INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

Automatic Construction of a Hypernym-Labeled Noun Hierarchy
from Text

by
Sharon A. Caraballo
B. A., Rutgers University, 1994
Sc. M., Brown University, 1996

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2001

UMI Number: 3006696

Copyright 2001 by
Caraballo, Sharon Ann

All rights reserved.

®

UMI

UMI Microform 3006696

Copyright 2001 by Bell & Howell Information and Learming Company.

Ali rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O.Box 1346
Ann Arbor, Ml 48106-1346

© Copyright 1999, 2001 by Sharon A. Caraballo

This dissertation by Sharon A. Caraballo is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date 7/65%0

gene Charniak, Director

Recommended to the Graduate Council

Date 7/7<P/00 % %/_

Mark Johnson, Reader

e _2/s/00 —_—

Thomas Dean, Reader

Date 3"(;/ 9\810‘;0 //é/é ///{é

kuhp Klein, Reader

Approved by the Graduate Council

Date gﬁ’v{"’z,/, =70 72&‘/7[%

Peder J. Estrup
Dean of the Graduate School a.nd Research

Vita

Name
Born

Education

Honors

Professional Experience

Sharon A. Caraballo
May 14, 1969 in Elizabeth, NJ

Brown University, Providence, RI
Ph.D. in Computer Science, May 2001

Brown University, Providence, RI
Sc.M. in Computer Science, May 1996

Rutgers University, New Brunswick, NJ
B.A. in Computer Science with High Honors, May 1994

Sigma Xi Full Membership, 2000

Sigma. Xi Associate Membership, 1996

Phi Beta Kappa, 1994

Brown University Fellowship, 1994

Tunis Quick Prize (competitive exam in English gram-
mar and spelling open to all Rutgers University fresh-
men), 1987

National Merit Scholarship, 1986

Rutgers Presidential Scholarship, 1986

Nesbit Systems, Inc., 1991-94
Senior Programmer (1993-94), Programmer (1992-93),
Software Tester (1991-92)

Siemens Corporate Research, 1990-91
Organization & Information Systems Assistant

iv

Teaching Experience

Publications

Brown University, Spring 1996
Teaching Assistant for CS 22, Discrete Mathematics

ATET MIS Training, Summer 1990
Internship as Teaching Assistant for corporate training

classes

Sharon A. Caraballo. “Automatic Acquisition of a
Hypernym-Labeled Noun Hierarchy from Text.” 27th
Annual Meeting of the Associaticn for Computational
Linguistics: Proceedings of the Conference, 1999, pages
120-126.

Sharon A. Caraballo and Eugene Charniak. “Determin-
ing the Specificity of Nouns from Text.” Proceedings of
the 1999 Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large Cor-
pora, 1999, pages 63-70.

Sharon A. Caraballo and Eugene Charniak. “New Fig-
ures of Merit for Best-First Probabilistic Chart Parsing.”
Computational Linguistics 24:2, 1998, pages 275-298.

Sharon A. Caraballo and Eugene Charniak. “Figures of
Merit for Best-First Probabilistic Chart Parsing.” Pro-
ceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, 1996, pages 127-132.

Acknowledgments

The first person I would like to thank is, of course, my advisor, Eugene Charniak. He
introduced me to the field of statistical natural language processing and taught me, both
explicitly and by example, how to do good research. This thesis has benefited greatly
from our many, many hours of discussion. He also supplied the -~zrser and some of the
statistical data on which this work is based. More important than any of that, though, is
his understanding and patience, as well as his humor. He has been the advisor I hope to be
someday.

Many other Brown faculty members have also helped in the creation of this thesis. I
would like to thank my committee, Mark Johnson, Tom Dean, and Philip Klein, as well as
all of the faculty who provided useful comments during my proposal, including John Hughes
and David Laidlaw.

The evaluation of the results of my work required laborious human Jjudging. I am most
grateful to Brian Roark, Heidi Fox, Keith Hall, and Kathy Schark for their efforts, as well as
my husband, David Caraballo, for serving as my “practice” judge to test out my evaluation
procedure.

In many ways, this thesis would not have been possible without David. When I decided
to attend graduate school, he supported me completely, even finishing his own doctorate
long-distance to be with me. He has always helped me in every way possible, from helping
sort through the technical math details behind some of the statistical techniques, to reading
through my research papers even though they were completely out of his own areas of
expertise, to simple emotional support; in fact, as much as he has done for me, I know he
always wished there was more he could do.

I also want to thank the rest of my family. My parents, Andrew and Constance Adamus,
have always been a great source of support, and the seed of my future in computer science
was planted one afternoon when I was bored and my mother suggested I take a look at her
BASIC textbook. My sister, Sheila Adamus Liotta, and her family, Louis, Nicholas, and

vi

Marissa Liotta, have been particularly helpful, providing me with a home-away-from-home
whenever I needed it. My sheepdog, Harry, has taken upon himself the very important job
of letting me know when I've been working too hard and it’s time to take a break from the
computer. And last but not least (except in size), I want to thank my son Andrew, who
was born in the middle of all of this, between my thesis proposal and defense, for bringing
his sunshine into my life every day.

Contents

List of Tables X
List of Figures xii
1 Introduction 1
1.1 Thesisoutline 2

2 The initial experiment 4
2.1 Building an unlabeled noun hierarchy 4

2.2 Assigninghypernyms 8

23 Compressingthetree. 8
24 Resultsandevaluation 9

2.5 Theeffect of betterdata 12

2.6 Refinements to the algorithm 13
2.6.1 Evaluation of the modified algorithm 14

3 A probability model for noun hierarchies 15
3.1 Hypernym probabilities 16
3.2 Probabilistic clustering schemes 17
3.2.1 Clustering based on probability distributions 17

3.2.2 Clustering based on Kullback-Leibler divergence 19

3.3 Evaluating data probabilities assigned by eachmodel 20
3.3.1 Atraining L 20

332 Results 22

34 Humanevaluation, 23

4 Comparing the specificity of nouns 25
4.1 The specificity measures 25

4.2 Evaluation of the specificity measures _ 27

5 Incorporating the specificity data 33
5.1 Evaluation. 33
6 Discussion and future directions 35
6.1 Improving the hypernym labels _ 35
6.2 Multiple-word phrases 37
6.3 Word-sense disambiguation 37
6.4 Usingunparsedtext __. 38
7 Related work 39
8 Conclusions 42
A Specificity data sets 44
Bibliography 49
* Parts of this thesis have been previously published in the Proceedings of the 34th Annual

Meeting of the Association for Computational Linguistics, 1999, and the Proceedings
of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Pro-
cessing and Very Large Corpora (with Eugene Charniak).

List of Tables

21
2.2
2.3
24
2.5

2.6
2.7

3.1

3.2

3.3

3.4

4.1

4.2

4.3

44

The children of the root node in the preliminary experiment.
The results of the judges’ evaluation for the preliminary experiment.
The results of the judges’ evaluation of noise words.
The children of the root node in the hierarchy developed —sing better-parsed
text. . . e e e e
The results of the judges’ evaluation using better-parsed data.
A comparison of the hierarchies constructed using two different parsers.

The results of the judges’ evaluation for the refined algorithm.

Probabilities assigned to held-out data by hierarchies based on three cluster-
ingschemes. e
The results of the judges’ evaluation for the tree-builder based on cluster
probability. L.
The results of the judges’ evaluaticn for the tree-builder based on KL diver-
BEICE. L i e
Summary of the results of the judges’ evaluation for the three clustering

schemes. L

Percentage of parent-child relationships which are ordered correctly by each
specificity measure. e e e
Percentage of internal nodes having the correct relationskip to all of their
descendants. L
Percentage of correct parent-child relationships when words with the wrong
predominant sense are removed. -o e e e e i e e
Percentage of internal nodes with the correct relationship to all descendants

when words with the wrong predominant sense are removed.

22

23

24

24

28

30

31

4.5

4.6

5.1

Evaluation of the various specificity measures on a test set of more general

The results of the judges’ evaluation for the tree-builder including specificity

statistics. 34

List of Figures

1.1

2.1
2.2
2.3

3.1

4.1

4.2

6.1
6.2

Al
A2
A3
A4

A small noun hierarchy. 2
A bottom-up clusteringexample.

A labeled hierarchy before compression. 9
The hierarchy from Figure 2.2 after compression. 10

A section of an HMM for a probability model determined by a noun hierarchy. 21

A piece of the “vehicles” hierarchy showing errors on the parent-child cor-

rectness MeasUre.t v v v it e e e, 28
A piece of the “vehicles” hierarchy showing errors on the all-descendants

COITECtNESS MEASUIE. ottt vt it i e e e e e e e, 29
A tree with an artificial intermediate node. 36
The tree of Figure 6.1 with the intermediate node removed. 36
The “vehicles” dataset. 45
The “food” dataset. 46
The “occupations” dataset. 47
The high-level dataset. 48

Chapter 1

Introduction

The purpose of this research is to develop techniques for extracting semantic information
about words from text. In particular, given a large amount of text and no additional
sources of semantic information, we will build a hierarchy of nouns appearing in the text.
The hierarchy is in the form of an IS-A tree, where the nodes of the tree contain one or
more nouns, and the ancestors of a node contain hypernyms of the nouns in that node. (An
English word A is said to be a hypernym of a word B if native speakers of English accept
the sentence “B is a (kind of) A.”) Figure 1.1 shows an example of a noun hierarchy for a
very small subset of English nouns.

Statistical techniques in natural language processing generally involve examining a large
corpus, or body of text, and collecting counts of how many times various linguistic features
occur. These counts are then used in some way to learn something about the text. In the
work described here, simple counts of how many times words appear together in certain
structures are collected, and from just these numbers we are able to deduce something
about the meaning of the words. In particular, we are able to learn that certain nouns are
superclasses, or hypernyms, of other nouns; e.g., that a “president” is a kind of “executive.”

The task studied in this thesis is interesting not only because it demonstrates the abil-
ity to learn semantic information from text, but also because of its practical applications.
In order to do any kind of linguistic task that involves understanding, a natural-language
processing system must have a database of lexical semantic (word meaning) information.
Many existing natural language processing systems are dependent on hand-built semantic
hierarchies such as WordNet ([10]). However, general-purpose semantic resources like Word-
Net are insufficient for many problems, such as those involving text from specific domains,

and hand-built resources generally are extremely time- and labor-intensive to create and

horse dog cat

collie sheepdog

Figure 1.1: A small noun hierarchy.

maintain. The techniques proposed here could be used to build a general or domain-specific
hierarchy of nouns or possibly to augment an existing hierarchy with domain-specific or

simply updated information.

1.1 Thesis outline

Chapter 2 of this thesis presents an initial experiment in constructing a hierarchy. It also
discusses a few simple refinements to that experiment. We give a detailed discussion of the
algorithm for constructing an unlabeled hierarchy of nouns, and describe how hypernyms
are used to label the internal nodes of that tree. Preliminary results are presented, including
an evaluation of the hierarchy by human judges. We also discuss some minor refinements
to the algorithm and demonstrate how they improve the quality of the hierarchy.

In Chapter 3, we discuss how a noun hierarchy can be viewed as z generative probability
model for the type of data from which it was built. We then present and evalnate two
alternative clustering methods inspired by the probability model. We evaluate hierarchies
built by our clustering methods both in terms of the probability they assign to held-out
data and in terms of human judgments.

Chapter 4 examines the particular subproblem of determining which of a pair of nouns
is more specific. Our goal is to find a quantitative measure of specificity which can easily
be computed from text. We present several candidates for such a measure and evaluate
their performance. We are able to identify specificity measures which can determine which
of two nouns is more specific with over 80% accuracy.

In Chapter 5, we incorporate the specificity measure from the previous chapter into

our hierarchy-construction techniques. Once again, we use human judges to evaluate the
hierarchy our system constructs.

Chapter 6 discusses some ways in which our techniques might be improved in future
work, and Chapter 7 discusses related work from the literature.

We present our conclusions in Chapter 8.

Appendix A includes the data sets used for testing in Chapter 4.

Chapter 2
The initial experiment

An initial noun hierarchy has been constructed using simple statistical techniques and is
presented in [4]. The techniques used in that paper, as well as some other techniques
developed to support the construction of a noun hierarchy, are described in this chapter.
To create the labeled noun hierarchy, nouns are first clustered into an unlabeled hierarchy
using data on conjunctions, appositives, and verb-object relations appearing in the Wall
Street Journal. The internal nodes of the resulting tree are then labeled with hypernyms
for the nouns clustered underneath them, also based on data extracted from the Wall Street
Journal. The resulting hierarchy is evaluated by human judges, and is judged to be of
comparable quality to semantic resources constructed in previous work on a much simpler
task with more human intervention required. The success of these simple techniques in
building a hierarchy demonstrate that automatic construction cf 2 semantic hierarchy of
nouns is feasible and give us a baseline level for quality, which is improved upon in later

chapters by using techniques with a stronger grounding in theory.

2.1 Building an unlabeled noun hierarchy

The first stage in constructing the hierarchy is to build an unlabeled hierarchy of nouns
using bottom-up clustering methods (see, e.g., Brown et al ([3])). Nouns are clustered based
on conjunction, appositive, and verb-object data collected from the about 15 million words
of 1987 Wall Street Journal text, parsed using the parser described in Charniak ([6]). To
expedite the parsing, we used a version of the parser which runs relatively fast but at the
expense of accuracy (about the 75% level on standard precision and recall measurements).

From this parsed text, we identified all conjunctions of noun phrases (e.g., “executive
vice-president and treasurer” or “scientific equipment, apparatus and disposables”) and

4

5

all appositives (e.g., “James H. Rosenfield, a former CBS Inc. executive” or “Boeing, a
defense contractor”), along with all verb-object relations. The ides here is that nouns in
conjunctions or appositives, or nouns which appear as objects of the same verbs, tend to
be semantically related, as discussed in Riloff and Shepherd ([28]) and Roark and Charniak
([29]). Since these nouns have semantic features in common, it is likely that they belong to
a common semantic class; in other words, that there is a hypernym which describes them.
We do not have a great deal of hypernym data for individual nouns, but by clustering the
aouns together in the manner described here and combining the statistical evidence for
bypernyms from all nouns in a cluster (as described in the next section), we hope to be able
to build a labeled hierarchy of nouns and their hypernyms.

Taking the head words of each noun phrase appearing in one of the structures listed
above and stemming them results in data for about 50,000 distinct nouns. For each noun, we
compute the total count for each feature, where a feature is a co-occurrence of a particular
noun in a conjunction or appositive with it, or a verb appearing with the noun as its object.
We then construct a vector of the feature counts. Since the lowest-frequency nouns would
be placed into position in the hierarchy based on very little data and would therefore be
prone to errors, we chose to filter out nouns with a feature vector of length less than 2. This
results in approximately 20,000 nouns to be included in our hierarchy.

There are many possible hierarchical clustering methods which could be used to cluster
the nouns. For this experiment, we use a standard technique of clustering “bottom-up”
according to the similarity of the nouns, which we define as the cosine of the angle between
their feature vectors. In principle any hierarchical clustering method could be used; we
selected our particular method simply because it is a well-known, easily implemented tech-
nique. Later chapters of this thesis explore other, more theoretically-grounded clustering
methods for constructing our hierarchy.

We can measure the similarity of the vectors for two nouns by computing the cosine of

the angle between these vectors as

vV-w

cos (V, W) = W.

To compare the similarity of two groups of nouns, we define similarity as the average of
the cosines between each pair of nouns made up of one noun from each of the two groups.

2 abcos (a,b)
size(A)size(B)

where a ranges over all vectors for nouns in group A, b ranges over the vectors for group

sim(A,B) =

B, and size(X) represents the number of nouns which are in group X.

We want to create a tree of all of the nouns in this data such that a node in the tree
represents a group of semantically related nouns; the leaves of the tree are the individual
nouns, and an internal node of the tree represents a cluster of nouns made up of all nouns in
its descendant leaves. We construct the tree using standard bottom-up clustering techniques

as follows:

1. Put each noun into its own node.
2. Compute the similarity between each pair of nodes using the cosine method.

3. Find the two most similar nodes and combine them by giving them a common parent

(and removing the child nodes from future consideration).

4. Compute the new node’s similarity to each other node by computing a weighted
average of the similarities between each of its children and the other node. In other
words, assuming nodes A and B have been combined under a new parent C, the

similarity between C' and any other node I can be computed as

2 cicos (c,i)
size(C)size(l)
Y a,icos (a,1) + 37, ; cos (b, i)

(size(A) + size(B)) size(I)
stm(A, I)size(A)size(I) + sim(B, I)size(B)size(I)

(size(A) + size(B)) size(I)
stm(A, I)size(A) + sim(B, I)size(B)
size(A) + size(B))

sim(C, I)

5. Repeat steps 3 and 4 until all nouns have been placed under a common ancestor.

Figure 2.1 shows an actual piece of the unlabeled tree cons-ructed by this method.
The numbers indicate the order in which the clusters were combined; “PC” and “clones”
were the words judged to be most similar, then “minicomputer” and “workstation,” then
that cluster combined with “microsystems,” and finally everything was combined under a
common ancestor.

Nouns which have no features in common with any other noun will have a cosine of 0
with every other noun. Such nouns are therefore not included in the final tree. Also, a few

(4)

(3)

2) (1)

minicomputer workstation microsystems PC clones

Figure 2.1: A bottom-up clustering example.

small clusters are formed of nouns which have nonzero cosine with each other, but 0 cosine
with every noun in the main tree, so these nouns also do not appear in our hierarchy. This
is a minor issue; out of our approximately 20,000 nouns, fewer than 100 cannot be added
into the tree.

In practice, we cannot follow exactly the algorithm described ab ove, because maintaining
a list of the cosines between every pair of nodes requires a tremendous amount of memory.
With 20,000 nouns, we would initially require a 20,000 x 20,000 array of values (or a
triangular array of about half this size). With our current hardware, the largest array we
can comfortably handle is over 10 times smaller; we can only build a tree starting from
approximately 5,000 nouns.

The way we handled this limitation is to process the nouns in batches. Initially 5,000
nouns are read in. We cluster these until we have 2,500 nodes. Then 2,500 more nouns
are read in, to bring the total number of nodes to 5,000 again, ard once again we cluster
until 2,500 nodes remain. This process is repeated until all nouns have been processed, at
which point the nodes are clustered until as many as possible are combined into a single
cluster. Visual inspection of hierarchies produced for smaller data sets with and without
the batch processing show only minor differences, typically in the deepest levels of the tree.
Since the fine-grained detail at those levels is generally not significant, and is in fact lost
when hypernyms are added to the tree as described in the next two sections, the batch
processing has little impact on the ultimate result. It is possible that in future work more
specific hypernyms will be found and the detail in the deepest parts of the tree will take on
greater importance; in that case, it will become necessary to consider how nouns should be

assigned to particular batches for processing. (Currently this is done simply by the order
in which the nouns were encountered in the corpus.)

Once the unlabeled tree is constructed, our next step is to try to label each of the
internal nodes with a hypernym describing its descendant nouns.

2.2 Assigning hypernyms

To determine possible hypernyms for a particular noun, we use the same parsed text de-
scribed in the previous section. As suggested in Hearst ((14] and [15]), we can find some
hypernym data in the text by looking for conjunctions involving the word “other,” as in
“X, Y, and other Zs,” from which we can extract that Z is likely a hypernym for both X
and Y.

These co-occurrences are extracted from the parsed text, and for each noun we construct
a vector of hypernym features, with a value of 1 if a word has been seen as a hypernym for
this noun and 0 otherwise. These vectors are associated with the leaves of the binary tree
constructed in the previous section.

For each internal node of the tree, we construct a vector of hypernyms by adding together
the vectors of its children. We then assign a hypernym to this node by simply choosing
the hypernym with the largest value in this vector; that is, the hypernym which appeared
with the largest number of the node’s descendant nouns. (In casz <f ties, the hypernyms
are ordered arbitrarily.) We also list the second- and third-best hypernyms, to account for
cases where a single word does not describe the cluster adequately, or cases where there are
a few good hypernyms which tend to alternate, such as “country” and “nation.” (There
may or may not be any kind of semantic relationship among the hypernyms listed. Because
of the method of selecting hypernyms, the hypernyms may be synonyms of each other, have
hypernym-hyponym relationships of their own, or be completely unrelated.) If a hypernym
has occurred with only one of the descendant nouns, it is not listed as one of the best
hypernyms, since we have insufficient evidence that the word could describe this class of

nouns. Not every node has sufficient data to be assigned a hypernym.

2.3 Compressing the tree

The labeled tree constructed in the previous section tends to be contain a great deal of
unnecessary, essentially meaningless structure. Recall that the tree is binary. In many
cases, a group of nouns really do not have an inherent tree structure, for example, a cluster

country

OWN country

Canada Mexico France Germany
Figure 2.2: A labeled hierarchy before compression.

of countries. Although it is possible that a reasonable tree structure could be created with
subtrees of, say, European countries, Asian countries, etc., recall that we are using single-
word hypernyms. Given a large binary tree of countries, the ideal single-word hypernym
at each level would be “country” (or “nation”), so we would like to combine these binary
subtrees into a single cluster labeled “country” or “nation,” with each country appearing
as a leaf directly beneath this parent. (Obviously, the tree will no longer be binary).

Another type of extraneous structure in the tree can occur when an internal node is
unlabeled, meaning a hypernym could not be found to describe its aescendant nouns. Since
the tree’s root is labeled, somewhere above this node there is necessarily a node labeled with
a hypernym which applies to its descendant nouns, including those which are a descendant
of this node. We want to move this node’s children directly under the nearest labeled
ancestor.

We compress the tree using the following very simple algorithm: in depth-first order,
examine the children of each internal node. If the child is itself an internal node, and it
either has no best hypernym or the same three best hypernyms as its parent, delete this
child and make its children into children of the parent instead.

Figure 2.2 shows a section of an uncompressed labeled hierarchy, and Figure 2.3 shows

the result of compressing that hierarchy.

2.4 Results and evaluation

There are 20,014 leaves (nouns) and 654 internal nodes in the final tree (reduced from 20,013
internal nodes in the uncompressed tree). The top-level node in our learned tree is labeled
“product/analyst/official.” (Recall from the previous discussion that we do not assume any
kind of semantic relationship among the hypernyms listed for a particular cluster.) Since
these hypernyms are learned from the Wall Street Journal, they are domain-specific labels

10

country

Canada Mexico France Germany
Figure 2.3: The hierarchy from Figure 2.2 after compression.

rather than the more general “thing/ person/group.” However, if the hierarchy were to be
used for text from the financial domain, the domain-specific labels may be preferred.

The next level of the hierarchy, the children of the root, is as shown in Table 2.1. The
numbers in the table do not add up to 20,014 because 1,288 nouns are attached directly
to the root, meaning that they couldn’t be clustered to any greater level of detail. These
tend to be nouns for which little data could be found, generally proper nouns (e.g., Reindel,
Yaghoubi, Igoe).

To evaluate the hierarchy, 10 internal nodes dominating at least 20 nouns were selected
at random. For each of these nodes, we randomly selected 20 of the nouns from the cluster
under that node. Three human judges were asked to evaluate for each noun and each of
the (up to) three hypernyms listed as “best” for that cluster, whetzer they were actually in
a hyponym-hypernym relation. The Judges were native speakers of English who were not
otherwise involved in this project. 5 “noise” nouns randomly selected from elsewhere in the
tree were also added to each cluster without the Jjudges’ knowledge to verify that the judges
were not overly generous.

Some nouns, especially proper nouns, were not recognized by the judges. For any noun
that was not evaluated by the judges, we evaluated the noun/hypernym pair by examining
the appearances of that noun in the source text and verifying that the hypernym was correct
for the predominant sense of the noun.

Table 2.2 presents the results of this evaluation. The table lists results for only the ac-
tual candidate hyponym nouns, not the noise words. The “Hypernym 1” column indicates
whether the “best” hypernym was considered correct, while the “Any hypernym” column
indicates whether any of the listed hypernyms were accepted. Within those columns, “ma-
jority” lists the opinion of the majority of judges bhaving an opinion, and “any” indicates
the hypernyms that were accepted by even one of the Jjudges.

The “Hypernym 1/any” column can be used to compare results to Riloff and Shepherd

Hypernyms # nouns
vision 22
bank/group/bond 95
conductor 51

roblem 151
apparel/clothing /knitwear 113
item/paraphernalia/car 226
felony/charge/activity 109
system 47
official /product/right 88
official/company/product 10,266
product /factor/service 6,056
agency/area 60
event/item 135
animal/group/people 188
country/nation/producer 348
product/item/crop 300
diversion 130
problem/drug/disorder 306
wildlife 35

Table 2.1: The children of the root node in the preliminary experiment.

11

Hypernym 1 Any hypernym

Three best hypernyms majority any majority any

worker/craftsmen/personnel 13 13 13 13
cost/expense/area 7 10 9 10
cost/operation/problem 6 8 11 17
legislation/measure/proposal 3 5 9 18
benefit/business/factor 2 2 2 5
factor 2 7 2 7
lawyer 14 14 14 14
firm/investor/analyst 13 13 14 14
bank/firm /station 0 0 15 17
company 6 6 6 6
AVERAGE 6.6 / 33.0% | 7.8 /39.0% | 9.5 / 47.5% | 12.1 / 60.5%

Table 2.2: The results of the judges’ evaluation for the preliminary experiment.

12

Hypernym 1 Any hypernym
majority any majority any
noise words | 1 /2.0% [4/8.0% | 2 / 4.0% | 4 / 8.0%

Table 2.3: The results of the judges’ evaluation of noise words.

([28]). For five hand-selected categories, each with a single hypernym, and the 20 nouns
their algorithm scored as the best members of each category, at least one judge marked
on average about 31% of the nouns as correct. Using randomly-selected categories and
randomly-selected category members we achieved 39%.

By the strictest criteria, our algorithm produces correct hyponyms for a randomly-
selected hypernym 33% of the time. Roark and Charniak ({29]) report that for a hand-
selected category, their algorithm generally produces 20% to 40% correct entries.

Furthermore, if we loosen our criteria to consider also the second- and third-best hyper-
nyms, 60% of the nouns evaluated were assigned to at least one correct hypernym according
to at least one judge.

The “bank/firm/station” cluster consists largely of investment firms, which were marked
as incorrect for “bank,” resulting in the poor performance on the Hypernym 1 measures for
this cluster. The last cluster in the list, labeled “company,” is actually a very good cluster
of cities that because of sparse data was assigned a poor hypernym. Some of the suggestions
in the future work chapter might correct this problem.

Of the 50 noise words, a few were actually rated as correct as well, as shown in Table
2.3. This is largely because the noise words were selected truly at random, so that a noise
word for the “company” cluster may not have been in that particular cluster but may still

have appeared under a “company” hypernym elsewhere in the hierarchy.

2.5 The effect of better data

We re-created the hierarchy using a better parser to parse the Wall Street Journal text. This
parser, also developed by Eugene Charniak, performs at about the 88% level on standard
precision and recall measures. In the new hierarchy, there are 16,826 leaves (nouns) and 493
internal nodes in the final tree, with the top-level node labeled “product/official/company.”
To get an idea of the difference in result quality, Table 2.4 gives the next level of the new
hierarchy.

Comparing Table 2.4 to Table 2.1 shows that using the data obtained with the more
accurate parser, the top of the hierarchy is much less messy. The new hierarchy appears to

Hypernyms # nouns
group/institution/organization 84
official /company /executive 8204
product/factor/item 7542
country/nation/producer 320

13

Table 2.4: The children of the root node in the hierarchy developed using better-parsed

text.
Hypernym 1 Any hypernym

Three best hypernyms majority any majority any

director/official /executive 16 18 16 18
worker /employee/group 5 10 11 17
factor/problem/asset 16 16 17 17
cost/factor/term 3 11 3 15
item/product 3 3 4 4
measure/transaction/purpose 5 11 7 15
condition/approval/disorder 11 11 11 12
help/purpose 9 11 11 12
asset/instrument/investment 8 8 12 12
apparel /knitwear/product 14 17 14 17
AVERAGE 9.0 / 45.0% | 11.6 / 58.0% | 10.6 / 53.0% | 13.9 / 69.5%

Table 2.5: The results of the judges’ evaluation using better-parsed data.

do a much better job of combining nodes under a common ancestor.
We also had human judges evaluate the new hierarchy. The results of the human eval-
uation are presented in Table 2.5.
The results in Table 2.5 illustrate that an improvement in the quality of parsing has a
dramatic effect on the quality of the hierarchy constructed. For convenience, the results

from the two different parsers are summarized in Table 2.6.

2.6 Refinements to the algorithm

Our initial algorithm can also be modified in a few simple ways to improve our results.

Hypernym 1 Any hypernym
Parser majority any majority any
original parser 6.6 /33.0% | 7.8 /39.0% | 9.5/47.5% | 12.1 / 60.5%
improved parser | 9.0 / 45.0% | 11.6 / 58.0% | 10.6 / 53.0% | 13.9 / 69.5%

Table 2.6: A comparison of the hierarchies constructed using two different parsers.

14

Hypernym 1 Any hypernym

Three best hypernyms majority any majority any

incentive/program/purpose 7 10 7 13
executive/analyst/employee 17 18 18 18
agency/item/bank 7 7 9 10
analyst/professional /investor 13 18 13 18
official/executive/analyst 17 17 17 17
analyst/employee/executive 9 18 9 18
crop/product/asset 1 10 1 13
firm/airline/industry 13 16 13 16
country/nation/producer 12 17 12 17
group/investor/ally 14 15 15 16
AVERAGE 11.0 / 55.0% | 14.6 / 73.0% | 11.4 / 57.0% | 15.6 / 78.0%
previous best 9.0 /45.0% | 11.6 / 58.0% | 1.6 / 53.0% | 13.9 / 69.5%

Table 2.7: The results of the judges’ evaluation for the refined algorithm.

First, we include hypernyms as another type of co-occurrence; having conjuncts, appos-
itives, and verbs as features, we also include the hypernyms which have appeared with each
noun. Then each node of the tree has an associated distribution of hypernyms, and we can
simply select the most frequent hypernyms as the label for that node. As an added benefit,
the richer co-occurrence data should improve our clustering. We also extend our hypernym
data to include Hearst’s suggested constructions involving the phrass “such as,” as in “Zs,
such as X and Y,” which implies that Z is a hypernym of X and Y.

We also note that clusters which are labeled with fewer than three candidate hypernymas
tend to perform more poorly on evaluations, although this is not always the case. If only one
or two candidate hypernyms are found for a cluster, the hypernym data for that cluster are
likely very sparse, and probably insufficient to produce a meaningful label. This suggests
that we should make our criteria for labeling clusters somewhat stricter. As a simple
modification to screen out some sparse data problems, we now only label a node once we

have at least three candidate hypernyms available.

2.6.1 Evaluation of the modified algorithm

Table 2.7 presents the results of a human evaluation of a noun hierarchy incorporating these

refinements. Once again, we see a dramatic improvement in our results.

Chapter 3

A probability model for noun

hierarchies

We can use a generative probability model to formalize the idezs behind the hierarchy-
building process. The idea is that we assume there is a “true” underlying hierarchy from
which the observed co-occurrence data were generated. We want the algorithm to build a
hierarchy that is as close to this “true” hierarchy as possible. The assumption is that a
better hierarchy will assign a higher probability to the observed data.

First we need to discuss how the hierarchy assigns probabilities. Assume that there is
a process which randomly generates a noun n with probability P(n), and then randomly
generates a context word w to co-occur with it, with probability P(w|n). So, for example,
the process might generate the pair (“product”, “sell”) by generzting the noun “product”
and the word “sell” to co-occur with it (as a verb of which “product” is the direct object),
or it might generate the pair (“president”, “CEQ") by first generating the noun “president”
and then generating “CEO” as a word co-occurring in conjunction with it. The probability

of a noun/context word pair is computed as
P(n,w) = P(n)P(w|n).

We assume that the P(n) values are simply approximated by the empirical probabilities of

the nouns; that is,
P(n) = P(n).

These values are independent of the hierarchical structure. The P(w|n) values are estimated
according to a particular noun hierarchy as discussed below.

15

16

The idea behind clustering in linguistic applications is to overcome sparse data problems
by providing statistics on clusters of related items. These statistics caz be used in a backed-
off model; something like

P(win) ~ AP (w|n) + (1 — A\)P(w]c)

for a noun 7 in a cluster ¢ and some appropriate value for the coefficient).
With hierarchical clustering, we can have many levels of backing off. Assuming that there
is nothing special about any particular level, at any level we can use the same coefficients

for the contributions from that level and the levels above it:
P(w[n) ~ AP(wln) + (1 — A) [AB(wler) + (1 — A) [AP(wlea) + (1 = N [.. 1]

where ¢, is the cluster immediately above n, ¢p is the cluster immediately above that, and
SO on up to the root of the tree.
The best tree would be the one that maximizes the probability of the data according to
this model:
P(dataltree) = H P(item|tree),

itemé€&data
where P(iteml|tree) is the probability P(n,w) discussed earlier.

There is one further complication. Rather than using the same A for all clusters, we
want it to be dependent on cluster size. We do not want to assume that the probability
distribution for a cluster is equally good whether it is based on 5 co-occurrences or 5,000.
So rather than being a single variable, A is actually a function that returns a particular

value based on the size of a cluster. We then have:

P(wln) ~ A(n) P(w|n)+(1-A(n)) [Mer) B(wler) + (1 ~ Aer)) [Me2) Plwles) + (1 — Aea)) [

3.1 Hypernym probabilities

With the new idea of a hierarchy as a generative probability model, there is an obvious
way to choose the best hypernym for a particular internal node of the tree. We can simply
include the hypernym data the same way as any other co-occurrence data, so that we have
probabilities for the hypernyms for each cluster Jjust as for any other context words. The
best hypernym for a node is just the hypernym that maximizes that probability. This is
the same hypernym selection method used in the final section of the previous chapter.

17

3.2 Probabilistic clustering schemes

We can also modify our clustering scheme itself to try to produce a noun hierarchy which
better models our co-occurrence data. We have examined how two probabilistically-based
clustering schemes can be used to produce trees which model our data better.

3.2.1 Clustering based on probability distributions

Our probability model suggests an obvious clustering scheme to try. As usual, we start
with each noun in its own cluster, and combine the two most “similar” clusters recursively
until everything is in one cluster. But now instead of our similarity measure being based
on cosine, we want a similarity measure which indicates which two clusters to combine to
maximize the probability of the observed data.

As discussed earlier, the probability of the observed data according to a particular tree
is [[P(n,w) over all (n,w) pairs in the data. We compute the iter probabilities as

P(n,w) = P(n)P(w|n),

using the approximations
P(n) = P(n)

and

P(win) = A(n) P(wln)+(1-(n)) [Mer) Plwler) + (1 — A(er)) [MeziBlulen) + (1 — Alea)) [- -

P(w|n) is computed in the obvious way — the count of co-occurrences of w and n divided
by the number of co-occurrences of anything and n. In other words, P(w|n) is the probability
of w according to the distribution for n defined by the observed data. P(w|c) for a cluster
¢ is then computed by counting the co-occurrences of w and any noun in c.

So, when we form cluster ¢ from two other clusters, the probability of a data item
including a context word w and a noun in ¢ is updated to include a contribution from
P(wlc).

Rather than recomputing the full probabilities at every step of the clustering algorithm,
we can use a simpler scheme. At each step of the clustering, we choose to combine the
two clusters for which the average probabilities of the data items given the new cluster
are maximized. We do not need to look at the full probabilities for the items, just the
probabilities given that particular cluster, since the rest of the terms in the item probabilities
will be the same regardless of what the new parent cluster is. Let D(z) represent the

18

probability distribution of words co-occurring with words in cluster =. Then for two clusters
A and B, the per-word probability Ppw of the cluster which would be formed by combining

them is

Ppw(A, B) = pay+na) H P(w|A + B).
weD(A)+D(B)

The ppy measure takes the place of the similarity measure in our previous algorithm; at
every step, we combine the A and B for which Ppw(A, B) is maximized. This greedy strategy
should build a reasonable approximation to the optimal tree.

In our original algorithm, the similarity of two clusters was defined as the average pair-
wise similarity of their members. so when two clusters were combined, the new cluster’s
similarity to each other cluster could be easily computed as a weighted average of the simi-
larities for its children. However, the situation with this probabilistic measure is somewhat
more complex. Assume nodes A and B have been combined under a new parent C, and the
distributions D(A) and D(B) have been combined to create D(C). We want to compute
the per-word probability for a potential new cluster formed by combining C and each other
node I. Here, the fact that we have Pow(A, I) and pyy, (B, I) is of little help. Instead, we
compute pp,,(C, I) from scratch.

Rather than having to recompute the probability of each word in each distribution,
we store the geometric mean of the total probability of all items for each cluster X; i.e.,
Ppw(X). (In fact, these calculations are really done with logs, but in this discussion it is
easier to proceed as if we are storing actual probabilities.) To compute py,(C, I), we can
take advantage of these numbers. For any word that appears only with nouns in C, its new
probability is

‘me+D=ﬂgﬂnPWW)

Similarly, for any word appearing only with I,

ﬂMC+D=E%ﬁﬂMU

If we assume that all words appear with only one cluster, then

_ o] (_ICI i "
Ppu(C,1) = {l eerem©) (Gageed) -

(It should be clear at this point why using logs is necessary.)
Of course, some words do appear in co-occurrences with nouns from both clusters, but
it is much simpler to compute the adjustments for Just these words. These adjustments are

19

made to the product of the probabilities, before taking the |C + I|th root. For any word w
which co-occurs with nouns from both C and I , we divide out the separate contributions
and multiply in the actual contribution P(wIC + I). However, in order to identify such
words w, we do need to traverse the words co-occurring with either C or I and look them
up to see if they appear in the other cluster, so this clustering algorithm will still be more
complex than our original algorithm.

3.2.2 Clustering based on Kullback-Leibler divergence

For a simpler clustering scheme still based on probabilistic information, we used an algo-
rithm much like our original clustering algorithm, differing only in the way item and cluster
similarities are computed. Rather than using the cosine between the vectors representing
the distribution of co-occurrences for each noun, we would like = measure that indicates
how similar the co-occurrence probability distributions are for each ncun.

Kullback-Leibler divergence (KL divergence), or relative entropy, is a measure of how
different two probability distributions are. The KL divergence of two probability distribu-
tions p(z) and g(z) over X is computed as

D(ollg) = " p() logy 22

= g(z)’

However, using KL divergence directly in our clustering would result in two problems, as
described in Manning and Schiitze ([22]). First, the measure is not symmetric; that is,
usually

D(pllg) # D(q||p)-

Second, when computing the KL divergence between two distributions p and g, D(p||q) is
undefined if there exists any z for which p(z) > 0 and g(z) = 0. One solution to these
problems, and the one adopted here, is to instead use the information radius, defined as

IRad(p, q) = D(p|[232) + D(qlIZ1T).

which is both symmetric and always defined. This measure compares both p and ¢ to the
distribution obtained by averaging p and q.

Of course, this measures the dissimilarity between two distributions, and we are inter-
ested in a similarity measure. Since IRad varies between 0 and 2, in order to produce a
similarity measure that, like cosine and probability, varies between 0 and 1 with O being
least similar and 1 being most similar, we simply subtract the IRad from 2 and divide by

20

D(p1|[2522) + D(po||21522)
2 2
where p, is the probability distribution for words co-occurring with noun n; and p, is the

sim(ny,ng) =2 —

probability distribution for words co-occurring with noun no.
The rest of the algorithm operates exactly as in the cosine case. Cluster similarities are
computed as average pairwise similarities of their members,

2 acabeB Sim(a, b)
size(A)size(B) '’

stm(A, B) =
and when two clusters A and B are combined under a new parent C, we can easily compute

the new cluster’s similarity to each other cluster I as

. _ sim(A, I)size(A) + sim(B, I)size(B)
sim(C, I) = size(A) + size(B) ’

3.3 Evaluating data probabilities assigned by each model

In order to judge how well the trees built by each clustering sct.eme model the data, we
held out one-tenth of our co-occurrence data and used each clusterer to build a tree based
on the other nine-tenths. We then evaluated how well each tree predicts the held-out data
by looking at the probability it assigned to it.

3.3.1) training

In order to compute the actual probabilities assigned to the data, we need to find actual
values for the As. We can do this using the Baum-Welch algorithm for expectation maxi-
mization (see Baum et al ([2]) for the original algorithm, Mannirg 2nd Schiitze ([22]) for a
description of using it for A training).

We can imagine the probabilities as coming from a Hidden Markov Model. Figure 3.1
shows a portion of such an HMM. Each arc is labeled with a symbol emitted (or the empty
string €) and the probability of traversing that arc. The total probability of an item is the
sum of all possible paths through the HMM emitting that item. Again, the diagram shown
here is not complete; in the full HMM there are other arcs from the A and root nodes labeled
with other co-occurring words, and there is a start node with arcs labeled with each noun
n and probability P(n) which lead to an n node such as shown here. Given such an HMM,
the Baum-Welch algorithm provides a way to learn locally optimal values for the As.

21

n e:A(n) f/\(-)\ w : P(w|n)
O ®

€:1—A(n)

Gp €: /\(Cl)

w : P(w|root)

Figure 3.1: A section of an HMM for a probability model determined by a noun hierarchy.

22

Clustering basis Per-item log;y prob | Per-item prob
cosine -6.026 9.43 x 10~7
cluster probability | -6.008 9.82 x 107
KL divergence -6.005 9.89 x 1077

Table 3.1: Probabilities assigned to held-out data by hierarchies based on three clustering
schemes.

We use a separate A value for each of four groups of clusters: tzcse with up to 10 co-
occurrences in our observed data, those with 11-100, those with 101-1000, and those with
greater than 1000. We initially set all four A values to 0.1.

Following the standard Baum-Welch algorithm, we compute the probability of each item
in the held-out data, according to the probability model defined by our noun hierarchy and
the current A values. For each A\ and each data item, we find the probability-weighted
counts of how many times an arc was traversed labeled with that A, divided by the total
probability for that data item. We do the same for each arc labeled with 1 — A for that
A. We sum the values obtained for each pair of A and its corresporiding 1 — A. The total
counts for each A are then divided by the sum of the counts for that A and 1 — A to get the
new A value for the next iteration.

We repeat this process until the probabilities have converged. For this application, we
chose to stop once the change in average probability per item between iterations was less
than 0.1% of the previous value. (We use per-item probability rather than total probability
as a basis for comparing models because depending on the model, some items might result
in 0 probability and are therefore omitted from the A calculations for that model.)

3.3.2 Results

We use the Baum-Welch algorithm to learn appropriate A values for each hierarchy. The
probabilities assigned to the held-out data by the probability models incorporating these A
values are shown in Table 3.1.

As we might expect, the two clusterers which treat the co-occurrence data as probability
distributions perform better on this measure than the cosine-based version. It is interesting
to note that these two models assign quite similar probabilities to the held-out data. Of
course, the true test of the quality of the hierarchies is not how well they can predict the
held-out data, but in how good they are determined to be by our human judges.

23

Hypernym 1 Any hypernym

Three best hypernyms majority any majority any

company/official/institution 6 12 7 13
company/firm/concern 7 8 11 11
maker /carrier/product 2 4 4 6
country/nation/debtor 13 16 15 16
problem/distortions/index 14 15 17 17
factor/measure/expense 0 1 8 10
carrier/company/insurer 2 12 2 15
city /country/center 7 8 7 9
industry/product/issue 13 15 15 16
product/hazard/industry 12 16 17 19
AVERAGE 7.6 / 38.0% | 10.7 / 53.5% | 10.3 , 31.5% | 13.2 / 66.0%

Table 3.2: The results of the judges’ evaluation for the tree-builder based on cluster prob-
ability.

3.4 Human evaluation

Tables 3.2 and 3.3 give detailed results of the human evaluations of the clustering schemes
based on cluster probability and KL divergence, respectively. Table 3.4 summarizes the
results for our three clustering schemes.

The most striking aspect of these results is certainly the very poor quality of the clusterer
based on cluster probability. The reason for this can be understood by examining what the
algorithm actually does. At any given iteration in the algorithm, we choose to combine the
two clusters such that the probability of the co-occurrence data for the combined cluster
is maximized. When a cluster has a very skewed distribution, the probability of its co-
occurrence data is very high. If there is a great deal of co-occurrence data for that cluster,
such as in the case of a cluster consisting of a single high-frequency noun with a skewed
distribution, the cluster can combine with a cluster with a smal! amount of data with
almost no reduction in probability. This is exactly what happens as the tree is built. The
high-frequency clusters with skewed distribution tend to absorb the low-frequency clusters,
regardless of what their distributions look like. Two low-frequency clusters with very similar
distributions will not get the opportunity to combine; instead, they are first absorbed by
(possibly different) high-frequency clusters. Although this produces a tree which assigns
high probability to the held-out data, the internal structure of the tree is not at all desirable.

Our clustering scheme based on KL divergence produces a much nicer tree. The quality
of this tree is virtually identical to that produced by the cosine-based clusterer. Since the
KI-based clusterer also has a sound basis in probability, it is the clustering method we will

24

Hypernym 1 Any hypernym

Three best hypernyms majority any majority any

company/country/official 3 14 3 14
country/nation/market 7 19 8 19
crime/activity /charge 9 13 9 15
cost/charge/benefit 1 4 3 7
official/executive/analyst 15 15 15 15
product/compound/commodity 19 19 19 19
product/item/device 15 15 15 15
incentive/benefit/service 5 11 11 14
factor/issue/purpose 17 19 19 19
item/truck/good 15 15 15 15
AVERAGE 10.6 / 53.0% | 14.4 / 72.0% | 11.7 / 58.5% | 15.2 / 76.0%

Table 3.3: The results of the judges’ evaluation for the tree-builder based on KL divergence.

Hypernym 1 Any hypernym
Three best hypernyms majority any majority any
cosine 11.0 / 55.0% | 14.6 / 73.0% | 114 / 57.0% | 15.6 / 78.0%
cluster probability 7.6 / 38.0% | 10.7 / 53.5% | 10.3 / 51.5% | 13.2 / 66.0%
KL divergence 10.6 / 53.0% | 14.4 / 72.0% | 11.7 / 58.5% | 15.2 / 76.0%

Table 3.4: Summary of the results of the judges’ evaluation for the three clustering schemes.

prefer.

Chapter 4
Comparing the specificity of nouns

Some areas of the hierarchy might be improved if we were able to determine which of two
nouns was more specific. In particular, some of the “hypernyms” in our co-occurrence
data are in fact hyponyms, that is, the noun is actually a hypernym of the co-occurring
word, rather than the reverse. We encountered this phenomenon numerous times in our
experiments, generally because of dropped modifiers. Recall that we collect statistics on
single words, rather than on multiple-word terms. When we encounter the phrase “pasta
products, sauces and other specialty foods” in our corpus, it is treated as “products, sauces
and other foods,” leading to the conclusion that “food” is a bypernym of “product.” If
we knew that in fact “product” was a very general word compared to “food,” we could
filter this type of error out of our co-occurrence statistics. What we would like to have is a
quantitative measure of specificity, to allow these comparisons to be made easily.

In [5], we presented and compared several methods for determining the specificity of
nouns, again using only a text corpus. Each of these methods was trained on the text of
the 1987 Wall Street Journal corpus discussed earlier.

4.1 The specificity measures

One possible indicator of specificity is how often the noun is modified. It seems reasonable
to suppose that very specific nouns are rarely modified, while very general nouns would
usually be modified. Using the parsed text, we collected statistics on the probability that a
noun is modified by a prenominal adjective, verb, or other noun. (In all of these measures,
when we say “noun” we are referring only to common nouns, tagged NN or NNS, not proper
nouns tagged NNP or NNPS. Our results were consistently better wkhen proper nouns were
eliminated, probably since the proper nouns may conflict with identically-spelled common
25

26
nouns.) We looked at both the probability that the noun is modified by any of these

modifiers and the probability that the noun is modified by each specific category. The

nouns, adjectives, and verbs are all stemmed before computing these statistics.

count(noun with a prenominal zZjective)

FPogi(noun) = o)

Py(noun) = count(noun :Z::ta(ln[;f:)ommal verb)

Pan(noun) = count(noun Zvolqtll:wa(. :Oxzez;)mmal noun)
Prod(noun) = count(noun W1;I)1u i):::;)adj, vb, or nn)

However, if a noun almost always appears with exactly the same modifiers, this may
be an indication of an expression (e.g., “ugly duckling”), rather thzn a very general noun.
For this reason, we also collected entropy-based statistics. For each noun, we computed the

entropy of the rightmost prenominal modifier.

Hpod(noun) = - Z [P(modifier|noun) log, P(modi fier|noun)]|
modi fier

where P(modifier|noun) is the probability that a (possibly null) mod; fier is the rightmost
modifier of noun. The higher the entropy, the more general we believe the noun to be. In
other words, we are considering not just how often the noun is rmodified, but how much
these modifiers vary. A great variety of modifiers suggests that the noun is quite general,
while a noun that is rarely modified or modified in only a few different ways is probably
fairly specific.

We also looked at a simpler measure which can be computed from raw text rather than
parsed text. (For this experiment we used the part-of-speech tags determined by the parser,
but that was only to produce the set of nouns for testing. If one wanted to compute this
measure for all words, or for a specific list of words, tagging would be unnecessary.) We
simply looked at all words appearing within an n-word window of any instance of the word

being evaluated, and then computed the entropy measure:

Hp(noun) = - Y [P(word|noun) * log, P(word|noun)]

word

27

where P(word|noun) is the probability that a word appearing within an n-word window of
noun is word. Again, a higher entropy indicates a more general noun. In this measure, the
nouns being evaluated are stemmed, but the words in its n-word window are not.

Finally, we computed the very simple measure of frequency freg(noun)). The higher
the frequency, the more general we expect the noun to be. (Recall that we are using tagged
text, so it is not merely the frequency of the word that is being measured, but the frequency
of the word or its plural tagged as a common noun.)

This assumed inverse relationship between frequency and the semantic content of a word
is used commonly in the literature, for example, to weight the impoortance of terms in the
standard IDF measure used in information retrieval (see, e.g., Sparck Jones ([34])), and
to weight the importance of context words to compare the semantic similarity of nouns in
Grefenstette ([12]).

4.2 Evaluation of the specificity measures

To evaluate the performance of these measures, we used the hypernym data in WordNet
([10]) as our gold standard. We constructed three small sub-hierzrchies of the nouns in
WordNet and looked at how often our measures found the proper relationships between the
hypernym/hyponym pairs in these hierarchies.

To build our three sub-hierarchies, we wanted to use sets of words for which there would
be a reasonable amount of data in the Wall Street Journal corpus. We chose three noun
clusters produced by a program similar to [29] except that it is based on a generative
probability model and tries to classify all nouns rather than just those in pre-selected
clusters. (All data sets are given in Appendix A.) The clusters we selected represented
vehicles (car, truck, boat, ...), food (bread, pizza, wine, ...), and occupations (journalist,
engineer, biochemist, ...). Since the clusterer was able to determine that these words were
somehow related, we assume that our corpus contains sufficient data for them. From the
clustered data we removed proper nouns and words that were not really in our target
categories. We then looked up the remaining words in WordNet, and added their single-
word hypernyms to the categories in the correct hierarchical structure. (Many WordNet
categories are described by multiple words, e.g., “motorized vehicle,” and these were omitted
for obvious reasons.) We continued looking up hypernyms until each of our sets of words
was built up into a tree structure under a common parent. This gave us three small sub-nets
of WordNet to use for testing.

For each of these three hierarchies, we looked at each hypernym/hyponym pair within the

28

vehicle (26.0)

craft (30.7) truck (28.2)
vessel (31.8) van J13.0)
boat (24.2) vacht (16.7) minivans (6.2)
Figure 4.1: A piece of the “vehicles” hierarchy showing errors on the parent-child correctness
measure.
| Specificity measure | Vehicles | Food | Occupations | Average
Prod 65.2 63.3 66.7 65.0
Pogj 65.2 67.3 69.7 67.4
Py 73.9 42.9 51.5 56.1
Pon 65.2 57.1 51.5 58.0
| Hmod | 913 796 | 727 812 |
H, 87.0 79.6 75.8 80.8
Hiy 87.0 79.6 75.8 80.8
Hso 87.0 85.7 75.8 82.8
| Fregq | 870 837 [78.8 | 83.1

Table 4.1: Percentage of parent-child relationships which are ordered correctly by each
specificity measure.

hierarchy and determined whether each specificity measure placed the words in the proper
order. Figure 4.1 shows a piece of the “vehicles” hierarchy with values from an artificial
specificity measure. The dotted lines represent hypernym/hyponym pairs for which the
specificity relationship according to this measure is incorrect. In the figure, there are 7
pairwise comparisons of which 3 are incorrect, for a score of 57%.

The percentage of pairwise comparisons each specificity measure placed correctly is
presented in Table 4.1.

Clearly the better measures are performing much better than a random-guess algorithm
which would give 50% performance.

Among the measures based on the parsed text (Pmod and its components and H,,04),

29

vehicle (26.0)

truck (28.2)
vessel (31.8) van 613.0)
boat (24.2) yacht (16.7) minivans (6.2)

Figure 4.2: A piece of the “vehicles” hierarchy showing errors on the all-descendants cor-
rectness measure.

the entropy-based measure Hy,,q is clearly the best performer, as would be expected. How-
ever, it is interesting to note that the statistics based on adjectives alone (Peogj) somewhat
outperform those based on all of our prenominal modifiers (Pmod)- The reasons for this are
not entirely clear.

Although H,,,4 is the best performer on the vehicles data, freq and Hso do marginally
better overall, with each of these three having the best results on one of the data sets. All
three of these measures, as well as H, and Hyg, get above 80% correct on average.

In these evaluations, it became clear that a single bad node high in the hierarchy could
have a large effect on the results. For example, in the “occupations” hierarchy, the root node
is “person,” however, this is not a very frequent word in the Wall Street Journal corpus and
rates as fairly specific across all of our measures. Since this node has eight children, a single
bad value at this node can cause eight errors. We therefore considerad another evaluation
measure: for each internal node in the tree, we evaluated whether each specificity measure
rated this word as more general than all of its descendants. (This is somewhat akin to
the idea of edit distance. If we sufficiently increased the generality measure for each node
marked incorrect in this system, all relationships in the hierarchy would be exactly correct.)
Figure 4.2 shows the hierarchy from Figure 4.1 again, but in Figure 4.2, the nodes which
are not in the correct relationship to all descendants are circled. In the figure, there are 5
internal nodes of which 2 have errors, for a score of 60%.

Although this is a harsher measure, it isolates the effect of individual difficult internal
nodes. The results for this evaluation are presented in Table 4.2.

Although the numbers are lower in Table 4.2, the same measures as in Table 4.1 perform

30

| Specificity measure | Vehicles | Food | Occupations | Average |
Py 44 | 57.9 53.3 51.9
Pogj 33.3 52.6 60.0 48.7
Py 33.3 21.1 40.0 31.5
P, 55.6 21.1 33.3 36.6
Humod 778 | 632] 66.7 69.2 |
H> 66.7 57.9 60.0 61.5
Hjig 66.7 63.2 60.0 63.3
Hgg 66.7 73.7 60.0 66.8

| Freg | 66.7] 63.2] 60.0 | 633]

‘Table 4.2: Percentage of internal nodes having the correct relationship to all of their de-
scendants.

relatively well. However, here H,,,; has the best performance borz on average and on two
of three data sets, while the freq measure does a bit less well, now performing at about
the level of H;j rather than Hsg. The fact that some of the numbers in Table 4.2 are below
50% should not be alarming, as the average number of descendants of an internal node is
over 3, implying that random chance would give performance well below the 50% level on
this measure.

Some of these results are negatively affected by word-sense problems. Some of the
words added from the WordNet data are much more common in the Wall Street Journal
data for a different word sense than the one we are trying to evzluate. For example, the
word “performer” is in the occupations hierarchy, but in the Wall Street Journal this word
generally refers to stocks or funds (as “good performers,” for example) rather than to people.
Since it was our goal to avoid using any outside sources of semantic knowledge, these words
were included in the evaluations. However, if we eliminate those words, the results are as
shown in Tables 4.3 and 4.4.

It is possible that using some kind of automatic word-sense disambiguation while gath-
ering the statistics would help reduce this problem. This is also an area for future work.
However, it should be noted that on the evaluation measures in Tables 4.3 and 4.4, as in
the first two tables, the best results are obtained with Hpod, Hso and fregq.

The above results are primarily for nouns at “basic level” and below (see, e.g., Lakoff
((17]) for a discussion of basic level nouns), a group which includes the vast majority of
nouns. We also considered a data set at basic level and above, with “entity” at its root.
Table 4.5 presents the results of testing on this data set and each specificity measure, for
the evaluation measures described above, percentage of correct parent-child relationships

31

| Specificity measure | Vehicles | Food | Occupations | Average i
Priod 65.0 62.5 67.7 65.1
P4 70.0 66.7 71.0 69.2
P, 80.0 43.8 48.4 574
P, 70.0 56.3 51.6 59.3
Hpnod 100.0 | 81.3 74.2 85.1 |
Hy 95.0 79.2 774 83.9
Hiy 95.0 79.2 774 83.9
Hsyp 95.0 854 774 85.9

| Freq | 95.0 | 83.3] 80.6 | 86.3

Table 4.3: Percentage of correct parent-child relationships when words with the wrong
predominant sense are removed.

| Specificity measure | Vehicles | Food | Occupations | Average |

Prnod 50.0 | 55.6 61.5 55.7
Pogj 33.3 | 50.0 61.5 48.3
Py 33.3 16.7 38.5 29.5
Por, 66.7 | 222 30.8 39.9
| Himod 100.0 | 55.6 76.9 77.5
H, 83.3 [55.6 69.2 69.4
Hig 83.3 | 6L.1 61.5 68.7
Hsp 83.3 | 72.2 69.2 74.9 |
| Fregq | 833 [6L1] 69.2 | 7.2 |

Table 4.4: Percentage of internal nodes with the correct relationship to all descendants
when words with the wrong predominant sense are removed.

32

| Specificity measure | Parent-child | All descendants |

Prod 59.1 46.4
FPogj 60.2 46.4
Pyp 50.0 35.7
Py 50.0 28.6
| Hmod 59.1 393 |
H, 53.4 25.0
Hig 45.5 32.1
Hsg 46.6 32.1
| Freg | 45.5 | 32.1

Table 4.5: Evaluation of the various specificity measures on a test set of more general nouns.

WordNet subtrees with | Very general
Specificity measure | WordNet subtrees | correct sense only WordNet subtree
Hpog 81.2 85.1 59.1
Hsg 82.8 85.9 46.6
Freq 83.1 86.3 45.5

Table 4.6: Summary of results for the three best noun specificity measures.

and percentage of nodes in the correct relationship to all of their descendants.

Note that on these nouns, freg and Hsg are among the worst performers; in fact,
by looking at the parent-child results, we can see that these measures actually do worse
than chance. As nouns start to get extremely general, their frequency appears to actually
decrease, so these are no longer useful measures. On the other hand, Hyp0q 1s still one of
the best performers; although it does perform worse here than on very specific nouns, it
still assigns the correct relationship to a pair of nouns about 59% of the time.

Table 4.6 summarizes the results on the parent-child evaluations for our three best
specificity measures. Although Hsp and freq perform as well or better on words below basic
level, and freq in particular is a much simpler measure to compute, H,,,q is also useful near
the root of the tree where the other measures perform poorly. The H,,,; measure, then, is
the one we should use in the construction of a noun hierarchy.

Chapter 5
Incorporating the specificity data

Our co-occurrence data contain pairs of nouns and hypernyms (n.4). In fact, A is not
always a hypernym of n. Aside from simple parsing or data collection errors, which also
affect our other co-occurrence data, there is a potential source of error unique to the case
of hypernyms. As discussed in the previous chapter, some of the apparent “hypernyms” we
collect are actually hyponyms, so that we may have “food” as a hypernym of “product.”
(Since we are only using head nouns, dropping a modifier, such as the “pasta” in “pasta
products,” may turn a very specific noun phrase into a much more general one, reversing
the relationship between A and n.)

Previously, we assumed that all hypernym data items represented a true hypernym
relationship; that is, the probability that & was a hypernym of n was 1. Now, we assume
that A is either a hypernym or a hyponym of n. For (n, h) pairs where we have seen data
items, we want to multiply the counts by the probability that the relationship actually
holds in the correct direction. From the previous chapter, the H 04 specificity measure can
identify the more specific of two nouns with about 85% accuracy (assuming the predominant
word senses in the specificity data are the word senses we are interested in, a reasonable
assumption in this case since our hypernym data come from the same corpus). Therefore,
we multiply our hypernym counts by 0.85 if the specificity measure indicates that A is likely
more general than n and by 0.15 if the reverse is true.

5.1 Evaluation

We constructed a tree using the KL divergence-based clusterer and these weighted numbers
and compared it to our previous KL divergence-based tree. The results are presented in
Table 5.1.

33

34

Hypernym 1 Any hypernym

Three best hypernyms majority any majority any

investor/ally /bank 17 17 17 17
country/nation/producer 16 19 16 19
chain/company/airline 2 14 3 14
official/professional /investor 10 18 15 19
executive/officer/analyst 17 17 17 17
spirits/product /brand 14 17 15 18
area/factor/issue 2 18 2 20
charge/cost /benefit 1 3 1 3
product/compound/fiber 20 20 20 20
product/equipment/industry 13 20 14 20
AVERAGE 11.2 / 56.0% | 16.3 / 81.5% | 12.0 / 60.0% | 16.7 / 83.5%
previous results 10.6 / 53.0% | 14.4 / 72.0% | 11.7 / 58.5% | 15.2 / 76.0%

Table 5.1: The results of the judges’ evaluation for the tree-builder including specificity
statistics.

As the table illustrates, incorporating the specificity data improves the quality of our
noun hierarchy. We can see improvements in all areas, although the largest improvements
are in the columns indicating that any judge considered a hypernym correct. This suggests
that rather than adding new good hypernyms, the specificity statistics are primarily helping
us by screening out bad candidates; the improvement is the result of replacing unquestion-
ably bad candidates with somewhat better ones, requiring more of a judgment call. It may
be the case that given the sparseness of our hypernym data, we have already found most of
the unquestionably good hypernym labels available. The issue of hypernym data sparseness
is addressed in the next chapter as an area for future research. '

It is also interesting at this point to go back and compare these results to those from
our original algorithm, presented in Table 2.2. Besides the obvious quantitative differences,
we can see a qualitative difference in the hierarchies produced. In our original experiment,
the “Hypernym 1” and “Any hypernym” were extremely different. However, in our current
results, they are virtually identical. We are now apparently doing a very good job in ranking
the candidate hypernyms, and our performance is likely being hindered primarily by the
lack of better hypernyms in our data.

Chapter 6
Discussion and future directions

The hierarchy presented here performs reasonably well compared to previous algorithms for
constructing semantic lexicons, but clearly more work is needed in order to produce truly

useful semantic hierarchies without requiring a great deal of manual post-editing.

6.1 Improving the hypernym labels

As discussed in the previous chapter, our technique seems to be quite successful in choosing
among the available candidate hypernyms. Many of our erronecus avpernym labels in the
hierarchy are simply a result of not having better choices available in the hypernym data.
A major factor in this is the sparseness of the text patterns we are using to collect our
hypernym statistics; out of the 3,467 nouns for which we have hypernym statistics, only 48
occur with any hypernym more than once in our corpus. An obvious help would be to look
for other patterns in the text as suggested by Hearst ([14] and [15]). However, our technique
will actually allow for richer sources of data than Hearst’s work can utilize, because she
considers a single instance of a text pattern as definitive evidence of a hypernym relationship,
and therefore she only considers patterns that almost always ind.cate hypernyms. Our
statistical framework will permit noisier sources of data to be incorporated, using ideas
similar to those used to incorporate the specificity statistics. We can also use a larger
corpus to simply collect a larger amount of data.

Occasionally, a cluster is badly mislabeled based on a very small fraction of the data
in the cluster. For example, our technique often constructs very nice clusters of cities, but
“city” is not a very common hypernym. Since some cities share their names with companies,
a city cluster is often mislabeled “company” based on just a few cluster members. It might
be useful to have some stricter criterion for hypernyms used to label a node, say, that they

35

36

group

agency/exchange

agency exchange

AN

Figure 6.1: A tree with an artificial intermediate node.

group

agency exchange

Figure 6.2: The tree of Figure 6.1 with the intermediate node removed.

occur with a certain percentage of the nouns below them in the irse. Additional hypernym
data would be particularly helpful in this case.

Because the tree is built in a binary fashion, when, e.g., three clusters should all be
distinct children of a common parent, two of them must merge first, giving an artificial
intermediate level in the tree. For example, a cluster with best hypernym “agency” and
one with best hypernym “exchange” (as in “stock exchange”) can have a parent with the
two best hypernyms “agency/exchange” as shown in Figure 6.1, rather than both of these
nodes simply being attached to the next level up with best hypernym “group,” as shown in
Figure 6.2. It might be possible to correct for this situation by changing how the hypernym
distributions of a subtree are combined to form the distribution for an internal node; for
example, if there is little overlap between the distributions of the subtrees, more general
words could be weighted more heavily in the parent distribution.

Another interesting idea which may result in a somewhat cleaner hierarchy is to require

37

a hypernym to appear in only one internal node of the tree. Currently, a high-frequency,
very general word like “product” may appear as a hypernym in an arbitrary number of
places in the hierarchy, barring only those duplications that are caught by the compression
algorithm. Requiring this word to appear in only one place could allow lower-frequency but

more specific hypernyms to be used instead.

6.2 Multiple-word phrases

It would be useful to try to identify terms made up of multiple words, rather than just using
the head nouns of the noun phrases. Not only would this provide 2 more useful hierarchy,
or at least perhaps one that is more useful for certain applications, bur it would also help to
prevent some errors. Hearst ([14]) gives an example of a potential hyponym-hypernym pair
“broken bone/injury.” Using our algorithm, we would learn that “injury” is a hypernym
of “bone.” Ideally, this would not appear in our hierarchy, because we would have data
on other hypernyms of “bone” or other words in its cluster and a more common hypernym
would be chosen instead, but it is possible that in some cases a bad hypernym would be
found based on multiple word phrases. Comparison of the H,,,4 measure discussed here with
something like the P,y measure may help in the identification of multiple word phrases,
by identifying nouns which are frequently modified using the same modifiers (rather than a
variety of modifiers). A discussion of the difficulties in deciding how much of a noun phrase
to use can be found in Hearst. Roark and Charniak ([29]) present one possible solution;
Daille ([8]) evaluates several techniques to identify multiple-word terms and recommends
the use of Dunning’s Loglike statistic ([9]).

6.3 Word-sense disambiguation

Ideally, a useful hierarchy should allow for multiple senses of a word, and this is an area
which may be explored in future work. However, domain-specific text tends to greatly
constrain which senses of a word will appear, and if the learned hierarchy is intended for
use with the same type of text from which it was learned, it is possible that this would be
of limited benefit.

Word-sense disambiguation could be done either before the noun clustering takes place or
by the clustering algorithm itself. In a preprocessing method, unsupervised methods could
be used to identify words having multiple senses, and to cluster the occurrences of these

words according to senses. Various methods for word-sense disambiguation are discussed

38

in the following chapter. The distinct senses of a word would then be treated as entirely
separate words in the clustering algorithm.

Alternatively, multiple senses of a word could be identified by a modified version of the
clustering algorithm. The clustering algorithm used now places each word deterministically
in a single cluster. A probabilistic algorithm could allow the word instead to belong to

multiple classes simultaneously.

6.4 Using unparsed text

We used parsed text for these experiments because we believed we would get better results
and the parsed corpus was readily available. However, it would be interesting to see if
parsing is necessary or if we can get equivalent or nearly-equivalent results doing some
simpler text processing, as suggested in Ahlswede ([1]), particularly since parsing is such
a time-consuming process. Both Hearst ([14] and [15]) and Riloff and Shepherd ([28]) use
unparsed text. However, the text processing would have to be done very precisely, as we
have seen the difference that parse quality makes in the constructed hierarchy.

Chapter 7

Related work

Pereira et al ([26]) use clustering to build an unlabeled hierarchy of nouns. Their hierarchy
is constructed top-down, rather than bottom-up, with nouns being allowed membership in
multiple clusters. Their clustering is based on verb-object relations alone rather than also
on the noun-noun relations that we use. The tree they construct is also binary with some
internal nodes which seem to be “artificial,” but for evaluation purposes they disregard the
tree structure and consider only the leaf nodes. Unfortunately it is difficult to compare
their results to ours since their evaluation is based strictly on the verb-object relations.

Brown et al ([3]) use a bottom-up clustering method to build a decision-tree based lan-
guage model for speech recognition. Their system includes the idea of running the algorithm
on a subset of size k, clustering to k/2 clusters, and repeating, which was developed inde-
pendently in this project. Jelinek ([16]) devotes a chapter to language models for speech
recognition that are based on decision trees, including [3]. The discussion of smoothing
these language models in section 10.14.1 discusses “bottom-up smoothing,” which is the
same smoothing technique developed independently for the probability model presented
here, although he suggests tying the smoothing parameters based on tree depth rather than
on data frequency as done here.

Riloff and Shepherd ([28]) suggest using conjunction and appositive data to cluster
nouns; however, they approximate these co-occurrence counts by just looking at the nearest
NP on each side of a particular NP. Roark and Charniak ([29]) build on that work by
actually using conjunction and appositive data for noun clustering, as we include here.
(They also use noun compound data, but in a separate stage of processing.) Both of these
projects have the goal of building a single cluster of, e.g., vehicles, and both use seed words

to initialize a cluster with nouns belonging to it.

39

40

In addition to the papers cited above, various statistical techniques for clustering nouns
have been investigated. Some recent results are presented by Lin([20] and [21]) and Li and
Abe ([18]).

Hearst ([14] and [15]) introduces the idea of learning hypernym-hyponym relationships
from text and gives several examples of patterns that can be used to detect these relation-
ships including those used here, along with an algorithm for identifying new patterns. This
work shares with ours the feature that it does not need large amounts of data to learn a
hypernym; unlike in much statistical work, a single occurrence is s:ffcient.

The hyponym-hypernym pairs found by Hearst’s algorithm include some that Hearst
describes as “context and point-of-view dependent,” such as “Washington/nationalist” and
“aircraft/target.” Our work is somewhat less sensitive to this kind of problem since only
the most common hypernym of an entire cluster of nouns is reported, so much of the noise
is filtered.

The sparseness of Hearst’s patterns prevents that technique from being an effective ap-
proach to the problem of determining the specificity of nouns. To the best of our knowledge,
the work described here and in [5] is the first research to address thar problem.

Sanderson and Croft ([30]) automatically construct concept hierarchies for information
retrieval using statistical techniques based on “subsumption” rather than clustering. The
terms for the hierarchy are selected in advance, and then hierarchical relationships between
them are found based on co-occurrences among document sets.

There is a great deal of literature describing statistical techniques for word-sense disam-
biguation. Gale et al ([11]) use a corpus of parallel English and French text as training data
for this problem. For each occurrence of a particular ambiguous word in the English corpus,
they create a vector of the words appearing within a 100-word window of that word, along
with the correct sense according to the French translation. Using these statistics, they are
able to identify the correct sense of new occurrences of these words about 90% of the time.
Yarowsky ([35]) uses a similar technique to assign occurrences of words to one of the 1042
classes of words in Roget’s International Thesaurus. He uses the Roget lists of words in
each class and a text corpus to gather 100-word windows for each class.

Schiitze ([32] and [31]) reports on a related experiment which uses unsupervised learning
methods. He creates vectors of not the words appearing within a 100-word context window
of the target word, but words occurring within a 100-word window of those context words,
to help overcome sparse data problems. He then clusters these vectors using a cosine-based
similarity metric (as we do in Chapter 2) to identify multiple senses of the word, and these
clusters are used to classify new occurrences of the word, with 89% to 95% accuracy on

41

the ten test words he evaluates. Yarowsky ([36]) gives an unsupervised method that uses
heuristics to identify a small number of training examples and then uses bootstrapping to
create more training data, from which a decision list is learned. Yarowsky’s method rivals
the performance of supervised methods, performing at about 96% accuracy on twelve tested
words.

Resnick ([27]) uses verb-object data from parsed text to identify the correct WordNet
sense for a given occurrence of a noun. Pereira et al ([26]) also show how verb-object data
could be used to create a hierarchy of word senses for a particular word rather than a
hierarchy of different words.

Statistical word-sense disambiguation is an active area of research. Recent work includes
Ng and Lee ([24]) and Ng([23]), Dagan et al ([7]), and Pedersen and Bruce ([25]).

Various other authors have used statistical techniques to learn lexical semantic infor-
mation. Light ([19]) uses morphological data, specifically, statistics on the affixes a word
can take, to identify semantic features of that word. Hatzivassiloglou and McKeown ([131)
use statistical methods to identify whether adjectives have positive or negative orienta-
tion, starting from a small hand-labeled list of adjectives and using the fact that conjoined
adjectives typically have the same orientation. Siegel ([33]) uses various machine learn-
ing techniques to combine evidence for classifying verbs according to a group of semantic

features.

Chapter 8

Conclusions

We have shown that hypernym hierarchies of nouns can be constructed automatically from
co-occurrence statistics on text. The quality of the hierarchies we can construct exceeds
that of previous work in which semantic lexicons are built automatically for hand-selected
hypernyms.

Since hypernyms are defined in terms of judgments made by native speakers, human
judgments are the most appropriate method of evaluating these hierarchies. Our current
best method builds a hierarchy which has been evaluated by human judges to produce
clusters whose “best” hypernym label is correct for at least 56% of the cluster members. In
addition, one of the top three hypernym labels is judged correct by at least one judge for
83.5%.

The quality of the parser used to parse the corpus from which the co-occurrence statistics
are gathered is quite important. A state-of-the-art parser is currently necessary to achieve
good results.

We have also shown how our hierarchy can be used as a probability model to predict
co-occurrence data; however, it is important to note that predicting held-out data well is
not a sufficient test of the hierarchy’s quality. There is currently no substitute for human
judges in evaluating the quality of noun hierarchies.

Statistics on a text corpus can also be used to compare nouns in terms of their specificity.
We have identified several measures which do this task reasonably well, including H,.4, the
entropy of the noun’s rightmost modifier, which works reasonably well even for very general
nouns, unlike heavily frequency-dependent measures. This specificity measure can be used
to improve the quality of automatically constructed noun hierarchies.

Our techniques appear to be highly successful at choosing hypernyms from among the

42

43

available candidates. When we address the hypernym data sparseness issue in future work,
we expect a substantial improvement in our results.

The semantic noun hierarchy constructed by the methods presented in this thesis is
a dramatic improvement over our previously published results. We previously reported a
correctness measure of 33% ([4]); with the improvements described here, we have achieved
56%, and expect to be able to build even further on these results in future work.

Appendix A
Specificity data sets

The following pages show the data sets used in the specificity experiments. Words shown
in dtalics are omitted from the results in Tables 4.3 and 4.4 because the predominant sense
in the Wall Street Journal text is not the one represented by the word’s position in this
hierarchy.

vehicle
van
minivans

—— car

—— compact

— limousines

— Jeep

| wagon

— cab

— sedan

L coupe

— hatchback

— trailer

L campers

craft

vessel
yacht
boat
barges

motorcycle
_jz 5;]groltorbike
_—I— cart

Figure A.1: The “vehicles” data set.

45

food
— beverage
alcohol
liquor

— ham

— ingredient

relish
olives

— ketchup

— dish

—— sandwich

—— soup

vegetable
—— tomatoes
—— mushroom

1
T8y
fruit

—— pineapple
—— peaches

ch
erry
L= strawberry

Figure A.2: The “food” data set.

46

person

— worker

— editor

— technician

— writer alist
journalis

e columnist

— commentator

— novelist

— biographer

— intellectual

scientist
sociologist
chemist

biochemist

physicist

scholar
historian

— professional

physician
specialist
psychiatrist
veterinarian

educator
1< teacher
—— nurse
— dentist

leader
1= administrator

entertainer
_\—\Erformer
— comedian
—— engineer
— homemaker

Figure A.3: The “occupations” data set.

47

entity

organism

L “person

— animal

— vermin

mammal
horse
dog
cat
cattle

bird
chicken
duck

fish
herring
‘E salmon
trout

reptile
turtle
snake
lizard
alligator

—— virus
— bacteria

—- microbe
cause

menace

— object
— substance

— food
metal
alloy
steel
bronze
gold
silver
iron
— carcinogen

fluid
o
water

location
region
country
state

city

— commodity

— clothing
—— appliance

— artifact

covering
paint
roof
curtain
creation
art
music
publication
book
article
—— decoration
~—— drug
—— sedative
—— interferon
—— enclosure
— fabric
— nylon
'— wool
— facility
— airport
— headquarters
— station
— fixture
—— structure
—— house
— factory
—— store

part

organ
heart
lung

base

corner

fragment
slice

— need
— variable

Figure A.4: The high-level data set.

48

Bibliography

[1]

(2]

[4]

[5]

[7]

Thomas Ahlswede and Martha Evens. Parsing vs. text processing in the analysis of
dictionary definitions. In Proceedings of the 29th Annual Meeting of the Association
for Computational Linguistics, pages 217-224, 1988.

L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximizztion technique occur-
ring in the statistical analysis of probabilistic functions of Markov chains. Annals of
Mathematical Statistics, 41:164-171, 1970.

Peter F. Brown, Vincent J. Della Pietra, Peter V. DeSouza, Jennifer C. Lai, and
Robert L. Mercer. Class-based n-gram models of natural language. Computational
Linguistics, 18:467-479, 1992.

Sharon A. Caraballo. Automatic construction of a hypernym-labeled noun hierarchy
from text. In Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics, 1999.

Sharon A. Caraballo and Eugene Charniak. Determining the specificity of nouns from
text. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, 1999.

Eugene Charniak, Sharon Goldwater, and Mark Johnson. Edge-based best-first chart
parsing. In Proceedings of the Sizth Workshop on Very Large Corpora, pages 127-133.
Association for Computational Linguistics, 1998.

Ido Dagan, Lillian Lee, and Fernando Pereira. Similarity-based methods for word sense
disambiguation. In 35th Annual Meeting of the Association for Computational Linguis-
tics and 8th Conference of the European Chapter of the Association for Computational

Linguistics: Proceedings of the Conference, pages 56-63, 1997.

49

[8]

[10]

[11]

[12]

[13]

[14]

50

Béatrice Daille. Study and implementation of combined techaicues for automatic ex-
traction of terminology. In The Balancing Act: Combining Symbolic and Statistical
Approaches to Language, pages 49-66. The MIT Press, 1996.

Ted Dunning. Accurate methods for the statistics of surprise and coincidence. Com-
putational Linguistics, 19:61-76, 1993.

Christiane Fellbaum, editor. WordNet: An Electronic Lezical Database. The MIT
Press, 1998.

William A. Gale, Kenneth W. Church, and David Yarowsky. A method for disam-
biguating word senses in a large corpus. Computers and the Humanities, 26:415-439,
1993.

Gregory Grefenstette. SEXTANT: Extracting semantics from raw text implementation
details. Heuristics: The Journal of Knowledge Engineering, 1993.

Vasileios Hatzivassiloglou and Kathleen R. McKeown. Predicting the semantic ori-
entation of adjectives. In 35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the Association for Com-

putational Linguistics: Proceedings of the Conference, pages 174-181, 1997.

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the Fourteenth International Conference on Computational Linguistics,
1992.

Marti A. Hearst. Automated discovery of WordNet relations. In Fellbaum [10], pages
131-151.

Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press, 1997.

George Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about
the Mind. University of Chicago Press, 1987.

Hang Li and Naoki Abe. Word clustering and disambiguation based on co-occurrence
data. In COLING-ACL ’98: 36th Annual Meeting of the Association for Computa-
tional Linguistics and 17th International Conference on Computational Linguistics:
Proceedings of the Conference, pages 749-755, 1998.

[19]

(20]

(21]

(24]

[25]

[26]

[27]

51

Marc Light. Morphological cues for lexical semantics. In Annual Meeting of the As-
sociation for Computational Linguistics: Proceedings of the Conference, pages 25-31,
1996.

Dekang Lin. Using syntactic dependency as local context to resolve word sense ambigu-
ity. In 35th Annual Meeting of the Association for Computational Linguistics and 8th
Conference of the European Chapter of the Association for Computational Linguistics:
Proceedings of the Conference, pages 64-71, 1997.

Dekang Lin. Automatic retrieval and clustering of similar words. In COLING-ACL
'98: 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics: Proceedings of the Conference,
pages 768-774, 1998.

Christopher D. Manning and Hinrich Schiitze. Foundations ¢* S:atistical Natural Lan-
guage Processing. The MIT Press, 1999.

Hwee Tou Ng. Exemplar-based word sense disambiguation: Some recent improvements.
In Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing, pages 208-213, 1997.

Hwee Tou Ng and Hian Beng Lee. Integrating multiple knowledge sources to disam-
biguate word sense: An exemplar-based approach. In Annual Meeting of the Asso-
ciation for Computational Linguistics: Proceedings of the Conjerence, pages 40-47,
1996.

Ted Pedersen and Rebecca Bruce. Distinguishing word senses in untagged text. In
Proceedings of the Second Conference on Empirical Methods in Natural Language Pro-
cessing, pages 197-207, 1997.

Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of English
words. In Proceedings of the 81st Annual Meeting of the Association for Computational
Linguistics, pages 183-190, 1993.

Philip Resnick. Wordnet and distributional analysis: a class-based approach to lexi-
cal discovery. In AAAI Workshop on Statistically-Based Natural Language Processing
Techniques, pages 54-64, 1992.

(28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

52

Ellen Riloff and Jessica Shepherd. A corpus-based approach for building semantic
lexicons. In Proceedings of the Second Conference on Empirical Methods in Natural
Language Processing, pages 117-124, 1997.

Brian Roark and Eugene Charniak. Noun-phrase co-occurrence statistics for semi-
automatic semantic lexicon construction. In COLING-ACL ’'98: 36th Annual Meeting
of the Association for Computational Linguistics and 17th International Conference on

Computational Linguistics: Proceedings of the Conference, pages 11101116, 1998.

Mark Sanderson and Bruce Croft. Deriving concept hierarchies from text. In Proceed-
ings of the 22nd ACM SIGIR Conference, pages 206-213, 1999.

Hinrich Schiitze. Context space. In Working Notes, AAAI Fall Symposium Series,
Probabilistic Approaches to Natural Language, pages 113-120, 1992.

Hinrich Schiitze. Word sense disambiguation with sublexical representations. In AAAT
Workshop on Statistically-Based Natural Language Processing Techniques, pages 109—
113, 1992.

Eric V. Siegel. Learning methods for combining linguistic indicators to classify verbs.
In Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing, pages 156-162, 1997.

Karen Sparck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of Documentation, 28:11-21, 1972.

David Yarowsky. Word-sense disambiguation using statistical models of Roget’s cat-
egories trained on large corpora. In Proceedings of the 14th International Conference
on Computational Linguistics (COLING-92), pages 454-460. 1992.

David Yarowsky. Unsupervised word sense disambiguation rivaling supervised meth-
ods. In Proceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics, pages 189196, 1995.

