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ABSTRACT

Learning the stylistic compatibility between the object and the
scene is a new area in indoor scene analysis. In this work, we
constructed a dataset for the problem and proposed a deep neural
network with conditioning method to learn the style. We show
that the network is not only effective in assessing the stylistic
compatibility between the single object and a set of objects, but
could also provide reasonable recommendations of the objects to
add to the existing scene.
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1 INTRODUCTION

With the fast development of e-commerce, there is an increased
demand for well-designed scenes, especially for companies that sell
furniture and home decorations online like Wayfair. Displaying syn-
thetic, photo-realistic 3D scenes is the best advertising method to
attract customers, however, the interior design process takes great
effort from highly skilled designers and is very time-consuming and
expensive. Achieving aesthetically pleasing, consistent style is one
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of the biggest challenges in the design process: aesthetic criteria
are subjective and the elements of style are difficult to describe ex-
plicitly with precision. The big gap between the designers’ limited
productivity and the significant demand for scenes makes it nec-
essary to develop models that could assist in the scene generation
process. Also, for people without any interior style knowledge, the
style compatibility learning model allows them to design their own
rooms. However, most prior work in 3D indoor scene synthesis[17],
focuses purely on the position and category (for example, sofas,
desks, etc.) of the object. As for style learning, there is also related
research in stylistic compatibility in outfit fashion[5], but limited
to stylistic relation between two individual items.

In this research project, we develop the first model that can learn
the stylistic compatibility between individual objects and scenes.
Given the object’s category, our model can give suggestions of
products that are most stylistically compatible with the scene in
real-time. In order for the model to be an efficient tool for assist-
ing scene generation, the input for the scene is not a real-time
rendering, which is time-consuming and computational-expensive.
Instead, the scene refers to a set of objects (henceforth, referred to
as context). The raw data include the 3D professionally-designed
scenes from Wayfair, product information for every individual prod-
uct (henceforth, referred to as SKU) that appears in the scene, such
as the SKU iconic images and category labels, and the scene in-
formation such as scene style labels. The SKU category labels and



scene style labels are not directly used in the model training but
are utilized for constructing the dataset.

From the raw data, context SKUs - query SKU pairs are designed
for training the model. A set of SKUs represents the context, and
the SKU in the context are referred to as context-SKU; one SKU
from the same scene as the context is the “positive example”, which
makes a context-positive SKU pair; SKU from a different scene is
the “negative example”, which makes a context-negative SKU pair.
This positive/negative example SKU is referred to as query SKU.
The model learns stylistic compatibility by training a logistic regres-
sion model from these pairs. For the positive pairs, the regression
model outputs 1 and 0 for the negative ones. The output of the
regression model shows the probability of putting this query SKU
in the context to make a stylistic consistent scene.

There are two sub-networks in the model: context-SKU CNN and
query-SKU CNN. the context-SKU CNN is for processing the image
of every single SKU in the context. The one-hot encoding of the
query SKU category is used for generating conditional layer param-
eters for this CNN. query-SKU CNN is for processing the images
of the query SKU in the pair. The aggregation of the output from
the previous context-SKU CNN, which is the context embedding,
is used for generating conditional layer parameters for query-SKU
CNN. The regression model is optimized via binary cross-entropy
loss.

As for the evaluation, there are two tasks for the model: 1. Pre-
dicting the stylistic compatibility between a single query SKU and
the context. 2. Recommending the top K stylistically compatible
SKUs: Given context SKUs and the category of the query SKU, our
model must provide K stylistically compatible SKU from the given
category. We assume that the SKU that appears in the same scene
as the context is a “ground truth”, and we use this SKU to evaluate
the K suggestions given by our model.

The contributions of this project are the following:

o To our best of knowledge, this is the first model learning
the stylistic compatibility between objects and scenes in the
scene understanding domain.

o A dataset of stylistic compatible objects is constructed and
ready for use.

e Demonstrated application value of our model for autonomous
3D scene generation and human-in-the-loop design tools.

2 RELATED WORK

Our work is studying the stylistic compatibility within a scene
completion task. We reviewed related work on scene completion,
component suggestion & fashionability, and conditioning methods
in neural network.

Scene completion Given a partial scene and a query position,
scene completion models could generate the possibility for dif-
ferent categories of objects to be put in that location. Previous
work could be divided into three groups: rule-based methods, data-
driven statistical models, and graph neural networks. The rule-
based method follows the guidelines for furniture layout as terms
in density functions[7]. These kinds of methods take care of both
functional and visual criteria, however, they have the assumption
of pre-specified models and have difficulty integrating interaction
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inputs; generally speaking, rule-based design approaches are brit-
tle, require a large amount of domain knowledge, and generate
output that lacks diversity. Statistical models apply a Bayesian net-
work with object co-occurrence data. Many models based upon
co-occurrence have been shown to have limited creativity and gen-
eralization ability ; these models tend to only work on small scale
scene generation given large amounts of clean relational data. Neu-
ral networks, especially graph neural networks[11][3], have been
the most popular method in recent years. The scene is parsed as a
tree-structure graph[18], where each node represents an object and
each edge represents spatial and semantic relationships. However,
all of the methods above focus only on the category-level of the
object in the scene completion and include no explicit information
concerning style.

Component suggestion and fashionability Existing work
for learning compatibility could be divided into two categories.
The first category concerns functional compatibility such as com-
ponent suggestions in 3D modeling assembly. The second category
concerns fashionability, such as studying the stylistic compatibility
in outfits[12][16]. Sung et al[13] predicted the probability distri-
bution of components to recommend by using a mixture density
network (MDN). Given a triplet of the partial assembly X, positive
sample Y and negative sample Z, their work first maps samples to
an embedding space and then generates a Gaussian mixture distri-
bution on the space given X. The novel idea in this work is that
the compatibility should be represented as a continuous probability
distribution rather than discrete values. Vasileva et al[15] did some
work related to fashion compatibility. Their type-aware embeddings
could learn the compatibility between specific types of clothes, such
as the fashionability between a pair of pants and a pair of shoes.
However, their method could not be directly applied to our problem
for two key reasons. First, fashion compatibility in their model was
defined to be pair-wise. Their model could answer whether two
pieces of clothing match, but not whether an additional piece of
clothing would compliment an existing outfit. Second, there are
hundreds of object categories for furniture in indoor scenes (an
order of magnitude greater than the number of object categories
in clothing). This makes it infeasible to have category aware pair-
wise compatibility for each of the existing categories. In order to
accomplish this, we would need to construct an embedding space
for each individual category and then map the joint relationships
between each of these embedding spaces, which is computationally
expensive.

Conditioning methods in neural network Attentions are
added in the network with conditioning methods of some condi-
tioning information. There are two popular conditioning methods:
the first one is concatenating the conditioning information in the
input or simply adding the conditional bias[4][2][6]; Conditional
DCGANS[10], WaveNet[8], and Conditional Pixel CNN[14] are the
classical networks of this method. the second one is influencing
the network with a learned affine transformation from the condi-
tioning information. In FILM[9], a Feature-wise Linear Modulation
(FILM) layer applies an affine transformation on the network’s
intermediate features. These conditioning methods are effective
for the visual question answering (VQA)[1] tasks. In our project,
conditional methods are applied in both CNN to strengthen the
relationship between the context SKUs and the query SKUs.
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3 METHOD
3.1 Overview

Our model is preferment across two primary tasks: Given the con-
text and the query SKU, our model could predict the probability of
adding this SKU to make the scene stylistic consistent. Also, given
the context and a query object category, our model could propose
objects that look stylistically compatible in the scene. To achieve
this, there are two essential networks in the model: a context-SKU
CNN and a query-SKU CNN. The context-SKU CNN learns the
feature of each SKU in the context with the conditioning informa-
tion of the query SKU’s category. Then, the context embedding is
generated by aggregating all the single context-SKU embedding
from the context-SKU CNN output. The context-SKU CNN and
the query-SKU CNN are linked with a conditioning method that
applies the context embedding as the conditioning information
to the query-SKU CNN. Finally, the query-SKU CNN outputs the
probability of adding the query SKU to the context.

One of the biggest challenges is designing a dataset. Since our re-
search topic is novel, there is no reference and existing open-source
dataset for our problem. Due to our partnership with Wayfair, we
received two thousand professionally-designed 3D scenes, which
are annotated with style labels. For all the objects in the scene, we
also received valuable SKU information including front-perspective
images and furniture categories. From the raw 3D data, we first get
the list of objects in the scene and match the related SKU informa-
tion with the object and the scene. Secondly, we generate context
SKUs - positive query SKU- negative query SKU triplets, which are
used to generate context SKUs - query SKU pairs for training. The
subset of objects in the scene is defined as context, which serves
as the anchor in the triplet. A positive sample is a single object
selected from the same scene as the context (henceforth, referred to
as P) and a negative sample (henceforth, referred to as N) is a single
object in the same category as a positive example and selected from
a different scene. The subjective property of stylistic compatibility
makes it difficult to construct a negative query SKU. The negative
query SKU could probably be a good fit for the scene but was missed
by the designer. Since the number of distinct objects is very limited
in all the scenes, we perform various data augmentation to expand
the training dataset. More details about the dataset are described
in section 3.2 data processing.

3.2 Data processing

Data source Stylistic compatibility is a less invested area and there
is no available dataset for this project. To train the network effi-
ciently, the training data should be professionally stylistic compati-
ble. To satisfy this, we select raw data of the 3D scenes designed
by Wayfair designers. We assume that every scene is consistent in
style and every object in the scene is stylistic compatible with any
other objects or objects set. There are 2461 scenes of 27 styles. For
each scene, there is a style label and the main SKU, which is the
oriented object that the scene is made for. The scenes are in 3Ds
Max file format and every object is a node in the scene structure.
We parse the scene to get the list of SKUs with max scripts and
match SKUs with category information and front images from the
Wayfair database. To train the model, each SKU is represented as

an RGB image. 7751 distinct objects of 305 categories are collected
from all the scenes.

Challenges and solutions Data is the key to the networks and
constructing good datasets is one of the most difficult parts of this
project. Firstly, the raw data is noisy. There are object nodes in
the scene structure that are not shown in the scene rendering; the
names of the node may not match the SKU in the database; A single
node may be a grouping of several objects. Secondly, the style
distribution of the scene and the category distribution of the SKUs
are unbalanced. The most popular SKU categories are pillows and
rugs, which are general objects to different styles and could be hard
examples to learn styles. There are also very minor categories like
’Flatware Single Pieces’ and “Hooks’, which contribute little to the
style of the scene and do not represent any details. To eliminate the
influences from those minor categories, we manually selected 17
categories’ objects as P/N and 194 categories objects to be the main
SKU of the scene. (we only restrict the category of the main SKU
in the scene so that at least a SKU in the scene could have some
style information. It is possible that objects of other categories are
included in the context.) There are also a lot of concerns when
generating the triplets. As the quantity, more triplets are expected
from the limited number of scenes. To address this, subsets of th¢
scene objects are selected as the context, which means nearly "72
of triplets could be generated from the scene having n SKUs; As
for the quality, contexts from the same scene should not appear
at the training and testing dataset at the same time. So we split
training and testing datasets at the scene level; The P for the context
sometimes could be very subjective as well, so we introduce simple
N and hard N. Simple N is the object that appears in a different
style of scenes with context and hard N is the object appears in the
same style of scenes with context.

Data processing pipeline For the balance of the positive and
negative pairs, triplets of context-positive SKU- negative SKU are
generated first. The data processing pipeline starts with splitting
scenes for training and testing, which guarantees that no same
context appears in both training and testing datasets. To construct
the triplet, there are two key parameters: The category of the query
SKU and the number of SKUs in the context. A scene is selected with
the filters of those two parameters, and the context and positive-
query SKU are generated from this scene. Then the negative query
SKU of the same category is selected from other scenes. Data aug-
mentation is added to the data generator during the training time.
The augmentations include rotation, width/height shift, changing
brightness, zoom-in/out, vertical/horizontal flip. All those augmen-
tations are robust to the style information in the image and are
helpful to the generalization of the model.

3.3 Model

The stylistic compatibility regression model consists of two essen-
tial networks: context-SKU CNN and query-SKU CNN. The input
for both networks is the RGB image of the single SKU. The archi-
tectures of these two networks are similar, but they have different
conditioning information and are designed for different purposes.

The conditioning information for context-SKU CNN is the cat-
egory of the query-SKU. It is expected that the features extracted
from the context SKU images are relative to the query SKU category.
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Figure 2: The architecture of the stylistic compatibility regression model

For example, if the query SKU is an armchair, the context-SKU CNN
may raise more attention to the color of the SKUs in the context;
if the query SKU is an end table, shape and material features may
be more important to the network. The category of the query-SKU
is represented as an one-hot encoding and it generates parame-
ters of affine transformations for context-SKU CNN’s intermediate
features. This Feature-wise linear modulation is added after convo-
lutional layers in the network as the Figure 2 shown.

The embedding for each context SKU is generated from the
context-SKU CNN. To generate a single embedding to represent the
context, all the context SKU embeddings need aggregating. Since
the context embedding should be irrelevant to the appearing order
of SKUs in the context, global max-pooling is finally selected as the
aggregation method.

The context embedding from the global max-pooling layer is
the conditioning information for the query-SKU CNN. query-SKU
CNN is a regression model, which output the stylistic compatibil-
ity between the query SKU and the context. The compatibility is
learned from the conditioning context embedding information and
the query SKU features. Similar to the conditioning method of the
context-SKU CNN, Feature-wise linear modulation is also added
after every convolutional layer in query-SKU CNN.

4 EXPERIMENT

We tested our model on two tasks. The first one is given the context
and the query SKU and then output of the probability of adding
this SKU to make the scene stylistic consistent. The second task is
recommending top-K SKUs of the given category to the context.

In all the experiments below, the number of SKUs in the context
is fixed as three. Also, the negative query SKUs are selected from
the different styles from the positive query SKU, which are “simple
negatives”.

Figure 3, 4, 5 show the result of the first task. In all the successful
examples, the positive query SKUs show the stylistic consistent
features with the context SKUs. Such as the color consistency in row
2 in Figure 3. While the negative query SKUs are not compatible
to the scene because of color (row4) or materials (row 5). For the
false positive examples shown in Figure 4, some of predictions look
reasonable (row 2). That is one of biggest challenges in labelling
the "true negative". The negative sample could also be stylistic
consistent with the context SKUs even though no such match has
appeared before. For the false negative examples shown in Figure 5,
one possible reason is the lack of style information in the context
SKUs. In row 2, row 3, all the context SKUs are decorations and the
model is not confident in all the predictions.
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Figure 3: The quantitatively results of evaluating the compatibility of a single SKU to the context (succesful examples)
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Figure 4: The quantitatively results of evaluating the compatibility of a single SKU to the context (False positives)

Figure 6 show the result for the second task. Images on the left SKU always has high probability and some of the them even appear
most is the scene rendering for the context. next three rows show in the recommendations (row 3, row 4, row 5, row 6). The existing
the context SKUs, the top 5 recommendations and their respective problem is that the prediction values for the top K recommendations
prediction confidence values. GT on the right represents the ground might be very close, and top K are probably not representative for
truth SKU, which is the SKU that originally appears in the scene, some scenes.

and it’s prediction value. From the results, we could find that GT
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Figure 5: The quantitatively results of evaluating the compatibility of a single SKU to the context (False negatives)

5 CONCLUSION AND FUTURE WORK

This project is a pioneer work in studying the interior scene design.
A regression model with feature-wise linear modulation layers is
proposed to learn the stylistic compatibility between the scene
context and the SKU. The dataset constructed in this project is also
very important resource to other studies in this stylistic learning
field.

Without a doubt, we are still at the very initial stage of this
problem and more could be explored in future works.

5.1 Future work

5.1.1 Dataset. Have higher standard for the raw data The qual-
ity of the 3D scene data is essential to the following parsing and
dataset construction. Considering the current challenges with the
dataset, here are some suggestions for the improvements of the
data quality: The SKU should have meaningful node names in 3D
scene files; No discarded SKUs in the scene, which are the SKUs
that are not stylistic compatible with other SKUs in the scene; each
SKU should have a single node and no wrong groupings for several
SKUs together; The bounding boxes of the SKUs should be able to
represent the size of the object.

Add other information to the context Only the node name
is used from the 3D scenes right now. Actually, there is more in-
formation could be utilized. Such as the positions in the scene: the
camera position, the SKU positions in the camera space. When
selecting the SKUs from the scene to construct the context, the
supporting relationships should also be considered. For example, a
pillow should not be included in the context if the supporting sofa
is not included.

Balance the distribution of the SKU category and style
One of the biggest challenges for the dataset now is the unbal-
ance of the SKU category and styles. The most common categories
are rugs and pillows now, which do not carry too much style infor-
mation and could be compatible with many different styles.

Overcome the subjective in positive/negative sample eval-
uation Due to the subjective property in evaluating the style, the
negative query SKU examples may not be “true” negatives. In fu-
ture work, other methods could be proposed for selecting negative
examples. Such as selecting the SKU that is most visually dissimilar
to the positive as the negative; the SKU with the largest embedding
distance to the positive in some visual embedding space.

5.1.2  Modifications of network architecture and improvements in
training. Support more SKUs in the context The only successful
experiment now is restricted to only three SKUs in the context. More
SKUs in the context are tested, however, the performance shows
serious overfitting. One possible training improvement is to start
training the model from fewer context SKUs and adding the SKUs
iteratively. Another attempt could be optimizing the context SKU
embedding aggregation methods. Right now, there are no trainable
parameters in the max-pooling and all the learning ability for the
context is in the first context-SKU CNN. When the number of SKU
increasing, this CNN may tend to “memorize” more rather than
learning.

Add additional loss for constructing better SKU embed-
ding space In the ideal SKU embedding space, similar SKUs should
be clustered together, especially for the same SKU with different
augmentations. The current model has no loss to constrain the
distance of similar SKUs.
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Figure 6: The quantitatively results of recommending 5 SKUs to the context

5.1.3 Context embedding and SKU embedding exploration. 1t is
interesting to see the visualization of the embedding space. How
the SKU embedding space will change conditioning on different
contexts.

5.1.4 Human preference evaluation. One of the biggest challenges
of the evaluation is no “ground truth”. The quantitative and quali-
tative analysis may not be accurate based on the current “ground
truth”. Let professional designers and common users provide more
reliable “ground truth”. Their feedback could also be useful for
future improvements.

ACKNOWLEDGMENTS

I would like to express my great appreciation to Wayfair, for the
valuable scene data access and warm assistance. To professor Daniel
Ritchie, manager Tim Zhang, for their thoughtful and inspiring
instructions through the whole project. To my research partner
Naveen Srinivasan, for all the support.

REFERENCES

[1] Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin,
and Aaron C Courville. 2017. Modulating early visual processing by language. In
Advances in Neural Information Processing Systems. 6594-6604.



[2] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

3
[4

(5

]
]

2017. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 1243-1252.
William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).
Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Wei-Lin Hsiao, Isay Katsman, Chao-Yuan Wu, Devi Parikh, and Kristen Grauman.
2019. Fashion++: Minimal edits for outfit improvement. In Proceedings of the
IEEE International Conference on Computer Vision. 5047-5056.

[6] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-

[7

[8

[10

=

ings of the IEEE conference on computer vision and pattern recognition. 7132-7141.
Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun.
2011. Interactive furniture layout using interior design guidelines. ACM transac-
tions on graphics (TOG) 30, 4 (2011), 1-10.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. Film: Visual reasoning with a general conditioning layer. In
Thirty-Second AAAI Conference on Artificial Intelligence.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[11

[12

[13]

(14]

=
&

[16]

[17]

(18]

Sigi Wang

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61-80.

Xuemeng Song, Fuli Feng, Jinhuan Liu, Zekun Li, Ligiang Nie, and Jun Ma. 2017.
Neurostylist: Neural compatibility modeling for clothing matching. In Proceedings
of the 25th ACM international conference on Multimedia. 753-761.

Minhyuk Sung, Hao Su, Vladimir G Kim, Siddhartha Chaudhuri, and Leonidas
Guibas. 2017. Complementme: weakly-supervised component suggestions for
3D modeling. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1-12.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex
Graves, et al. 2016. Conditional image generation with pixelcnn decoders. In
Advances in neural information processing systems. 4790-4798.

Mariya I Vasileva, Bryan A Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha
Kumar, and David Forsyth. 2018. Learning type-aware embeddings for fashion
compatibility. In Proceedings of the European Conference on Computer Vision
(ECCV). 390-405.

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, and Serge
Belongie. 2015. Learning visual clothing style with heterogeneous dyadic co-
occurrences. In Proceedings of the IEEE International Conference on Computer
Vision. 4642-4650.

Kai Wang, Manolis Savva, Angel X Chang, and Daniel Ritchie. 2018. Deep
convolutional priors for indoor scene synthesis. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1-14.

Yang Zhou, Zachary While, and Evangelos Kalogerakis. 2019. SceneGraphNet:
Neural Message Passing for 3D Indoor Scene Augmentation. In Proceedings of
the IEEE International Conference on Computer Vision. 7384-7392.



	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Data processing
	3.3 Model

	4 Experiment
	5 Conclusion and Future Work
	5.1 Future work

	Acknowledgments
	References

