
Abstract of \Techniques and Tools for Graph Drawing" by Stina Bridgeman, Ph.D., Brown Univer-

sity, May 2002.

The visualization of information structured as a graph or network has applications in a variety of

areas including programming and software development, database design, VLSI design, web navi-

gation, network administration, modelling protein interactions and molecular structures, modelling

social interactions between people and organizations, and illustrating train timetables. The prob-

lem of producing clear and readable drawings of graphs has received a great deal of attention from

researchers.

We present work on several problems related to graph drawing, ranging from techniques for

drawing algorithms to tools for making existing drawing algorithms easier to use.

In addressing compaction of orthogonal representations, we present a characterization of a class

of orthogonal representations for which orthogonal drawings with minimum area or minimum area

and total edge length can be produced eÆciently. We also present heuristics for the general case

which result in improved performance over previous compaction heuristics. These techniques can

be used to improve existing orthogonal drawing algorithms based on the topology-shape-metrics

approach.

The problem of measuring the similarity of two drawings of the same or nearly the same graph

has received little attention. The need for such a measure arises in applications in which the user

is working with a graph which changes over time and must be periodically redrawn. Ideally, if the

graph structure only changes in a small way, the new drawing will only be a little di�erent from

the previous one. Designing e�ective drawing algorithms for this scenario requires an understanding

of what \a little di�erent" means. We begin the task of �nding a suitable similarity measure by

de�ning and evaluating several potential measures.

Finally, we present tools to facilitate the use of graph drawing technology by experts and novice

users alike, in order to bring graph drawing to a wider audience. The Graph Drawing Server makes

graph drawing technology easily available over the Internet, while GeomNet extends the idea to

computational geometry algorithms. Both the Graph Drawing Server and GeomNet provide inter-

faces which can be used interactively or called as a subroutine by a program. PILOT is a learning

tool based on these systems.

Abstract of \Techniques and Tools for Graph Drawing" by Stina Bridgeman, Ph.D., Brown Univer-

sity, May 2002.

The visualization of information structured as a graph or network has applications in a variety of

areas including programming and software development, database design, VLSI design, web navi-

gation, network administration, modelling protein interactions and molecular structures, modelling

social interactions between people and organizations, and illustrating train timetables. The prob-

lem of producing clear and readable drawings of graphs has received a great deal of attention from

researchers.

We present work on several problems related to graph drawing, ranging from techniques for

drawing algorithms to tools for making existing drawing algorithms easier to use.

In addressing compaction of orthogonal representations, we present a characterization of a class

of orthogonal representations for which orthogonal drawings with minimum area or minimum area

and total edge length can be produced eÆciently. We also present heuristics for the general case

which result in improved performance over previous compaction heuristics. These techniques can

be used to improve existing orthogonal drawing algorithms based on the topology-shape-metrics

approach.

The problem of measuring the similarity of two drawings of the same or nearly the same graph

has received little attention. The need for such a measure arises in applications in which the user

is working with a graph which changes over time and must be periodically redrawn. Ideally, if the

graph structure only changes in a small way, the new drawing will only be a little di�erent from

the previous one. Designing e�ective drawing algorithms for this scenario requires an understanding

of what \a little di�erent" means. We begin the task of �nding a suitable similarity measure by

de�ning and evaluating several potential measures.

Finally, we present tools to facilitate the use of graph drawing technology by experts and novice

users alike, in order to bring graph drawing to a wider audience. The Graph Drawing Server makes

graph drawing technology easily available over the Internet, while GeomNet extends the idea to

computational geometry algorithms. Both the Graph Drawing Server and GeomNet provide inter-

faces which can be used interactively or called as a subroutine by a program. PILOT is a learning

tool based on these systems.

Techniques and Tools for Graph Drawing

by

Stina Bridgeman

B.A., Williams College, 1995

Sc.M., Brown University, 1999

A dissertation submitted in partial ful�llment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2002

c Copyright 1997-2002 by Stina Bridgeman

This dissertation by Stina Bridgeman is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Roberto Tamassia, Director

Recommended to the Graduate Council

Date
Franco Preparata, Reader

Date
Michael Goodrich, Reader

(University of California, Irvine)

Approved by the Graduate Council

Date
Peder J. Estrup

Dean of the Graduate School and Research

iii

Vita

Personal

Born in Roanoke, VA on October 18, 1974

Education

1999 Sc.M. in Computer Science, Brown University, Providence, RI

1995 B.A. with Highest Honors in Computer Science, Williams College, Williamstown,

MA

Thesis Topic: \Finding Hamiltonian Cycles in Grid Graphs Without Holes"

Teaching and Professional Experience

Fall 2001- Instructor in Computer Science

Colgate University, Hamilton, NY

Spring 2001 Visiting Lecturer in Computer Science, CX 214 (Data Structures)

Middlebury College, Middlebury, VT

Fall 2000 Digital Image Design, Inc., New York, NY

Consulted on graph drawing for a visualization project.

Spring 1999 Graduate Teaching Assistant, CS 16 (Algorithms and Data Structures)

Brown University, Providence, RI

Wrote homeworks, exams, and their solutions; conducted homework help sessions

and held oÆce hours; delivered several lectures.

Summer 1996 Instructor, CPS1 (Theoretical Foundations of Computer Science)

Center for Talented Youth, Lancaster, PA

(One three-week session.) Lectured 3{4 hours per day; worked with students

one-on-one; evaluated student work (written problems and programming tasks).

iv

Summer 1995 Teaching Assistant, CPS1 (Theoretical Foundations of Computer Science)

Center for Talented Youth, Lancaster, PA

(Two three-week sessions.) Worked with students one-on-one; evaluated student

work.

Spring 1995 Teaching Assistant, CS 108 (Arti�cial Intelligence: Image and Reality)

Williams College, Williamstown, MA

Graded student programs; worked with students one-on-one in labs.

Fall 1994 Teaching Assistant, CS 134 (Introduction to Computer Science)

Williams College, Williamstown, MA

Graded student programs; worked with students one-on-one in labs.

Awards and Honors

2000{01 Brown Dissertation Fellowship

1995{98 NSF Graduate Fellowship

Invited Talks

October 2000 Middlebury College, Middlebury, VT

April 1999 Williams College, Williamstown, MA

Conference Presentations

September 2001 Graph Drawing '01, Vienna, Austria (poster)

September 2000 Graph Drawing '00, Williamsburg, VA

March 2000 ACM Technical Symposium on Computer Science Education (SIGCSE '00),

Austin, TX

October 1998 CGC Workshop on Geometric Computing, Providence, RI

August 1998 Graph Drawing '98, Montreal, Quebec, Canada

June 1997 13th Annual ACM Symposium on Computational Geometry, Nice, France (poster)

September 1996 Graph Drawing '96, Berkeley, CA

v

Publications

Journals

1. S. Bridgeman and R. Tamassia. A user study in similarity measures for graph drawing.

Journal of Graph Algorithms and Applications. Invited submission.

2. S. Bridgeman and R. Tamassia. Di�erence metrics for interactive orthogonal graph drawing

algorithms. Journal of Graph Algorithms and Applications. 4(3):47{74, 2000.

3. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Turn-

regularity and optimal area drawings of orthogonal representations. Computational Geometry:

Theory and Applications, 16(1):53{93, 2000.

4. G. Barequet, S. Bridgeman, C. A. Duncan, M. T. Goodrich, and R. Tamassia. Geometric

computing over the Internet. IEEE Internet Computing, 3(2):21{29, 1999.

5. S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service on the

WWW. International Journal of Computational Geometry and Applications, 9(4/5):419{446,

1999.

Conferences

6. S. Bridgeman and R. Tamassia. A user study in similarity measures for graph drawing. In Joe

Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984 of Lecture Notes in Computer

Science, pages 19{30. Springer-Verlag, 2001.

7. S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia. PILOT: An interactive

tool for learning and grading. In Proceedings of the ACM Technical Symposium on Computer

Science Education (SIGCSE), pages 139{143. 2000.

8. S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia. SAIL: A system for

generating, archiving, and retrieving specialized assignments using LATEX. In Proceedings of

the ACM Technical Symposium on Computer Science Education (SIGCSE), pages 300{304.

2000.

9. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Turn-

Regularity and Planar Orthogonal Drawings. In Graph Drawing (Proceedings of GD '99),

volume 1731 of Lecture Notes in Computer Science, pages 8{26. Springer-Verlag, 1999.

10. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Turn-

regularity and optimal drawings of orthogonal representations. In Abstracts of the 15th Euro-

pean Workshop on Computational Geometry, pages 161{164. INRIA Sophia-Antipolis, 1999.

11. S. Bridgeman and R. Tamassia. Di�erence metrics for interactive orthogonal graph drawing

algorithms. In Graph Drawing (Proceedings of GD '98), volume 1547 of Lecture Notes in

Computer Science, pages 57{71. Springer-Verlag, 1998.

vi

12. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Optimal

compaction of orthogonal representations. CGC Workshop on Geometric Computing. 1999.

13. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. InteractiveGiotto: An algo-

rithm for interactive orthogonal graph drawing. In Graph Drawing (Proceedings of GD '97),

volume 1353 of Lecture Notes in Computer Science, pages 303{308. Springer-Verlag, 1997.

14. G. Barequet, S. Bridgeman, C. A. Duncan, M. T. Goodrich, and R. Tamassia. Classical

computational geometry in GeomNet. In Proceedings of the 13th Annual ACM Symposium on

Computational Geometry, pages 412{414, 1997.

15. S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service on the

WWW. In Graph Drawing (Proceedings of GD '96), volume 1190 of Lecture Notes in Computer

Science, pages 45{52. Springer-Verlag, 1997.

vii

Acknowledgements

First and foremost, I would like to thank my advisor, Roberto Tamassia, for his advice and support.

I would also like to thank the other members of my committee, Franco P. Preparata and especially

Michael T. Goodrich, with whom I have worked on several projects.

In addition, I wish to thank all those with whom I have worked, whether it be on a paper or just

a conversation around the oÆce: Ryan Baker, Gill Barequet, Ulrik Brandes, Giuseppe Di Battista,

Walter Didimo, Christian Duncan, Jody Fanto, Ashim Garg, Stephen Kobourov, Giuseppe Liotta,

Galina Shubina, and Luca Vismara.

Finally, I would like to thank my parents for providing support through all the years and my

partner Elizabeth for typing in the text of chapter 6 when I could not �nd an electronic copy in the

proper format, for cooking dinner for the last eight months, and most of all, for being there.

viii

Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Graphs and Graph Drawing . 1

1.2 Organization . 3

2 Turn-Regularity and Optimal Area Drawings of Orthogonal Representations 7

2.1 Introduction . 7

2.2 Preliminaries . 10

2.2.1 Basic De�nitions . 10

2.2.2 Switch-Regularity . 11

2.3 Turn-Regularity and Switch-Regularity . 14

2.3.1 Orthogonal Relations . 14

2.3.2 Turn-Regularity . 14

2.3.3 Turn-Regularity and Switch-Regularity . 16

2.4 Orientations and Paths . 24

2.5 Turn-Regularity and Orthogonal Relations . 33

2.6 Turn-Regularity and Drawing Algorithms . 40

2.7 Experiments . 46

2.7.1 Compaction Heuristics . 46

2.7.2 Test Suite and Experimental Results . 47

2.8 Conclusions and Open Problems . 49

3 Di�erence Metrics for Interactive Orthogonal Graph Drawing Algorithms 51

3.1 Introduction . 51

3.2 Preliminaries . 53

3.3 Metrics . 55

3.3.1 Distance . 55

3.3.2 Proximity . 56

ix

3.3.3 Partitioning . 58

3.3.4 Orthogonal Ordering . 59

3.3.5 Shape . 60

3.3.6 Topology . 61

3.4 Analyzing the Metrics . 61

3.4.1 An Example . 62

3.4.2 Experimental Setup . 65

3.4.3 Experimental Results . 70

3.5 Future Work . 74

4 A User Study in Similarity Measures for Graph Drawing 75

4.1 Introduction . 75

4.2 Experimental Setup . 77

4.2.1 Graphs . 77

4.2.2 De�nition . 77

4.2.3 Methodology . 78

4.3 Measures Evaluated . 80

4.3.1 Preliminaries . 80

4.3.2 Degree of Match . 82

4.3.3 Position . 82

4.3.4 Relative Position . 83

4.3.5 Neighborhood . 84

4.3.6 Edges . 85

4.4 Results . 86

4.4.1 Rotation . 86

4.4.2 Ordering . 90

4.4.3 Di�erence . 90

4.4.4 User Responses . 90

4.5 Conclusions and Future Work . 92

5 A Graph Drawing and Translation Service on the World Wide Web 95

5.1 Introduction . 95

5.2 Related Work . 97

5.3 Software Architecture of our Prototype Service . 98

5.3.1 Client Side Modules . 99

5.3.2 Server Side Modules . 99

5.4 Graph and Drawing Description Formats . 103

5.5 Drawing Algorithms . 105

5.6 Using our Service . 107

5.7 Experience with the Service . 110

x

5.8 Future Work . 114

5.9 Appendix: Graph and Drawing Description Formats 115

6 GeomNet: Geometric Computing Over the Internet 121

6.1 A Cooperative Computing Environment . 122

6.1.1 Client-Server Dialog Protocol . 123

6.1.2 Computation Requests at the Server . 124

6.1.3 Wrapper-Application Interaction . 125

6.2 Interfaces and Applications . 126

6.2.1 Classic Geometric Algorithms . 126

6.2.2 Drawing Abstract Graphs . 128

6.2.3 Geometric Algorithm Animation . 130

6.2.4 Experimental Results . 132

6.3 Future Work . 132

6.4 Acknowledgments . 133

7 PILOT: An Interactive Tool for Learning and Grading 134

7.1 Introduction . 134

7.1.1 Previous Work . 135

7.1.2 Our Results . 135

7.2 Using PILOT . 136

7.3 PILOT Architecture . 137

7.3.1 Graph Generator . 137

7.3.2 Problem Checkers . 137

7.4 Future Work . 139

7.5 Acknowledgements . 140

Bibliography 141

? Chapters 2-7 have been previously published. See each chapter for the relevant citations.

xi

List of Tables

2.1 Orthogonal relations for a pair fu; vg of vertices in H 39

2.2 The various symbols used to denote graphs, orthogonal representations, and drawings. 50

6.1 Geometric software on the Web. 122

6.2 Where to access GeomNet. 123

xii

List of Figures

1.1 The role of a graph drawing algorithm. 2

1.2 Three drawings of the same graph: the need for a nice drawing. 2

2.1 Three planar orthogonal drawings of a graph. 8

2.2 A bimodal embedded planar digraph with an upward consistent labeling and a com-

plete saturator. 12

2.3 A face of an orthogonal representation. 15

2.4 Hr and H`. 17

2.5 Expanding a face of an orthogonal representation. 18

2.6 The shape of a face of Hr between two consecutive switches. 19

2.7 Collapsing a sequence of switches. 21

2.8 The two possible con�gurations for a pair of kitty corners. 24

2.9 Complete saturators of Gr and G`. 25

2.10 Hx and Hy. 26

2.11 The two cases in the proof of Lemma 5. 27

2.12 Impossible cases of crossing saturating edges in Hy. 28

2.13 Crossing saturating edges of Hy. 29

2.14 Four cases in the proof of Lemma 9. 31

2.15 The four regions of vertex w. 32

2.16 The two cases in the proof of Lemma 11. 33

2.17 Three cases in the proof of Lemma 12. 35

2.18 Establishing orthogonal relations: an extended moving line. 37

2.19 Dx and Dy. 42

2.20 Nx and Ny . 45

2.21 Percentage of non-regular faces with respect to the edge-to-vertex ratio. 47

2.22 Average percentage improvement in area, total edge length, and maximum edge length. 48

3.1 The rotation problem of InteractiveGiotto. 52

3.2 Drawing alignment. 54

3.3 Motivation for proximity metrics. 57

3.4 Motivation for orthogonal ordering metrics. 60

xiii

3.5 Motivation for shape metrics. 61

3.6 Relaxations for stage 1. 63

3.7 Relaxations for stage 2. 64

3.8 Selected metric values for each drawing in stage 1. 66

3.9 Selected metric values for each drawing in stage 2. 68

3.10 Ordering ability. 71

3.11 Rotation ability. 72

4.1 The rotation task. 79

4.2 The ordering task. 79

4.3 The di�erence task. 79

4.4 Results for the rotation task. 87

4.5 Rotation correctness for individual users. 88

4.6 Rotation results for angles other than �=4. 89

4.7 Results for the ordering task. 91

4.8 Ordering correctness for individual users. 91

5.1 The software architecture of our graph drawing and translation service. 98

5.2 The translation graph used for performing translations. 102

5.3 Average �le size for various output formats. 106

5.4 Using the forms interface. 108

5.5 Using the graph-editor. 109

5.6 Distribution of service requests by month. 111

5.7 Distribution of service requests over various host domains. 112

5.8 Average overall (elapsed) time needed to satisfy a request versus input graph size. . 113

5.9 Average (elapsed) time needed by the drawing algorithms versus input graph size. . 114

5.10 Average (elapsed) time needed by translations versus input graph size. 115

5.11 A drawing constructed by Giotto. 116

6.1 The GeomNet architecture. 123

6.2 Applet interface for algorithms in two dimensions. 127

6.3 A three-dimensional display plugged into GeomNet. 129

6.4 Some graph-drawing examples. 130

6.5 GeomNet's Web page hierarchy. 131

7.1 Example of user interaction with PILOT. 138

xiv

Chapter 1

Introduction

1.1 Graphs and Graph Drawing

A graph in the mathematical sense consists of a set of vertices, commonly called V , and a set of edges

E connecting pairs of vertices. Graphs are suitable for modeling many types of information; a few

possibilities include computer network topology, interconnections between software components in a

large program, molecular structures, airline ight databases, handwriting samples, and interactions

between people and organizations in a community.

The goal of a graph drawing algorithm is to assign geometry to the graph so as to produce

a drawing or layout (see Figure 1.1). As might be expected from the range of areas in which

graph- or network-structured information arises, graph drawing has been applied to many domains,

including software engineering [50, 76, 77, 100, 101, 129, 133]), program debugging [98, 121] and

evaluation [141], visual programming languages [139], database design [49, 68, 87], and VLSI design.

Other visualization applications include WWW navigation [89, 118], search engines (a previous ver-

sion of the AltaVista search engine used a graph to illustrate the results of a query), and network

administration [45]. In other �elds, graph drawing techniques have been applied to molecular struc-

tures [23], protein interactions [12], social networks [29], telecommunications networks [64], and train

timetables [30, 32].

The problem of producing nice drawings of graphs has therefore received a lot of attention from

researchers. Di Battista, Eades, Tamassia, and Tollis have produced a bibliography of graph drawing

algorithms [53], and a more recent book [54] provides a detailed discussion of many graph drawing

techniques. It is not suÆcient for a graph drawing algorithm to simply produce any drawing of a

graph; Figure 1.2 shows three drawings of the same graph, but the leftmost drawing would not be

considered \nice" for most applications. What constitutes \nice" depends on the application | for

applications such as VLSI design, a nice layout is easy and cost-e�ective to print on a chip. For

applications in which the drawing is intended for a human audience, the drawing should be easy to

read and should convey the important structural information contained in the graph.

1

2

V = f a, b, c, d, e, f, g g
E = f (a,b), (a,f), (b,c),

(b,e), (b,g), (c,d),
(d,e), (f,g) g

(a)

a: (0,3) e: (9,4)
b: (2,7) f: (6,0)
c: (8,9) g: (14,0)
d: (14,7)

(b)

a

b

c

d

e

f
g

(c)

Figure 1.1: The role of a graph drawing algorithm. The algorithm takes (a) a graph description as
input and (b) assigns geometry. (c) shows a graphical rendering of the geometry-enhanced graph
description, where each vertex has the assigned coordinates. This is in some sense the simplest kind
of layout, where only vertex positions are assigned. In general the drawing algorithm may place
vertices, edge bends, vertex and edge labels, and other elements.

(a) (b) (c)

Figure 1.2: Three drawings of the same graph: (a) a jumble, (b) an orthogonal drawing, and (c) a
force-directed drawing. All three are technically drawings; however (a) is not likely to be considered
nice for any application.

For a graph drawing algorithm, the idea of \nice" is traditionally expressed by a combination

of drawing conventions and aesthetic criteria. Drawing conventions are general constraints on the

geometric representation of the drawing, such as requiring that the graph be laid out on a grid,

that all directed edges point upward, or that no edge crossings be present. The drawing convention

de�nes a set of rules which must be satis�ed in the resulting drawing in order for the drawing to

3

be considered valid. Aesthetic criteria are optimization goals intended to improve the quality of

the drawing, since a drawing convention alone is not suÆcient to guarantee a nice result. (See, for

example, Figure 1.2(a) | the drawing obeys the straight-line drawing convention, but it is nearly

impossible to discern the graph's structure.) Common aesthetic criteria include minimizing the

area, the number of edge bends, and the number of edge crossings, and maximizing the angular

resolution and the display of symmetries. Tradeo�s exist, since satisfying one optimization goal

typically worsens another. Furthermore, many of the optimization problems are NP-hard.

1.2 Organization

The following chapters will present work on several topics in the �eld of graph drawing, ranging

from techniques used in graph drawing algorithms (compaction of orthogonal representations and

similarity of graph drawings) to tools for making graph drawing algorithms easier to use (the Graph

Drawing Server and GeomNet). The last chapter describes an application of the Graph Drawing

Server and GeomNet. Each chapter is self-contained.

Compaction of Orthogonal Representations

A number of graph drawing conventions have emerged for di�erent applications. Orthogonal drawings

are drawings in which vertices are placed on a grid and edges are composed of horizontal and vertical

segments routed along gridlines. Such drawings have applications in VLSI design and architectural

oorplan layout, and are commonly used for entity-relationship diagrams, data-ow diagrams, and

industrial schematics.

An orthogonal representation describes a class of orthogonal drawings with the same shape.

Formally, an orthogonal representation consists of a description of the bends along each edge and

the angles between consecutive edges around each vertex, but no geometric information such as

edge lengths or vertex coordinates. The process of assigning edge lengths and vertex coordinates to

obtain an orthogonal drawing is known as compaction, since the usual goal is the minimization of

area and/or total edge length.

Compaction is a key step in orthogonal drawing algorithms using the topology-shape-metrics ap-

proach. Topology-shape-metrics algorithms typically have three steps: planarization, which �xes

the embedding of the graph and replaces edge crossings with dummy vertices (thus determining the

topology of the drawing); orthogonalization, which computes an orthogonal representation (deter-

mining the shape of the drawing); and compaction (determining the metrics of the drawing). See

Tamassia [144, 145, 146], F�o�meier and Kaufman [72, 74], and Tamassia and Tollis [148] for several

topology-shape-metrics algorithms for orthogonal drawings, and Klau and Mutzel [104] for an al-

gorithm for quasi-orthogonal drawing (where edges are allowed to deviate from the grid near their

endpoints).

Compaction can also be applied in a post-processing step added to any orthogonal drawing

algorithm or drawing in order to remove extra space. In this case the orthogonal representation is

4

derived from the existing drawing. See Biedl and Kant [17] and Biedl, Madden, and Tollis [21] for

two examples.

Chapter 2 presents a characterization of a class of orthogonal representations which can be

optimally compacted with respect to area or total edge length in polynomial time. Heuristics for

compacting general orthogonal representations are also presented, along with experimental results

showing that these heuristics result in an improvement over previous compaction techniques. This

work has been presented at the CGC Workshop on Geometric Computing (1998) [40], the 15th

European Workshop on Computational Geometry (1999) [39], and Graph Drawing '99 [41]. The

text of chapter 2 has been published in Computational Geometry: Theory and Applications [33].

Similarity of Graph Drawings

Graph drawing algorithms have typically been developed using a batch model, where the graph

is redrawn from scratch every time a drawing is needed. Such algorithms are not well suited for

interactive applications, where the user may repeatedly make small changes to the graph, requesting a

new drawing after each change. These changes may be made because the user is explicitly editing the

graph or because the graph represents some structure that is being updated, such as a map showing

the user's navigation through a collection of Web pages or a data structure being manipulated by

a running program. Other applications include the visualization of very large graphs, where a part

of the graph condensed into a single node is expanded for further examination. Since the user is

likely to be familiar with the existing drawing at each step and because the changes are small with

respect to the whole graph, it is desirable to have this reected in the new drawing | namely, the

new drawing should look as much like the old drawing as possible, with the greatest variation in the

immediate vicinity of the modi�ed sections of the graph. Redrawing the graph from scratch often

causes large changes in the drawing, destroying the user's \mental map" and forcing her to spend

considerable time refamiliarizing herself with the layout.

Work on interactive graph drawing algorithms has been motivated by the need to preserve the

user's mental map, but much of the evaluation of the algorithms has so far focused on traditional

optimization criteria such as the area and the number of bends and crossings (see, for example, the

analysis in Biedl and Kaufmann [18], F�o�meier [73], Papakostas, Six, and Tollis [126], and Papakostas

and Tollis [125]). The interactive drawing scenarios \No Change" and \Relative Coordinates" [125]

provide a model for interactive drawing algorithms in which the previous drawing is changed little

if at all, but these models may be overly restrictive | they certainly do not allow for models of

drawing stability such as those used by Brandes and Wagner [31] or in InteractiveGiotto [43]. These

scenarios also do not provide a good basis for comparing di�erent algorithms on the basis of mental

map preservation, because they give only a guarantee that the drawings do not change \too much"

and do not provide for a measurement of the degree of change.

Little work has been done on formally de�ning and evaluating potential similarity measures

for use in interactive applications. Chapters 3 and 4 address this issue | chapter 3 de�nes several

possible measures and gives a preliminary analysis of their suitability, while chapter 4 presents re�ned

5

de�nitions for several measures and the results of a more extensive user study. This work has been

presented at Graph Drawing '98 [37] and '00 [42]. The text of chapter 3 has been published in the

Journal of Graph Algorithms and Applications [38], and the text of chapter 4 has been submitted

to the same journal.

Graph Drawing Server and GeomNet

As has been mentioned, a large number of graph drawing algorithms exist for a variety of applications.

However, there are signi�cant obstacles to overcome for someone wishing to make use of an algorithm

| she must �rst �nd an implementation, install it, and convert her data to the proper format for the

program to read. The last step is necessary because there is no single universally accepted format

for describing graphs and their drawings, and researchers typically de�ne their own formats when

implementing an algorithm. To further complicate matters, things can go wrong at each step, since

it may be diÆcult to �nd source code, the program may not compile or run on the user's systems,

and the data conversion may be non-trivial.

Similar problems exist for geometric problems | geometric data typically involves a non-trivial

combination of numerical and combinatorial relationships, and much care must be taken to develop

formats for representing geometric data and for performing robust and reliable computations using

such representations. There is a rich, growing literature directed at developing techniques for dealing

with such robustness issues [5, 44, 65, 69, 70, 84, 85, 86, 92, 113, 156] and fundamental geometric

algorithms are being redesigned taking into account robustness and arithmetic precision issues [69,

147]. The net result is a large number of implementations of non-trivial algorithms, but which may

be diÆcult for a user, particularly a casual user, to take full advantage of.

GeomNet [9] is a service available over the World Wide Web (http://loki.cs.brown.edu:

8081/geomNet/) which seeks to solve these problems by providing a collection of algorithms in

one location, with a common, easy-to-use interface and a set of translators to convert between

data formats. This allows users to employ a large number of algorithms while knowing only a few

formats. The Graph Drawing Server [35] is a component of GeomNet providing access to graph

drawing algorithms and common graph formats. The Geometric Algorithm Server and Mocha [7]

provide access to services related to geometric computing, including geometric algorithm execution

and animation [6], consistency checking of topological and geometric structures, and experimental

study and comparison of geometric algorithms.

Chapters 5 and 6 describe the Graph Drawing Server and GeomNet, respectively. The Graph

Drawing Server has been presented at Graph Drawing '96 [34] and GeomNet has been presented at

the 13th Annual ACM Symposium on Computational Geometry (1997) [10]. The text of chapter 5

has been published in the International Journal of Computational Geometry and Applications [35]

and the text of chapter 6 has been published in IEEE Internet Computing [9].

6

PILOT

PILOT is a tool designed to enhance student learning by providing random instances of problems

which the student can solve and have graded online. PILOT can be used in three modes: an

interactive learning mode, where the system provides immediate feedback for the student's actions;

a practice mode, where the student solves the problem independently and then asks the system to

check and grade the work, with the option of having the system solve the problem if she gets stuck;

and an exam mode, where the user is only allowed a single attempt at solving the problem and

cannot ask the system for a solution. The PILOT system acts as a proof-of-concept of GeomNet

and the Graph Drawing Server: PILOT is built using the GeomNet architecture and additionally

makes use of algorithms provided by the Graph Drawing Server.

PILOT is discussed in chapter 7. The system was presented at SIGCSE 2000 [36].

Chapter 2

Turn-Regularity and Optimal Area

Drawings of Orthogonal

Representations

2.1 Introduction

Orthogonal drawings are drawings of graphs in which every edge is represented by a chain of hor-

izontal and vertical segments. An orthogonal representation is an equivalence class of orthogonal

drawings that have the same \shape" (see Fig. 2.1). This class is formally described by specifying the

bends along each edge and the angles between consecutive edges around each vertex. In this paper

we consider planar orthogonal representations, that is, equivalence classes of orthogonal drawings

for which at least one of the drawings is planar. Given a planar orthogonal representation H , the

problem of �nding a planar orthogonal grid drawing of H with small area is usually referred to as

the compaction of H .

Orthogonal representations and planar orthogonal drawings have been extensively investigated

(see, e.g., [16, 61, 62, 72, 79, 80, 81, 93, 145, 148, 149, 152]) because of their direct applications

to the development of practical graph drawing techniques for information visualization [54]. In

particular, it has been experimentally shown that drawing algorithms for general graphs based on

the compaction of orthogonal representations with minimum number of bends perform better in

practice than other known orthogonal drawing algorithms [57, 138]. Orthogonal representations

and related concepts, such as slicing oorplans, are also widely used in VLSI layout compaction

algorithms (see, e.g., [96, 107, 122, 142, 155]).

Previously published as Stina Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamas-
sia, and Luca Vismara. Turn-regularity and optimal drawings of orthogonal representations. Computational
Geometry: Theory and Applications. 16(1):53{93, 2000.

7

8

v2

v3

v1

v4

v8

v7

v6

v5

(a)

v2

v3

v1

v4

v8

v7

v6

v5

(b)

v2

v3

v1

v4

v8

v7

v6

v5

(c)

Figure 2.1: Three planar orthogonal drawings of a graph. Two drawings of the same orthogonal
representation are shown in (a) and (b), while a drawing of a di�erent orthogonal representation is
shown in (c). The drawing in (a) has optimal area among all planar drawings of that orthogonal
representation.

Despite the signi�cant body of research on orthogonal representations, the development of e�ec-

tive compaction techniques remains a challenging task. It has been conjectured for a long time [152],

and recently proved [128], that the optimal compaction of planar orthogonal representations, i.e.,

computing a minimum area planar orthogonal grid drawing of a given planar orthogonal represen-

tation, is NP-complete. The only class of planar orthogonal representations for which a polynomial-

time optimal compaction algorithm is known is the trivial class of orthogonal representations whose

faces are all rectangular [54].

From a practical perspective, the compaction algorithms used by current graph drawing libraries

and systems, such as AGD1, GDToolkit2, and the Graph Drawing Server3, are all variations of the

compaction technique presented in [93, 145], which is based on the idea of splitting faces into rect-

angles. Since the splitting imposes unnecessary constraints on the geometry, the resulting drawings

may have substantially suboptimal area.

The importance of compaction techniques for graph visualization applications is con�rmed by a

recent work of Klau and Mutzel [102, 103]. They consider the problem of assigning coordinates to

vertices and edge bends of an orthogonal representation so that the total edge length is minimized.

The problem is formulated as an integer linear program, whose practical performance is fairly good.

Also, they show that the problem can be solved in polynomial time for those orthogonal represen-

tations in which there is only one possible relative position of any two vertices that results in a

planar drawing; in this case, the inequalities of the corresponding ILP formulation form a totally

unimodular matrix. The problem of minimizing the area of the drawing is not considered.

The main results of this paper can be summarized as follows.

� Given a planar orthogonal representation H , we de�ne the concept of turn-regularity of a face

of H , which is based on the structure of the sequence of left and right turns encountered when

1http://www.mpi-sb.mpg.de/AGD/

2http://www.dia.uniroma3.it/~gdt/

3http://www.cs.brown.edu/cgc/graphserver/

9

traversing the face. We show that the turn-regularity of a face can be tested in linear time.

� We relate turn-regularity to the concept of switch-regularity [59]. Namely, we characterize the

turn-regularity of a face f in terms of the switch-regularity of two upward orientations of f .

� We introduce the concept of orthogonal relation between two vertices of H . This relation

establishes the relative position of the two vertices in any planar orthogonal drawing of H . We

show that an orthogonal relation is de�ned between every two vertices of H if and only if all

the faces of H are turn-regular.

� We show that if H is turn-regular (i.e., all its faces are turn-regular), then any orthogonal

drawing of H such that the orthogonal relations between every two vertices are satis�ed is

planar.

� We show that if H is turn-regular, then a planar orthogonal drawing of H with optimal area

can be computed in O(n) time and space, where n is the number of vertices and bends of H .

Furthermore, a planar orthogonal drawing of H with optimal area and minimum total edge

length within that area can be computed in O(n7=4 logn) time.

� We present the results of an experimental study on a test suite of planar orthogonal represen-

tations of randomly generated biconnected 4-planar graphs. The experiments show that the

percentage of regular faces is quite high (95%). Motivated by this result, we have designed

compaction heuristics based on the idea of \face regularization." Namely, we decompose non-

regular faces into regular ones, and then perform an optimal compaction of the resulting planar

orthogonal representation. We implemented our compaction algorithms and experimentally

observed that the improvement in area is substantial when compared to the compaction algo-

rithms available in state-of-the-art graph drawing libraries.

The paper is organized as follows. We recall some basic de�nitions, the notion of switch-regularity

and its basic properties in Section 2.2. In Section 2.3, we de�ne the orthogonal relations and

the concept of turn-regularity, and relate the latter to switch-regularity. Two partial orientations

of a turn-regular orthogonal representation and their properties are described in Section 2.4. In

Section 2.5, we prove the existence of an orthogonal relation between every two vertices of a turn-

regular orthogonal representation. The recognition algorithm and the two compaction algorithms are

described in Section 2.6. In Section 2.7, we present the results of the experimental study. Section 2.8

contains the conclusions and some open problems. Finally, a table listing the various symbols used

throughout the paper is given on page 50.

10

2.2 Preliminaries

2.2.1 Basic De�nitions

We assume familiarity with graph terminology and basic properties of planar graphs (see, e.g.,

[24, 88]). The graphs we consider are assumed to be connected. For background on graph drawing,

see [54].

A drawing of a graph G maps each vertex of G to a distinct point of the plane and each edge

(u; v) of G to a simple Jordan curve with endpoints u and v. In an orthogonal drawing, each edge

is represented as a polygonal chain of alternating horizontal and vertical segments. A drawing is

planar if no two edges intersect, except, possibly, at common endpoints. A graph is planar if it

has a planar drawing. A planar graph whose vertices have degree at most four is said to be 4-

planar. Two planar drawings of a planar graph G are equivalent if, for each vertex v, they have

the same clockwise circular sequence of edges incident on v. Hence, the planar drawings of G are

partitioned into equivalence classes. Each of those classes is called an embedding of G. A planar

drawing divides the plane into topologically connected regions, called faces. The external face is the

unbounded region; all other faces are internal. Two equivalent planar drawings have the same faces.

An embedded planar graph is a planar graph with a prescribed embedding.

An st-digraph is an acyclic digraph with a single source s (vertex with no incoming edges) and

a single sink t (vertex with no outgoing edges). A planar st-digraph is an st-digraph that is planar

and embedded with vertices s and t on the boundary of the external face. An important property

of planar st-digraphs is that the incoming edges of each vertex v appear consecutively around v, as

do the outgoing edges. Also, the boundary of each face f consists of two directed paths enclosing

f , with common origin and destination.

Let G be an embedded 4-planar graph and let f be a face of G. In the following, we always

traverse the boundary of f so that f is on the left, i.e., counterclockwise if f is internal and clockwise

if f is external. The boundary of f consists of an alternating circular sequence of vertices and edges.

Note that if G is not biconnected, there may be two occurrences of the same edge and multiple

occurrences of the same vertex on the boundary of f . We denote by af the number of vertices (or

edges) of f , each counted with its multiplicity.

Informally speaking, an orthogonal representation of an embedded 4-planar graph G describes

an equivalence class of orthogonal drawings of G with \similar shape." It consists of a \decorated"

version of G where each pair of consecutive edges around a vertex v is assigned an angle multiple

of �=2 and each edge (u; v) is assigned a sequence of bends going from u to v, each a left or right

turn. In this paper we consider planar orthogonal representations, that is, equivalence classes of

orthogonal drawings for which at least one of the drawings is planar; in the rest of the paper, we

omit the word planar when referring to orthogonal representations.

An orthogonal representation of G is formally de�ned as follows. Let v be a vertex of G. We

assign an � � �=2 angle, 1 � � � 4, to each pair of consecutive edges around v (note that if v has

degree one, the two consecutive edges around v coincide). We refer to these angles as vertex-angles.

11

Let e be an edge of G with end-vertices u and v. We assign to e two sequences of �=2 and ��=2

angles; one contains the angles on the left of the bends along e when going from u to v, and the

other the angles on the left of the bends along e when going from v to u. A �=2 angle corresponds to

a left turn, while a ��=2 angle corresponds to a right turn. We refer to these angles as bend-angles.

Note that one of the two sequences associated with e can be obtained from the other by reversing

the order and changing the signs of its elements. The following properties must be satis�ed by the

above assignments:

Property 1 The sum of the vertex-angles around each vertex is 2�.

Property 2 The sum of the vertex-angles minus the sum of the bend-angles along the boundary of

each face f is (
(2af � 4) � �=2 if f is an internal face,

(2af + 4) � �=2 if f is the external face.

Since each bend can be replaced by a dummy vertex of degree 2, in the rest of the paper we

assume, for the sake of simplicity, that orthogonal representations have no bends. We also assume

that di�erent drawings of the same orthogonal representation are iso-oriented, i.e., each edge has

the same direction and its end-vertices are in the same relative position.

2.2.2 Switch-Regularity

We recall some terminology and results from [13, 15, 59]. A drawing of a digraph is said to be

upward if edges are mapped to curves monotonically increasing in a common direction, for instance

the vertical one. A digraph is upward planar if it admits an upward planar drawing. As we are

going to show in the next section, upward planar drawings and orthogonal representations are strictly

related. We recall here some notations and results that will be useful in the rest of the paper.

A vertex v of an embedded planar digraph G is said to be bimodal if all the incoming/outgoing

edges of v appear consecutively around v in the embedding. If all the vertices of G are bimodal

then G and its embedding are called bimodal. Let f be a face of a bimodal embedded digraph G.

A vertex v of f with incident edges e1 and e2 is a switch if e1 and e2 are both incoming or both

outgoing edges (note that e1 and e2 may coincide if the digraph is not biconnected). In the former

case v is a sink switch of f , in the latter a source switch of f . We denote by 2nf the number of

switches of f .

Assign S and L labels to the switches of each face f such that (see Fig. 2.2(a)): (i) each source

or sink of G has exactly one L label; (ii) for each face f , the number of L-labeled switches assigned

to f is equal to nf � 1 if f is an internal face, and to nf +1 if f is the external face. The S-labeled

(L-labeled) source switches are called sS-switches (sL-switches) and the S-labeled (L-labeled) sink

switches are called tS-switches (tL-switches). The circular sequence of labels of f so obtained is a

labeling of f and is denoted by �f . Also, S�f (L�f) denotes the number of S-labels (L-labels) of �f .

A face f of G labeled in this manner is upward consistent.

12

L

LL

L

LL

L

L

S

S

S

S

S

S
SS

S

S

S

S

S

S

S
S

S

(a) (b)

(c)

Figure 2.2: (a) A bimodal embedded planar digraph G with an upward consistent labeling of its
faces. (b) An upward planar drawing of G corresponding to the upward consistent labeling in (a).
(c) A complete saturator of G; s and t are represented as white circles, and saturating edges are
represented as dashed segments.

Property 3 [15] For each upward consistent face f ,

S�f � L�f =

(
2 if f is an internal face,

�2 if f is the external face.

Theorem 1 [15] A bimodal embedded digraph is upward planar if and only if all its faces have an

upward consistent labeling.

Let G be a bimodal embedded digraph such that all its faces have an upward consistent labeling.

For each face of G, the S-label (L-label) assigned to a switch intuitively indicates that the angle

formed by the two edges identifying the switch is smaller (larger) than � in an upward planar drawing

13

of G. Any such drawing is said to correspond to the upward consistent labeling of the faces of G.

On the other hand, given an upward planar drawing of a bimodal embedded digraph G, an upward

consistent labeling for each face of G can be obtained by simply checking whether the angle formed

by each pair of edges identifying a switch is smaller or larger than �. Fig. 2.2(b) shows an upward

planar drawing (corresponding to the upward consistent labeling) of the embedded planar digraph

in Fig. 2.2(a).

Given an embedded upward planar digraph G, a saturator of G is a set of edges (each edge a

saturating edge) plus two vertices s and t connected by edge (s; t). A saturating edge (u; v) is such

that:

� Vertices u and v are switches of the same face, or u is a tL-switch of the external face and

v = t, or u = s and v is an sL-switch of the external face.

� If, u; v 6= s; t, either u is an sS-switch and v is an sL-switch or u is a tL-switch and v is a

tS-switch. In the former case we say that u saturates v and in the latter case we say that v

saturates u.

� The faces obtained with the insertion of a saturating edge are upward consistent.

A saturator of G is said to be complete if for every face f and for every switch u of f labeled

L, u is an end-vertex of an edge of the saturator (see Fig. 2.2(c)). Clearly, adding to G a complete

saturator yields a planar st-digraph.

Lemma 1 [59] Every upward planar embedding admits a complete saturator.

An upward planar embedding can have, in general, several complete saturators. The class of

embedded upward planar digraphs for which there exists a unique complete saturator has been

characterized in [59]. The characterization is based on a certain type of labeling. Namely, let G

be an embedded upward planar digraph. An internal face f of G has a switch-regular labeling if

�f does not contain two distinct maximal subsequences �1 and �2 of S-labels such that S�1 > 1

and S�2 > 1. An external face f of G has a switch-regular labeling if �f does not contain two

consecutive S-labels. (Note that a switch-regular labeling is called just regular labeling in [59].) A

face of G with a switch-regular labeling is a switch-regular face. For example all faces of Fig. 2.2(a)

are switch-regular. An embedded upward planar digraph is switch-regular if all its faces have a

switch-regular labeling. The corresponding embedding is also called switch-regular.

Theorem 2 [59] An upward planar embedding has a unique complete saturator if and only if it is

switch-regular.

14

2.3 Turn-Regularity and Switch-Regularity

2.3.1 Orthogonal Relations

Let G be an embedded 4-planar graph, H be an orthogonal representation of G, � be a planar

drawing of H , and v be a vertex of G. We denote by x(v) and y(v) the x- and y-coordinates of the

point representing v in �. We de�ne four binary relations on the vertex set of G: for each pair fu; vg

of vertices of G, these relations determine the relative position of u and v in all planar drawings of

H .

� u <x v if x(u) < x(v) for all planar drawings of H ; in this case, we say that u is left of v and

that v is right of u.

� u =x v if x(u) = x(v) for all planar drawings of H ; in this case, we say that u is x-aligned

with v.

� u <y v if y(u) < y(v) for all planar drawings of H ; in this case, we say that u is below v and

that v is above u.

� u =y v if y(u) = y(v) for all planar drawings of H ; in this case, we say that u is y-aligned with

v.

We refer to the �rst two binary relations as x-relations and to the second two binary relations as

y-relations. As an example, in the orthogonal representation in Fig. 2.1 v2 <x v8, v6 =x v7, v2 <y v3,

and v1 =y v5.

We de�ne three new binary relations on the vertex set of G, obtained by combining an x-relation

and a y-relation: =x ^ <y, <x ^ =y, and <x ^ <y. These three binary relations together with the

binary relations <x and <y are collectively referred to as orthogonal relations. As an example, in the

orthogonal representation in Fig. 2.1 v5 =x v4^v5 <y v4, v1 <x v8^v1 =y v8, and v1 <x v7^v1 <y v7,

while no orthogonal relation holds for fv4; v6g.

2.3.2 Turn-Regularity

To characterize those orthogonal representations that have an orthogonal relation for each pair of

vertices, we introduce the notion of turn-regularity.

Let G be an embedded 4-planar graph, H be an orthogonal representation of G, and f be a face

of G. For each occurrence of vertex v on the boundary of f , let prev (v) and next(v) be the edges

preceding and following v, respectively, on the boundary of f . Note that prev (v) and next(v) may

coincide if the graph is not biconnected. We associate with each occurrence of v one or two corners.

Namely:

� If the angle internal to f between prev (v) and next(v) is �=2 in H , we associate with v one

convex corner, and say that v corresponds to a left turn.

15

� If the angle internal to f between prev(v) and next(v) is � in H , we associate with v one at

corner, and say that v corresponds to a at turn.

� If the angle internal to f between prev (v) and next(v) is 3�=2 in H , we associate with v one

reex corner, and say that v corresponds to a right turn.

� If the angle internal to f between prev (v) and next(v) is 2� in H , we associate with v an

ordered pair of reex corners, and say that v corresponds to a U-turn.

Hence, a circular sequence of corners can be associated with the boundary of f . For each corner c

of f , let turn(c) = 1 if c is convex, turn(c) = 0 if c is at, and turn(c) = �1 if c is reex. As an

example, in Fig. 2.3 a convex corner is associated with v1, a at corner with v2, a reex corner with

v3, and an ordered pair of reex corners with v4. The grey portion of Fig. 2.3 (and of other �gures

of the paper) represents the rest of the graph.

v1

v2

v3 v4

Figure 2.3: A face of an orthogonal representation. The grey portion represents the rest of the
graph.

For each ordered pair fci; cjg of corners associated with vertices of f , let rotation(ci; cj) =P
c turn(c) for all corners c along the boundary of f from ci (included) to cj (excluded). If ci and

cj are associated with distinct vertices vi and vj , respectively, rotation(ci; cj) � �=2 is the net angle

turned between prev (vi) and prev (vj). As an example, in Fig. 2.3 let c1, c2, and c3 be the corners

associated with v1, v2, and v3, respectively, and let fc
0
4; c

00
4g be the ordered pair of corners associated

with v4; rotation(c1; c2) = 3, rotation(c3; c
0
4) = 1, rotation(c3; c

00
4) = 0, and rotation(c3; c1) = �3.

The following property is a direct consequence of the results in [145].

Property 4 For each face f ,

rotation(ci; ci) =

(
4 if f is an internal face,

�4 if f is the external face.

From the de�nition of rotation(ci; cj) and from Property 4, Properties 5 and 6 easily follow.

Property 5 For each ordered triplet of corners fci; cj ; ckg on the boundary of a face,

rotation(ci; cj) = rotation(ci; ck) + rotation(ck ; cj):

16

Property 6 For each face f , rotation(ci; cj) = 2 if and only if

rotation(cj ; ci) =

(
2 if f is an internal face,

�6 if f is the external face.

Two reex corners ci and cj are called kitty corners if rotation(ci; cj) = 2 or rotation(cj ; ci) = 2.

In Fig. 2.1, the corners associated with vertices v4 and v6 are kitty corners. A face of an orthogonal

representation is turn-regular if it has no kitty corners. An orthogonal representation is turn-regular

if all its faces are turn-regular.

The reex corners of a face of an orthogonal representation can be partitioned into four classes.

Let f be a face of an orthogonal representation, and c be a reex corner associated with vertex v of

f .

� NE-corners : (i) if v is the left end-vertex of prev(v) and the bottom end-vertex of next(v);

(ii) if v is the left end-vertex of both prev(v) and next(v), and c is the �rst corner associated

with v; (iii) if v is the bottom end-vertex of both prev(v) and next(v), and c is the second

corner associated with v.

� NW-corners : (i) if v is the bottom end-vertex of prev(v) and the right end-vertex of next(v);

(ii) if v is the bottom end-vertex of both prev(v) and next(v), and c is the �rst corner associated

with v; (iii) if v is the right end-vertex of both prev(v) and next(v), and c is the second corner

associated with v.

� SW-corners : (i) if v is the right end-vertex of prev(v) and the top end-vertex of next(v);

(ii) if v is the right end-vertex of both prev (v) and next(v), and c is the �rst corner associated

with v; (iii) if v is the top end-vertex of both prev (v) and next(v), and c is the second corner

associated with v.

� SE-corners : (i) if v is the top end-vertex of prev(v) and the left end-vertex of next(v); (ii) if

v is the top end-vertex of both prev (v) and next(v), and c is the �rst corner associated with v;

(iii) if v is the left end-vertex of both prev(v) and next(v), and c is the second corner associated

with v.

As an example, the reex corner associated with vertex v3 in Fig. 2.3 is a SW-corner, and the

two corners associated with vertex v4 are a SE-corner (the �rst one) and a SW-corner (the second

one). The following property is a direct consequence of the de�nition of kitty corners.

Property 7 Two reex corners are kitty corners only if they form either a SW-NE pair or a SE-NW

pair.

2.3.3 Turn-Regularity and Switch-Regularity

Let G be an embedded 4-planar graph, H be an orthogonal representation of G, and � be a planar

drawing of H . Let �r be an orientation of � such that all vertical segments are directed upward

17

and all horizontal segments are directed rightward, and let �` be an orientation of � such that all

vertical segments are directed upward and all horizontal segments are directed leftward. Observe

that �r is an upward planar drawing in the North-East direction and that �` is an upward planar

drawing in the North-West direction. �r and �` induce two orientations on H . We denote the

oriented orthogonal representations by Hr and H`, respectively (see Fig. 2.4). In turn, Hr and

H` induce two orientations on G. We denote the embedded 4-planar digraphs by GH
r and GH

` ,

respectively. Observe that GH
r and GH

` are embedded upward planar digraphs. Also, note that

di�erent orthogonal representations of G induce, in general, di�erent orientations on G; since we

work with a �xed orthogonal representation of a graph, we use Gr and G` in the rest of the paper,

omitting the reference to H .

(a) (b)

Figure 2.4: Two orientations of the same orthogonal representation. (a) Hr. (b) H`.

To simplify the proofs of this section, we assume that the boundary of each face of H contains

no vertices of degree one and no multiple occurrences of the same vertex. There is no loss of

generality in this assumption, since a face f whose boundary contains vertices of degree one or

multiple occurrences of the same vertex can be replaced, for the purpose of the proofs of this

section, by an expanded face obtained from f as follows (see Fig. 2.5): (i) each degree one vertex

v of f is replaced by a pair of vertices and by an edge connecting them, perpendicular to the edge

incident with v in f ; (ii) each vertex occurring k times on the boundary of f is replaced by k distinct

vertices (note that k � 4 in an orthogonal representation); (iii) each edge occurring twice on the

boundary of f is replaced by two edges having the same direction. Note that the proofs of this

section consider a single face independently from the rest of H ; thus, the expansion process is to be

considered local to a single face of H . With the above assumption, each vertex vi on the boundary

of a face of H has exactly one associated corner, as described in Section 2.3.2. We denote with ci

the corner associated with vi.

In order to show the connection between switch-regularity and turn-regularity, we �rst establish

a connection between switches of Gr and G` and corners of H . We observe that since �r (�`) is an

18

(a) (b)

Figure 2.5: (a) A face f of an orthogonal representation. The vertices a�ected by the expansion are
represented as white circles. (b) The expanded face corresponding to f .

upward planar drawing of Gr (G`), it induces an upward consistent labeling on Gr (G`). Let f be

a face of Gr or G`; two switches vi and vj of f are consecutive if no vertex on the portion of the

boundary of f from vi to vj is a switch of f .

Property 8 Let vi and vj be two consecutive switches of a face of Gr or G`, and ci and cj be the

associated corners. One of the following holds:

� If vi and vj are both L-labeled switches (an LL-transition), then rotation(ci; cj) = �2.

� If vi is an L-labeled switch and vj is an S-labeled switch (an LS-transition), then

rotation(ci; cj) = �1.

� If vi is an S-labeled switch and vj is an L-labeled switch (an SL-transition), then

rotation(ci; cj) = 1.

� If vi and vj are both S-labeled switches (an SS-transition), then rotation(ci; cj) = 2.

Proof: We only consider Gr; the proof for G` is similar. Since vi and vj are consecutive switches,

they are either connected by a single edge or by a \staircase." Fig. 2.6 shows the possible arrange-

ments of non-at corners between ci and cj for a face of Gr. Note that at corners do not a�ect the

value of rotation , and can safely be ignored. 2

Let � be a sequence of L-labels and S-labels. In the rest of the section, we denote the number of

LL-transitions in � as n�
LL
, the number of LS -transitions in � as n�

LS
, the number of SL-transitions

in � as n�
SL
, and the number of SS -transitions in � as n�

SS
.

Property 9 Let � be a sequence of L-labels and S-labels, and let � = l1�ln. We have:

� if l1 = L and ln = L, then n�
LS

= n�
SL
;

� if l1 = L and ln = S, then n�
LS

= n�
SL

+ 1;

� if l1 = S and ln = L, then n�
SL

= n�
LS

+ 1;

19

sL

sL

tL

tL

(a)

sL

sS

tL

tS

(b)

sLsS

tL
tS

(c)

sSsS

tStS

(d)

Figure 2.6: The shape of a face f of Hr between two consecutive switches. The \staircase" portion of
the boundary of f (represented by dashed segments) may consist of a single edge. (a) LL-transitions.
(b) LS -transitions. (c) SL-transitions. (d) SS -transitions.

20

� if l1 = S and ln = S, then n�
SL

= n�
LS

.

Lemma 2 Let � be a sequence of L-labels and S-labels, and let � = L�S. Then, we have:

� L� = n�
LL

+ n�
SL

+ 1;

� S� = n�
SS

+ n�
SL

+ 1.

Proof: We �rst prove that L� = n�
LL

+n�
SL

+1. For each sequence of L-labels, the number of labels

is equal to the number of LL-transitions plus one. So the number of L-labels in � is equal to the

number of LL-transitions in � plus the number of sequences of L-labels in �. In turn, since each

sequence of L-labels in �, except the �rst one, is preceded by an S-label, the number of sequences

of L-labels is equal to the number of SL-transitions in � plus one. Hence, the claim.

The proof that S� = n�
SS

+ n�
SL

+1 is similar, once we observe that each sequence of S-labels in

�, except the last one, is followed by an L-label. 2

We now describe how to simplify portions of the boundary of a face of H by removing switches

(and hence corners), without a�ecting the value of rotation for the remaining corners. In the rest of

the section, we denote the label of a switch vi by label(vi) and add an index to rotation to denote

with respect to which face it is computed. Let fv1; v2; v3; v4g be four consecutive switches of a face

f of H . If either label (v2) = S and label (v3) = L, or label(v2) = L and label (v3) = S, we collapse the

pair of switches fv2; v3g by replacing the portion of the boundary of f between prev(v2) (included)

and next(v3) (included) with a single edge having the same direction as prev(v2) and next(v3).

Lemma 3 Let f be a face of H and let fv1; v2; v3; v4g be four consecutive switches of f in Gr or

G` such that either label(v2) = S and label (v3) = L, or label (v2) = L and label(v3) = S. Let f 0

be the face obtained from f by collapsing the pair of switches fv2; v3g. Then, rotationf (c1; c4) =

rotationf 0(c1; c4).

Proof: We prove the case label(v2) = S and label(v3) = L by case analysis. Let � be the sequence of

labels of v1, v2, v3, and v4 in f and �0 be the sequence of labels of v1 and v4 in f
0. From Property 8

we have:
� rotationf (c1; c4) �0 rotationf 0(c1; c4)

S SL S 2 + 1� 1 = 2 SS 2

S SL L 2 + 1� 2 = 1 SL 1

L SL S �1 + 1� 1 = �1 LS �1

L SL L �1 + 1� 2 = �2 LL �2

The proof of the case label (v2) = L and label(v3) = S is analogous. 2

Lemma 4 Let f be a face of H, V = fv1;W; vkg be a sequence of k consecutive switches of f

in Gr or G`, and � be the sequence of labels corresponding to W . Let f 0 be the face obtained

from f by applying the collapse operation to pairs of switches of V as many times as possible, and

V 0 = fv1;W
0; vkg be the resulting sequence of switches. We have that:

21

� rotationf (c1; ck) = rotationf 0(c1; ck);

� if S� > L�, then W 0 is a sequence of S� � L� S-labeled switches;

� if S� < L�, then W 0 is a sequence of L� � S� L-labeled switches;

� if S� = L�, then W 0 is empty.

Proof: Clearly, rotationf (c1; ck) = rotationf 0(c1; ck) by Lemma 3. We now prove the case S� > L�;

the other two cases are analogous.

If L� = 0, then � consists entirely of S-labeled switches, and so the lemma is trivially true

because no collapse operation can be applied, and hence W 0 = W . Otherwise, there is at least

one subsequence fvi�1; vi; vi+1; vi+2g; 1 < i < k � 1 of V such that either label (vi) = S and

label (vi+1) = L, or label (vi) = L and label (vi+1) = S. Hence, the collapse operation can be applied,

and the process can be repeated as long as L� > 0. The �rst and last switches of V , v1 and vk, will

never be eliminated, because they can only match vi�1 or vi+2 in the pattern of four consecutive

switches. Their presence also guarantees that every SL or LS subsequence of � can be matched to

a pattern and thus eliminated. Since one L-labeled switch and one S-labeled switch are removed

each time the collapse operation is applied, there will be S� � L� S-labeled switches left when the

process is complete. 2

An example of the collapsing process is shown in Fig. 2.7. Let � be the sequence of labels

corresponding to a sequence W of consecutive switches of a face of Gr or G`, and let W 0 the

sequence of switches obtained from W as described in Lemma 4. In the rest of the section, the

sequence of labels �0 corresponding to W 0 is referred to as the collapsed version of �.

L

L

L
S

S

S

SS

(a) S SS(SL)LS L

L

L

S

S

S

S

(b) S SS(LS) L

L

S

S

S

(c) S SS L

Figure 2.7: Collapsing a sequence of switches. In each step, the switches being collapsed are repre-
sented as white circles, and the SL or LS pair of labels being removed is shown in parentheses.

Theorem 3 An orthogonal representation H of an embedded 4-planar graph G is turn-regular if

and only if the embedded upward planar digraphs Gr and G` are both switch-regular.

22

Proof: In the proof we adopt the regular expression formalism (see, e.g., [94]); in particular, we use

the concatenation of strings and the Kleene star operator.

Only if. We prove the claim for Gr; the proof for G` is similar. Suppose, for a contradiction,

that H is turn-regular and Gr is not switch-regular; then, there is a face f of Gr that does not have

a switch-regular labeling.

We �rst consider the case in which f is an internal face: �f must contain two distinct maximal

subsequences of S-labels with length greater than one. Thus, the labeling of f can be expressed

as �f = SS�1SSS
�L�2, where �1 = L((SL)�L�)� is any sequence with an initial L-label and with

no two consecutive S-labels, and �2 is any (possibly empty) sequence of S-labels and L-labels such

that �f satis�es Property 3. We show that there is an L-labeled switch vj in �1 and an L-labeled

switch vk in L�2 such that cj and ck are kitty corners. This implies that f and thus H are not turn

regular; a contradiction.

To simplify matters, we consider �0f = SS�01SSS
�L�02 instead of �f , where �

0
1 and �02 are the

collapsed versions of �1 and �2. Note that every label in �
0
f is also in �f , and that the corresponding

switch is associated with a corner of f . In the regular expression describing �1, each S-label is

followed by an L-label; thus, the initial L-label of �1 guarantees that �1 contains at least one more

L-label than S-label. Hence, by Lemma 4, �01 = LL�. Let l � 1 be the length of �01 and s � 2 be

the length of the SSS� subsequence between �01 and L�02. The following table shows the general

structure of �0f and the values of rotation , which can be easily veri�ed by Property 8.

�01z }| { SSS�z }| { �02z}|{
vi v1 v2 v3 v4 � � � v2+l v3+l v4+l � � � v2+l+s v3+l+s � � �

�0f S S L L � � � L S S � � � S L � � �

rotation(c1; ci) 0 2 3 1 � � � 5� 2l 4� 2l 6� 2l � � � 2(s+ 1)� 2l 2s+ 3� 2l � � �

We consider two cases for the value of s, namely 2 � s � l+1 and s � l+2, and prove the claim

di�erently in the two cases.

If 2 � s � l+ 1, then v4�s+l is an L-labeled switch, since 3 � 4� s+ l � 2+ l; v3+l+s is also an

L-labeled switch, and we have, by Property 5:

rotation(c4�s+l; c3+l+s) = rotation(c1; c3+l+s)� rotation(c1; c4�s+l)

= (2s+ 3� 2l)� f5� 2[(4� s+ l)� 2]g

= 2

Hence, c4�s+l and c3+l+s are kitty corners.

If s � l + 2, we consider the structure of the sequence L�2S, where the �nal S is the label

of v1 (we recall that �f is a circular sequence). For ease of reference, we denote L�2S as �. By

Properties 8 and 9, we have:

rotation(c3+l+s; c1) = �2n�
LL

� n�
LS

+ n�
SL

+ 2n�
SS

= �2n�
LL

� (n�
SL

+ 1) + n�
SL

+ 2n�
SS

= 2(n�
SS

� n�
LL
)� 1

23

On the other hand, by Properties 4 and 5, and by the above table, we have:

rotation(c3+l+s; c1) = 4� rotation(c1; c3+l+s)

= 4� (2s+ 3� 2l)

� 4� [2(l + 2) + 3� 2l]

� �3

And thus, by combining the two results:

2(n�
SS

� n�
LL
)� 1 � �3

n�
LL

� n�
SS

� 1

Now, by Lemma 2, we have:

L�2 = L� � 1 = n�
LL

+ n�
SL

S�2 = S� � 1 = n�
SS

+ n�
SL

And thus L�2 > S�2 , because

L�2 � S�2 = n�
LL

� n�
SS

� 1

Let f 0 be the face obtained from f by repeatedly collapsing pairs of consecutive switches of

fv3+l+s; : : : ; v1g. By Lemma 4 and the above discussion, �02 has only L-labels; let vk be the last

(L-labeled) switch in �02. Then, by Properties 4 and 5, and by Lemma 4, we have:

rotation(c3; ck) = 4� rotationf (ck; c3)

= 4� rotationf 0(ck; c3)

And since between vk and v3 in f 0 there are an LS -, an SS -, and an SL-transition, we have, by

Property 8:

rotation(c3; ck) = 4� (�1 + 2 + 1)

= 2

Hence, c3 and ck are kitty corners.

We now consider the case in which f is the external face: �f must contain two consecutive

S-labels. Thus, the labeling of f can be expressed as �f = SS�1 where �1 is any (possibly empty)

sequence of S-labels and L-labels such that �f satis�es Property 3. Again, to simplify matters, we

consider �0f = SS�01 instead of �f , where �
0
1 is the collapsed version of �1. Note that, by Property 3,

L�1 > S�1 . Hence, by Lemma 4, �01 has only L-labels; in particular, since also �0f must satisfy

Property 3, �01 = LLLL. The following table shows the structure of �0f and the values of rotation ,

which can be easily veri�ed by Property 8.

vi v1 v2 v3 v4 v5 v6

�0f S S L L L L

rotation(c1; ci) 0 2 3 1 �1 �3

Then, by Property 5, we have:

rotation(c3; c6) = rotation(c1; c6)� rotation(c1; c3)

= �6

24

Hence, by Property 6, c3 and c6 are kitty corners.

If. Suppose, for a contradiction, that Gr and G` are both switch-regular and H is not turn-

regular; then, there is a face f of H with a pair fcj ; ckg of kitty corners. Note that cj and ck are

associated with a pair of L-labeled switches in either Gr (see Fig. 2.8(a)) or G` (see Fig. 2.8(b)).

sLtL

(a)

tLsL

(b)

Figure 2.8: The two possibilities for a pair of kitty corners: (a) a SW-NE pair of corners associated
with two switches in Gr; (b) a SE-NW pair of corners associated with two switches in G`.

We assume that cj and ck are associated with the L-labeled switches vj and vk in Gr; the proof

for G` is similar. The labeling of the face f of Gr can be expressed as �f = L�1L�2, where �1 and

�2 are any two sequences of S-labels and L-labels such that �f satis�es Property 3. The following

table shows the general structure of �f .

�1z }| { �2z }| {
vi vj vj+1 � � � vk�1 vk vk+1 � � � vn v1 � � � vj � 1

�f L � � � L � � �

rotation(cj ; ci) 0 � � � 2 � � �

We show that �1 contains at least two consecutive S-labeled switches and that, if f is an internal

face, �2 also contains at least two consecutive S-labeled switches. Thus, f does not have a switch-

regular labeling and Gr is not switch-regular; a contradiction. For ease of reference, we denote L�1L

as �. By Property 9, n�
LS

= n�
SL
, and thus, by Property 8, the total contribution of the LS - and

SL-transitions to rotation(cj ; ck) is zero. Since rotation(cj ; ck) = 2, still from Property 8, it follows

that n�
SS

> n�
LL

� 0. Hence, �1 contains at least two consecutive S-labeled switches. If f is an

internal face, the same argument can be used to prove that �2 contains at least two consecutive

S-labeled switches, because, by Property 6, also rotation(ck; cj) = 2. 2

2.4 Orientations and Paths

Let G be an embedded 4-planar graph and H be a turn-regular orthogonal representation of G.

As seen in Section 2.2.2, a complete saturator of an embedded upward planar digraph consists of

two vertices s and t and a set of (directed) saturating edges. Fig. 2.9(a) shows a complete satura-

tor of graph Gr corresponding to the oriented orthogonal representation Hr shown in Fig. 2.4(a).

25

Fig. 2.9(b) shows a complete saturator of graph G` corresponding to the oriented orthogonal repre-

sentation H` shown in Fig. 2.4(b). In the rest of the paper we never consider the saturating edges

of Gr and G` incident with s or t, even when not explicitly stated. Let f be an internal face of

H ; a maximal vertical or horizontal chain of f is said to be unconstrained if both its end-vertices

correspond to a right turn of f . Note that an unconstrained maximal chain of f may consist of a

single, degree one vertex.

(a) (b)

Figure 2.9: (a) Gr (edges represented as solid segments) and a complete saturator (edges represented
as dashed segments). (b) G` (edges represented as solid segments) and a complete saturator (edges
represented as dotted segments).

We now construct two partially-directed graphs, one representing the \left" relation between

maximal vertical chains of H , the other representing the \below" relation between maximal hori-

zontal chains of H . The graph representing the \left" relation between maximal vertical chains of

H is constructed as follows. We �rst augment H with the saturating edges of Gr and G` incident

with an end-vertex of an unconstrained maximal vertical chain of H . We then orient the horizontal

edges of H from left to right, reverse the orientation of the saturating edges of G`, and leave the

vertical edges of H not oriented so that they can be traversed in both ways. We denote by Hx the

resulting graph (see Fig. 2.10(a)). Similarly, the graph representing the \below" relation between

maximal horizontal chains of H is constructed as follows. We �rst augment H with the saturating

edges of Gr and G` incident with an end-vertex of an unconstrained maximal horizontal chain of

H . We then orient the vertical edges of H from bottom to top and leave the horizontal edges of H

not oriented so that they can be traversed in both ways. We denote by Hy the resulting graph (see

Fig. 2.10(b)).

The following theorem shows how turn-regularity characterizes those orthogonal representations

for which the \left" relation between maximal vertical chains and the \below" relation between

maximal horizontal chains are uniquely determined.

26

u3

v3

u2

v2

v1

u1

(a)

u3

v3

u2

v2

v1

u1

(b)

Figure 2.10: (a) Hx. (b) Hy. Both graphs are obtained using the complete saturators shown
in Fig. 2.9.

Theorem 4 Let H be an orthogonal representation. Hx and Hy are uniquely determined if and

only if H is turn-regular.

Proof: Easily follows from Theorem 3, the construction of Hx and Hy, and the de�nition of switch-

regular embedded upward planar digraph. 2

Note that Hx and Hy are no longer orthogonal representations, and may, in general, be non-

planar. From the de�nition of saturator, it follows that each saturating edge from Gr and G` used in

the construction of Hx and Hy has both end-vertices on the same face of H . Two saturating edges

in Hx or Hy are said to cross each other if their end-vertices appear alternately on the boundary

of a common face of H . In the rest of the paper we refer to the maximal chains of non-oriented

edges of Hx as maximal vertical chains of Hx, and denote by mvc(v) the maximal vertical chain

of Hx containing vertex v. Analogously, we refer to the maximal chains of non-oriented edges of

Hy as maximal horizontal chains of Hy, and denote by mhc(v) the maximal horizontal chain of Hy

containing vertex v.

In the rest of this section, we present a series of technical lemmas that will be used in Section 2.5.

In the proofs, we can assume the absence of degree one vertices; otherwise, the expansion mechanism

described at the beginning of Section 2.3.3 can be applied.

Lemma 5 Let H be a turn-regular orthogonal representation. Let (u; v) be a saturating edge from

Gr not used in the construction of Hx (Hy); then, there exists a path from u to v in Hx (Hy).

Similarly, let (u; v) be a saturating edge from G` not used in the construction of Hx (Hy); then,

there exists a path from v to u in Hx (from u to v in Hy).

Proof: We prove the claim for a saturating edge (u; v) from Gr not used in the construction of Hy;

the proof for the other three cases is similar.

27

x

v

u

(a)

v

u

(b)

Figure 2.11: The two cases in the proof of Lemma 5.

Let f be the face of H containing u and v. We consider in detail the case in which u is an

sS-switch and v an sL-switch of f in Gr; the case in which u is a tL-switch and v a tS-switch of

f in Gr is similar. Let f(u; v) be the portion of f from u to v. Clearly, the last turn of f(u; v)

before v is a left turn, otherwise v would be the leftmost vertex of an unconstrained horizontal chain

and (u; v) would be used in the construction of Hy. If f(u; v) contains at least one unconstrained

horizontal chain whose leftmost vertex is an sL-switch of f in Gr, let uhc be the last of these chains

and x be the leftmost vertex of uhc (see Fig. 2.11(a)). A saturating edge (u; x) from Gr is used in

the construction of Hy, and the path between u and v in Hy consists of (u; x) and the subpath of

f(u; v) from x to v. Note that all the vertical edges of the subpath are traversed according to their

direction in Hy (from bottom to top). If f(u; v) does not contain such an unconstrained horizontal

chain (see Fig. 2.11(b)), then the path between u and v in Hy is f(u; v) itself. Note, again, that all

the vertical edges of this path are traversed according to their direction in Hy (from bottom to top).

If not, let x be the top end-vertex of the �rst vertical edge of f(u; v) traversed from top to bottom;

then, the corners associated with v and x would be kitty corners, and H would not be turn-regular.

2

Lemma 6 Let H be a turn-regular orthogonal representation, and let (u; v) and (x; y) be two satu-

rating edges in Hx or Hy crossing each other; then, (u; v) and (x; y) cannot be both from Gr or both

from G`.

Proof: We prove the claim for Hy; the proof for Hx is similar. In the proof, we denote the corner

associated with vertex v as cv. Suppose, for a contradiction, that (u; v) and (x; y) are both from Gr.

We recall that u, v, x and y belong to the same face of H ; four cases are possible:

1. u and x are both sS-switches (see Fig. 2.12(a)). It follows that v and y are both tL-switches.

Let p be the portion of the boundary of f between u and x not containing v and y. Clearly,

there must be at least one right turn in p; let w be the corresponding vertex. Then, the fcw; cyg

and fcw; cyg are two pairs of kitty corners, and H is not turn-regular; a contradiction.

28

2. u is an sS-switch and x is a tL-switch (see Fig. 2.12(b)). It follows that v is an sL-switch

and y is a tS-switch. Then, fcx; cvg is a pair of kitty corners, and H is not turn-regular; a

contradiction.

3. u is a tL-switch and x is an sS-switch. Similar to Case 2.

4. u and x are both tL-switches. Similar to Case 1.

The proof for (u; v) and (x; y) both from G` is analogous. 2

Lemma 7 Let H be a turn-regular orthogonal representation, and let (u; v) and (x; y) be two saturat-

ing edges in Hx crossing each other; then, either mvc(u) = mvc(x) or mvc(v) = mvc(y). Similarly,

let (u; v) and (x; y) be two saturating edges in Hy crossing each other; then, either mhc(u) = mhc(x)

or mhc(v) = mhc(y).

Proof: We prove the claim for Hy; the proof for Hx is similar. In the proof, we denote the corner

associated with vertex v as cv . By Lemma 6, (u; v) and (x; y) cannot be both from Gr or G`. We

assume that (u; v) is from Gr and (x; y) is from G`. We recall that u, v, x and y belong to the same

face of H . The proof proceeds by case analysis:

1. u is an sS-switch in Gr and x is an sS-switch in G` (see Fig. 2.13(a)). It follows that v is a

tL-switch in Gr and y is a tL-switch in G`. Let p be the portion of the boundary of f between

u and x not containing v and y. We have that p contains no right turns; suppose the opposite,

for a contradiction, and let w be the corresponding vertex. Either fcw; cvg or fcw; cyg is a pair

of kitty corners, and H is not turn-regular; a contradiction. Hence, mhc(u) = mhc(x).

2. u is an sS-switch in Gr and x is a tL-switch in G` (see Fig. 2.13(b)). It follows that v is an

sL-switch in Gr and y is a tS-switch in G`. Note that, from the construction of Hy, mhc(v)

and mhc(x) are unconstrained; let w and z be the other end-vertices of mhc(v) and mhc(x),

y

x

v
u w

(a)

y

x

v
u

(b)

Figure 2.12: Impossible cases of crossing saturating edges in Hy.

29

respectively. This case is impossible, since fcv; czg and fcw; cxg are two pairs of kitty corners

and H is not turn-regular.

3. u is a tL-switch in Gr and x is an sS-switch in G`. Similar to Case 2.

4. u is a tL-switch in Gr and x is a tL-switch in G`. Similar to Case 1; hence, mhc(v) = mhc(y).

The proof for (u; v) from G` and (x; y) from Gr is analogous. 2

y

x

v

u

(a)

w

z

y

x

u

v

(b)

Figure 2.13: Crossing saturating edges of Hy.

Let H be an orthogonal representation and let f be a face of H . Two reex corners of f are

mutually visible if there exists a planar drawing of H such that the vertices associated with the two

corners can be connected by a straight-line segment that does not cross any edge of f .

Lemma 8 Let f be a face of an orthogonal representation, cu be a NE-, or a NW-, or a SW-, or a

SE-corner of f and cv be a NW-, or a SW-, or a SE-, or a NE-corner of f , respectively. If cu and

cv are mutually visible, then rotation(cu; cv) = 1.

Proof: We prove the claim for a NE-corner cu and a NW-corner cv . The proofs for the other three

cases are similar. Let H be an orthogonal representation and � be a planar drawing of H such that

vertices u and v, associated with corners cu and cv, can be connected by a straight-line segment that

does not cross any edge of f . Let �0 be the drawing obtained from � as follows: if y(u) = y(v), we

add a horizontal segment between u and v; if y(u) < y(v), we add a polyline from v to u that consists

of a horizontal segment, a vertex v0 corresponding to a right turn, a vertical segment, a vertex u0

corresponding to a left turn, and a horizontal segment; if y(u) > y(v), we add a polyline from v to

u that consists of a horizontal segment, a vertex v0 corresponding to a left turn, a vertical segment,

a vertex u0 corresponding to a right turn, and a horizontal segment. Let H 0 be the corresponding

orthogonal representation. We denote by f 0 and f 00 the two faces of H 0 replacing f , and let f 0 be

the face above edge (u; v). Note that f 0 is an internal face of H 0, regardless of f being an internal or

an external face of H , and that cu and cv are both convex corners in f
0. Clearly, rotationf 0(cv ; cu) =

turnf 0(cv) = 1, since turnf 0(cu0) and turnf 0(cv0) (if u0 and v0 exist) cancel each other out. Thus, by

30

Properties 4 and 5, rotationf 0(cu; cv) = 4 � rotationf 0(cv ; cu) = 3. Since cu is a reex corner in f ,

we have rotationf (cu; cv) = rotationf 0(cu; cv)� turnf 0(cu) + turnf (cu) = 3� 1 + (�1) = 1 2

Lemma 9 Let f be a face of a turn-regular orthogonal representation H. Let cu be a NE-corner

(SW-corner) of f , associated with vertex u, and let cv be a NW-corner (SE-corner) of f , associated

with vertex v, such that cu and cv are mutually visible; then, there exists a path from v to u (from

u to v) in Hx. Similarly, let cu be a NW-corner (SE-corner) of f and let cv be a SW-corner (NE-

corner) of f , such that cu and cv are mutually visible; then, there exists a path from v to u (from

u to v) in Hy.

Proof: We prove the claim for a NE-corner cu and a NW-corner cv. The proofs for the other

three cases are similar. Let f(u; v) be the portion of the boundary of f from u to v, and let

fw0 = u;w1; : : : ; wk; wk+1 = vg be the sequence of vertices of f(u; v). We assume that f(u; v) does

not contain vertices associated with at corners, since their presence is irrelevant to this proof. Let

ci be the (only) corner associated with vertex wi. From the de�nitions of NE- and NW-corners, it

follows that next(u) and prev(v) are vertical edges; hence, f(u; v) contains at least four vertices.

We �rst show that u cannot be followed by more than two consecutive left turns in f(u; v). Sup-

pose, for a contradiction, that vertices w1, w2, and w3 all correspond to left turns (see Fig. 2.14(a)).

Since v corresponds to a right turn, w3 6= v, and thus k > 3. We have rotation(cu; c4) = 2. Since,

by Lemma 8, rotation(cu; cv) = 1, and since the only corners with a negative value of turn (exactly

�1) are reex corners, it follows, by Property 5, that there is a vertex wi (possibly coincident with

w4 itself) in f(w4; v), whose associated corner is reex and such that rotation(cu; ci) = 2. Thus H

is not turn-regular; a contradiction.

We now consider the possible cases for w1, w2, w3, and w4, discard the impossible ones, and

prove the claim by induction on the number of vertices of f(u; v). Vertex w1 cannot correspond to a

right turn, since otherwise c1 and cv would be kitty corners and H would not be turn-regular. Hence,

w1 corresponds to a left turn. If w2 corresponds to a left turn as well, then, by the above discussion,

w3 must be a right turn. If w3 = v (see Fig. 2.14(b)), there clearly exists a path from v to u in

Hx; this is the base case of the induction. If w3 6= v (see Fig. 2.14(c)), then, since turn(c2) = 1 and

turn(c3) = �1, we can remove w2 and w3 from the sequence of vertices of f(u; v) without a�ecting

the value of rotation(cu; cv), and the claim is proved by the induction hypothesis. Note that this

process is similar to the switch collapsing process described and used in Section 2.3.3. Analogously,

if w2 corresponds to a right turn (see Fig. 2.14(d)), then, since turn(c1) = 1 and turn(c2) = �1,

we can remove w1 and w2 from the sequence of vertices of f(u; v) without a�ecting the value of

rotation(cu; cv), and the claim is proved by the induction hypothesis. 2

Lemma 10 Let H be a turn-regular orthogonal representation, and let u and v be two vertices of

H. If there is no path between u and v in Hx (Hy), then there is a path between u and v in Hy

(Hx).

Proof: We consider the case in which there is no path between u and v in Hx; the other case is

similar. Let sr and tr be the source and the sink, respectively, of the complete saturator of Gr,

31

w1w2

w3

v

u

(a)

w1w2

uv

(b)

w1w2

w3 u

v

(c)

w1w2

uv

(d)

Figure 2.14: Four cases in the proof of Lemma 9.

and let s` and t` be the source and the sink, respectively, of the complete saturator of G`. In

order to simplify the proof, instead of Hx and Hy, we consider the partially-directed graphs H
0
x and

H 0
y constructed in the same way as Hx and Hy, but using all the saturating edges from Gr and G`

(except (sr; tr) and (s`; t`)). Note that the existence of a path between u and v; u; v 62 fsr; tr; s`; t`g,

in H 0
x (H 0

y) implies, by Lemma 5, the existence of a path between u and v, in Hx (Hy).

For each vertex w of H , we de�ne four paths in H 0
y, denoted pNE(w), pNW(w), pSW(w), and

pSE(w). Informally speaking, they are paths in H 0
y from w to the external face, going in the North-

East, North-West, South-West, and South-East direction, respectively. In the rest of the proof, the

subpath of path pNE(w) (pNW(w)) from w to z is denoted by pNE(w; z) (pNW(w; z)), and the subpath

of path pSW(w) (pSE(w)) from z to w is denoted by pSW(z; w) (pSE(z; w)). The operator + is used

to denote the concatenation of vertices, edges, and subpaths of a given path. The formal de�nitions

of all four paths are given for completeness, although they are very similar.

Path pNE(w) is a path in H 0
y from w to tr, and is recursively de�ned as follows: (i) if w = tr,

then pNE(w) = w; (ii) otherwise, since the only unsaturated sink switch in Gr is tr, there exists

a vertex z such that (w; z) is either a saturating edge from Gr, or a (directed) vertical edge, or a

horizontal edge with z as right end-vertex (tested in this order), and pNE(w) = w+ (w; z) + pNE(z).

Note that pNE(w) is non-decreasing in both the x- and y-coordinate. Similarly, path pNW(w) is a

path in H 0
y from w to t`, and is recursively de�ned as follows: (i) if w = t`, then pNW(w) = w;

(ii) otherwise, since the only unsaturated sink switch in G` is t`, there exists a vertex z such that

(w; z) is either a saturating edge from G`, or a (directed) vertical edge, or a horizontal edge with z

32

as left end-vertex (tested in this order), and pNW(w) = w + (w; z) + pNW(z). Note that pNW(w) is

non-increasing in the x-coordinate and non-decreasing in the y-coordinate.

Path pSW(w) is a path in H 0
y from sr to w, and is recursively de�ned as follows: (i) if w = sr,

then pSW(w) = w; (ii) otherwise, since the only unsaturated source switch in Gr is sr, there exists

a vertex z such that (z; w) is either a saturating edge from Gr, or a (directed) vertical edge, or a

horizontal edge with z as left end-vertex (tested in this order), and pSW(w) = pSW(z) + (z; w) + w.

Note that pNE(w) is non-decreasing in both the x- and y-coordinate. Similarly, path pSE(w) is a

path in H 0
y from s` to w, and is recursively de�ned as follows: (i) if w = s`, then pSE(w) = w;

(ii) otherwise, since the only unsaturated source switch in G` is s`, there exists a vertex z such that

(z; w) is either a saturating edge from G`, or a (directed) vertical edge, or a horizontal edge with z

as right end-vertex (tested in this order), and pSE(w) = pSE(z) + (z; w) + w. Note that pSE(w) is

non-increasing in the x-coordinate and non-decreasing in the y-coordinate.

Let wNE (wNW) be the next-to-last vertex of pNE(w) (pNW(w)), and let wSW (wSE) be the second

vertex of pSW(w) (pSE(w)). Note that wNE, wNW, wSW, and wSE are all vertices of the external

face of H . For each vertex w of H , paths pNE(w), pNW(w), pSW(w), and pSE(w) de�ne four regions

in H 0
y (see Fig. 2.15): Rt(w) is the subgraph of H 0

y with external face formed by pNE(w), pNW(w),

and the portion of external face of H between wNE and wNW; Rl(w) is the subgraph of H 0
y with

external face formed by pNW(w), pSW(w), and the portion of external face of H between wNW and

wSW; Rb(w) is the subgraph of H 0
y with external face formed by pSW(w), pSE(w), and the portion

of external face of H between wSW and wSE; Rr(w) is the subgraph of H
0
y with external face formed

by pSE(w), pNE(w), and the portion of external face of H between wSE and wNE.

wNW

wNE

wSE

wSW

w

Rt(w)

Rb(w)

Rl(w)
Rr(w)

Figure 2.15: The four regions of vertex w.

We now show that if u 2 Rb(v), then there is a path from u to v in H 0
y. We consider paths

pNE(u), pNW(u), pSW(v), and pSE(v). By the de�nition of these paths, at least one of the following

six cases applies: (i) pNE(u) and pSE(v) have a vertex q in common; then, pNE(u; q) + pSE(q; v) is

a path from u to v in H 0
y. (ii) pNE(u) and pSE(v) cross, that is there is a saturating edge (w; x)

from Gr in pNE(u) and a saturating edge (y; z) from G` in pSE(u) that cross each other; thus, by

Lemma 7, either mhc(w) = mhc(y) or mhc(x) = mhc(z); w.l.o.g., assume that the former holds,

33

and let mhc(w; x) be the portion of the common maximal horizontal chain from w to x; then,

pNE(u;w) +mhc(w; x) + pSE(x; v) is a path from u to v in H 0
y. (iii) uNE 2 Rb(v); note that uNE is

a tL-switch of the external face of Gr, since it is adjacent to tr, and that vSE is an sL-switch of the

external face of G`, since it is adjacent to s`. Hence, uNE is a SW-corner and vSE is a NW-corner

of the external face of H , and they are clearly mutually visible. By Lemma 9, there exists a path

from uNE to vSE in H 0
y. Let f(uNE; vSE) be this path (note that it is a portion of the external face

of H); then, pNE(u; uNE) + f(uNE; vSE) + pSE(vSE; v) is a path from u to v in H 0
y. Cases (iv{vi) are

similar to Cases (i{iii), and involve pNW(u) and pSW(v).

If u 2 Rt(v), then there is a path from v to u in H 0
y. This can be proved in a similar way by

considering paths pSW(u), pSE(u), pNE(v), and pNW(v).

Finally, with the same technique, it is possible to prove that if u 2 Rl(v) (u 2 Rr(v)), then there

is a path from u to v (from v to u) in H 0
x. 2

2.5 Turn-Regularity and Orthogonal Relations

In this section we use graphs Hx and Hy to characterize all possible orthogonal relations in a

turn-regular orthogonal representation. This leads to a characterization of turn-regular orthogonal

representations in terms of orthogonal relations. We denote by u! v a directed path from vertex u

to vertex v in Hx containing at least a horizontal edge or in Hy containing at least a vertical edge,

and by u 6! v the absence of such a path from vertex u to vertex v.

Lemma 11 If Hx or Hy contains a saturating edge (u; v) from Gr, then u <x v and u <y v. If Hx

or Hy contains a saturating edge (u; v) from G`, then v <x u and u <y v.

Proof: We prove that, if Hx contains a saturating edge (u; v) from Gr, then u is left of and below

v in any planar drawing of H ; the proofs for a saturating edge (u; v) from G`, and for Hy instead

of Hx are similar. In particular, we show this for a saturating edge from a tL-switch to a tS-switch;

the proof for a saturating edge from an sS-switch to an sL-switch is similar.

w
y

x

v

u

(a)

w

y

x
u

v

(b)

Figure 2.16: The two cases in the proof of Lemma 11.

34

Let f be a face of Gr, u be a tL-switch of f , and v be a tS-switch of f . We begin by showing

that u is left of v in any planar drawing of H . Since u is a tL-switch of f in Gr, it cannot be one of

the rightmost vertices of f in any planar drawing of H . On the other hand, v is one of the rightmost

vertices of f in any planar drawing of H . Suppose, for a contradiction, that there exists a planar

drawing � of H in which v is not one of the rightmost vertices of f . Then there exists a maximal

vertical chain mvc in f , containing at least one edge, whose vertices are right of v in �; let x and y

be the bottommost and topmost vertices of mvc, respectively. Two cases are possible: either mvc

precedes v in the traversal of f starting at u (see Fig. 2.16(a)), or mvc follows v (see Fig. 2.16(b)).

In the �rst case, there must be at least one right turn in the path from y to v; in the second case,

there must be at least two right turns in the path from v to x. In both cases, there exists a vertex w

corresponding to one of these right turns such that its associated corner and the corner associated

with u are kitty corners, thus violating the turn-regularity of H ; a contradiction. Thus, we have

proved that u is left of v in any planar drawing of H . The proof that u is below v in any planar

drawing of H is similar, hence the thesis. 2

Lemma 12 Let � be a planar drawing of a turn-regular orthogonal representation H, and let mvc1

and mvc2 be two maximal vertical chains of � (possibly consisting of a single vertex) such that mvc1

is to the left of mvc2. If the endpoint of one chain can be connected to any point of the other by a

horizontal segment that does not cross any other vertical chain of �, then there exists a path in Hx

connecting any vertex of mvc1 to any vertex of mvc2.

Proof: We consider only the case in which the bottom endpoint of mvc1 can be connected to mvc2;

the other cases are similar. In this proof, we call two such chains consecutive. Clearly, if there is

a path from some vertex of mvc1 to some vertex of mvc2 in Hx, there is a path from any vertex

of mvc1 to any vertex of mvc2, because vertical edges of Hx are undirected. Let u be the bottom

end-vertex of mvc1; u and the object (either an edge or a vertex) on mvc2 at the same y-coordinate

of u belong to the same face f of H . Vertex u may correspond to a left turn, a right turn, or a

U-turn of f ; we consider the three cases separately.

If u corresponds to a left turn of f , then the �rst turn following u along the boundary of f

corresponds to a vertex v of mvc2, since otherwise the horizontal segment connecting u to mvc2

would cross a vertical chain of � di�erent from mvc1 and mvc2. The path from u to v in Hx is the

portion of the boundary of f from u to v.

If u corresponds to a right turn of f , let cu be the corner associated with u, and let vc2 be the

portion of mvc2 that is part of the boundary of f . We �rst observe that vc2 cannot be a single,

degree one vertex, namely vertex v, since cu and the second corner associated with v would be kitty

corners, and H would not be turn-regular. Thus, let v be the bottom end-vertex of vc2. Two cases

are possible: (i) v corresponds to a right turn (see Fig. 2.17(a)) or a U-turn of f (see Fig. 2.17(b)).

Then the corner cv associated with v (the second one if v corresponds to a U-turn) is a NE-corner,

and since cu is a NW-corner, and cu and cv are mutually visible, there exists a path from u to v in

Hx by Lemma 9. (ii) v corresponds to a left turn of f (see Fig. 2.17(c)). Then v is an sS-switch

35

in G`, and since u is an sL-switch in G`, there exists a saturating edge (v; u) in G` (recall that, by

Theorems 2 and 3, if H is turn regular, then G` has a unique complete saturator). If the saturating

edge (v; u), with its orientation reversed, has been used in the construction of Hx, then the path

from u to v in Hx is (v; u) itself; otherwise, such path exists by Lemma 5.

If u corresponds to a U-turn of f , the proof is analogous to that of the previous case, once we

let cu be the �rst corner associated with u, if the only edge incident with u is vertical, or the second

corner associated with u, otherwise. 2

u

v

(a)

u

v

(b)

u

v

(c)

Figure 2.17: Three cases in the proof of Lemma 12. The horizontal segment connecting u to mvc2
is represented as a dashed segment.

Lemma 13 For each pair fu; vg of vertices of Hx the following conditions hold:

1. mvc(u) = mvc(v) if and only if u =x v

2. u! v if and only if u <x v

3. v ! u if and only if v <x u

4. mvc(u) 6= mvc(v), u 6! v, and v 6! u if and only if no x-relation can be established between u

and v.

Proof: Only if. We �rst prove that Conditions 1{4 are necessary.

Condition 1. If u and v belong to the same maximal vertical chain, they are clearly drawn with

the same x-coordinate in any planar drawing of H .

Condition 2. We prove that u <x v by induction on the number of edges of the path. If u ! v

consists of only one edge e = (u; v), then, since u and v do not belong to the same maximal vertical

chain, there are three possible cases: (i) e is a horizontal edge of H ; then, v is clearly right of u in

any planar drawing of H . (ii) e is a saturating edge from Gr; then, by Lemma 11, u is left of v in

any planar drawing of H ; (iii) e is a saturating edge from G` with its orientation reversed; then,

(v; u) is a saturating edge of G` and, again by Lemma 11, u is left of v in any planar drawing of H .

We now suppose that u <x v for each path u! v consisting of k� 1 edges, k > 2, and prove the

claim for a path u! v consisting of k edges. Let (w; v) be the last edge of of the path. Two cases

are possible: (i) w belongs to the same maximal vertical chain of v; then, by Condition 1, we have

36

w =x v, and, by the inductive hypothesis, we have u <x w, which implies u <x v; (ii) w does not

belong to the same maximal vertical chain of v; then, by the inductive hypothesis, we have w <x v

and u <x w, which implies u <x v.

Condition 3. Analogous to the proof of Condition 2.

Condition 4. Let � be a planar orthogonal drawing of H . W.l.o.g., we assume that x(u) � x(v)

and y(u) > y(v) in �. We show how to construct from � a di�erent planar drawing of H such that

x(u) > x(v), thus showing that no x-relation can be established between u and v.

We consider the two vertical lines x` = x(u)� 1
2 and xr = x(v)+ 1

2 . We denote by �c the portion

of � between x` and xr. We de�ne a moving-line in � with the following properties:

� it is directed and orthogonal,

� it starts at the intersection u0 between x` and a horizontal line yu through u and ends at the

intersection v0 between xr and a horizontal line yv through v,

� it is entirely contained within the box B de�ned by x`, xr, yu, and yv,

� it does not intersect any vertical edges of �c, and

� its �rst and last segments are vertical.

Using compaction techniques developed for VLSI layout [71, 95, 107], the moving-line guarantees

that it is possible to stretch and shift parts of � to obtain a planar orthogonal drawing such that

x(u) > x(v).

We construct a moving-line J such that all of its bends are displaced a half-unit from grid-points.

This implies that the only intersections between J and � are between vertical segments of J and

horizontal segments of �, and that the �rst and last segments of J are vertical, as required. J is

constructed as follows, where the possibility or impossibility of traveling in a certain direction is

given by the above properties. Travel downward from u0 until it is possible to travel right. Travel

right as far as possible until either xr is reached or a vertical segment of � is half-unit distant. If xr

is half-unit distant, travel downward to v0, and the construction of J is complete. Otherwise, travel

either downward or upward until it is again possible to travel right. Choose the upward direction

only if it is not possible to travel right before reaching yv when going down. If it is not possible to

travel rightward by going either up or down (staying within B), there is no moving-line. Otherwise,

continue the process until v0 is reached. Observe that this method will construct an x-monotone

moving-line if any moving-line exists, and that it will construct a y-monotone moving-line if there

is any possible y-monotone moving-line.

If there is no moving-line, then there must be a vertical chain vc of � that intersects both yu and

yv. Since both mvc(u) and vc intersect yu, either Lemma 12 applies and there is a path from u to

any vertex of vc, or there is another vertical chain vc0 between mvc(u) and vc that also crosses yu.

The argument can then be applied to mvc(u) and vc0, and to vc0 and vc, yielding a path from u to

vc. A similar argument can be applied to vc and mvc(v) because both chains intersect yv, yielding

a path from vc to v, and thus a path from u to v.

37

We now show that if J is not y-monotone, there is a path from u to v in Hx. Consider the

sequence of vertical chains C = fvc1; : : : ; vckg that de�ne J : vc1 = mvc(u), vck = mvc(v), and the

others are those that determine upward or downward turns of J , ordered from left to right. Let vci

and vci+1 be two (consecutive) elements of C. Then there is a horizontal segment connecting one

endpoint of vci to vci+1 that either crosses no other vertical chains of � or touches only one of their

endpoints. By (possibly repeated) application of Lemma 12, there is a path from any vertex of vci to

any vertex of vci+1. If J is not y-monotone, there is at least one chain in C that de�nes an upward

turn in J ; let vcj be the �rst such chain. This chain vcj must cross yv, or else it would have been

possible to make a downward turn instead. By repeatedly applying the previous argument, there is

a path from vc1 = mvc(u) to vcj . We now must show that there is a path from vcj to vck = mvc(v).

Since both vcj and vck intersect yv, the argument used in the previous paragraph applies, resulting

in a path from vcj to vck, and thus a path from u to v.

u

v

(a)

u

v

(b)

Figure 2.18: (a) A planar orthogonal drawing � with the extended moving-line for vertices u and v.
(b) The stretched version of �.

As a result, there exists a moving-line J that is monotone in both x and y. This moving-line can

then be used to stretch � horizontally so that x(u) > x(v). Extend J by continuing its �rst vertical

segment (i.e., the one that starts at u0) in the positive y direction and its last vertical segment (i.e.,

the one that ends at v0) in the negative y direction until they both intersect the external face of �

(see Fig. 2.18(a)). Also, let dx = x(v) � x(u). Stretch � by increasing the x-coordinates of the

vertices to the right of J by an amount d > dx. As a result, a new planar orthogonal drawing is

constructed in which x(u) > x(v) (see Fig. 2.18(b)). This implies that there is no x-relation between

u and v.

If. The suÆciency of Conditions 1{4 follows from the completeness and mutual exclusiveness of

the four cases. 2

38

As an example, we identify in the graph Hx shown in Fig. 2.10(a) three pairs of vertices corre-

sponding to the various cases of Lemma 13: u1 and v1 belong to the same maximal vertical chain,

there exists a directed path from u2 to v2, while there is neither a path between u3 and v3, nor they

belong to the same maximal vertical chain.

The proof of the following lemma is similar to that of Lemma 13, and hence is omitted.

Lemma 14 For each pair fu; vg of vertices of Hy the following conditions hold:

1. mhc(u) = mhc(v) if and only if u =y v

2. u! v if and only if u <y v

3. v ! u if and only if v <y u

4. mhc(u) 6= mhc(v), u 6! v, and v 6! u if and only if no y-relation can be established between u

and v.

As an example, we identify in the graph Hy shown in Fig. 2.10(b) three pairs of vertices corre-

sponding to the various cases of Lemma 13: u1 and v2 belong to the same maximal horizontal chain,

there exists a directed path from u2 to v3, while there is neither a directed path between u3 and v1,

nor they belong to the same maximal vertical chain.

Lemma 15 Let G be an embedded 4-planar graph and H be a turn-regular orthogonal representation

of G. For each pair fu; vg of vertices of G, exactly one orthogonal relation holds.

Proof: By considering all possible combinations of the four (mutually exclusive) cases of Lemma 13

for Hx with the four (mutually exclusive) cases of Lemma 14 for Hy, we obtain the sixteen (mutually

exclusive) cases shown in Table 2.1. For twelve of these cases, the orthogonal relations are simply

obtained by taking the \logical and" of the corresponding relations given in Lemmas 13 and 14.

We now show that the remaining four cases are impossible. Clearly, if mvc(u) = mvc(v) in Hx,

then there is a path u ! v or v ! u in Hy, and if mhc(u) = mhc(v) in Hy, then there is a path

u! v or v ! u in Hx. As for the \otherwise{otherwise" case, it is impossible by Lemma 10. 2

We are interested in those orthogonal representations for which there is an orthogonal relation

between each pair of vertices. As the following theorem shows, this class of orthogonal representations

is characterized by turn-regularity.

Theorem 5 An orthogonal representation H is turn-regular if and only if there is an orthogonal

relation between every two vertices of H.

Proof: Only if. It follows directly from Lemma 15.

If. Suppose, for a contradiction, that there is an orthogonal relation between every two vertices

of H and that H is not turn-regular. Hence, there exists a face f of H with two vertices u and

v, whose associated corners cu and cv are kitty corners. Assume, w.l.o.g., that the kitty corners

39

H
y

m
h
c
(u
)
=
m
h
c
(v
)

u
!

v

v
!

u

o
th
er
w
is
e

(u
=
x
v
)
^
(u
<
y
v
)

(u
=
x
v
)
^
(v
<
y
u
)

m
vc
(u
)
=
m
vc
(v
)

im
p
o
ss
ib
le

u

v
u

v

im
p
o
ss
ib
le

(u
<
x
v
)
^
(u
=
y
v
)

(u
<
x
v
)
^
(u
<
y
v
)

(u
<
x
v
)
^
(v
<
y
u
)

u
<
x
v

u
!

v

u
v

u

v

v

u

v

u

v

H
x

(v
<
x
u
)
^
(u
=
y
v
)

(v
<
x
u
)
^
(u
<
y
v
)

(v
<
x
u
)
^
(v
<
y
u
)

v
<
x
u

v
!

u

u
v

u

v

v

u

v v

u

u
<
y
v

v
<
y
u

o
th
er
w
is
e

im
p
o
ss
ib
le

u

v
v

v
v

u

im
p
o
ss
ib
le

Table 2.1: Orthogonal relations for a pair fu; vg of vertices in H .

40

form a SW-NE pair (see Fig. 2.8(a)). We generate two new orthogonal representations H1 and H2

as follows. H1 is obtained by connecting u and v with a horizontal edge such that u is the left

end-vertex of the new edge and v is the right end-vertex. H2 is obtained by connecting u and v with

a vertical edge such that u is the bottom end-vertex and v is the top end-vertex. Note that adding

these edges is always possible because u is not the left or bottom end-vertex of an edge in H , and v

is not the right or top end-vertex of an edge in H .

H1 and H2 are orthogonal representations, since they satisfy Properties 1 and 2. We show this

for an internal face of H1; the proofs for the external face of H1 and for H2 are similar. We assume

that f contains no vertex of degree one and no multiple occurrences of the same vertex; if not, we

can use the same expansion technique adopted for the proofs in Section 2.3.3. Note that the only

vertices a�ected by the insertion of the new edge are u and v, and that the only face is f . Let f 0

and f 00 be the two faces of H1 replacing f , and let f 0 be the face below edge (u; v) and f 00 be the

face above. The angle at u in f 0 is equal to �=2, while the angle at u in f 00 is equal to �. Similarly,

the angle at v in f 0 is equal to �, while the angle at v in f 00 is equal to �=2. Property 1 is clearly

satis�ed by u and v, since the angles at u and v in f are both 3�=2. As for Property 2, we prove

that it is satis�ed by f 0; the proof for f 00 is analogous. Let p be the portion of f from u (excluded)

to v (excluded), nl be the number of left turns in p, nf be the number of at turns in p, and nr be

the number of right turns in p. Note that the vertices of f in p are also vertices of f 0, and that, in

addition, f 0 contains u and v. Thus, Property 2 is satis�ed by f 0 if

nl � �=2 + nf � � + nr � 3�=2 + �=2 + � = [2(nl + nf + nr + 2)� 4] � �=2

(nl + 2nf + 3nr + 1 + 2) � �=2 = (2nl + 2nf + 2nr) � �=2

nl + 3nr + 3 = 2nl + 2nr

nl � nr = 3

And this is indeed the case. Let w be the �rst vertex of f after u, and let cw be its associated

corner. Since cu and cv are kitty corners in f , rotationf (cu; cv) = 2, and thus rotationf 0(cw; cv) =

rotationf (cw; cv) = 3. That is, from the de�nition of rotation, the number of left turns in p minus

the number of right turns in p is equal to three.

Since the edge connecting u and v in H1 is horizontal, it follows that u must be left of and

y-aligned with v in any planar drawing of H1. Similarly, u must be below and x-aligned with v in

any planar drawing of H2. Also, note that a planar drawing of H can be obtained from any planar

drawing of H1 or H2 by simply removing the extra edge. As a result, there is not an orthogonal

relation between u and v; a contradiction. 2

2.6 Turn-Regularity and Drawing Algorithms

In this section we �rst study the problem of eÆciently checking whether an orthogonal representation

is turn-regular. Then we show how an optimal area orthogonal drawing of a turn-regular orthogonal

representation can be computed.

41

Theorem 6 A turn-regular orthogonal representation with n vertices and bends can be recognized

in O(n) time and space.

Proof: Let H be an orthogonal representation and let f be a face of H with nf vertices. We

show how to test whether f is turn-regular in O(nf) time and space. Since, for a planar graph,P
f nf = O(n), this proves the claim.

We �rst consider the case in which f is an internal face. We index the k reex corners of f from

c1 to ck, according to a counterclockwise visit of the boundary of f from an arbitrary vertex. We

construct a circular list L of k elements, and we set its i-th element L(i) = rotation(c1; ci+1), where,

by convention, ck+1 = c1. Since k = O(nf), the size of L is linear with the number of vertices of f .

Also, for each 1 � i � k we have L(i) = O(nf), because each vertex of f is associated with one or

two corners, and for each corner c we have �1 � turn(c) � 1. Clearly, the construction of L requires

linear time. By Property 6, in order to test the turn-regularity of f , we must verify whether there

exist two indices 1 � i < j � k such that L(j) � L(i) = rotation(c1; cj+1) � rotation(c1; ci+1) =

rotation(ci+1; cj+1) = 2.

Let min and max be the minimum and maximum values stored in L, respectively. We construct

an array A of max �min + 3 boolean elements whose index is in the range min � 2 : : : max . We

denote the i-th element of A by A(i) and we set it equal to true if there exists in L an element whose

value is i, equal to false otherwise.

The algorithm to test whether f is turn-regular consists of the following test for each element j

of L. Let � be the value of L(j); if A(��2) is true, then there exists an element i < j of L such that

L(i) = �� 2. Hence, L(j)� L(i) = 2, ci+1 and cj+1 are kitty corners, and f is not turn-regular. If

for each element of L the result of the above test is false, then f is turn-regular.

We now consider the case in which f is the external face. By Property 6, in order to test the

turn-regularity of f , we must verify whether there exist two indices 1 � i < j � k such that either

L(j)�L(i) = 2 or L(j)�L(i) = �6. Thus, the array A consists of max �min+9 boolean elements,

its index is in the range min � 2 : : : max + 6, and, in addition to A(� � 2), we also test whether

A(�+ 6) is true.

Since verifying the value of an element of A requires constant time, and the number of elements

of L is O(nf), the overall procedure requires linear time. 2

The optimal area drawings that we want to compute are planar. The next lemma guarantees the

planarity of drawings that satisfy the orthogonal relations of a turn-regular orthogonal representa-

tion.

Theorem 7 Let H be a turn-regular orthogonal representation, and let � be an orthogonal drawing

of H such that, for each pair fu; vg of vertices of H, the orthogonal relation between u and v is

satis�ed. Then � is planar.

Proof: Since H is a turn-regular orthogonal representation, by Lemma 15 for each pair of vertices

of H exactly one orthogonal relation is satis�ed in all possible planar drawings of H . Suppose, for

a contradiction, that there exists a drawing � of H such that:

42

� � is a non-planar drawing of H , and

� � satis�es all orthogonal relations de�ned by the turn-regularity of H .

Let (u; v) and (w; z) be two edges of � that cross each other. We assume that (u; v) is a vertical

edge with u below v, and that (w; z) is a horizontal edge with w left of z. The proof for the case

of overlapping vertices or edges is similar. Since � satis�es all orthogonal relations de�ned by the

turn-regularity of H and, by Lemma 15, for each pair of vertices of H exactly one orthogonal relation

is satis�ed in all possible planar drawings of H , we conclude that the following orthogonal relations

hold: (i) u <x z, (ii) w <x u, (iii) z <y v, and (iv) u <y w.

Since H is a planar orthogonal representation, there exists at least one planar drawing �0 of

H . Since in �0 the pair of edges (u; v) and (w; z) do not cross, the four orthogonal relations given

above cannot be simultaneously satis�ed, contradicting the fact that in a turn-regular orthogonal

representation exactly one orthogonal relation holds between any two vertices. 2

We are now ready to present two di�erent algorithms that compute optimal area drawings of

turn-regular orthogonal representations. These algorithms are variations of the two compaction

procedures described in [54]. For the �rst algorithm, we de�ne two digraphs, denoted Dx and Dy.

Dx is obtained from Hx by shrinking each maximal vertical chain to a single vertex, by removing

possible multiple edges, and by adding a super-source and a super-sink (see Fig 2.19(a)). Thus,

there is a one-to-one correspondence between maximal vertical chains of Hx and vertices of Dx,

and a many-to-one correspondence between directed edge of Hx and edges of Dx. Note that in the

shrinking process we \preserve the embedding," i.e., the circular ordering of the edges around each

vertex v of Dx is induced by the circular ordering of the directed edges \around" the maximal

vertical chain of Hx corresponding to v. Dy is obtained analogously from Hy by shrinking the

maximal horizontal chains (see Fig 2.19(b)).

(a) (b)

Figure 2.19: (a) Dx. (b) Dy. Both graphs are obtained from graphs Hx and Hy shown in Fig. 2.10.

43

Property 10 Dx and Dy are planar st-digraphs.

Proof: We �rst prove that Dx and Dy are planar. In particular, we prove the planarity of Dy;

the proof for Dx is analogous. Let D be the graph obtained from Dy by removing the edges that

correspond to saturating edges in Hy. Note that, if we ignore the direction of the edges, D can be

thought of as the result of the shrinking process applied to H . Since H is an embedded planar graph,

D is an embedded planar graph as well. In particular, there is a one-to-one correspondence between

internal faces of H and faces of D, and if the end-vertices of a saturating edge e in Hy belong to

face f of H , the end-vertices of the directed edge of Dy corresponding to e belong to the face of D

corresponding to f . Let (u; v) and (w; z) be two saturating edges in Hy that cross each other. We

recall that u, v, w, and z belong to the same face f of H . Thus, from the discussion above, we can

concentrate our attention on f alone. We prove that the crossing \disappears" during the shrinking

process through which Dy is obtained. By Lemma 7, either mhc(u) = mhc(w) or mhc(v) = mhc(z).

It follows that either u and w, or v and z are shrunk to the same vertex in Dy and the crossing

\disappears" in the process.

It remains to prove that Dx and Dy are st-digraphs. The non-vertical edges of Hx are all directed

from left to right, and the non-horizontal edges of Hy are all directed from bottom to top. Hence,

by construction, Dx and Dy are acyclic. And still by construction, they have a single source and a

single sink. 2

Theorem 8 Let H be a turn-regular orthogonal representation with n vertices and bends. A planar

orthogonal drawing of H with optimal area can be constructed in O(n) time and space.

Proof: We recall that there is a one-to-one correspondence between maximal vertical chains of

Hx (and hence of H) and vertices of Dx; similarly, there is a one-to-one correspondence between

maximal horizontal chains of Hy (and hence of H) and vertices of Dy.

We compute the x-coordinates of the vertical segments representing the maximal vertical chains

of H as follows. We assign unit weights to the edges of Dx and compute an optimal weighted

topological numbering X of Dx (see page 89 of [54]). We then set the length of each horizontal

directed edge (u; v) of H equal to X(v0)�X(u0), where u0 and v0 are the vertices of Dx representing

the maximal vertical chains of H containing u and v, respectively. In the same way, it is possible to

compute the y-coordinates of the horizontal segments representing the maximal horizontal chains of

H . Let � be the resulting drawing.

Lemma 13 shows that Hx represents all the x-relations between vertices of H . This information

is represented by Dx, as well, since there is a many-to-one correspondence between directed edge of

Hx and edges of Dx. A similar argument holds for Dy. Since the edges of Dx and Dy are assigned

positive weights, and since X and Y are weighted topological numberings of Dx and Dy, the x-

relations and y-relations between every two vertices of H are satis�ed in �. Thus, by Theorem 7, �

is planar.

Since the edges of Dx and Dy are assigned unit weights, and since the weighted topological

numbering X and Y are both optimal, the width and height of � are both minimum. Hence, � has

44

optimal area.

The time complexity of the algorithm is O(n) since the number of vertices of Dx and of Dy are

both not greater than the number of vertices of H , and computing an optimal weighted topological

numbering of an n-vertex planar st-digraph requires O(n) time and space. 2

Theorem 9 Let H be a turn-regular orthogonal representation with n vertices and bends. A planar

orthogonal drawing of H with optimal area A and whose total edge length is optimal among all

drawings with area A can be constructed in O(n7=4 logn) time and O(n) space.

Proof: To compute a planar orthogonal drawing with minimum area A and whose total edge length

is minimum among all drawings with areaA, we use a ow technique similar to that described in [54].

Let H be a turn-regular orthogonal representation with n vertices. From Theorem 4, we know that

the embedded planar st-digraphs Dx and Dy are uniquely determined. As seen in the proof of

Theorem 8, a planar orthogonal drawing of H with optimal area can be found by computing an

optimal weighted topological numbering on Dx and Dy, independently. This means that the width

w and the height h of the drawing can be minimized independently.

We construct two ow networks Nx and Ny associated with Dx and Dy, respectively, and show

that the cost of any integer feasible ow with value w on Nx plus the cost of any integer feasible

ow with value h on Ny is equal to the total edge length of a planar orthogonal drawing of H with

width w and height h. Consider the embedded planar st-digraph Dy, and consider the external face

of Dy split into two regions, the \left" external face and the \right" external face. We construct Ny

as follows (see Fig. 2.20(b)):

� For each internal face f of Dy, we consider a node vf in Ny.

� For the external face of Dy, we consider two nodes in Ny, one for the \left" external face and

one for the \right" external face.

� For each edge e of Dy, let fl be the face to the left of e and fr be the face to the right of e.

We consider a dual arc from vfl to vfr in Ny. The upper capacity of this arc is set to +1 and

the lower capacity is set to 1. Finally, the cost of the arc is set to 1 if e corresponds to an edge

of H and to 0 if e corresponds to a saturating edge.

Since all arcs of Ny have an in�nite upper capacity, there always exists an integer feasible ow

with value h in Ny. Each unit of ow on an arc of Ny corresponds to a unit of length of the dual edge

in Dy. In particular, the ow on each arc with cost 1 in Ny corresponds to the length of a vertical

edge of H . Thus, computing a minimum cost ow with value h on Ny corresponds to minimizing

the total length of the vertical edges of H in an orthogonal drawing with height h.

The construction ofNx is analogous to that ofNy, and computing a minimum cost ow with value

w on Nx corresponds to minimizing the total length of the horizontal edges of H in an orthogonal

drawing with width w.

In order to prove that the obtained drawing � is planar, we observe that Dx and Dy represent

the x- and y-relations between every two vertices in any planar drawing of H . These relations are

45

(a) (b)

Figure 2.20: (a) Nx. (b) Ny. The corresponding planar st-digraphs Dx and Dy are represented in
grey.

satis�ed by the x- and y-coordinates obtained by computing the minimum cost ows on Nx and Ny,

and thus, by Theorem 7, � is planar. In particular, we observe that:

� If there is a directed edge (u; v) in Dx (Dy), u will be right of (below) v in �, since the ow

on the dual arc of (u; v) in Nx (Ny) is at least 1.

� The lengths of the edges of Dx and Dy are consistent. Recall that Dx and Dy are planar st-

digraphs, and that the boundary of each face f of a planar st-digraph consists of two directed

paths enclosing f , with common origin and destination. Nx and Ny are the dual planar st-

digraphs of Dx and Dy; thus, for each face f of Dx (Dy), the incoming arcs of vf in Nx (Ny)

are duals of the edges of the \top" (\left") path of f , and the outgoing arcs of vf in Nx (Ny)

are duals of the edges of the \bottom" (\right") path of f . The consistency of the lengths of

the edges of Dx and Dy then follows from the conservation property of the ow. And since

there is a many-to-one correspondence between directed edge of Hx (Hy) and edges of Dx

(Dy), also the lengths of the edges of � are consistent.

Hence, the minimum total edge length of a planar orthogonal drawing of H with optimal area

A = w� � h�, is equal to the minimum cost of a ow with value w� on Nx plus the minimum cost of

a ow with value h� on Ny. Each of the two minimum cost ows can be computed in O(n7=4 logn)

time and O(n) space as shown in [80]. 2

We recall that the minimum number of bends for an orthogonal representation of a 4-planar

graph with n vertices is O(n) [20, 149]. The algorithm described in [145] produces such an orthogonal

representation, and there exist various algorithms for producing an orthogonal representation with

a sub-optimal, O(n) number of bends (see, e.g, [17, 127, 148]).

46

2.7 Experiments

In this section, we present the results of an experimental study on a test suite of planar orthogonal

representations of randomly generated biconnected 4-planar graphs. The analysis of the test suite

has shown that the percentage of regular faces is quite high (95%). Motivated by this result, we

have designed compaction heuristics based on the idea of \face regularization."

2.7.1 Compaction Heuristics

We have implemented a compaction algorithm for orthogonal representations based on the results

described in the previous sections. Namely, let H be a given orthogonal representation of a 4-planar

graph. The algorithm is as follows:

� H is �rst tested for turn-regularity, using the algorithm described in Theorem 6.

� If H is turn-regular, the algorithm computes an orthogonal drawing of H with optimal area

and optimal total edge length within that area by applying the techniques in Theorem 9.

� If H contains some faces that are not turn-regular, an algorithm is applied to make these faces

turn-regular. The algorithm adds dummy vertices and edges to H , creating a new orthogonal

representation H 0 that is turn-regular. The techniques in Theorem 9 are then used to �nd a

drawing �0 of H 0 with optimal area and optimal total edge length within that area. Finally,

the dummy vertices and edges are removed from �0 to yield an orthogonal drawing � of H . In

general the orthogonal drawing � does not have optimal area and total edge length.

� Two simple approaches are used to make non-regular faces turn-regular:

1. The �rst approach is an improvement of the standard rectangularizationmethod described

in [54, 145]. When a dummy edge is inserted, a dummy vertex is added only if it really

needed. Each non-regular face is divided into two or more smaller, rectangular faces.

2. The second approach recursively adds a straight edge (randomly chosen to be either hori-

zontal or vertical) between each pair of kitty corners, until the face has been decomposed

in smaller (but not necessarily rectangular) turn-regular faces. In general, this technique

adds a much smaller number of dummy edges than the �rst approach.

In the following we call the two heuristic compaction algorithms derived from the two regular-

ization approaches described above Heur1 and Heur2, respectively. Our implementations of these

algorithms use the GDToolkit library4 and will be included in its next release.

4http://www.dia.uniroma3.it/~gdt

47

2.7.2 Test Suite and Experimental Results

Heuristics Heur1 and Heur2 were tested on a set of 530 randomly generated biconnected 4-planar

graphs with 10-3000 vertices. The results are compared to a third compaction heuristic, StdComp,

in which all faces, both turn-regular and not, are decomposed into rectangles using the rectangular-

ization method of Heur1.

The graphs in the test suite have been generated with a technique used in other experimental

studies on orthogonal drawings [16]. Each biconnected 4-planar graph is generated from a cycle

of three vertices by performing a random series of InsertVertex and InsertEdge operations. The

InsertVertex operation subdivides an existing edge into two new edges separated by a new vertex.

The InsertEdge operation inserts a new edge between two existing vertices on the same face. Any

biconnected planar graph can be generated by a sequence of these two operations. Also, for each

graph to be generated, the density of the graph (the number of edges divided by the number of

vertices) is randomly chosen before the generation algorithm is run.

Our �rst experiment consisted in studying the percentage of non-regular faces in the graphs of

our test suite. We have found that the percentage of non-regular faces decreases exponentially with

the density of the graphs, i.e., with the ratio of the number of edges to the number of vertices (see

Fig. 2.21).

Percentage of Irregular Faces

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

edge-to-vertex ratio

Figure 2.21: The percentage of non-regular faces with respect to the edge-to-vertex ratio.

We have then analyzed the results of the three heuristics. In particular, we have considered, for

Heur1 and Heur2, the improvement in the drawing area, total edge length, and maximum edge length

with respect to StdComp. Heur2 performs better than Heur1 in most cases; also, the improvement in

area and total edge length of Heur2 with respect to StdComp increases with the number of vertices

of the graph (see Fig. 2.22). The average improvement in area and total edge length is 19-25% for

graphs with 3000 vertices, and there are some graphs in the test suite for which the improvement is

more than 45%.

We have also run the three heuristics on a very large graph with 10; 000 vertices. The drawing

48

Area

-30

-20

-10

0

10

20

30

40

50

60

number of vertices

p
er

ce
n

ta
g

e
im

p
ro

ve
m

en
t

w
it

h
 r

es
p

ec
t

to
 S

td
C

o
m

p

Heur1
Heur2

10-100 110-200 210-300 310-400 410-500 1000 2000 3000 10000

Total Edge Length

-10

-5

0

5

10

15

20

25

30

35

40

number of vertices

p
er

ce
n

ta
g

e
im

p
ro

ve
m

en
t

w
it

h
 r

es
p

ec
t

to
 S

td
C

o
m

p

Heur1
Heur2

10-100 110-200 210-300 310-400 410-500 1000 2000 3000 10000

Maximum Edge Length

-80

-60

-40

-20

0

20

40

60

number of vertices

p
er

ce
n

ta
g

e
im

p
ro

ve
m

en
t

w
it

h
 r

es
p

ec
t

to
 S

td
C

o
m

p

Heur1
Heur2

10-100 110-200 210-300 310-400 410-500 1000 2000 3000 10000

Figure 2.22: The average percentage improvement in area, total edge length, and maximum edge
length of Heur1 and Heur2 with respect to StdComp. The narrow columns show the minimum and
maximum improvement.

49

computed by Heur2 improves the area by 41% and the total edge length by 22:4% with respect to

the drawing computed by StdComp.

2.8 Conclusions and Open Problems

We introduced the notion of turn-regularity which allows the characterization of a class of orthogonal

representations that are optimally compactable in terms of area in polynomial-time. In particular,

given a turn-regular orthogonal representation, we provided a linear-time algorithm to compute a

planar drawing with minimum area, and a polynomial-time algorithm to compute a planar draw-

ing with optimal area and minimum total edge length within that area of the given orthogonal

representation.

This work bears some similarity to an ongoing project at the Max-Planck-Institute f�ur Infor-

matik [103, 102] in which the problem of minimizing the total edge length in planar drawings of

orthogonal representations is considered by solving an associated ILP problem. Some overlaps are

unavoidable since that research e�ort addresses a question in the same class of problems as the one

that we study in this paper. However, the work di�ers signi�cantly because the respective proof

techniques are di�erent, our approach is driven by a combinatorial analysis that does not lead to

a formulation of the problem as an ILP problem, and the problem we study combines both area

minimization and total edge length minimization.

We provided several implementations of heuristics for making orthogonal representations turn-

regular and we used them in the compaction algorithm, instead of the standard rectangularization

step. Experiments on a randomly generated test suite of biconnected 4-planar graphs show that the

new compaction strategy works much better than the standard one, especially for very large graphs.

Some of the open problems related to this work are the following:

� To �nd other families of orthogonal representations for which an optimal area drawing can be

computed in polynomial time.

� To investigate other e�ective heuristics for making an orthogonal representation turn-regular

by adding a small number of edges.

� The problem of computing an orthogonal representation with the minimum number of bends

has been extensively investigated in a variable embedding setting [61, 62, 78]. It would be

interesting to study the compaction problem when it is possible to change the embedding of

the input graph.

Acknowledgments

We would like to thank Maurizio Patrignani for useful discussions.

50

Symbol Description Section

G an embedded 4-planar graph x2.2.1
H an orthogonal representation of G x2.2.1
� a drawing of H x2.3.1

�r an orientation of � with all vertical segments directed up-
ward and all horizontal segments directed rightward

x2.3.3

�` an orientation of � with all vertical segments directed up-
ward and all horizontal segments directed leftward

x2.3.3

Hr the orientation of H induced by �r x2.3.3
H` the orientation of H induced by �` x2.3.3
Gr the orientation of G induced by Hr x2.3.3
G` the orientation of G induced by H` x2.3.3

Hx a partially-directed graph representing the \left" relation
between maximal vertical chains of H

x2.4

Hy a partially-directed graph representing the \below" relation
between maximal horizontal chains of H

x2.4

Dx a planar st-digraph obtained by shrinking the maximal ver-
tical chains of Hx

x2.6

Dy a planar st-digraph obtained by shrinking the maximal hor-
izontal chains of Hy

x2.6

Nx the dual planar st-digraph of Dx x2.6
Ny the dual planar st-digraph of Dy x2.6

Table 2.2: The various symbols used to denote graphs, orthogonal representations, and drawings.

Chapter 3

Di�erence Metrics for Interactive

Orthogonal Graph Drawing

Algorithms

3.1 Introduction

Graph drawing algorithms have traditionally been developed using a batch model, where the graph

is redrawn from scratch every time a drawing is desired. These algorithms, however, are not well

suited for interactive applications, where the user repeatedly makes modi�cations to the graph and

requests a new drawing. When the graph is redrawn it is important to preserve the look (the user's

\mental map" [115]) of the original drawing as much as possible, so the user does not need to spend

a lot of time relearning the graph.

The problems of incremental graph drawing, where vertices are added one at a time, and the

more general case of interactive graph drawing, where any combination of vertex/edge deletion and

insertion is allowed at each step, have been starting to receive more attention. See, for example, the

work of Biedl and Kaufmann [18], Brandes and Wagner [31], Bridgeman et. al. [43], Cohen et. al. [48],

F�o�meier [73], Miriyala, Hornick, and Tamassia [114], Moen [116], North [120], Papakostas, Six, and

Tollis [126], Papakostas and Tollis [125], and Ryall, Marks, and Shieber [136]. However, while

the algorithms themselves have been motivated by the need to preserve the user's mental map,

much of the evaluation of the algorithms has so far focused on traditional optimization criteria such

as the area and the number of bends and crossings (see, for example, the analysis in Biedl and

Kaufmann [18], F�o�meier [73], Papakostas, Six, and Tollis [126], and Papakostas and Tollis [125]).

Mental map preservation is often achieved by attempting to minimize the change between drawings

| typically by allowing only very limited modi�cations (if any) to the position of vertices and edge

Previously published as S. Bridgeman and R. Tamassia. Di�erence metrics for interactive orthogonal graph
drawing algorithms. Journal of Graph Algorithms and Applications. 4(3):47{74, 2000.

51

52

(a) (b) (c)

Figure 3.1: The rotation problem of InteractiveGiotto. (a) is the user-modi�ed graph (the user's
changes are shown in orange); (b) and (c) show the uncorrected and corrected outputs, respectively.
While (b) and (c) are both clearly drawings of the graph shown in (a), the resemblance is more
readily seen in the properly rotated and reected drawing (c).

bends in the existing drawing | making it important to be able to measure precisely how much the

look of the drawing changes. Animation can be used to provide a smooth transition between the

drawings and can help compensate for greater changes in the drawing, though it is still important

to limit, if not minimize, the di�erence between the drawings because if there is a very large change

it can become diÆcult to generate a clear, useful animation. It is thus still important to have a

measure of how the look of the drawing changes.

Studying \di�erence" metrics to measure how much a drawing algorithm changes the user's

mental map has a number of bene�ts, including

� providing a basis for studying the behavior of constraint-based interactive drawing algorithms

like InteractiveGiotto [43], where meaningful bounds on the movement of any given part of

the drawing are diÆcult to obtain,

� providing a technique to compare the results of di�erent interactive drawing algorithms, and

� providing a goal for the design of new drawing algorithms by identifying which qualities of the

drawing are the most important to preserve.

Finding a good di�erence metric also has an immediate practical bene�t, namely solving the \rota-

tion problem" of InteractiveGiotto. Giotto [146], the core of InteractiveGiotto, does not take into

account the coordinates of vertices and bends in the original drawing when constructing a new draw-

ing | and, as a result, the output of InteractiveGiotto may be rotated by a multiple of 90 degrees

and/or be a mirror-image reection of the original drawing (Figure 3.1). The problem can be solved

by computing the value of the metric for each of the possible rotations and choosing the rotation

with the smallest value.

Eades et. al. [63], Lyons, Meijer, and Rappaport [108], and Misue et. al. [115] have proposed

several models for formalizing the notion of the mental map, though more work needs to be done to

formally de�ne potential di�erence metrics and then experimentally validate (or invalidate) them.

53

Validation can be via user studies similar to those done by Purchase, Cohen, and James [131, 132]

to evaluate the impact of various graph drawing aesthetics on human understanding.

Motivated by applications to InteractiveGiotto, this paper will focus primarily on di�erence

metrics for orthogonal drawings, though many of the metrics can be used without modi�cation for

arbitrary drawings. Section 3.3 describes several potential metrics, Section 3.4 presents a framework

for evaluating the suitability of the metrics along with a preliminary evaluation, and Section 3.5

outlines plans for future work.

3.2 Preliminaries

Paired Sets of Objects Every metric presented in this paper compares two drawingsD and D0 of

the same graphG. Each object of G has a representation in both D andD0. For example, each vertex

of G has a representation in both drawings | if vertices are drawn as rectangles, this representation

consists of the position, size, color, line style, etc. of the rectangle. Similarly, each edge of G has a

representation in both drawings, and if edges are drawn as polylines, this representation consists of

the positions of the bends and endpoints, plus the color, line style, and so forth.

A paired set of objects is a set of pairs describing the representation of each object in the two

drawings. The paired set of vertices of G is the set of pairs (rv ,r
0
v), where rv and r0v are the

representations of v in D and D0, respectively, for all vertices v of G. The paired set of edges is

de�ned similarly. Referring to a paired set is simply a way of matching up the elements of each

drawing according to the underlying object of G that they represent.

It should be noted that the only features of the representations that are considered here are

the geometric features such as position and size; other features like vertex color and line style are

also very important in preserving the look of the drawing and may be able to at least partially

compensate for geometric changes but are not considered further at this stage.

Point Set Selection Most of the metrics are based on point sets, working with paired sets of points

derived from the edges and vertices of the graph rather than the edges and vertices themselves. Once

derived, each point is independent from the others | there is no notion of a group of points being

related because they were derived from the same vertex, for example.

Points can be selected in a number of ways. North [120] suggests that vertex positions are a

signi�cant visual feature of the drawing, and two vertex-centered methods | centers and corners |

are used here to reect that idea. \Centers" consists of the center points of each vertex; this captures

how vertices move. \Corners" uses the four corners of each vertex, taking into account both vertex

motion (the movement of the center) and changes in the vertex dimension. It seems important to

take into account changes in vertex dimension because a vertex with a large or distinctive shape can

act as a landmark to orient the user to the drawing; loss of that landmark makes orientation more

diÆcult. Other choices of points can include edge bends and endpoints.

Points can also be derived from groups of graph objects. For example, the vertices of the graph

54

Figure 3.2: Two point sets (black and gray) superimposed. (Corresponding points in the two sets
are connected with dotted lines.) As shown, the Euclidean distance metric (Section 3.3.1) would
report a distance of 4.25. However, translating the gray points one unit to the left and then scaling
by 1/2 in the x direction allows the point sets to be matched exactly, for a distance of 0. It should
be noted that exact matches are not possible in general.

can be partitioned, and points derived from the centroids or convex hull of the partitions. Point sets

based on partitioning can be used to capture information about larger units of the graph, such as

groups of vertices representing related objects.

Drawing Alignment The key features of a graph object's representation are coordinates, which

means metrics may be sensitive to the particular values of those coordinates | the scaling and

translation of one point set relative to the other can make a large di�erence in the value of the

metric (Figure 3.2).

To eliminate this e�ect, the drawings are aligned before coordinate-sensitive metrics are com-

puted. This is done by extracting a (paired) set of points from the drawings and applying a point

set matching algorithm to obtain the best �t. In general the matching algorithm should take into

account scaling, translation, and rotation, though it may be possible to eliminate one or more of the

transformations for certain metrics or if something is known about the relationship between the two

drawings. For example, interactive drawing algorithms often preserve the rotation of the drawing

(see Biedl and Kaufmann [18] and Papakostas and Tollis [125] for examples), eliminating the need

to consider rotation in the alignment stage. Even if the algorithm does not preserve the rotation,

for orthogonal drawings there are only eight possible rotations for the second drawing relative to the

�rst | four multiples of �=2, applied to the original drawing and its reection about the x axis |

which can be handled by computing the metric separately for each rotation and taking the minimum

value instead of incorporating rotation into the alignment process.

A great deal of work has been done on point set matchings; see Alt, Aichholzer, and Rote [1],

Chew et. al. [47], and Goodrich, Mitchell, and Orletsky [83] for several methods of obtaining both

optimal and approximate matchings. Di�erent methods can be applied when the correspondence

between points is known as it is here; Imai, Sumino, and Imai [97] provide an algorithm that

minimizes the maximum distance between corresponding points under translation, rotation, and

scaling. In the implementation used in Section 3.4, the alignment is performed by using gradient

search to minimize the distance squared between points.

55

3.3 Metrics

The di�erence metrics being considered fall into six categories:

� distance: metrics based on the distance between points or the distance points move between

drawings

� proximity: metrics based on the nearness of points and the clustering of points according to

the distance between them

� partitioning: metrics based on partitioning points according to measures other than proxim-

ity

� orthogonal ordering: metrics based on the relative angle between pairs of points

� shape: metrics based on the sequence of horizontal and vertical segments of the graph's edges

� topology: metrics based on the embedding of the graph

Proximity, ordering, and topology are suggested by Eades et. al. [63], Lyons, Meijer, and Rappa-

port [108], and Misue et. al. [115] as qualities which should be preserved; distance (also suggested

by Lyons, Meijer, and Rappaport [108]), shape, and partitioning reect intuition about what causes

drawings to look di�erent. Within each category speci�c metrics were chosen to capture intuition

about what qualities of the drawing are important to preserve.

An alternative taxonomy is given by Biedl et. al. [19]. This taxonomy is similar to the one given

above, with the main distinctions being the inclusion of \feature similarity" based on the appearance

of regions of the drawing, and the grouping of all measures based on the comparison of point sets

into a single \metric similarity" category.

In the following, let P denote the (paired) set of points, and pi and p
0
i be the coordinates of point

i in drawings D and D0, respectively. Also let d(p; q) be the Euclidean distance between points p

and q.

3.3.1 Distance

The distance metrics reect the simple observation that drawings that look very di�erent cannot

be aligned very well, and vice versa. Since the alignment is based on distance minimization, these

metrics essentially measure the quality of the alignment.

In order to make the value of the distance metrics comparable between pairs of drawings, they

are scaled by the graph's unit length u. For orthogonal drawings the unit length can be computed

by taking the greatest common divisor of the Manhattan distances between vertex centers and bend

points on edges. Non-orthogonal portions of the drawing, such as modi�cations of an orthogonal

drawing made by the user, can be ignored during the computation. While the determination of the

unit length will be unreliable if only a small portion of the drawing is orthogonal, scaling by the unit

56

length is not necessary in some applications (e.g., solving the rotation problem of InteractiveGiotto)

and can often be supplied manually if it is required (e.g., the drawing algorithm is known to place

vertices on a unit grid).

Hausdor� Distance The undirected Hausdor� distance is a standard metric for determining the

distance between two point sets, and measures the largest distance between a point in one set and

its nearest neighbor in the other.

haus(D;D0) =
1

u
maxfmax

i
min
j

d(pi; p
0
j);max

i
min
j

d(p0i; pj)g

where 1 � i; j � jP j and j 6= i.

Euclidean Distance Euclidean distance, used by Lyons, Meijer, and Rappaport [108], is a simple

metric measuring the average distance moved by each point from the �rst drawing to the second; it

is motivated by the notion that if points move a long way from their locations in the �rst drawing,

the second drawing will look very di�erent.

dist(D;D0) =
1

u jP j

X
1�i�jP j

d(pi; p
0
i)

Relative Distance Relative distance measures the average change in the distance between each

pair of points between the �rst drawing and the second. This measures how much the points in

each drawing move relative to each other; it is similar in some respects to the orthogonal ordering

metrics in Section 3.3.4.

rdist(D;D0) =
1

jP j (jP j � 1)

X
1�i;j�jP j

j d(pi; pj)� d(p0i; p
0
j) j

3.3.2 Proximity

The proximity metrics reect the idea that points near each other in the �rst drawing should remain

near each other in the second drawing. This is stronger than the distance metrics because it captures

the idea that if an entire subgraph moves relative to another (and there are only small changes within

each subgraph), the distance should be less than if each point in one of the subgraphs moves in a

di�erent direction (Figure 3.3).

Three di�erent metrics are used to try to capture this idea: nearest neighbor within (nn-within),

nearest neighbor between (nn-between), and �-clustering.

Nearest Neighbor Within Nearest neighbor within is based on the reasoning that if pj is the

closest point to pi in D, then p0j should be closest point to p
0
i in D

0. Considering only distances within

a single drawing means that nn-within is alignment-independent and thus not subject alignment

errors, but means that it is not suitable for solving the rotation problem of InteractiveGiotto.

57

(a) (b) (c)

Figure 3.3: Proximity: (b) looks more like (a) than (c) does because the relative shape of both the
inner and outer squares are preserved even though the distance (using the Euclidean distance metric)
between (c) and (a) is smaller. An aligned version of the vertices of (a), used in the computation of
the distance metric, is shown with dotted lines in (b) and (c).

This metric has two versions, weighted and unweighted. In the weighted version the number of

points closer to p0i than p
0
j is considered, whereas in the unweighted version only whether or not p

0
j is

the closest point matters. The reasoning behind the weighted version is that if there are more points

between p0i and p0j , the visual linkage between p0i and p0j has been disrupted to a greater degree and

the drawing looks more di�erent.

In both cases the distance is scaled by the number of points being considered and W , the

maximum weight contributed by a single point, so that the metric's value is always in the range

[0; 1].

nn-w(D;D0) =
1

W jP j

X
1�i�jP j

closer(p0i; p
0
j)

where pj is the closest point to pi in D and

closer(p0i; p
0
j) =

��fk j d(p0i; p0k) < d(p0i; p
0
j)g
�� ; W = jP j � 2 (weighted)

closer(p0i; p
0
j) =

(
0 if d(p0i; p

0
j) � d(p0i; p

0
k); k 6= i

1 otherwise
; W = 1 (unweighted)

Nearest Neighbor Between Nearest neighbor between is similar to nn-within but instead mea-

sures whether or not p0i is the closest of the points in D0 to pi when the two drawings are aligned.

The idea that a point should remain nearer to its original position than any other is also the force

behind layout adjustment algorithms based on the Voronoi diagram [108].

nn-b(D;D0) =
1

W jP j

X
1�i�jP j

closer(pi; p
0
i)

58

where

closer(pi; p
0
i) =

��fj j d(pi; p0j) < d(pi; p
0
i)g
�� ; W = jP j � 1 (weighted)

closer(pi; p
0
i) =

(
0 if d(pi; p

0
i) � d(pi; p

0
j); j 6= i

1 otherwise
; W = 1 (unweighted)

Unlike nn-within, nn-between is not alignment- and rotation-independent and thus is suitable

for solving the rotation problem.

�-Clustering The de�nition for an �-cluster is from Eades et. al [63]: An �-cluster for a point pi

is the set of points pj such that d(pi; pj) � �, where a reasonable value to use for � is

� = max
i

min
j 6=i

d(pi; pj)

The �-cluster metric measures how the �-cluster for pi compares to that for p0i. Let

CD = f(i; j) j d(pi; pj) � �Dg and CD0 = f(i; j) j d(p0i; p
0
j) � �D0g. Then

clust(D;D0) = 1�
jCD \ CD0 j

jCD [CD0 j

The idea is that points should be in the same �-cluster in both drawings.

3.3.3 Partitioning

The partitioning metrics are based on dividing the point set into subsets according to some criteria,

and measuring qualities of these partitions. The motivation for this is to capture \visual units" that

the user may use for orientation when learning the new drawing.

Fixed Relative Position Partitioning A variety of partitioning methods are possible. A simple

one is to divide the point set so that the points in each group have the same relative position in

both drawings. This identi�es blocks of the graph that are the same in both drawings | the larger

the partitions, the more unchanged parts and the more similar the drawings.

Two metrics are computed, the average partition size and the number of partitions. Both are

scaled to have values between 0 and 1:

alsz(D;D0) = 1�

0
@1

k

X
1�i�k

jSij

1
A� 1

jP j � 1
[average size]

alct(D;D0) =
k � 1

jP j � 1
[number of partitions]

where the set of partitions is fS1; : : : ; Skg. The idea is that as the drawings become more di�erent,

the partition size will decrease and the number of partitions will increase.

59

The partitioning method and the metrics computed are obviously quite simple, and can be made

much more sophisticated. For example, the partitions can be adjusted to only include points that

are also close physically; while it tends not to be the case that points from widely separated regions

of the drawing are in the same partition, it can occur. A large distance between points interferes

with their grouping as a single visual unit.

Additional sophistications can address things such as how visually separate two adjacent par-

titions are, since if they are very near or entertwined in one drawing, it is more diÆcult for the

observer to distinguish them and use them as landmarks for the other drawing. Partitions can also

be weighted to take into account how well the partition reects a distinct unit of the graph, so that

partitions containing only points derived from a connected subgraph are better than those contain-

ing points from several unconnected portions of the graph, even if those subgraphs are physically

close together.

3.3.4 Orthogonal Ordering

The orthogonal ordering metric reects the desire to preserve the relative ordering of every pair of

points | if pi is northeast of pj in D, p0i should remain to the northeast of p
0
j in D

0 (Eades et. al. [63]

and Misue et. al. [115]). The simplest measurement of di�erence in the orthogonal ordering is to

take the angle between the vectors pj �pi and p
0
j �p0i (constant-weighted orthogonal ordering). This

has the desirable feature that if pj is far from pi, d(pj ; p
0
j) must be larger to result in the same

angular move, which reects the intuition that the relative position of points near each other is more

important that the relative position of points that are far apart.

However, simply using the angular change fails to take into account situations such as that shown

in Figure 3.4. This problem can be addressed by introducing a weight that depends on the particular

angles involved in the move in addition to size of the move (linear-weighted orthogonal ordering).

order(D;D0) =
1

W jP j

X
1�i;j�jP j

nmin(order(�ij ; �
0
ij); order(�

0
ij ; �ij))

where �ij is the angle from the positive x axis to the vector pj �pi, �
0
ij is the angle from the positive

x axis to the vector p0j � p0i, and

order(�ij ; �
0
ij) =

Z �0

ij

�ij

weight(�) d�; W = min

�Z �

0

weight(�) d�;

Z 2�

�

weight(�) d�

�

The weight functions are

weight(�) =

8<
:

�
2
�(� mod �

2
)

�
4

if (� mod �
2) >

�
4

� mod �
2

�
4

if (� mod �
2) �

�
4

(linear-weighted)

weight(�) = 1 (constant-weighted)

The �-matrix model for measuring the di�erence of two point sets, used by Lyons, Meijer, and

Rappaport [108], is based on the concept of order type of a point set, from Goodman and Pollack [82].

60

(a) (b) (c)

Figure 3.4: Orthogonal ordering: Even though the angle the vertex moves relative to the center of
the large vertex is the same from (a) to (b) and from (a) to (c), the perceptual di�erence between
(a) and (c) is much greater. The original location of the vertex is shown with a dotted box in (b)
and (c) for comparison purposes.

This model tries to capture the notion of the relative position of vertices in a straight-line drawing

and is thus related to the orthogonal ordering metric.

3.3.5 Shape

The shape metric is motivated by the reasoning that edge routing may have an e�ect on the overall

look of the graph (Figure 3.5). The shape of an edge is the sequence of directions (north, south,

east, and west) traveled when traversing the edge; writing the shape as a string of N, S, E, and W

characters yields the shape string of the edge. For non-orthogonal edges the direction is taken to be

the most prominent direction; for example, if the edge goes from (1,1) to (4,2) the most prominent

direction is east. For each pair of edges (ei; e
0
i), the edit distance between the corresponding shape

strings is computed. Two methods are used for determining the edit distance. One uses dynamic

programming to compute the minimum number of insertions, deletions, or replacements of characters

needed to transform one string into the other. The other is similar, but normalizes the measure

according to the length of the strings; the algorithm is given by Marzal and Vidal [109]. The value

of the shape metric is the average edit distance over the graph's edges.

shape(D;D0) =
1

jEj

X
1�i�jEj

edits(ei; e
0
i)

Shape is scale- and translation-independent.

The shape metric is similar in spirit to the cost function used by Brandes and Wagner [28] in

their dynamic extension of Giotto [146]. Their cost function counts the number of changes in angles

at vertices and edge bends; the shape metric takes this in account to some degree by noting changes

in the direction of an edge segment.

61

(a) (b)

Figure 3.5: Shape: (a) and (b) look di�erent even though the graphs are the same and the vertices
have the same coordinates.

3.3.6 Topology

The topology metric reects the idea that preserving the order of edges around a vertex is important

in preserving the mental map (Eades et. al. [63] and Misue et. al. [115]) | comparing the drawing

produced by Giotto in Figures 3.6 and 3.7 to the user's input illustrates this. However, since most

interactive orthogonal drawing algorithms always preserve topology, it is not useful as a means of

comparing these algorithms. (See, for example, the algorithms of Bridgeman et. al. [43], Biedl and

Kaufmann [18], F�o�meier [73], Papakostas, Six, and Tollis [126], and Papakostas and Tollis [125].)

Topology is also alignment-independent and so can not be used to solve the rotation problem of

InteractiveGiotto. As a result, it is not discussed in any more detail here.

3.4 Analyzing the Metrics

Once de�ned, the suitability of the metrics must be evaluated. A good metric for measuring the

di�erence between drawings should satisfy the following three requirements:

� it should qualitatively reect the visual di�erence between two drawings, i.e. the value increases

as the drawings diverge;

� it should quantitatively reect the visual di�erence so that the magnitude of the di�erence in

the metric is proportional to the perceived di�erence; and

� in the rotation problem of InteractiveGiotto, the metric should have the smallest value for the

correct rotation, though this requirement can be relaxed when the di�erence between drawings

is high since in that case there is no clear \correct" rotation.

The third point is the easiest to satisfy | in fact, most of the metrics de�ned in the previous section

can be used to solve the rotation problem | but is still important worth considering since the

problem was one of the factors that �rst inspired this work.

62

The running time of the metrics is not considered at this point. While eÆciency is clearly a

concern, the goal at this stage is to identify the type of measure that best captures visual similarity.

Once this has been done, eÆcient implementations and/or approximations can be considered.

Some preliminary work has been done on evaluating the proposed metrics with respect to the

�rst and third criteria. Evaluating the qualitative behavior of potential metrics requires a human-

generated master ordering of pairs of drawings based on the visual di�erence between the existing

drawing and the new drawing in each pair. This is very diÆcult to do when each pair of drawings

is of a di�erent graph, and most interactive drawing algorithms only produce a single drawing of a

particular user-modi�ed graph. InteractiveGiotto, however, makes it possible to obtain a series of

drawings of the same input by relaxing the constraints preserving the layout. By default Interac-

tiveGiotto preserves edge crossings, the direction (left or right) and number of bends on an edge,

and the angles between consecutive edges leaving a vertex. Recent modi�cations allow the user to

turn o� the last two constraints on an edge-by-edge or vertex-by-vertex basis, making it possible to

produce a series of drawings of the same graph by relaxing di�erent sets of constraints. A smooth

way of relaxing the constraints is to use a breadth-�rst ordering, expanding outward from the user's

modi�cations. In the �rst step all of the constraints are applied, in the second step the bend and

angle constraints are relaxed for all of the modi�ed objects, in the third step the angle constraints

are relaxed for all vertices adjacent to edges whose bends constraints have been relaxed, in the fourth

step the bend constraints are relaxed for all edges adjacent to vertices whose angle constraints have

been relaxed, and so on, alternating between angle and bend constraints until all of the constraints

have been relaxed. This relaxation method is based on the idea that the user is most willing to

allow restructuring of the graph near where her changes were made and so the drawings produced

resemble drawings that an actual user might encounter. The result is a series of drawings of the

same graph | a relaxation sequence | bearing varying degrees of similarity to the original.

3.4.1 An Example

Figures 3.6 and 3.7 show portions of two relaxation sequences produced by InteractiveGiotto; the base

graphs and user modi�cations are those used in the �rst two steps of Figure 2 in Bridgeman et. al. [43].

Giotto's redraw-from-scratch drawing of the graph is also included for comparison. Figures 3.8

and 3.9 show the results of several metric-and-pointset combinations for each sequence of drawings.

Since Giotto and InteractiveGiotto do not preserve the orientation of the original drawing, each

metric is computed for the eight possible rotations (four multiples of �=2, with or without a reection

around the x-axis) and the lowest value chosen. The color of each column indicates the con�dence,

a measure of how much lower the metric's value is for the best rotation as compared to the second

best; red is the most con�dent and purple is the least con�dent, with white indicating that the metric

is rotation-independent (and so con�dence is meaningless) and black indicating that two rotations

had the same lowest value. The shading of the column indicates whether or not the metric chose the

right rotation | hashing means that the wrong rotation had the lowest value. The correct rotation

is de�ned to be the rotation chosen by the metric/pointset combination with the highest con�dence;

63

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Relaxations for stage 1. (a) shows the user's modi�cations; (b){(e) show the output from
InteractiveGiotto for relaxation steps 0, 4, 6, and 7; (f) is the output from Giotto. (Intermediate
relaxation steps produced drawings identical to those shown and have been left out.) Rounded
vertices and bends without markers indicate vertices and bends for which the constraints have been
relaxed.

in practive this is nearly always the rotation a human would pick as the correct answer.

The point sets shown in Figures 3.8 and 3.9 show use the following abbreviations:

� centers: vertex centers

� corners: vertex corners

� hulls (cen): the vertex centers point set is partitioned using �xed relative partitioning; the

points used are the points on the convex hull of each partition

� hulls (cor): the vertex corners point set is partitioned using �xed relative partitioning; the

points used are the points on the convex hull of each partition

� centroids (cen): the vertex centers point set is partitioned using �xed relative partitioning;

the points used are the centroids of each partition

� centroids (cor): the vertex corners point set is partitioned using �xed relative partitioning;

the points used are the centroids of each partition

The t or f in brackets following the point set name indicates whether or not points derived from

parts of the graph modi�ed by the user are included in the point set. The �rst position indicates

64

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.7: Relaxations for stage 2. (a) shows the starting graph, (b) shows the user's modi�cations
(two vertices and their adjacent edges deleted), (c) is the fully-constrained output from Interac-
tiveGiotto (step 0), (d){(j) show the output from InteractiveGiotto for relaxation steps 2{8 (step 1
produced the same drawing as step 0), and (k) is the output from Giotto. Rounded vertices and
bends without markers indicate vertices and bends for which the constraints have been relaxed.

65

the value for the point set used for the computation of the metric, the second the point set used for

drawing alignment.

The relaxed drawings are labelled as follows:

� ni: InteractiveGiotto's drawing of the nth relaxation step

� xg: Giotto's output

3.4.2 Experimental Setup

For the experimental study, a set of 14 graphs with 30 vertices each were extracted from the 11,582-

graph test suite used in the experimental studies of Di Battista et. al. [56, 57]. 30-vertex graphs

were chosen as being small enough to work with easily, but large enough so that one modi�cation

does not a�ect the entire graph. Future experiments will consider graphs of di�erent sizes.

A random modi�cation was applied to each graph to simulate a user's modi�cation. A modi�-

cation is one of:

� edge insert: insertion of a single edge between two randomly chosen vertices

� edge delete: deletion of a single edge

� edge split: insertion of a single vertex at the midpoint of an existing edge, splitting the edge

into two new edges

� vertex insert: insertion of a vertex along with a number of adjacent edges; both the number

of edges and their endpoints is chosen randomly

� vertex delete: deletion of a vertex and its incident edges

Operations were not allowed to disconnect the graph. Since InteractiveGiotto preserves the embed-

ding of the graph and the edge crossings and bends, new edges were routed so as to mimic how an

actual user might draw the edge, instead of simply connecting the endpoints with a straight line

(and potentially introducing many edge crossings). Only a single modi�cation was made in each

graph because as the user's changes a�ect a larger portion of the graph, the di�erence between the

new drawings and the original rapidly becomes high and it is diÆcult to determine an ordering of

the relaxation sequence.

Modi�cations of each type were applied to each of the 14 original graphs, though due to some

diÆculties with Giotto, the total number of modi�ed graphs generated was only 63.

For each modi�ed graph, a series of progressively relaxed drawings was obtained by incremen-

tally relaxing the constraints given to InteractiveGiotto. The number of relaxed drawings for each

modi�ed graph ranged from 8 to 17, but was generally around 11. Each sequence of drawings was

then ordered by a human according to increasing visual distance from the original drawing and

this ordering was compared to the orderings produced by sorting the drawings in each relaxation

sequence according to the computed values of the metric. The orderings were compared using the

66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

constant weighting linear weighting

orthogonal ordering

m
et

ri
c

va
lu

e

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

00i
04i

06i
07i

xg

0

1

2

3

4

5

6

7

average
relative distance

Hausdorff distance
average distance

m
et

ri
c

va
lu

e

distance

ce
nt

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

00i
04i

06i
07i

xg

Figure 3.8: Selected metric values for each drawing in stage 1.

67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

weighted
nn-within

unweighted nn-within

weighted
nn-between

unweighted nn-between

m
et

ri
c

va
lu

e

nearest neighbor

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

00i
04i
06i
07i
xg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shape

epsilon-clustering

partition size

partition
count

m
et

ri
c

va
lu

e

clustering, partitioning, shape

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

no
rm

al
iz

ed
[f/

f]

un
no

rm
al

iz
ed

[f/
f]

00i
04i

06i
07i

xg

Figure 3.8: Selected metric values for each drawing in stage 1. (continued)

68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

linear weighting
constant weighting

m
et

ri
c

va
lu

e

orthogonal ordering

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

00i

02i

05i

07i

03i

04i

06i

08i
xg

0

1

2

3

4

5

6
average

relative distance

Hausdorff distance

average distance

m
et

ri
c

va
lu

e

distance

ce
nt

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

00i

02i

05i

07i

03i

04i

06i

08i
xg

Figure 3.9: Selected metric values for each drawing in stage 2.

69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

weighted
nn-within

unweighted nn-within

weighted
nn-between

unweighted nn-between

m
et

ri
c

va
lu

e

nearest neighbor

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]
hu

lls
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

03i
00i

04i
02i

06i
05i

08i
07i

xg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shape

epsilon-clustering

partition size

partition
count

m
et

ri
c

va
lu

e

clustering, partitioning, shape

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

ce
nt

er
s

[f/
f]

co
rn

er
s

[f/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
or

)
[f/

f]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[f/
f]

no
rm

al
iz

ed
[f/

f]

un
no

rm
al

iz
ed

[f/
f]

00i

02i

05i

07i

03i

04i

06i

08i

xg

Figure 3.9: Selected metric values for each drawing in stage 2. (continued)

70

number of inversions: Two drawings Di and Dj were judged to be out of order if Di came after

Dj in the metric ordering but before Dj in the human ordering, Di and Dj were ranked equally in

the metric ordering but not the human ordering, or Di and Dj were ranked equally in the human

ordering but not the metric ordering. The number of inversions was normalized by the maximum

number of inversions for the sequence to adjust for di�erent sequence lengths.

3.4.3 Experimental Results

Some of the metric names used in Figures 3.10 and 3.11 have modi�ers:

� nn-b and nn-w: unw and w denote the unweighted and weighted versions, respectively

� order: const and linear denote the constant-weighted and linear-weighted versions, respec-

tively

� shape: norm indicates that the normalized edit distance was used

Ordering Ability

Figure 3.10 shows the frequency with which di�erent metric-and-pointset combinations did a partic-

ularly good or bad job of ordering the drawings for each graph. (Not all combinations of metrics and

point sets shown in the �gure were evaluted | the gray regions around the borders in Figure 3.10

mark combinations which were not computed.) A metric/pointset combination was agged as doing

a good job on a particular relaxation sequence if the number of inversions was noticeably lower

than that for other metric/pointset combinations on the same sequence; similarly, a metric/pointset

combination was agged as doing a bad job if the number of inversions was noticeably higher than

others. In a few cases no metric/pointset combination stood out as being noticeably better or worse

than the others and so nothing was agged for that sequence.

The orthogonal ordering metrics were strikingly better than most other metrics for all point

sets except for those based on partition centroids. The point sets based on vertex corners fared

particularly well, yielding the best ordering for over one-quarter of the sequences tested.

Shape, Euclidean distance, and the weighted nn-between metrics also stand out as being better

than most of the other metrics, though they are not quite as good as orthogonal ordering.

Looking at the worst metrics, nn-within stands out as most often doing the worst job of ordering

the drawings, particularly for point sets that are centroids of partitions of vertex corners. �-clustering

and partition size/count also do a consistently worse job of ordering.

In general, the partition centroid point sets were worse than the others, indicating that too much

information is lost in these point sets to be of much use for similarity comparisons.

It is also important to consider the variation in the relative success of a given metric/pointset

combination when applied to di�erent graphs. Many did the worst job of ordering the drawings for

at least one graph, and all did the best job at least once | even the most consistently best metric

(orthogonal ordering) was the best only about 30% of the time. The variation is particularly large

71

0
1.

31
2.

62
3.

93
5.

24
6.

55
7.

86
9.

17
10

.4
8

11
.7

9
13

.1
14

.4
1

15
.7

2

best ordering (number of inversions)

co
rn

er
s

[f/
f]

co
rn

er
s

[t/
f]

co
rn

er
s

[f/
t]

co
rn

er
s

[t/
t]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[t/
f]

hu
lls

(c
or

)
[f/

f]

hu
lls

(c
or

)
[t/

f]

ce
nt

er
s

[f/
f]

ce
nt

er
s

[t/
f]

ce
nt

er
s

[f/
t]

ce
nt

er
s

[t/
t]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[t/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
en

)
[t/

f]

[f/
f]

[t/
t]

part count

part size

�-clus

dist

haus

nn-b/unw

nn-b/w

nn-w/unw

nn-w/w

order/const

order/linear

rdist

shape

shape/norm

0
0.

68
1

1.
36

2
2.

04
3

2.
72

4
3.

40
5

4.
08

6
4.

76
7

5.
44

8
6.

12
9

6.
81

7.
49

1
8.

17
2

8.
85

3

worst ordering (number of inversions)

co
rn

er
s

[f/
f]

co
rn

er
s

[t/
f]

co
rn

er
s

[f/
t]

co
rn

er
s

[t/
t]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[t/
f]

hu
lls

(c
or

)
[f/

f]

hu
lls

(c
or

)
[t/

f]

ce
nt

er
s

[f/
f]

ce
nt

er
s

[t/
f]

ce
nt

er
s

[f/
t]

ce
nt

er
s

[t/
t]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[t/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
en

)
[t/

f]

[f/
f]

[t/
t]

part count

part size

�-clus

dist

haus

nn-b/unw

nn-b/w

nn-w/unw

nn-w/w

order/const

order/linear

rdist

shape

shape/norm

Figure 3.10: Purple is the lowest frequency; red is the highest. Peaks in the top picture indicate
metric/pointset combinations which tend to produce orderings closest to the human-speci�ed order-
ing; peaks in the bottom picture indicate combinations which tend to produce orderings most unlike
the human-speci�ed ordering.

72

for the partition size and count metrics, as shown by a middle-of-the-road ranking in both the best

and worst plots in Figure 3.10. These metrics are very sensitive to the slightest movement of vertices

with respect to each other, and very quickly reach their maximum values if there is much change in

the drawing.

The variation in performance of the metrics for di�erent graphs can also be seen when breaking

down the results by the type of modi�cation. Shape, average relative distance, orthogonal ordering,

nn-between, and the partition size and count metrics perform better on vertex deletions. Nearly

all of the metrics, except nn-within and shape, perform noticeably worse on edge insertions. The

partition size and count and the Hausdor� distance metrics also perform worse on vertex insertions.

This behavior is explained by noting that in InteractiveGiotto, inserting an object into the graph

tends to disrupt the drawing more than a deletion.

Rotation Ability

The other criterion evaluated at this stage is how suitable the metrics are for solving the rotation

problem. The measurement for each metric/pointset combination is the percentage of drawings in

the relaxation sequence for which the correct rotation was chosen. The percentage correct for each

combination, averaged over all of the experimental graphs, is shown in Figure 3.11. (Note that

nn-within is rotation-independent and is thus not included in the chart.)

The partition size and count metrics fared the worst, getting the correct rotation only 50-54%

of the time. The low results for partition size and count are largely due to many cases where the

0.951-0.971

0.93-0.951

0.91-0.93

0.889-0.91

0.869-0.889

0.848-0.869

0.828-0.848

0.807-0.828

0.787-0.807

0.766-0.787

0.746-0.766

0.725-0.746

0.705-0.725

0.684-0.705

0.664-0.684

0.643-0.664

0.623-0.643

0.602-0.623

0.582-0.602

average percentage of correct rotations

co
rn

er
s

[f/
f]

co
rn

er
s

[t/
f]

co
rn

er
s

[f/
t]

co
rn

er
s

[t/
t]

ce
nt

ro
id

s
(c

or
)

[f/
f]

ce
nt

ro
id

s
(c

or
)

[t/
f]

hu
lls

(c
or

)
[f/

f]

hu
lls

(c
or

)
[t/

f]

ce
nt

er
s

[f/
f]

ce
nt

er
s

[t/
f]

ce
nt

er
s

[f/
t]

ce
nt

er
s

[t/
t]

ce
nt

ro
id

s
(c

en
)

[f/
f]

ce
nt

ro
id

s
(c

en
)

[t/
f]

hu
lls

(c
en

)
[f/

f]

hu
lls

(c
en

)
[t/

f]

[f/
f]

[t/
t]

part count

part size

�-clus

dist

haus

nn-b/unw

nn-b/w

order/const

order/linear

rdist

shape

shape/norm

Figure 3.11: Purple is the lowest percentage correct (around 50%); red is the highest (94%).

73

metric could not distinguish between two or more rotations. This happened most often with the

\more relaxed" drawings and reects the fact that in these drawings the partitions tend to be very

small.

The �-clustering metric did somewhat better, getting 60-83% of the rotations correct; the large

variation is due to whether the point set was based on vertex corners (worse) or vertex centers

(better). The results here are due primarily to �-clustering choosing the wrong rotation, rather than

being unable to choose between multiple rotations. Point sets based on vertex corners are worse

than those based on vertex centers because InteractiveGiotto places vertices so that the minimum

spacing between vertices is the same as the minimum vertex dimension. As a result, the �-cluster

for each point typically does not contain more than four points | up to two other corners of the

same vertex and up to two corners of neighboring vertices. This makes �-clustering using vertex

corners particularly sensitive to modi�cations which change vertex dimensions or separate vertices

which are horizontally or vertically near each other; however, if the vertices are spaced relatively far

apart compared to the vertex size in both drawings, �-clustering will report a small distance.

The unweighted nn-between metric also exhibited unsatisfactory behavior for some choices of

point sets, getting 83-93% of the rotations correct. This is again the result of the metric being

unable to distinguish between multiple rotations for the more relaxed drawings.

The average relative distance metric stands out as the best, averaging at least 93% of the rotations

correct. This average is goes up to over 97% for the center and corner point sets.

Breaking down the results by the type of modi�cation shows that there are again some variations

between groups. The correct rotation was chosen most often when edge deletions were performed,

followed by vertex insertions, edge splits, vertex deletions, and edge insertions (where the best

metrics achieved only about 85% correctness). In most cases the relative performance of di�erent

metric/pointset combinations is the same as in the average of all the graphs, with a few notable

exceptions:

� For graphs where an edge has been inserted, average relative distance with vertex corners and

vertex centers is noticeably better and unweighted nn-between is noticeably worse than the

other metrics.

� For graphs where an edge has been split, unweighted nn-between is noticeably worse for point

sets consisting of vertex corners.

Conclusions

If the goal is simply to solve the rotation problem, average relative distance using either corner

or center point sets performs quite well. Given the success of this metric, it seems unnecessary to

consider anything more complicated to solve the rotation problem.

If it is important to compare di�erent drawings of the same graph, the orthogonal ordering

metrics are the best of the metrics tested in terms of qualitative behavior. The linear-weighted

version has a slight edge over the constant-weighted one. Orthogonal ordering is also nearly as good

74

as average relative distance in solving the rotation problem. However, there is still a good deal of

room for improvement | orthogonal ordering only achieved the best ordering 30% of the time, and,

considering all of the metrics, the correct ordering was found for only 9 of the 63 graphs.

3.5 Future Work

The next step is to study in more detail those cases for which certain metric/pointset combinations

perform signi�cantly worse (or better) than the average, since there are variations in performance

between individual graphs. This may also indicate combinations of the existing metrics that may

work better than any single one alone.

It will also be useful to test the metrics on drawings generated by other drawing algorithms.

SMILE [19], for example, provides a way of obtaining many drawings of the same graph. Since the

performance of some of the metrics can be traced to characteristics of InteractiveGiotto, this may

prove illuminating.

Another important task is to analyze the quantitative behavior of the metrics. This requires

that each drawing be assigned (by a human) a numerical value measuring how well the user's mental

map is preserved. Obtaining these values is a non-trivial task, since it is diÆcult for a person to

judge quantitatively the di�erence in visual distance between two pairs of drawings, even of the

same graph | Is one pair twice as di�erent as another? Only one-and-a-half times? Five percent

less? Furthermore, asking if one drawing looks more like the original than another drawing may

not be exactly the same question as asking which drawing does a better job of preserving the user's

mental map. The chances are that a drawing which looks more like the original will do a better

job of preserving the mental map, but assuming this presupposes something about how a user's

mental map is structured. A solution to this may be to design an experiment in which the user gains

familiarity with the original drawing, and is then timed on her response to a question involving a

new drawing of the same graph. The idea is that a faster response time means that the new drawing

did a better job of preserving the mental map.

Other metrics can also be developed and evaluated. Metrics based on clustering and partitioning

seem particularly related to how a user navigates around the drawing, and further work is needed

to extend and improve these metrics. Surveying users about what they think makes two drawings

more or less similar may also lead to additional metrics. Also, combinations of the current metrics

may yield better results. Both current and new metrics should also be evaluated using a larger pool

of graphs, including graphs of di�erent sizes.

Finally, once suitable metrics have been identi�ed and validated through user studies, they can

be used to compare the behavior of interactive graph drawing algorithms as well as potentially

providing inspiration for new drawing algorithms.

Chapter 4

A User Study in Similarity

Measures for Graph Drawing

4.1 Introduction

The question of how similar two drawings of graphs are arises in a number of situations. One

application is interactive graph drawing, where the graph being visualized changes over time and it

is important to preserve the user's \mental map" [115] of the original drawing as much as possible

so the user does not need to spend a lot of time relearning the drawing after each update. Having to

relearn the drawing can be a signi�cant burden if the graph is updated frequently. Animation can

be used to provide a smooth transition between the drawings and can help compensate for greater

changes in the drawing, but it is still important to maintain some degree of similarity between the

drawings to help the user orient herself to the new drawing. Related to interactive graph drawing

is layout adjustment, where an existing drawing is modi�ed so as to improve an aesthetic quality

without destroying the user's mental map.

Another application is in indexing or browsing large sets of graphs. An example of a graph

browser is contained the SMILE graph multidrawing system of Biedl et. al. [19]. The SMILE system

tries to �nd a good drawing by producing many drawings of the graph and letting the user choose

among them, rather than trying to code the properties of a good drawing into the algorithm. The

graph browser arranges the drawings so that similar ones are near each other, to help the user

navigate the system's responses. Related to this is the idea of using similarities between drawings

as a basis for indexing and retrieval. Such a system has applications in character and handwriting

recognition, where a written character is transformed into a graph and compared to a database of

characters to �nd the closest match.

Some material previously published as S. Bridgeman and R. Tamassia. A user study in similarity measures for
graph drawing. In Graph Drawing (Proceedings of GD '00), volume 1984 of Lecture Notes in Computer Science,
pages 19{30. Springer-Verlag, 2000. This version submitted to the Journal of Graph Algorithms and Applications.

75

76

Let M be a similarity measure de�ned so that M 's value is always nonnegative and is 0 when

the drawings are identical. In order to be useful, M should satisfy three properties:

Rotation: Given drawings D and D0, M(D;D0
�) should have the minimum value for the angle

a user would report as giving the best match, where D0
� is D0 rotated by an angle of � with

respect to its original orientation.

Ordering: Given drawings D, D0, and D00, M(D;D0) < M(D;D00) if and only if a user would say

that D0 is more like D than D00 is like D.

Magnitude: Given drawings D, D0, and D00, M(D;D0) = 1
cM(D;D00) if and only if a user would

say that D0 is c times more like D than D00 is like D.

This paper describes a user study performed in order to evaluate several potential similarity

measures with respect to rotation and ordering, and to test a possible method for obtaining data

to be used for evaluating measures with respect to magnitude. Data cannot be collected directly

for the magnitude part as it can be for rotation and ordering because it is very diÆcult to assign

numerical similarity values to pairs of drawings; Wickelgren [154] observes that it is more diÆcult

to assign numerical values than to judge ordering. As a result, other data must be gathered | for

example, response times on a particular task | with the hope that the data is suÆciently related

to the actual similarity values to be useful. This can be partially tested by using the data (e.g.,

response times) to order the drawings, and determining whether the results are consistent with user

responses on the ordering part.

This study improves on our previous work [38] in several ways:

� More Experimental Data: A larger pool of users (103 in total) was used for determining

the \correct" behavior for the measure.

� Re�ned Ordering Part: Users made only pairwise judgements between drawings rather

than being asked to order a larger set.

� Addressing of Magnitude Criterion: The previous experiment did not address magnitude

at all.

� More Realistic Drawing Alignment: The previous drawing alignment method allowed

one drawing to be scaled arbitrarily small with respect to the other; the new method keeps

the same scale factor for both drawings.

� Re�nement of Measures: For those measures computed with pairs of points, pairs involving

points from the same vertex are skipped.

� New Measures: Several new measures have been included.

We describe the experimental setup in Section 4.2, the measures evaluated in Section 4.3, the

results in Section 4.4, and conclusions and directions for future work in Section 4.5.

77

4.2 Experimental Setup

This study focuses on similarity measures for orthogonal drawings of nearly the same graph. \Nearly

the same graph" means that only a small number of vertex and edge insertions and deletions are

needed to transform one graph into the other. In this study, the graphs di�er by one vertex and

two or four edges. The focus on orthogonal drawings is partly practical, given the availability of an

orthogonal drawing algorithm capable of producing many drawings of the same graph, and partly

motivated by the amount of work done on interactive orthogonal drawing algorithms. (See, for

example, Biedl and Kaufmann [18], F�o�meier [73], Papakostas, Six, and Tollis [126], and Papakostas

and Tollis [125].) Being able to produce multiple drawings of the same graph is key, because it can

be very diÆcult to judge if one pair of drawings is more similar than another if the graphs in each

pair are di�erent.

4.2.1 Graphs

The graphs used in the study were generated from a base set of 20 graphs with 30 vertices each,

taken from an 11,582-graph test suite. [57] Each of 20 base graphs was �rst drawn using Giotto [146].

Each of the Giotto-produced base drawings was modi�ed by adding a degree 2 and a degree 4 vertex,

for a total of 40 modi�ed drawings. Each modi�ed drawing is identical to its base drawing except

for the new vertex and its adjacent edges, which were placed in a manner intended to mimic how

a user might draw them in an editor. Because InteractiveGiotto (used in the next step) preserves

edge crossings and bends, routing the edges realistically avoids introducing a large number of extra

crossings. Finally, a large number of new drawings were produced for each modi�ed drawing using

InteractiveGiotto [43], and four drawings were chosen from this set. The four drawings chosen range

from very similar to the base drawing to signi�cantly di�erent.

4.2.2 De�nition

The experiment consisted of three parts, to address the three evaluation criteria. In all cases, the

user was asked to respond as quickly as possible without sacri�cing accuracy. Each trial timed out

after 30 seconds if the user did not respond.

Rotation Part The rotation part directly addresses the rotation criterion. The user is presented

with a screen as shown in Figure 4.1. The one drawing D on the left is the base drawing; the eight

drawings D1; : : : ; D8 on the right are eight di�erent orientations of the same new (InteractiveGiotto-

produced) drawing derived from D. The eight orientations consist of rotations by the four multiples

of �=2, with and without an initial ip around the x-axis. For orthogonal drawings, only multiples

of �=2 are meaningful since it is clear that rotation by any other angle is not the correct choice.

The vertices are not labelled in any of the drawings to emphasize the layout of the graph over the

speci�cs of vertex names.

78

The user's task is to choose which of D1; : : : ; D8 looks most like the base drawing. A \can't

decide" button is provided for cases in which the drawings are too di�erent and the user cannot

make a choice. The user's choice and the time it took to answer are recorded.

Ordering Part The ordering part directly addresses the ordering criterion. In this part, the

user is presented with a screen as shown in Figure 4.2. The one drawing D on the left is the base

drawing; the two drawings D1 and D2 on the right are two di�erent (InteractiveGiotto-produced)

new drawings of the same modi�ed drawing derived from D.

The user's task is to choose which of D1 and D2 looks most like the base drawing. A \can't

decide" button is provided for cases in which the drawings are too di�erent and the user cannot

make a choice. The user's choice and the time it took to answer are recorded.

Di�erence Part The di�erence part addresses the magnitude criterion by gathering response

times on a task, with the assumption that a greater degree of similarity between the drawings

will help the user complete the task more quickly. The screen presented to the user is shown in

Figure 4.3. The drawing D on the left is the base drawing; the drawing D1 on the right is one of

the InteractiveGiotto-produced new drawings derived from D.

The user's task is to identify the vertex present in the right drawing that is not in the left drawing.

The vertices are labelled with random two-letter names | corresponding vertices in drawings in a

single trial have the same name, but the names are di�erent for separate trials using the same base

drawing to prevent the user from simply learning the answer. Displaying the vertex names makes

the task less diÆcult, and mimics the scenario where the user is working with a dynamically updated

graph where the vertex labels are important.

The user's choice and the time it took to answer are recorded.

4.2.3 Methodology

The three parts were assigned to students as part of a homework assignment in a second-semester

CS course at Brown University. A total of 103 students completed the problem.

Before being assigned the problem, the students had eight lectures on graphs and graph al-

gorithms, including one on graph drawing. They had also been assigned a programming project

involving graphs, so they had some familiarity with the subject.

The homework problem made use of an online system which presented the displays shown in

Figures 4.1, 4.2, and 4.3. A writeup was presented with the problem explaining how to use the

system, and the directions were summarized each time the system was run.

Each of the three parts was split into four runs, so the students would not have to stay focused

for too long without a break. The graphs used were divided into 10 batches: the �rst batch (the

practice batch) contained two modi�ed drawings along with their associated new drawings, and each

of the other nine batches contained three modi�ed drawings and the associated new drawings. All

of the students were assigned the practice batch for the �rst run of each part, and were randomly

79

Figure 4.1: The rotation part.

Figure 4.2: The ordering part.

Figure 4.3: The di�erence part.

80

assigned three of the other batches for later runs so that each batch was completed by 1/3 of the

students. A given student worked with the same batches for all three of the parts. Within each run

of the system, the individual trials were presented in a random order and the order of the right-hand

drawings in the rotation and ordering parts was chosen randomly.

After the students completed all of parts, they answered a short questionnaire about their expe-

riences. The questions asked were as follows:

1. (Ordering and Rotation)What do you think makes two drawings of nearly the same graph

look similar? Are there factors that inuenced your decisions? Did you �nd yourself looking

for certain elements of the drawing in order to make your choice?

2. (Di�erence)What factors helped you locate the extra vertex more quickly? Did you compare

the overall look of the two drawings in order to aid your search, or did you just scan the second

drawing?

3. (All Parts) As you consider your answers, think about what this means for a graph drawing

algorithm that seeks to preserve the look of the drawing. What types of things would it have

to take into account?

4.3 Measures Evaluated

All of the measures evaluated in this study are described below. Most are the same as or similar

to those described in [38]; the primary di�erence is that all of the measures have been scaled so

that 0 means the drawings are identical and 1 is the maximum di�erence. The upper bound is

frequently based on the worst-case scenario for point positioning and may not be achievable by an

actual drawing algorithm. (For example, the upper bound may only be achieved when all of the

vertices are placed on top of each other, an impossible situation with most drawing algorithms.)

4.3.1 Preliminaries

Corresponding Objects Most of the measures make use of the fact that the graph in the drawings

being compared is the same. (If the graphs are not the same, those parts that are di�erent can be

ignored and only the common subgraphs used.) This means that each vertex and edge of G has a

representation in each of the drawings, and it is meaningful to talk about the corresponding vertex

or edge in one drawing given a vertex or edge in the other drawing.

Point Set Selection With the exception of the shape measures, all of the measures are de�ned

in terms of point sets derived from the edges and vertices of the graph rather than the edges and

vertices themselves. Points can be selected in a variety of ways; inspired by North [120], one point

set contains the four corners of each vertex. A second point set, suggested by feedback from the

study (section 4.4.4), is a subset of the corner point set containing only points near the edge of the

81

drawing. Like vertices and edges, each point in one drawing has a corresponding point in the other

drawing.

A change from the previous experiment [38] is that many of the measures computed using pairs

of points now do not include pairs of points derived from the same vertex. This can have a great

e�ect on measures which involve nearest neighbors, for example, because a point's nearest neighbor

will often be another corner of the same vertex, which does not convey much information about how

that vertex relates to other vertices in the drawing. In this study, the point's nearest neighbor is

the nearest point from a di�erent vertex. This is not explicitly written in the de�nitions below for

clarity of notation, but it should be assumed unless stated otherwise.

Drawing Alignment For the measures involving the comparison of coordinates between drawings,

the value of the measure is very dependent on how well the drawings are aligned. Consider two

identical drawings, but let the x-coordinate of each point in the second drawing be one bigger than

the x-coordinate of the corresponding point in the �rst drawing. The average distance moved by

each point will be reported as 1, even though the drawings actually are the same. Aligning the

drawings before comparing the coordinates removes this e�ect.

In the previous experiment [38], alignment was done by simultaneously adjusting the scale and

translation of one drawing with respect to the other so as to minimize the distance squared between

corresponding points. This had the e�ect of potentially reducing one drawing to a very small area if

the drawings did not match well. This has been replaced by a new alignment method which separates

the determination of the scale and translation factors into two steps. First, the scale factor is set

to ensure that the two drawings are drawn to the same scale. Since the drawings are orthogonal

drawings, there is a natural underlying grid which can be used to adjust the scale. Once scaled, the

translation factor is chosen so as to minimize the distance squared between corresponding points.

The new alignment method is intended to better match how a person might try to match up the

drawings | it does not seem likely that someone would mentally shrink or enlarge one drawing

drastically with respect to the other, but rather would work with the current scale and try to adjust

the translation.

Suitability for Ordering vs. Rotation and Ordering Some of the measures do not depend on

the relative rotation of one drawing with respect to the other. This means that they fail the rotation

test, however, they are included because there may be situations in which the measure is not being

used to determine the proper rotation for the drawings. Furthermore, a successful ordering-only

measure could be combined with one which is successful at rotation but less so at ordering to obtain

a measure which is good at both. Measures suitable for ordering only are marked [order only] below.

Notation In the following, P and P 0 will always refer to the point sets for drawings D and D0,

respectively, and p0 2 P 0 will be the corresponding point for p 2 P (and vice versa). Let d(p; q) be

the Euclidean distance between points p and q.

82

4.3.2 Degree of Match

The following measures measure a degree of matching between the point sets by looking at the

maximum mismatch between points in one set and points in another. The motivation for these

measures is straightforward | if point sets are being used to represent the drawings, then classical

measures of point set similarity can be used to compare the drawings.

Undirected Hausdor� Distance The undirected Hausdor� distance is a standard metric for

determining the quality of the match between two point sets. It does not take into account the fact

that the point sets may be labelled.

haus(P; P 0) = max fmax
p2P

min
q02P 0

d(p; q0) ; max
p02P 0

min
q2P

d(p0; q) g

Paired Hausdor� Distance The paired Hausdor� distance is an adaptation of the undirected

Hausdor� distance for labelled point sets, and is de�ned as the maximum distance between two

corresponding points:

phaus(P; P 0) = max
p2P

d(p; p0)

4.3.3 Position

These measures are motivated by the idea that the location of the points on the page is important,

and points should not move too move far between drawings.

Average Distance Average distance is the average distance points move between drawings.

dist(P; P 0) =
1

jP j

X
p2P

d(p; p0)

Nearest Neighbor Between Nearest neighbor between is based on the assumption that a point's

original location should be closer to its new position than any other point's new position.

nnb(P; P 0) =
1

UB

X
p2P

weight(nearer(p))

where

nearer(p) = fq j d(p; q0) < d(p; p0) ; q 2 P ; q 6= pg

Unweighted In the unweighted version, the score for p counts only whether or not there are

points in P 0 between p and p0.

weight(S) =

(
0 if jSj = 0

1 otherwise

UB(n) = jP j

83

Weighted In the weighted version, the number of points in P 0 between p and p0 is taken into

account.

weight(S) = jSj

UB(n) = jP j (jP j � 1)

4.3.4 Relative Position

These measures are based on the idea that the relative position of points should remain the same.

There are two components to relative position | the distance between the points and the angles.

All of the measures except for average relative distance are concerned with the angles.

Orthogonal Ordering Orthogonal ordering measures the change in angle between pairs of points.

Let �pq be the counterclockwise angle between the positive x-axis and the vector q � p.

order(P; P 0) =
1

W
min

(Z �p0q0

�pq

weight(�) d�;

Z �pq

�p0q0

weight(�) d�

)

Constant-Weighted In the constant-weighted version, all changes of angles are weighted

equally.

weight(�) = 1

W = �

Linear-Weighted In the linear-weighted version, changes in the north, south, east, west rela-

tionships are weighted more heavily than changes in angle which do not a�ect this relationship.

weight(�) =

(
(� mod �=2)

�=4 if (� mod �=2) < �=4
�=2�(� mod �=2)

�=4 otherwise

W = �=2

Ranking The ranking measure considers the relative horizontal and vertical position of the point.

This is a component of the similarity measure used in the SMILE graph multidrawing system. [19]

Let right(p) and above(p) be the number of points to the right of and above p, respectively.

rank(P; P 0) =
1

UB

X
p2P

minf j right(p)� right(p0) j+ j above(p)� above(p0) j ; UB g

where

UB = 1:5 (jP j � 1)

Of note here is that the upper bound is taken as 1:5 (jP j � 1) instead of 2 (jP j � 1), the actual

maximum value occurring when a point moves from one corner of the drawing to the opposite

corner. The motivation for this is simply that it scales the measure more satisfactorily.

84

Average Relative Distance [order only] The average relative distance is the average change

in distance between pairs of points.

rdist(P; P 0) =
1

jP j (jP j � 1)

X
p;q2P

j d(p; q)� d(p0; q0) j

�-Matrix [order only] The �-matrix model is used by Lyons, Meijer, and Rappaport [108] to

evaluate cluster-busting algorithms. It is based on the concept of order type used by Goodman and

Pollack [82], where two sets of points P and P 0 have the same order type if, for every triple of points

(p,q,r), they are oriented counterclockwise if and only if (p0,q0,r0) are also oriented counterclockwise.

Let �(p; q) be the number of points in P to the left of the directed line from p to q.

lambda(P; P 0) =
1

UB

X
p;q2P

j�(p; q)� �(p0; q0) j

where the upper bound for a set of size n is:

UB(n) = n

�
(n� 1)2

2

�

4.3.5 Neighborhood

These measures are guided by the philosophy that each point's neighborhood should be the same in

both drawings. The measures do not explicitly take into account either the point's absolute position

or its position relative to other points.

Nearest Neighbor Within [order only] For nearest neighbor within, a point's neighborhood is

simply its nearest neighbor.

Let nn(p) be the nearest neighbor of p in the p's point set and nn(p)0 be the corresponding point

in P 0 to nn(p). Ideally, nn(p)0 should be p0's nearest neighbor.

nnw(P; P 0) =
1

UB

X
p2P

weight(nearer(p))

where

nearer(p) = f q j d(p0; q0) < d(p0; nn(p)0) ; q 2 P ; q 6= p ; q 6= nn(p) g

Unweighted The unweighted version considers only whether or not nn(p)0 is p0's nearest neigh-

bor.

weight(S) =

(
0 if jSj = 0

1 otherwise

UB(n) = jP j

85

Weighted The weighted version takes into account the number of points in P 0 closer to p0 than

nn(p)0.

weight(S) = jSj

UB(n) = jP j (jP j � 1)

�-Clustering [order only] �-clustering de�nes the neighborhood for each point to be its �-cluster,

the set of points within a distance �, de�ned as the maximum distance between a point and its nearest

neighbor.

eclus = 1�
jSI j

jSU j

where
� = max

p2P
min

q2P;q 6=p
d(p; q)

SI = f (p; q) j p 2 P ; q 2 clus(p; P; �) and q0 2 clus(p0; P 0; �0) g

SU = f (p; q) j p 2 P ; q 2 clus(p; P; �) or q0 2 clus(p0; P 0; �0) g

clus(p; P; �) = f q j d(p; q) � � ; q 2 P ; q 6= p g

Separation-Based Clustering [order only] In the separation-based clustering measure, points

are grouped so that each point in a cluster is within some distance Æ of another point in the cluster

and at least distance Æ from any point not in the cluster. The intuition is that the eye naturally

groups things based on the surrounding whitespace.

Formally, for every point p in cluster C such that jCj > 1, there is a point q 6= p 2 C such that

d(p; q) < Æ and there is no point r 62 C such that d(p; r) < Æ. If C is a single point, only the second

condition holds.

Let clus(p) be the cluster to which point p belongs.

sclus = 1�
jSI j

jSU j

where
SI = f (p; q) j p; q 2 P ; clus(p) = clus(q) and clus(p0) = clus(q0) g

SU = f (p; q) j p; q 2 P ; clus(p) = clus(q) or clus(p0) = clus(q0) g

4.3.6 Edges

Shape The shape measure treats the edges of the graph as sequences of north, south, east, and

west segments and compares these sequences using the edit distance.

shape =
1

UB

X
e2E

edits(e,e')

Regular The edit distance is not normalized for the length of the sequence, and the upper

bound is as follows:

UB =
X
e2E

j length(e)� length(e0) j+minf length(e) ; length(e0) g

86

Normalized The edit distance is normalized for the length of the sequence using the algorithm

of Marzal and Vidal [109], and the upper bound is as follows:

UB = jEj

4.4 Results

4.4.1 Rotation

Correctness Let an individual trial T be described by the tuple (D;D1; : : : ; D8), where D is the

base drawing and the Di are the eight rotations the user must choose between. Let TM be the

measure's choice for trial T :

TM =

(
Dk if M(D;Dk) < M(D;Di) 8i 6= k

tie if 9 j; k such that M(D;Dj) =M(D;Dk) �M(D;Di) 8i 6= j; k (j 6= k)

Also, let Tk denote user k's response for trial T :

Tk =

(
Dk if the user chose drawing Dk

tie if the user clicked the \can't decide" button or the trial timed out

Note that Tk is only de�ned if user k was presented with trial T | each trial was completed by

about one-third of the users.

De�ne the correctness of the measure M with respect to user k for T as C(M;T; k):

C(M;T; k) =

(
1 if TM = Tk

0 otherwise

C(M;T; k) is unde�ned if Tk is unde�ned.

Let T be the set of pairs (T; k) for which Tk is de�ned. Then the overall correctness CM for

measure M is

CM =

X
(T;k)2T

C(M;T; k)

jT j

Figure 4.4 shows the correctness CM for each measure on the rotation task. The light yellow area

behind the columns shows the average correctness for each measure over all of the trials. The four

columns for each measure show the breakdown according to type of new drawing in the trial: similar

for drawings virtually identical to the base, features for drawings somewhat di�erent from the base

but with noticeable features to help identi�cation, contradictory for drawings with noticeable features

but where those features contradicted each other (for example, when one feature was rotated with

respect to another), and di�erent for drawings that are very di�erent from the base. (The \di�erent"

set only contained two drawings, so these results should be generalized with caution.)

Finally, the \mode" column indicates the best possible performance that could be expected of a

measure | because approximately 34 students gave responses for each set of drawings, there was

87

m
od

e

ha
us

do
rf

f(
al

l)

ha
us

do
rf

f(
al

l/b
or

de
r)

pa
ire

d
ha

us
do

rf
f

pa
ire

d
ha

us
do

rf
f(

bo
rd

er
)

di
st

an
ce

di
st

an
ce

(b
or

de
r)

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

(b
or

de
r)

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
be

tw
ee

n

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
be

tw
ee

n
(b

or
de

r)

co
ns

ta
nt

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

co
ns

ta
nt

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

(b
or

de
r)

lin
ea

r
w

ei
gh

te
d

or
th

og
on

al
or

de
rin

g

lin
ea

r
w

ei
gh

te
d

or
th

og
on

al
or

de
rin

g
(b

or
de

r)

ra
nk

(a
ll)

ra
nk

(a
ll/

bo
rd

er
)

no
rm

al
iz

ed
sh

ap
e

sh
ap

e

average

different

contradictory

features

similarco
rr

ec
tn

es
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4: Results for the rotation part. \border" indicates that the border point set was used;
\all" indicates that pairs of points derived from the same vertex were included.

the potential for getting di�erent \correct" user responses for the same set of drawings. Since the

measures always choose the same response for the same set of drawings, the best score a measure

can get is if it always makes the choice that was most common among the users. Let f(T; r) be

the frequency with which the users completing trial T picked response r 2 fD1; : : : ; D8; tieg. Also

de�ne the most common response Tmode as the response r for which f(T; r) is maximized, and the

correctness of the most common response for trial T and user k as

C(mode; T; k) =

(
1 if Tmode = Tk

0 otherwise

Then the \best possible score" shown in the mode column is:

Cbest =

X
(T;k)2T

C(mode; T; k)

jT j

Note that there is at least some user agreement as to a correct answer even for the most di�erent

drawings | if users truly could not distinguish between the drawings, one would expect each choice

88

(normalized) shape
(border) rank (all)
(border) linear weighted

orthogonal ordering
(border) constant weighted

orthogonal ordering
(border) weighted nearest

neighbor between
(border) unweighted nearest

neighbor between
(border) distance
(border) paired hausdorff
(border) hausdorff (all)

Figure 4.5: Rotation correctness for individual users. Users are shown along the x-axis; levels of
gray indicate the correctness, ranging from 0 (black) to .8 (white).

to get approximately 1=8 of the responses and thus have a correctness of 0.125 in the mode column.

The average correctness for even the best measures is disappointingly low | below 50%! |

meaning that even the best measure will tend to rotate drawings incorrectly much of the time.

However, as one might expect, most of the measures performed better when the new drawing was

more similar to the base drawing.

The correctness results are more encouraging when compared to the best possible score in the

mode column. With the exception of Hausdor� distance (on both point sets) and unweighted nearest

neighbor between (on the \all" point set), all of the measures performed quite well on average with

respect to the mode; the performance is best for the most similar drawings and decreases as the

drawings become increasingly di�erent. The good relative performance for the most similar drawings

indicates that, in these cases, the measures tend to perform as well as can be expected and the low

correctness results stem from disagreements between users about the correct answer. However, the

drop in relative performance with the most di�erent drawings suggests that the measures are not

picking up on the more subtle aspects of similarity | there is still some user consensus, so the users

are �nding some ideas of similarity that the measures do not.

Per-User Correctness The low correctness for even the mode (64% for the most similar drawings)

indicates that while there is a clear preferred choice, there are a signi�cant number of users who

pick other choices. This suggests that users have di�erent ideas about what factors make drawings

look more similar, or di�erent ideas about the relative importance of di�erent aspects of similarity.

Let Tk be the set of trials for which Tk is de�ned, i.e., the set of trials user k completed. Then the

correctness of measure M for user k is

CM;k =

X
T2Tk

C(M;T; k)

jTkj

Figure 4.5 shows each measure's correctness on a per-user basis. It shows two things | the

measures that do badly overall (Hausdor� distance, unweighted nearest neighbor between) perform

badly for every user, and that some users are predicted better than others by the measures. There

is relatively little di�erence between the good measures for a single user, though it is interesting to

note that while the border-only point sets lead to slightly worse results overall (especially for the

more di�erent drawings), measures using these point sets perform better for certain users.

89

m
od

e

ha
us

do
rf

f(
al

l)

ha
us

do
rf

f(
al

l/b
or

de
r)

pa
ire

d
ha

us
do

rf
f

pa
ire

d
ha

us
do

rf
f(

bo
rd

er
)

di
st

an
ce

di
st

an
ce

(b
or

de
r)

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

(b
or

de
r)

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
be

tw
ee

n

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
be

tw
ee

n
(b

or
de

r)

co
ns

ta
nt

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

co
ns

ta
nt

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

(b
or

de
r)

lin
ea

r
w

ei
gh

te
d

or
th

og
on

al
or

de
rin

g

lin
ea

r
w

ei
gh

te
d

or
th

og
on

al
or

de
rin

g
(b

or
de

r)

ra
nk

(a
ll)

ra
nk

(a
ll/

bo
rd

er
)

no
rm

al
iz

ed
sh

ap
e

sh
ap

e

�=2

near �=4

�=4

near �=36 off.

�=36 offsetsco
rr

ec
tn

es
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4.6: Rotation results for angles other than �=4.

Other Angles The rotation task focused on di�erences of �=2 in the rotation angle | a very large

di�erence, though the only meaningful di�erence for orthogonal drawings since a user can easily tell

that a rotation by some other angle is not the best match. Figure 4.6 shows the results for three

sets of orientations: the four multiples of �=2 between 0 and 2� (labelled \�=2"), the eight multiples

of �=4 (labelled \�=4"), and the eight multiples of �=4 plus the four multiples of �=2 o�set by

�=36 (i.e., �=36; 19�=36; 37�=36; 55�=36, labelled \�=36 o�sets"), all with and without an initial ip

around the x-axis. The \near" columns show the correctness if the measure is considered to choose

the right rotation if it picked a rotation near the user's response | ��=4 for \�=4" and ��=36 for

\�=36 o�sets."

Ideally there would be no change in correctness with the addition of the extra orientations since

the user's \correct" answer does not change, but a drop can be seen. The sharp dropo� for shape on

the \�=36 o�sets" is a result of a large number of ties between a rotation of � and one of �+�=36. If

the correctness criterion is relaxed so that measures are only expected to choose a rotation near the

correct one, the measures perform better. This indicates that when the wrong rotation is chosen,

it tends to be near the right one. This suggests that while the measures would likely perform less

90

satisfactorily when asked to pick the correct rotation in non-orthogonal applications, they would

still perform reasonably well if the goal is only to obtain approximately the right orientation.

4.4.2 Ordering

Correctness For the ordering task, an individual trial T is described by the tuple (D;D1; D2),

where D is the base drawing and D1 and D2 are the drawings the user must choose between. The

correctness CM of a measure M is de�ned in the same manner as for the rotation task.

Figure 4.7 shows how the correctness for each measure in the ordering task. The light yellow

area behind the columns again shows the average correctness for each measure over all of the trials,

and the columns show the breakdown according to the types of the new drawings in the trial. A few

combinations with only a few samples each are not shown for space reasons.

Most of the measures again perform quite well when compared to the mode | generally above

90% on average | and the most notable exceptions include those measures that performed most

poorly on rotation. Also, as expected, the measures generally performed better when one of the

drawings was clearly more like the base drawing than the other.

Per-User Correctness While the correctness for the mode is reasonably high, at least for the

best cases, not all users agree on the correct choice. Figure 4.8 shows each measure's correctness

on a per-user basis. This is again calculated as it was for the rotation task. As for rotation, those

measures that perform badly overall tend to be the worst performers for each individual user as well.

However, there are a number of cases where measures that perform better than average for some

users perform worse than average for others.

4.4.3 Di�erence

The goal in the di�erence part was to be able to use the user's response times as an indicator of

similarity, the idea being that a user can locate the new vertex faster if the drawings are more

similar. As a test of the validity of this, the times on the di�erence part were used to order the pairs

of drawings used in the ordering task. The results were very unsatisfactory, achieving only 45%

correctness (compare to Figure 4.7, where even the worst measure reached nearly 58% correctness).

As a result, the times on the di�erence task are not a good indicator of similarity and are not suitable

for evaluating measures with respect to the magnitude criterion. Using the times for the rotation

task was similarly ine�ective.

4.4.4 User Responses

The students' responses to the �nal questionnaire yielded several interesting notes. As might be

expected, the responses as to what makes two drawings look similar in the rotation and ordering

parts included a sizable percentage (35%) who said preserving the position, size, number of large

vertices was important and another large percentage (44%) who said they looked for distinctive

91

0.9

m
od

e

ha
us

do
rf

f(
al

l)

ha
us

do
rf

f(
al

l/b
or

de
r)

pa
ire

d
ha

us
do

rf
f

pa
ire

d
ha

us
do

rf
f(

bo
rd

er
)

di
st

an
ce

di
st

an
ce

(b
or

de
r)

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

(b
or

de
r)

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
be

tw
ee

n
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

be
tw

ee
n

(b
or

de
r)

co
ns

ta
nt

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

co
ns

ta
nt

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

(b
or

de
r)

lin
ea

r
w

ei
gh

te
d

or
th

og
on

al
or

de
rin

g
lin

ea
r

w
ei

gh
te

d
or

th
og

on
al

or
de

rin
g

(b
or

de
r)

no
rm

al
iz

ed
sh

ap
e

sh
ap

e

un
w

ei
gh

te
d

ne
ar

es
t

ne
ig

hb
or

w
ith

in
un

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
w

ith
in

(b
or

de
r)

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
w

ith
in

w
ei

gh
te

d
ne

ar
es

t
ne

ig
hb

or
w

ith
in

(b
or

de
r)

ra
nk

(a
ll)

ra
nk

(a
ll/

bo
rd

er
)

re
la

tiv
e

di
st

an
ce

re
la

tiv
e

di
st

an
ce

(b
or

de
r)

�
-m

at
rix

(a
ll)

�

-m
at

rix
(a

ll/
bo

rd
er

)

�-
cl

us
te

rin
g

se
pa

ra
tio

n-
ba

se
d

cl
us

te
rin

g

average

contradictory/contradictory

features/features

contradictory/features

features/similar

contradictory/similarco
rr

ec
tn

es
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.7: Results for the ordering part. \border" indicates that the border point set was used;
\all" indicates that pairs of points derived from the same vertex were included.

8 2 3 8 6 0 7 6 5 7 0 4 4 4 9 7 6 9 6 0 8 8 0 5 5 2 9 2 8 7 9 0 3 7 1 2 7 9 1 9 6 3 8 4 3 3 5 0 8 7 0

normalized shape
shape

rank (all)
rank (all/border)

weighted nearest (border)

unweighted nearest (border)

linear weighted (border)

constant weighted (border)

weighted nearest (border)

unweighted nearest (border)

orthogonal ordering

orthogonal ordering

neighbor within

neighbor within

neighbor between

neighbor between

distance
distance (border)

paired hausdorff
paired hausdorff (border)

hausdorff (all)
hausdorff (all/border)

separation-based clustering
�-clustering

relative distance
relative distance (border)
�-matrix (all)
�-matrix (all/border)

Figure 4.8: Ordering correctness for individual users. Users are shown along the x-axis; levels of
gray indicate the correctness, ranging from 0 (black) to .8 (white).

92

clusters and patterns of vertices, such as chains, zigzags, and degree 1 vertices. More surprising was

that 44% of the students said that borders and corners of the drawing are more important than the

interior when looking for similarity. This is supported by research in cognitive science indicating

that people often treat �lled and outline shapes as equivalent, focusing primarily on the external

contour (Wickelgren [154]). A number of these students mentioned the importance of \twiddly bits

around the edges" | distinctive clusters and arrangements of vertices, made more obvious by being

on the border. Related comments were also that the orientation and aspect ratio of the bounding

box should remain the same, and that the outline of the drawing should not change. Another sizable

group (34%) commented that the \general shape" of the drawing is important.

For the question about the di�erence part, several users expressed frustration at the diÆculty

of the task and commented that the system frequently timed out on them. The usefulness of the

\big picture" view | looking at the overall shape of the drawing | was contested, with nearly

equal numbers reporting that the overall look was useful in the task, and that it was confusing

and misleading. About 16% of the users mentioned limited use of the overall look, using it on

a region-by-region basis to quickly eliminate blocks that remained the same and falling back on

simply scanning the drawing or matching corresponding vertices and tracing edges when the regions

were too di�erent. Another 24% reported using vertex-by-vertex matching from the beginning. A

similar-sized group (20%) �gured out shortcuts, such as that the edges added along with the new

vertex frequently caused one of the neighboring vertices to have a degree larger than 4 and thus

be drawn with a larger box, so they scanned for the neighbors of the large boxes to �nd the new

vertex. Overall, a large number (28%) reported searching for vertices with extra edges rather than

searching for new vertex directly.

For the �nal question, about what a graph drawing algorithm should take into account if the

look of the drawing should be preserved, the most common answers echoed those from the rota-

tion/ordering question: maintaining vertex size and shape, the relative positions of vertices, the

outline of the drawing, and clusters.

4.5 Conclusions and Future Work

Several conclusions can be drawn from these results:

� The results from the rotation and ordering parts show that, with the exception of several

measures that perform noticeably worse than the others, there is not a large di�erence in the

performance of the tested measures. Distance and weighted nearest neighbor between perform

slightly better than the rest on both point sets for both tasks; both orthogonal ordering

measures and rank also perform well on the full point set. The �-matrix and weighted nearest

neighbor within measures have a slight edge on the ordering task.

� It is interesting to note that the worst-performing measures (undirected Hausdor� distance,

unweighted nearest neighbor between, �-clustering, and spacing clustering) give the least weight

93

to absolute and relative point positions, suggesting that absolute and relative point positions

are indeed important to similarity. Furthermore, it suggests that point positions are less

signi�cant in the ordering task because the relative performance of the worst measures with

respect to the mode was not as bad.

� The per-user analysis suggests that while it is meaningful to talk about \good" measures and

\bad" measures in overall terms, to get the maximum performance it may be necessary to

tailor the speci�c similarity measure used to a particular user.

� In the ordering task, the lack of di�erence between the full point set and the borders-only

point set for the better measures seems to mesh well with the students' comments about

the border being very important in the look of the drawing. For the rotation task, only the

lack of di�erence for the orthogonal ordering measures can be used to support the students'

comments, since most of the measures (except Hausdor� distance and orthogonal ordering)

are already more sensitive to the borders of the drawing | rotation causes border points to

move farther, giving them more weight. Interestingly, the per-user correctness analysis for

ordering and rotation shows both cases where borders-only point set performs worse than the

full point set for a given user, and cases where the opposite is true. More study is needed to

determine if the overall results hold because the borders really are more important, or if the

degree of change in the borders is simply representative of the change in the whole drawing.

This could be tested by comparing drawings where the border is largely unchanged but the

interior is drastically di�erent and those where the border is greatly changed but the interior is

not. Additional study is also needed to determine if the importance of the borders is a general

principle common to many observers or if it is more user-speci�c.

� The diÆculty of the di�erence part suggests that the amount of di�erence between the drawings

that is considered reasonable varies greatly with the task | when the user simply needs to

recognize the graph as familiar, the perimeter of the drawing and the position and shape of

few key features are the most important. On the other hand, when trying to �nd a speci�c

small change, the drawings need to look very much alike or else the user needs some other cues

(change in color, more distinctive vertex names, etc.) in order to highlight the change.

� The lack of success with using the times from the di�erence task to evaluate the measures with

respect to the magnitude criterion means that more study is needed to �nd a way to get data

for this.

The students' responses on the questionnaire suggest several possible directions for future inves-

tigation.

� Large vertices are identi�ed as being especially important, which could lead to a scheme in

which changes in the position and size of large vertices are weighted more heavily than other

vertices.

94

� Another major focus was clusters of vertices | both the presence of clusters in general, and

the presence of speci�c shapes such as chains and zigzags. The relatively poor showing of the

cluster-based measures indicates that they are not making use of clusters in the right way. The

fact that the students reported looking for speci�c shapes suggests an approach related to the

drawing algorithms of Dengler, Friedell, and Marks [51] and Ryall, Marks, and Shieber [136].

These algorithms try to produce drawings which employ e�ective perceptual organization by

identifying Visual Organization Features (VOFs) used by human graphic designers. VOFs

include horizontal and vertical alignment of vertices, particular shapes such as \T" shapes,

and symmetrically placed groups of vertices. VOFs can also be used not to guide the creation

of drawings from scratch, but to identify features in an existing drawing that may be important

because they adhere to a particular design principle. This is related to the work of Dengler

and Cowan [52] on semantic attributes that humans attach to drawings based on the layout

| for example, symmetrically placed nodes are interpreted as having common properties.

A similarity measure could then measure how well those structures are preserved, and an

interactive graph drawing algorithm could focus on preserving the structures.

Chapter 5

A Graph Drawing and Translation

Service on the World Wide Web

5.1 Introduction

The visualization of information structured as a graph or network is an emerging trend in numerous

�elds, including software engineering [50, 76, 77, 100, 101, 129, 134], WWW-navigation [89, 117, 118],

program debugging [98, 121], database design [49, 68, 87], and visual programming languages [139].

The problem of drawing graphs has therefore received a lot of attention from researchers, and new

algorithms are being developed continually; for background and an extensive survey of research

in graph drawing see [54]. By making implementations of graph drawing algorithms available on

the WWW, we can enable both practitioners and researchers to take advantage of the latest tech-

nological innovations in graph drawing. This, however, also requires tackling the problem of the

over-abundance of formats for describing graphs and drawings. While there are e�orts in this direc-

tion [91], there is still no single universally-accepted format. Therefore, researchers typically de�ne

their own formats when implementing an algorithm. Because a user cannot be expected to know

the format used by each and every implementation, it is convenient to have translators that can

convert the descriptions of graphs and drawings from one format to another. This will allow users

to employ a large number of algorithms while knowing only a few formats.

We envision a graph drawing and translation service on the WWW that o�ers two kinds of

services:

� a drawing service for constructing a drawing of a graph given by the user, using an algorithm

chosen by her, and

� a translation service for translating the description of a graph/drawing from one format to

Previously published as S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service on
the WWW. In S. C. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes Comput. Sci.,
pages 45{52. Springer-Verlag, 1997. Figures 5.6 and 5.7 have been updated with current statistics.

95

96

another.

Such a service would bene�t both practitioners and researchers. From a practitioner's viewpoint,

she gets a central facility from where she can \shop around" for an algorithm appropriate for her

application. A researcher can use the service for prototyping, by combining available algorithmic

components into new algorithms. In addition, both practitioners and researchers can use this service

just for translation purposes. Potential uses of this service include:

� drawing graphs from user applications,

� comparing the results of graph drawing algorithms,

� development of new algorithms,

� translating between formats used to describe graphs and their drawings,

� creating a database of graphs occurring in user applications,

� performing demonstrations in educational settings, and

� providing an environment where users can \try before they buy" algorithms which are available

for free download or from commercial vendors.

As a �rst step towards realizing our goal, we have developed a prototype graph drawing and

translation service on the WWW.1 This service consists of one or more Graph Drawing Servers with

which the user can interact through an HTML form or a Java-based graph editor embedded in a

Web page. In a typical scenario, the user provides the service with the input graph and selects the

format of the input, the type of service desired (drawing/translation), the format of the output, and

the drawing algorithm (if the graph is to be drawn). A server receives the request, performs the

desired service, and sends back the result | a drawing or a translation | to the user. This service

can be used to visualize a wide variety of graphs including entity-relationship diagrams, function

call graphs, class hierarchies of an object-oriented program or database, and PERT charts; as the

number of supported algorithms grows so will the classes of graphs for which it is useful.

Each of the servers comprising the service maintains information about the drawing algorithms

and translations supported by other servers and is capable of forwarding requests it cannot satisfy

to another server, transparently to the user. This feature is particularly useful for providing access

to algorithms which run on di�erent platforms | the user need only contact one of the servers and

the request will be handled as if the original server could satisfy it directly. The communication

protocol used between two servers is identical to that used between client and server; from a server's

point of view there is no distinction between a request sent from a client and one forwarded from

another server.

The Graph Drawing Server also serves as a �rst prototype and proof-of-concept of the even

broader vision of GeomNet [9], a system for performing distributed geometric computing over the

Internet. It consists of a family of geometric computing servers that execute a variety of geometric

1http://www.cs.brown.edu/cgc/graphserver/

97

algorithms on behalf of remote clients, which can be either users interacting through a Web browser

interface, or application programs connecting directly through sockets. A number of services can be

provided through the GeomNet framework, including algorithm execution, algorithm animation [8],

consistency checking of topological and geometric structures, and experimental study and comparison

of algorithms.

This paper is organized as follows. In Section 5.2, we describe previous work related to our

service. In Section 5.3, we present the software architecture of our prototype service. In Section 5.4

and Section 5.5, respectively, we describe the graph and drawing description formats and the drawing

algorithms supported by the service. In Section 5.6, we give some example interactions between users

and the service. In Section 5.7, we provide usage-statistics on the service. Finally, in Section 5.8,

we describe future work.

5.2 Related Work

Researchers have recognized the need of making implementations of graph drawing algorithms avail-

able on the Internet. GraphEd [90] and its successor Graphlet2 are graph editors which include many

graph layout algorithms. AGD3 provides a C++ library of eÆcient drawing algorithms. GDToolkit4

provides both a library of graph data structures and algorithm implementations and a mechanism

for plug{and{play use of standard algorithms through either a graph editor or a batch application.

A bibliography of additional graph drawing resources and tools is maintained by Roberto Tamas-

sia.5 Another system with some similarities to the Graph Drawing Server is Diagram Server [60], a

network server for client applications that use drawings of graphs. It o�ers its clients an extensive

set of facilities to represent and manage diagrams through a multi-windowing environment. How-

ever, Diagram Server, like the other implementations mentioned, are all source code packages or

executables which must be downloaded and installed locally.

To the best of our knowledge, there is no (graph) translation service on the WWW other than

our service and there are a few graph drawing services which are available, but they have a narrower

goal than ours. Stephen North has designed a service6 that accepts a graph sent to it by email and

returns, also by email, a drawing constructed using dot [105]. This service also maintains a database

of the graphs from various applications [119]. GraphDraw [66] is a Web-based system that allows

users to draw graphs using force-directed [75] and hierarchical drawing methods [135]. This system

is implemented as a Java applet which runs on a user's machine, and therefore requires high compu-

tational resources at a user's machine, especially for the force-directed methods. GraphPack [106]

is a system based on cgi-bin scripts that supports several graph drawing algorithms. A graph

2http://www.uni-passau.de/Graphlet

3http://www.mpi-sb.mpg.de/AGD/

4http://www.dia.uniroma3.it/ gdt/

5http://www.cs.brown.edu/people/rt/gd.html

6http://www.research.att.com/dist/drawdag/mail server

98

Client

Server

Translator

Request

Graph Drawer

parser

graph or
drawing

graph or
drawing

graph or
drawing

translation

graph and

database of
translation
functions

database of
graph drawing
algorithms

user-provided

name of an
algorithm

Client

Networking
Module

Interface
Module

graph or
drawing

user-request

Graph Editor

Forms Interface

user-request

user-request

user-request

information

WWW

Socket Front End

CGI Front End

Handler

drawing

user-provided

user-request
information

graph or
drawing

user-provided
information

graph or
drawing

user-provided
information

graph or
drawing,
its format,
and the
new format

to the new
fornat

graph or
drawing

user-request
from Forms
Interface

user-request
from Graph

Editor

Figure 5.1: The software architecture of our graph drawing and translation service.

drawing demo applet written at Sun Microsystems illustrates the use of Java and has rather limited

capabilities [151].

5.3 Software Architecture of our Prototype Service

We believe that a graph drawing and translation service should satisfy the following requirements:

� The input/output format used for a graph should be as independent as possible from the

algorithm used for drawing it.

� It should be easy to add new formats and algorithms to the service.

� The user interface should be simple and intuitive.

� The architecture should be client-server based with the assumption that the client machine and

the network may be slow, whereas the server is reasonably fast. This assumption is important

for a network such as the WWW.

We now describe the software architecture of our prototype service (see Figure 5.1). The service

has seven modules: the Forms Interface, the Graph Editor, the Socket Front End, the CGI Front

End, the Request Handler, the Parser, the Translator, and the Graph Drawer. The Forms interface

and the Graph Editor run on the user's machine; the other modules all run on the server.

99

5.3.1 Client Side Modules

The client machine is responsible for maintaining the interface presented to the user. There are

currently two types of interfaces supported by the service: the forms interface and the graph editor.

Forms Interface. The forms interface is simply an HTML page with a form that the user can �ll

to place her request. Figure 5.4 shows a request made using a form. No code is needed to handle

server communications or manage the form, as this is done by the user's Web browser. When the

user submits the form, the browser sends a GET or POST request to the server's CGI Front End

(described below).

Graph Editor. The graph editor is implemented as a Java applet and consists of two modules,

the interface module and the networking module. The interface module is responsible for creating

and managing the graph editor window, supporting basic graph editing operations such as insertion,

deletion, and movement of vertices, edges, and edge bends, and enabling the user to interactively

create a graph to be sent to the server. Users can also load a graph from a Web-accessible URL.

Users can also save a graph or drawing by �rst converting it to the desired format by using the

translation service and then saving it in text format using the \Save As" feature of the Web-browser.

This approach is necessary because of security restrictions that prevent a Java applet from writing

directly to a local disk.

The networking module is responsible for communicating with the server | it encodes a user-

request and sends the message to the server, provides the interface with updates on the current

status of the request, receives the response, and ensures a response will be received even if the server

fails.

The networking module communicates with the Socket Front End of the server (described below).

5.3.2 Server Side Modules

We now describe the modules that run on the server. All of the server modules are written in Java,

with the exception of a small C component to handle the integration of non-Java algorithms and

translation �lters. As a result the server is easily portable to a variety of systems.

Request Processor. The request processor is the central component of the service. It receives a

request from the Socket and CGI Front Ends and satis�es the request by invoking the Translator

and the Graph Drawer. If it is a translation request, then it simply asks the translator to carry out

the desired translation. Satisfying a drawing request is more complicated, and consists of executing

the following steps:

� consult the Graph Drawer to determine the input and output formats of the the drawing

algorithm requested by the user,

� use the Translator to convert the input graph to the input format,

100

� construct a drawing of the graph by using the Graph Drawer,

� use the Translator again to convert the drawing to the output format requested by the user,

and �nally,

� send the output to the front end | Socket or CGI | from which the request was received.

The Request Processor \keeps an eye on" on the Graph Drawer and Translator by terminating any

processes that do not �nish within a set period of time. This is to prevent bugs in a drawing algorithm

or translation �lter from causing an in�nite loop that will tie up server resources inde�nitely.

CGI Front End. Communication with the CGI Front End follows the HTTP protocol: a GET or

POST request referencing the front end's URL is sent to the Web server on the server's machine. In

GET requests the submitted information is appended to the script's URL, whereas POST requests

contain the information in the body of the HTTP message. Because even small graphs can lead to

very long URLs using the GET method, POST is the preferred method of communication with the

CGI Front End. Once the request is received, the Web server automatically invokes the CGI Front

End to process the request. When done, the front end returns the result to the Web server, which

forwards it back to the client. Anything obeying this protocol may communicate with the CGI Front

End, but it is usually invoked by a user submitting a form using the Forms Interface.

The CGI Front End executes the following steps to satisfy a request:

� parse the form data by using the Parser to extract the information provided by the user in the

form,

� send the extracted information to the Request Processor, and

� send the output received from the Request Processor to the client.

Socket Front End. The Socket Front End would typically be used by any non-Forms Interface

client, though currently is only used by the Graph Editor. It handles communications over a socket

using a custom protocol with messages consisting of keyword/value pairs. We elected to use a

custom protocol because when the Graph Drawing Server was �rst developed there was very little

Java-based support for distributed computing. Furthermore, our protocol is very easy to learn and

use, does not require the user to obtain additional software from a third party, is not limited to

a particular programming language, machine architecture, or operating system, and can be used

by applets | features which are not always available in systems built on standards like OMG's

CORBA or Microsoft's DCOM. Our future plans include further investigating the newly emerging

distributed computing options | the RMI (remote method invocation) package added to Java 1.1

meets many of the requirements listed above (failing only in that client programs must be written in

Java). CORBA is also becoming a more attractive choice, since Java 1.2 is slated to include CORBA

support.

The Socket Front End waits in a loop, listening for messages coming in on a speci�ed port. On

receiving a message from a client, it creates a socket and starts a new thread, called the connection

101

thread, to listen on that socket and handle any further messages from that client. For each message

from the client, the the connection thread initiates a separate thread, called the computation thread,

which performs the necessary actions for satisfying the request made in the message. In particular,

if it is a drawing/translation request, the computation thread executes the following steps:

� use the Parser to extract the information contained in the body of the message,

� send the extracted information to the Request Processor,

� receive the output from the Request Processor,

� send a reply | the output or an error message | to the client.

The Socket Front End also keeps track of the status of the requests currently being handled, allowing

it to respond to status-seeking messages from the clients.

Parser. The parser is invoked by the Socket and CGI front ends to parse the request string sent

by the user. It extracts the following information: the graph to be drawn or translated, the format

of the input, the type of service desired (drawing/translation), the format of the output, and the

drawing algorithm to use (if the graph is to be drawn). The parsed information is then sent back to

the appropriate front end.

Translator. Each graph drawing algorithm supported by the service de�nes its own input/output

format which may be di�erent from the format of the graph given by the user. Therefore, there may

be a need for translating from one format to another on drawing requests. In addition, the user may

explicitly request a translation. The Translator takes as input a graph or a drawing and the names

of the current format and the format to which translation is to be done, and performs the desired

translation.

The Translator maintains a database of translation functions available locally and through other

servers and uses a directed graph, called the translation graph (Figure 5.2) to perform the transla-

tions. The vertices and edges of this graph are the formats and translation functions, respectively,

supported by the Translator. To satisfy a translation request, the Translator constructs a translation

sequence that gives the desired translation. Each translator sequence corresponds to a directed path

in the translation graph. For example, a translation from the Edges format to the Malf-Input format

is done by using the sequence Edges!Parenthetic!Malf-Input. Requests are forwarded to remote

servers as necessary.

The problem of translation is a diÆcult one, since while every graph format encodes the same

combinatorial information about the vertices and edges, many formats also include additional at-

tributes (such as edge/vertex labels, colors, and coordinates) or topological information (such as the

embedding of the graph). If two formats do not encode the same information, translating from one

to the other will cause some information to be discarded, or require some attributes to be assigned

what one hopes are reasonable default values.

102

Alf

Parenthetic

Malf

Fig

Gnuplot

PostScript

MIF

PNM GIF

Edges

pstoedit

pstoedit

pstopnm

ppmtogif

pstoedit

Node/Edge
List

Figure 5.2: The translation graph used for performing translations. Unidirectional and bidirectional
edges denote availability of functions for translation in only one and both directions, respectively.
The edges that are not labeled denote translation functions implemented by us, and the remaining
edges are labeled by the existing programs that perform the corresponding translations.

Currently the translation sequences employed are hard-coded to avoid using a less expressive

format as an intermediate step; since Parenthetic allows arbitrary tags to be added it can express

information contained in any of the other text formats and so is used as an intermediate step for

many translations. This does not, however, solve the problem since a user may supply a Parenthetic-

format graph to an algorithm expecting Malf-Input, in which case many of the attributes of the

original graph will be lost.

One solution to this problem is to use a di�erence �le during the translation from one format to

another. This di�erence �le contains information about attributes discarded as a result of translation

as well as those which have been added. During a translation, the translator consults the di�erence

�le to see if a given attribute had a value in the original graph before assigning a default value,

and augments the di�erence �le with information about attributes lost during the translation step.

Our service currently uses a simpler (client-side) scheme in which vertices and edges in the drawing

returned by the server are matched to the corresponding objects in the graph sent to the server,

and those attributes which should be preserved are simply copied. Vertices are matched by name

and edges are matched by the names of their endpoint vertices. This scheme works for graphs with

unique vertex names and no multiple edges; we plan to implement the more general (server-side)

scheme of using di�erence �les in the future.

Our prototype service currently supports the following input formats: Parenthetic, Edges,

Node/Edge List, and Malf, and the following output formats: Parenthetic, Postscript, GIF, Gnuplot,

103

MIF, Fig, Malf, and Summary. Section 5.4 describes the formats in detail.

Graph Drawer. The graph drawer accepts as input the name of a drawing algorithm and a graph

described in the algorithm's input format, and constructs a drawing of the graph using the algorithm.

The Graph Drawer maintains a database of drawing algorithms. Like the Translator, this

database consists of algorithms supported both locally and by remote servers, and requests are

forwarded by the Graph Drawer as needed. Currently, the database consists of the following al-

gorithms: Giotto, Pair, Planarizer, Bend-Stretch, Column, and Sugiyama. Section 5.5 describes the

algorithms in detail.

Our prototype service does not require any special hardware or software on the client machine

other than a commonly available Web browser. The forms interface requires a browser such as Lynx

or Netscape that supports HTML forms. The graph editor requires a browser that supports the

Java 1.x API, such as Netscape 2.0 or higher for most platforms. Java support is being added to

more browsers so that this requirement is becoming less restrictive.

The server should be reasonably fast with some kind of support for multi-threading, and with

suÆcient memory for storing the users' graphs and drawings.

Our service satis�es the requirements stated earlier in this section as follows:

� The user is free to specify any input/output format independent of the algorithm requested

by her. This decoupling is made possible by the presence of the translator.

� The Graph Drawing Server provides a simple framework for adding new formats and algo-

rithms. Adding a new format requires only providing a translator between the new format and

some existing format; since the Translator can put together sequences of translation functions

anything that could be translated to or from the chosen existing format can now be trans-

lated to or from the new format. Adding a new algorithm requires updating the database of

algorithms in the Graph Drawer and, if it de�nes a new format, adding that format to the

Translator.

� Both the forms interface and the graph editor are simple and intuitive.

� All the computationally intensive work is done by the server. Hence, the service can be used

by clients with limited resources as well.

5.4 Graph and Drawing Description Formats

We now describe the graph and drawing description formats currently supported by our service. We

currently support the following input formats: Parenthetic, Edges, Node/Edge List, and Malf, and

the following output formats: Parenthetic, Postscript, GIF, Gnuplot, MIF, Fig, Malf, and Summary.

Parenthetic: The Parenthetic format [137] consists of nested lists of keyword-value pairs enclosed

by parentheses. This format is easy for both users to read and computers to parse, and

104

follows the same design principles as several other popular formats such as SGML, HTML,

and VRML; however, it produces larger �les than the other supported text formats and it is

not easy to edit Parenthetic �les directly because vertex and edge IDs must be consecutive |

so changes require renumbering a potentially large number of objects. The great advantage

of the Parenthetic format is its exibility: it provides a wide variety of built-in keywords and

allows users to de�ne their own keywords. There is no pre-speci�ed order on the occurrences of

keywords, and keyword-value pairs can span multiple lines. Because of this superior expressive

power | it is the only currently-supported format to allow arbitrary attributes to be added

| it is used as an intermediate format for several translations (see Figure 5.2). A further

discussion of the Parenthetic format is given in the appendix.

Edges: Edges is a very simple format consisting of a sequence of lines, with each line describing an

edge. There is no explicit declaration for vertices; instead a vertex are declared by listing it

as part of an edge, and the same vertex name occurring in multiple edges refers to the same

vertex. Each line has the following syntax (where, SrcVertex and DestVertex are ASCII strings):

SrcVertex [<;>;�] DestVertex

Here, [<;>;�] denotes either zero or one and only one occurrence of one of <, >, and �.

SrcVertex > (<) DestVertex denotes a directed edge from (to) SrcVertex to (from) DestVertex.

SrcVertex DestVertex and SrcVertex � DestVertex both indicate an undirected edge between

SrcVertex and DestVertex. Edges is very compact and easy to edit, but is limited to describing

only graphs (coordinates cannot be speci�ed) and has no facilities for adding attributes to

edges or vertices. This format is described in a greater detail in the appendix.

Node/Edge List: This format is a simpli�ed version of the format supported by a system from Tom

Sawyer Software. Like Edges, it is compact and easy to edit but can describe only graphs and

has no support for object attributes.

A �le in the Node/Edge List format is divided into the following sections: // nodes, // edges,

// named edges, // directed edges, // directed named edges, and // named directed edges.

The // nodes section lists the graph's vertices, one per line. The // edges and // directed edges

sections list the graph's edges one by one, with each end vertex of an edge listed on a separate

line. The // named edges, // directed named edges, and // named directed edges sections list

the edges with names one by one, with the edge name and the end vertices of an edge listed

on separate lines. The // nodes section must be listed �rst, but the other sections need not be

present and may be given in any order. The Node/Edge List format is described in a greater

detail in the appendix.

Malf: This format is a modi�cation of the Alf format supported by the the Automatic Layout Facil-

ity [14] of Diagram Server [58, 60], and has two versions: Malf-Input that can describe graphs

only, and Malf-Output that can describe both a graph and a drawing. Both Malf formats are

105

compact | typically under 5 KB for a graph with a combined total of 250 edges and vertices

| but again do not allow attributes (other than position) and rely on consecutive IDs, making

editing diÆcult.

A �le in the Malf format consists of a vertex list, followed by an edge list. The two lists are

separated by a line consisting of a single '#' character.

The vertex list consists of a sequence of vertices, one per line. In the Malf-Input format, each

vertex has a unique integer identity, and an optional name. The Malf-Output format also

describes the position and size of each vertex in a drawing.

The edge list consists of a sequence of edges, one per line. In the Malf-Input format, each edge

has a unique integer identity, a direction, and the vertex IDs of the source and destination

vertices of the edge. The Malf-Output format adds a list of the bends of the edge in a drawing.

The Malf format is described in a greater detail in the appendix.

Gnuplot, MIF, and Fig: These are the formats supported by gnuplot, FrameMaker and xfig, re-

spectively. Of these formats, MIF and Fig are the most useful because they can be edited to

customize the look of the drawing; Gnuplot has a number of drawbacks, including the inability

to display vertex labels. These formats produce �les that are generally several times larger

than any of the text formats (Parenthetic, Edges, Node/Edge List, Malf).

Postscript, GIF: These formats cannot be easily modi�ed after creation, but are suitable for inclusion

in documents. Postscript is particularly good for LATEX documents; GIF is useful for HTML

pages. These formats also produce �les signi�cantly larger than the text formats.

Summary: Summary is not a true output format; instead an HTML page is returned with a small

GIF image of the graph along with links to obtain the full-size image or other formats. It

also provides a link to the input graph. Since very little additional time is needed to obtain a

full-size GIF and only a translation is necessary to see the output in another format, Summary

provides an eÆcient way for a user to see the output in various forms. Summary also provides

some statistics about the output, such as the size and aspect ratio of the drawing and the

number of bends. Other information, such as the time taken to construct the drawing, will be

added in the future.

Typical �le sizes for several of the more common output formats are shown in Figure 5.3.

5.5 Drawing Algorithms

Our service supports a number of algorithms allowing users to choose the one appropriate for their

applications and to compare and demonstrate them for research and educational purposes. The

supported algorithms determine what types are graphs are most suited for drawing with the service

| currently the focus is on orthogonal drawing algorithms, which are perform well on graphs from a

106

0

20

40

60

80

100

120

0 50 100 150 200 250 300

fil
e

si
ze

 (
ki

lo
by

te
s)

graph size (nodes+edges)

MALF input
MALF output

parenthetic
GIF

fig
PostScript

MIF

Figure 5.3: Average �le size for various output formats. (The legend lists the formats according to
increasing size for graphs of size 250.) The Parenthetic �les used contain only the standard keywords,
so those sizes represent the typical minimum �le size.

variety of domains including software engineering and VLSI design. One hierarchical algorithm, well

suited for graphs such as program call graphs which have a top-to-bottom order, is also available.

As more algorithms are added to the server the range of graphs that can be drawn satisfactorily will

increase.

Many of these algorithms are implemented within the framework of the Automatic Layout Facil-

ity [14] (ALF) of Diagram Server [58, 60]. The Automatic Layout Facility of Diagram Server consists

of a large modular library of graph drawing algorithms and provides a tool which, given the require-

ments of an application, selects suitable algorithms for such requirements. It also allows the users

to customize new algorithms by de�ning an algorithmic path describing the sequence of steps and

intermediate representations (e.g., planar embedding, orthogonal shape, visibility representation)

produced by the algorithm.

In the rest of this section, N and M denotes the number of vertices and edges, respectively, of

the input graph, and C denotes the number of crossings in the drawing constructed.

The following algorithms are currently supported by our service:

Giotto: Giotto [146] is a general-purpose drawing algorithm that constructs orthogonal drawings of

graphs. Given a graph, it �rst converts it into a planar graph by replacing edge-crossings by �c-

titious vertices (planarization step), then computes an orthogonal representation|a symbolic

107

representation of a drawing using angles|by using the bend-minimization algorithm of Tamas-

sia [145] (orthogonalization step), and �nally constructs a drawing from this orthogonal rep-

resentation by assigning coordinates to the vertices and edges of the graph (compaction step).

Giotto is implemented using ALF, and has the time-complexity of O((N + C)2 log(N + C));

see [57] for details.

We also provide another version of Giotto, called Giotto-With-Labels, which draws each vertex

as an expanded box large enough to �t its label.

Bend-Stretch: Bend-Stretch [57] uses the same three steps | planarization, orthogonalization, and

compaction | as Giotto, and di�ers only in the method used in the orthogonalization step,

namely, it adopts the \bend-stretching" heuristic of Tamassia and Tollis [148] that only guar-

antees a constant number of bends on each edge but runs in linear time. The planarization step

uses an incremental method and has time complexity O(N + C)2 log(N + C), and therefore,

Bend-Stretch has time complexity O(N + C)2 log(N + C); for details see [57]. Bend-Stretch is

also implemented using ALF.

Pair: Pair [57] uses a di�erent approach from Giotto and Bend-Stretch. It is an extension of the

orthogonal drawing algorithm for degree-4 graphs by Papakostas and Tollis [124] to graphs of

arbitrary vertex degree. Given a graph, it �rst computes an st-numbering of its vertices and

then employs this numbering to optimize the number of bends, row and columns used in the

drawing. Pair has the time-complexity of O((N +M) log(N +M)).

Column: Column [57] is similar to Pair and di�ers from it only in the method used to optimize

the number of bends, rows and columns used in the drawing once an st-numbering has been

computed. The method used is the one of Biedl and Kant [17]. Column is implemented using

ALF, and has the time-complexity of O(N +M); see [57] for details.

Sugiyama: Sugiyama is our implementation of the algorithm of Sugiyama, Tagawa, and Toda [143].

It constructs a hierarchical drawing of a directed graph in the following three steps: �rst, in

a layering step, it assigns vertices to horizontal layers, next, in a crossing-minimization step,

it permutes the vertices within the same layer to reduce edge-crossings, and �nally, in a bend-

reduction step, it readjusts the position of vertices within each layer to reduce edge-bends.

Sugiyama is implemented using ALF; see [55] for details (where it is called Algorithm layers).

Planarizer: Planarizer is actually not a drawing algorithm. It is the planarization step of Giotto, and

constructs a planar embedding of the input graph by replacing edge-crossings with �ctitious

vertices. It has time-complexity O((N + C)2 log(N + C)).

5.6 Using our Service

We now give two scenarios to show how a user interacts with our service and how the service satis�es

a user request.

108

Scenario 1. Using the Forms Interface (see Figure 5.4).

Suppose the user wants to draw a graph described in the Edges format using the Giotto algorithm,

and wants the drawing to be displayed as a GIF. She loads the service's home page into her browser,

clicks on the forms interface link, and gets an HTML form. She can specify a graph in one of two

ways | either by giving the URL of the graph or by typing the description of the graph in the form

itself. In Figure 5.4(a) she chooses the latter option and enters the graph (in Edges input format)

into the text area provided in the form. She then selects the appropriate menu item to specify

that the input format is Edges, the drawing algorithm is Giotto, and the output format is GIF, and

submits the form to the server. Figure 5.4(a) shows a part of this user-�lled form.

The Web-server receives the form and executes the CGI front end of the service. The CGI front

end �rst invokes to extract the input graph, the type of service requested (DRAWING), the names

of the input and output formats (Edges and GIF, respectively), and the drawing algorithm to use

(Giotto) from the form. This information is then passed on to the request handler which �rst consults

the graph drawer to determine the graph format required by the drawing algorithm (Giotto usesMalf)

and then calls the translator to convert the graph from Edges to Malf. The graph description in

Edges format is then sent to the graph drawer, which uses Giotto to construct a drawing of the graph.

(a) (b)

Figure 5.4: Scenario 1: Using the forms interface to draw a graph described in Edges format using
Giotto, where the drawing is to be displayed as a GIF. (a) Part of the user-�lled form; (b) Drawing
in GIF format returned to the user.

109

(a) (b)

(c) (d)

Figure 5.5: Scenario 2: Using the graph-editor to draw a graph with Giotto, where the drawing is to
be displayed in an editor window. (a) The interface of the editor and the input graph; (b) Drawing
returned by the server; (c) Dialog box for algorithm and output format selection; (d) Status window
displayed while the request is being handled by the server.

The drawing is returned to the request processor in Malf, the output format of Giotto, so it must

once again invoke the translator to convert the drawing to GIF. The �nal drawing is saved to a �le

on the server and the URL of this �le is returned to the client.

Back on the client, the user's browser receives the URL sent by the server and automatically loads

the �le, displaying it on the screen as shown in Figure 5.4(b) (assuming the browser is con�gured to

automatically display GIF �les; otherwise the user would be prompted to download the �le).

Scenario 2. Using the Graph Editor (see Figure 5.5).

As before, the user loads the service's home page into her browser. This time she �rst clicks on

the interactive applet interface and then on the start client link. This causes a graph editor window

to appear. Figure 5.5(a) shows a graph editor window with a sample graph constructed interactively

by the user. To obtain a drawing of the graph the user must specify the algorithm and the output

format by making the appropriate selections on the pull-down menus at the top of the window. The

example shows the algorithm Giotto and the output format \interactive". (Selecting \interactive" as

110

the output format will cause the drawing to be displayed in another editor window; all of the other

formats supported by the forms interface, such as Parenthetic and GIF, are also supported by this

interface and will be displayed in a new browser window.) Once the algorithm and output format

have been selected, the user clicks on the \Run" button to send the request.

Sending the request causes a small status window to pop up, providing the user with information

about the processing of the request and allowing her to cancel a running request (Figure 5.5(c)).

The processing of the request on the server side follows the same basic pattern as for the forms

interface (parsing, translation, drawing, translation); the di�erences are that the socket front-end

is used for reading and parsing the request and some extra machinery is employed to ensure that

responses destined for the same client are sent back in the proper order.

When the request completes, a new graph editor window appears (since the chosen output format

was interactive) with the resulting drawing (Figure 5.5(b)), scaled to �t in the window. This drawing

is fully editable, and can be modi�ed and resubmitted to the server. It can also be saved, by sending

a translation request to the server to convert the graph into some other format (presumably a text

format), which is displayed in a browser window and can then be saved using the browser's own

\Save As" mechanism.

5.7 Experience with the Service

Our service �rst became operational in June 1996. Monthly usage statistics are shown in Figure 5.6.

Since that time it has been accessed by users around the world, as shown by Figure 5.7. A large

fraction of these users are from educational and commercial sites (identi�ed by the .edu and .com

pre�xes, respectively, in their Web-addresses). We have ourselves used it to generate drawings for

inclusion in documents and presentation slides.

This service has been used by students within our department for studying and improving the

algorithms supported by the service, sometimes in creative ways. For example, while developing this

service we also designed a small command-line facility for sending drawing or translation requests

to the server, to be used for debugging purposes. One student, Jody Fanto, working on improving

Giotto, used this facility to design a novel distributed system for conducting experiments on Giotto.

His system divides a test-set of graphs into smaller subsets, and for conducting experiments on each

subset, spawns a new process that runs on a separate machine. Hence, while the drawing requests

are satis�ed by the server, the statistical analysis such as determining the area and number of bends

of a drawing on the subsets is done on di�erent machines. Another use for the service was in the

development and testing of InteractiveGiotto [43], a version of Giotto modi�ed to preserve the user's

\mental map" when redrawing a layout after some changes have been made. Using the Graph

Drawing Server meant that the graph editor applet could be used to construct test cases and to get

immediate graphical feedback, a vast improvement over working with text representations of the

graphs.

We also conducted an experimental study on the average response time of the service. Our

111

Ju
n

96
Ju

l9
6

A
ug

96
S

ep
96

O
ct

96
N

ov
96

D
ec

96
Ja

n
97

F
eb

97
M

ar
97

A
pr

97
M

ay
97

Ju
n

97
Ju

l9
7

A
ug

97
S

ep
97

O
ct

97
N

ov
97

D
ec

97
Ja

n
98

F
eb

98
M

ar
98

A
pr

98
M

ay
98

Ju
n

98
Ju

l9
8

A
ug

98
S

ep
98

O
ct

98
N

ov
98

D
ec

98
Ja

n
99

F
eb

99
M

ar
99

A
pr

99
M

ay
99

Ju
n

99
Ju

l9
9

A
ug

99
S

ep
99

O
ct

99
N

ov
99

D
ec

99
Ja

n
00

F
eb

00
M

ar
00

A
pr

00
M

ay
00

Ju
n

00
Ju

l0
0

A
ug

00
S

ep
00

O
ct

00
N

ov
00

D
ec

00
Ja

n
01

F
eb

01
M

ar
01

A
pr

01
M

ay
01

Ju
n

01
Ju

l0
1

0

50

100

150

200

250

300

350

400

450

500

n
u

m
b

er
o

f
se

rv
ic

e
re

q
u

es
ts

Graph Drawing Server Usage By Month

4340016995979

Figure 5.6: Distribution of over 63,000 service requests by month. Only drawing/translation requests
are counted; the number of hits on the Graph Drawing Server's web pages is much higher (nearly
200,000 total).

motivation was not only to evaluate the performance of the service, but also to determine the

running times of the drawing algorithms and translators supported by the service. These experiments

also constitute a �rst step in our broader goal to provide a facility for conducting experiments on

algorithms and translators and collecting statistics on them.

We used the following performance measures for our study:

� The average overall time needed to satisfy a request once it has been received by the server. We

did not measure the time from the time it was submitted by a user because that is dependent

on extraneous factors such as network traÆc.

� The average time needed to satisfy a drawing request.

� The average time needed to satisfy a translation request.

For this study we used a set of 6,950 graphs with vertices and edges in the range 10 to 100 and 10

to 140, respectively. These graphs are a subset of a data set used in other experimental studies [57];

the full set was generated from a core of 112 graphs collected from various software engineering and

database applications by using graph updating operations typical in these applications.

We have recently begun storing graphs submitted to the Graph Drawing Server to build up

a library of graphs for future experiments. This data set is still quite small, but provides some

112

.e
du

.c
om

G
er

m
an

y

un
re

so
lv

ed
IP

.n
et

Fr
an

ce

C
an

ad
a

U
K

Ja
pa

n

.m
il

S
.K

or
ea

A
us

tr
al

ia

S
w

ed
en

A
us

tr
ia

F
in

la
nd

N
et

he
rla

nd
s

Ita
ly

.o
rg

B
ra

zi
l

N
or

w
ay

R
us

si
an

F
ed

.

S
w

itz
er

la
nd go

v

un
kn

ow
n

D
en

m
ar

k

G
re

ec
e

Ir
el

an
d

Tu
rk

ey

B
el

gi
um

Is
ra

el

S
pa

in

M
ex

ic
o

S
in

ga
po

re

fo
rm

er
U

S
S

R

S
lo

ve
ni

a

N
ew

Z
ea

la
nd

0

200

400

600

800

1000

1200

n
u

m
b

er
o

f
se

rv
ic

e
re

q
u

es
ts

Graph Drawing Server Usage By Domain
222453988

Figure 5.7: Distribution of service requests over various host domains from June 1996{July 2001.
Only drawing/translation requests are included.

indication that the graphs used in the experimental study are reasonably \typical" as the processing

time for the user graphs agrees with the data obtained from the study. We hope that over time

we will be able to collect a set of larger graphs for use in experiments; so far 90% of the graphs

submitted for drawing or translation have fewer than 80 vertices and only a handful have more than

100 vertices.

For the experimental study, the input graphs were in the formats Malf and Parenthetic. The

output formats were categorized into two groups: text oriented formats that consisted of Parenthetic,

Malf-Input, andMalf-Output, and the diagram oriented formats that consisted of Postscript, GIF, MIF,

Gnuplot, Summary, and Fig. We assumed that each output format is equally likely to be requested by

a user. Hence, in our study, 33% of the graphs were drawn or translated with text oriented output

formats and 67% with diagram oriented formats. We also assumed that each drawing algorithm

and explicit translation is equally likely to be requested by a user. Since we support seven drawing

algorithms 86% of the requests were for drawing and the remaining for translation. All of the times

measured are total elapsed times; they include any time the server spent running other processes.

All of the experiments were run on the machine used as the server (an UltraSPARC 1) under normal

conditions (though not dedicated solely to the Graph Drawing Server, the machine is not usually

heavily loaded).

Figure 5.8 shows that the overall time needed to satisfy a request is in the range 8 to 12 seconds,

113

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

tim
e

(s
ec

on
ds

)

graph size (nodes+edges)

Running Time for User Requests

overall average
drawing requests

translation requests

Figure 5.8: Average overall (elapsed) time needed to satisfy a request versus input graph size. The
dots represent individual requests. The high and low lines for drawing requests and translation
requests are averages for diagram-oriented output formats and text-oriented output formats, respec-
tively.

and increases slowly with the graph size. The maximum time needed for a request was 45 seconds.

(The few outlying points are the result of momentary server load.) Note this this is only the time

used by the server; it does not include the time needed to send the data between client and server

across the network. Our studies indicate that there is a perceptible di�erence between the average

times needed for satisfying requests with the text oriented and diagram oriented formats. We believe

that it is because the diagram oriented formats are all generated using Postscript (see Fig. 5.2), often

requiring two (or more) translation steps, and because converting from Postscript to another format

involves running a Postscript interpreter, a time-consuming task. Statistics such as these can be

used to improve translator performance | if a particular multi-step sequence is common, a shortcut

�lter can be written to do the translation in a single step.

Figure 5.9 shows the time used by only the drawing algorithm step of the request. The average

time is between 2 and 6 seconds and increases slowly with the graph size. As shown in the �gure,

many of the dots are clumped together in bands, illustrating the di�erence in running times among

the supported algorithms.

Figure 5.10 compares the time needed for the translation step(s) of both drawing and translation

requests. The average time needed is in the range 4 to 10 seconds and also increases slowly with

an increase in graph size. The translation time for drawing requests is higher than for translation

requests because typically two translations are needed to satisfy a drawing request | from the

114

2

4

6

8

10

12

14

16

20 40 60 80 100 120 140 160 180 200 220 240

tim
e

(s
ec

on
ds

)

graph size (nodes+edges)

Algorithm Time for User Requests

average

Figure 5.9: Average (elapsed) time needed by the drawing algorithms versus input graph size.
The dots represent individual requests. The clumping of the dots into distinct bands illustrates
the di�erent running times of the various algorithms | the lower bands correspond to Pair and
Planarizer, the middle band Column, and the upper bands Giotto, Bend-Stretch, and Sugiyama; the
steeply increasing band is Giotto-With-Labels.

input graph's format to the drawing algorithm's input format and from the output format of the

drawing algorithm to the desired output format. The di�erence is relatively small, however, because

of the diagram oriented output | when a diagram oriented format is requested the time needed for

this step dominates the total translation time for the drawing request. The lower band of dots in

Figure 5.10 shows the translation times with the text-oriented output formats and the upper bands

translation times with the diagram-oriented output formats.

5.8 Future Work

There are several directions for further work on the service:

� Improving the translator by adding support for di�erence �les.

� Adding support for new formats such as GML [91].

� Adding new algorithms. We plan to start with implementations already available freely on the

Web.

� Adding a programmer's interface, where a small Java or C++ library is provided to handle

communications with the server, allowing users to make remote process calls to the server.

115

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

20 40 60 80 100 120 140 160 180 200 220 240

tim
e

(s
ec

on
ds

)

graph size (nodes+edges)

Translation Time for User Requests

average, drawing requests
average, translation requests

Figure 5.10: Average (elapsed) time needed by translations, both explicitly requested and implicitly
done during drawing requests, versus input graph size. The dots represent individual requests.
The lower band of dots (under 2 seconds) represents translation times for text-oriented output
formats and the upper bands (over 4 seconds) represent translation times for diagram-oriented
output formats.

� Adding support for incremental graph drawing.

� Providing a service (accessible through the Web) through which the users can conduct exper-

imental studies on graph drawing algorithms.

� Exploring the use of distributed computing technologies (eg RMI or CORBA) for client-server

communication.

Acknowledgments

We would like to thank Giuseppe Di Battista for making the Automatic Layout Facility of Diagram

Server available to us, and Jody Fanto for allowing us to use his system to collect statistics on the

service.

5.9 Appendix: Graph and Drawing Description Formats

In this appendix, we describe some of the graph and drawing description formats supported by

the service in a greater detail. The formats we describe are: the Parenthetic format, Edges,

Node/Edge List, and Malf.

116

ab ac

ad

bd

cd

Figure 5.11: A drawing constructed by Giotto.

An ASCII string is a string consisting of ASCII characters. � denotes an empty word.

[a1; a2; : : : ; an] denotes the occurrence of either none or one and only one of a1; a2; : : : ; an.

fa1; a2; : : : ; ang denotes the occurrence of a1; a2; : : : ; an in any order. \n denotes the new-line char-

acter. (a)n+ denotes n or more occurrences of a. ajb denotes a choice between a and b. (a)� denotes

zero or more occurrences of a.

Parenthetic: The Parenthetic format [137] consists of nested lists of keyword-value pairs enclosed by

parentheses. It provides a rich set of pre-de�ned keywords and allows the users to de�ne their

own keywords. The example given below, which describes the drawing of Figure 5.11, gives a

avor of this format. Notice that a keyword-value pair|fontsize 0.40, for example|can span

more than one line, and several keyword-value pairs can be given on the same line. Also notice

that for a vertex or an edge, only its id is mandatory, the other �elds are optional and need

not be speci�ed.

(graph (fontsize

0.40)

(vertex (name "ab")(id 1)

(x 2.0)(y 1.0)

(skeleton (height 0.50) (width 0.50))

(incident-edges 6 7 8))

(vertex (name "ac")(id 2)

(x 3.0)(y 1.0)

(skeleton (height 0.50) (width 0.50))

(incident-edges 6 11))

(vertex (name "ad")(id 3)

(x 2.0)(y 2.0)

(skeleton (height 0.50) (width 0.50))

(incident-edges 8 9 12))

(vertex (name "bd")(id 4)

(x 2.0)(y 3.0)

(skeleton (height 0.50) (width 0.50))

(incident-edges 7 9 10))

(vertex (name "cd")(id 5)

(x 3.0)(y 2.0)

117

(skeleton (height 0.50) (width 0.50))

(incident-edges 10 11 12))

(edge (type undirected)(id 6)

(source 1 destination 2)

(source-pt (x 2.00) (y 1.00))

(destination-pt (x 3.00) (y 1.00)))

(edge (type undirected)(id 7)

(source 1 destination 4)

(source-pt (x 2.00) (y 1.00))

(destination-pt (x 2.00) (y 3.00))

(shape West 1.00 North 2.00 East 1.00))

(bends ((x 1.00) (y 1.00))((x 1.00) (y 3.00))))

(edge (type undirected) (id 8)

(source 1 destination 3)

(source-pt (x 2.00) (y 1.00))

(destination-pt (x 2.00) (y 2.00)))

(edge (type undirected)(id 9)

(source 4 destination 3)

(source-pt (x 2.00) (y 3.00))

(destination-pt (x 2.00) (y 2.00)))

(edge (type undirected)(id 10)

(source 4 destination 5)

(source-pt (x 2.00) (y 3.00))

(destination-pt (x 3.00) (y 2.00))

(shape East 1.00 South 1.00)

(bends ((x 3.00) (y 3.00))))

((x 3.00) (y 3.00))))

(edge (type undirected)(id 11)

(id 11)

(source 5 destination 2)

(source-pt (x 3.00) (y 2.00))

(destination-pt (x 3.00) (y 1.00)))

(edge (type undirected)(id 12)

(id 12)

(source 5 destination 3)

(source-pt (x 3.00) (y 2.00))

(destination-pt (x 2.00) (y 2.00))))

Edges: A �le in the Edges format consists of a list of edges, one per line. There is no separate

declaration for vertices as they are de�ned implicitly as part of the edge-de�nitions. A vertex

appearing again refers to a vertex with the same name de�ned earlier. Edges can not describe

drawings. It can only describe graphs. Formally, Edges has the following syntax (in BNF

notation):

118

Graph ::= (Edge \n)�

Edge ::= SrcVertex EdgeDir DestVertex

EdgeDir ::= > j < j � j �

Here, SrcVertex and DestVertex are ASCII strings denoting the names of the source and desti-

nation vertices, respectively, of an edge. SrcVertex > (<) DestVertex denotes a directed edge

from (to) SrcVertex to (from) DestVertex SrcVertex DestVertex and SrcVertex � DestVertex both

indicate an undirected edge between SrcVertex and DestVertex.

The graph of Figure 5.11 can be described using Edges as follows:

ab ac

ab bd

ab ad

bd ad

bd cd

cd ac

cd ad

Node/Edge List: The Node/Edge List format divides a �le into the following sections:

// nodes: for de�ning vertices,

// edges: for de�ning edges,

// directed edges: for de�ning directed edges

// named edges: for de�ning edges with names, and

// directed named edges, and // named directed edges: for de�ning directed edges with

names.

Sections may be omitted, but the // nodes section always precedes the other sections, which

can be given in any order.

Formally, it has the following syntax (in the BNF notation):

Graph := NS f[ES] [DES] [NES] [DNES] [NDES]g

NS := \// nodes" \n (VertexName \n)�

ES := \// edges" \n (SrcVertex \n DestVertex \n)�

DES := \// directed edges" \n (SrcVertex \n DestVertex \n)�

NES := \// named edges" \n (EdgeName SrcVertex \n DestVertex \n)�

NDES := \// named directed edges" \n (EdgeName SrcVertex \n DestVertex \n)�

DNES := \// directed named edges" \n (EdgeName SrcvVrtex \n DestVertex \n)�

Here, VertexName, EdgeName, SrcVertex, and DestVertex are all ASCII strings denoting the

name of a vertex, name of an edge, name of the source vertex of an edge, and name of the

destination vertex of an edge, respectively.

119

The graph of Figure 5.11 can be described using Node/Edge List as follows:

// nodes

ab

ac

ad

bd

cd

//edges

ab

ac

ab

bd

ab

ad

bd

ad

bd

cd

cd

ac

cd

ad

Malf: The Malf format has two versions: Malf-Input and Malf-Output. Malf-Input can describe only

graphs, whereas Malf-Output can describe both. A �le in Malf format consists of a list of

vertices, with one vertex per line, and a list of edges, again one edge per line. The two lists

are separated by a line consisting of a single '#' character.

Formally, the syntax of Malf-Input is as follows (in BNF format):

Graph := VertexList \# \n" EdgeList

VertexList := (VertexId [VertexName]\n)�

EdgeList := (EdgeId EdgeDir SrcVertId DestVertId \n)�

EdgeDir := 0j1

The syntax of Malf-Output is as follows (in BNF format):

Graph := VertexList \#\n" EdgeList

VertexList := (VertexId VertexXc VertexYc VertexXl VertexYl [VertexName]\n)�

EdgeList := (EdgeId EdgeDir SrcVertId DestVertId NumBends (BendXc BendYc)2+ \n)�

EdgeDir := 0j1

Here,VertexName and EdgeName are ASCII strings denoting the name of a vertex and an edge.

VertexId and Edgeid are integers denoting the identity of a vertex and an edge, respectively.

120

The Malf format requires the VertexId (EdgeId) of a vertex (an edge) to be in the range 1 to

N (M), where N (M) is the number of vertices (edges) in the graph. Also, vertices appearing

consecutively in the vertex list should have consecutive VertexIds. SrcVertId and DestVertId are

identities of the source and destination vertices of an edge. VertexXc, VertexYc, VertexXl, and

VertexYl are integers denoting the co-ordinates of the center and the lengths along the x- and

y- axes of the rectangle representing a vertex in a drawing. EdgeDir is 0 for an undirected edge

and is 1 for an edge directed from vertex SrcVertex to vertex DestVertex. BendXc and BendYc,

respectively, denote the integer x- and y- coordinates of the bend points of an edge. Numbends

denotes the number of bend points of an edge. MALF-OUTPUT counts the end points of an

edge also as bends points, and therefore, each edge at least two bends.

The graph of Figure 5.11 can be described using Malf-Input as follows:

1 ab

2 ac

3 ad

4 bd

5 cd

#

1 0 1 2

2 0 1 4

3 0 1 3

4 0 4 3

5 0 4 5

6 0 5 2

7 0 5 3

The graph of Figure 5.11 can be described using Malf-Output as follows:

1 1 0 0 0 ab

2 2 0 0 0 ac

3 1 1 0 0 ad

4 1 2 0 0 bd

5 2 1 0 0 cd

#

1 0 1 2 2 2 1 3 1

2 0 1 4 4 2 1 1 1 1 3 2 3

3 0 1 3 2 2 1 2 2

4 0 4 3 2 2 3 2 2

5 0 4 5 3 2 3 3 3 3 2

6 0 5 2 2 3 2 3 1

7 0 5 3 2 3 2 2 2

Chapter 6

GeomNet: Geometric Computing

Over the Internet

Consider two real-life problems. First, suppose you have a collection of nails hammered into a board.

If you were to stretch a rubber band around the inside of the nails and let it snap, what shape would

the rubber band take? Second, imagine two planes whose trajectories and ight patterns show that

they must, at one instance in time, y dangerously close to one another | will they collide?

In geometric terminology, the shape sought in the �rst problem is called the convex hull of a set

of points in the plane (nails on the board). This is the smallest convex polygon containing all the

points. The solution sought in the second problem is an eÆcient algorithm for detecting potential

collisions between objects.

Geometric computing emerged from algorithms developed to solve such problems. It has be-

come a central building block in �elds like computer graphics, arti�cial intelligence, CAD and GIS

databases.

Although many representational formats for geometric data exist, only a few fully implement the

combinatorial connectivity information that makes geometric data so interesting. Typically, each

geometric software package is designed for a unique, incompatible data format. Designing a standard

language for describing geometric data would necessitate the encoding of all possible relationships

between the numerical and combinatorial components of geometric data | a Herculean task that

doesn't seem likely.

In spite of diÆculties, there are a number of robust implementations of geometric algorithms.

Many of these are available on the Internet (see table 6.1, \Geometric Software on the Web").

Our group at the Center for Geometric Computing developed the GeomNet system to provide

easy Internet access to geometric implementations via a plug-and-play environment, forming a link

between software evaluation and production modes. By providing a progressive migration of software

Previously published as Gill Barequet, Stina S. Bridgeman, Christian A. Duncan, Michael T. Goodrich, and
Roberto Tamassia. GeomNet: Geometric computing over the Internet. IEEE Internet Computing, 3(2):21{29,
1999.

121

122

Collections of geometric software can be found on the Internet at Amenta's \Di-
rectory of Computational Geometry Software" site (http://www.geom.umn.edu/
software/cglist/), and a host of geometric computing applications can be found
at Eppstein's \Geometry in Action" site (http://www.ics.uci.edu/~eppstein/
geom.html). Erickson has an even more extensive collection of geometric soft-
ware at his \Computational Geometry Software" site (http://www.cs.duke.edu/
~jeffe/compgeom/software.html). In addition, there is a large collaborative e�ort
under way to develop an extensive Computational Geometry Algorithms Library
(http://www.cs.ruu.nl/CGAL/) [67, 123] which itself is built upon the success-
ful Library of EÆcient Data Types and Algorithms (http://www.mpi-sb.mpg.de/
LEDA/leda.html) [44, 112]. This e�ort is directed at building a large collection of
C++ routines for solving computational geometry problems. This collection should
grow signi�cantly in the years ahead.

Table 6.1: Geometric software on the Web.

from the host to the client, GeomNet attempts to simplify interfacing, one of the most signi�cant

problems in software engineering and in using software developed elsewhere. Users can invoke on-

line, separately or in a pipeline, a rich collection of geometric computations for performing one-time

or repeated tasks. The system is suitable for a wide variety of tasks, such as invoking an algo-

rithm with speci�c input data, checking geometric structures or data for consistency, experimentally

studying and/or comparing algorithms, designing new algorithms through the integration of existing

algorithms, or demonstrating the course of an algorithm in an educational setting.

6.1 A Cooperative Computing Environment

We envisioned GeomNet as a family of geometric computing servers executing various geometric

algorithms on behalf of remote clients. These clients can be users interfacing through a Web browser

interface, or application programs connecting direction through sockets. We refer to negotiations

between client and server as cooperative computing.

GeomNet is based on a layered object-oriented architecture (see Figure 6.1), with the highest

level responsible for interacting with client processes and the lowest level responsible for interacting

with speci�c geometric programs. This structure divides a GeomNet server's tasks into separate

conceptual units and hides the details of speci�c implementations from components that don't need

that information. This makes it easier both to maintain GeomNet and to incorporate new algorithms

into the system.

GeomNet supports �le formats commonly used in various communities. Formats for describ-

ing three-dimensional geometries include .OFF (used by the data visualization and manipulation

Geomview [2], see http://www.geom.umn.edu/software/download/geomview.html), .WRL (for

VRML �les), and .STL (a manufacturing �le format). The system also supports several graph

formats. We are continuously incorporating more formats.

123

Geometric
Application

Format Translator

External editing tools

Action
Database

Client

3D display

Wrapper

Action Manager

Action Dispatcher

Server Manager

WWW

Figure 6.1: The GeomNet architecture. A client sends a request to one of the GeomNet servers,
where the server manager adds it to its queue of incoming messages. The action dispatcher extracts
messages from the queue and forwards them to the action manager, which decodes the message and,
using the action database, invokes the wrapper of the application that will handle the request. After
termination, the output is forwarded back through the layers and returned to the client.

Briey, users submit data in one of the supported data formats and request a computation from a

GeomNet server. GeomNet automatically converts the data to the format assumed by the requested

computation, performs the computation, and returns the result in one of many popular formats,

including interactive two- and three-dimensional visualization programs already plugged in to the

user's Web browser or, alternatively, the user's application.

6.1.1 Client-Server Dialog Protocol

The dialog protocol between GeomNet's servers and clients was designed and implemented such

that a client can call applications on the server's side. Messages exchanged between GeomNet

clients and servers have a keyword-value structure. That is, every message is composed of a list

of pairs consisting of a keyword, which identi�es the name of a �eld in the message, and a value,

which represents the contents of that �eld. This type of syntax is not only simple to parse and to

A �rst implementation of GeomNet is available on the Internet through the support
of the Center for Geometric Computing at Johns Hopkins University (http://www.
cs.jhu.edu/labs/cgc/) and at Brown University (http://www.cs.brown.edu/
cgc/), with prototype servers available at the GeomNet sites (http://www.cgc.
cs.jhu.edu/geomNet/ and http://loki.cs.brown.edu:8081/geomNet/) at the
respective universities. New releases are planned throughout 1999 and 2000.

Table 6.2: Where to access GeomNet.

124

understand, but also very powerful and expressive.

The client's application (either an interactive applet embedded in a Web page or a stand-alone

program) sends a message to a GeomNet server, which expects the user to select a geometric oper-

ation (called an action) from the list of available operations (algorithms). Implicit in this selection

are any parameters required for the speci�c action. Some parameters are mandatory, for example,

the action name and the input �lename. Some parameters are optional. If, say, the input �le type

is omitted, the system automatically derives it from the �lename extension. Still other parameters

are speci�c to the algorithm, for example, a tolerance for an approximation algorithm. Either the

user or the client program could select the exact values assigned to these parameters. In either case,

the message sent from the client encodes the requested action and the accompanying parameters in

a Web-like syntax:

GN action=convex-hull&GN in�le=large-set.o�& n

GN out�le=small-set.wrl&GN intype=stl&mode=2-d&type=upper-hull

The message is further encoded by using the MIME type

application/x-www-form-urlencoded

so that special characters in the keyword and value strings are replaced by their ASCII hexadecimal

values.

GeomNet keywords begin with the pre�x GN . Each application may also have its own set of

additional keywords. In the example above, the application itself can use the keywords mode and

type. Indeed, the same keyword may be used for di�erent actions. Action-speci�c keywords are not

necessarily unique; for example, keywords such as epsilon, mode, and angle are expected to be shared

by many algorithms.

Note the similarity between this protocol and Java's remote-method-invocation mechanism: A

keyword-value structure is simply a way to invoke a (remote) procedure by setting actual values

to formal parameters. In addition, our protocol allows GeomNet to have default values, aggregate

arguments (encoded appropriately in the message), and indirect referencing (by specifying a URL

as an argument). In particular, arguments are passed by name, and their order is insigni�cant.

6.1.2 Computation Requests at the Server

GeomNet servers are responsible for decoding and ful�lling client requests for geometric computa-

tions. A GeomNet computation begins with the server manager, which tracks client requests and

sends responses back to the appropriate clients. The server manager handles a queue of incoming

messages to maintain the incoming requests. To process the next awaiting message, the server man-

ager calls its action dispatcher, which extracts the message from the queue and forwards it to the

action manager on that machine.

The action manager decodes the message according to the agreed-upon syntax and looks for

the mandatory �eld GN action. The action is then handled using the action database, where all

125

available actions are fully speci�ed by their names and parameters. This database, saved in an ASCII

control �le written in Java, identi�es the tool that should handle the action. More speci�cally, the

action database maintains details concerning the availability of an action and the name of the Java

wrapper class that should be used for performing that action. The action database does not contain

information about the interface of the actual tool (usually a stand-alone program) that performs the

action. It should know only what input and output formats are needed so that it can, if necessary,

also schedule a format conversion routine.

The action manager performs �le-type conversions, if necessary, before and after calling the

wrapper level. Then the action manager invokes the wrapper of the application that should handle

the requested action and passes it the necessary data. When the wrapper terminates, the action

manager returns the action's output to the action dispatcher, which then forwards it to the server

manager. This is done by passing back a locator (�lename) for the result or, if it is small enough,

by passing back the actual result encoded in a URL.

6.1.3 Wrapper-Application Interaction

The knowledge of what actual code or environment must be invoked to satisfy an action is at the

bottom layer of the architecture, where we store the Java wrapper class that interacts directly with

the application. The action manager invokes the serving application's wrapper class by name. It

obtains this name at runtime (rather than during compilation) and binds the wrapper by using

Java's runtime class loader. This allows for the addition of new algorithms (through new wrappers)

without having to recompile, or even restart, the server.

An application's wrapper is the only system component that knows how to invoke the appli-

cation. Thus, modi�cations made in the interface to the application, or even in the actual code

for implementing an application, require only recompilation of the wrapper. No other GeomNet

component is a�ected by changes made in the actual implementation of its geometric components.

The wrapper performs all necessary preparations for properly invoking the associated application,

then invokes it, receives the application's output, and returns the result to the action manager. The

wrapper terminates an application running too long by sending a time-out interrupt.

Adding a new application requires coding a suitable wrapper (that agrees with the interface

conventions), updating and recompiling the control �le, and restarting the system. Entire system

recompilation isn't needed; thus new applications can be added to every system installation without

the system having the application's source code. The end user, however, can use only system-

embedded applications.

Typically, geometric applications belong to one of three types: programming-language functions,

stand-alone computer programs, and embedded applications. We have implemented wrappers for

all three types.

A programming language function expects the input data in certain data structures to be passed

to it as actual arguments. Optionally, an argument can contain the name of a data �le. This is

usually the case when the function is really a \roof" over a stand-alone program. When calling a

126

function, the wrappers �rst parse the temporary input �le and prepare the data structures required

by the function. They then call the function according to its calling sequence. Finally, they scan

the data structures returned by the function and write the contents in a temporary output �le with

the format requested by the server.

A stand-alone computer program expects all the input in a command line to be extracted by the

famous C argc/argv mechanism, or by Java's args[]. These arguments include the names of the input

and output �les and other arguments to the program. The program expects the input �le to be in

one of several prede�ned �le formats and usually writes the output in the same �le format. If the

program does not recognize the syntax of the temporary input �le, the wrapper converts the input

�le into a secondary input �le with a syntax the program recognizes. The wrapper runs the program

(executable or a shell script) according to its calling sequence. If the syntax of the temporary output

�le provided by the program is not the one the server requires, the wrapper converts the output �le

into a secondary output �le with the requested format.

An embedded application operates only in a speci�c environment, such as a CAD system or a

geometric database. The application expects the data to be preloaded into the environment that

the application works in. The environment supplies the methods for accessing and modifying the

geometric data, so that the application usually needn't be aware of the nature of the actual data

structures that store these data. The output is the contents of the environment upon termination of

the application. To invoke an embedded application, the wrappers �rst set the environment. This

means they initialize the environment, parse the temporary input �le, and load its contents into the

environment. The wrappers then invoke the application according to its speci�cations. To unset the

environment, the wrappers scan the environment and save its contents into a temporary output �le

with the syntax requested by the server. Lastly, they properly close the environment.

The user speci�es an output syntax but not an output �lename. GeomNet returns the output

in a temporary �le with the required syntax. The user may then choose a �le to save the data into.

Finally, GeomNet removes the temporary output �le automatically.

6.2 Interfaces and Applications

GeomNet is representative of systems that enable distributed computing over the Internet in the

sense that the scheme used in GeomNet can be used to develop similar systems in other disciplines.

In this section, we give several examples of how our system can be applied in the �eld of geometry.

6.2.1 Classic Geometric Algorithms

A prime application for GeomNet is invoking implementations of fundamental geometric algorithms.

Therefore the current GeomNet release includes implementations of several algorithms, such as d-

dimensional convex hulls (including a random-box generator for code testing purposes), Voronoi

diagrams, and Delaunay triangulations.

127

(a) (b)

(c) (d)

Figure 6.2: Applet interface for algorithms in two dimensions: (a) point set, (b) convex hull, (c)
Voronoi diagram, (d) Delaunay triangulation.

We developed several interface mechanisms for invoking these routines. The simplest is the

interactive applet interface. Figure 6.2(a) shows a Java point-set editor embedded in GeomNet.

The purpose of the interactive applet interface is clearly not to perform intricate large-scale com-

putations but rather to interact with the system so as to gain intuition about geometric algorithms

128

and to easily test GeomNet servers. The user can then apply any algorithm for which an appro-

priate application is bound to the system. Figures 6.2(b), 6.2(c), and 6.2(d) show the convex hull,

the Voronoi diagram, and the Delaunay triangulation, respectively, of the point set shown in Fig-

ure 6.2(a), as computed by the appropriate applications and displayed by GeomNet's applet. Some

operations don't require graphical input, only parameter settings. For these operations GeomNet

provides a general form for obtaining user input.

For production-level usage we provide a socket interface that can be invoked directly from inside

an application program running on the client's site. This interface lets any program, not just

Java applications, communicate with the server via the GeomNet protocol. We also provide a

forms interface for downloading geometric data �les. In both cases the server output can be sent

immediately to an interactive display system running on the client, or it can be piped into a client

application (including the calling application). Figure 6.3 shows such a response, the result of a

client application that �rst requested GeomNet to generate a random sample of points in R3 and

then returned that set of points for GeomNet to compute its convex hull.

GeomNet's response was then sent immediately to a client invocation of the Geomview system.

Here Geomview was used as a plug-in for the client's application. However, it could also have been

used as a Netscape plug-in for someone using the forms interface or the applet editor.

Users may choose three-dimensional browsers to serve as plug-ins to the Web browser (when

opening the GeomNet page) or as plug-ins to the user's client (if the socket interface is used). Often

users can request that a GeomNet application's output be speci�ed in a format suitable to the user's

plug-ins or helper applications.

6.2.2 Drawing Abstract Graphs

Graph drawing is an evolving research area. The objective is to produce a graphical representation

from a set of objects (nodes) and connections between them (edges). A graph is an abstract entity

that has many possible drawings | deciding which drawing is of the highest \quality" is rather

subjective and depends on the type of graph and the application. Common factors for determining

quality include minimizing the number of edge intersections or the total area of the picture.

The Graph Drawing Server, a GeomNet component, can be used for drawing graphs from user

applications, studying and comparing graph-drawing algorithms, converting between di�erent for-

mats for describing graphs and their drawings, creating a database of graphs occurring in user

applications, and providing educational demonstrations.

The user must specify the graph style, the input format, the type of service desired (drawing

or format conversion), the output format, and the drawing algorithm (if the graph is to be drawn).

To provide the input graph in HTML form, the user can either give the URL of the �le containing

the graph or simply type the graph description in the form itself. The graph editor applet lets the

user interactively draw the input graph on the screen. GeomNet currently supports four orthogonal-

drawing algorithms for general graphs, as well as several algorithms for drawing specialized graphs.

A prototype version of the Graph Drawing Server can forward requests as needed to other servers.

129

Figure 6.3: A three-dimensional display plugged into GeomNet.

Figure 6.4 compares the performance of several graph-drawing algorithms on a diagram taken

from a ights database.

Figure 6.5 shows the application of a graph-drawing algorithm on the hierarchy of GeomNet's

Web pages. The user speci�es the URL of the hierarchy description in the input form (Figure 6.5(a)).

Figure 6.5(b) shows the textual output of invoking the Sugiyama hierarchical graph-drawing algo-

rithm. The output page provides a thumbnail image of the drawing (linked to the full-size image)

and some statistics on the output, as well as convenient links for obtaining the output in a di�erent

format. Figure 6.5(c) shows the same input entered in the graph-editor applet, and Figure 6.5(d)

shows the graphical output. The graphical output is used, for example, to demonstrate how many

links the GeomNet user must follow to �nd a particular page.

130

(a) (b)

(c) (d)

Figure 6.4: Some graph-drawing examples: (a) the ights database, (b) the Bend-Stretch algorithm,
(c) the Giotto algorithm, (d) the Sugiyama algorithm.

6.2.3 Geometric Algorithm Animation

Animation can be used as a tool to understand an algorithm's operation. We are incorporating

geometric algorithm animation capabilities into GeomNet by extending previous work on the Mocha

model for Web-based algorithm animation [7]. In the Mocha model, algorithm animation consists

of two components: the algorithm server, which executes the algorithm and produces a sequence

of interesting events, called algorithm operations, and the animation component, which provides

the multimedia visualization of the algorithm operations. The animation component can be further

131

(a) (b)

(c) (d)

Figure 6.5: GeomNet's Web page hierarchy: (a) input form, (b) textual output, (c) graphical input,
and (d) graphical output.

132

divided into the GUI, which handles the user's interaction with the interface and sends changes in

the input to the algorithm server, and the animator, which receives algorithm operations from the

algorithm server and updates the display accordingly.

Currently supported are animations of the convex hull, Voronoi diagram, and Delaunay triangu-

lation algorithms provided by the Library of EÆcient Data Types and Algorithms (LEDA), and the

computation of a proximity graph of a set of points.

6.2.4 Experimental Results

We ran our geometric algorithms server on a Pentium Pro 200-MHz machine using Linux, and

measured the running time of the algorithms for two- and three-dimensional Delaunay triangulations

and three-dimensional convex hulls. For a reasonably sized input (tens of thousands of points) the

system provided the output in less than 30 seconds (plus transportation time, which varied).

We have collected statistics on the performance of the graph-drawing server, which was run on a

Sun UltraSparc workstation using Solaris 2.5/2.6. For graphs with up to 100 nodes and 140 edges,

the typical running time of a drawing algorithm was less than 10 seconds, with less time spent on

input and output format conversions and on other system overhead. A little more time was needed

for conversion if the output format was graphical (for example, a GIF or PostScript �le).

6.3 Future Work

Future GeomNet development will incorporate new types of servers, upgrade existing servers to

control more algorithms, and expand the online help, which is now only partially available. These

enhancements will make GeomNet functionality richer and appropriate to more research domains.

Its modular structure makes these tasks simple.

A super-action mechanism, now under development, will give the user a scripting language for

conditioning, pipelining, and iterating regular actions. This feature will enable further automation

of complex sequences of operations performed on geometric objects.

We also plan to enhance the system to utilize distributed computing where appropriate. This

means implementing a cluster of servers that can assign tasks or subtasks to one another. In a

homogeneous environment, where most machines running the servers have the same resources, a task

should be solved in parallel, to the extent that the underlying problem is parallelizable. Conversely,

if the machines' computing capabilities di�er, then each server should handle the problems it is best

suited for.

We also intend to explore the possibility of downloading and running an application on the user's

site, thus reducing the load on the server. This requires the application author's consent to Internet

distribution of the application. Also, the user's machine would need the code type and machine

resources to run the application. Once the system supports a cluster of servers, users can add their

own applications by starting a server locally at their site. They can also submit applications to

a server's owner for inclusion, although the current server assumes applications are trusted and

133

protects only against crashes and in�nite loops. Additional security measures are needed to protect

the server from applications that may cause accidental or malicious damage. Finally, we also plan to

implement a mechanism (a metalanguage) that will let the user de�ne the input and output format

for the transferred data. This would remove the limitation that the user submit data in one of the

formats the system recognizes.

6.4 Acknowledgments

We thank Yair Amir, Jim Baker, Ashim Garg, and Subodh Kumar for several useful discussions

regarding geometric software and distributed computing.

Chapter 7

PILOT: An Interactive Tool for

Learning and Grading

7.1 Introduction

Interactive World Wide Web (WWW)-based learning tools have become the focus of research for a

large number of computer science educators [26, 27]. Interaction and animation in and out of the

classroom o�er the chance to actively engage students in the learning process. Several interactive

educational tools have been developed over the last few years. Many of these, however, quickly

become obsolete as hardware/software platforms and operating systems change. With the advent

of platform-independent applications, there are far greater possibilities for creating more useful

educational tools. While many computer science courses o�er online access to handouts, syllabi,

homework assignments solutions and other static documents, only a few have begun to exploit the

full potential of the new technology available to us.

Online testing systems can be useful in distance learning, virtual universities, and online classes,

and several systems that allow for online testing have been developed in the last decade (e.g.,

see [46]). Such systems tend to support multiple-choice questions, which provide a natural class of

questions that can be automatically graded online. While such questions can be used to provide

useful measures of student learning, we believe there are signi�cant additional learning and testing

opportunities available that have yet to be fully exploited. In particular, because of the ability to

formally de�ne input and output speci�cations, there are other more complex questions that should

also allow for automatic online grading, at least in theory. Some of the immediate advantages of

online grading for richer sets of questions are the ability to test students' answer creation abilities

rather than simply their answer choosing abilities. In addition, online grading also provides fast and

consistent grading, provably correct solutions, and pointers to information relevant to the question.

Previously published as S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia. PILOT: An interactive
tool for learning and grading. In Proc. ACM Tech. Symp. on Computer Science Education (SIGCSE), pages
139{143, 2000.

134

135

Moreover, online grading also allows the assignment of di�erent questions to the students, thus

reducing issues of cheating and plagiarism.

We are therefore interested in interactive online automated grading tools that aid student learning

and test answer creation abilities, not just answer choosing skills. In addition, we are interested in

the visualization of questions, errors, and answers.

7.1.1 Previous Work

Several previous software systems have been designed with online testing in mind [110, 111]. Black-

board.com [22] provides automatic grading for quizzes with multiple choice and true/false questions.

Systems such as QUIZIT [150], WebCT [153], and ASSYST [99] have been designed to perform

online testing of answers whose correct syntax can be speci�ed as regular expressions. Previous

systems that allow for richer types of answers have needed assistance from the course graders and

the instructor to perform the actual answer checking. In addition to the diÆculty of dealing with

sophisticated forms of answers, another area where these previous systems have trouble is in their

lack of ability to provide partial credit to answers that are \almost" correct.

Intelligent tutoring systems have been an area of research in arti�cial intelligence for several

decades. The primary application of these systems is providing feedback and tutoring the student

rather than grading responses. Many systems, such as the LISP Tutor [4] and the Geometry Tutor [3],

focus on abstract problem-solving skills and thus are more complicated than our aims here.

Since our notion of answer speci�cation and checking involves a strong visualization component,

it is also related to previous work on the visualization of algorithms and data structures. There is a

rich literature that describes the bene�ts of concept visualization in education settings. Algorithm

animation has been successfully used for visualizing graph algorithms, sorting, and searching, to

name a few examples [140]. Similarly, program code animation also helps in the learning of new

programming languages. Finally, concept animation has also been successful in in communicating

diÆcult concepts such as �nite state automata [26]. Tools for creating animations of data struc-

tures and algorithms have also been developed [130]. Interactive tutorials have been designed and

their positive impact on student learning evaluated [11]. Electronic books have been proposed and

developed, in which hypertext, interactive animations, audio and video parts are integrated in a

web-based standalone educational resource [25].

7.1.2 Our Results

We have designed a Platform-Independent Learning Online Tool, PILOT, with several goals in

mind. First, we would like to o�er an interactive tool that can be used in class to aid in exposition.

Furthermore, there are numerous problems that students learn best by example, and we would

like a tool that can generate random instances of a problem and allow the student to create the

solution online. Finally, we would like to allow for automated grading so that the student can

receive immediate feedback on her work. Thus, PILOT allows for:

136

� WWW access and platform independence

� generation of interesting random instances of a problem

� user interaction to specify a solution

� online submission of solutions for evaluation

� evaluation of solutions, providing a score and comments

� generation of correct solutions to the problem

At this time, PILOT supports graph problems such as �nding the minimum spanning tree (MST),

tree search algorithms (breadth �rst search (BFS) and depth �rst search (DFS)), and shortest path

algorithms.

One of the main advantages of PILOT is that it is a platform independent client/server based

applet that can be run from a browser such as Netscape or Internet Explorer. Another even more

important feature is its capability to successfully interact with the student by providing detailed

feedback. For example, in creating a MST, if an edge is chosen incorrectly, PILOT will highlight

the edge and suggest how to correct it.

With additional security, PILOT can be used for grading by allowing graders to input both

problems and students' solutions. (In the current system, PILOT can only be used to check problems

generated on the spot. This is to prevent students from entering their homework problems and

using PILOT's problem-solving capabilities to obtain solutions.) Such security could take the form

of password protection or encryption, to allow only authorized users to connect. Additional security

would also allow the use of PILOT in testing situations, where it is important to ensure that each

student only submits one version of the answer.

7.2 Using PILOT

In the current scenario, the user chooses a problem type from a pull-down menu and clicks the

\generate" button to create a random instance of that problem. Figure 7.1(a) shows the result of

generating an instance of MST-Prim | a minimum spanning tree problem to be solved using Prim's

algorithm. PILOT easily allows testing of both general concepts (\�nd a minimum spanning tree

of the given graph") and speci�c algorithms (\�nd a minimum spanning tree of the given graph,

using Prim's algorithm"). For MST-Prim, the user is to execute Prim's algorithm, starting with

the vertex marked \start"; the solution is a numbering of the edges in the order in which they were

added to the MST. To indicate the solution, the user clicks on the edges belonging to the MST. The

order can be adjusted in the \Edge Ordering" window; by default, the edges are listed in the order

in which they are selected.

Once the user is satis�ed that she has entered the correct solution (Figure 7.1(b)), clicking

the \check" button will correct and grade the solution. The system will display the graph with

the incorrect edges highlighted, along with a score and an explanation of the errors made; see

Figure 7.1(c). Note that the actual solution is not displayed | this is because the checker may not

actually compute the solution in the process of grading the user's input. A solution can be obtained

137

at any point by clicking the \solve" button; see Figure 7.1(d).

7.3 PILOT Architecture

PILOT uses a client-server architecture, and is built on top of GeomNet [9]. In the GeomNet

model, the client is responsible for maintaining the user interface and all of the algorithm-related

computation is done on the server. For PILOT, the client is implemented as a Java applet and

the server side contains the problem generators, checkers, and solvers, currently also implemented

in Java. The main motivation for choosing the client-server architecture was exibility | the

server is not constrained by the security restrictions placed on applets and is not limited to running

Java programs, making it possible to take advantage of existing tools. The graph generator, for

example, uses the Graph Drawing Server [35] component of GeomNet to compute a layout for the

automatically generated graphs. The modularity of the GeomNet system also makes it easy to add

new components | both interfaces and problem generators/checkers/solvers | to PILOT.

We now look at the graph generator and problem checker components of PILOT in more detail,

focusing on minimum spanning tree problems as an example; the problem solvers are straightforward

implementations of the appropriate problem solving algorithms and are not considered further.

7.3.1 Graph Generator

The graph generator uses a method similar to that of [57] to generate \realistic" graphs for experi-

mental purposes. Graphs are built from a single vertex by repeatedly applying three operations |

(1) insertion of a vertex and a random number of adjacent edges, (2) insertion of an edge between

two existing vertices, and (3) splitting of an existing edge by replacing it with a new vertex and two

new edges. Graph properties such as the ratio of edges to vertices can be controlled by adjusting

probabilities assigned to each of the operations and the degree of newly inserted vertices.

7.3.2 Problem Checkers

There are four main challenges in designing problem checkers: determining what constitutes a solu-

tion, handling non-unique solutions, assigning appropriate partial credit, and returning meaningful

comments.

The format of the solution fundamentally a�ects the structure of the checker. For example, the

MST problem simply tests whether or not the user can construct a minimum spanning tree, and so

the solution is a list of the edges belonging to the MST. The checker simply veri�es whether or not

the right edges were selected. In MST-Prim, the goal is to test the user's knowledge of a speci�c

algorithm and so more information is needed in the solution. In this case, the order in which the

edges are added to the MST is suÆcient to verify that the user executed the algorithm correctly,

and the checker must check this order.

138

(a) random instance of MST-Prim (b) user's solution

(c) automatically corrected solution, with incor-
rect edges highlighted

(d) system-generated solution

Figure 7.1: Example of user interaction with PILOT.

139

The last three problems are related. It is relatively easy to compute a solution and compare the

user's input to it, simply returning \correct" or \incorrect" (or \full credit"/\no credit"). However,

this unfairly penalizes a student who understands the concept but makes a small mistake, and is of

limited use to a student who is trying to master a concept. More appropriate responses for MST

problems, for example, would be something like \Edge (a,c) should be replaced by the lower-weight

edge (a,b)" and a 1-point penalty for each incorrect edge. The solve-and-compare approach also

runs into problems when the solution is not unique, since the user may have a correct solution but

be marked wrong because the system generated a di�erent one. Non-unique solutions can easily

occur in MST problems when multiple edges have the same weight.

One approach is to verify properties of the user's solution, to ensure that it is valid. This is

the approach taken in the MST checker | for each edge in the MST, that edge should be the

lowest-weight edge of any connecting the two vertex partitions created by the removal of the edge

from the spanning tree. Each time an edge violates this property, it is marked incorrect and the

appropriate replacement edge can be indicated to the user. Partial credit can be assigned according

to the number of incorrect edges. (If the user's input is not a spanning tree, cycles are broken by

removing the highest-weight edge in the cycle and trees are joined by adding the lowest-weight edge

between the trees. The checker then proceeds with the spanning tree produced, adding an additional

penalty for non-tree input.)

This approach partially addresses the problem of meaningful comments and partial credit, but is

not appropriate for problems where an early mistake can be compounded. For example, if the user

chooses the wrong edge in the �rst step of Prim's algorithm but otherwise executes the algorithm

properly, the one mistake may cause several other edges to be selected incorrectly. It is unfair

to penalize the user for every edge that is wrong since it was actually only one mistake, and the

system's comments may be similarly misleading. A checker can solve this problem by taking an

incremental approach and stepping through the solution of the problem, taking into account the

user's choices as they happen. The MST-Prim checker considers the user's edges in order, testing

each edge to determine if it is valid as the next choice. An edge is valid if it connects a new vertex

to the spanning-tree-in-progress and has the lowest weight of any edge connecting a new vertex to

the tree. A penalty is assessed if the user's edge is not valid, with a higher penalty if the edge does

not connect to the tree. The internal data structures are then updated to include the new edge, and

the checker continues with the next edge.

7.4 Future Work

The current PILOT system can be extended in many ways. Of particular use in a teaching tool

would be to allow greater interactivity | as the user works through the problem, the system can

immediately provide feedback as to whether or not the user is doing the right thing. Also, if the

user is unsure of what step to take next, the system can provide hints or outright statements about

what to do.

140

Another issue is the generation of problems of approximately equal diÆculty (and, related to

this, the generation of appropriate special cases). For example, in Prim's algorithm the addition

of an edge and vertex to the spanning tree may result in a new, lower-weight connection for an

unconnected vertex and thus change the best choice for the next vertex/edge pair added to the

tree. Problems with many instances of this case may be viewed as harder than problems without,

since they require knowledge of particular cases in the algorithm. This is particularly relevant if

PILOT is used in a testing situation, since it is undesirable for one student to get an easy case when

another is faced with a much harder example. Dealing with this involves looking more carefully at

the properties of the graphs produced by the graph generator.

Problem checkers can pose challenging problems of their own. The issues are the same as those

mentioned in Section 7.3.2 | determining an appropriate format for the solution and handling

partial credit and comments. Partial credit is one of the most \human" tasks of grading, and

one that is very subjective, and so determining appropriate ways to handle it automatically is an

important task. Implementing checkers to assign partial credit can be signi�cantly harder than the

corresponding problem solvers.

Finally, PILOT can be extended to handle additional problem types and algorithms. The mech-

anism for doing this is straightforward | many other graph problems, such as maximum ow, can

be supported by the current interface so all that is required are additional checkers and solvers.

Adding new problem types, such as sorting, requires more work to create a new interface in addition

to generators/checkers/solvers. In both cases, however, the server remains the same so adding new

components is only a matter of plugging in a new front- or back-end.

7.5 Acknowledgements

Thank you to Ryan Baker for useful discussions regarding PILOT.

Bibliography

[1] H. Alt, O. Aichholzer, and G�unter Rote. Matching shapes with a reference point. Internat. J.

Comput. Geom. Appl., 7:349{363, 1997.

[2] N. Amenta, S. Levy, T. Munzner, and M. Philips. Geomview: A system for geometric visual-

ization. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C12{C13, 1995.

[3] J. R. Anderson, C. F. Boyle, and G. Yost. The geometry tutor. J. Math. Behavior, pages

5{20, 1986.

[4] J. R. Anderson and B. J. Reiser. The LISP tutor. Byte, 10:159{175, 1985.

[5] Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers, Franco P. Preparata, and Mariette

Yvinec. Evaluating signs of determinants using single-precision arithmetic. Algorithmica,

17(2):111{132, 1997.

[6] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. Algorithm animation over the World

Wide Web. In Proc. Int. Workshop on Advanced Visual Interfaces, pages 203{212, 1996.

[7] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. The Mocha algorithm animation system.

In Proc. Int. Workshop on Advanced Visual Interfaces, pages 248{250, 1996.

[8] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. Visualizing geometric algorithms over the

Web. Comput. Geom. Theor. Appl., 12:125{152, 1999.

[9] G. Barequet, S. Bridgeman, C. Duncan, M. Goodrich, and R. Tamassia. GeomNet: Geometric

computing over the Internet. IEEE Internet Computing, 3(2):21{29, 1999.

[10] G. Barequet, S. S. Bridgeman, C. A. Duncan, M. T. Goodrich, and R. Tamassia. Classical

computational geometry in GeomNet. In Proceedings of the 13th Annual ACM Symposium on

Computational Geometry, pages 412{414, 1997.

[11] L. Barnett, J. Casp, D. Green, and J. Kent. Design and implementation of an interactive

tutorial framework. In Proc. 29th SIGCSE Tech. Symp., pages 87{91, 1998.

[12] Wojciech Basalaj and Karen Eilbeck. Straight-line drawings of protein interactions. In J. Kra-

tochv�il, editor, Graph Drawing (Proc. GD '99), volume 1731 of Lecture Notes in Computer

Science, pages 259{266. Springer-Verlag, 1999.

141

142

[13] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.

Theoret. Comput. Sci., 61:175{198, 1988.

[14] M. Beccaria, P. Bertolazzi, G. Di Battista, and G. Liotta. A tailorable and extensible automatic

layout facility. In Proc. IEEE Workshop on Visual Languages, pages 68{73, 1991.

[15] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of triconnected

digraphs. Algorithmica, 6(12):476{497, 1994.

[16] Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Computing orthogonal drawings

with the minimum number of bends. In Frank Dehne, Andrew Rau-Chaplin, J�org-R�udiger

Sack, and Roberto Tamassia, editors, Proc. 5th Workshop Algorithms Data Struct., volume

1272 of Lecture Notes Comput. Sci., pages 331{344. Springer-Verlag, 1997.

[17] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput. Geom.

Theory Appl., 9:159{180, 1998.

[18] T. C. Biedl and M. Kaufmann. Area-eÆcient static and incremental graph drawings. In

R. Burkard and G. Woeginger, editors, Algorithms (Proc. ESA '97), volume 1284 of Lecture

Notes Comput. Sci., pages 37{52. Springer-Verlag, 1997.

[19] Therese Biedl, Joe Marks, Kathy Ryall, and Sue Whitesides. Graph multidrawing: Finding

nice drawings without de�ning nice. In S. Whitesides, editor, Graph Drawing (Proc. GD '98),

volume 1547 of Lecture Notes Comput. Sci., pages 347{355. Springer-Verlag, 1998.

[20] Therese C. Biedl. New lower bounds for orthogonal drawings. J. Graph Algorithms Appl.,

2(7):1{31, 1998.

[21] Therese C. Biedl, Brendan P. Madden, and Ioannis G. Tollis. The three-phase method: A

uni�ed approach to orthogonal graph drawing. In G. Di Battista, editor, Graph Drawing

(Proc. GD '97), volume 1353 of Lecture Notes Comput. Sci., pages 391{402. Springer-Verlag,

1997.

[22] Blackboard Inc. www.blackboard.com.

[23] J. D. Boissonnat, F. Cazals, and J. Fl�ototto. 2D-structure drawings of similar molecules. In Joe

Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984 of Lecture Notes in Computer

Science, pages 115{126. Springer-Verlag, 2001.

[24] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Macmillan, London, 1976.

[25] C. Boroni, F. Goosey, M. Grinder, J. Lambert, and R. Ross. Tying it all together: Creating

self-contained, animated, interactive, web-based resources for computer science education. In

Proc. 30th SIGCSE Tech. Symp., pages 7{11, 1999.

143

[26] C. Boroni, F. Goosey, M. Grinder, and R. Ross. Weblab! A universal and interactive teaching,

learning, and laboratory environment for the World Wide Web. In Proc. 28th SIGCSE Tech.

Symp., pages 199{203, 1997.

[27] C. Boroni, F. Goosey, M. Grinder, and R. Ross. A paradigm shift! The Internet, the Web,

browsers, Java, and the future of computer science education. In Proc. 30th SIGCSE Tech.

Symp., pages 145{152, 1999.

[28] U. Brandes and D. Wagner. Dynamic grid embedding with few bends and changes. In Proceed-

ings of the 9th Annual International Symposium on Algorithms and Computation (ISAAC'98),

volume 1533 of Lecture Notes in Computer Science, pages 89{98. Springer-Verlag, 1998.

[29] Ulrik Brandes, Patrick Kenis, and Dorothea Wagner. Centrality in policy network drawings.

In J. Kratochv�il, editor, Graph Drawing (Proc. GD '99), volume 1731 of Lecture Notes in

Computer Science, pages 250{258. Springer-Verlag, 1999.

[30] Ulrik Brandes, Galina Shubina, Roberto Tamassia, and DorotheaWagner. Fast layout methods

for timetable graphs. In Joe Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984 of

Lecture Notes in Computer Science, pages 127{138. Springer-Verlag, 2001.

[31] Ulrik Brandes and Dorothea Wagner. A bayesian paradigm for dynamic graph layout. In

G. Di Battista, editor, Graph Drawing (Proc. GD '97), volume 1353 of Lecture Notes Comput.

Sci., pages 236{247. Springer-Verlag, 1997.

[32] Ulrik Brandes and Dorothea Wagner. Using graph layout to visualize train interconnection

data. In Sue H. Whitesides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture

Notes in Computer Science. Springer-Verlag, 1998.

[33] S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Turn-

regularity and optimal area drawings of orthogonal representations. Computational Geometry:

Theory and Applications, 16(1):53{93, 2000.

[34] S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service on the

WWW. In S. C. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes

Comput. Sci., pages 45{52. Springer-Verlag, 1997.

[35] S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service on the

WWW. Internat. J. Comput. Geom. Appl., 9(4/5):419{446, 1999.

[36] S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia. PILOT: An interactive

tool for learning and grading. In Proc. ACM Tech. Symp. on Computer Science Education

(SIGCSE), pages 139{143, 2000.

[37] S. Bridgeman and R. Tamassia. Di�erence metrics for interactive orthogonal graph drawing

algorithms. In Sue H. Whitesides, editor, Graph Drawing (Proceedings of GD '98), volume

1547 of Lecture Notes in Computer Science, pages 57{71. Springer-Verlag.

144

[38] S. Bridgeman and R. Tamassia. Di�erence metrics for interactive orthogonal graph drawing

algorithms. Journal of Graph Algorithms and Applications, 4(3):47{74, 2000.

[39] Stina Bridgeman, Giuseppe Di Battista, Walter Didimo, Guiseppe Liotta, Roberto Tamassia,

and Luca Vismara. Turn-regularity and optimal drawings of orthogonal representations. In

Abstracts 15th European Workshop Comput. Geom., pages 161{164. INRIA Sophia-Antipolis,

1999.

[40] Stina Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia,

and Luca Vismara. Optimal compaction of orthogonal representations. In CGC Workshop on

Geometric Computing, 1998.

[41] Stina Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia,

and Luca Vismara. Optimal compaction of orthogonal representations. In Graph Drawing

(Proc. GD '99), Lecture Notes Comput. Sci. Springer-Verlag, 1999.

[42] Stina Bridgeman and Roberto Tamassia. A user study in similarity measures for graph drawing.

In Joe Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984 of Lecture Notes in

Computer Science, pages 19{30. Springer-Verlag, 2001.

[43] Stina S. Bridgeman, Jody Fanto, Ashim Garg, Roberto Tamassia, and Luca Vismara. Interac-

tiveGiotto: An algorithm for interactive orthogonal graph drawing. In G. Di Battista, editor,

Graph Drawing (Proc. GD '97), volume 1353 of Lecture Notes Comput. Sci., pages 303{308.

Springer-Verlag, 1997.

[44] Christoph Burnikel, Jochen K�onnemann, Kurt Mehlhorn, Stefan N�aher, Stefan Schirra, and

Christian Uhrig. Exact geometric computation in LEDA. In Proc. 11th Annu. ACM Sympos.

Comput. Geom., pages C18{C19, 1995.

[45] Andrea Carmignani, Giuseppe Di Battista, Walter Didimo, Francesco Matera, and Maurizio

Pizzonia. Visualization of the autonomous systems interconnections with HERMES. In Joe

Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984 of Lecture Notes in Computer

Science, pages 150{163. Springer-Verlag, 2001.

[46] Jacobo Carrasquel. Teaching CS1 on-line: the good, the bad, and the ugly. In Proc. 30th

SIGCSE Tech. Symp., pages 212{216, 1999.

[47] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets.

Geometric pattern matching under Euclidean motion. Comput. Geom. Theory Appl., 7:113{

124, 1997.

[48] R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. Dynamic graph drawings: Trees,

series-parallel digraphs, and planar ST -digraphs. SIAM J. Comput., 24(5):970{1001, 1995.

145

[49] M. P. Consens, F. C. Eigler, M. Z. Hasan, A. O. Mendelzon, E. G. Noik, A. G. Ryman,

and D. Vista. Architecture and applications of the HY+ visualization system. IBM Syst. J.,

33:458{476, 1994.

[50] M. P. Consens, A. O. Mendelzon, and A. G. Ryman. Visualizing and querying software

structures. In Proc. 14th Intl. Conference on Software Engineering, pages 138{156, 1992.

[51] E. Dengler, M. Friedell, and J. Marks. Constraint-driven diagram layout. In Proc. IEEE

Sympos. on Visual Languages, pages 330{335, 1993.

[52] Edmund Dengler and William Cowan. Human perception of laid-out graphs. In S. H. White-

sides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture Notes Comput. Sci.,

pages 441{443. Springer-Verlag, 1998.

[53] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an

annotated bibliography. Comput. Geom. Theory Appl., 4:235{282, 1994.

[54] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper

Saddle River, NJ, 1999.

[55] G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassinari, F. Vargiu, and

L. Vismara. Drawing directed acyclic graphs: An experimental study. Int. J. Comput. Geom.

Appl., 10(6):623{648, 2000.

[56] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental

comparison of three graph drawing algorithms. In Proc. 11th Annu. ACM Sympos. Comput.

Geom., pages 306{315, 1995.

[57] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental

comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303{325, 1997.

[58] G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia. The architecture of Diagram

Server. In Proc. IEEE Workshop on Visual Languages, pages 60{65, 1990.

[59] G. Di Battista and G. Liotta. Upward planarity checking: Faces are more than polygons.

In S. H. Whitesides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture Notes

Comput. Sci., pages 72{86. Springer-Verlag, 1998.

[60] G. Di Battista, G. Liotta, and F. Vargiu. Diagram Server. J. Visual Lang. Comput., 6(3):275{

298, 1995. (special issue on Graph Visualization, edited by I. F. Cruz and P. Eades).

[61] G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM

J. Comput., 27(6):1764{1811, 1998.

[62] W. Didimo and G. Liotta. Computing orthogonal drawings in a variable embedding setting.

In K.-Y. Chwa and O. H. Ibarra, editors, Algorithms and Computation (Proc. ISAAC '98),

volume 1533 of Lecture Notes Comput. Sci., pages 79{88. Springer-Verlag, 1998.

146

[63] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In

Proceedings of Compugraphics 91, pages 24{33, 1991.

[64] Ala Eddine Barouni, Ali Jaoua, and Nejib Zaguia. Visualizing algorithms for the design and

analysis of survivable networks. In J. Kratochv�il, editor, Graph Drawing (Proc. GD '99),

volume 1731 of Lecture Notes in Computer Science, pages 232{241. Springer-Verlag, 1999.

[65] H. Edelsbrunner and E. P. M�ucke. Simulation of simplicity: A technique to cope with degen-

erate cases in geometric algorithms. ACM Trans. Graph., 9(1):66{104, 1990.

[66] U. Erlingson and M. Krishnamoorthy. Interactive graph drawing on the World Wide

Web. manuscript, Dept. of Comput. Sci., Rensselaer Polytechnic Institute, 1996.

http://www.cs.rpi.edu/projects/pb/graphdraw.

[67] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven Sch�onherr. The

CGAL kernel: A basis for geometric computation. In M. C. Lin and D. Manocha, editors,

Proc. 1st ACM Workshop on Appl. Comput. Geom., volume 1148 of Lecture Notes Comput.

Sci., pages 191{202. Springer-Verlag, 1996. http://www.cgal.org.

[68] K. M. Fairchild, S. E. Poltrock, and G. W. Furnas. Semnet: Three-dimensional graphic

representation of large knowledge bases. In R. Guindon, editor, Cognitive Science and its

Applications for Human-Computer Interaction, pages 201{233. Lawrence Erlbaum Associates,

1988.

[69] S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations. Internat. J.

Comput. Geom. Appl., 5(1{2):193{213, 1995.

[70] S. Fortune and V. Milenkovic. Numerical stability of algorithms for line arrangements. In

Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 334{341, June 1991.

[71] U. F�o�meier, C. Hess, and M. Kaufmann. On improving orthogonal drawings: the 4M-

algorithm. In S. H. Whitesides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture

Notes Comput. Sci., pages 125{137. Springer-Verlag, 1998.

[72] U. F�o�meier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J.

Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes Comput.

Sci., pages 254{266. Springer-Verlag, 1996.

[73] Ulrich F�o�meier. Interactive orthogonal graph drawing: Algorithms and bounds. In G. Di Bat-

tista, editor, Graph Drawing (Proc. GD '97), volume 1353 of Lecture Notes Comput. Sci., pages

111{123. Springer-Verlag, 1997.

[74] Ulrich F�o�meier andMichael Kaufmann. Algorithms and area bounds for nonplanar orthogonal

drawings. In G. Di Battista, editor, Graph Drawing (Proc. GD '97), volume 1353 of Lecture

Notes Comput. Sci., pages 134{145. Springer-Verlag, 1997.

147

[75] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Softw. { Pract.

Exp., 21(11):1129{1164, 1991.

[76] E. R. Gansner, E. Koutso�os, S. C. North, and K. P. Vo. Graph visualization in software

analysis. In Proc. IEEE Symposium on Assessment of Quality Software Development Tools,

May 1992.

[77] E. R. Gansner, E. Koutso�os, S. C. North, and K. P. Vo. A technique for drawing directed

graphs. IEEE Trans. Softw. Eng., 19:214{230, 1993.

[78] A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms and bounds.

In Proc. 2nd Annu. European Sympos. Algorithms, volume 855 of Lecture Notes Comput. Sci.,

pages 12{23. Springer-Verlag, 1994.

[79] A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear pla-

narity testing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume

894 of Lecture Notes Comput. Sci., pages 286{297. Springer-Verlag, 1995.

[80] A. Garg and R. Tamassia. A new minimum cost ow algorithm with applications to graph

drawing. In S. C. North, editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes

Comput. Sci., pages 201{216. Springer-Verlag, 1997.

[81] N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph drawing. In S. H.

Whitesides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture Notes Comput.

Sci., pages 138{152. Springer-Verlag, 1998.

[82] J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM J. Comput., 12(3):484{507,

August 1983.

[83] M. T. Goodrich, Joseph S. B. Mitchell, and M. W. Orletsky. Approximate geometric pattern

matching under rigid motion. IEEE Trans. Pattern Anal. Mach. Intell., 21(4):371{379, April

1999.

[84] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. In Proc. 27th Annu.

IEEE Sympos. Found. Comput. Sci., pages 143{152, 1986.

[85] Leonidas Guibas and David Marimont. Rounding arrangements dynamically. In Proc. 11th

Annu. ACM Sympos. Comput. Geom., pages 190{199, 1995.

[86] Leonidas J. Guibas, D. Salesin, and J. Stol�. Epsilon geometry: building robust algorithms

from imprecise computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208{

217, 1989.

[87] Y. Hara, A. Keller, P. Rathmann, and G. Wiederhold. Implementing hypertext database rela-

tionships through aggregations and exceptions. Technical Report STAN-CS-91-1381, Stanford

University, 1981.

148

[88] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[89] M. Hasan, D. Vista, and A. Mendelzon. Visual Web sur�ng with HY+. In Proc. CASCON'95,

1995. Available from http://www.db.toronto.edu:8020/.

[90] M. Himsolt. GraphEd: a graphical platform for the implementation of graph algorithms. In

R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture

Notes Comput. Sci., pages 182{193. Springer-Verlag, 1995.

[91] M. Himsolt. GML: Graph modelling language. Manuscript, Universit�at Passau, Innstra�e 33,

94030 Passau, Germany, 1996. http://infosun.fmi.uni-passau.de/Graphlet/GML/.

[92] C. M. Ho�mann, J. E. Hopcroft, and M. S. Karasick. Towards implementing robust geometric

computations. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 106{117, 1988.

[93] F. Ho�mann and K. Kriegel. Embedding rectilinear graphs in linear time. Inform. Process.

Lett., 29:75{79, 1988.

[94] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.

[95] M. Y. Hsueh. Symbolic Layout and Compaction of Integrated Circuits. PhD thesis, Berkeley,

CA, 1980.

[96] M. Y. Hsueh and D. O. Pederson. Computer-aided layout of LSI circuit building-blocks. In

Proc. IEEE Int. Symp. on Circuits and Systems, 1979.

[97] K. Imai, S. Sumino, and H. Imai. Minimax geometric �tting of two corresponding sets of

points. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 266{275, 1989.

[98] S. Isoda, T. Shimonmura, and Y. Ono. Vips: A visual debugger. IEEE Softw., 4(3):8{19,

1987.

[99] D. Jackson and M. Usher. Grading student programs using ASSYST. In Proc. 28th SIGCSE

Tech. Symp., pages 335{339, 1997.

[100] D. Kimelman, B. Leban, T. Roth, and D. Zernik. Reduction of visual complexity in dynamic

graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894

of Lecture Notes Comput. Sci., pages 218{225. Springer-Verlag, 1995.

[101] D. Kimelman and G. Sangudi. Program visualization by integration of advanced compiler

technology with con�gurable views. In J. J. Dongarra and B. Tourancheau, editors, Proc.

CNRS-NSF Collaboration Workshop on Environments and Tools for Parallel Scienti�c Com-

puting, Saint Hilaire du Touvert, France, pages 73{84. Elsevier Science, September, 1992.

149

[102] G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. Cornue-

jols, R. E. Burkard, and G. J Woeginger, editors, Integer Programming and Combinatorial

Optimization (Proc. IPCO '99), volume 1610 of Lecture Notes Comput. Sci., pages 304{319.

Springer-Verlag, 1999.

[103] Gunnar W. Klau and Petra Mutzel. Optimal compaction of orthogonal grid drawings. Tech-

nical Report MPI-I-98-1-031, Max Planck Institut f�ur Informatik, Saarbr�ucken, Germany,

December 1998.

[104] Gunnar W. Klau and Petra Mutzel. Quasi-orthogonal drawing of planar graphs. Technical

Report MPI-I-98-1-013, Max Planck Institut f�ur Informatik, Saarbr�ucken, Germany, 1998.

[105] E. Koutso�os and S. North. Drawing graphs with dot. Technical report, AT&T Bell Labora-

tories, Murray Hill, NJ., 1995. Available from http://www.research.bell-labs.com/dist/

drawdag.

[106] M.S. Krishnamoorthy, F. Oxaal, U. Dogrusoz, D. Pape, A. Robayo, A. Koyanagi, Y. Hsu,

D. Hollinger, and A. Hashemi. GraphPack: Design and features. World Scienti�c: Scienti�c

Visualization, 1996.

[107] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. B. G. Teubner, 1990.

[108] Kelly A. Lyons, Henk Meijer, and David Rappaport. Algorithms for cluster busting in anchored

graph drawing. J. Graph Algorithms Appl., 2(1):1{24, 1998.

[109] A. Marzal and E. Vidal. Computation of normalized edit distance and applications. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 15(9):926{932, Sept. 1993.

[110] David Mason and Denise Woit. Integrating technology into computer science examinations.

In Proc. 29th SIGCSE Tech. Symp., pages 140{144, 1998.

[111] David Mason and Denise Woit. Providing mark-up and feedback to students with online

marking. In Proc. 30th SIGCSE Tech. Symp., pages 3{6, 1999.

[112] Kurt Mehlhorn and Stefan N�aher. LEDA: a platform for combinatorial and geometric com-

puting. Commun. ACM, 38(1):96{102, 1995.

[113] V. Milenkovic. Double precision geometry: A general technique for calculating line and segment

intersections using rounded arithmetic. In Proc. 30th Annu. IEEE Sympos. Found. Comput.

Sci., pages 500{505, 1989.

[114] K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach to aesthetic graph

layout. In Proc. Internat. Workshop on Computer-Aided Software Engineering, 1993.

[115] K. Misue, Peter Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map.

J. Visual Lang. Comput., 6(2):183{210, 1995.

150

[116] S. Moen. Drawing dynamic trees. IEEE Softw., 7:21{28, 1990.

[117] S. Mukherjea. Visualizing the information space of hypermedia systems. Technical report.

http://www.cc.gatech/edu/gvu/people/Phd/sougata/Nvb.html.

[118] S. Mukherjea, J. Foley, and S. Hudson. Visualizing complex hypermedia networks through

multiple hierarchicial views. In Proc. ACM Conference on Human Factors in Computing

Systems (CHI), 1995.

[119] S. North. 5114 directed graphs, 1995. Manuscript.

[120] S. North. Incremental layout in DynaDAG. In Graph Drawing (Proc. GD '95), volume 1027

of Lecture Notes Comput. Sci., pages 409{418. Springer-Verlag, 1996.

[121] S. North and E. Koutso�os. Applications of graph visualization. Technical report, AT&T Bell

Laboratories, Murray Hill, NJ., 1995.

[122] R. H. J. M. Otten and J. G. van Wijk. Graph representations in interactive layout design. In

Proc. IEEE Internat. Sympos. on Circuits and Systems, pages 914{918, 1978.

[123] Mark H. Overmars. Designing the Computational Geometry Algorithms Library CGAL. In

Proc. 1st ACM Workshop on Appl. Comput. Geom., volume 1148 of Lecture Notes Comput.

Sci., pages 53{58. Springer-Verlag, May 1996.

[124] A. Papakostas and I. G. Tollis. Improved algorithms and bounds for orthogonal drawings. In

R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture

Notes Comput. Sci., pages 40{51. Springer-Verlag, 1995.

[125] A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. IEEE Trans. Comput.,

C-47(11):1297{1309, 1998.

[126] Achilleas Papakostas, Janet M. Six, and Ioannis G. Tollis. Experimental and theoretical results

in interactive graph drawing. In Stephen North, editor, Graph Drawing (Proc. GD '96), volume

1190 of Lecture Notes Comput. Sci., pages 371{386. Springer-Verlag, 1997.

[127] Achilleas Papakostas and Ioannis G. Tollis. Algorithms for area-eÆcient orthogonal drawings.

Comput. Geom. Theory Appl., 9(1{2):83{110, 1998. Special Issue on Geometric Representa-

tions of Graphs, G. Di Battista and R. Tamassia, editors.

[128] M. Patrignani. On the complexity of orthogonal compaction. In F. Dehne, A. Gupta, J.-R.

Sack, and R. Tamassia, editors, Algorithms and Data Structures (Proc. WADS '99), volume

1663 of Lecture Notes Comput. Sci., pages 56{61. Springer-Verlag, 1999.

[129] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visualizing the behavior of object-

oriented systems. In Proc. 8th Annu. ACM Conf. Object-Oriented Program. Syst. Lang. Appl.,

volume 28 of SIGPLAN Notices, pages 326{337, 1993.

151

[130] W. Pierson and S. Rodger. Web-based animation of data structures using JAWAA. In Proc.

29th SIGCSE Tech. Symp., pages 267{271, 1998.

[131] H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing aesthetics. In F. J.

Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes Comput.

Sci., pages 435{446. Springer-Verlag, 1996.

[132] Helen Purchase. Which aesthetic has the greatest e�ect on human understanding? In G. Di

Battista, editor, Graph Drawing (Proc. GD '97), volume 1353 of Lecture Notes Comput. Sci.,

pages 248{261. Springer-Verlag, 1998.

[133] S. P. Reiss. 3-D visualization of program information. In R. Tamassia and I. G. Tollis, editors,

Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes Comput. Sci., pages 12{24.

Springer-Verlag, 1995.

[134] S. P. Reiss. An engine for the 3D visualization of program information. J. Visual Lang.

Comput., 6(3):299{323, 1995. (special issue on Graph Visualization, edited by I. F. Cruz and

P. Eades).

[135] L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan. A browser for

directed graphs. Softw. { Pract. Exp., 17(1):61{76, 1987.

[136] K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. In S. North,

editor, Graph Drawing (Proc. GD '96), volume 1190 of Lecture Notes Comput. Sci., pages

387{393. Springer-Verlag, 1997.

[137] S. Singh. Documentation for Paren-to-GDS. Manuscript, Dept. of Comp. Sci., Brown Univer-

sity, 1991.

[138] J. M. Six, K. G. Kakoulis, and I. G. Tollis. Re�nement of orthogonal graph drawings. In S. H.

Whitesides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture Notes Comput.

Sci., pages 302{315. Springer-Verlag, 1998.

[139] L. Spratt and A. Ambler. Using 3D tubes to solve the intersecting line representation problem.

In Proc. IEEE Symp. on Visual Languages, 1994, pages 254{261, 1995.

[140] J. Stasko, J. Domingue, M. H. Brown, and B. A. Price, editors. Software Visualization:

Programming as a Multimedia Experience. MIT Press, 1998.

[141] Bj�orn Steckelbach, Till Bubeck, Ulrich F�o�meier, Michael Kaufmann, Marcus Ritt, and Wolf-

gang Rosenstiel. Visualization of parallel execution graphs. In Sue H. Whitesides, editor, Graph

Drawing (Proc. GD '98), volume 1547 of Lecture Notes in Computer Science. Springer-Verlag,

1998.

[142] L. Stockmeyer. Optimal orientation of cells in slicing oorplan design. Inform. Control, 57:91{

101, 1983.

152

[143] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical

systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109{125, 1981.

[144] R. Tamassia. New layout techniques for entity-relationship diagrams. In Proc. 4th Internat.

Conf. on Entity-Relationship Approach, pages 304{311, 1985.

[145] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM

J. Comput., 16(3):421{444, 1987.

[146] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of

diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61{79, 1988.

[147] R. Tamassia, G. Liotta, and F. P. Preparata. Robust proximity queries in implicit Voronoi

diagrams. In Proc. 8th Canad. Conf. Comput. Geom., page 1, 1996.

[148] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. on Circuits

and Systems, CAS-36(9):1230{1234, 1989.

[149] R. Tamassia, I. G. Tollis, and J. S. Vitter. Lower bounds for planar orthogonal drawings of

graphs. Inform. Process. Lett., 39:35{40, 1991.

[150] L. Tinoco, E. Fox, and D. Barnette. Online evaluation in WWW-based courseware. In Proc.

28th SIGCSE Tech. Symp., pages 194{198, 1997.

[151] A. van Ho�, S. Shaio, and O. Starbuck. Hooked on Java. 1996.

[152] G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J. Comput.,

14:355{372, 1985.

[153] WebCT, Inc. www.webCT.com.

[154] Wayne A. Wickelgren. Cognitive Psychology. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1979.

[155] W. Wimer, I. Koren, and I. Cederbaum. Floorplans, planar graphs and layouts. IEEE Trans.

Circuits Syst., CAS-35:267{278, 1988.

[156] C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. J. Comput.

Syst. Sci., 40(1):2{18, 1990.

