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Abstract

Gun violence results in a significant number of deaths in the United States. Starting in the 1960’s, the
US Congress passed a series of gun control laws to regulate the sale and use of firearms. One of the most
important but politically fraught gun control measures is a national gun registry. A US Senate office is
currently drafting legislation that proposes the creation of a voluntary national gun registration system.
At a high level, the bill envisions a decentralized system where local county officials would control and
manage the registration data of their constituents. These local databases could then be queried by other
officials and law enforcement to trace guns. Due to the sensitive nature of this data, however, these
databases should guarantee the confidentiality of the data.

In this work, we translate the high-level vision of the proposed legislation into technical requirements
and design a cryptographic protocol that meets them. Roughly speaking, the protocol can be viewed as
a decentralized system of locally-managed end-to-end encrypted databases. Our design relies on various
cryptographic building blocks including structured encryption, secure multi-party computation and secret
sharing. We propose a formal security definition and prove that our design meets it. We implemented our
protocol and evaluated its performance empirically at the scale it would have to run if it were deployed in
the United States. Our results show that a decentralized and end-to-end encrypted national gun registry
is not only possible in theory but feasible in practice.

1 Introduction

Gun violence accounts for a considerable number of deaths in the United States. 36,000 Americans are
killed by guns every year and another 100,000 are injured. Around 2/3 of gun deaths are suicides and 1/3
are homicides. Among high-income countries, 93% of children (14 and under) that are killed by guns are
American. Each year 600 Women are shot and killed by an intimate partner and 4.5 million Women have
been threatened with a gun. Black people are 10 times more likely to be killed by a gun than Whites and
Black men account for 52% of gun deaths [18].

Gun control. In the US, firearms are regulated by a set of laws, regulations and policies commonly referred
to as gun control laws. At the national level, the most prominent gun control laws are the Omnibus Crime
Control and Safe Streets Act of 1968, which prohibited the interstate sale of handguns and increased the
minimum age to purchase a gun to 21; the Gun Control Act of 1968 which established the Federal Firearms
License system which requires gun sellers to be licensed; and the Brady Act of 1993 which instituted the
system of background checks, requiring sellers to check the criminal history of buyers. Another important
gun control law is the Firearm Owner Protection Act (FOPA) of 1986 which amends some of the provisions of
the Gun Control Act. One of the main provisions of FOPA was to prohibit the Bureau of Alcohol, Tobacco,
Firearms and Explosives (ATF) from keeping a registry that maps guns to their owners. More precisely, the
Act states:
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No such rule or requlation...may require that records...be recorded at or transferred to a facility
owned, managed, or controlled by the United States or any State or any political subdivision
thereof, nor that any system of registration of firearms, firearms owners, or firearms transactions
or dispositions be established.

Gun tracing. Gun tracing is the tracking of guns recovered by law enforcement. In the US, it is conducted
by the ATF’s National Tracing Center in West Virginia. When a gun is recovered by law enforcement, a
trace can be requested based on the gun’s serial number and characteristics. Because FOPA prohibits the
existence of databases that map owners to guns and prevents data on firearms from being searchable [37],
gun tracing is done manually by searching through physical stacks of paper. This requires, on average, 4
to 7 business days [36]. Furthermore, searches cannot be run on the text of a record or using specific tags
or identifiers. On average there are 1,500 traces a day and about 370,000 a year and only 65% of search
requests are successfully answered. FOPA even requires gun dealers to get a special exemption by the ATF
to use electronic or cloud-based computing systems to store their data [26].

A decentralized national registry. US Senator Wyden’s office is currently drafting legislation that
proposes the creation of a woluntary national system of firearm licensing and registration. The core idea
behind the bill is to provide financial and legislative incentives for US counties that choose to participate
in the system. Two crucial aspects of the proposed design are to guarantee: (1) the confidentiality of the
data; and (2) that local officials maintain complete control of their constituents’ data. Control, here, means
the ability to “pull” the data from the system at any point in time. From a technical perspective, these
requirements roughly translate to designing a distributed and decentralized system of locally-managed end-
to-end encrypted databases that would allow for efficient gun tracing without compromising the privacy of
gun owners.

At a high level, the legislation would require all gun owners in a participating US county to register
their firearms with a local official by providing information about the make, model, caliber or gauge, and
serial number along with the owner’s registration number. This information would be stored in an end-to-
end encrypted database whose key is known only to the local official. The encrypted database itself would
be hosted on state servers or the cloud to guarantee a higher degree of availability. A county’s encrypted
database would be queryable by law enforcement agents and other officials but the query process would be
overseen by the county’s official. In addition, the system needs to remain functional even if a county’s local
official is offline. As mentioned above, county officials should also have the ability to pull their database
from the system entirely at any point in time.

Impact of the proposed system. The system envisioned by this legislation would be part of a broader
set of existing gun control laws and background check system. It would allow for faster and more accurate
gun tracing which, in turn, would help in violent criminal cases and possibly act as a deterrent from illegally
transferring firearms. A possible critique of the system is the expense of running it. Another possible
critique is that allowing law enforcement to obtain and query this data could lead to the Federal government
confiscating people’s firearms and, therefore, violating the second amendment. The legislation and envisioned
system addresses these concerns by requiring that the databases that store registration records be end-to-end
encrypted with a key held and managed by a local county official.

Our contributions. The purpose of this work is to ascertain whether the high-level design goals of the
proposed legislation are technically feasible. Towards this end we make the following contributions:

o (Cryptographic design) as a first step, we translated the high-level requirements of the legislation to
a set of technical requirements. We then designed a novel cryptographic protocol to satisfy them.
The protocol can be roughly viewed as a decentralized collection of end-to-end multi-user encrypted
databases. It makes use of a variety of cryptographic building blocks including secure two-party and
multi-party computation, structured encryption and secret sharing. At a very high level, the system is
composed of a encrypted global directory that allows authorized parties to find the county associated
to a serial number; and of a set of local encrypted databases that store the full records and that are
owned and managed by a local county official. As far as we know, this kind of protocol and system



has never been considered in the past.

e (Formal security definition) we formulate a security definition for such a decentralized registry and
show that our protocol satisfies it. Our definition is in the ideal/real-world paradigm which is standard
in cryptography.

e (Deployment considerations) in our setting, there are many real-world considerations that need to be
taken into account that are not captured by our abstract protocol. We identify these considerations
and describe how our cryptographic protocol could be deployed in practice.

e (Prototype & evaluation) we implement our protocol and evaluate it empirically. Our evaluation shows
that the protocol is practical at the scale of the US. More precisely, assuming the system stores 400
million records, where the largest county has 50 million records ! it takes 300 ms to identify the county
that a gun is registered in and at most 1 minute to query the county’s local database on a query that
matches 100 records. Adding a batch of 10,000 records to the system takes 45 minutes.

Though our work was motivated directly by the legislation mentioned above and our solution is relatively
unique, we believe that our design could prove useful for other decentralized systems that need to store
sensitive data.

2 Related Work

Gun registries exists at the state level in the United States and in other countries. Canada implemented a
national firearms registry through its Firearms Act in 1995, which was later dismantled in 2012. Since then,
Quebec has implemented its own Firearms Registry. In 2019, New Zealand proposed legislation to create a
national firearms registry, in response to the Christchurch shooting. Within the United States, California,
Connecticut, Delaware, Hawaii, Maryland, New Jersey, and New York currently have firearm registration
requirements for some subset of firearms, depending on the state [19].

Cryptographic building blocks. Our encrypted registry system relies on secure computation, secret
sharing and structured encryption. Secure two-party computation was introduced by Yao [52] and secure
multi-party computation by by Goldwasser, Micali and Wigderson [28]. Formal definitions of security for
MPC in the standalone setting were given by Canetti in [13]. Secret sharing was introduced by Shamir in [45].
We also make use of structured encryption and, specifically, of dictionary, multi-map and (NoSQL) database
encryption schemes. Structured encryption was introduced by Chase and Kamara as a generalization of
indexed-based symmetric searchable encryption (SSE) constructions [22]. SSE was introduced by Song,
Wagner and Perrig [46] and formalized by Curtmola et al. [22]. In the standard setting of structured
encryption (STE), the client encrypts its data, stores it in on an untrusted server, and performs queries on
the encrypted structure. In this work, however, the client also needs the ability to allow other parties to
query its encrypted data. This multi-user setting was considered in [22,29,42,43].

Federated encrypted databases. Our system has some superficial similarities to federated encrypted
databases like Conclave [49] and SMSQL [6]. These are systems that also leverage MPC to privately query
multiple databases. Their goal, however, is to support private queries on the union of disjoint databases,
each of which is held by different parties. On the other hand, in our setting, queries are executed over a
single local database (after it has been found using the global dictionary). Furthermore, in our system, 2PC
and MPC are not used to process the databases but, to generate tokens that, in turn, are used to query the
STE-encrypted databases. To summarize, our system is designed to enable a party to efficiently find the
local database it needs to query, whereas federated encrypted databases are designed to query the union of
multiple databases owned by different parties.

1The US is estimated to have 393,347,000 guns. The largest county in the US is Los Angeles county with a population of
10 million. Assuming an average of 5 guns per person, this county would have 50 million guns



3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0,1}", and the set of all finite binary
strings as {0,1}*. The output y of an algorithm A on input z is denoted by = < A(x). When we wish to
make A’s random coins r explicit, we write y + A(x;r). Given a sequence s of n elements, we refer to its
ith element as s;. If S is a set then #S refers to its cardinality. Throughout, k& will denote the security
parameter.

Dictionaries & multi-maps. A dictionary DX with capacity n is a collection of n label/value pairs
{(4;,v;) }i<n and supports get and put operations. We write v; := DX[{;] to denote getting the value
associated with label ¢; and DX[¢{;] := v; to denote the operation of associating the value v; in DX with
label ¢;. A multi-map MM with capacity n is a collection of n label/tuple pairs {(¢;,v;);}i<n that supports
Get and Put operations. We write v; := MM[¢;] to denote getting the tuple associated with label ¢; and
MM[¢;] := v; to denote operation of associating the tuple v; to label ¢;. Multi-maps are the abstract data
type instantiated by an inverted index. In the encrypted search literature multi-maps are sometimes referred
to as indexes, databases or tuple-sets (T-sets).

Document databases. A document database DB of size n holds n records {ri,...,r,} each of which is
a collection of field/value pairs field:value. Here, we consider databases that support boolean queries, i.e.,
queries of the form ¢ = (field1 = value; A fieldy = valuey V fields = valueg).

Basic cryptographic primitives. A symmetric-key encryption scheme is a set of three polynomial-time
algorithms SKE = (Gen, Enc, Dec) such that Gen is a probabilistic algorithm that takes a security parameter k
and returns a secret key K; Enc is a probabilistic algorithm that takes a key K and a message m and returns
a ciphertext ¢; Dec is a deterministic algorithm that takes a key K and a ciphertext ¢ and returns m if K was
the key under which ¢ was produced. Informally, a private-key encryption scheme is secure against chosen-
plaintext attacks (CPA) if the ciphertexts it outputs do not reveal any partial information about the plaintext
even to an adversary that can adaptively query an encryption oracle. In addition to encryption schemes,
we also make use of pseudo-random functions (PRF), which are polynomial-time computable functions that
cannot be distinguished from random functions by any probabilistic polynomial-time adversary. We refer
the reader to [35] for formal security definitions.

Secret sharing. A threshold secret sharing scheme SS = (Share, Recover) consists of two efficient algorithms
[45]. Share takes as input a secret s, a threshold ¢ and total number of shares n and outputs n shares s1, .. ., S,.
Recover takes as input t out of n shares and outputs s. A secret sharing scheme SS is secure if no efficient
adversary can learn any partial information about the secret s given any set of r < t shares. We refer the
reader to [25] for formal definitions.

Secure multi-party computation. Secure multi-party computation [52] allows n parties to securely
compute a function over their joint inputs without revealing any information about their inputs beyond
what can inferred from the output. In our work, we make use of two-party secure computation (2PC) and
of multi-party secure computation (MPC). For modularity and conciseness, we describe our protocol in the
(}-prca ]-',\f,lpc)—hybrid model which functions like a real-world protocol execution except that all parties also
have access to ideal 2PC and MPC functionalities denoted by fzfpc and ]:I\JjIPC' We only consider security
against semi-honest adversaries so, in practice, these ideal functionalities can be instantiated with standard
semi-honest two-party and multi-party protocols. We refer the reader to [25] for an overview of MPC and
standard security definitions.

3.1 Structured Encryption

A (non-interactive, response-hiding and semi-dynamic) structured encryption scheme Xps = (Init, Token, Query,
AddToken, Add, Resolve) for data structures DS consists of six efficient algorithms. Init takes as input a secu-
rity parameter 1% and outputs an encrypted dictionary EDS and a secret key K. Token takes as input a key
K and a query ¢ and outputs a token tk. Query takes as input an encrypted structure EDS and a token tk
and outputs a ciphertext ct. AddToken takes as input a key K and an update u and outputs an add token



atk. Add takes as input an encrypted structure EDS and an add token atk and outputs a new encrypted
structure EDS’. Resolve takes as input a key K and a ciphertext ct and outputs a value v.

In this work, we also rely on STE schemes that include a ResKey algorithm that takes as input a secret
key K and a query ¢ and outputs a restricted key K, which can be used to resolve the encryption of v. We
refer to such schemes as STE schemes with restricted resolve.

Security. There are two adversarial models for STE: persistent adversaries and snapshot adversaries. A
persistent adversary observes: (1) the encrypted data; and (2) the transcripts of the interaction between
the client and the server when a query is made. A snapshot adversary, on the other hand, only receives the
encrypted data after a query has been executed. Persistent adversaries capture situations in which the server
is completely compromised whereas snapshot adversaries capture situations where the attacker recovers only
a snapshot of the server’s memory.

The security of STE is formalized using “leakage-parameterized” definitions following [20,22]. In this
framework, a design is proven secure with respect to a security definition that is parameterized with a specific
leakage profile. Leakage-parameterized definitions for persistent adversaries were given in [20,22] and for
snapshot adversaries in [5].2 The leakage profile of a scheme captures the information an adversary learns
about the data and/or the queries. Each operation on the encrypted data structure is associated with a
set of leakage patterns and this collections of sets forms the scheme’s leakage profile. We recall the informal
security definition for STE and refer the reader to [5,20,22] for more details.

Definition 3.1 (Security vs. persistent adversary (Informal)). Let A = (ES,EQ,EU) = (pattl, patt,, patt3)
be a leakage profile. A structured encryption scheme STE for data structures DS is A-secure if there exists
a PPT simulator that, given patt,(DS) for an adversarially-chosen structure DS, patty(DS,q1,...,q:) for
adaptively-chosen queries (qi,...,q), and pattg(DS,us,...,u) for adaptively-chosen updates (ui,...,us)
can simulate the view of any PPT adversary. Here, the view includes the encrypted data structure and the
tokens of the queries.

Encrypted dictionaries & multi-maps. When the data structure DS in the definitions above is a
dictionary, then Ypx is a dictionary encryption scheme. Similarly, if DS above is a multi-map then Xym
is a multi-map encryption scheme. Also, note that dictionary encryption schemes are a special case of
multi-map encryption schemes since dictionaries are just multi-maps with single-item tuples. There are
many well-known practical multi-map encryption schemes that achieve different tradeoffs between query
and storage complexity, leakage and efficiency [5,10,11,16, 17,17, 22,24, 27,31-34, 44, 47]. We note that
all these constructions either implicitly have a ResKey algorithm or can be trivially modified to have one.
From a security point of view, we require that, given a value v, one can simulate a ciphertext ct and a
key Kg such that Resolve(Kg,ct) outputs v and that the ciphertexts output by Query be computationally
indistinguishable form random. Again, these properties are trivially achievable by the mentioned schemes.

Encrypted document databases. Encrypted multi-maps can be combined with standard symmetric en-
cryption to yield an encrypted document database. This is equivalent to the notion of indez-based searchable
symmetric encryption (SSE). For completeness we recall the details in Appendix A.

4 Overview of Legislation

Our design is based directly on legislation that is currently being drafted by Sen. Wyden’s office. This
proposal envisions a national firearm registry instantiated as a system of distributed, decentralized, and
locally managed encrypted databases. The following details and requirements strictly come from drafted
legislation.

Under this system, each county in the United States stores license and registration data in its own
database. Each State then operates a server, which stores and maintains the availability of all of county

2Even though parameterized definitions were introduced in the context of SSE and STE, they can be (and have been)
applied to other primitives, including to fully-homomorphic encryption, property-preserving encryption, oblivious RAM, secure
multi-party computation and functional encryption.



databases corresponding to the state. The state server should not have any other responsibility outside of
this role and does not act as a authorized user of the system nor should it have access to any of the data it
stores.

In order to ensure the security and privacy of the data, each county designates a local official who is
responsible for an encryption key. This key is required in order to view, query, update, and encrypt any
registration data corresponding to the county. No additional parties may access any licensing or registration
data from a county without this key. The local official must also upload any new licensing or registration
data to the system.

Authorized users of the system include, but are not limited to, other local county officials, law enforcement
personnel, and firearm distributors. These individuals are permitted to query the system for registration and
licensing data but may not delete or update this data, unless they are the county’s designated local official.
At minimum the data collected includes basic personal information about a licensed firearm owner, including
their license number, and information about their individual firearms (specifically, the make, model, caliber,
and serial number). The legislation dictates that bulk queries (in the sense of being overly broad) and
attempts at collecting large amounts of information from the system must be prohibited and reported. The
system must therefore have some means of rate limiting queries while protecting the privacy of the data.

Given that different regions in the United States differ in infrastructure and have varying levels of Internet
connectivity, the legislation makes an explicit requirement that authorized users must be able to make queries,
even if the key held by the county’s local official is offline. Offline access, however, must be bounded by some
predetermined time. Once the key has been offline beyond this time, any data pertaining to this county
should be entirely inaccessible. Another important feature of the system is that counties should have the
ability to retract their database from the system at any point.

The system is voluntary in the sense that States can elect to participate by operating a server and counties
can elect to participate by storing a database within the State server. This allows for local laws to dictate
participation and accommodates for changes to those laws, if a state or county’s constituents choose to later
opt out of the system, without affecting the ability for other states or counties to participate.

To understand the type of data collected, we additionally reviewed existing firearm registration forms from
New York [41], Washington D.C. [39], and the ATF [12]. Ultimately in our empirical evaluation, we based
our sample record off of the minimum data requirements from this draft legislation since it contained the
intersection of common attributes among these forms. Throughout this process, we have been in conversation
with Sen. Wyden’s office in order to understand the priorities of the legislation and the infrastructure
constraints that must be accounted for when designing a system across counties in all 50 states. In our
evaluation, we specifically chose virtual machines that would reflect the different resources available at the
state and county level. Based on feedback from their office, we also explicitly included a cost analysis in our
evaluation to understand the monetary feasibility of running a system like this at scale.

5 Our Protocol

In this section we describe the design of our encrypted registry system and its usage. The protocol 2 =
(InitGlobal, InitLocal, Add, Find, Query, OfflineQuery) consists of six protocols which we describe at a high-level
below. We stress that the protocol we propose is one of many possible ways to instantiate the requirements
outlined in Section 4 but that this design received positive feedback from members of the team responsible
for drafting the legislation.

Parties. The system is designed to be executed among: a large (constant) number of parties Py, ..., Py,
three backups B§i), Bg) and Bg) for each party P;, two custodians C; and C,, and a server S. Figure
1 describes the parties. While the legislation envisions that every state hosts a server for its counties, in
our model we only include a single server S for ease of exposition and because it captures the worst-case
scenario from a security point of view (i.e., it captures the case where all state-level servers are corrupted and
collude). The parties P; through Py correspond to the local county officials in the Bill who are responsible
for registering gun owners. The parties C; and Cs are custodians who we assume do not collude. The server
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Figure 1: At a high level, the system consists of an encrypted global directory that stores the mapping of
serial numbers to county identifiers, custodians who hold a share of the global directory’s key, encrypted
local databases managed by local officials, and state servers that store the local encrypted databases.

S is untrusted. We stress that while we chose to use three backups per party, two custodians and one server;
the protocol can be trivially extended to handle a different number of custodians, backups and servers.

We sometimes refer to a party P; by the role it plays during a particular operation. For example, if P;
queries P;’s local database, we refer to P; as the querier and denote it by Q and to P; as the local official
and denote it by L.

Initializing the global directory. To initialize the system, the two custodians C; and C, and the server
execute .InitGlobal. This sets up an encrypted dictionary EDX on the server which we call the global
directory and provides each custodian with a share of its key. The global directory maps serial numbers to
county identifiers and its purpose is to enable a querier to find the county a given gun is registered in. With
this information, it can then interact directly with that county’s local official to query its local database.

Initializing the local databases. After the global directory is initialized, each party P; initializes its own
local encrypted database by executing €2.InitLocal. This results in a secret key K; and an empty encrypted
database EDB; which it sends to the server. In addition, P; splits its key into three shares and sends a share
to each of its backups.

Adding a new record. A new record r is added by a local official L € {Pq,...,Py} by executing the
Q.Add protocol with the custodians and the server. At a high-level, the protocol works as follows. First, L
needs to add the label/value pair (r.sN,r.cID) to the global dictionary. To do this, it splits the pair into
two shares p; and p, which it sends to the custodians. This guarantees that neither custodian will learn
the pair. The custodians, then use 2PC to securely compute a function that: (1) recovers the key K to the
global directory from their key shares; (2) recovers the serial/id pair from their pair shares; (3) computes an
add token for the pair; and then (4) splits that token into two shares. The custodians then send the shares
of the add token to the server which reconstructs it and uses to update the global directory.

After updating the global directory, the official updates its local (but remotely stored) encrypted database
by generating an add token for the local database and sending it to the server.

Querying the global directory. When a querier Q € {P1,...,Py} wants to query the registry with a
serial number SN but does not know in which county the gun is registered, it first queries the global directory
EDX by executing the €2.Find protocol with the custodians C; and C, and the server. This results in Q
recovering the identifier of the county that registered the gun. At a high level, the protocol works as follows.
Q splits SN into two shares which it sends to the custodians. The custodians then use 2PC to securely



Let Py,...,Pg be 0 parties, each of which has 3 designated backups B(li),Béi),By). Let C; and Cz be two
custodians, S be a server, Q € {P1,...,Py} be a querier and L € {P1,...,Pg} be a local official. Let SS =
(Share, Recover) be a secret sharing scheme, 3px = (Init, Token, Query, AddToken, ResKey, Resolve) be a response-
hiding dictionary encryption scheme with restricted resolve and Xpg = (Init, Token, Query, AddToken, Resolve)
be a response-hiding database encryption scheme. Consider the multi-party protocol Q =
(InitGlobal, InitLocal, Add, Find, Query, OfflineQuery) defined as follows in the (Fapc, Fupc)-hybrid model:

e InitGlobalc, ¢, s(1,1%, 1):

1. C; samples r; & {0, 1}k and Cs samples 7o il {0, l}k;
2. C; and C; execute (K1, (K2, EDX)) < fgpc(rl,m) where f(r1,72):
(a) (K,EDX) + Zpx.Init(1%,71 @ ra);
(b) (K1, K2) < SS.Share(K,2,2);
(c) output Ki to C; and (K2, EDX) to Cy;
3. Cz sends EDX to S;
e InitLocalL s B, B,,B, (1%, L, L, L, 1):
1. L computes (Kr,EDBL) + Ypg.Init(1%) and sends EDBy, to S;
2. L computes (KvL,1, KvL,2, KL 3) < SS.Share(Ky, 2, 3) and sends Kt ; to By;
e Addi.c,,c,,s ((Ku,r), K1, K2, EGR):
1. S parses EGR as (EDX,EDB;y,...,EDBy);
L computes atk < Xpg.AddToken(KL,r) and sends it to S;
S computes EDB}, + Ypg.Add(EDBL,, atk);
let SN = r.sN and CID = r.CID;
L computes (p1,p2) < SS.Share(sN||CID, 2,2) and sends p; to C; and p2 to Co;
C; samples r1 & {0,1}* and C, samples 72 & {0,1}%;
C: and C; execute (atky,atks) < Fioe (K1,p1,71), (Ko, pa,72)) where f((Ki,p1,71), (K2, p2,72)):
(a) computes K < SS.Recover(K1, K2);
(b) computes SN||CID - SS.Recover(p1, p2);
(c) computes atk < Xpx.AddToken(K, (SN, CID));
(d) computes (atki, atks) < SS.Share(atk, 2,2; 71 @ r2);
(e) outputs atk; to C; and atks to Cs
8. C; sends atk; to S and Cs sends atks to S;
9. S computes atk +— SS.Recover(atk;, atkz) and EDX’ < Ypx.Add(EDX, atk);
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Figure 2: An encrypted registry (part 1).




° FindQ,Cth,s (SN, K1, Ks, EDX) :
1. Q computes (SN1,SN2) < SS.Share(sN, 2,2) and sends SNy to Cq and SN2 to Co;

2. C; samples 11,7} & {0,1}* and Cs samples 72,15 & {0,1}*

3. C; and C, execute ((tthUl), (tkg,KU2)) — }—ZfPC ((K1,SN1,T1,T/1), (KQ, SNQ,’/‘Q,T/Q))
where f ((K1,SN1,71,71), (K2,SN2,72,75)):

(a) recovers K <+ SS.Recover(K1, K>);

(b) computes SN < SS.Recover(SN1, SN2);

(c) computes tk <+ Xpx.Token(K, SN);

(d) computes Kr := Ypx.ResKey(K, sN);

(e) computes (tki,tks) < SS.Share(tk, 2,2; 71 @ r2);

(f) computes (Kgr,1,Kr,2) < SS.Share(Krg,2,2;71 ® r5);
(g) outputs (tki, Kr,1) to C1 and (tkz, Kg,2) to C2

4. Cq sends tk; to S and Kg1 to Q;

5. Cg sends tky to S and Kr 2 to Q;

6. S computes tk +— SS.Recover(tki, tkz) and ct < Query(EDX, tk) and sends ct to Q;
7. Q computes Kpr < SS.Recover(Kg,1, Kr,2);

8. Q computes CID < Xpx.Resolve(K g, ct);

° QUGVYL,Q,S (K1, »,EDBL)

L and Q execute (L, tk) < .7-'2fPC(KL, ) where f(KL, ) and outputs tk < Xpg.Token(KL, ¢) to Q.

1.
2. Q sends tk to S;
3. S computes (ct1,...,ctm) < SXpp.Search(EDBy, tk) and sends (cty,. .., ctm) to Q;
4. L and Q compute (L, (r1,...,1m)) .7:2fPC(KL, (ct1,...,ctm)) where f(KL, (ct1,...,ctm)):
(a) for all 1 <14 < m, computes r; < Ypg.Resolve(KL, ct;)
(b) outputs (r1,...,rm) to Q;
o OfflineQueryg, g, q.s (K1, K2,,EDBL)

1. B; samples r; & {0,1}*, By samples rs & {0,1}* and Q samples r3 & {0,1}%;
2. B1, B2 and Q execute (K7, L, K3) « fn{lpc((KthL (Ka2,72),(L,73)) where f:
(a) computes K < SS.Recover(K1, K2);
(b) computes (K1, K3) < SS.Share(K,2,2;r1 @ r2 @ r3);
(c) outputs K1 to By and K3 to Q;
3. B1 and Q execute (L,tk) « FJPC(K{,KQ) where f:
(a) computes K < SS.Recover(K71, (¢, K3));
(b) computes tk + Xpg.Token(K, ¢);
(c) outputs L to B; and tk to Q;
4. Q sends tk to S;
5. S computes (ct1,...,Ctm) < Zps.Query(EDBy, tk) and returns (ct,...,ctm) to Q;
6. By and Q execute (L, (r1,...,Tm)) < Fipc (K1, (K3, (ct1,...,ctm))) where f:
(a) computes K < SS.Recover(K7, K3);
(b) forall1 <i<m,
i. computes r; < Xpg.Resolve(K, ct;);
(c) outputs L to By and (r1,...,rm) to Q;

Figure 3: An encrypted registry (part 2).
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compute a function that: (1) recovers the key K to the EDX from their key shares; (2) recovers SN from their
serial number pairs; (3) computes a token for the serial number; (4) generates the resolve key for the serial
number; and (5) splits both the token and the resolve key into two shares, outputting a share of each to
each custodian. The custodians then send their shares to the server and the querier who recovers the token
and the resolve key, respectively. It then uses the token to query the global directory EDX and returns the
encrypted result to Q who can then recover the county identifier CID using the resolve key.

Querying a local database. To query the database of a specific county on a boolean formula ¢, such as
((first:Jon or first:John) and last:Smith), Q executes the .Query protocol with the local official
L € {Py,...,Py} and the server. This results in Q recovering the plaintext records that match its query. At
a high level, the protocol works as follows. L and Q use 2PC to securely compute a function that generates
a token for ¢ using the key Ky, for L’s local database. Q sends the token to the server who uses it to query
L’s database and returns an encrypted response to Q. Q and L then execute another 2PC to resolve the
encrypted response into a set of plaintext records for Q.

Offline querying. If Q wishes to query L’s local database when L is offline, it interacts with L’s backups,
B1,B,, B3, and the server. Here, we refer to By as the designated backup because it will play a slightly
different role than the other backups but we note that any of By, B or B3 could be the designated backup.
First, Q and the backups use MPC to securely compute a function that: (1) recovers the local official’s key
from the backups’ shares; (2) splits the key into two new shares; and (3) outputs one share to the designated
backup B and one to Q. B; and Q then use 2PC to securely compute a function that: (1) recovers the
key from the new shares; (2) computes a token for Q’s query . Q then sends the token to the server who
uses it to recover and return a set of encrypted records that match the query. Q and B; then use 2PC to
securely resolve the encrypted response.

5.1 Deployment Considerations

As described, our protocol does not capture many real-world considerations that would have to be taken
into account to deploy it. Here, we discuss some of those issues.

Local infrastructure. One can expect local county officials to manage only a minimal computing in-
frastructure. Specifically, a consumer-level desktop computer or laptop but not a server-level machine. In
addition, especially in rural regions, one should expect poor Internet connectivity and intermittent access.
These challenges motivate two important features of our protocol: (1) a relatively lightweight amount of
computation for the officials; (2) no storage requirements for officials (besides the secret key); and (3) an
offline query protocol in case the official is disconnected from the Internet.

Licensing. In practice, our protocol would be used to store two kinds of records: (1) licenses, which are
issued to individuals who wish to own a gun; and (2) firearm registrations, which are issued when a gun is
purchased. In our system, both licenses and registrations can be stored as records so we do not differentiate
between them.

Rate limiting. To prevent a querier from making excessive queries, rate limiting can be achieved by both
the server and the official. The server can rate limit when it receives search tokens since it can keep track
of the number of encrypted records it has returned from the official’s encrypted database. Furthermore, it
can be set to cap the maximum number of records it returns per query. Similarly, the local official can also
rate limit during the execution of the query protocol; specifically during the second 2PC execution where
the encrypted results are resolved. Here, the official could simply refuse to execute the 2PC if the number
of records returned by the search exceeds some threshold.

Moving & history. When a gun owner moves from county A to county B, it is expected to re-register the
gun in county B. Note that, in our protocol, the new registration would overwrite the old serial number and
county ID pair in the global directory and insert a new record in county B’s local database. The old record
in county A would still persist but this is by design so that a history of the gun can be recovered. The new
record in county B’s database would include the old county ID so that the two records are linked. If; on the
other hand, one needed to support deletion from county A’s database it would suffice to instantiate Ypg with
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a dynamic database encryption scheme instead of a semi-dynamic one. There are many such constructions
one could choose from [5,10,11].

Sales. If a gun is sold by owner A to owner B then a new serial number/county identifier pair will be
created in the global directory and a new record will be added to a local database. To keep history, the new
record will contain the license number of owner A. Note that if multiple records are found for the same serial
number in the same county, they can be ordered using the previous owner’s license number, e.g., if record
Y’s previous owner is the owner of record X then record Y was created after record X.

Custodians. An important deployment consideration for our protocol is the choice of custodians. The
security of the protocol relies on the custodians not colluding so they should be picked carefully. One could
imagine choosing, for example, gun rights and civil liberties organizations like the National Rifle Association
(NRA) and the ACLU under the assumption that local officials would trust that the NRA would not collude
with the ACLU in order to subvert the system and recover the private information of gun owners. Also, we
note that in our protocol description and prototype we use two custodians but this number can be easily
increased to any number in the natural way (i.e., increasing the number of shares used throughout the
protocol and using MPC instead of 2PC).

Batch updates. For ease of exposition, we describe the Add operation of our protocol as taking a single
record to add to the database. In practice, however, local officials may prefer to add a batch of new records
(e.g., one per day or week). The naive way to handle this is to execute the Add protocol on each record in
the batch but a more efficient approach (which we implement) is to process the entire batch of new records
at once and to execute the 2PC in Add over multiple records.

Number of backups. In our protocol description and prototype, we chose to use three backups but this
can be trivially extended to any number.

Removing local databases. As discussed in Section 4, an important requirement is that local officials
have the ability to remove their database from the system at any point in time. This feature is easy to
achieve in our protocol since the local databases are all end-to-end encrypted. In fact, to remove a database
from the system it suffices to erase the secret key. A more usable approach could be to store the secret key
on a hardware token like a Yubikey that remains connected to the official’s device and to physically remove
it in order to pull the database. Note that to removing the database should include asking the backups to
erase their shares. If enough backups are honest and erase their shares then no keying material will remain.
Alternatively, one could augment our design to include a form of key rotation so that the shares become
useless or a revocation mechanism to revoke shares.

6 Security Definition and Proof

We formalize the security of our design in the ideal/real-world paradigm [13]. Roughly speaking, we require
that an execution of the protocol in the real-world is indistinguishable from an ideal gun registry functionality
which we define below.

Parties. The two executions take place between an environment Z, an adversary which we denote A in
the real-world execution and S in the ideal-world execution, § = poly(k) parties Pq,..., Py, 36 backup
parties Bgl), Bél), Bgl), . ,Bge), Bge), Bge)’ two custodians C; and Cy and a server S. While the legislation
proposes that every state manage a server for its counties, in our model we only include a single server S
for ease of exposition and because it captures the worst-case scenario from a security point of view (i.e., the
case where all state-level servers are corrupted and collude).

Corruptions. We consider two classes of corruptions: external corruptions and internal corruptions. Ex-
ternal corruptions can include: (1) the server; (2) either C; or Ca but not both; and (3) for all parties P;,
at most 1 of P;’s backup parties. Internal corruptions can include at most one party in {Py,...,Py}.

Hybrid-world execution. In the hybrid-world execution every party has access to ideal Fopc and Fupc
functionalities. The environment Z takes as input a string z € {0, 1}* and starts by choosing a set of parties
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Functionality Fix

The functionality is parameterized with a leakage profile A = (Lig, Li, La, Lr, Lq, Lo) and interacts with 6
parties {P1,...,Ps}, 30 backups Bgl), Bgl), Bgl), cee Bge), Bge), Bge), two custodians C; and Cs and an ideal
adversary S. It stores and manages a gun registry GR = (DX, DBy, ..., DBy) using the following operations:

e upon receiving (initglobal) from C1, Cz and S, initialize and store an empty dictionary DX and send the
message (globalinitialized) to C1, C2 and S and the message £|G(1k) to S;

e upon receiving (initlocal) from P;, initialize and store an empty database EDB and send the message
(localinitialized) to P; and S and the message (i, £iL(1%)) to S;

e upon receiving (add,r) from L = P; store r in DB; and add the pair (r.sN,r.cip) to DX. Send the
message (add, ) to C1, Cz and S and the message (i, La(GR,r)) to the ideal adversary S;

e upon receiving (find, sN) from Q = P; compute CID := DX[SN]. Return CID to Q and send the message
(find, i) to C1, Cz and S and the message (i, Lr(GR, ¢)) to the ideal adversary S if the corruptions are
external and (i, Lr(GR, ¢), SN, CID) if the corruptions are internal.

e upon receiving (query, CID, ) from Q = P; return the records (ri,...,rn,) in DBy that match ¢ to Q.
Send the message (query, ) to S and the message (i7 Lq(GR, ap)) to the ideal adversary S if the corruptions
are external and (i, Lq(GR, ), ¢, (r1,..., rm)) if the corruptions are internal.

e upon receiving (offline, CID, ¢) from Q = P; return the records (ri,...,rn) in DBep that match ¢ to
Q. Send the message (query,i) to B§”D), ijm), Bgcm) and S and the message (i,ﬁo(GR,¢)) to the
ideal adversary S if the corruptions are external and (i7 Lo(GR,¢), ¢, (r1,..., rm)) if the corruptions are
internal.

Figure 4: F& : The registry functionality parameterized with leakage profile A.

I for the adversary to corrupt, where I is either external or internal. Z sends I to A which corrupts all the
parties in I. After the parties in I have been corrupted, C;, Cs and S execute Q.InitGlobal and each party
P, executes .InitLocal with S and its backup parties Bgi), Bg) and Béi).

Z then adaptively chooses a polynomial number of commands (commy, . ..,comm,,) of the form comm; =
(Pj,0p;), where op, is either an add operation (add,r;), a find operation (find,SN), a query operation
(query, ) or an offline query operation (offline, ¢). More precisely, for 1 < j < m, Z sends comm; to P;. If
op; is an add, P; executes 2.Add with the custodians and the server. If op; is a find, P; executes (2.Find with
the custodians and the server. If op; is a query, P; executes Q2.Query with a local official L € {Py,..., Py}
and the server. If op, is an offline query, Q executes Q.OfflineQuery with the local official’s backup parties
and the server. In all cases, Q returns its output to Z. At then end of the execution, A sends an arbitrary
message to Z which outputs a bit b. We denote this bit Hybrid z 4(k).

Ideal-world execution. In the ideal-world execution every party has access to an ideal functionality Fggr
described in Figure 4. The environment Z takes as input a string z € {0,1}* and starts by choosing a set of
parties I for the adversary to corrupt, where I is either external or internal.

Z sends I to S and Fgr and adaptively chooses a polynomial number of commands (commy,...,comm,,)
of the above form. More precisely, for 1 < j < m, Z sends comm; to P; who, in turn, forwards the operation
op; to Fgr and returns its output to Z. At the end of the execution, § sends an arbitrary message to Z

which outputs a bit b. We denote this bit Ideal%’s(k).

Definition. We can now state our security definition based on the above experiments.

Definition 6.1 (Security). We say that Q) is a A-secure registry if for all PPT semi-honest adversaries A,
there exists a PPT ideal adversary S such that for all PPT standalone environments Z, for all z € {0,1}*,

‘Pr [Hybrid, (k) =1] — Pr [Idealgs(k) - 1” < negl(k).
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7 Security Analysis

We conduct a leakage analysis of our protocol and formalize its leakage profile. We first provide a black-box
leakage analysis and then a concrete one.

Black-box leakage analysis. Black-box leakage analysis, introduced in [30], is a way to describe the
leakage profile of a scheme or protocol as a function of the leakage profiles of its underlying building blocks.
The value of such an analysis is that it remains useful even when the protocol’s building blocks are replaced
or instantiated with different concrete schemes. In particular, this means that as new schemes are developed
with more desirable tradeoffs the protocol’s leakage profile can be easily updated. Suppose the leakage profile
of ZDX is

ADX = <£?X7 dev ‘Cix> = <pattldxa pattdea pattdAX>

and that the leakage profile of Ypg is
Apg = (Ef‘b,ﬁ‘éb,ﬁf\b> = (patt,db, pattgb, pattcA“’)
then the leakage profile of 2 is
Ao = (cfé,ﬁfﬁ,£27£¥7£",ﬁgq>

= (pattfx, pattfb, (pattdAx, pattdAb) ,patt‘éx, patt‘éb, patt‘éb>.

Theorem 7.1. If SS is secure, Ypx is Apx-secure and Ypg is Apg-secure, then the registry €2 described in
Figures 2 and 3 is Ag-secure.

Proof. Let Simpy be the simulator guaranteed to exist by the Apx-security of Ypx and Simpg be the
simulator guaranteed to exist by the Apg of ¥pg. Consider the simulator S that simulates A and works as
follows in the context of external corruptions:

e (simulating InitGlobal) simulate ]:2ch and compute EDX <« Simpx (L& (1%)) and (K, K») +
SS.Share(0%,2,2). Send K; to C; and and Ko and EDX to Ca;

e (simulating InitLocal) compute EDB <« Simpg(L£d®(1%)), sample K; <+ {0,1}* and compute
(Ki1, Ko, K;3) < SS.Share(K;,2,3). Send EDB to S, and the shares K, 1, K; 2 and K; 3 to By, By
and Bg, respectively.

e (simulating Add) compute atk <+ Simpg(L%(DB;,r)) and send it to S. Compute (p1,ps) <
SS.Share(0!SNI*+191 2 2) and send p; and ps to C; and Cs, respectively. Simulate fzj;c and compute
atk < Simpx (£%(DX, sN||cID)). Generate the shares (atky, atkz) < SS.Share(atk, 2, 2) and output atk;
to Cy and atky to Cs.

e (simulating Find) compute (SNj,SNy) < SS.Share(01*N 2, 2) and send sN; and SNy to C; and Ca,
respectively. Simulate fszc and compute tk + Sime(Ec(’QX(DX, SN)). Generate the shares (tky,tks) <
SS.Share(tk, 2,2) and (Kg1, Kgr2) < SS.Share(0*,2,2) and output (tki, Kg 1) to C; and (tke, Kr2)
to CQ.

e (simulating Query) compute tk <— Simpg (L (DBL, ¢)) and send tk to S.

e (simulating OfflineQuery) simulate the first ]:2ch interaction and compute (K}, K}) < SS.Share(0%)
and send K to By and K} to Q. Simulate the second }-2ch execution and compute tk - Simpg (L (DBL, ¢))
and output tk to Q and L to B;. Finally, simulate the ]:I\);IPC execution and output L to Bj.
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We now show that A’s simulated view in an Idealz s(k) experiment is indistinguishable from its view
in a Hybrid z_ (k) experiment. We do this using the following sequence of games:

Gamey: is an execution of a Hybrid(k) experiment;

Game;: is the same as Gameg except that the fzfpc functionalities are simulated. Clearly, the adversary’s
view is not affected by this change.

Games: is the same as Game; except that the .7-',\];|PC functionality in OfflineQuery is simulated. Clearly,
the adversary’s view is not affected by this change.

Gamegs: is the same as Game, except that in step 2-a of InitGlobal, we replace ry @ ro with a random
k-bit string r. Since A corrupts at most one of C; or Cs it follows that ry @ ry is distributed exactly
as r and therefore A’s view is (perfectly) indistinguishable from its view in Game;.

Gamey: is the same as Games except that in step 7-d of Add, we replace r1 ® ro with a random k-bit
string r. As above, this does not affect A’s view.

Games: is the same as Gamey except that in step 3-e and 3-f of Find, we replace rq1 @ ro and 7] @ 74
with random k-bit strings r and r’. As above, this does not affect A’s view.

Gameg: is the same as Games except that in step 2-b of OfflineQuery, we replace 11 @ 12 @ r3 with a
random k-bit string r. As above, this does not affect A’s view.

Gamey: is the same as Gameg except that the global directory EDX is replaced with a simulated global
directory as follows:

— in step 2-a of InitGlobal, we replace K and EDX with 0% and EDX < Simpx (L£{*(1%)), respectively.
— in step 7-c of Add, we replace atk with atk < Simpx(L%(DX, sN|/CID))
— in step 3-c of Find, we replace tk with tk < Simpx(£$(DX, sN));
Since A corrupts at most one of C; and Cs, the security of SS guarantees that we can replace K with
0F without affecting A’s view. Furthermore, the Apx security of Ypx guarantees that the simulated

global directory EDX and all the simulated query and add tokens are computationally indistinguishable
from a real global directory and tokens.

Gameg . gi9: Game;, for 8 < ¢ < 8 + 6, is the same as Game;_; except that we replace party P;’s
encrypted database EDB; with a simulated encrypted database as follows:

in step 1 of InitLocal, we replace Ky, and EDB; with 0% and EDB; «+ Simpg(L{"(1%));
in step 2 of Add, we replace atk with atk <+ Simpg(£%(DB;,r));

in step 1-a of Query, we replace tk with tk < Simpg (L (DBL, ¢));
— in step 3-b of OfflineQuery, we replace tk with tk «+ SimDB(E‘éb(DBL, ©))-

Since A corrupts at most one of C; and Cs, the security of SS guarantees that we can replace K with
0F without affecting A’s view. Furthermore, the Apg security of Ypg guarantees that the simulated
encrypted database EDB and all the simulated query and add tokens are computationally indistin-
guishable from a real encrypted database and tokens.

Finally, note that Gameg, ¢ is equivalent to an Idealz s(k) execution.

We now turn to internal corruptions. Note that if L = P; is corrupted then its view only includes
messages from Query. In particular, it can be simulated by simulating the two ]-'2fpC execution and returning
1 to Q in each case. The indistinguishability of A’s view in this case is trivial. If Q = P; is corrupted,
consider the simulator S that simulates A and works as follows:
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(simulating Find) recall that in this setting, S receives CID from the functionality. Compute
(Ct7 KR) — Sil’an(CID) and (KR71, KR)Q) — SS.Share(KR, 2, 2). Send [(3717 KR72 and ct to Q

(simulating Query) recall that in this setting, S receives (ry,...,r;,) from the functionality. Sim-
ulate the first ]:2ch execution, compute tk < SimDB(ﬂgB(DBL,g@)) and output tk to Q. Sample
cty,...,Chy & {0, 1}l and send (cty,...,ct,,) to Q. Simulate the second féfpc execution and output

(r1,...,ry) to Q

(simulating OfflineQuery) recall that, as above, in this setting S receives (ry,...,ry,) from the func-
tionality. Simulate the fn{ch execution, compute (K1, K}) + SS.Share(0*,2,2) and output K3 to Q.
Simulate the first Fpe execution, compute tk Simpg (LY (DBL, ¢)) and output tk to Q. Sample

cty,...,Cty, & {0,1}/*l and send (cty, ..., ct,,) to Q. Finally, simulate the second fszc execution and
output (ry,...,r;,) to Q.

We now show that A’s simulated view in an Idealz s(k) experiment is indistinguishable from its view
in a Hybrid z_ (k) experiment. We do this using the following sequence of games:

Gamey: is an execution of a Hybrid z 4(k) experiment;

Game;: is the same as Gamey except that all the .7-'2fPC functionalities are simulated. Clearly, the
adversary’s view is not affected by this change.

Gamey: is the same as Game; except that the ]:I\j;IPC functionalities are simulated. Clearly, the adver-
sary’s view is not affected by this change.

Games: is the same as Gamey except for the following. We compute (ct’, Kj) < Simpx(cID) and
(KR, KR o) < SS.Share(Kp,2,2). In steps 4 and 5 of Find we replace Kg 1 and Kpr o with K, and
Kio In step 6 we replace ct with ct’. We store a mapping between CID and (ct’, K%) so that we can
reuse the latter consistently for CID. The security of schemes with restricted resolve guarantees that
this change does not affect A’s view.

Gamey: is the same as Games except for the following. In step 1-a of Query we replace tk with
tk <+ SimDB(CBB(EDBL,gp)). In step 3 we replace ctq,...,ct,, with cty,...,ct,, & {0,1}/*l and in
step 4-b we return (ry,...,r,,). The pseudo-randomness of the ciphertexts guarantees that they are
computationally indistinguishable from real ciphertexts and the Apg security of Ypg guarantee that
the token is computationally indistinguishable from a real token.

Games: is the same as Gamey except for the following. In step 2-b of OfflineQuery we replace K| and
K4 with (K1, K}) < SS.Share(0%,2,2). In step 3-b we replace tk with tk < Simpg(L3®(EDBL, ¢)).

In step 5 we replace ctq,...,ct,, with cty,...,cty, & {0,1}*l and in step 6-¢ we return (ry,...,Tp,).
Since Q is the only corrupted party, K} is indistinguishable from a real share. The pseudo-randomness
of the ciphertexts guarantees that they are computationally indistinguishable from real ciphertexts
and the App security of Ypg guarantee that the token is computationally indistinguishable from a real
token.

Finally, note that Games is equivalent to an IDEALz s(k) experiment.

O

Concrete leakage analysis. In our implementation (detailed in Section 8) we instantiate Ypx with a
forward-secure variant of Pibase [17] and ¥pg with the scheme that results from applying standard techniques
from [22] (outlined in Appendices A and B) to the BIEX construction of [30]. We provide below a high-level
description of the leakage profile of our registration system, with a more formal description in Appendix A.
For each pattern that the system reveals, we provide some high-level intuition of what the disclosure implies
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from a real-world perspective. We stress that all end-to-end encrypted solutions that are sub-linear reveal
some leakage; even ORAM-based systems. For more on concrete leakage attacks we refer the reader to [8].

e (global directory) our concrete instantiation of Ypx has no init leakage. The query leakage is composed
solely of the query equality pattern which reveals if and when the same serial number was been queried
in the past. Note that this is only disclosed to the server and not to the two custodians. Similarly, the
add leakage reveals if and when the county id was modified for some serial number. With both these
patterns, a server can learn the frequency that a serial number is accessed or modified. Note that the
server does not learn the value but only the frequency of the serial number.

e (local databases) our concrete instantiation of Xpg has no init leakage. The add leakage only reveals the
size of the sub-EMMs which itself discloses the number of added records. Depending on the complexity
of the query, the query leakage will be different. If the query is for a single keyword, then the server
will learn the query equality pattern and the response identity pattern. Concretely, the former reveals
if and when the same query has been made, while the latter reveals the identifiers of the matching
records. If the query is a disjunction, then the query equality will reveal the query equality pattern on
all the keywords that compose the query. It will also reveal the response identity pattern of the query
and of a subset of keyword pairs that compose the query. Finally for a boolean query in CNF form,
the server learns the same information mentioned above for the first disjunction, the query equality of
all the keywords that compose the other disjunctions, and the response identity pattern on all pairs of
keywords in the disjunctions. As a consequence, the server can learn the number of records that share
a specific sets of keywords, the frequency they are accessed with, but not the queries or the records’
content. Finally, we note that even though we instantiated the database encryption scheme so that it
could support boolean queries, this level of expressivity may not be necessary in practice; at the very
least not for all queries.

8 Empirical Evaluation

In this section, we describe and evaluate our prototype implementation of the encrypted registry system of
Section 5. In particular, we evaluate: (1) the time it takes to add a record; (2) the time it takes to find the
county id of a serial number; and (3) the time it takes to query a local database both when the official is
online and offline; (4) the size of the global directory and of the local databases; and (5) the impact of our
optimizations. First, we describe our implementation and testing environment.

8.1 Implementation

Our implementation is written in C++, Java, Javascript and Python. It is 3261 lines of code in total. In
addition, it includes 451 lines for experimental testing and 71 lines to load and generate records, all calculated
using CLOC [2]. The prototype has a client-server architecture. All communication between the parties uses
the Node.js framework. The same framework is used to run child processes on the server and call the needed
cryptographic libraries.

Testing environment. We conducted our experiments on Amazon Elastic Compute Cloud (EC2) [3] in
the East region (Ohio). Given the distributed nature of our system, we set up our testing environment over
the public network. We used three different types of EC2 instances: t2.micro, which has 1 virtual CPU and
1GB of RAM; t3.micro which has 2 virtual CPUs and 1GB of RAM; and t3.xlarge, which has 4 virtual
CPUs and 16GB of RAM to which we associated 500GB of Elastic Block Store with generic SSDs for disk
storage. We used a different instance depending on the computation and memory requirements of each role:
t2.micro for the local official’s backups, a t3.micro for the local officials, t3.xlarge for the custodians
and server. All the instances are running a 64-bit Ubuntu Server 18.04 LTS.

Data generation. For each of our experiments involving the global directory, we randomly generated
serial/id pairs based on the test case. The maximum number of pairs generated was 400 million in order to
reflect the estimate of the number of firearms in the United States [1]).
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For the experiments involving local databases, we created sample records, based on the test case, using
the Python library Faker. Each record is a collection of field/value pairs. In particular, we use the following
fields: first name, last name, address, birth date, license number, model, make, caliber, serial number, and
history. In order to control selectivity for our query experiments (i.e., the number of matching records) we
partially forge some records by choosing the values of some of their attributes.

Query generation. For our evaluation of the Query and the OfflineQuery protocols, we consider three
scenarios: (1) high selectivity; (2) medium selectivity; and (3) low selectivity. This categorization helps us
assess the time it takes to query a local database. We consider the following queries:

o (low selectivity): license:123456789;
o (medium selectivity): address:987 Xyz St. OR address:987 Xyz Street;
o (high selectivity): last:Smith.

For these test scenarios, the low selectivity query returns 1 record, the medium selectivity query returns
10 records, and the high selectivity query returns 100 records. These queries were selected to demonstrate
the performance of the system but as mentioned previously, bulk queries are not permitted. Therefore a
query that returns 10 or 100 records may not be a valid query, depending on the county.

8.2 Cryptographic primitives

Our encrypted registry makes use of several cryptographic primitives as building blocks. In the following,
we discuss our instantiations along with the libraries used. We stress that that our protocols make black-box
use of these primitives so the instantiations and libraries can be changed.

Multi-party computation. For all 2PCs, our prototype uses the EMP toolkit library [50]. In particular,
we use emp-sh2pc which is an implementation of Yao’s 2PC protocol [51] in the semi-honest setting. For our
purposes, we wrote an EMP-compatible implementation of HMAC-SHA256 on variable size inputs based on
an existing EMP-compatible implementation of SHA256 for fixed-size inputs [9]. For MPC, we used the the
JIFF library [23].

Encrypted data structures. We used the Clusion library [40] to implement all the encrypted data
structures; including the global directory and the encrypted multi-maps needed for the encrypted databases.
In particular, we implemented the global directory with Clusion’s Pibas implementation [17]. The EMMs
of the local database were implemented with Clusion’s BIEX-2Lev implementation [17,30]. We made two
changes to Clusion: (1) we changed the underlying PRFs from AES-CMAC to HMAC-SHA256; and (2) we
replaced the use of AES in counter mode with HMAC-SHA256 in counter mode (i.e., we encrypt each bloc
by XORing it with the output of HMAC-SHA256 on a counter). * These two modifications were needed so
that our 2PC-based decryption of records in the Query and OfflineQuery protocols would be compatible with
the Clusion-based encrypted structures stored, updated and queried at the server.

Unfortunately, Clusion only implements of the static variant of BIEX, whereas we need a dynamic
variant. To handle this, we implemented a dynamic variant of BIEX using the approach outlined in Appendix
B.

Secret sharing. Our protocol uses both threshold and 2-out-of-3 secret sharing. We instantiated the former
with Shamir secret sharing [45] and the latter with XOR secret sharing.

Overview of our results. Here, we summarize the main takeaways from our empirical evaluation and
provide a more detailed analysis in Section 8.2.

e (add efficiency) our experiments show that during an add operation, the time to add the serial/id pair
to the global directory dominates the time needed to add the record to the encrypted database. For
example, to add a batch of 10,000 records, it takes 2,627 seconds to add the corresponding 10,000

3This construction was formally analyzed by Bellare et al. in [7].
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serial/id pairs to the global directory, whereas it only takes 14.8 seconds to add the 10,000 records to
the local official’s encrypted database. In total, this is about 264 milliseconds per record.

e (query efficiency) our experiments show that querying the global directory to identify the county of
a serial number takes less than 300 milliseconds. They also show that the time to query an official’s
encrypted database mainly depends on the selectivity of the query. Interestingly, the number of records,
as well as the number of updates performed in the past, have limited impact on the query time. In
particular the time is dominated by the 2PCs required to decrypt the response. As an example, it
takes about 1 minute to query and retrieve 100 matching records. For offline queries, the protocol
has similar behavior. The MPC needed to reconstruct and re-share the local official’s secret key is
negligible compared to the total time of offline queries which is dominated by the 2PCs required to
decrypt the response.

e (storage overhead) our results show that the size of the global directory is linear in the number of pairs
stored. Recall that the encrypted databases are composed of a BIEX-2Lev EMM and a set of encrypted
records. The size of the EMM has quadratic behavior as a function of the number of records. Moreover,
the size of the encrypted records is negligible compared to the size of the EMM. In particular, for 400
million pairs, the size of the global directory is 110GB. For 100, 000 records, the size of the encrypted
database’s EMM is 1.7GB and the size of its encrypted records is less than 40MB.

8.3 Add Time

We evaluate the time of the Add protocol as a function of the number of records inserted in the system.
For this, we evaluate each step of the protocol including: (1) the time to add a serial/id pair to the global
directory as a function of its size; (2) the time to add a batch of serial/id pairs; and (3) the time to create a
new EMM as a function of the number of records.

Adding pairs. The goal of this experiment is to assess how the time of adding a new serial/id pair behaves
as a function of the size of the global directory, which includes the number of registered guns in the US. In
Figure 5a, we vary the size from 100 up to 1 million pairs and then extrapolate the results to reach 1 billion.
We used a logistic regression to extrapolate the results for when 1 million and 1 billion are already stored in
the global directory. Our results demonstrate that adding a new pair is independent of the size of the global
directory and takes 366 milliseconds. For completeness, we tested the time to add a new pair on a global
directory containing 400 million pairs. The total time was 377 milliseconds, with 349 milliseconds spent on
the 2PC. The time required for the 2PC computation dominates the other tasks. In Figure 5b, we show that
the time to add the pair in the global directory takes less than 1 millisecond.

Adding batches of pairs. In this experiment, we measure the time it takes to add multiple pairs at once
to the global directory. In particular, we want to know whether inserting multiple pairs affects the overall
time of the protocol. In Figure 5c, our experiment shows that the amortized time to insert a single pair in
a batch is around 269 milliseconds which is 27% more efficient than adding a single pair at a time. For this
set of experiments, we used a batch size of 100 pairs. Increasing the batch size beyond this did not lead
to better execution times mainly because of the increasing communication overhead incurred by the 2PC
needed to accommodate for a higher circuit size. Like above, the 2PC computation dominates the execution
time. In Figure 5d, we show the execution time without the 2PC. In particular, inserting 10,000 pairs into
the global directory requires less than 0.5 milliseconds.

Setting up the encrypted database. In this experiment, we measure the time to encrypt the multi-map
and the records. Figure 7a shows that the setup of the EMM dominates the overall execution time. In
particular, setup takes around 220 seconds while the encryption of the records takes only 22 seconds.

Total add time. The time to execute the Add protocol is the sum over the time do a batch update, the
time to prepare and the time to encrypt the local database (which itself consists of the time prepare the
EMM and encrypt the records). For clarity, we consider a concrete example in which the local official has
an add rate of 10,000 records per week. The time to add 10,000 serial/id pairs is 2,627 seconds while the
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(f), the values for when 10® and 10° pairs are in the global directory are extrapolated.

time to add a new batch of records to the encrypted database is either of the following (depending on the
update number). If the update number is a power of 2, then the execution time is simply the time to create
a new EMM along with the encrypted records which is 14.58 seconds. Otherwise, if the update number is
not a power of 2, then the execution time is less than 220.42 seconds, which is the time to create an EMM
for 100,000 records. * For n = 10,000 and u = 53 , the largest EMM has a size less than 100,000. In
summary, the Add protocol requires less than 48 minutes.

8.4 Find Time

We are interested in measuring the time it takes a querier to identify the county a given gun is registered in.
As above, we vary the number of pairs in the global directory from 100 to 1 million and then extrapolate
to 1 billion. We used a logistic regression to extrapolate the results for when 1 million and 1 billion are
already stored in the global directory. In Figure 5e, we show that the time is independent of the size of the
directory. In particular, it takes around 230 milliseconds to retrieve the county identifier. For completeness,
we tested the time to query for a county ID a global encrypted directory containing 400 million pairs. The
total time was 247 milliseconds, with 230 milliseconds spent on the 2PC. Similar to the Add protocol, the
2PC computation takes the most time. Figure 5f shows that the server requires less than 1 millisecond to
retrieve the encrypted pair.

8.5 Query Time

In this experiment, we measure the time it takes for a querier to retrieve the matching records from a local
database. There are two dimensions we varied in the experiment: (1) the selectivity of the query; and (2)

4Note that one can show that the smallest structure on the server has a size O(u - n/log(u)), where u is the number of
updates and n the number of records, respectively.
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Figure 6: Local database query times based on the selectivity of the query with varying records stored. The
x-axis represents low, medium, and high selectivity, which return 1, 10, 100 records respectively.

the number of records stored in the server. Figure 6 summarizes our results. As an example, retrieving
100 records from the database, requires about 1 minute. We noticed that the query time is independent
of the number of records in the database. However, the selectivity of the query does impact query time;
especially the time to do the decryption in the 2PC which represents 99.5% of the overall execution time,
and sharply increases with more records to decrypt. Note that in our current prototype, each decryption
requires a new 2PC. And since the decryptions occur sequentially, the query time is almost proportional to
the selectivity of the query. In Figure 6, we also notice that the time to query the EMM on the server side
is negligible compared to the time required to generate the token using 2PC. In particular, the former takes
3 milliseconds which accounts for 0.006% of the overall time, while the latter takes 260 milliseconds which
accounts for 0.4% of the overall time. Note that the 2PC computation for selectivity 10 is slightly larger as
we need to compute a token for a more complex query, refer to Section 8.1 for more details on our queries.

Query time with dynamic databases. We assessed the query and offline query times while dynamically
expanding the database and, in particular, the EMM. Note that the main effects of using the dynamic BIEX-
2Lev EMM are that: (1) we need to generate tokens that increase linearly as a function of the number of
sub-EMMs; and (2) the query algorithm needs to query all the sub-EMMs. In Figure 7b and 7c, we provide
a simulation based on the empirical numbers from the previous experiment. Specifically, we use the average
time for querying an EMM and multiply it by the number of EMMs that exist after x updates have been
made, which is loga(x). Recall that the number of sub-EMMs, as well as the token size, grows logarithmically
as a function of the number of adds. In particular, our simulation demonstrates that dynamism has a little
to no impact on the execution time of the query protocols. This was expected since the 2PC decryption step
greatly dominates the other tasks.
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Figure 7: Performance of various operations on a local database and the storage sizes of a local database and
global directory. Record encryption refers to the amount of time taken to encrypt records. MM Encryption
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8.6 Offline Query Time

We show in Figure 8 (in Appendix 8.8) the overall time spent by the OfflineQuery protocol as a function of
the selectivity, but also the number of records in the dataset. This protocol is similar to the Query protocol.
The main differences are that the backups need to: (1) reconstruct the local official’s key; and (2) generate
new shares for the key. In particular, the time for reconstruction is around 5.68 seconds, while the time for
generating the new shares is around 450 milliseconds.

8.7 Storage Overhead

In this experiment, we are interested in assessing the size of the encrypted databases (including its EMM
and encrypted records) and the size of the global directory. Figure 7d summarizes our results. We observe
that the size of the EMM dominates the overall size of the encrypted databases. The encrypted records only
accounts for 0.2% of the overall storage. With respect to the global directory, we varied the number of pairs
it holds from 1000 up to 100 million. The storage overhead is summarized in Figure 7e. We notice that the
size of the global directory grows linearly as a function of the number of pairs. As an example, storing 100
million serial/id pairs requires 28GB.

8.8 Cost Analysis

We estimated the yearly cost of running the system in order to provide a sense of its financial feasibility. Our
numbers are based on the AWS pricing calculator [4] and our own AWS usage data. We assume that the
yearly cost would be paid upfront. Note that these costs are based on regular billing rates while government
entities would be billed at a discounted rate. We only consider the servers that store the global directory
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and the encrypted databases and the custodians since a standard laptop is sufficient for local officials and
queriers. The base cost reflects the price of running a single AWS instance with no additional storage and
no data transfer. Depending on a server’s role, it incurs different storage and data transfer costs, which
we describe. For the custodians and the global directory server, we assume 400 million adds and finds are
executed. This captures the estimated number of gun ownership in the US that was previously mentioned.
For the encrypted database servers, which would store the databases of each county in a state, our estimate
is based on the population of California since it is the largest state with around 40 million people as of
2019 [48].

Base costs. As mentioned, we used a t3.xlarge AWS instance for our empirical evaluation, which has
a yearly cost of $853.22 when considering no additional storage and upfront payment. If a more powerful
instance were to be used, such as the m5.metal, which has 96 vCPUs and 384GB of RAM, the yearly cost
with no additional storage and upfront payment would be $23,739.60.

Global directory server. Given that an EDX of 400 million pairs is around 110GB, the directory server
would require at least this much storage. An attachment of 200GB of SSD EBS storage would cost $461.28
a year. The data transfer cost is assumed to be negligible since the server receives tokens that are either 96
or 64 bytes. If 400 million updates were made in a single year, the amount of data transferred would still be
less than 1 TB, which amounts to less than $10.

Custodians. The custodians have relatively low storage costs but high data transfer costs due to the 2PCs
they have to execute as part of the add and find operations. We observed that around 0.5 GB of data was
transferred between the two custodians for the 2PCs of 25 adds and the 2PCs of 25 finds. Based on this
number, at a price of $10 per TB, it would cost roughly $80,000 to execute the 2PCS of 400 million adds
and 400 million finds.

Encrypted database servers. Given that an EMM that holds 100,000 records is around 1.75 GB and
that the encrypted records are 384 bytes each, if the state of California were to store a record for every
person, it would need around 680 GB to store the EMMs and 15.36 GB to store the encrypted records. An
attachment 700 GB of SSD EBS storage would cost $1586.28 a year.

The data transfer cost for a state-level encrypted database server is negligible since the server only receives
data in the form of query tokens and encrypted records. Each encrypted record is 384 bytes and a query
token for the high selectivity query used is 380 bytes. If each individual in California were to be queried
in a year, this would result in less than 40 GB of data transferred, which would cost less than $10. These
estimates show an approximate range of costs. This does not imply that the various government entities
would choose to use these specific machines or even a cloud provider such as AWS, but rather it demonstrates
that the financial cost of operating our system would not be a significant barrier to deployment.

9 Responsible Design

We believe that gun control laws, stricter licensing, and firearm registries have a positive affect on public
health. We acknowledge, however, that introducing a protocol designed specifically for data collection by
law enforcement has the potential for abuse and we recognize and strongly oppose existing forms of non-
consensual data collection by law enforcement. We are also aware that giving law enforcement access to data
on citizens can enable the abuse of that data beyond the original intent of its collection. Although driver
license and license plate databases are—like gun registries—intended to increase public safety, unfettered
access to this data by various law enforcement agencies has lead to abuse. In 2019, it was reported that
US Immigration and Customs Enforcement officers were given access to license plate databases which were
used to profile “foreign-looking” drivers, record their license plates, look up personal information, and target
them for deportation [38]. Furthermore, it is known that the Federal Bureau of Investigation has access to
driver license photos in multiple states and that it uses the data with facial recognition algorithms to detect
suspected criminals [21]. In registering for a driver’s license, citizens do not explicitly consent to these uses
of their data and photos. This is exacerbated by the fact that this data can misidentify them as criminals
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Figure 8: Local database offline query times based on the selectivity of the query with varying records stored.
The x-axis represents low, medium, and high selectivity, which return 1, 10, 100 records respectively.

which is particularly harmful to Black license holders, for whom facial recognition algorithms have a lower
accuracy rate.

In designing this system, we kept in mind how the data it stores could be misused; particularly against
marginalized groups. We emphasize that people should consent to how their registration data is used and
by whom. The draft legislation explicitly states that attempts to use the registry to collect large amounts
of data is prohibited and will be reported. We support this rate limiting feature (and instantiate it via our
2PC-based decryption) and urge that that access to the system (e.g., by officials, sellers, police agencies,
government agencies) be clearly and transparently defined prior to deployment.

We also understand that once the technical infrastructure is in place, firearm data could be be replaced
and used for other purposes beyond our intentions. While we cannot control how this protocol is deployed,
we strongly advocate for policies and regulations that limit personal data collection by Law Enforcement.
While new developments in cryptography can enhance privacy, the use of privacy-enhancing technologies can
also be used as cover to request access to more data. Policies and laws that specifically outline what kind
of data can and cannot be collected by law enforcement before a system such as ours is built and deployed
would help curb the potential for abuse.

10 Conclusion
In this work, we designed, implemented and evaluated an end-to-end encrypted national gun registry. In
designing the system, we were in conversation with the Senate office that drafted the legislation and followed

their requirements explicitly. We implemented the protocol and evaluated at the scale it would have to run if
it were deployed in the US. Our empirical results confirmed that the design is not only possible but practical.
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The purpose of this work is to demonstrate the feasibility of such a system, so our design can be improved
by future work in several respects. As designed (and implemented), the system is secure in the standalone
setting. Future work could improve the protocol to be secure in the universal composability model [14]. As
mentioned in Section 5, our protocol makes black-box use of its underlying primitives. As such, different
instantiations of these building blocks yield different tradeoffs between efficiency and leakage. Future work
could explore how different instantiations (e.g., using techniques from [34]) improve the leakage profile of the
system at what cost to performance.

Acknowledgments

We would like the thank Senator Wyden’ s office for motivating this work, sharing the draft of their legislation,
and providing valuable feedback throughout the project. We would also like to thank Samuel Boger for his
implementation assistance in the initial stages of this project.

References

[1] Aaron Karp. Estimating Global Civilian-Held Firearms Numbers. Technical report, Small Arms Survey,
Geneva, Switzerland, June 2018.

[2] Al Danial. cloc, May 2020.
[3] Amazon Web Services. Amazon Elastic Compute Cloud Documentation, 2020.
[4] Amazon Web Services. AWS Pricing Calculator, 2020.

[5] Ghous Amjad, Seny Kamara, and Tarik Moataz. Breach-resistant structured encryption. In Proceedings
on Privacy Enhancing Technologies (Po/PETS ’19), 2019.

[6] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie Rogers. SMCQL:
secure querying for federated databases. Proceedings of the VLDB Endowment, 10(6):673-684, February
2017.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryp-
tion. In Symposium on Foundations of Computer Science (FOCS ’97), pages 394-405. IEEE Computer
Society, 1997.

[8] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. In Network and
Distributed System Security Symposium (NDSS ’20), 2020.

[9] Bolt Labs. emp-sh2pc, January 2020.

[10] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer and Com-
munications Security (CCS ’16), 20016.

[11] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable encryption from
constrained cryptographic primitives. In ACM Conference on Computer and Communications Security

(CCS °17), 2017.

[12] Bureau of Alcohol, Tobacco, Firearms and Explosives. ATF Form 4473 - Firearms Transaction Record
Revisions, August 2020.

[13] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptology,
13(1), 2000.

24



[14]

[15]

[16]

[17]

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In IEEE
42" Annual Symposium on the Foundations of Computer Science (FOCS 2001), pages 111-126. IEEE,
2001.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances in Cryptology - CRYPTO ’13.
Springer, 2013.

D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in Cryptology -
EUROCRYPT 2014, 2014.

David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and
Michael Steiner. Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation. In Network and Distributed System Security Symposium (NDSS ’14), 2014.

Giffords Law Center. Giffords law center to prevent gun violence, 2018.
Giffords Law Center. Registration, 2018.

M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in Cryptology
- ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages 577-594. Springer, 2010.

Clare Garvie, Alvaro M. Bedoya, and Jonathan Frankle. The Perpetual Line-Up. Technical report,
Center on Privacy & Technology at Georgetwon Law, Georgetown, Washington D.C., October 2016.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In ACM Conference on Computer and Communications Security
(CCS °06), pages 79-88. ACM, 2006.

Kinan Dak Albab, Rawane Issa, Andrei Lapets, Peter Flockhart, Lucy Qin, and Ira Globus-Harris. Tu-
torial: Deploying Secure Multi-Party Computation on the Web Using JIFF. In 2019 IEEE Cybersecurity
Development (SecDev), pages 3-3, Tysons Corner, VA, USA, September 2019. IEEE.

Mohammad Etemad, Alptekin Kiip¢ii, Charalampos Papamanthou, and David Evans. Efficient dynamic
searchable encryption with forward privacy. PoPETs, 2018(1):5-20, 2018.

David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic introduction to secure multi-party
computation, volume 2. Foundations and Trends in Privacy and Security, 2017.

Dan Friedman. The ATFs Nonsensical Non-Searchable Gun Databases, Explained. The Trace, August
2016.

S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient oblivious RAM in two rounds with
applications to searchable encryption. In Advances in Cryptology - CRYPTO 2016, pages 563—592, 2016.

O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM Symposium on
the Theory of Computation (STOC °87), pages 218-229. ACM, 1987.

S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced symmetric private information
retrieval. In ACM Conference on Computer and Communications Security (CCS ’13), pages 875-888,
2013.

S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-linear com-
plexity. In Advances in Cryptology - EUROCRYPT ’17, 2017.

S. Kamara and T. Moataz. Computationally volume-hiding structured encryption. In Advances in
Cryptology - Eurocrypt’ 19, 2019.

25



[32]

[33]

S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In Financial
Cryptography and Data Security (FC ’13), 2013.

S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In ACM
Conference on Computer and Communications Security (CCS ’12). ACM Press, 2012.

Seny Kamara, Tarik Moataz, and Olya Ohrimenko. Structured encryption and leakae suppression. In
Advances in Cryptology - CRYPTO ’18, 2018.

J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2008.
Jeanne Laskas. Inside the Federal Bureau Of Way Too Many Guns. G@Q, August 2016.
James McClure. Firearms Owners’ Protection Act, May 1986.

McKenzie Funk. How ICE Picks Its Targets in the Surveillance Age. New York Times Magazine,
October 2019.

Metropolitan Police Department. Application for Firearms Registration Certificate (PD-219), August
2020.

T. Moataz and S. Kamara. Clusion. https://github.com/encryptedsystems/Clusion.
New York State Police. Pistol Revolver License Recertification.

V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis, and
S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 359-374. IEEE, 2014.

S. Patel, G. Persiano, and K. Yeo. Symmetric searchable encryption with sharing and unsharing.
Cryptology ePrint Archive, Report 2017/973, 2017. http://eprint.iacr.org/2017/973.

Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leakage in secure cloud-hosted
data structures: Volume-hiding for multi-maps via hashing. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019, pages 79-93.
ACM, 2019.

A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.

D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In IEEE
Symposium on Research in Security and Privacy, pages 44-55. IEEE Computer Society, 2000.

E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small leakage.
In Network and Distributed System Security Symposium (NDSS ’14), 2014.

United States Census Bureau. 2019 National and State Population Estimates, December 2019.

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, and Azer Bestavros.
Conclave: secure multi-party computation on big data. In Proceedings of the Fourteenth FEuroSys
Conference 2019 - EuroSys ’19, pages 1-18, Dresden, Germany, 2019. ACM Press.

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty computation
toolkit, 2016.

A. Yao. Protocols for secure computations. In ITEFE Symposium on Foundations of Computer Science
(FOCS ’82), pages 160-164. IEEE Computer Society, 1982.

A. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations of Computer
Science (FOCS ’86), pages 162-167. IEEE Computer Society, 1986.

26



A Encrypted Document Databases

We recall the standard approach to designing an encrypted document database from a symmetric key encryp-

tion SKE = (Gen, Enc, Dec) and a multi-map encryption scheme Xpm = (Init, Token, Query, AddToken, Add, Resolve).
This is equivalent to the index-based approach to designing SSE schemes from Curtmola et al. [22]. Let Index

be an algorithm that takes as input a record and outputs label/tuple pairs and Xpg = (Init, Token, Query, Add Token,
Add, Resolve) be a (document) database encryption scheme that works as follows:

e Init(1%): takes as input a security parameter 1¥ and computes (K1, EMM) < Sym.Init(1%) and Ky <
SKE.Gen(1%). It sets K = (K, K3) and EDB = EMM and outputs (K, EDB).

e Token(K, q): takes as input a key K and a query ¢q. It parses K as (K, Ks2) and outputs tk «+
Smm.Token( K7, q).

e Query(EDB, tk): takes as input an encrypted database EDB and a token tk. It parses EDB as (EMM, ctq, ..., ct,),
computes I < Xym.Query(EMM, tk) and outputs {ct; }ier.

e AddToken(K,r): takes as input a secret key K and a record r. It parses K as (K7, K») and computes
{(l1,v1), .-+, (b, vim)} < Index(r). Then, for all 1 < i < m, it computes atk; < Xpm.AddToken(K7, (¢;,v;)).
Finally, it outputs atk = (atky, ..., atk,,, ct), where ct +- SKE.Enc(Kj,r).

e Add(EDB,atk): takes as input an encrypted database EDB and an add token atk. It parses EDB
as (EMMg,cty,...,ct,) and atk as (atky,...,atk,,ct). For all 1 < i < m, it computes EMM; «+
Ymm-Add(EDB;_1, atk;). It outputs EDB = (EMM,,,, cty, ..., ct,,ct).

e Resolve(K, ct): takes as input a secret key K and a set of ciphertexts ct. It parses K as (K3, K») and
ct as (cty,...,cty). For all 1 <4 <t, it computes r; « SKE.Dec(K>, ct;).

Concrete instantiations. In this work, we instantiate Yy with the BIEX-2Lev construction of [30].
The indexing algorithm we use takes a record r as input and, for every field/value pair f:v in r, outputs a
label /value pair (f]|v,r.id). To search for all records with f = v, it then suffices to query for ¢ = f||v.

We now describe the leakage profile of BIEX-2Lev. Let

0= ((wl,l\/"'\/wl,q) A-ee A (weJ \/...\/w&q)>
where w; ; def fijllvi ;- Then the query leakage of BIEX-2Lev is
£3*(DB, ) =

((qqu(w17i), trsize(LMMy ;), geqg(wi i),
qequ(wl,iﬂ), e 7qeql,i(wl,q)vtagl,i(wl,la e 7w1,q)> )
1<i<g—1

(qequ(wj,i), ) qeql,q(wj’i)v

tagj,i(wl,ia T ,'(1)17(1)) >
2<j<¢,1<i<q

where tag; ;(w1,...,wg) = (fij(wi),..., fij(w1)) with f;; a random function, trsize(MM) is a stateful
leakage pattern that reveals the size of the multi-map MM, and qeqy (w) is a stateful leakage pattern that
reveals if and when w was queried in the past. Note that qeqy and geqy for X # Y are not correlated in
the sense that given qeqy (w) and geqy- (w) one cannot tell that the leakages are for the same w. The leakage
profile of BIEX-2Lev is complex and can be difficult to understand but we note that, currently, BIEX is
the boolean scheme with the smallest leakage profile. To achieve a better leakage profile, one could use the
leakage suppression techniques of [34].
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B Semi-Dynamic Encrypted Multi-Maps

As described in Section 5, our protocol relies on a semi-dynamic database encryption scheme. Using the
approach described in Appendix A one can construct such a scheme from a semi-dynamic multi-map en-
cryption scheme and symmetric key encryption. Since, in our setting, we want support for boolean queries,
we need the multi-map encryption scheme to also support boolean queries. As far as we know, there are
three sub-linear boolean multi-map encryption schemes: the scheme that underlies the Blind Seer construc-
tion [42], the boolean variant of OXT [15] and the BIEX construction of [30]. The latter is the most efficient
but is only static so we describe here how to make it semi-dynamic using a technique described in [22].
More precisely, given a static multi-map encryption scheme Xyym = (Setup, Token, Query), we define a new
semi-dynamic scheme Apm = (Init, Token, Query, Add) that works as follows:

e Init(1%): takes as input a security parameter 1%, sets K = 1, st = 1 and EMM = L and outputs
(K, st, EMM).

. Add((K sty {(4i,vi)i}), EM M): is a two-party protocol between the client and server where the client
inputs a key K, a state st and a set of label/tuple pairs {(¢1,v1),..., (¢, v¢)} and the server inputs
EMM. The client first creates a new multi-map MM that stores the pairs {(¢1,v1),..., (¢, v¢)}. It then
parses st into some positive integer . If i a power of 2, it computes (K;, EMM;) < Setup(1*, MM), and
sends EMM; to the server who sets EMM := (EMM, EMM;). The client then sets K := (K, K;). On
the other hand, if ¢ is not a power of 2, the client downloads the smallest EMM at the server, decrypts
it to recover MM* and computes (K;, EMM;) < Setup(1¥, MM;), where MM; is a multi-map that holds
the pairs in both MM* and MM. Tt then sends EMM; to the server who sets EMM := (EMM, EMM;).
The client then updates K := (K, K;) and increments st by 1.

e Token(K, q): takes as input the secret key K and a query g and uses each key in K = (Ky,...,K,,) to
generate a token tk; < Token (K, ¢) for each EMM stored on the server. It outputs tk = (tky, ..., tky,).

e Query(EMM, tk): takes as input EMM = (EMMjy,...,EMM,,) and a token tk = (tki, ..., tk;,). For all
1 <4 < m, it computes R; < Query(EDB;, tk;) and outputs (Ry,...,Rn).

The resulting semi-dynamic scheme Apm has O(time(Q) - logu) query time, where time(Q) is the
complexity of ¥ym.Query and w is the number of add operations. It has the same asymptotic storage as
Ymm- It has O(logu) token size and Add has communication complexity O(u/logu). The leakage profile of
Amwm is the same as Ypyy with the addition of add leakage £ which reveals the size of R.
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