requires almost no CPU time. On step 32, the 8 diagnoses are ruled out by con-
flicts resulting from the simple failure. Since the conflicts from the simple failure involve
none of the variables from the flow failure conflicts, the problem decomposes into two

subproblems, one of which has previously been solved and memoized by the conflicts.

Unfortunately, tracking k related failures over time can also be as computationally in-

tensive as diagnosing a cardinality k failure.

Figure 6.13 illustrates a sequence of failures for the ISPP system where the conflict cov-

erage problem does not decompose On step 15 the flow failure is introduced. Repair
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actions are taken and the failure is immediately reintroduced, until a total of four identi-
cal failures have occurred. Note that the time axis is logarithmic and the CPU time rises
exponentially with the number of failures.

The issue here is that we have thrown out all intervening observations between the first
and second occurrences of the failure in order to minimize our model size. Thus when
we receive the observations indicating the second occurence of the same failure, it is con-
sistent to believe that the first failure simply persisted. Conflicts for the later failure are
supersets of conflicts introduced by the earlier instance of the failure. Thus, a covering
of the conflicts generated for the first failure at v = 1 is also a covering for the conflicts
generated at the second failure where « = 2. Thus there is a slack of 1 in ~ that can
be used to cover additional conflicts. However, since all conflicts are already covered,
there are no constraints on where the additional -y is spent and all possibilities are con-
sidered as possible failures. Intuitively, there are not enough conflicts and the algorithm
considers multi-ways failures at many time steps. At the fourth failure, 2694 candidates
are returned in 174 seconds. An additional 33 éeconds are spent determining all but 8 of
them are inconsistent. Figure 6.14 illustrates a run wherein the device in the CB model
fails on every 16 step cycle and is reset. The device fails a total of 39 times. Again, this
clearly shows the exponential growth of tracking time as the number of failures involving

the same device grows.

Fortunately, this behavior is largely an artifact of how CoverTrack was implemented. It

first generates the set of possibly consistent diagnoses by finding a covering for the set of
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conflicts that have been discovered during diagnosis thus far. Each of these possibly con-
sistent diagnoses differs from each conflict, and thus does not contain a known conflict.
Each possibly consistent diagnosis is then checked for consistency, which potentially re-
veals additional conflicts. Intuitively, CoverTrack is generating many variations of the
same possibly consistent diagnosis that in fact all share an inconsistent set of assign-
ments. This occurs only because we generate all diagnoses that cover the current conflict
set before testing if any of them are consistent. We avoided this issue when applying L2
by simply using CBFS-track or using a short history with CoverTrack. In the conclusion

of the thesis we present a simply solution to this problem as an item for future work.
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Chapter 7

New Approaches to Conformant Planning

7.1 Introduction

With complex systems such as spacecraft, we are often faced with situations in which we
need to achieve goals even though there are faults present. Unfortunately, these systems are
only partially observable, or observations may be costly. For example, sensors dedicated to
measuring the internal state of spacecraft are usually quite minimal due to power and weight
constraints. Thus, if we diagnose a fault aboard a spacecraft, we might do no better than
finding a small set of failures that are equally likely given the limited set of observations.
The preceding chapters explore methods for determining a partial distribution over the
possible state an apparatus occupies. Given that the control system no longer knows with
certainty what state the apparatus occupies, the question arises of how should one choose
actions. An action that achieves some desirable goal when the apparatus is in one possible
state may be ineffective or precipitate a disaster if the apparatus is in fact in another state.
Our problem is that we need to generate plans that achieve goals even though the exact
failure that occurred, and thus the exact state of the spacecraft, cannot be determined. For
example, consider the schematic of the Cassini spacecraft propulsion system shown in
Figure 7.1. This schematic shows the major tanks and valves of the system, and for clarity
omits some parts such as pressure regulators. The purpose of the system is to produce thrust
by burning a combination of liquid oxygen (LOX) and hydrogen (Hs) in either engine, M1
or M2, shown at the left of the diagram. The system operates as follows: The high pressure

helium tank to the right of the diagram contains helium at high pressure. When either of
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Figure 7.1: Cassini Propulsion System Schematic

the valves helium_1 or helium.2 is opened, the liquid oxygen and hydrogen tanks are
pressurized. To provide LOX to engine M1, we must open one of Lox_1 or lox_ 2, plus
ml_pre_lox.0, plusone of ml_pre_lox_1 orml_pre_lox_2, plusml_lox. To provide
H, to M1, we must similarly open a path from the hydrogen tank to the valve m1_h,. Once a
flow of H, and LOX to M1 has been enabled, M1 must be ignited. Similarly, we may choose
to ignite M2, or ignite M1 and M2 simultaneously. Suppose our goal is to produce thrust
when one of either ml_pre_lox_1 or ml_pre_lox 2 is stuck closed. There are many
plans that produce thrust regardless of which of these conditions holds. Intuitively, we may
simply use engine M2, which avoids both of the valves in question. We may also produce
a plan that attempts to open both ml_pre_lox 1 and ml_pre_lox 2. Regardless of
which valve is failed, LOX will flow to M1 through the other valve.

The Cassini scenario described is an example of a conformant planning problem. Confor-
mant planning is a generalization of deterministic planning wherein the task is to generate
a plan that moves a system from any one of a number of possible initial states to a state
that satisfies a set of goal predicates. In addition, actions may have uncertain outcomes and

sensing actions are not available to the plan. We denote the start states and goal constraints
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of a planning problem as follows.
e Let V be the propositional variables describing the state space of the problem.
o Let S be a set of possible initial states. Each member of S is an assignment to V.

e Let G be a set of predicates {g, - .. g,} on assignments to V. G is the set of goal con-

straints.

Definition 7 Given a plan p and an initial state s, we define the predicate G,(s) to be true

if deterministic execution of p starting in state s results in a state that satisfies all g; € G.

Definition 8 Given the set of possible initial states S, a plan p is conformant with respect
to S if execution of p from any of the initial states reaches a state that satisfies G. That is,
forall s € S Gy(s).

That is, the task of conformant planning is to find a plan p that when executed reaches the
a state that satisfies all goals no matter. which possible initial state of the system is the actual
initial state. The computational challenge of conformant planning lies in the fact that the
effects of a plan when executed in one state may be different and highly undesirable when
the plan is executed in a different state. Thus one cannot choose an action based on its de-
sired effect given one possible initial state of the system (called a world in the conformant
planning literature) without in some way considering its unintended effects when it is ex-
ecuted in all other possible initial states. The traditional approach to conformant planning
has been to consider the effects of each action under consideration across all worlds si-
multaneously. Techniques for representing the effect of an action across all worlds include
creating a Graphplan-style planning graph (Blum & Furst 1995) for each world and adding
constraints between them (Smith & Weld 1998) and binary decision diagrams (Cimatti &
Roveri 1999).

In this work, we take a different approach to conformant planning in that we attempt find
a plan that works in a single world and extend it to work in all worlds. To do this, we
plan in a single world at a time using a deterministic planner. We use the plan generated in
each world to influence how plans are generated in the remaining worlds, in order guide the

planner toward producing a plan that works in all worlds. Intuitively, if we have n worlds
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that require a domain model consisting of m variables, then reasoning about all worlds
simultaneously presents a planning problem of size nm. Conformant planning is PSPACE-
complete in general, as is deterministic planning (Haslum & Jonsson 1999; Bylander 1991).
It remains NP-complete even when we consider only a fixed horizon over which actions
may be taken. The worst-case computational cost of propositional planning, known as the
plan existence problem, for a single problem of size mn is O(e®"" ) in general and O(e™)
in the fixed horizon case. Alternatively, we propose to make [ attempts at solving problems
of size m and then combine the results, at a cost of O(e®" 1) or O(e™!) for a fixed horizon.
Even if [ > n, there is a potential for significant savings.

Conceptually, we can add two kinds of information to the theory in order to increase the
likelihood that while planning for world w the planner will return a plan that succeeds in
additional worlds. First, we could add information about plans that succeeded in worlds
other than w in the hope of generating similar plans. Second, we could add information
about plans that failed in other worlds in the hope of avoiding similar plans. We have
explored both of these methods. In fragment-based conformant planning, we generate a
plan for w. We then assert the plan for w, referred to as a fragment, into the theory. In
effect, when we plan for the next world, the planner will be forced to include the actions
known to safely achieve the goal in world w. In conflict-based conformant planning, we
check the execution of a plan generated in one world in all other worlds. If the plan is not
safe and conformant, we use information about how it failed in order to rule out similar
plans from being generated. Intuitively, in conflict-based conformant planning each world
is informed as to the space of plans the other worlds cannot accept. In fragment-based
planning, each world is given a space of plans that other worlds can accept. These two

approaches to conformant planning are described below.

7.2 A Fragment-based Conformant Planner
To illustrate our approach, let us consider the extremely simple conformant planning do-
main' shown in Figure 7.2. Here we have a pressure source followed by six valves, v1

through v6. Assume that we have commanded all six valves to open, and yet no flow is

"This domain is isomorphic to the widely-used bomb in the toilet domain(McDermott 1987)
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Figure 7.3: A Plan For 6 Valves in A Row

detected out of the pipe. For simplicity in the explication, we will assume that we know
that at most one valve has failed to open when commanded and that commanding the valve
open again is the remedy. To keep the problem from becoming trivial, we will assume that
we don’t have enough power to simultaneously open multiple valves. We will model this

with an action called recharge that is required after any valve is opened.

Figure 8.1 illustrates a successful plan for this problem requiring 11 time steps, the min-
imal number. Note that given 11 time steps there are 7*! possible action sequences and 6!

conformant plans.

Note also that the first action of this conformant plan is itself a plan to achieve the goal in
the world in the valve which did not open was v1. Similarly, the conformant plan contains
a one-step plan for every other world. It also contains actions, in this case re-charging,
that reconcile the post-conditions of the plan for each world with the preconditions for
another world. These characteristics are not specific to this particular conformant plan or

even this planning domain. By definition, if a conformant plan exists for a goal and a set
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Figure 7.4: Generating A Plan for Restoring Flow When One of Three Valves is Closed

of worlds, then the conformant plan must contain a set of actions that achieve the goal in
each individual world. This property can be made more useful if stated slightly differently.
If a conformant plan exists for a set of worlds, there must exist some plan for each world
that can be augmented to form a conformant plan. In particular, we must add actions that
achieve the goal in other worlds and ensure the pre- and post- conditions of all actions are

satisfied. This insight forms the basis of fragment-based conformant planning.

In fragment-based conformant planning, we attempt to create a plan that achieves the
goal in all worlds by progressively assembling plan fragments that achieve the goal in each
world. The approach is based upon the observation that, by definition, a conformant plan
achieves the goal in all worlds and thus, for each world, must contain a set of actions that
achieves the goal. Intuitively, we can construct a conformant plan by finding the appropri-
ate fragment for each world and assembling them. We will do this by finding a plan for an
initial world w; and asserting this plan, referred to as a fragment, into the domain theory.
During subsequent planning, the planner is thus forced to include this fragment in all sub-
sequent plans. We then plan for the next world, w;. In effect, we are attempting to extend
the initial fragment into a plan that is conformant for both w; and w;. If we are successful,
we again attempt to add an additional world. If we can find a plan for the final world that
includes the fragments found for all other worlds, we have a conformant plan. Consider the

following example where we only have three valves.

Example 9 We have three valves, v1, v2 and v3, that might not be open. To ensure flow,
each must be opened. Figure 7.4 illustrates one possible assembly of fragments for this

example. In the figure, we refer to the world in which valve ¢ was the valve that failed to
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open as world w;. Note in this example we choose to use a planning style in which plan
actions are assigned to fixed points in time, as is done in Graphplan and SATPlan (Kautz

& Selman 1996) style planners. This is not a requirement for fragment-based planning.

Column 1
In world w;, the closed valve is v1. We first create a plan for w;, which is simply to open

vl.

Column 2
We then use this plan for w; as a fragment of the conformant plan that must appear in
all subsequent plans. This determines the initial conditions for planning for the second

world, ws, where v2 has failed to open.

Column 3
‘We then plan for the situation in which the v2 is still closed and the first action of the
plan must be to open v1. This results in a plan that succeeds in w,. We then check that
the plan still achieves the goal in w;. In Column 3, we now have a plan that achieves the
goal in all worlds considered thus far. In the next column, we extract a fragment for ws

from this plan.

Column 4

Conceptually, we can think of the plan in Column 3 as consisting of the fragments that
were required for previous worlds (here, open vi), a fragment required to achieve the
goal in we (here, open v2), and a set of repair actions that allow these fragments to
coexist (here recharge). In fact, there are 11 sets of repair actions that allow the chosen
fragments for w; and ws to coexist®. Only four of these allow us to later add a fragment
for ws.

In order to avoid constraining all future plans to the extent possible, we would like to
avoid asserting into our fragment set any repair actions that can easily be re-derived later.
Currently we use a simple procedure to remove repair actions from a plan. We first
remove the fragments from previous worlds. They will be added back in in the next step.

2If we use only recharges. we can fit 8 variations in the three available time steps. To include a open. time 2 and time
4 must contain recharges while time 3 can open of any of 3 valves.
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We then perform a search that, given w., removes any action whose post-conditions are
true before it is executed. This generally removes repair actions. If all repair actions
are not removed, we may simply encounter additional backtracking. In this example, the

plan is reduced to open v2.

Column 5
The fragment extracted from the plan for ws is asserted into the planning domain along

with the fragment for w,. Subsequent plans will be required to include these fragments.

Column 6
Finally, we plan for the situation in which the closed valve is v3, the first action must be
to open v1 and the last action must be to open v2. We find a fragment that achieves the
goal given the closed valve is v3 and choose a set of repair actions that fit it within the

fragments previously asserted for w; and w,. We now have a conformant plan.

Note that while every conformant plan has a fragment for each world, not every fragment
for a world can be extended into a conformant plan. The chosen fragment for achieving the
goal in one world may conflict with every fragment for achieving the goal in a world that
has not yet been considered. Figure 7.5 illustrates a simple and incomplete fragment-based
planner to serve as a straw man. It produces plans in the manner illustrated in Figure 7.4.
We begin with a domain model in Domain, the set of initial worlds in Remain, and Done
equal to the empty set. We select a world w, and use a deterministic planner to find a plan
that succeeds in w. If no such plan is found, or if the plan does not succeed in the worlds we
have previously considered, the procedure gives up. If a suitable plan is found, it is reduced
to the actions needed to achieve the goal in world w. The variable frag then contains a plan
that will achieve the goal in world w. We must now find a fragment for the next world given
the fragments we have found for the worlds selected thus far. This is accomplished with a
recursive call that adds the current fragment to the planning domain. This forces the next
call to the planner to find a plan that integrates achievement of the goal in the next world
selected with the pre- or post- conditions of the fragments that achieve the goal within the
previously explored worlds.

As stated, the algorithm in Figure 7.5 does not do any backtracking. Unfortunately,
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proc simpleFragPlan(Domain, Remain, Done) {
select w from Remain
Plan=plan(Domain,w)
if(no Plan)
return Failed
if(Plan does not achieve goal in Done)
return Failed
if(Remain —w = 0)
return Plan
frag=ExtractFragment(Plan,w)
simpleFragPlan(Domain+irag, Remain — w, Done+w)

Figure 7.5: Simple Fragment Planner

not every plan for a single world w can be extended into a conformant plan over a set of
worlds that includes w. There are two ways that a set of fragments might fail to extend
into a conformant plan. First, it may be the case that the fragment we arbitrarily choose
for the current world, w;, may be incompatible with all fragments for achieving the goal
in some subsequent world w;. Second, when we extend the fragment for w; to achieve the
goal under w; by choosing additional actions, there is no guarantee the extended plan still
accomplishes the goal when executed in world w;. We must check the augmented plan in
w; to ensure it maintains this property. For either one of these failures, we will be forced to

undo some subset of the existing choices before any further progress can be made.

Figure 7.6 illustrates a complete, backtracking fragment-based planner. Intuitively, a
suitable fragment for a conformant plan is one that results in a plan that satisfies the goal in
the new world w plus all worlds considered thus far (the set Done), and allows a suitable
fragment to be found for the remaining worlds (the set Remain). We initially call the
planner with Domain equal to the planning domain, Remain equal to the initial world set,
and Done empty. As the algorithm recurs, an additional world w is moved from Remain to
Done, and the fragment that satisfies the goal in world w and does not disrupt the existing
fragments for Done is added to Domain. We use the non-deterministic operator Choose
to ensure we eventually consider all fragments for a given world. This is a backtrack point
if the chosen fragment does not work out. Consider the operation of the algorithm after

some number of worlds have have been added to Done and the corresponding fragments
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proc completePlan(Domain, Remain, Done) {
select w from Remain
Choose Plan from Plan(Domain,w)
if(no Plan found)
Fail
if(Plan satisfies all worlds in Done) {
if(Remain=0) {
report Plan as conformant plan
return true

frag=ExtractFragment(Plan,w);
if(completePlan(Domain+frag, Remain-w, Done+w))
return true

}
}

Figure 7.6: A Recursive, Complete Fragment Planner

added to Domain. If no plan can be found for the next world w, we must backtrack to
the fragment choice point at the previous recursion level. If a plan is found and no worlds
remain, we have found a conformant plan. Otherwise, we extract from the plan a fragment
that represents the actions needed to achieve the goal in w and add the fragment to Domain.
We then attempt to complete the conformant plan for the remaining worlds. This procedure

is complete.

Note that the world ordering chosen by Select and the order fragments are chosen by
Choose have no impact on completeness in the procedure of Figure 7.6. However, they may
have a significant impact upon the amount of backtracking that is performed. Numerous
search strategies are possible. A simple strategy is to perform complete backtracking on the
possible fragments of each world before backtracking to the previous world. Alternatively,
we can use stochastic sampling of the fragments for each world. In either case, the order
in which we select worlds is also a consideration, since some worlds may be tougher than
others. In the next section, we discuss strategies for these choices in the context of this
complete planning algorithm and an incomplete, randomized variation. Note also that we
assume the Plan procedure can be forced to include the fragment actions in the plan it
finds for the current world. Options for implementing Plan are discussed in the following

section.
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7.3 Search Strategies for Fragment-based Planning

In this section, we examine search procedures for fragment-based planning. The com-
plete planning algorithm of Figure 7.6 uses chronological backtracking. We also consider
incomplete, randomized search strategies, given their effectiveness in comparison to sys-
tematic algorithms in many domains (Gomes ez al. 1998; Selman, Kautz, & Cohen 1996).
Intuitively, we can think of planning with fragments as analogous to a constraint satisfac-
tion problem. We have a set of variables (worlds) for which we must choose assignments
(fragments) so as to satisfy a set of constraints (the conformant planning domain and goal).
Decisions about how variables are ordered and which assignments are chosen will directly
impact how much backtracking will be required to retract infeasible variable assignments
and how quickly a solution will be found. Therefore, each of our search strategies will have

to specify the following characteristics.
e Variable Ordering: In what order will the search consider the worlds?

o Frustration Level: How many unsuccessful fragment combinations will the search con-

sider before backtracking to a previously considered world?

e Backtracking Distance: When the search decides to backtrack, how many fragment

choice points will it backtrack over?

Note that in the complete case, either systematic or randomized, the answers to these ques-
tions have no impact upon completeness. All fragment sets will eventually be attempted,
and each conformant plan is one of those sets, so ordering choices impact efficiency only.
With an incomplete planner, we are explicitly assuming only a portion of the possible frag-
ment sets will be considered. The order in which we consider the worlds and previous
fragment choices will have a significant impact upon which subsequent fragments are con-
sidered. The goal is to develop search strategies that consider fragment sets in which a
conformant plan is likely to be found.

Figure 7.7 illustrates a fragment-based planner with the flexibility to accommodate a
variety of search strategies, both complete and incomplete, systematic or randomized. It
differs from the complete, systematic planner of Figure 7.6 in several respects. First, since

the search procedure will be examining and modifying the world ordering, we store it in
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proc fragPlan(Domain, Worlds) {
select w from Worlds
worldStack=empty
loop{
Plan=Plan(Domain,w)
if(Plans 0 & Plan satisfies all worlds on worldStack) {
if(Worlds C worldStack)
return Plan
newFrag=ExtractFragment(Plan,w)
Domain= Domain + newFrag
push(w,worldStack)
select w from Worlds

}
if (Plan=0 or Frustrated() ) {
// For each world removed from the stack, we must remove
// the corresponding fragment from Domain
stack = adjustStack(worldStack,Domain. failures)
select w from Worlds

}

Figure 7.7: Flexible Fragment Planner

an explicit stack rather than through recursion. Second, the search need not consider all
fragments for a new world given a set of worlds and fragments. Instead, the search gives
up on the current fragment choices and world selection whenever it becomes frustrated
with the number of fragments it has generated for the current world without finding one
consistent with fragments it previously chose. Third, when the search gives up, it may
undo as many previous world selections as desired and continue the search from there.
Finally, the Plan subroutine need not be complete and may employ randomized search
procedures. This will be critical to the effectiveness of our search procedures. We have
investigated several search procedures that make different choices for variable ordering,
frustration level and backtracking distance. Of these, chronological backtracking and two

randomized searches that provided interesting experimental results are described below.

Chronological Backtracking

In chronological backtracking, upon failure we undo the last choice made and replace it

with its successor until all choices have been considered. To implement backtracking,
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Figure 7.8: A Simple Fragment-based Plan That Failed

Plan must be implemented such that successive calls with the same Domain and w re-
turn successive plans according to some ordering, and Frustrated must always be false.
Thus, Plan will return plans given the current fragments until all such plans have been
exhausted. The adjustStack and Select procedure must then remove the last world from
the stack, along with its current choice of fragment, and install it as the current world w.
We then resume generating possible plans for the fragments associated with the worlds
remaining on the stack. The disadvantage of this strategy is that it considers every pos-
sible choice for the current fragment before considering the previous fragment choice.
As a result, the number of fragments considered will be exponential in the number of
choices made between the choice that must be changed to enable a plan and detection
that the planning attempt has failed. Consider the situation of Figure 8.22. Suppose the
first fragment chosen was the action open v2 at time step 8. No conformant plan can
result from extending this fragment. However the planner does not fail until it attempts
to place the open action for the sixth valve, as illustrated in the figure. The planner
must then systematically consider all placements of fragments around the open v2 action

before reconsidering that action itself.

Stochastic Probing (Langley 1992)

In this context, a probe consists of one selection of the world order and a choice of frag-
ment for each world. To implement stochastic probing, we select a world at random and

use a randomized planner to find one possible fragment. We subsequently select worlds

86



randomly from the set of unconsidered worlds, and find fragments that are consistent with
the existing fragment set. If we reach a point where we cannot find the next fragment for
the world ordering, we throw out all fragments and the world sequence and begin again.
To implement this search strategy, Select must randomly select a world that’s not on the
stack, Plan must be a randomized planner, Frustrated must always be true, and adjust-
Stack must completely empty the world stack and Domain. We expect this strategy to
work well in situations similar to Figure 8.22 where the problematic choice was made far
back in the stack of decisions, but is not detectable until much later. Note that this strat-
egy is randomized but can maintain completeness if we prevent Plan from generating the
same plan twice. This can be accomplished through the use of nogoods. We discuss this

further in the section on the implementation of the Plan procedure.

Bubbling

Bubbling refers to the motion of worlds for which the search is having difficulty finding
a plan toward the bottom of the stack. In bubbling, Plan is randomized and Frustrated
becomes true after some small, fixed number of planning attempts. When the planner be-
comes frustrated in its attempts to find a plan for w given all of the worlds, and implicitly
fragments, on the stack, adjustStack pops the last world off the stack. The variable w is
left with its selected value. Thus the search continues for a fragment for w, but within the
context of a smaller set of worlds and associated fragments. This continues until we find
a plan that satisfies w and the stacked worlds, or until the stack consists only of w and
we find a plan for it. Intuitively, the problematic value for w bubbles up the stack until
a fragment is found. The search then returns to finding fragments for the worlds not on
the stack. We can refine the variable ordering strategy of bubbling to prefer that heavily
constrained worlds are solved first, in a manner analogous to squeaky-wheel optimization
(Joslin & Clements 1999). We approximate this by by introducing a notion of difficulty.
Each time Plan fails to find a fragment, the difficulty of each world on the stack is incre-
mented. After w has been satisfied, we can select the next world to attempt based upon
this estimate of its difficulty. We expect this search to do well in domains where a small

subset of the worlds are significantly more difficult to satisfy than the remaining worlds.
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7.4 Implementation Using a SAT Planner

The fragment-based approach does not require a specific planning approach be used to
implement the Plan procedure that is used on individual worlds. It only requires that we
are able to force the Plan procedure to include actions for previous fragments in its plan
for the current world. This can be easily accomplished for many planning styles. Partial-
order planners begin with an empty plan and add actions that link the initial state to the
goal state and remove conflicts between actions. We can enforce the inclusion of fragments
by initializing the procedure with a non-empty initial plan consisting of the fragments. In
Graphplan-style planners, the backtracking search selects actions that lead from the goal
back to the initial conditions. At each level of this search, we can simply force the search
to include the appropriate fragment actions in its set of actions. SAT-plan based procedures
build a propositional representation of the possible plans. We can simply assert that the

proposition corresponding to selecting each fragment action must be true.

To implement our Plan procedure, we chose to work within the framework of planning as
propositional satisfiability and chose Blackbox(Kautz & Selman 1999) as its basis. Black-
box compiles a planning domain into a plan graph(Blum & Furst 1995) then converts the
plan graph into a propositional formula that describes the planning problem. For each ac-
tion and time step, the formula contains a propositional variable A that, if true, corresponds
to taking that action at the given time. It is consistent for A to be true if and only if the
propositional variables representing the preconditions and postconditions of action A are
true as well. Thus, a satisfying assignment to the variables of the formula corresponds to a
plan. Blackbox then calls a SAT procedure to find a satisfying assignment for the propo-
sitional formula. In order to represent uncertainty in the initial state of the world, we add
to the propositional formula a set of propositional variables, each of which represents the
possibility that a particular world is the actual world. We modify the propositional for-
mula such that if a world variable is true, then the propositional variables that represent the
conditions of that world must be true as well. Thus for any world, we can assert that the
variable corresponding to the world is true, and Blackbox will find a plan that achieves the

goals in that world. Note that we cannot create a conformant plan by specifying the initial
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world as a disjunction of the corresponding world variables as a SAT solver will simply
pick the most convenient world. As a result, we would only be guaranteed that the result-
ing plan would satisfy the goal in at least one of the possible worlds. We seek a plan that

safely reaches the goal in every world.

Representing the planning domain as a propositional formula and planning in a sin-
gle world as propositional satisfiability has numerous advantages. First, we can employ
fast, randomized propositional satisfiability engines. We have performed experiments us-
ing Chaff (Moskewicz et al. 2001), Satz (Li & Anbulagan 1997), and a stripped-down
version of Satz, from which we removed most preprocessing of the propositional formula
designed to improve performance on large SAT instances. Second, addition of fragments to
the planning domain is trivial. We simply assert that the propositional variable correspond-
ing to each action in the fragment must be true. The SAT procedure is then constrained to
find only plans wherein those actions are taken. The primary drawback of using the Black-
box style of propositional encoding for fragment-based conformant planning involves its
Graphplan-style handling of time. The propositional encoding is created from a planning
structure with a fixed number of time steps. The planning process assigns actions to specific
points in time. Thus, all fragments are fixed at a given time. Since we do not know how
we will need to extend the existing fragments, fixing the time points of actions is constrain-
ing. Consider the bomb in the toilet plan generated in Figure 8.22. We have considered
worlds w; through ws and have generated a plan that is conformant for those worlds. It
can be made conformant for wg simply by adding an open and recharge action before any
open action. However, the way the planner has laid out the actions for the first five worlds,
the two remaining time steps are not adjacent, and the two necessary actions cannot be
inserted. The planner will have to backtrack, backjump or restart to remove the open ac-
tion from time 8. We could potentially address this type of timing issue with an encoding
trick in the propositional representation that would allow us to move fragments so as to
coalesce or create places to insert actions. However, since the core issue is flexibility in
ordering actions, it might be more fruitful to consider mapping fragment-based planning

into a partially-ordered planning framework. This is beyond the scope of this work.
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7.5 A Conflict-based Conformant Planner

Both fragment-based and conflict-based conformant planning plan on a single world at
a time and use the results to focus subsequent planning attempts on finding conformant
plans. The fragment-based approach forces subsequent planning attempts to include plan
fragments known to work in previously considered worlds. The conflict-based approach
tests whether a plan generated for a single world achieves the goal in all worlds. If not, it
forces subsequent planning attempts to avoid plan fragments that are known not to appear
in any conformant plan. The conflict-based approach operates as follows. Given a plan
generated for a single world, we can easily test whether the plan achieves the goal in all
worlds. If not, we analyze the representation of the planning domain and the plan to find if
there is a set of actions in the current plan that must prevent the goal from being achieved.
This subset of the plan actions, referred to as a nogood, cannot appear in any plan. Note
that a sequence of actions that causes the current plan to fail is only a nogood if all plans
that contain the sequence fail. Addition of the nogood to the planning domain rules out
a space of non-conformant plans from the planning search space, focusing the planner
toward producing conformant plans. Using a propositional encoding makes generation of
nogoods quite simple. Suppose we have generated a plan that achieves the goal in world
w;. However, upon testing the plan in w;, we find the plan does not achieve the goal. Given
the propositional encoding, we can easily determine which subsequence of the plan entails
the negation of the goal. Since the negation of the goal is entailed by these actions, no
plan that contains this subsequence can achieve the goal in all worlds. We may assert the
negation of the nogood into the propositional encoding in order to prevent the planner from
considering any such plan. The conflict-based conformant planner of Figure 7.9 embodies
this strategy.

We assume that wff is a propositional formula that describes the planning domain given
any one initial state. We choose a world w and apply a SAT solver to the conjunction of the
initial world assignment and wff, yielding a plan P. We then check P for consistency with
the domain representation and each other world, in essence simulating its execution on each

world. If P is consistent with all active goals and safety constraints for each world, then
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proc conflictPlan(wff, Worlds) {
for N times {
/* Generate Plan in one world */
choose initial world w from Worlds
Plan=satisfy(wffAw)

/* Check if Plan is safe and useful in all worlds */
Conformant=true;
for w in (Worlds-w) {
noGood=checkConsistency(wff Aw APlan)
if (noGood) {
Conformant=false
/* Rule out similar solutions in SAT solver */

wff = -noGoodAwff }

/* If Plan passed the gauntiet, return it */
if (Conformant)
return Plan;

/* None of N attempts found a safe, conformant plan */
return NULL;;

}

Figure 7.9: A Conflict-Based Conformant Planner

P is conformant. If there is an inconsistency, checkConsistency traces the inconsistency
back through the propositional representation to the sequence of actions that supports it.
That sequence of actions is returned as noGood. Conceptually, noGood prevents a goal
from being achieved in at least one world. Thus, no assignment that includes noGood is
a satisfying assignment. We then add —noGood to wff. This has the effect of ruling out
all plans that contain noGood regardless of the world we are considering during the SAT
phase. We then re-invoke the SAT solver on the more constrained problem —noGood Awff.
In this way, with each planning attempt the propositional representation of the planning
domain becomes more focused upon producing plans that do not violate any constraints in

any world.

Note that every non-conformant plan encoded in the SATPLAN-style representation we
use in fact contains a nogood. A complete assignment to a SAT encoding of a plan specifies
both what actions were taken and what actions were not taken in the finite number of avail-

able time steps. The complete plan therefore cannot be augmented with additional actions
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that might allow it to become conformant. All plans that contain the entire plan (i.e., the
plan itself) are non-conformant. Thus the complete encoding of a non-conformant plan is a
degenerate nogood that has the effect of ruling out only itself. Because of this, the conflict-
based planner is complete if the satisfy procedure is complete and if N is greater than the
number of plans that can be generated. Each call to satisfy either returns a conformant plan
or results in noGood that rules out at least the returned plan. If at least one conformant plan
exists, then for each world w the conformant plan is one of the plans that will eventually
be generated by satisfy. Thus in the worst case the algorithm will rule out every single-
world plan for every world except for the conformant plan. It will then be forced to return
the conformant plan. Of course, if all noGoods generated are of this degenerate form, the
conflict-based planner will not be practical. This technique will have the greatest effect in
focusing the SAT solver on conformant plans when the noGoods found are short and rule

out a large number of similar solutions that otherwise would have been considered.

7.6 An Extension to Handle Conditional Actions

Many planners, including Graphplan upon which Blackbox and in turn our conformant
planners are based, support only simple STRIPS operators. Each STRIPS operator de-
scribes an action that a planner can include in a plan as a set of pre-conditions and a set of
effects. The pre-conditions describe what must be true at the point at which the action ap-
pears in the plan. The effects describe how the action modifies the conditions in the world.

Intuitively, we would describe the open action that appears in Figure 8.1 as follows:

open(valve) pre: (and charged)

eff: (and (notcharged)

(opened valve)))

Note that the action of opening a valve is denoted “open” while the state of the valve being
open is “opened”. Thus, the open operator can be applied if the system is charged, it opens
the valve, and discharges the system. The recharge action has no preconditions, and charges

the system:
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recharge() pre:
eff: (and charged)

One restriction of planners that support only simple STRIPS actions is that they cannot
represent actions with conditional outcomes, that is actions whose effects depend upon the
state of the world in which they are applied. Consider our Cassini example. We wish to
represent the possibility that some valves are permanently stuck closed and will not open.
Thus, the effect of applying the open action to a valve in the Cassini domain is conditional

upon whether or not the valve is stuck.
open(valve) pre: (and charged)

eff: (and (notcharged)
(when (not (stuck valve))

(opened valve)))

That is, when we apply the open operator to a valve, if the valve is not currently stuck,
it becomes open. In any case, the system is no longer charged. As originally described,
Graphplan makes the assumption that operators will not contain such conditional effects.
Thus, our additional implementation of the fragment-based conformant planner was un-
able to handle conditional effects, and an extension was needed. Several authors have de-
scribed methods that allow Graphplan to handle operators with conditional effects (Gazen
and Knoblock 1997, Koehler et al. 1997, Anderson, Smith and Weld 1998). These tech-
niques are useful for deterministic planning, and are not directly applicable to the confor-
mant planning problem. However, our solution is an extension of the approach of Gazen
and Knoblock, so we shall describe it first. This approach breaks operators with conditional
effects up into a number of separate operators, referred to as aspects. Each aspect describes
one possible outcome of the operator. Intuitively, we force the planner to choose which
effect of the operator will hold in the plan by forcing it to choose which aspect to include in
the plan. This is achieved by creating an aspect for each minimal consistent combinations
of antecedents in the conditional effects of an operator. To illustrate, consider the following

generic operator with one unconditional effect and two conditional effects:
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OP pre: P
eff: (and E (when C; F) (when C; G))

This operator would be expanded into the following four STRIPS operators:

OP1 pre: (andP)
eff: E

OP2 pre: (andPC;)
eff: (andEF)

OP3 pre: (andPC,)
eff: (andEG)

OP4 pre: (andPC; Cp)
eff: (andEF Q)

Intuitively, if the planner requires effects E and G of operator OP, then it must choose to
insert operator OP3 into the plan. As with any other action, this will require the planner to
ensure that conditions P and C, are true when OP3 appears. Unfortunately, this technique
can only be used when the start state of the plan is known. Otherwise, we cannot guarantee
that condition C, will be true when OP3 appears. For example, consider the open operator

in the Cassini domain. This can be separated into the following aspects:

Opengpen(valve) pre: (and charged
(not (stuck valve)))
eff: (and (opened valve)
(not charged))
Opehnoop(valve) pre: (and charged
(stuck valve))
eff: (and (not charged))

Aspect openger, applies when the valve is not stuck, and openyep, Which fundamentally

does nothing, applies when the valve is stuck. A conformant plan for the Cassini domain
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must potentially apply in an initial state where a valve is stuck, and a second initial state
where the valve is not stuck. Thus neither one of these aspects of the open operator correctly
captures the operation of the open operator in all worlds. We must have some way of

maintaining the uncertainty of operator open as we are generating the conformant plan.

Our solution is to use a simple generalization of the technique of Gazen and Knoblock.
If operator OP appears in a plan, then an aspect of OP must apply at the point at which OP
appears. Gazen and Knoblock enforce this constraint by forcing the planner to choose a
specific aspect that will apply. Intuitively, we encode the constraint itself and allow each
world in which the plan must apply to choose a different aspect if necessary. This is ac-
complished fairly easy given our world at a time approach to conformant planning. Recall
that as a fragment is generated for each world, we assert that fragment into the planning
domain. This forces plans for subsequent worlds to include the actions that achieve the
goal in previously explored worlds. Accommodating conditional actions requires only two
basic modifications to the fragment based planning algorithm. First, following Gazen and
Knoblock, we replace each conditional operator with a set of aspects. The deterministic
planner that provides a fragment for each world is unmodified, but plans with the aspects.
Thus, it chooses a specific aspect of each conditional operator that is appropriate to the cur-
rent world. The second modification concerns how fragments are asserted into the planning
domain. When asserting the newly generated fragment into the domain, we do not assert
the aspects chosen by the deterministic planner for the current world. Instead, for each
aspect OP; of operator OP that appears in the fragment, we assert the disjunction of the
set of all aspects of OP. Thus planning attempts for subsequent worlds are not constrained
to choose the same aspect of OP as applies in the current world. They are constrained to

choose some aspect of OP at the point at which OP must appear.

Figure 7.10 gives an intuition of this process using the two aspects of the open operation
from the Cassini domain. Imagine our goal is to open one of a set of valves, all but one
of which are stuck closed. Let w; denote the world where valve 7 is not stuck. In Column
1, we plan for w;, using the aspects of the open operator. The resulting plan for w, is to

apply the open,,.,, aspect to v1. Rather than asserting this aspect directly into the domain
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Column 1 Column 2 Column 3 Column 4

Plan for un Fragments for ws | Plan for ws Fragments w3

1 opengpen v1 | 1 OpeNgpen V1 V 1 openpeop V1 | 1 Opengpen V1V
OPENnoop V1 OpeNnoop V1

2 2 2 2

3 3 3 recharge 3

4 4 4 4

5 5 5 Opengpen V2 | 5 Opehgpen V2V

OPENroop V2

Figure 7.10: Generating A Plan With Aspects

in Column 2, we assert the disjunction of all aspects of open. Intuitively, the plan for w; has
committed to using the open action, but a different aspect of the operator may be consistent
with each world. In column 3, we have asserted w» and generated a plan. Assertion of
wa, where only v2 can be opened, selects an aspect from the disjunction at time step 1. In
addition, the planner adds a second aspect to open v2 at time step 5, plus the necessary
recharge action at time step 3. Note that if we wished to read out a plan for worlds w; and
wo from this structure , we would substitute the corresponding conditional action for each
aspect, resulting in the plan, open V1; recharge; open V2. Instead, we convert the aspect at
time step 5 to a disjunction of aspects, assert it into the domain, and continue as with the

standard fragment-based planning algorithm illustrated in Figure 7.4.

7.7 An Extension to Handle Ramifications

Even given the capability to represent actions with conditional outcomes, many planners
from the literature and our Blackbox-based planner cannot directly represent the Cassini
problem, illustrated again in Figure 7.11. The problem lies in the practice of representing
the ramifications of operators, or their effect on the world, as post-conditions. Intuitively,
the use of pre- and post-conditions to capture the effect of operators is useful when the
ramifications of an operator are local to a small set of entities that are in some sense local to
the operator. For example, in block stacking problems the actions that stack one block upon
another effect the block being stacked and the block upon which it is stacked. In a logistics

planning problem, moving a truck with a package in it effects the location of the truck
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Figure 7.11: Cassini Propulsion System Schematic

and the package. This approach is not scalable when the effect of actions may propagate
through many entities, which is precisely the case in the type of machine control problems
upon which we would like to focus. Consider the Cassini example and the ramifications of
the open operator. Consider first when the operator is applied to the valve helium 1. If
all other valves are open, then every point in the system is pressurized with either helium,
LOX or H, as appropriate. If no other valves are open, then the LOX and H» tanks and
their downstream valves are pressurized. Each of the combinations of valve configurations
between these two extremes implies a different set of ramifications for open operator when
applied to the valve helium_1. In contrast, when applied to the valve m1_lox, the open
operator can have only two different ramifications (either M1 is receiving LOX or it is not)
but which ramification is correct depends upon the configuration of much of the rest of the

propulsion system.

There are several possible approachés to this problem. First, we might attempt to expand
the pre-conditions of our operators, restricting how they are applied and thus reducing the
complexity of capturing their ramifications. For example, if the open operator only ap-
plies to valves where pressure is present (initially helium_1 and helium_2), its effect

is simply to pressurize the next valves in the path to the engines. This effectively captures
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propagation of pressure in the Cassini system from the helium tank to the engines. Unfor-
tunately, this has the effect of ruling out all plans where the valves are not opened in this
arbitrary order. This may increase planning complexity, or if there are other constraints
on the operators, rule out all valid plans. Second, we might pre-compile the operators of
a domain (e.g., valves and pipes) into a set of operators for a problem (e.g., the Cassini
propulsion system) that capture the propagation of the properties of intersect under any cir-
cumstances. For example, given the layout of the Cassini we could generate a operator for
opening helium 1 whose conditional effects capture the pressure propagation given any
of the 4 million configurations of the 22 valves. In general, doing this compactly would
require having a model of the propagation of interest and embedding it into each operator.
Given this model, a third option is to capture only local effects in the operator definitions,
then use the model to infer non-local propagation. This option is the one we chose to

implement.

Conceptually adding a model of non-local ramifications, which we refer to as the back-
ground model, to our Blackbox-based planner is quite simple. Blackbox compiles the plan-
ning domain model into a propositional formula. A satisfying assignment to this formula
represents a plan. Conceptually, we simply need to augment this formula with additional
model fragments that capture propagation of pressure though the Cassini system, such as

the following:

open(lox_1) A pressurized(lox-1) == pressurized(m1_pre_lox_0)

open(lox_1) A pressurized(lox-1) = pressurized(m2_pre_lox_0)

So augmented, the formula would capture the non-local ramifications of opening any
set of valves in any order. In practice, adding these clauses to the propositional formula
constructed by Blackbox and correctly retrieving a fragment from it was a campaign waged
over many weeks. For those familiar with the underlying planning technology, at issue
was the planning graph that Blackbox generates. Intuitively, the planning graph is a tool

for Blackbox to determine what actions are potentially relevant or definitely irrelevant at
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every step in a potential plan, and what actions might possibly be used to satisfy the pre-
conditions of an action that has been inserted into the plan. Construction of the planning
graph assumes that the post-conditions of one action will directly satisfy the pre-conditions
of another. That is, it is not equipped to determine how the ramifications of the post-
conditions of one action could propagate through a model of a physical device to indirectly
satisfy the pre-conditions of another action. As a result, it appears to the planning graph
that there is no way to satisfy the goal condition of a planning problem. In addition, actions
that are required because their ramifications set up a necessary pre-condition in the plan
appear to be irrelevant because their direct post-conditions are not used by another action.
To address these problems, we first create a set of temporary actions within a planning
domain that mimick the effects of the background model. These actions allow the planning
graph to determine that a plan to achieve the goal is possible. After the planning graph
is converted to a propositional formula for solution by the SAT engine, we remove the
portion of the formula that represents the effects of the temporary actions. We also insert
insert a propositional formula that captures the non-local ramifications of the actions of
the domain. This allows the SAT engine to find a plan based upon the ramification-based
encoding of the planning problem. We also redesigned the plan minimization subroutine
of Blackbox from a design based upon the planning graph, which would minimize actions
it could not determine were relevant, to a logic-based design that used the full ramification
model to determine which actions could safely be removed from a plan. We did not solve
the general problem of representing ramifications within a Graphplan representation, which

remains an interesting open problem.

7.8 A Brief Illustration

In this section, we present a small illustration of the fragment based planner operating on
the Cassini propulsion system illustrated in Figure 7.11 in order to provide an intuition
into its working. Detailed experimental results are provided in the next chapter. For this
illustration, we consider only failures of the redundant H_2 valves; m1_h2_pre_01 and
ml_h2_pre_02 on engine M1 and m2_h2_pre_01 and m2_h2_pre_02 on engine M2.

We first consider the case where one of the redundant H_, valves of M1 is permanently stuck
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Time | Action
1 (lock)
2 | (open=open helium_1)
3 (lock)
4 {open=open lox_1)
5 (lock)
6 | (open=open m2_pre_lox_0)
7 (lock)
8 (open=open h2_1)
9 (lock)
10 | (open=open m2_pre_h2_0)
11 | (lock)
12 | (open=open m2_pre_lox_1)
13 | (lock)
14 | (open=open m2_pre_h2_2)
15 { (lock)
16 | (open=open m2_lox)
17 | (lock)
18 | (open=open m2_h2)
19 | (lock)
20 | (open=open m2_pre_h2_1)
21 (lock)
22 | (ignite=ignite m2 m2_lox m2_h2)

Figure 7.12: A Minimal Plan When M1’s Valves are Stuck

closed. Any conformant plan for this example must either make use of engine M2 or open
both of the possibly stuck valves of M1 . Initially, we will restrict the planner to using only
the minimal number of actions needed to ignite M2, thatis 22. Thus the option of using M1
is unavailable. Only plans that open exactly the minimal number of valves needed to ignite
M2, with choices where redundancy appears, can be generated. Figure 7.12 illustrates
one such plan. Note that we have removed references to the aspects of the open operator.
Figure 7.13 illustrates the performance of the fragment based planner using probing on this
problem. Since probing and our SAT algorithm are randomized algorithms, we show 100
trials each with a different random seed. The horizontal axis is the 100 trials in an arbitrary
order. The vertical axis denotes the number of iterations required by each trial, where an
iteration is one call to the SAT algorithm to generate a fragment. At first glance, this graph
may not appear terribly instructive. Consider instead Figure 7.14 where we have simply

sorted the random trials by how many iterations they required.
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Figure 7.13: Iterations Required for Two Valves On One Engine

Figure 7.14 illustrates how the probing strategy on top of Blackbox is generating con-
formant plans. Note that approximately 50% of the trials require 2 iterations, then roughly
25% require 4 iterations, 12.5% require six, and so on. Intuitively, half of the trials initially
choose to use M2 and succeed. The remaining half of the trials initially choose to use M1,

fail and are restarted. Again, half choose to use M2, and succeed.

Let us consider this in slightly more detail. Recall that the goal of our planning problem
is to produce thrust. This goal and one of the initial worlds, either m1_lox_pre_1 being
stuck or mi_lox.pre_2 being stuck, are asserted into Blackbox. Without any loss of
generality, let us assume that m1_lox_pre_1 is chosen first. Blackbox must then generate
a single world plan. Blackbox encodes the planning problem in a planning graph that plans
in a regression style. Thus it captures that thrusting implies either igniting M1 or igniting
M2. If M2 is chosen, a 22 step fragment that ignites M2 is generated for the world where
ml_lox.pre._1 is stuck. We assert this fragment into the planning domain, so that the plan
for the next world will be forced to include it. When we consider the other world, where
ml_lox_pre.2 is stuck, we find that no additional actions are needed. If M1 is chosen for
our initial fragment when m1_lox_pre_1 is stuck, Blackbox must generate a 22 step plan
that uses m1_lox_pre_2. This fragment is asserted. When we consider the second world
where m1_lox.pre_2 is stuck, this fragment by itself is not sufficient. We would like to

augment the existing plan by opening m1_lox_pre_1. Unfortunately, since the planner is
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Figure 7.14: Iterations Required for Two Valves On One Engine, Sorted

constrained to use only 22 actions, no such plan is found. The previously asserted fragment

using m1_lox pre.2 is therefore abandoned and the planning process is restarted.

Similarly, consider Figure 7.15. In this example, one valve on either engine, either
ml_lox pre.l or m2_lox-pre_l is stuck. Again, without any loss of generality, let
us assume that ml_lox_pre.1 is chosen first. Again the first fragment must choose
M1 or M2. If M1 is chosen, then m1_lox pre_2 must be used in the initial fragment.
Since m1_-lox_pre_2 is not stuck in the other world, this should account for 50% of the
trials succeeding in two iterations. If M2 is chosen in the world where m1_lox pre_1
is stuck, then either m2_lox pre_1 or m2_lox_pre_2 may be used to ignite M2. So
long as m2_lox_pre_2 is chosen, then the fragment will work in the second world, where
m2_lox_pre_1 is stuck. This accounts for an additional 25% of the trials succeeding on
with two iterations, for a total expectation of 75In the remaining case when considering
the world where m1_lox_pre_1 is stuck, for our first fragment we choose ignite M2 using
ml_lox pre_2. Again, when we consider the other world we need to open an additional

LOX valve on the same engine, and cannot due to the constraint on the number of actions.

Figure 7.16 illustrates planner behavior when eitherm1_h2_pre_01 andml_h2 pre_02
is stuck closed and when more than sufficient time is allowed to open both if necessary. Out
of 100 trials, 52 created a plan that used M2 for the initial fragment. When generating the

second fragment, it was not necessary to add any actions. In the remaining 48 trials, M1
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Figure 7.16: Iterations Required With Sufficient Time Steps

was chosen, and either m1_h2_pre_01 or m1_-h2_pre_02 was opened in the first frag-
ment. When generating the second fragment, it was discovered the first fragment was not
sufficient, and an action to open the other valve was inserted, along with an unlock action.
Thus, all 100 trials take 2 iterations. The next chapter includes a greater variety of ex-
periments with the Cassini model, and a greater variety of corresponding behaviors by the

fragment-based conformant planner.

7.9 Summary

In this chapter we have introduced fragment-based conformant planners that choose frag-
ments that will appear in the conformant plan. Because of this choice, the planner may

need to backtrack or restart. We have also introduced a conflict-based planner that finds
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noGoods that cannot appear in any conformant plan. Because these noGoods are guar-
anteed not to appear in any conformant plan, no backtracking is needed and the simple
algorithm of Figure 7.9 is complete. However, the extent to which each noGood actually
focuses the planner and the extent to which the approach becomes a generate and test strat-
egy is at issue. The fragment- and conflict-based approaches are compared in the results

section in order to address these issues.
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Chapter 8

Experimental Results for Conformant Planning

The planning system described has been implemented in C++, making use of existing func-
tionality from Blackbox, Satz (Li & Anbulagan 1997), and Graphplan. In the first section
below, we compare the performance of an initial version of the planner that did not include
conditional actions against a number of planners from the literature using the bomb in the
toilet problem and a simplification of the RING domain' (Cimatti & Roveri 2000) In the
second section, we compare different search strategies for the fragment based planner on
the bomb in the toilet problem and a conformant logistics problem wherein packages must
be delivered via a set of roads that might contain mines. The third section investigates per-
formance of the planner with the slight modifications needed to allow conditional actions
and proper handling of ramifications, using the Cassini spacecraft as the domain. The final
two sections describe the performance of a conflict-based conformant planner, and perfor-
mance when we attempt to find a conformant plan by taking forming a single world that

conjoins all of the possible worlds and planning with a deterministic planner.

8.1 Performance of the Fragment-based Planner

In the first subsection, we compare performance of fragPlan on the bomb in the toilet
problem against planners from the literature. In the next subsection, we illustrate scalability
as the number of possible worlds increases. Finally, in this section we illustrate how the

performance of different search strategies varies with the domain.

The full ring domain requires actions with conditional effects which. as noted above. our initial implementation did
not support.
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Time | Action

1 dunk packagel, toileti

2 | flush toiletl

3 dunk package2, toiletl

4 | flush toiletl

5 | dunk package3, toiletl

6 flush toiletl

7 dunk package4, toiletl

8 | flush toiletl

9 dunk packages, toilet]

10 | flush toiletl

11 | dunk package®, toiletl

Figure 8.1: A bomb in the toilet plan for 6 packages, 1 toilet

Time Actions

1 dunk packagel, toilet] | dunk package2, toilet2

2 flush toiletl flush toilet 2

3 dunk package3, toiletl | dunk package4, toilet2

4 | flush toiletl flush toilet 2

5 dunk package5, toilet] | dunk package6, toilet2

6 flush toiletl flush toilet 2

Figure 8.2: A parallel bomb in the toilet plan for 6 packages, 2 toilets

The bomb in the toilet domain (McDermott 1987) is an oft-used benchmark for which
performance information is available for many planners. In this domain, we are presented
with a set of packages. One of the packages contains a bomb. In order to defuse the bomb,
we must dunk it in a toilet. Once a toilet has been used to dunk a package, it clogs and
must be flushed before another package can be dunked. This is referred to as the bomb in
the toilet domain with clogging, or BTC. Figure 8.1 illustrates a successful plan for the six
package, one toilet problem. Figure 8.2 illustrates a successful plan for the six package,
two toilet problem. Note that when more than one toilet is available, actions may be taken
in parallel. This is significant because not every planner from the literature we consider is
able to generate plans that occur in parallel. Instead, they must consider a single action at

a time, resulting in serialized plans such as the one illustrated in Figure 8.3.

8.1.1 Performance Comparison on the BTC Domain

Figure 8.4 illustrates performance of planners that consider only serial actions versus frag-

Plan on variations of the BTC problem. The first column lists the number of packages and
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Time | Action

dunk packagel, toilet2
dunk package?2, toilet]
flush toiletl
dunk package3, toiletl
flush toilet1
flush toilet2
dunk package4, toilet]
dunk package5, toilet2
flush toilet]
dunk packageb, toilet]

CVHONAUHAWR -

Figure 8.3: A serial bomb in the toilet plan for 6 packages, 1 toilet

fragPlan
P-T | Steps GPT | CMBP | HSCP | Time | Calls
6-1 | 11/11 || 0.07 0.01 0.01 | 0.11 | 23.68
81 [ 15715 0.11 0.20 0.01 | 047 | 40.90
10-1 1 19/19 || 1.31 0.71 0.01 | 2.89 | 124.52
64 | 8/3 1.44 041 0.01 | 0.03 7.5
84 | 12/3 8.78 2.74 003 | 0.23 | 66.43
10-4 | 16/5 || 59.97 | 1442 | 003 | 044 | 45.70
66 1 6/1 8.69 3.29 003 | 0.02 | 6.90
86 | 10/3 || 6843 | 2071 | 0.05 | 005 | 823
10-6 § 14/3 | 486.97 | 111.83.{ 0.08 | 027 | 19.68

Figure 8.4: fragPlan and serial planners on BTC
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toilets in the problem. The second column lists the minimum number of time steps in a con-
formant plan for planners that consider a single action at a time, and the minimum number
of time steps required for planners that allow parallel actions. The next three columns of
the table show results for three planners from the literature. GPT (Bonet & Geffner 2001)
is a planner that uses A* search and dynamic programming to solve conformant, contin-
gent and probabilistic planning problems. CMBP (Cimatti & Roveri 2000) is a conformant
planner that uses binary decision diagrams (BDD) to represent the outcome of candidate
actions in all worlds simultaneously. HSCP (Bertoli, Cimatti, & Roveri 2001) is an im-
pressive successor to CMBP that uses a heuristic to control the actions considered during
search. Figures for these planners were taken from (Bertoli, Cimatti, & Roveri 2001) and
were generated on an 300MHz Pentium II PC running Linux with 512M of memory. The
final two columns illustrate the performance of fragPlan using stochastic probing as the
search strategy. The first column lists the time to solve the problem. Since we are using a
randomized procedure, timing figures are averages over thirty runs. The next column shows
the average number of calls to the Plan procedure to find a fragment. fragPlan was run on
a 266MHz Pentium II laptop running Windows 2000 on 288M of memory. Figure 8.6 il-
lustrates performance of C-plan (Castellini, Giunchiglia, & Tacchella 2001), a conformant
planner that like fragPlan uses a propositional representation that allows parallel actions.
C-plan generates possible plans that may be conformant and tests whether each is in fact
conformant. The label TIME indicates C-plan did not find a plan in 1200 seconds. The
second column under C-plan lists the number of possible plans that are tested for each
problem. Figures for C-plan were taken from (Castellini, Giunchiglia, & Tacchella 2001)
and were generated on an 850MHz Pentium ITI PC running Linux with 512M of memory.

Relative to these experimental runs, we have made several observations.

Observation 1 On serial BTC problems, fragPlan is competitive with GPT and CMBP but
is dominated by HSCP.

Consider the first three rows of Figure 8.4 which represent problems with multiple packages
and one toilet, {6-1, 8-1, 10-1}. These are completely serial problems, in that there is a

single toilet, and only one package can be dunked at a time. The task for fragPlan is
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|_ ~+~HSCP300Mhz -~ fragPlan 266Mhz |

1 3 5

7
Toilets

Figure 8.5: Time versus parallelism on BTC for fragPlan

to order the dunking fragments such that the final plan alternates dunking and flushing
within the minimal number of time steps. In the six package problem, probing generates
an average of 23.68 calls to Plan rather than the minimal 6. This indicates there is some
amount of misplacement of fragments which is being addressed by restarting the algorithm.
As we increase the number of steps by increasing the number of packages, the amount of
restarting required increases. This is intuitive, as there are more opportunities for fragments
to be misplaced. However, the number of fragments generated and the difficulty of finding
those fragments, as judged by the total runtime of the algorithm, appear to combine to scale
at approximately the same rate as problem complexity in the GPT and CMBP planners.
HSCP uses the same BDD representation as CMBP, but uses a heuristic function rather
than blind search to select actions. This heuristic appears to do an excellent job of focusing

the search, and HSCP is significantly faster than fragPlan on these serial problems.

Observation 2 On parallel BTC problems, fragPlan dominates CMBP and GPT, and even-
tually surpasses HSCP.

Like CMBP, HSCP cannot generate parallel plans in domains where they are required, but
will produce serialized plans. Consider for example the performance of CMBP on the
problems with ten packages. CMBP encodes the set of initial states of the world in a BDD,
then considers the outcome of the possible actions on each world in the set. The result
of the action on each possible world is a set of worlds that is also encoded in a BDD.

When each world in a BDD satisfies the goal, a plan has been found. As the number
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fragPlan CPlan
P—T | Steps | Time | Calls | Time | Plans
6-1 11 0.11 | 23.68 | 221.55 | 52561
8-1 15 047 | 4090 | TIME -
10-1 19 2.89 | 12452 | TIME
6-10 1 0.02 6 0.01
8-10 1 0.02 8 0.01
10-10 1 003 | 12.19 | 0.04

e L

Figure 8.6: fragPlan and C-plan on BTC

of toilets increases, so does the number of actions that must be applied to each BDD.
The search branching factor in the 6 toilet problem is 6 times larger than in the 1 toilet
problem, while the search depth is less effected since CMBP does not consider parallel
actions. This leads to an explosion in the number of BDD’s that CMBP must generate.
Thus execution time increases from 0.71 seconds to 111.83 seconds. In the case of GPT, we
are not certain of the exact mechanism behind the increase in time. We suspect it is a similar
explosion in the number of possible partial plans and resulting states of the world it must
consider as it performs an A* search over action sequences. The search heuristic in HSCP
again does an excellent job of focusing the search, so execution time increases by only an
order of magnitude between 1 and 6 toilets. In contrast, the execution time for fragPlan
decreases by two orders of magnitude between 1 and 10 toilets. Figure 8.5 illustrates the
drop in runtime for fragPlan on the 10 package problem as the number of toilets increases,
and the corresponding growth in HSCP. Intuitively, fragPlan is attempting to assemble
the fragments necessary to achieve the goal in each world along with the necessary inter-
fragment repair actions, within the allotted number of time steps. Allowing parallel actions
significantly simplifies the problem of aligning the necessary fragments to the appropriate

time steps.

Observation 3 On BTC, fragPlan dominates C-plan.

Like fragPlan, C-plan generates parallel plans. Turning to Figure 8.6, C-plan appears to be
at a severe performance disadvantage. Conceptually, in order to find a plan of length n, C-
plan tests every possible plan of length less than n as well as every possible plan of length n.

C-plan adopts several strategies to reduce the number of possible plans it considers but the
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number remains considerable. It is not able to find a plan in a2 competitive amount of time
for a serial problem or moderately parallel problems, where the length 7 and the number of
plans at each length are relatively high. See (Castellini, Giunchiglia, & Tacchella 2001) for
additional performance figures. However, when the parallelism is sufficient to reduce the
number of planning steps to one, C-plan does exceedingly well. The first and only possible

plan it generates dunks all packages simultaneously, which is a valid conformant plan.

8.1.2 Performance with an exponential set of worlds

A common criticism of planners that explicitly enumerate worlds is that there may be an
exponential number of such worlds. In the BTC domain, a problem of n packages has 27
worlds if we allow that every package may contain a bomb. In the modified RING domain,
MRING, a maze contains i rooms. Each room has a window that may be open, closed or
locked, yielding 3™ worlds. The goal of MRING is for all windows to be locked, and a robot
placed at a known location may close or lock the window in the current room, or move to
the next room. Thus the maximum number of worlds is dictated by the number of bombs
in BTC and the number of unlocked or open windows in MRING. We have performed a
number of experiments that vary the number of worlds in the BTC and MRING domains

and make the following observations.
Observation 4 The representation size is constant

Unlike planners such as CGP, fragPlan does not duplicate its planning representation for
each world. The propositions capturing each world (e.g., whether or not package i has a
bomb) are asserted into the representation in turn. Thus the memory required by fragPlan is
dominated by its single world Blackbox representation and does not increase during search.
For problems where the worlds are combinations of a fixed number of properties, the only
increase in memory to consider additional worlds is a few bytes per world to represent the

corresponding fragment.
Observation 5 Plan calls approach the number of worlds

As the number of possible worlds increases for many domains, there tends to be a great

deal of overlap between worlds. Often the large number of worlds is the result of the
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Figure 8.7: Effect of Worlds on Iterations Per World for fragPlan

combination of a smaller set of underlying conditions. In this case, conformant plans for
some of the worlds will often be conformant plans for many other worlds. For example,
any fragment that solves the BTC world where an entire set of packages have bombs, is
a conformant plan for worlds where any subset of those packages have bombs. Similarly
for the Ring domain - a fragment that solves the world where a set of rooms have open
windows will be a conformant plan for worlds where any subset of those rooms have open
windows. Note that this characteristic is not limited to artificial domains such as BTC
and Ring. Consider a problem where there are N candidate faults in a spacecraft, and one
must plan to achieve a goal despite these possible faults. Plans for worlds in which several
of the faults are present typically work for worlds in which a subset of those faults are
present. As a result, even though the number of possible worlds is growing exponentially
with the number of independent sources of uncertainty, the planner tends to discover a
conformant plan after considering only a few of these worlds. This observation is confirmed
by Figure 8.7, which shows the ratio of plan calls required for the BTC problem with 10
packages and MRING problem with 5 rooms as the number of possible worlds increases.
For all domains that we have tested, this ratio approaches 1 as the amount of uncertainty in
the domain is increased.

In other words, for most of the worlds, the planner is just verifying that the current
plan works on the current world. We note that this verification problem is polynomial,
whereas the planning problem for a single world given a fixed horizon is NP-complete. As

a result, there is no a priori reason to expect that verification on an exponential number
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of worlds is computationally worse than planning on a single world. However, our current
implementation does not take advantage of the polynomial nature of verification. As shown
in Figure 8.8, we do see growth in search time as the number of worlds increases, but this
growth is very slow.

Of course, there is no guarantee that for problems with a large number of worlds the
fragment generated for one of the worlds will satisfy any of the other worlds without ad-
ditional actions. First, 2 domain may present a very large number of independent worlds
that are not combinations of a set of underlying conditions. The actions required for each
world might therefore be unique. Even in cases where worlds are generated in a combi-
natoric fashion, our intuitions about how the plans for related sets of worlds are related to
each other may not hold. Consider the example where worlds consist of members of the
powerset of a set of failures. It’s relatively plain that the concatenation of the conformant
plans for each of two failures f1 and f2 may not be a valid plan when both failures are
present. For example, if f1 and f2 represent the failure of two redundant components that
provide the same service, then the plan for the failure of either is to enable the other. The
composition of these two plans, that is to enable both, is not a plan if both are failed. We
may still get significant traction by generating a plan for large combinations of failures that
also applies to any subset. Note however that this is not necessarily the case. The presence
of some failure f may make planning for any set that includes f significantly easier than
the same set without the existence of f. Intuitively, consider the case where we cannot

diagnose whether an electronic component has hung and needs to be turned off and on, or
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its power switch has been knocked into the off position. The plan for the combination of
both failures is to simply turn the power on, which is not a plan for either failure considered

separately.

8.2 Comparison of Search Strategies for fragPlan

Of the several search strategies we implemented for fragPlan, our experiments yielded the
most interesting results for stochastic probing and bubbling. Stochastic probing in essence
selects a world ordering, chooses a fragment for each world, and restarts as soon as a
suitable fragment cannot be found. Bubbling attempts to solve the most difficult worlds
first, then add back in worlds that appear increasingly difficult. In general in all of our
experiments, it was difficult to beat stochastic probing by a significant margin. In cases
where the initial worlds displayed significant differences in difficulty, bubbling was able
to best probing by a small multiple in performance. The details of these experiments and

further performance insights are given below.
Observation 6 Stochastic Probing Dominates on BTC

A fragment set may fail to extend into a conformant plan because of a global property of
the partial plan rather than a property of any particular fragment. In these cases, we expect
bubbling’s attempt to solve the most difficult worlds first based upon plan failures will
not to lead to a conformant plan. As illustrated in Figure 8.22, the BTC problem has this
property. When the fragment for the final world w; cannot be placed, it is because of the
placement of all of the existing fragments. Bubbling removes the fragment for the previous
world considered, w;. This allows the fragment for w; to replace the fragment for w;. The
roles then reverse, making bubbling completely ineffective on the BTC problem. Outfitting
bubbling with a random restart or asserting previously attempted fragment sets as nogoods
would prevent this type of cycle from developing. More generally, locally re-ordering the

worlds does not guarantee a plan.
Observation 7 Bubbling Dominates on Asymmetric Worlds

In order to further compare search strategies, we defined a logistics problem with uncer-

tainty in its initial conditions. We used this problem to investigate the advantage of probing
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Figure 8.9: Probing vs. Bubbling on Asymmetric Worlds

on problems where a small subset of the worlds are more difficult to plan for than the rest.

Example 10 Consider the problem of delivering relief packages to refugee camps. A depot
with packages is located in one location and a number of camps are at distinct locations.
Two locations may be connected by an incoming and an outgoing route. One delivery truck

and one minesweeper are available. A subset of the routes may be mined.

A plan for this problem must run the minesweeper between the truck’s initial location and
the depot, drive the truck to the depot, load the truck, and so on. Figure 8.9 illustrates
performance on three cases of this problem. In each problem, five camps require packages
and one does not. The first column specifies the number of worlds, where a world is an
assignment of mines to routes. In order to create structure in the worlds, not all worlds
specify that routes needed to achieve the goal are mined. In the second column world w;
represents the belief that 8 relevant routes are mined. In the remaining worlds, specified
in the third column, the mines are on routes irrelevant to the goal. The final row is an
exaggerated case wherein 65 worlds specify mines on a route that is not needed in the plan,
and camps are in a linear arrangement that maximizes the number of mines that must be
cleared in order to reach the most difficult (farthest) camp. This problem is particularly
suited for bubbling, as we must clear the mine on the first route before considering driving
to the second route and clearing it. The fourth column denotes the average number of calls
to Plan that are made before finding a conformant plan, averaged over 30 plans. While
probing does not perform as well as bubbling, even on the extreme case wherein 5 of 70
worlds must be considered in order, it does not do as poorly as we expected. The next

observation provides further insight into this behavior.

Observation 8 Plans for one world are often generated so as to work in others
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Figure 8.10: Effect of Time Steps on fragPlan

Given the number of worlds in Figure 8.9, we were surprised that probing did not perform
significantly worse. We discovered that plans for world w; returned by Plan often work in
some other world w;. We think of this as lazy conformance. Our SAT encoding specifies
the impact of every world upon reaching the goal, even though only one world is asserted
when planning. We believe this biases the heuristics of the SAT procedure to activate
actions that remove threats to the goal under consideration from w; when finding a plan
for w;. Intuitively, the heuristics of the SAT procedure see a threat to a precondition of the
goal without seeing that the threat is only entailed if w; is asserted. Even if extractFragment
removes the extra actions for world w; from the fragment inserted into the planning domain,
they ensure that there is space for such actions to be easily added when w; is considered.
The result is that in this domain fragment-based planning is less sensitive to irrelevant

worlds, fragment placement and world ordering than we would have expected.
Observation 9 Probing improves with longer horizons

When we use a randomized search within fragPlan, we expect performance to be more sen-
sitive to how tightly the fragments constrain each other than by the total number of action
sequences. Figure 8.10 illustrates the performance on BTC with 10 packages and 1 toilet
as the planning horizon expands from 19 steps to 50. Note the calls to Plan decrease to
the minimum of one per world while the number of action sequences increases exponen-
tially. Inwitively, placing 10 dunk fragments becomes significantly easier with a few steps

of slack. Eventually, the penalty for manipulating a larger representation outweighs the
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Figure 8.11: Cassini Propulsion System Schematic

reduction in search. However, even at 50 steps performance is good. We have documented
this phenomenon on all domains we considered. For control applications where some plan
must be found, this suggests quickly generating a plan given a conservative planning hori-

zon then iteratively shortening the horizon to find shorter plans in the time that remains.
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Figure 8.12: Performance of 31 trials of fragPlan on 3 Cassini problems
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Figure 8.13: Performance of 31 trials of fragPlan on 4 Cassini problems

8.3 Performance on the Cassini Domain

Figure 8.11 illustrates the Cassini propulsion system described in preceding chapters. We
have performed experiments with fragPlan on a wide variety of problems involving this
domain. In each problem, the goal is to produce thrust. This can be achieved by igniting
either main engine M1 or M2 after opening the appropriate valves to feed in H, and LOX.
Each conformant planning problem has multiple worlds, each consisting of a single valve
that may be stuck. In some problems the stuck valves only effect one engine, so the simplest
conformant plan to produce thrust simply uses the other engine. In some cases, thrust can
be achieved by opening both of a pair of redundant valves on one engine. In some cases,
a non-redundant valve may be stuck on either engine, requiring a conformant plan that
attempts to ignite both engines in order for one of them to ignite and produce thrust. All
of these experiments were performed on a 1.7GHz Pentium 4 running Windows XP with
512MB of memory, though only a fraction of this memory was used by fragPlan.

Figure 8.12 recapitulates the three scenarios discussed at the end of Chapter 7. Each of
these scenarios has two initial worlds. In the first scenario, either engine may have one
redundant Hy valve stuck. Since there are not enough time steps in the planning horizon to
open a stuck valve and its redundant counterpart, the only conformant plan is to use an Hy

valve that is not stuck in any world. As discussed in Chapter 7, approximately 75% of the
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trials choose such a plan as the first fragment. The rest are solved after the generation of a
few additional fragments. In the second scenario, the planning horizon is similarly limited,
but both possibly failed valves are on a single engine. Thus, as discussed in Chapter 7, 50%
of the trials choose a conformant plan for their first fragment. In the third scenario, both
possibly failed valves are again on a single engine but there is sufficient time to open both
of the redundant H, on the engine. Thus the fragment chosen for the first world can easily
be extended to handle the second world. Conformant plans for this scenario are to open

both H, valves above the engine that may have a failed valve, or to ignite the other engine.

Figure 8.13 illustrates performance for an increasing number of worlds, with the planning
horizon limited to 24 time steps. The two world scenario is equivalent to the third scenario
above. Either redundant H, valve on a single engine may be stuck. In the four world
scenario, any of the four redundant H, valves above the two engines may have failed. Here
we must open both redundant valves above one of the engines before igniting it. In the six
world case, any of the redundant H, valves may be stuck, plus one of the redundant LOX
valves on either engine may be stuck. There is insufficient time in the planning horizon
to both open two redundant Hy valves and two redundant LOX valves. Thus a conformant
plan must open both redundant H, valves for an engine, and open the redundant LOX
valve that is not failed in any world. If a fragment opens a LOX valve that may be failed,
fragPlan must restart, leading to the long run times of a fraction of the trials for the six
world scenario. Finally, in the eight world scenario, two of the non-redundant valves of M2
may be stuck. Thus any fragment that uses M2 will cause fragPlan to restart once a world

containing such a failure is encountered.

The most interesting aspect of running fragPlan on the Cassini domain is its behavior
as we vary the number of time steps in the planning horizon. The results were quite un-
expected. Recall that with the bomb in the toilet problem, the problem gets easier as we
add time steps. As shown in Figure 8.10, the running time and number of planning itera-
tions required for the BTC problem drop precipitously as we add time steps to the planning
horizon. This is because the problem of fitting the fragments into the planning horizon is

becoming less constrained. Figure 8.14 illustrates the relationship between the length of the
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Figure 8.14: Effect of Time Steps on fragPlan time for the Cassini domain
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Figure 8.15: Effect of Time Steps on fragPlan iterations for the Cassini domain

planning horizon and average run time for fragPlan, taken over 100 trials, on the Cassini
domain. This is for a problem where for each engine, either of the redundant Hs valves
may be stuck, yielding four worlds. At the minimal number of time steps, 24, fragPlan
is relatively fast, taking approximately two seconds per trial. As we increase the planning
horizon, the average time to generate a conformant plan ﬁses precipitously. Between 30
and 42 time steps, inclusive, performance becomes so poor that we did not seek to run 100
trials. Trials would intermittently exceed 300 seconds each before being terminated with-
out a plan. Curiously, at 43 time steps, the average time drops precipitously to under 10

seconds. This bore further investigation.
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There are three scenarios under which planning time might explode; the number of frag-
ments being generated in order to find a plan explodes, the average time required to generate
a fragment explodes, or both. Figure 8.15 illustrates the same sets of 100 fragPlan trials
per planning horizon as Figure 8.14, but displays the average number of iterations (that
is, fragments generated) over 100 trials rather than the average running time. Note that as
we increase the planning horizon, the number of iterations is decreasing as the problem of
fitting fragments into the horizon becomes less constrained. By 43 time steps, all 100 runs
take the minimal number of iterations possible, one per world. By comparing Figure 8.15
and Figure 8.14, we can see that as the horizon lengthens from 24 to 30, the average time
to generate a fragment must be exploding, while above 43 time steps it drops rapidly. This
phenomenon is easily explained by the differences in the Cassini and BTC domains, and

the way our single world planner for generating fragments, Blackbox, operates.

The planning graph that Blackbox creates forces Blackbox to do regression style plan-
ning. That is, it starts from the goal, finds an action that achieves the goal, then makes
the preconditions to the action the new goal. Our goal is to produce thrust. This can be
achieved by igniting either M1 or M2. In Blackbox, the planning graph is turned into a
satisfiability problem, and this choice is actually performed by a SAT engine. In our case,
this is Satz. Thus Satz will choose the action that ignites M1 or M2. The planning graph
encoding will then force it to satisfy the appropriate preconditions, working its way through
a set of choices to provide H, and LOX to the chosen engine. Intuitively, the length of the
planning horizon has a significant impact on how difficult it is for Satz to determine that it

has made the wrong choice.

Without any loss of generality, consider the case where Satz chooses to ignite M1 for the
first fragment. It must then open a set of valves that supply H, and LOX to M1. These
actions are then inserted into the planning domain so they will occur in all subsequent
fragments. Now, fragPlan must plan for the second world. Again, the goal is to produce
thrust. Note that although igniting M1 is asserted into the planning domain, the actions
asserted into the domain are not sufficient to produce thrust in the second world. Thus,

Satz must again satisfy the thrusting goal. Again it may choose to ignite M1, and thus in
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some sense repair the plan to use M1, or it may choose to add the action that ignites M2.

Let us focus on the case where it chooses to ignite M2 for the next fragment.

If there are more than 43 time steps, there are a sufficient number of actions available to
open all of the valves necessary to ignite M2 in addition to the actions that the first fragment
inserted to ignite M1. Thus the SAT problem is quite simple, and the time per SAT call is
low. If there are less than 43 time steps, then it is impossible to ignite M2. Igniting M1 takes
22 time steps, which leaves insufficient actions to ignite the second engine. However, the
number of actions available determines how much exploration Satz can do attempting to
ignite M2, which is the critical problem. At 24 time steps, there are two actions available
and simply asserting the action to ignite M2 effectively uses up all remaining actions. Thus
there are no actions Satz can consider to meet the preconditions for igniting M2. It quickly
turns to the alternative of achieving thrust by igniting M1, which requires augmenting the
actions that achieve its preconditions to be applicable to the current world. As the horizon
grows, so grows the number of time steps that the fragment for igniting M1 leaves unused.
Satz cannot reason that the number of available actions is insufficient to fit a plan to ig-
nite M2. It can therefore consider an explosive number of potential plans for meeting the

preconditions of igniting M2 as the number of actions available increases.

Note that this problem does not occur in the BTC problem. In that problem, the plan
to achieve the goal in any given world is trivial. Each world specifies which package has
the bomb, and that package must be dunked. Thus it’s trivial to determine if a plan for a
world can be fit within a set of fragments asserted for previously considered worlds. In the
RING domain, only a small number of actions are applicable at each time step. The robot
may close or lock the window in the current room, or move to the next room. The planning
horizons are also relatively short, curtailing the amount of fruitless searching Satz can do
before it retracts a previous choice or fails. In fhe Cassini example, there are 14 valves that
can be opened at each time step, and when no plan is available Satz may be searching in

vain among candidate plans of length more than 20.

A practical solution to this problem is to limit the amount of time each Satz iteration can

consume within a fragPlan trial. Figure 8.16 illustrates the performance of fragPlan when
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Figure 8.16: Runtime of fragPlan on Cassini with total time<200 and SAT limit<250
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Figure 8.17: Iterations of fragPlan on Cassini with total time<200 and SAT limit<250
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there is effectively no limit on the amount of time Satz may consume. Each fragPlan trial
is limited to 200 seconds, and each Satz iteration is limited to 250 seconds. Thus a single
bad Satz run, as described above, may consume all time available for planning. The graph
illustrates the run time of 100 trials of fragPlan on an eight world Cassini problem, sorted
by run time. In this domain, any of the redundant valves of the two engines, Ho or LOX,
may be failed. The time horizon is 35 steps, in the middle of the region where we could not
effectively find plans for our simpler six world problem. Only 19 of the 100 trials are able
to return a plan within 200 seconds. Times for the remaining trials exceeded 200 seconds.
Figure 8.17 shows the trials in the same order, but illustrates the number of iterations in
each of the 100 trials. Note that in the majority of the failed trials, only two attempts are
made to find a fragment. The first finds a plan to ignite one of the engines. As described
above, the attempt to generate the second fragment expends all remaining time in Satz,

exploring candidate plans that fail.

Figure 8.18 illustrates the increase in performance when each Satz invocation is lim-
ited to 20 seconds. Now 66% of the trials return a conformant plan. Intuitively, when Satz
chooses a subgoal that cannot be achieved and begins exploring alternative candidate meth-
ods for achieving it, only a small portion of the time remaining for planning is consumed
before Satz gives up. Figure 8.19 shows the number of iterations performed by each trial.
Note that in the failing trials, approximately 20 iterations are performed, even though each
iteration has a maximum time of 20 seconds and the maximum total time available is only
200 seconds. Each attempt to find a conformant plan may successfully generate several
fragments in significantly less than 20 seconds before Satz fails, bringing the average time

per iteration to significantly less than 20 seconds.

Figure 8.20 illustrates the performance of fragPlan on this problem as the time limit per
Satz call is varied. Each point in the graph represents the percentage of trials out of 100
- that successfully returned a plan in 200 seconds. Note that the horizontal axis, the limit
on Satz, is logarithmic. At 0.5 seconds per iteration, Satz simply cannot perform enough
search to find a valid consistent of fragments in any of the trials. From 2 seconds to 20

seconds maximum per Satz attempt, performance is very stable, varying between 62% and
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Figure 8.18: Runtime of fragPlan on Cassini with total time<200 and SAT limit<20
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Figure 8.19: Iterations of fragPlan on Cassini with total time<200 and SAT limit<20
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Figure 8.20: Effect of Time Steps on fragPlan time for the Cassini domain
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68% success. It’s interesting to note that in the 2 second case, successful trial perform
between 8 and 105 iterations in 200 seconds, while in the 20 second case, successful trials
perform between 8 and 25 iterations in 200 seconds. The performance is nearly identical
(a 62% success rate versus 66%). We are in essence trading off a larger number of shallow
Satz searches against a smaller number of more extensive Satz searches, with little change
in the rate of success. As we increase the amount of time per Satz run, the penalty for a

Satz run failing increases, and performance drops.

8.4 Performance of Conflict Planner

The conflict based conformant planner does not appear to be useful on the BTC problem
or the logistics problem. In retrospect, this is not surprising. The conflict-based planner
plans in one world, w;,, then checks whether the plan achieves the goal in each other world,
w;. If the plan does not achieve the goal, the planner finds a conflict, the actions in the
plan that imply the negation of the goal in w;. Obviously, no conformant plan may contain
the conflict, which is inserted into the domain to focus the planner on conformant plans.
We expect this technique to be successful in focusing the planner when each conflict is
relatively small and rules out a large number of non-conformant plans. We discovered two
simple reasons why this fails to happen in both the BTC and logistics domains.

First, it is often not the case that a small set of actions included to achieve the goal in
one world prevent the goal from being achieved in other worlds. More often, it is the
lack of actions that prevent a plan from being conformant. Consider the plan illustrated in
Figure 8.21. It dunks packagel at the first time step and takes no further actions. Suppose
we test this plan in the world in which the bomb is in package2. There is no specific action
or small set of actions that conflicts with our goal of the bomb being disarmed. The bomb
is armed at the end of the plan because is was armed at the beginning of the plan and
each action in the plan fails to disarm it. Thus our analysis of why the plan failed in this
world returns the entire plan as a conflict and asserts its negation into the theory. Rather
than ruling out a space of plans that contain some small disallowed fragment, this has the
effect of inserting an enormous conflict into the theory that rules out only this single plan.

Conflict-based conformant planning thus comes to resemble unguided an generate and test
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Figure 8.21: A Plan For A Single World

method. The results are similar in the logistics domain. If a plan sends a truck over a route
that has not been cleared, the plan will fail in the first world where the route is mined.
However, the action of driving on the route is not a conflict. The entire plan prefix up to
driving on the route is a conflict, as replacing any action in the prefix with an action to
clear the route would result in the truck safely crossing the route. The conflict rules out one
specific way of blowing up the truck by not clearing the route, while leaving the planner
to explore all others. Second, attempts to find conformant plans by incrementally planning
one world at a time often do not fail because of conflicts between actions taken in each
world. Instead, they fail because the time steps remaining unassigned in the partial plan
are not distributed in the correct way to fit the remaining actions. Consider Figure 8.22.
We need to fit the dunk and flush actions for package 6 into the plan, but the remaining
unassigned spaces for actions do not allow it. Intuitively, the plan fails because the action
timings are incorrect, rather than because of a conflict between any action and achieving
the goal in any world. Thus we cannot extract any useful conflict information that would

help to rule out a large space of non-conformant plans.

Figure 8.23 explores the effect of conflicts on the relatively trivial problem of finding a
conformant plan for the 6 package, one toilet problem when allowed 14 time steps rather
than the minimal 11. In Figure 8.23 each point on the graph represents one conformant plan
that was successfully found out of 30 attempts limited to 15 seconds each. The vertical axis

denotes how much time was required to find each plan. The horizontal axis numbers the
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Figure 8.22: A Simple Fragment-based Plan That Failed

plans. The line for 120 conflicts indicates performance of the conflict-based algorithm with
a cutoff of 120 conflicts. A plan is generated in one world and tested in the others. If it is not
conformant, a conflict is generated (again, a negation of the plan that specifies that this exact
plan should not be created) and added to the propositional planning model. Only the 120
most recent conflicts are kept in the theory. The line for no conflicts indicates performance
of the conflict-based conformant planner run with a limit of zero conflicts. This results in
pure random sampling. A plan is generated for a world chosen at random. It is then tested
for conformancy. If it is conformant, it is returned. If not, no conflict is created and a new
plan is generated. The line for simple fragment-based is a simple fragment-based planner
with no backtracking, as shown in Figure 7.5. This planner chooses an ordering for the
worlds and generates fragments in that order. This takes a fixed amount of time, but may
not return a conformant plan. However, the problem of finding an 11 step plan in 14 time

steps is sufficiently under-constrained that this approach never fails.

Note that allowing zero conflicts is in essence taking sampling into the space of valid
single world plans. Each of these plans contains between 1 and 7 dunkings, separated by
flushes. The conflict-based sampling with no conflicts performs generates approximately
twice as many candidate plans as the conflict-based search with 120 conflicts, as it is not
complicating the planning model with long conflict clauses. The faster, unbiased sampling
with zero conflicts finds a plan 50% of the time to the 120 conflict planner’s 83%. The
non-backtracking fragment planner finds a plan in all 100% of the trials. These results

128



—o—Conflict based/No Conflicts —a— Conflict based/80 max conflicts
—%—Conflict based/40 —=— Conflict based/120
——-Conflict based/20 —e— Simple Fragment Based
14 4
12 4
o 10 1
| 81
S
g 61
(%]
4 4
2 -
04 ' ! p
0 5 10 15 20 25 30
Successful Planning Trials, Sorted by Time Expended
6 Packages, 1 Toilet, 16 Time Steps, 30 Trials, Maximum 15 Seconds Per Trial

Figure 8.23: Bomb in the Toilet Performance, Limited to 15 Seconds Per Attempt

are not surprising given the non-informative nature of the conflicts in the bomb in the
toilet problem. A more interesting question is why the conflicts provide even the 60%
improvement over random sampling that they do. We have verified that the conflicts are
simply the negation of each candidate plan, and thus should simply keep the stochastic
planner from generating the same plan twice. We performed a large number of experiments
to investigate whether the addition of the conflict clauses was influencing the heuristics in
the stochastic SAT solver, but have not yet gained any strong insights. Given the poor
performance of the conflict-based planners, we have not placed a priority on this line of

work.

8.5 Performance of A Conjunctive Conformant Planner

In this section, we compare the performance of a conjunctive conformant planner against
a number of conformant planners. The insight for the conjunctive planner comes from the
fact that in many conformant planning problems, the plan that reaches the goal when any of
a set of worlds may be true is the same as a plan that reaches the goal when the conditions

of all of the worlds are true simultaneously. Intuitively, since the planner does not know
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Figure 8.24: Performance of the Conjunctive Planner

which world will be in force when the plan is executed, its plan is a union of plans that
work in each world. This is often but not always the same as a plan that works in the union
of the worlds. The proposed technique is thus to very quickly find a plan that works in the
union of the possible initial conditions of the conformant planning problem. If such a plan
can be found, we can then test it in each world separately to ensure it is conformant. If not,

we can employ a conformant planner.

In the bomb in the toilet problem, the plan that that defuses the bomb if there is a bomb
in any one unknown toilet is the same as the plan that defuses all bombs if there is 2 bomb
in each toilet. Figure 8.24 illustrates the relative speeds of solving the STRIPS planning
problem of defusing a bomb in each toilet versus the conformant planning problem of
defusing a bomb in one of the toilets. The same plan found in each case. Clearly if we
were are able to find a conformant plan by converting the problem to planning in a single
world, we would realize a significant time savings. If not, we would have wasted relatively

little time when compared to the expected time to employ a conformant planner.

In practice, the success of this technique depends upon the planning domain. First, the
planning domain may contain some resource that allows a plan to succeed if at most one
world is true. For example, suppose we may dunk as many empty packages into the toilet
as we like as long as we flush after each, but as soon as we dunk a package with a bomb,
the toilet breaks. There is a conformant plan for this variation of the bomb in the toilet
problem, but no conjunctive plan. Second, we can construct examples where planning in
the conjunction of worlds actually produces plans that are simpler than the conformant

plan, because the conditions of two worlds when taken together provide a simple path to
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the goal. Since we cannot truly count on these two worlds being true at once, this is not
a valid conformant plan. Third, when we assert the conditions for two possible worlds
simultaneously, the propositional formula representing the planning problem may become
inconsistent. In this cases, we can attempt to find conjunctive plans for subsets of the
worlds taken together. If we are successful, these partially conformant plans can be used
as plan fragments to be sewn together as in our fragment-based planner. We have not yet

implemented this idea.
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Chapter 9

Safe, Conformant Planning with Optimization

9.1 Motivation

In the previous chapter, we considered conformant planning, a generalization of determin-
istic planning wherein the initial state of the system is not known exactly. Given a descrip-
tion of the allowed operation of a physical system, a set of possible worlds, and a set of
goals, a conformant planner returns a plan that achieves the goals in any world, if such
a plan exists. Our experience suggests that conformant planning is too restrictive for the
type of robust, autonomous operations we seek in spacecraft and other real-world systems.
We have identified three main difficulties with attempting to generate conformant plans for
these types of domains. First, the operations a candidate plan performs on the physical
system cannot easily be categorized as allowed or disallowed. Each plan that reaches the
goal has a different degrees of desirability, which is often determined by the existence of
other plans. For example, spacecraft engineers would rather send a reset signal to a balky
electronic component than power cycle it, as there is no guarantee the power will come
back on once turned off. If the reset signal is not available, then a plan to power cycle
the device is highly desirable if the device is necessary to preserve the operation of the
spacecraft. Intuitively, we require some notion of safety. Safe plans are always desirable,
and often dominate. However, critical goals may force the use of unsafe actions, and after
a failure occurs, no safe actions may exist. Second, not all goals may be achievable in all
worlds. As a degenerate example, if the spacecraft’s camera is broken, then goals involving

the camera are not achievable. If one possible diagnosis of the spacecraft includes a failure
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of the camera but others do not, then goals involving the camera will be achievable in some
worlds but not others. Finally, when we are use planning in a control application, we may
have a deadline by which the system must act. External events may further cut short the
time during which the system can deliberate upon which sequence of actions to undertake.
Thus even if a plan that safely achieves all goals in all worlds exist, we may not be able to
generate such a plan before we must act.

Since we are interested in autonomous systems, we require a way to automatically reduce
the scope of the planning problem when a conformant plan that achieves all goals in all
worlds cannot be found in the available time. In addition, we need to ensure that some
valid plan of action exists when we must act. We will need to balance safety, the goals that
are achieved, and the number of worlds in which the goals that are achieved against the time
required to find a plan. We define a planning domain in terms of three sets of constraints;
the possible worlds, the goal set, and the safety constraints. Our planning problem is now

to find the best plan, in terms of the constraints satisfied, before planning time expires.

9.2 Optimally Safe Conformant Planning

In this section, we further motivate our intuitions about how and why to extend conformant

planning with safety and optimality.

9.2.1 Safety

STRIPS operators and a set of achievement goals that must be true at the end of a plan do
not capture all constraints we would like to place on a satisfactory plan. We also would
like to express goals of maintenance that constrain the states a plan may enter at any point
in its execution. These additional constraints have three motivations; capturing exceptional
conditions, capturing risk, and capturing the desire to preserve future capability. First,
while our operators describe the general operation of the system, there are often specific
exceptions. Some exceptions result from detailed analysis by spacecraft engineers. For
example, if the spacecraft switches from the primary radio transmitter to the backup while
the amplifier is powered, the predicted result is an electrical transient that would destroy

the amplifier. Other exceptions might be empirical, based upon known, undesirable system
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responses to certain command sequences. Regardless of their source, all such exceptions
are encoded as a set of flight rules that human spacecraft operators use to check their hand-
generated command sequences for safety. Since it would be difficult to capture and validate
a first-principles model for these exceptions, we would like the flexibility to simply add
these flight rules to our domain.

Second, our STRIPS operators capture a deterministic model of the system. We plan,
execute the plan, then deal with failures on the next planning attempt. However, specific
system configurations may increase the risk of undesirable and irrecoverable events occur-
ring and are prohibited by flight rules. Again, rather than attempt to augment our model to
include every possible contingency, we would simply like to explicitly encode states that
are disallowed due to risk.

Finally, when fielding a planner for such an application, it’s important to note that while
the planner is reasoning only about the current planning problem, it will be called multiple
times to generate plans that reconfigure the spacecraft. While we cannot know what the
next reconfiguration request will be, and thus cannot plan for it, we would at least like to
minimize the use of actions during the current plan that reduce our options for responding
to future planning problems. For example, spacecraft typically employ pyrotechnic devices
that can be used once for tasks such as opening the valves to a backup engine. Firing the
pyrotechnic valves will abandon the primary engine and commit the system to using the
backup engine. This reduces future flexibility and should be avoided. These examples
place constraints on the states the system may enter during the execution of a plan. These
constraints would be rather awkward to encode as STRIPS goals of achievement or in the
preconditions of our operators. However, they are easily encodable as a set of maintenance
goals that must be maintained at all points in time across multiple worlds. We call this set
of goals the safety constraints. We refer to a plan that does not violate any safety constraints

as a safe plan.

e Let U be a set of predicates {1, ..., } upon assignments to V. ¥ is the set of safety
constraints.

Ideally we would like to define a safe plan as one whose execution does not violate any
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safety constraints. A slightly more complex definition is required, as failures of the system
may cause one or more initial states to violate a safety constraint in a way that cannot be
addressed by any action available to the planner. In this case, the execution of any plan
violates a safety constraint. We therefore define a safe plan as one that does not increase
safety violations from step to step. In the case where no initial states violate a safety
constraint, the definitions are equivalent. Below we introduce the more complex definition

of safety, as well as the definition of goal achievement and conformancy.

Definition 9 Given a start state s, a plan p is safe with respect to s if each step in the exe-
cution of p starting at s does not violate any safety constraints not violated by the previous
step. That is, Vof; € ¥ if s; precedes s; in the deterministic execution of p on s, then
¥;(s;) = 1b;(sk)- Let this be denoted by ¥,(s).

9.22 Optimal Plans

Ideally, given a problem we would like to find a plan that is both safe and conformant,
ensuring it will safely bring the system to a desirable state regardless of the initial condi-
tions. In most interesting domains, the ideal of simultaneously achieving complete safety
and complete conformancy will not be achievable. This may be because the conformancy,
safety, or time constraints are too strict. Conformancy may be the culprit because real sys-
tems can fail, leaving no single plan that succeeds in all initial states. This complicates the
notion of what it means for a plan to satisfy a goal. For example, if we cannot satisfy a
goal from all initial states we might wish to create a plan that satisfies the goal in one or
more initial states but doesn’t enter any unsafe states regardless of the initial state. In this
case our plan will either succeed or it will fail to satisfy the goal in a way that safely sheds
light on the true state of the system. For example, if the fuel valve is stuck or the tank
is empty, opening a backup valve might produce thrust in the former case and reveal the
tank is empty in the latter. Safety may need to be compromised if system failures prevent
the safe action sequence leading to a goal state from being used, but unsafe alternatives
exist. If the goal is important enough, safety constraints may become secondary. We might

then prefer a plan that achieves the goal regardless of the initial state, but that minimizes
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safety violations. For example, getting a spacecraft into orbit around its target planet at
the cost of minimally damaging some subsystem might be more desirable than having an
undamaged spacecraft fly uselessly into deep space. Time can be the culprit in that even if
a safe, conformant plan exists, we may be unable to find it quickly. In domains where plans
are being generated on-line to control a physical system, we have only a fixed amount of
computation available before we exhaust the time available for deliberation and must act.
A plan that is safe and conformant but that is delivered too late may have far less value
than an on-time plan that satisfies most constraints. A spacecraft approaching a planet for
orbital insertion has a small time window within which to slow down and be captured by
the planet’s gravity. A plan for insertion delivered after the insertion window has no value.
Here, planning time is a constant and planning computation, and hence plan difficulty, must
be adjusted to compensate.

These issues raise the question of how to plan if no safe, conformant plan can be found.
Given we have multiple goals, each of which may be reachable from some initial states and
not others, and multiple safety constraints, and a limited amount of time for deliberation,
we would like a more flexible definition of what it means to have an acceptable plan. In
addition, we require flexibility in determining how to choose between alternative, non-
conformant plans under different planning contexts. This can be achieved by introducing
a notion of optimization. If we cannot find a plan that meets all constraints in the alloted
time, we must choose one or more constraints to drop. Different circumstances would lead
us to choose different constraints to drop. Sometimes there might exist multiple plans that
exhibit complete safety, complete conformity with respect to some goals, achievement of
all goals for some subset of the initial states, or partial success in each measure. Ideally, we
would like to find plans that are pareto optimal with respect to the set of suspended safety,

conformancy and goal constraints.

Definition 10 Given a plan p and a set of constraints C violated by p, p is pareto optimal
if there exists no plan p’ that violates the set of constraints C’, where C' C C.

In other words, if a plan satisfies all constraints that p satisfies plus additional constraints,

we prefer it. If each plan satisfies a constraint the other does not, neither is preferred. If
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there a single globally optimal plan exists, then it is pareto optimal. Note however that we
can test any plan for pareto optimality locally, by reinstating the constraints it drops one at
a time and planning again. This insight will prove useful in formulating an algorithm.

In this section we have motivated why it’s useful to add notions of safety and optimality
to the conformant planning problem. In the introduction, we hinted that optimizing the
set of constraints the planner solves can be thought of as automatically adjusting the scope
of the planning problem. We therefore refer to the family of planning algorithms we now

introduce as the Safe, Conformant, Optimizing Planning Engine, or SCOPE.

9.3 SCOPE algorithms

Figure 9.1 illustrates the outline of a planner for finding pareto optimal plans. We have a set
of goals, G to be achieved. We have a set of possible initial states of the world, W. We seek
a plan that achieves all goals in G regardless of which world in W is the initial world. We
have a set of goals of maintenance, called safety constraints, S, that a plan cannot violate
when executed from any initial world in . Intuitively, the safety constraints are a compact
way of ruling out plans that enter states that unduly sacrifice future capability or undertake
excessive risk. Ideally, we would like to find a plan that meets all goals of achievement
G regardless of which world in W is the initial state of the system, without violating any
safety constraints in S. Unfortunately, such a plan may not exist due to system failures,
or we may not be able to find such a plan in the time alloted for planning. In this case,
we’d like to find the best plan possible given the amount of time remaining for planning.
The algorithm selects an initial set of constraints, that is a subset of the goals, worlds and
safety constraints. For a fraction of the total time allocated for planning, it attempts to find
a safe conformant plan for this problem. If a plan is found, the planner has a minimal set of
constraints for which it can find a plan. It then selects additional constraints (goals, worlds
and safety) and attempts to find a plan for the larger constraint set. If a plan cannot be
found, the planner selects constraints to remove from the problem and attempts to find a
plan for the smaller constraint set.

In order to instantiate this framework into a concrete planning algorithm, we must specify

a policy for choosing which constraints to add or remove from the planning problem and
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proc conceptualPlanner {
Select initial constraint set from GUSUW
while (time remaining) {
for some time
attempt to find safe, conformant plan given constraints
if (a plan is found)
Select additional constraints to add
else
Select constraints to suspend

}
}

Figure 9.1: The Outline of a SCOPE Planning Algorithm

and a policy for determining how much time we will devote to each conformant planning
attempt. In the next two sections, we introduce a variety of policies and describe the type
of planner that results. We begin with simple policies based upon a user-specified prefer-
ence function between constraints, then introduce policies that attempt to remove difficult
constraints from the constraint set in order to maximize the likelihood of finding a plan in

the allocated time.

9.4 Partial Ordering of Constraints

A plan P is pareto-optimal if no plan exists that satisfies all constraints P satisfies plus
an additional constraint. Note that there may be many pareto-optimal plans for a given
planning problem. Each pareto-optimal plan satisfies a different subset of the constraint set.
The planning algorithm attempts to find a pareto-optimal plan by expanding or contracting
the set of constraints for which it is currently planning. In practice, not all constraint sets,
and thus not all pareto-optimal plans, may be equally preferred. The order in which we add
or remove constraints to the set for which we are attempting to find a plan should therefore
be biased. We introduce the bias by specifying a partial ordering on the constraint set. In
this section, we introduce three simple policies that completely obey the partial ordering.
Constraints are added and removed from the current constraint set so that if a constraint is

in the set, all constraints that are preferred in the partial order are also included.

¢ Anytime Planning

Anytime algorithms have the property that they generate solutions of increasing quality as
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time passes. An anytime SCOPE planner is shown in Figure 9.2. We achieve the anytime
property by removing nearly all constraints on our first call to Se]ecf and allocating all
time to the subsequent planning call. If this low quality solution is found quickly, we
can begin restoring constraints and generate incrementally improving solutions. This has
the advantage that if even if a low quality solution turns out to be difficult to find, we
can spend our entire time looking for it rather than be caught with no plan. We expect
this policy to have a disadvantage when a plan that satisfies a significant fraction of the
constraints is available. In this case, the time spent conservatively generating plans for
small constraint sets may not leave sufficient time to generate a plan for a larger constraint
set.

proc addPlan(Domain, G, S, W, Order, Time) {
AllConstraints = GUSUW
CSet=0
while (Time # 0) {
t = allocateTime(T'ime,CSet)
C = Select(AllConstraints,Order)
NewPlan = conformantPlan(t,Domain,CSet+C)
Time=Time-t

if (NewPlan !=0) {
report NewPlan
CSet=CSet+C

1}
Figure 9.2: addPlan

¢ Optimistic Search
The counterpart to the anytime planning is an optimistic search, illustrated in Figure 9.3.
We implement this policy by selecting all constraints on our first call to Select, and allo-
cating a fraction of the available time to each planning attempt. If the planning attempt
fails, constraints are removed. If no plan is found, constraints can be dropped more
rapidly. We expect this policy will have an advantage when a plan exists for a significant
fraction of the constraints. In this case, a significant portion of the planning time may
be expended searching for this plan. The disadvantage is that for problems where only

small subsets of the constraints are satisfiable, no plan may have been found when the
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time allocated for planning expires.

proc DropPlan(Domain, G, S, W, Order, Time) {
CSet = GUSUW

while (Time # 0) {
t = allocateTime(T'ime,CSet)
NewPlan = conformantPlan(t,Domain,CSet)
Time=Time-t

if (NewPlan = 0) {

/* If no plan relax the problem and try again*/
CSet = CSet - Select(CSet,Order,.Time,Failures)

}

report NewPlan;

Figure 9.3: dropPlan

¢ Binary Search
This policy attempts to combine the best of anytime planning and optimism. For some
fraction F of the initially available time, we attempt to solve the full constraint set. This
may return a high quality plan. If F’ expires without generation of a plan, we suspend
all constraints except a minimal subset, and allocate all remaining time to finding a min-
imal quality plan. If such a plan is found, we split the distance, in terms of number of
constraints satisfied, between the largest constraint set for which we have a plan and the
smallest constraint set for which we failed to find a plan. This process continues until

time expires.

9.5 Optimization Via Relaxing The Problem Scope

The simple policies of the last section exhibit two potential weaknesses. First, by com-
pletely obeying the partial order supplied by the user, they risk generating no plan. That is,
if the highest ordered constraint is simply not solvable, none of the algorithms given above
will produce a plan. This may be appropriate in some domains, where the partial ordering
is meant to specify that no constraint is useful if the highest ordered constraint cannot be

solved. However, in many domains we may wish to disobey the partial ordering if certain
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highly ordered constraints rule out all plans, or simply render the planning problem signif-
icantly more difficult. Second, when adding or dropping constraints, we are attempting to
solve sets of highly related planning problems. In the algorithms above, no information is
shared between planning attempts. Intuitively, we wish to add constraints when planning
on the current constraint set has produced a plan. This plan is potentially a useful starting
point for producing a plan for the augmented constraint set. We wish to remove constraints
when the planning attempt on the current constraint set fails. The failure of the planning
attempts may provide information about which problematic constraints should be removed
in order to maximize the likelihood of generating a plan.

Conceptually, we can view the task of finding a plan that is pareto optimal in terms of
the suspended constraints as two nested searches. First, we must search in the power set
of the constraints to determine which subset of the constraints will be suspended. The ac-
tive constraints define a planning problem and a space of plans. Second, we must search
in this space of plans for a plan that is safe and conformant with respect to the remain-
ing constraints. The fundamental insight is that the inner search, in addition to eventually
providing a plan, also learns heuristic information for the outer search. Intuitively, if we
cannot easily find a plan then there is a knot in the current constraint set that we cannot eas-
ily untangle. Examining the way in which the current constraint set thwarted our attempts
to find a plan informs us as to which constraints should be suspended in order to ease the
planning problem. Figure 9.4 illustrates this algorithmic framework. We attempt to find a
plan, and in doing so estimate the relative amounts of problem difficulty being contributed
by each goal, safety or initial state constraint. We record this estimate in the array variable
Difficulty. If we cannot find a plan given the current constraint set, we select a constraint to

suspend using Difficulty as our guide.

e Optimistic Search with Learning

The counterpart to the anytime planning policy is optimistic search with learning. We
implement this policy by selecting all constraints on our first call to Select, and allocating
a fraction of the available time to each planning attempt. If the planning attempt fails, we

can examine the failure to determine which constraints are involved. These constraints
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proc SCOPE_Planner {
Select initial constraint set from GUSUW

while (time remaining) {

for some time
attempt to find safe, conformant plan given constraints

if (a plan is found)
Select constraints to add biased by Order, Difficulty
else {
foreach plan thwarted by Constraint
Difficulty{Constraint]++
Select constraints to suspend biased by Order, Difficulty

}

}
h

Figure 9.4: A More Complete Planning Framework

are removed. If a plan is found, the failure information can be used to estimate which
constraints could be added to the problem and still allow a plan to be found. If no plan is
found, constraints can be dropped more rapidly. This policy has the advantage that some
estimate of the difficulty of finding a plan is used in addition to utility in determining
the constraint set. A plan for a constraint set must be found in order for its utility to be
relevant. The disadvantage is that no plan may have been found when the time allocated

for planning expires.

e Reversal of Fortune

This policy attempts to combine the best of learning the difficulty of constraints and
anytime planning. For some fraction F’ of the initially available time, we attempt to solve
the full constraint set, or a relaxation. This may return a relatively high quality plan, and
will provide some information about the relative failure rates of constraints. After I has
expired, we suspend almost all constraints except for those known to be of low difficulty
and allocate the full T%me-F period to finding a low quality plan. Once this low quality
plan is found, we incrementally improve upon it by restoring non-difficult constraints as

time allows.
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¢ Anytime Planning with Fragments
As with the simple anytime planner, anytime planning with fragments starts with a mini-
mal constraint set and adds constraints as long as a plan is found. In this variation, we use
the plan from the previous constraint set as a fragment to seed the fragment-based con-
formant planner. As discussed in the thesis, there is no guarantee that a plan for a subset
of a set of constraints is a sub-plan of a plan for the entire set. However, attempting to
add actions to an existing plan to satisfy the expanded constraint set is a reasonable place

1o start.

9.5.1 Computing Difficulty for Goals and Safety

In addition to updating Difficulty[w] for each world in the plan algorithm, we must up-
date Difficulty for each goal and safety constraint during our attempts to find plans for a
single world. A single world planning attempt corresponds to a call to satisfy in order
to find a satisfying assignment to our propositional formulation of the planning problem.
Our SAT solver is a slightly modified version of Satz_rand (Kautz & Selman 1999), which
is itself a randomized version of Satz (Li & Anbulagan 1997). Satz is a Davis-Putnam-
Logemann-Loveland (DPLL) procedure (D. Putnam & R. Davis 1960) that makes use of
unit propagation to find a satisfying assignment of a propositional formula. Our only mod-
ification to Satz_rand is to the unit propagation step, as illustrated in Figure 9.5. When unit
propagation causes a disjunction to become a unit clause, it constrains the remaining vari-
able to take on a truth value. This clause is recorded as the support of the variable’s value.
Then, when we find an inconsistency, we can quickly trace back through the support of the
variables involved in the inconsistency and increase the Difficulty of each clause involved
in constraining those values. We are interested in the difficulty of constraints from the plan-
ning domain, whereas each clause is a part of a model of the planning domain unrolled over
a finite number of time steps. To map between the two, we simply record which clauses
result from each domain constraint when the domain is compiled to the propositional rep-

resentation.
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proc Propagate(Formula,Difficulty) {
/* Simply unit propagation with recording of support*/
while (empty clause € FormulaA a unit clause U exists) {
assign variable u in U to satisfy U
support[u]=U
Formula = Formula - U
for all Clause € Formula that contains u {
if (Clause agrees with u)
/* Clause is satisfied by u*/
Formula = Formula — Clause
else
/* u cannot satisfy Clause*/
Clause = Clause — u

}
}

/* If assignment is inconsistent, increment difficulty of */
/* every clause involved in producing the inconsistency*/
if (empty clause € Formula) {

find support of all variables originally in clause

Difficulty[support]++

}

}

Figure 9.5: Unit Propagation With Support Tracking
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Chapter 10

Experimental Results for SCOPE

10.1 Imtroduction

In this chapter, we examine the behavior of several simple control schemes for SCOPE.
In the first section, we attempt to develop a simple intuition about the interaction between
a control scheme, the complexity of the problem being solved and the amount of time
allocated for planning. In the second section, we make more concrete observations about
the behavior of SCOPE and fragPlan for problems where a conformant plan exists. In the
third section, we consider the behavior of SCOPE when there is no plan that satisfies the
set of constraints that make up the planning problem. In this case, SCOPE must choose a

subset of the constraints and return a plan for this subset.

10.2 Overview of SCOPE Results

Recall that given a set of worlds and constraints that define a planning problem, the SCOPE
algorithm makes multiple attempts to find a conformant plan on different subsets of the
worlds and constraints. Before discussing strategies for choosing these subsets, we de-
velop a simple intuition of the challenge these strategies must address. Consider the case
where we have a conformant planning problem, and that given sufficient time, the problem
is solvable. That is, there are enough time steps and resources in the problem to allow a
conformant plan. Suppose we may suspend any number of the constraints. Figure 10.2

is a caricature of the relationship between the number of constraints active in the problem
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Figure 10.1: An Intuition of Planning Time Vs. Constraints

versus the effort required to solve the problem. The horizontal axis represents what per-
centage of the constraints defined in the original problem that remain unsuspended. The
vertical axis represents the difficulty of finding a plan for the unsuspended constraints. For
example, recall the BTC problem. Our experience is that when there are exactly enough
time steps to solve the problem for N packages, finding a conformant plan for N packages
has low to moderate difficulty. However as soon as allow SCOPE to discount a few of
the worlds (i.e., packages that might have the bomb) the problem quickly becomes signifi-
cantly easier to solve. Similarly, we have created conformant logistics problems where it is
quite a challenge for fragPlan to find a plan that delivers a package to each of N cities over
mined routes. However, as we allow SCOPE to abandon delivering a few of the packages,
the problem obviously becomes easier to solve!

The exact shape of the difficulty versus constraints curve for these two problems differs.
However, the basic intuition we are attempting to convey is that for each problem domain
and problem instance, there is some relationship between the constraints that are included

and the average time required to find a plan. Imagine we have an oracle that will report

'We may of course encounter problems where some inclusion of some constraints creates significant more difficulty
than others. In that case, this general curve would only hold if we were able to add constraints to the problem in order
of by their difficulty. For the moment, we ignore this issue for the purposes of discussion.
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Control Initial Allocation | Action on Action on
scheme | constraints | of ¢ seconds | Success Failure

conformant | all t Return plan No plan
planning
addPlan 1 i Add constraint Return last plan
dropPlan | all t/k Return plan Drop constraint
binPlan | all/2 t/k Add 1/1 constraints | Drop 1/7 constraints

Figure 10.2: Four control schemes for SCOPE
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Figure 10.3: Four Simple SCOPE Strategies

147

number of constraints n (or more generally, a specific set of constraints) of the current
planning problem that can be solved given some amount of time ¢ for planning. Given this
oracle, we would be able apply all of the available time ¢ to finding a plan for the maximum
set of constraints that can be solved in time ¢. Given we have no such an oracle, we must
take an educated guess at n. We may overshoot it, and waste valuable time failing to find
a plan, or undershoot it and waste valuable time generating a plan for a few constraints
when far better ones were achievable. In either case, we must then take an educated guess
at which constraints to attempt given the time remaining. This is the basic schema for a
SCOPE algorithm: make a guess at which constraints can be solved, attempt to solve the

problem, examine the result and determine which set to attempt next in the time remaining.

In order to instantiate a SCOPE algorithm, we must specify which set of constraints




will define the initial planning problem, how much time will be expended on each planning
attempt, and how the constraint set will be adjusted after each attempt. Figure 10.2 captures
these specifications for four simple control schemes for SCOPE, while Figure 10.3 is a
visual representation of how each moves in the space of constraints. The second column of
Figure 10.2 describes the set of constraints that are attempted in the first planning attempt.
The third captures the fraction of time allocated to the current planning attempt, given that
there are ¢ seconds remaining to make planning attempts. The fourth column describes
what happens if the current planning attempt succeeds and returns a plan. The fifth column

describes what happens if the current planning attempt fails and no plan is returned.

¢ Conformant Planning is a special case of SCOPE where our initial planning attempt is
to solve a conformant planning problem with all constraints, using all available time. If
this attempt is successful, we return the plan that was generated. If no plan is found on
the first attempt, the algorithm returns no plan, as all of the time available for planning
has been exhausted. Given we are using the fragPlan algorithm of Chapter 7 as the

conformant planner in SCOPE, this SCOPE strategy is equivalent to fragPlan.

¢ addPlan is an anytime implementation of SCOPE. Its focus is to ensure some plan exists
when the time allocated for planning is exhausted. As such, it begins by attempting a
planning problem with only one constraint active. It allocates all available time to this
planning problem. Intuitively, if we cannot find a plan for the simplest possible problem,
we should not attempt more complex problems?. If the planning attempt is successful,
we select a one or more constraints to add to the problem based upon a partial ordering,
and plan again. The plan generated for the current constraint set may be used as an
initial solution for the planning problem with an additional constraint. The next planning
attempt may then augment the existing plan or quickly discover that it has to discard
it and begin from scratch. The last plan successfully generated is returned when time

expires or when we have found a plan for all constraints.

¢ dropPlan attempts to find a conformant plan, but leaves time in reserve for additional

2We could also hold a fraction of the available time in reserve to guard against the case where the first constraint we
attempt to plan for is not solvable.
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planning in case no conformant plan can be found. We have expressed the amount of
time that is allocated to the current planning attempt as ¢/k. In the majority of our exper-
iments, k = 2. That is, we first attempt to find a plan for all constraints in time ¢/2. If that
fails, /2 remains, and /4 is allocated to the next attempt. A more complex or adaptive
schedule could be used to determine how quickly to give up on the current planning prob-
lem. If the current attempt fails, one or more constraints are dropped from the problem,
and another planning attempt is made. Again, a variety of techniques could be used for
scheduling which and how many constraints should be eliminated upon failure. We may
simply follow a partial order supplied by the user. We may attempt to eliminate the most
troublesome constraints first. To this end, during each conformant planning attempt we
can record how frequently each constraint caused a potential plans to be eliminated. This
gives us a heuristic estimate of the contribution of each constraint to the overall difficulty
of the planning problem. We might also obeying the partial order supplied by the user
and eliminating constraints that appear to be difficult first. For the experiments reported
here, we removed one constraint per time step, and followed the partial order supplied by

the user.

binPlan attempts to balance the characteristics of addPlan and dropPlan via a binary
search for n, the correct number of constraints to attempt given the time available, £.
Intuitively, when n is high addPlan may spend a significant amount of time finding a
number of plans that satisfy fewer constraints than n. It may therefore never attempt to
solve a problem with n constraints before time expires. Similarly, when 7 is low, drop-
Plan may spend a significant amount of time attempting to find plans that satisfy more
than n constraints and failing. By the time it attempts to solve n constraints, it may have
insufficient time remaining to find a plan. The intuition behind binPlan is that it seeks to
grow its constraint set faster than addPlan when the problem is easy, and drop constraints
faster than binPlan when the problem is difficult. It begins by attempting to solve half
of the constraints of the problem instance, again using ¢/k or some other scheduling of
the time remaining. If this attempt is successful, binPlan adds to its constraint set 1/ of

the difference between the constraint set it just satisfied and the full constraint set. If the
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Figure 10.4: Typical Performance for Four Simple SCOPE Strategies

attempt fails, binPlan discards /7 of the currently active constraints. In our experiments,

j=j=2

Before discussing details experimental results, we next give an intuition of the perfor-
mance of planners driven by each of these control strategies relative to one another. Fig-
ure 10.4 illustrates one example of the relative performance of fragPlan, addPlan, dropPlan
and binPlan on a single problem instance. Each planner was run for 30 trials of the same
problem instance. The graph illustrates how many of the constraints were satisfied by the
plan returned by each trial. The horizontal axis is the number of constraints that were sat-
isfied by each plan. The vertical axis is the percentage of plans solving that number of
constraints. Thus, 25% of the attempts by fragPlan resulted in plans that satisfied all con-
straints, and 75% resulted in zero constraints being satisfied because no plan was found.
This is a BTC instance, but results are meant to be representative for the purposes of dis-
cussion. We next provide an intuition as to why these graphs have these shapes.

Note that fragPlan always finds the largest number of conformant plans, as it dedicates
all of its time to attempting to solve all constraints. Of course, due to this go-for-broke
approach fragPlan also experiences the maximum number of failures where no plan is re-

turned at all. Note that addPlan forms a peak with a wide base much of the way up the
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constraint set. Intuitively, in many domains we have examined, plans with very few con-
straints are quite easy to find. Each addPlan trial races across the horizontal axis, quickly
knocking out plans that solve 1, 2, 3, ... constraints. Even though addPlan will allow each
planning attempt to use the entire time allocation ¢ if needed, each planning of the first few
planning attempts use only a small fraction of this time. Thus addPlan has a significant
fraction of ¢ remaining when it begins to attempt more difficult plans. However, as the
constraint accrue, the time addPlan has expended finding plans begins to accumulate more
quickly, and the planner runs out of time to find the next plan. If our conformant planner
and underlying SAT procedure were deterministic, all trials would achieve the same num-
ber of constraints. We would then have a narrow peak where the wide peak of addPlan
appears. Due to the use of randomized algorithms, some trials take longer than average on
the simpler planning problems and fall short of the peak shown in the graph. Other trials
are able to reach the peak quickly, and have a significant amount of time left. Some fraction

of these are able to generate plans for one, two or more additional constraints.

Note that dropPlan finds the second largest number of conformant plans, after fragPlan.
This is expected, as it applies the second largest amount of time, ¢/2, to attempting to find
a plan for all constraints. Of course, a significant number of those attempts fail, and each
failed attempt uses up its entire ¢/2 allocation. Now dropPlan only allocates time t/4 to
solving the problem with one less constraint. Intuitively, dropPlan is in a race against time,
using up ¢/2, then ¢/4, then t/8 of its time allocation as the problems become easier due to
elimination of constraints. There are peaks where the problem with ¢ constraints removed
becomes easy enough to solve with some degree of certainty in a time allocation of ¢/2¢.

Unlike addPlan, in a significant fraction the trials binPlan finds no plan.

For this problem instance, binPlan does appear to combine the best of addPlan and bin-
Plan. It first attempts to find a plan for 1/2 of the constraints in £/2 time. The constraints
for this problem are relatively loose, and in every trial a plan is found very quickly for this
constraint set, just as in addPlan. Thus we have a plan for half the constraints in the bag,
and much of ¢ remains. Unlike addPlan, binPlan does not next attempt 1/2 + 1 of the con-

straints. It jumps directly to 3/4 of the constraints. A few trials are not able to find a plan
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at 3/4 in half of the time remaining. These failures use up a significant amount of time,
but unlike dropPlan, binPlan jumps all the way down to 5/8 of the constraints. All of the
trials that were not successful at 3/4 are successful here. The majority of trials do succeed
at 3/4 of the constraints. They then use half of the remaining time to find a plan for the full

constraint set. A small percentage of them succeed, but the majority remain at 3/4.

10.3 Observations on SCOPE and fragPlan

In this section, we present a set of observations about the performance of SCOPE on plan-
ning problems where a conformant plan exists. Since a conformant plan exists, we can
compare the performance of SCOPE against fragPlan. Figures 10.5, 10.6, 10.7 and 10.8
illustrate the performance of SCOPE and fragPlan on three different conformant planning
domains. Each figure is a histogram of the number of constraints satisfied for each of 30
plans for each planner variation, for a given amount of computation time. Figures 10.5
and 10.6 are for the BTC problem. Each world in this problem represents the possibility
that the bomb is in a specific package. Each trial of fragPlan returns either a plan that sat-
isfies all worlds (dunks the the bomb no matter which package it occupies) or returns no
plan. The SCOPE variations may choose not to satisfy all worlds in the problem. Figure
10.7 illustrates the modified RING domain. Recall that in this domain a robot is in a2 maze
containing n rooms, and the goal is for window in each room to be locked. We specify this
as a set of goals, each of which requires that one of the windows be locked. Here, fragPlan
either returns a plan that locks all windows or returns no plan. Here SCOPE variations may
choose not to satisfy all goals, and may leave some windows unlocked or open. Figure 10.8
is a logistics problem where a delivery truck must deliver a package to a set of cities con-
nected to one another in a linear array. In each world, one route between adjoining cities
may be mined. The problem is designed to be very tightly constrained, so even very small
instances are difficult for a fragment-based conformant planner. All runs were performed
733MHz Pentium II PC with 256M of RAM, running Windows NT 4.0.

Observation 10 SCOPE pays a penalty in terms of conformant plans for not investing all

of its time on the conformant problem.
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It’s clear that when we care only about finding a conformant plan for all constraints as
often as possible, fragPlan is the planner of choice. None of the SCOPE planners can
be expected to dominate fragPlan when judged only by the number of conformant plans
returned. The dropPlan strategy invests only 1/2 of its time attempting to solve the full
conformant planning problem. The addPlan and binPlan strategies attempt a number of
plans before attempting the full conformant plan, and thus can never apply as much time as
fragPlan to the problem of satisfying all constraints. Accordingly, in all of our experiments,
no SCOPE algorithm ever generates more conformant plans for a reasonably sized set of
trials than fragPlan. In addition, as time is increasingly limited the penalty paid by SCOPE
for not investing all of its time in the full conformant problem is increasingly severe. For

example, consider the 0.5 second case of Figure 10.6.

Observation 11 In terms of expected worlds solved or expected goals met, SCOPE per-

Jforms better and is far less sensitive to the amount of time allocated than SCOPE.

Figure 10.9 illustrates the trend of expected performance, in terms of the expected number
of worlds or goals satisfied, versus the time allowed for computation. The expected perfor-
mance is computed from the sets of 30 trials illustrated in Figures 10.5, 10.6, 10.7 and
10.8. The expected performance at each time allocation is found by computing the average
number of worlds or goals satisfied over each set of 30 trials. Note that the all-or-nothing
behavior of fragPlan has a significant impact on its expected performance. The expected
performance of fragPlan is never higher than the SCOPE variations on any problem we

have attempted.

Observation 12 SCOPE dominates unless plan utility is strongly biased to achieving all

goals or satisfying all worlds.

This is in some sense a corollary of the previous two observations. Consider for example
the performance illustrated in the 9 second graph of Figure 10.8. Let Uy be the utility of
a plan for N worlds or goals. The expected value of fragPlan is 0.19Us + 0.81U;. The
expected value of dropPlan is 0.06Us + 0.58U5 + 0.32U4 + 0.03U3. Keeping in mind that
we can reasonably expect that Uy < 0, note that fragPlan can only dominate if

Us > 4.62U;5 + 2.46U4 + 0.23U; — 6.230,.
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Figure 10.10: Plans found by SCOPE compared to those found by fragPlan

Observation 13 As computation time decreases, SCOPE has an increasing advantage in

avoiding the situation where no plan is produced.

In control domains, it may be critical to have some plan ready to execute when the time
allocated for planning is exhausted. Figure 10.10 captures the percentage of trials that
return a plan for each SCOPE strategy for the BTC trials shown in Figures 10.5 and 10.6.
Each point represents the amount of time allocated to one of the strategies, on the horizontal
axis, and the percentage of trials out of 31 that returned a plan, on the vertical axis. Note
that the time axis is logarithmic simply for the purpose of separating the points for legibility.

As expected, all SCOPE variations return a plan significantly more often than fragPlan.

Observation 14 When extremely little computation time is available, addPlan dominates,

on the BTC problem.

Consider the left of Figure 10.10, where ¢ is quite small relative to the complexity of the
problem. Here addPlan’s strategy of applying all time to simple problems dominates when
the metric of interest is the number of trials that successfully return a plan. Recall the top
left graph of Figure 10.9. Here addPlan also dominates, in terms of the expected number
of worlds satisfied per planning trial, at low time allocations. If we consider, for example,
Figures 10.5and 10.6 we note that at 0.05 seconds, only addPlan is generating any plans

that satisfy more than 4 worlds.

Observation 15 Except under very low or high time allocations, binPlan does quite well
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relative to the other strategies, on at least the BTC problem.

Note that in the BTC problem, at the top left Figure 10.9, binPlan does quite well except in
the case where the available execution time is quite small or fairly large. Recall that given
t seconds for planning, addPlan begins by allocating ¢ to the simplest planning problem it
can construct, dropPlan begins by allocating ¢/2 to the complete constraint set, and binPlan
allocates ¢/2 to solving the planning problem for half of the constraints. As noted above,
addPlan does very well where the time allocated is very short. At the right end of the
graph, as ¢/2 approaches the time needed to find a conformant plan, dropPlan begins to
dominate over binPlan’s strategy of attempting half the constraints first. However, at no
point does binPlan do significantly worse than the others, and it often dominates. Direct
examination of the planning trials shown in Figures 10.5 and 10.6 is somewhat more
telling than a graph of the expected performance. Starting at the graph of performance
with 0.05 seconds allocated, all planners are generating plans centered at the left end (0
to 2 worlds satisfied) of the graph, with addPlan dominating. As the time allowed for
computation is increased, the peak for each planner moves rightward, with binPlan moving
most quickly. Only as we approach 1.5 seconds per trial does dropPlan have a significant
jump leftward. The expected values for addPlan, binPlan and dropPlan are similar at 1.5
and 2 seconds. However, this is somewhat misleading. Consider Figure 10.6. At 1.5 and
2 seconds dropPlan generates a number of plans that satisfy one more world than binPlan,

while binPlan bests many of the plans of addPlan by one world.

10.4 SCOPE Performance When No Conformant Plan Exists

In this subsection, we consider SCOPE performance when no conformant plan exists. First,
we consider the case where some resource limitation allows us to create a pian that works
in many worlds, but not all. Second, we consider the case wherein there is not enough time

for acting (the planning horizon) to execute the minimum length conformant plan.

Observation 16 SCOPE effectively handles domains where no conformant plan exists be-

cause of resource limits.
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Sweepers/ 0.15 Seconds/Run 1 Second/Run
Mines Solved | Time | Calls || Solved | Time | Calls
3/6 3 0.14 73 3 1.07 | 608
4/6 4 0.14 | 54 4 1.01 | 432
5/6 487 | 0.13 43 497 0.90 | 297
6/6 6 0.04 9 6 0.04 7

Figure 10.11: SCOPE when resources set a maximum number of solvable worlds

Figure 10.11 illustrates runs from a logistics domain where packages must be delivered to a
set of cities from a centralized warehouse. There are six worlds, each of which corresponds
to the possible location of a mine that has been placed on one of the routes between cities.
There is a minesweeper which removes a mine, if any, from a route. In order to limit
resources, we have modified the domain to specify that once a minesweeper has been sent
to a route, it cannot be used on another route, regardless of whether a mine was cleared.
When N sweepers are available, any N worlds can be satisfied. The first column denotes the
number of mine sweepers that are available. The remaining columns illustrate the number
of worlds solved, on average over 31 addPlan runs, when 0.15 seconds and 1 second are
allowed per run. Note that SCOPE quickly finds a plan for the maximum number of worlds
that can be accommodated. It then spends all remaining time searching for a plan that
improves upon what is in fact the best possible plan, since it cannot determine that there is

no better plan.

Observation 17 SCOPE effectively handles the situation when the time available for act-

ing (the planning horizon) is insufficient for a conformant plan.

In addition to resource problems preventing the existence of a conformant plan, the number
of actions the user allows the planner to consider (the planning horizon) may prevent the
existence of a conformant plan. In this case, SCOPE either drops goals to eliminate the
need for the actions that achieve those goals, or drops worlds to free the space the frag-
ments those worlds would require. Figure 10.12 illustrates the performance of dropPlan on
a difficult logistics problem and a BTC problem as the length of the planning horizon is
modified. The dotted line represents the performance of an optimal plan. This line denotes

the maximum possible number of worlds or goals that can be satisfied given the limitations
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Figure 10.12: Performance of dropPlan versus horizon for several run times

of the planning horizon. The other lines represent the performance of dropPlan with differ-

ent time allocations. Note that given sufficient time, dropPlan finds the optimal plan. As

time is reduced, the amount of time dropPlan wastes attempting to solve the full constraint

set negatively impacts its ability to find what is actually an optimal plan.

Observation 18 When few constraints can be satisfied and time is short, addPlan domi-

nates.

Average Number of Worlds Satisified

Worlds Satisfied vs. Planning Horizon
Bomb In the Toilet With Clogging Problem

-
-

104  ceeeecencreccanas

9

8 1

7 -

6

5

4 4

3l —&— Drop Worlds, 0.5 Seconds
P N i Optimal Plan

14 —&— Add Worlds, 0.5 Seconds
0 r—r

012345678 9101112131415161718192021222324252627
Time Steps in Planning Horizon

Average Number of Worlds Satisified

o = N W Hh N DO
P S T S S M A

Pray
L=
1

Worlds Satisfied vs. Planning Horizon
Bomb in the Toilet With Clogging Problem

—i—Drop Worlds, 1 Second

------ Optimal Plan

——&— Add Worlds, 1 second

01234567 89101112131415161718192021222324252627
Time Steps In Planning Horizon

Figure 10.13: Performance of addPlan and dropPlan versus planning horizon
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As one would expect, addPlan has an advantage when the planning horizon prevents the
full set of constraints from being satisfied. Consider Figure 10.13. The addPlan strategy

has the advantage until the lengthening horizon has made the problem relatively easy.
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Chapter 11

Related Work in Acting Under Uncertainty

Recall that our discrete control problem can be modeled as a partially observable Markov
decision process, or POMDP. A policy is a mapping from belief states to actions. Given
any belief state, the policy specifies an action to be taken. To solve a POMDP is to cre-
ate a policy that for any distribution over the state space returns the optimal action to
take in order to maximize the expected reward given the partial observability. The de-
tails of finding an exact solution to a POMDP are beyond the scope of this proposal but
a number of algorithms for finding such a solution exist (Sondik 1971; Cheng 1988;
Littman, Cassandra, & Kaelbling 1995). Unfortunately, even the most efficient of
these is not generally tractable on problems more than tens of states (Hauskrecht 2000;
Kaelbling, Littman, & Cassandra 1998; Zhang, Lee, & Zhang 1999).

Fortunately, a wide variety of techniques for more limited versions of POMDP solutions
have been developed. These techniques typically involve reducing the problem complexity
by making simplifying assumption about uncertainty (e.g., assuming the world is observ-
able or has deterministic actions), generating something other than a policy that maximizes
expected reward from any state (e.g., assuming there is a single goal state that must be
reached) or some combination. MDP techniques generate a full policy, applicable in any
state, but assume the current state is always observable. Conformant planning techniques
assume the initial state is unobservable but contained within a small set, and generate a
plan that succeeds (possibly with some probability) regardless of the initial state. Contin-

gent planning techniques generate a branching plan whose branches are chosen at execution
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time based upon the results of observations. Belief replanning makes an initial assumption
about the start state or initial distribution and creates a deterministic plan appropriate to
that assumption. If at any point the belief state predicted by simulating the deterministic
plan diverges significantly from the belief state resulting from execution of the plan, either
the initial assumption was incorrect or the plan did not behave deterministically. In either
case, a new plan is generated from the divergent belief state. The remainder of this chapter

describes these methods and their applicability to the problem at hand.

11.1 Belief Replanning

Belief replanning occurs at the opposite end of the uncertainty spectrum as an optimal
policy. This technique is based upon the most likely state (or MLS) assumption, wherein
the agent always assumes it is in the state with the highest likelihood. Belief replanning
creates a deterministic plan from the current state to the goal state, and replans when it’s
clear something has not gone as expected. The algorithm starts by assuming it is in the most
likely world state and that a deterministic idealization of the action model holds. In this
idealization, the most likely outcome of an action in a state is assumed to be the outcome
that always results from performing that action in that state. Given these assumptions, the
algorithm generates a deterministic plan from the most likely state to the goal state along
the appropriate deterministic actions. In addition, it generates a sequence of predicted
world states that will be traversed if this deterministic trajectory is followed. The system
then embarks upon this plan, updating its belief state and checking, at each step, that the
most likely world state (according to the belief distribution) is equal to the predicted state.
If it is not, the cycle begins again by planning from the current most likely state.

With the MLS assumption and the assumption of deterministic actions, belief replan-
ning is significantly simpler than solving a POMDP, and has been successfully applied
in realistically-sized robot navigation domains (Nourbakhsh, Powers, & Birchfield 1995;
Cassandra, Kaelbling, & Kurien 1996). Belief replanning has also been developed indepen-
dently in the model-based diagnosis world and embodied in the Livingstone (Williams &
Nayak 1996) and Burton systems (Williams & Nayak 1997). In these cases, belief update

is performed via a model-based diagnosis system. The resulting diagnosis and replanning
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system is intended to exhibit sub-second response times to determine the state of a com-
plex system such as a spacecraft and determine the set of actions required to reconfigure
it. Livingstone was successfully demonstrated in the Remote Agent (Bernard ez al. 1998)
and in several other applications (Kurien, Nayak, & Williams 1998). Livingstone avoids
solving an unrestricted STRIPS planning problem by assuming that the plan required to
reach a goal state consists of a single set of actions performed in parallel. Burton allows
plans that require action sequences. To achieve its performance, Burton assumes it’s pos-
sible to avoid negative interactions between mode reassignments. That is to say, given a
set of modes that need to be reassigned, one can perform the actions to reassign a mode
variable without undoing any reassignments that have been done, and without making any |
remaining reassignments impossible.

Since belief replanning uses a simplified deterministic action model, it will not take into
account less likely outcomes of an action that result in negative reward or disaster as the
MDP-based solution will. Given the strong bias of our models to the expected outcome
of actions, this would appear to be a reasonable approach to avoid solving the underlying
MDP. Unfortunately, belief replanning does not take into account the effect of actions in

the case where the most likely state is not the true state.

11.2 Conformant Planning

Conformant planning is a generalization of deterministic planning wherein the task is to
generate a plan that moves a system from any one of a number of possible initial states to
a state that satisfies a set of goal predicates. In addition, actions may have uncertain out-
comes and sensing actions are not available. The computational challenge of conformant
planning lies in the fact that the effects of a plan when executed in one state may be differ-
ent and highly undesirable when the plan is executed in a different state. Thus one cannot
choose an action based on its desired effect given one possible initial state of the system
(called a world in the conformant planning literature) without in some way considering its
unintended effects when it is executed in all other possible initial states.

One traditional approach to conformant planning has been to consider the effects of each

action under consideration across all worlds simultaneously. The CGP planner (Smith
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& Weld 1998) creates a Graphplan-style planning graph (Blum & Furst 1995) for each
world and adds mutual exclusion constraints between them. When an action is selected
for inclusion in the plan, its effects across all worlds are simultaneously captured by the
multiple planning graphs. CMBP (Cimatti & Roveri 1999) encodes the possible initial
states of the world into a binary decision diagram (BDD). An action in a plan maps a
BDD that represents a set of worlds onto a new BDD that represents the outcome of the
action on each world in the initial BDD. All actions are applied to the initial world BDD
and all resulting BDD’s until a BDD containing only goal states is found. The path of
actions leading to the goal BDD is the conformant plan. GPT (Bonet & Geffner 2001) also
considers how an action maps a set of possible states onto a set of resulting states, but relies
upon search heuristics rather than compact state set encodings to achieve efficiency. It uses
A* search in the space of world sets rather than breadth-first search as used by CMBP.
An admissible heuristic for the A* search is formed using a fully observable version of
the planning problem. Intuitively, the cost of reaching a goal state from a set of states is
approximated by the maximum cost of reaching the goal state from any state in the set.
Techniques with a generate and test flavor have also been attempted. In C-PLAN
(Castellini, Giunchiglia, & Tacchella 2001) a possible plan is sequence of actions that
reaches the goal from at least one initial world. A valid plan is a sequence of actions
that achieves the goal from each initial world, and for which every action’s preconditions
are met in each world. The valid conformant plans are thus a subset of the possible plans.
Intuitively, C-PLAN encodes the planning domain and goal as a propositional formula and
allows a satisfiability procedure to choose an initial world and possible plan for that world.
The plan is then tested for validity as a conformant plan. The main effort of this approach
is in limiting the number of possible but invalid plans the planner generates. An additional

generate-and-test style conformant planner is presented in (Guere & Alami 1999).

11.3 Decision Theoretic Planners

In general, classical planners have not considered problems involving safety constraints or
considered selecting a subset of the goal criteria to satisfy. However, a number of decision

theoretic planners have been developed that attempt to maximize the utility of the plans they
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generate. Boutilier, Dean and Hanks provide an excellent overview of the field (Boutilier,
Dean, & Hanks 1995). Williamson and Hanks (Williamson & Hanks 1996; 1994a; 1994b)
have investigated notions of selecting plan flaws in an order that increases plan utility.
Applying such a planner to the SCOPE formulation would require a metric on the value of
each goal, initial state and safety constraint and a method for combining values across these
categories. MAXPLAN finds the plan with the maximum likelihood of achieving a goal
(Majercik & Littman 1998). Like SCOPE, MAXPLAN compiles its planning domain to a
boolean constraint representation, but uses a probability rather than disjunction to represent

uncertainty.

11.4 MDP-based Heuristics

A POMDP with completely deterministic observations (i.e., each observation reveals the true
state of the apparatus) is a Markov decision process, or MDP. Given complete observability,
the exact solution to an MDP is a policy that specifies the optimal action to take given that
the outcome of an action is non-deterministic, but will be known once the action is taken.
Such a policy can be obtained quickly even for models with hundreds of thousands of states.

In MDP-based POMDP algorithms, a suboptimal solution to the POMDP is developed from
the optimal solution to the corresponding MDP via the MLS, or most likely state assumption.
Given the belief state, this heuristic finds the world state with the highest probability. It then
uses the MDP policy to select and execute the action that would be optimal if the current
state and the state resulting from the action were directly observable. This is of course a
heuristic, since the state that is most likely given only the current observations may not be
the true state, and the action that is optimal given complete knowledge of the state (e.g.,
whether or not a fuel valve is leaking) may not be optimal given only a distribution over
the possible states.

The strength of the MDP heuristic is that it takes into account the uncertainty in the results
of actions, thus penalizing actions that might take the system into or near an undesirable
state. This strength is undermined by the infinitesimal interpretation of the transition sys-
tem: the nominal transitions dominate to the extent that non-deterministic outcomes of the

action are only considered when conditioning on observations forces it. In addition, as
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failures are modeled as occurring from any state, it’s not clear how one would act in order
to avoid precipitating failure. Thus the main strength of the MDP heuristic, the ability to
take into account possible unexpected outcomes of an action before there is an evidence
to suggest they may have occurred, seems wasted in this framework. Perhaps more im-
portantly, this heuristic requires solution of the underlying MDP. While an MDP with tens
of thousands of states can be solved, the state space of the models we seek to operate on

precludes explicit solution of the corresponding MDP.
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Chapter 12

Conclusions

In this concluding chapter, we review the contributions of the thesis, identify several areas
for future work, and end with a few concluding remarks.
121 Contributions

Chapter 3 through Chapter 6 of the thesis develop a novel framework for diagnosis of

complex systems over time. The principal contributions of this portion of the thesis include:.

e Development of a novel representation for diagnosis of complex systems over time. This
representation allows the belief state at any point in the history of the system being dian-

gosed to be incrementally generated in most-likely-first order.

e Development of approximations of the diagnostic representation that exhibit low growth
or no growth over time.

¢ Development of a new conflict-based diagnosis algorithm, CoverTrack, which is opti-
mized for finding all failures of the same likelihood.

o Implementation of these ideas in the form of L2, a diagnosis framework that allows use

of CoverTrack or more traditional conflict-directed best-first search to perform diagnosis.

¢ Demonstration of L2 a range of realistic data generated from NASA control problems.

Chapter 7 and Chapter 8 of the thesis develops a new approach to conformant planning.-

The principal contributions of this portion of the thesis include:
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e Development of fragment-based planning, a novel, incremental approach to the confor-

mant planning problem.

e Development of anytime conformant planning, where a plan that satisfies a single initial
world of the conformant planning problem is available immediately, and the number of

worlds satisified by the plan continues to grow as computation time allows.

¢ Implementation of this system in the form of fragPlan, and demonstration of its operation

on a NASA domain and conformant planning problems from the literature.

e An analysis of fragPlan relative to a set of conformant planners available at the time of

publication of this thesis, demonstrating fragPlan is computationally competitive.

¢ Demonstration that, to our knowledge, fragPlan is the fastest conformant planner capable

of generating plans with parallel actions

Chapter 9 and Chapter 10 of the thesis address the problem of which plan to generate when
no plan to meet all requirements of a planning problem can be found in a timely fashion.

The principal contributions of this portion of the thesis include:

e Characterization of the problem of finding a good plan given an unsatisfiable planning

problem as constraint suspension and the search for a pareto optimal constraint set.

e Introduction of a family of search strategies for controlling this search, including anytime
strategies and strategies that attempt to leamn the structure of each problem instance.

e Implementation of these ideas in SCOPE, the Safe, Conformant, Planning Engine.

e Demonstration and analysis of a subset of these search strategies on a variety of planning
domains.

12.2 Future Work

In some sense, this thesis is only an initial exploration of the ideas in CoverTrack, fragPlan
and SCOPE. We believe a significant improvement in their capabilities and performance
can be add with a moderate amount of additional work.

e First, we believe a significant improvement to the performance of fragPlan may be had
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by implementing fragPlan on top of a partial order planner instead of Blackbox. Black-
box assigns actions to specific time steps in the planning horizon. If an action is not
constrained to occupy a specific time step by the problem, Blackbox must assign one
arbitrarily. This assignment may be inconsistent with the needs of fragments generated
for other worlds. For example, suppose when fragPlan generates its initial fragment,
Blackbox assigns action A to time step 0. Now suppose in the second fragment, we must
insert an action before A. In this case, fragPlan will need to backtrack or restart in order
to generate an initial fragment where A occupies a time step other than 0. Our experi-
ence is that this type of plan failure accounts for a significant number of the fragments
generated and time used in many fragPlan runs. A partial order planner does not assign
actions to time steps. Rather, it maintains a set of links that specify the order in which the
actions of a plan must be executed. Thus it is always possible to insert an action before
or after another, so long as it is consistent with the pre- and post-conditions of the actions

involved.

e We have only scratched the surface of the space of possible search control strategies
for SCOPE. The addPlan, dropPlan and binPlan strategies add or remove constraints to
the planning problem based upon a fixed schedule. A numbef of adaptive variations can
easily be implemented in the existing SCOPE framework. For example, we believe a
worthwhile variation of addPlan would consider how much time its current planning at-
tempt took to succeed when determining how many constraints to add to the planning
problem. Thus when the current constraint set is quite easy, additional constraints are
added rapidly. Similarly, a worthwhile variation of dropPlan is to determine how many
goals or worlds were satisfied when the current planning attempt failed. If the most re-
cent call to fragPlan satisified very few worlds, for example, then constraints should be
dropped rapidly. In addition, we have implemented but not yet explored the strategy of
tracking which constraints are causing plan failure during each planning attempt. Sup-
pose we are given a planning problem where some worlds or goals are unsatisfiable due to
failure. Tracking this information will allow dropPlan variations of SCOPE to determine

which worlds or goals are unsatisifiable and drop them from the planning problem.
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e The CoverTrack algorithm can be significantly improved with a minor adjustment to its
implementation. Recall that this algorithm generates all consistent diagnoses of the same
likelihood. To do so, it first generates the set of possibly consistent diagnoses by find-
ing a covering for the set of conflicts that have been discovered during diagnosis thus
far. Each of these possibly consistent diagnoses differs from each conflict, thus does not
contain a known conflict. Each possibly consistent diagnosis is then checked for consis-
tency, which potentially reveals additional conflicts. Recall that when multiple failures
relating to the same components occur over time, the computation time for CoverTrack
rises exponentially with the number of failures. Intuitively, CoverTrack is generating
many variations of the same possibly consistent diagnosis that all share an inconsistent
set of assignments. This occurs only because we generate all diagnoses that cover the
current conflict set before testing if any of them are consistent. In Chapter 6, CoverTrack
generates 2964 possibly consistent diagnoses for the ISSP example of Figure 6.14, and
all but 8 are found to be inconsistent. Suppose rather than generating 2964 possibly con-
sistent diagnoses from an initial conflict, we generate only half of the possibly consistent
diagnoses, 1482, and check them for consistency. The inconsistent diagnoses that are
eliminated will reveal a number of conflicts. If we then attempt to cover the conflicts
again, these additional conflicts will allow us to avoid generating many of the other 1482
diagnoses we might have generated. This suggests a very simple strategy of incremen-
tally generating part of the covering set for the initial set of conflicts, then testing them

for consistency to augment the conflict set and further constrain the conflict covering

problem.

123 Living With Failure

In recent years, we have enjoyed the efficiency benefits of increased automation of
information-centric processes, from online business-to-business auctions, to timely and
customized provision of private and government services, to being able to get directions
to or a review of almost any business establishment or cultural event from any location.

To bring the same kind of fluidity, timeliness and adaptability to our interactions with the
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physical world has the potential to make the physical world safer, wealthier and more re--
sponsive to the individuals that inhabit it. Unfortunately, physical systems will always fail,
especially those made to be affordable or created out of commodity components. Thus any
dream of making the physical world as responsive to our needs and desires as our on-line
world of information must include an ability for physical systems to detect, diagnose and

plan around failures in their operation or their interactions with the environment.
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