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Abstract

Generative Adversarial Networks have shown promise in unpaired image
translation. However, translating unpaired objects from unaligned domains is an
unsolved problem. Existing methods are restricted to domain pairs which require
only minor shape change, and they typically mode collapse on more challenging
domain pairs such as giraffe to sheep, or racket to bat.

First, with a simple toy dataset, we show that existing image translation models
are inherently unequipped to handle significant shape change because they fail
to disentangle the foreground and background. We present a novel method and
network architecture to address this issue. The effectiveness of our network is
confirmed by a user study, where we are preferred 2× over the SOTA.

However, even our improved baseline suffers from instability on these diverse
domains. Thus, we explore various multi-scale architectures. Additionally, we
improve the efficiency of our networks because previous methods are highly
resource intensive and require long training times.

We then design a transformer-based network that is not limited by receptive field,
as convolutions are. This enables it to make significant global changes to the
object shape. We separate the shape and color translation problems so that we can
utilize transformer-based models. Effectively, we translate shapes as if they were
sentences. We find this enhances the quality and stability of the shape translations
and explore ways our transformer representations can be combined with color
networks.
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1 Introduction

Data driven generative models such as generative adversarial networks (GANs) [10] enable exciting
new possibilities for image editing. We consider the unpaired image-to-image translation problem of
mapping object appearance between domains that are unaligned.

CycleGAN [47] enabled many image-to-image translation problems to be solved because it alleviated
the need for paired training data; however, it is not well suited to significantly change the shape
of objects. For example, when translating a horse to a zebra, the generator is allowed to make
modifications to any part of the image to satisfy the discriminator. This may result in a rider covered
in zebra texture. Various GAN architectures have made progress in better restricting changes to
preserving the background while translating the foreground. For instance, by learning attention masks
to focus translation onto foreground regions [41, 27, 28, 43], or by using masks as additional input
to the network and modifying the objective function to penalize changes to the background [22,
26]. Of these, the state-of-the-art InstaGAN [26] approach adds a background preservation weight
to constrain image modifications to the foreground regions. However, the network still struggles
to translate the foreground and translates the background to compensate. We propose an approach
which splits the foreground and background generation process:

1. Generate a foreground from the target distribution,

2. Use a separate generator, trained on the source distribution, to inpaint missing areas of the
background,

3. Combine the outputs of steps 1–2 to create the translated image.

This approach is simple. Yet, it is preferred in a user study over InstaGAN on a variety of do-
mains on the challenging COCO [24] dataset. Moreover, it succeeds in an a basic toy dataset on
which all previous image translation models fail. Since our approach generates foregrounds and
backgrounds separately, our backgrounds do not suffer during the foreground translation process.
This also improves foregrounds since we constrain the mini-max game between our foreground
generator-discriminator: as the generator can no longer rely on changing the background to fool the
discriminator, it must dedicate more parameters to translating the actual foreground object class.

Though our solution improves over previous networks, we note that it still mode collapses on some
challenging classes or at high resolutions. Other methods have found multi-scale training schemes
[16, 17] or networks [33] to improve the stability and quality of generated images. We design a
network where information is added at multiple scales. The motivation is similar to that of Feature
Pyramid Networks (FPN) [23] where features from multiple resolutions in the feature extraction
backbone of an object detector are fused. This allows our model to make both global changes to
the image (at the low resolution branches) and fine-grained texture changes (at the high resolution
branch). Both of these types of changes are important: global changes enable our network to model
signficant shape change between domains; fine-grained changes enable our network to change color,
such as a giraffe’s hair to a sheep’s wool. Also, our network is more efficient than previous methods,
which require extensive training time and GPU resources.

To further improve training stability, and improve the quality of our global shape changes, we design
a transformer-based network [37] to translate the shape of objects. We translate the color with a
CNN in a separate step. To create a representation suitable for transformers, we represent shapes as a
sequence of keypoints. We then train our transformer based network in a fashion similar to Lample et
al. [20], which translates unpaired sentences from one language to another. Thus, our sequences of
keypoints are analogous to the sentences translated in [20].

In summary, our contributions are as follows:

1. A split foreground-background generation process which sets a new SOTA for image
translation with significant shape change.

2. A toy dataset benchmark to challenge image translation models.

3. A multi-scale architecture that is more stable and efficient than previous approaches.

4. A transformer-based network to more effectively make global shape changes between
unaligned domains.
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2 Related Work

Zhu et al. [47] (CycleGAN) and Kim et al. [19] (DiscoGAN) both demonstrated the ability to
map between two image domains without paired training data. To constrain the problem, Zhu et
al. proposed a “cyclic loss" to restrict the domain mappings which can be learned by the generator. In
this setting, two pairs of GANs are trained at once, with one generator mapping from domain S to T
and the other mapping from domain T to S.

Recent work such as DistanceGAN [32] and GcGAN [7] have attempted to remove the need of cycles
for unpaired image to image translation. DistanceGAN does so by trying to preserve the pairwise
distances between images within a mini-batch. GcGAN extends this work by augmenting this
with geometric constraints. While these methods have some promise, they have difficulty handling
one-sided mappings when significant and non-global transformations occur between domains [9].

Some improvements have been made to these types of cyclic models to help them translate between
two domains of differing texture or shapes [14, 9]. However, these methods consider the entire
image holistically, and struggle to deal with both small objects and domains which have different
distributions of background texture.

Several recent papers [41, 27, 28, 43] have proposed augmenting these networks with unsupervised
attention mechanisms to help separate foreground and background regions. For instance, Yang et
al. [44] (LR-GAN) decompose the image with a two-component spatial-transformer generator: one
component generates the background, and the other is a recurrent neural network (RNN) which
repeatedly ‘pastes’ created foregrounds and their masks into the image. [18] uses an interpolated
layer and instance normalization to adapt to different levels of shape change within domains. While
promising, all these techniques struggle with object transformation use cases requiring a significant
shape change.

Two recent works have shown that notably higher quality results can be achieved when masks
are available. Liang et al. [22] (ContrastGAN) and Mo et al. [26] (InstaGAN) use binary mask
segmentations to simplify the complex task of localizing objects and segmenting them from the
background. However, the effect of background modification is still visible in these methods. We
propose a method that reduces the computational complexity of Mo. et. al. Moreover, it is more
robust than previous methods and the generator is not allowed to affect the source background
appearance, which allows for more flexible and reliable generation. We also build a multi-scale
version of our method.

[40] improves shape change by first extracting keypoints from the source domain with [29] in an
unsupervised manner inspired by [15]. The keypoints are translated to the target domain with a MLP
as done in [1]. However, this is not suitable for directly translating keypoint locations in Cartesian
space, as it operates in the keypoint feature space. Our keypoint-based method translates keypoints in
Cartesian space using transformers [37].

Transformers, original introduced for language modeling, have shown promise for solving image
and video problems. They have been used to model temporal dependencies in video [34, 35, 8]. [25,
4] use a BERT-inspired [6] architecture to interpret multimodal vision and language inputs. [31]
directly generate color images with transformers. We use transformers to generate shapes defined by
a sequence of keypoints and leverage a separate network to translate the color.
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Figure 1: A schematic illustration of our problem and the limtation of existing approaches. Superscript
indicates a GAN-generated region and specifies the GAN’s training region.

3 SplitGAN

3.1 Splitting Foreground and Background Translation

We are given two image classes S and T . Each comprises color images sw ∈ S and tw ∈ T , with
ns, nt > 0 class instances, respectively. We are also given instance masks smi

and tmi
for each

instance in s and t. Our goal is to learn a transfer function f : Sw −→ Tw which maps the foreground
sf of s to t′f , where sf = (sm1

∪ sm2
∪ ... ∪ smn

), while preserving the source background sb.

It should be noted that this cannot be accomplished by naïvely segmenting the foreground objects in
sw, transferring them to the target domain, and paste the transferred objects in the target background
in tw: when the translated target foreground is smaller than the source foreground, we must inpaint the
background of the output image and therefore, the transfer algorithm should change both foreground
and background and blend them in visually plausible manner. Figure 1 illustrates this problem and
the limitation of existing approaches in this context. First, CycleGAN [25] and attention nets [14]
(Algorithm 1b) learn only from T and they do not explicitly learn to map the source background Sb.
When translating to a domain with smaller foreground objects, this makes it difficult to generate
new background regions which look like S. InstaGAN [15] (Algorithm 1b) attempts to address this
with context loss Lctx, but it often generates noticeable background artifacts because its generator
learns from all of T . These artifacts accumulate when translating multiple instances. In ContrastGAN
(Algorithm 2) learns from Tf cut out from T . Thereafter, the translation TTf

f is pasted onto Sb. This

prevents the background artifacts from Algorithm 1b. However, if TTf

f does not completely cover the
original foreground Sf , then ContrastGAN cannot inpaint these areas of the background.

Our approach is to explicitly address this background inpainting and blending problem by training
two generator networks (Algorithm 3). The first generator synthesizes TTf

f to translate the foreground,

and the other one generates SSb

b to inpaint the missing background (1+ T
Tf

f − S
Sf

f ).

We adopt a sequential model to translate the foreground. We translate foreground sf to t′f by
translating each of the n instances, si to t′i, with each forward pass of our encoder-decoder foreground
generator Gf . Gf takes as input the image concatenated with its corresponding instance mask. The
empty background sb defined by the area outside of sf is inpainted by a separate encoder-decoder
generator Gb, once for all n instances.

3.2 Toy Dataset

To motivate our approach, we introduce a demonstrative toy problem of changing giraffe-textured
circles into tiger-textured triangles. These instances are placed on red and blue backgrounds, re-
spectively. The goal is to translate the circles to triangles (and vice-versa) without changing the
background (Fig. 2). The dataset consists of 525 training images and 225 testing synthetic images.

CycleGAN [47] is not capable of completing this task: it learns the background distribution from
the target images. The backgrounds of the target class are always different from the source class.
Thus, CycleGAN does not have the necessary training data to complete the task. InstaGAN [26] has
an architecture which uses ground truth instance masks to help translate foreground, and it includes
a context loss to penalize background changes. However, in the triangle→circle case, the infilled
background region is changed to the wrong color. This is because it only learns from images with
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Tiger triangles→ Giraffe circles

Input CycleGAN InstaGAN Ours

Giraffe circles→ Tiger triangles

Input CycleGAN InstaGAN Ours

Figure 2: Toy Experiment. We wish to map the foregrounds between domains with simple textured
shapes and solid color backgrounds. The ‘tiger triangles’ domain has blue backgrounds, while ‘giraffe
circles’ has red backgrounds. CycleGAN modifies the solid color background but not the foreground;
InstaGAN is not able to correctly modify the foreground shape or texture and sometimes distorts the
background. Our method preserves the background while correctly translating shape and texture.

blue backgrounds. Therefore, any image without a blue background must be classified as fake, which
causes the context loss and the GAN loss to behave adversarially.

Our network succeeds at this task. We learn the backgrounds from the source distribution, which lets
us inpaint the images with the correct color and translate the foregrounds correctly.

3.3 Joint color-mask architecture

Our base generators and discriminators follow a similar architecture as CycleGAN and InstaGAN.
For our discriminators, however, we also added a multi-scale discriminator to our foreground GAN
as it has proved useful in image translation [13, 38, 39, 46, 45].

We have split the translation process, and so in a final step we must combine the generated foregrounds
and backgrounds. Thus, an ideal generator for our application would produce masks which are
identical in shape to the foreground. Some prior approaches propose architectures with separate
encoder-decoder pairs for the images and the masks [26]: The images are encoded separately from
the masks, and during the decoding process, the image and mask decoders each receive various
combinations of concatenated input from the encoders. This is paired with a discriminator with a
separate encoder for both the images and the masks, but a shared decoder.

Despite the concatenated decoder input, this prior approach produces binary masks which are
unsuitable for clean foreground extraction. Instead, we jointly generate both the color image and
the mask as concatenations within a single network. Our discriminator similarly takes the image
concatenated with its mask, which is now sufficient for our generator to learn shape-consistent images
and masks.

3.4 A New SOTA

COCO We train on several classes from the COCO dataset [24]. We used the Inception Resnet-v2
(Atrous) network [36], from Google’s Object Detection API [12], pretrained on COCO to detect our
generated instances. We measure the percentage of the detectable instances, the mean confidence
score the detector assigns our translations, and also the mean intersection of union (mIoU). The mIoU
is a useful metric for assessing whether the network is detecting true instances or false positives. For
the ground truth in the mIoU calculation, we create bounding boxes from our generated instance
masks. Additionally, we set the minimum confidence threshold to 0.3, to further help alleviate false
positives.

Table 1 presents the results. We have a higher mean confidence score than InstaGAN on every
translation direction. However, as evident from the data, the standard deviations are large. Thus, for
our confidence score, co and InstaGAN’s confidence score ci, we only bold the confidence scores for
which we can say co − ci > 0 at a significance level of α = 0.05. We evaluate statistical significance
with a one-tailed two sample Z-test. In regards to mIoU score, although neither we nor InstaGAN
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Table 1: Quantitative bounding box classification evaluation on the translated images (higher is better;
± scores are one standard deviation). For mIoU, in almost all cases our method outperforms the
baseline method, except for Apple→Donut. For confidences, our method always has a higher mean,
but due to the large standard deviations we can not always claim our improvement over InstaGAN is
statistically significant. Thus, we only bold values which are better than InstaGAN at significance
level α = 0.05 in a Z-test. For % instances detected, our method again is always better on these
datasets. Note: InstaGAN mode collapsed on Frisbee→Sportsball.

Dataset mIoU Detection confidence % instances detected
InstaGAN Ours InstaGAN Ours InstaGAN Ours

Sheep→Giraffe 0.662 0.681 0.444 ± 0.435 0.604 ± 0.408 56.5 74.1
Giraffe→Sheep 0.477 0.801 0.263 ± 0.388 0.276 ± 0.392 33.9 36.2
Bat→Racket 0.586 0.633 0.275 ± 0.421 0.305 ± 0.420 31.6 37.5
Racket→Bat 0.497 0.621 0.087 ± 0.231 0.133 ± 0.281 14.2 20.9
Sportsball→Frisbee 0.300 0.613 0.108 ± 0.285 0.136 ± 0.310 13.9 17.3
Frisbee→Sportsball Collapse 0.574 0.026 ± 0.142 0.352 ± 0.439 3.8 40.9
Bear→Elephant 0.758 0.841 0.316 ± 0.411 0.599 ± 0.431 39.7 69.1
Elephant→Bear 0.767 0.820 0.079 ± 0.240 0.146 ± 0.312 10.5 19.7
Apple→Donut 0.303 0.054 0.102 ± 0.234 0.274 ± 0.370 18.5 38.5
Donut→Apple 0.560 0.768 0.047 ± 0.173 0.079 ± 0.224 8.0 12.2

Table 2: User preferences in pairwise comparisons. We report the percentage of the time that people
preferred our results over InstaGAN’s results on COCO dataset classes. S is sheep, G is giraffe, R is
racket, B is bat, E is elephant, B is bear, Sp is sportsball, F is frisbee, D is donut, A is apple.

Mean S→G G→S R→B S→R E→B B→E Sp→F F→Sp D→A A→D

66.4 57.8 64.8 82.6 70.0 48.9 70.7 61.1 95.2 60.3 52.2

were free of false positives, we consistently have a higher mIoU score. The only exception is the
Apple→Donut translation. This suggests our confidence score may be inflated for this translation
direction.

Additionally, we commissioned a user study where humans evaluated our generated photos in
comparison to InstaGANs. In the study, we showed users a ground truth photo, InstaGAN’s translation
and our translation. We asked them: “Which option changed the ‘source domain’ to ’target domain’
in a more realistic way? Consider the changes made to the entire image.” We randomly selected 15
images for each translation direction across 5 translation pairs for a total of 150 image comparisons.
We recruited 18 participants, each of whom evaluated all 150 comparisons. Averaged over all datasets,
our method was preferred over InstaGAN 66.4% of the time—about twice as often—with a standard
deviation of 8.7% (Table 2). A one distribution t-test deems us to be preferred over InstaGAN at least
50% of the time with probability greater than 99.9%.

Implementation Details We use the Adam optimizer. Generator and discriminator learning rates
are both set to 0.0002 with β1 = 0.5, β2 = 0.999. In our loss, we set λ1 = λ2 = 10 for all our
experiments. We resize all images to 200x200. We trained our models for 400 epochs, with a constant
learning rate for the first 200 and a linearly decaying rate for the next 200. We train InstaGAN (and
CycleGAN) for 200 epochs, as is suggested in their papers. We note that our 400 epochs provides
the same number of gradient updates as InstaGAN at 200 epochs: We train on 1 instance per image
to their 4 instances per image; however, their mini-batch sequential scheme trains on 2 images at
once, providing 2 updates per image. All models but one were trained on multiple NVIDIA Tesla
P100s or NVIDIA GTX 1080 Ti’s; InstaGAN requires 4× 12GB VRAM; our model requires 2×
11GB VRAM; CycleGAN requires 1× 11GB VRAM. We downloaded the InstaGAN Sheep→Giraffe
model from the author’s GitHub webpage to save GPU training hours for datasets with published
models.
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Racket to Bat
Input CycleGAN InstaGAN Ours

Bat to Racket
Input CycleGAN InstaGAN Ours

Frisbee to Ball Ball to Frisbee

Figure 3: Qualitative comparisons on the Racket→Bat and Ball→Frisbee datasets. The sports dataset
is a difficult case in general due to the drastic background differences between grass field sports and
clay and hard court sports. Our approach is able to make better use of the object masks in not making
unwanted changes to the background and producing comparable-or-better foregrounds.

3.5 Limitations

Though we outperform previous baselines, there is significant room for improvement for our method.
In 1, our detector fails to detect less than half our generated objects for many of the classes. We
hypothesize that the limited receptive field of the convolutional layers in our network cannot cope
with the significant shape change required to translate between these unaligned domains.
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Input CycleGAN InstaGAN Ours Input CycleGAN InstaGAN Ours

Figure 4: Qualitative comparisons on the Giraffe→Sheep, Donut→Apple, and Elephant→Bear
datasets, with their return translations too. Please zoom in. Examples include the challenging
translation of a large polar bear in water where the background is atypical within either domain, and
many small apple instances. While both our approach and InstaGAN receive input masks, our method
is able to make better use of them with unedited backgrounds and comparable or better foregrounds.
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Figure 5: Comparison of our architecture to others. The CycleGAN and Pix2pixHD networks are a
special case of ours. SPADE does not use generation branches.

4 Feature Translation Pyramid Network

We propose a novel multi-scale architecture that fuses feature maps at multiple spatial resolutions.
This improves the stability of our network during training because our network can make global
changes to the shape at lower resolution branches while making texture changes at higher resolution
branches. Our network is trained end-to-end, meaning it does not require progressive growing [17].
Moreover, each individual generation does not change the spatial resolution of the feature maps.
This differs from the approach used in [21], which relies on multiple encoder and decoders (and is
also trained progressively). Our network can be considered a single encoder-decoder structure with
feature maps at multiple resolutions.

4.1 Architecture

As in the SplitGAN section, we seek to translate an object from a source foreground, Sf to a
target domain, Tf . Our network downsamples the spatial resolution image with a series of strided
convolutional layers n ∈ N , and increases the channel resolution with each convolution. The feature
map of the nth convolutional layer is translated to the target domain by a series of non-strided
convolutions that make up bn. In practice, the nth branch, bn, is comprised of residual blocks,
rin ∈ Rn. The output of branch bn+1 is fused with the output of bn by first passing bn+1 through a
strided transposed convolution layer and then adding it to the output of bn. This is done until we
recover the input image’s spatial resolution.

The original CycleGAN and Pix2PixHD networks can be considered a special case of our network
where N = 1. SPADE [30] does not use branches to translate images. Additionally, it does not use
strided convolutions to upsample the image. It uses a bilinear interpolation of the feature maps.
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Figure 6: Top: The efficient bottlenext residual block our network uses. Bottom: The standard residual
block design.

4.2 Bottlenext Blocks

Our residual blocks, {Ri, Ri+1...Rn}, follow the bottlenext design proposed in [11]. The aforemen-
tioned image translation networks use the standard residual block design. The bottlenext design uses a
convolutional layer with a 1×1 kernel to reduce the channel dimension before applying a convolution
with a 3× 3 kernel. Following the convolution with the 3× 3 kernel, a 1× 1 kernel convolution is
used to recover the original channel dimension. By reducing the channel dimension, with a 1× 1 the
network is more efficient. Moreover, we used grouped convolutions to further improve efficiency
[42].

4.3 Evaluation

Sheep2Giraffe We evaluate our network on the sheep to giraffe mapping, using the same COCO
dataset from the SplitGAN section. IoU is measured with the Hybrid Task Cascade object detector
(implementation from [3]) to assess the quality of generated objects. (This is a different detector
than was used in the SplitGAN section so the numbers between the sections are not comparable.) A
network with N = 1 branches, which is equivalent to the CycleGAN network, has an IoU of 0.62
for giraffes and 0.28 for sheep. Increasing the number of branches to N = 2 yields an IoU of 0.64
for giraffes and 0.46 for sheep. Sheep are smaller objects than giraffes, thus the additional higher
resolution branch aids with the generation of these smaller objects. However, a network with N = 3
mode collapses.

We show qualitative results from our method in Figure 7. We generate these images sequentially as
in SplitGAN. However, with our multi-scale network, we translate each object at 384× 384 spatial
resolution rather than 200× 200. Though our multi-scale networks improve generation quality, we
still suffer many failure cases (Figure 8). We hypothesize that even the multi-scale network does
not have a great enough receptive field to make the significant global structural changes between
unaligned domain mappings. Thus, we seek a network architecture that does not have this limitation,
described in the following section.

Efficiency For our multi-scale network, bottlenext blocks reduce parameter count by 8x. We find
no change in IoU when returning to using the standard residual blocks. We also test if the benefits of
our bottlenext blocks generalize to other architectures. We achieve strong results with Pix2PixHD on
the Cityscapes dataset [5]. The network parameters are reduced from 182.9M to 23.5M and GFLOPS
are reduced from 749.0 to 314.6. The FID score remains comparable, only increasing from 27 to 31.
As shown in Figure 9, the visual quality is comparable.

Implementation Details We use the same hyperparameters as in the SplitGAN section. Our models
are trained on 2 NVIDIA GTX Titans. We also “clean" the training data by removing instances which
are split into multiple connected components and instances which are smaller than 5% of the spatial
image resolution or larger than 95% of the spatial image resolution. During preprocessing, we resize
all giraffes to be 75% of the generator input image size (in this case 384× 384) and sheep to 37%.
They are re-scaled to their appropriate sizes after the generation process. This is so our generator can
learn the relative shape changes between sheep and giraffes.
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Figure 7: Results of our feature translation pyramid network on the giraffe to sheep and sheep to
giraffe mappings.

Figure 8: A failure case of our model. We find the network struggles to disentangle the complex
shape and color changes required to translate a sheep to a giraffe.

Figure 9: Qualitative of our efficient model (left) compared to the baseline (right).
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Figure 10: Visualization of our training scheme. Notation corresponds to Section 6.1. Blue weights
are trainable and white/blue weights are frozen.

5 Translating Object Shapes as Sentences

There are parallels between image and language translation tasks. CycleGAN [47] finds inspiration
in language translation models stating: “if we translate, e.g., a sentence from English to French, and
then translate it back from French to English, we should arrive back at the original sentence". We take
inspiration from the “CycleGAN" of sentence translation [20]. Sentences are translated from a source
language to a target language through “back-translation" and “autoencoder" tasks. We decompose
object shapes into an outline of ki ∈ K keypoints. We then use a similar training scheme to [20]
where a keypoint is a word and the entire shape is a sentence.

5.1 Transformer-based Shape Network

We have unpaired samples si ∈ S from a source domain, which we wish to translate to a target
domain, for which we have samples ti ∈ T . Let us assume we have a mask for each of these samples.
From these masks, we extract keypoints ks and kt from the source and target domains, respectively.
We train our transformer-based model to encode a sequence of keypoints from either S or T to a
latent vector z. We enforce that, regardless of the domain input, z be aligned for both distributions
with an adversarial discriminator tasked with distinguishing which domain the latent vector was
encoded from. This vector is then decoded to either the source or target keypoints, depending on the
decoder’s binary conditioning. We train our model with the following two tasks:

1. An “autoencoder" task in which random noise is applied to k from either domain, giving us
k

′
. k

′
is passed through our encoder-decoder architecture, giving us kg. The goal is for kg

to be identical to k. We train with an L1 reconstruction loss.
2. A “back-translation" task in which keypoints kt are passed forward through the frozen

weights of our model, which gives us kgs . We then wish to back-translate kgs to the original
domain. Thus, after unfreezing our model’s weights, we input kgs to our model to obtain
the back-translation, kbt . An L1 reconstruction loss is the objective function. We do the
converse to back-translate from target to source domain.

We visualize our training scheme in Figure 10.

To convert keypoints to a representation for our transformers, we compute the linear projection of
their x, y coordinates. We then feed this to an embedding layer. We also embed the id of each
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Figure 11: Visualizations of giraffe to sheep shape translations.
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Figure 12: Visualizations of sheep giraffe shape translations.
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Figure 13: Our color translation model. We use separate encoder-decoder networks for each domain
(as indicated by the color codes).

keypoint, where an id of 0 is used for the keypoint at 12 o’clock. We assign the rest of the ids to
keypoints moving in a counterclockwise fashion. The ids are embedded and added to the keypoint
position embeddings. The sum of these embeddings is fed to the encoder-decoder model.

Sheep2Giraffe Keypoint Evaluation We evaluate our network on the same dataset as in previous
sections. 32 keypoints are extracted from each mask. Qualitative results are in Figure 14. We
obtain improved shape diversity and detail than with previous methods. Moreover, the network
produces quality results on a consistent basis. This suggests potential for our network to overcome
the instability of previous methods.

Implementation Details All masks are centered. The long edge is scaled to be 75% of the image
height and width, which we fix to be 256× 256. The learn rate is 1× 10−4 and we use an inverse
square root warmup schedule with the Adam optimizer. Batch size is 12. Models converge on a
single NVIDIA Titan GTX GPU within 12 hours.

5.2 Exploring Color Translation Methods

Before we combine our shape and color models in an end-to-end training scheme, we evaluate the
color task independently from the shape. Inspired by [2], we use Pix2PixHD to color our keypoint
representation. A 1 channel mask is fed to the model, which outputs a 3 channel color image. This
image is concatenated with the input mask and fed to the discriminator which makes a real / fake
prediction. Our training scheme is visualized above.

We find that the outline representation generated by our transformer model does not yield good results
when used as input to the color network. Thus, we create more dense representation to feed to our
color network. We find these create higher quality color images. Qualitative results are in Figure 14.

We will explore various color translation methods and transformer models to find a keypoint represen-
tation that is suitable for use by both the shape and color steps. This will allow our network to train
end-to-end and for us take advantage of the stability of separating the shape and color translation
steps.
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Figure 14: Sheep and giraffe from our color translation model. The 1st column is the mask, the 2nd
column is the extracted keypoints, the 3rd column is the generated image, and the 4th column is the
ground truth image.

6 Conclusion

We have explored various models to translate images between unaligned domains. Our work includes
setting a new SOTA by splitting the foreground and background generation process. We further
improve over our baseline with multi-scale networks. By using transformer-based network not limited
by receptive field, we improve shape generation further. We also make progress in translating these
shapes to color images. Additional future work can extend this to the multi-domain setting, common
in language translation. Another direction is to add control to the translation process.
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