
Brown University

CSCI 2980: Reading and Research

2019 Fall, 2020 Spring

Assisting with Scalable Scalable

Vector Graphics and VisConnect

Shash Sinha

This report is submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science (ScM) at Brown University

Final Report Shash Sinha

Abstract

The aim of this report is to highlight some of my contributions in and around two
visualization research projects; I was involved in during my last academic term at Brown
University. For the sake of brevity, I have only included significant milestones due to the
exploratory nature of the work I conducted. Similarly, I have chosen to provide minimal
background context and instead assume readers have looked at the two research papers1,2

produced from the projects before reading this report.

1Scalable Vector Graphics: Fast Drop-In Rendering for D3.js – https://osf.io/mea2v/
2VisConnect: Distributed Event Synchronization for Collaborative Visualization – https://osf.io/hkaxc/

1

https://osf.io/mea2v/
https://osf.io/hkaxc/

Final Report Shash Sinha

Acknowledgements

I want to express my sincere gratitude to my supervisor, Prof. James Tompkin1, for
introducing me to the visualization field and being a great supervisor in general. I would
also like to thank Michail Schwab2 for enabling me to assist on the insanely cool projects
he created; I strive to be as competent at software engineering as he is one day. Lastly,
I would like to thank all the other collaborators who worked on either project—I look
forward to keeping in touch.

1James Tompkin’s Department Homepage – https://cs.brown.edu/people/faculty/jtompki1/
2Michail Schwab’s Department Homepage – https://khoury.northeastern.edu/people/michail-schwab/

2

https://cs.brown.edu/people/faculty/jtompki1/
https://khoury.northeastern.edu/people/michail-schwab/

Final Report Shash Sinha

Contents

Abstract 1

Acknowledgements 2

Contents 3

List of Figures 4

List of Tables 5

1 Introduction 6

2 Attaining familiarity with SVGs 7
2.1 Existing /r/dataisbeautiful examples site 7
2.2 Remade /r/dataisbeautiful examples site using Openseadragon 9
2.3 Possible future work and current limitations 11

3 Assisting with SSVG Project 12
3.1 Adding support for Stardust.js . 12

3.1.1 Limitations and possible future work 12
3.2 Rewriting and running shape rendering benchmarks 13

3.2.1 Future work and limitations . 13

4 Assisting with VisConnect Project 15
4.1 Real-time Collaborative Annotation . 15
4.2 Limitations and future work . 16

4.2.1 Example of directly collaborative synchronous interaction for visu-
alization . 18

5 Conclusion 19

References 20

3

Final Report Shash Sinha

List of Figures
2.1 The EasyPZ bookmarklet. 7
2.2 The existing EasyPZ r/dataisbeautiful visualizations homepage 8
2.3 The rivers in US example on the existing EasyPZ website 8
2.4 Example image tiled pyramid . 9
2.5 The OpenSeadragon based /r/dataisbeautiful visualizations homepage 10
2.6 The rivers in US example on the OpenSeadragon remade website 11

3.1 Spinning rectangles standard SVG benchmark screenshot 13
3.2 Rendering performance comparison between techniques 14
3.3 Rendering performance comparison with shapes between SVG and SSVG . . . 14

4.1 Live Website Annotate collaboration example 16
4.2 Live Website Annotate when browser window to large 17
4.3 Live Website Annotate when browser window is correct size 17
4.4 Alpha version of the interface for a COVID-19 collaborative, interactive quiz . 18

4

Final Report Shash Sinha

List of Tables
1.1 Definitions of abbreviations used in document 6

2.1 SVG to OpenSeadragon DZI approach . 10

5

Final Report Shash Sinha

1. Introduction
The following report has been split up into three sections: Attaining familiarity with

SVGs, Assisting on SSVG Project, and Assisting on VisConnect Project. The first two
cover work carried out in the first and second halves of Fall 2019, respectively, and the
last section covers work contributed during Spring 2020.

Due to the large number of abbreviations used in this document, Table 1.1 is included
below for the readers reference.

N.B. If the reader is familiar with the research papers as recommended in the abstract
i.e., Scalable Vector Graphics: Fast Drop-In Rendering for D3.js [10] and VisConnect:
Distributed Event Synchronization for Collaborative Visualization [11] the below table
should contain minimal abbreviations whose definitions they are not aware of.

Abbreviation Definition

SVG Scalable Vector Graphics [6]
SSVG Scalable Scalable Vector Graphics [10]
LWA Live Website Annotate [See Section 4]
DZI Deep Zoom Image [8]
PNG Portable Network Graphics [5]
D3 Data Driven Documents [1]

DOM Document Object Model [3]
HTML Hypertext Markup Language [4]

OpenGL Open Graphics Library [13]
FPS Frames Per Second

RGBA Red Green Blue Alpha

Table 1.1: Definitions of abbreviations used in document

6

Final Report Shash Sinha

2. Attaining familiarity with SVGs
Before I could assist on the SSVG project [10], I needed to become familar with

what SVGs were and how they worked. For this I explored a previous project that was
created by the same collaborators – EasyPZ.js: Interaction Binding for Pan and Zoom
Visualizations [12].

In essence the tool introduced in this project allows users to make any SVG visual-
ization interactive via pan and zoom, for mobile and desktop by adding just a single line
of code to the visualization1:

<script src="https://code.easypz.io/easypz.latest.min.js"></script>

Alternatively users can activate advanced pan and zoom techniques on their SVG
visualizations with a simple click on the EazyPZ Bookmarklet [12] shown in Figure 2.1.

Figure 2.1: The EasyPZ bookmarklet.

2.1 Existing /r/dataisbeautiful examples site

As part of the EasyPZ project a webpage (http://datais.easypz.io/) had been
created that showcased the tool on a eight popular r/dataisbeautiful2 Figure 2.2 and
Figure 2.3 show how this webpage looks.

1EasyPZ.js Pan & Zoom – https://easypz.io/
2r/dataisbeautiful: Data visualizations subreddit on Reddit – https://reddit.com/r/dataisbeautiful/

7

http://datais.easypz.io/
https://easypz.io/
https://reddit.com/r/dataisbeautiful/

Final Report Shash Sinha

Figure 2.2: The existing EasyPZ r/dataisbeautiful visualizations homepage

Figure 2.3: The rivers in US example on the existing EasyPZ website

8

Final Report Shash Sinha

2.2 Remade /r/dataisbeautiful examples site using Opensead-
ragon

Rather than simply cleaning up the existing website, I instead explored if using
OpenSeadragon – An open-source, web-based viewer for high-resolution zoomable images,
implemented in pure JavaScript, for desktop and mobile1, was a viable alternative.

OpenSeadragon supports various zoomable image formats however I used the most
popular one – Deep Zoom Image. DZI is a format created by Microsoft back in 2008 that
allows images to be represented by a image tiled pyramid (See Figure 2.4 below for a visual
example). This format allows the Deep Zoom rendering engine (OpenSeadragon in this
case) to grab only the portion of data that is necessary for a particular view of an image
[8].

The hypothesis was that if OpenSeadragon worked reasonably well, we could create a
service to convert raw SVG visualizations into DZI. The service would also handle hosting
all of the output image tiles such that visualization creators could simply replace the raw
SVG image references on their websites for a OpenSeadragon HTML snippet that would
be generated for them. The benefit of doing this is that these zoom enabled images would
have a zoom user interface overlay from OpenSeadragon, which did not exist with EazyPZ.

Figure 2.4: Example image tiled pyramid

1OpenSeadragon – https://openseadragon.github.io/

9

https://openseadragon.github.io/

Final Report Shash Sinha

Table 2.1 shows the approach and tools that ended up being used to convert the SVG
visualizations into the DZI format compatible with OpenSeadragon.

Pseudocode 2.1 SVG to OpenSeadragon DZI

For every SVG to be converted call a Python1 script that:
1. Coverts the input SVG into a upscaled PNG (10x by default) using cairosvg2 or

svgexport3 if cairosvg fails.
2. Uses magikslicer.sh4 to convert the upscaled PNG into DZI format.
3. Moves all DZI associated files into output folder.
4. Creates an HTML file which has set up OpenSeadragon correctly and is pointing to

the expected full web address (URL) of the folder via Python string interpolation.

Table 2.1: SVG to OpenSeadragon DZI approach

Figure 2.5 and Figure 2.6 show how the OpenSeadragon based webpage
(https://shash678.github.io/datais-examples/) laid out using React5 looks like.

Figure 2.5: The OpenSeadragon based /r/dataisbeautiful visualizations homepage

1Python: Popular scripting programming language – https://python.org/
2CairoSVG: Uses the Cairo 2D graphics library to efficiently convert SVGs other formats – https://cairosvg.org/
3Svgexport: Node.js module that uses Puppeteer for converting SVGs – https://npmjs.com/package/svgexport/
4MagickSlicer: Shell script that generates DZI tiles – https://github.com/VoidVolker/MagickSlicer/
5React: JavaScript library for building user interfaces – https://reactjs.org/

10

https://shash678.github.io/datais-examples/
https://python.org/
https://cairosvg.org/
https://npmjs.com/package/svgexport/
https://github.com/VoidVolker/MagickSlicer/
https://reactjs.org/

Final Report Shash Sinha

Figure 2.6: The rivers in US example on the OpenSeadragon remade website

2.3 Possible future work and current limitations

Unfortunately since I needed to start working on the SSVG project there are multiple
issues with the current approach that still need to be addressed:

• Currently, during SVG conversion, the scale factor needs to be manually set when
upscaling. Consequently, without a sufficiently large scale factor, the resulting max
possible zoom is not enough to make out the smallest details required to interpret
some visualizations, e.g., those with tiny text.

• Unfortunately, both cairosvg and svgexport have difficulty upscaling complex
SVGs (at least on the 2018 13 Inch MacBook Pro I was testing on), e.g., upscal-
ing the Voronoi Fractals visualization crashed with any scale factor above 2, which
meant the resulting max possible zoom is minuscule.

• In general, it was challenging to come up with a heuristic to dynamically determine
from an arbitrary SVG’s DOM tree what scale factor is appropriate.

• An approach I was starting to explore that seemed promising was utilizing the min-
imum font-size attribute in the SVG’s DOM tree if it existed and if not analyzing
the smallest bezier curves and b-splines in the SVG’s path elements.

• Another limitation to consider in regards to providing a service eventually is the size
of the output DZI folder for a sufficiently zoomable complex visualization currently
is quite large.

11

Final Report Shash Sinha

3. Assisting with SSVG Project
At the point which I joined the SSVG project [10], the core development was essen-

tially complete. My role instead involved establishing that SSVG accomplished one of the
primary goals it was built to achieve:

To address SVG’s main shortcoming, we wish to make the technology scal-
able to more elements so that more data can be displayed. For a smooth user
experience, the rendering performance should be at least 20–30 FPS. [10]

The way I accomplished this was by first adding support for SSVG to use an alternate
WebGL1 renderer called Stardust2 to act as an additional yardstick. Following that, I then
ran a collection of benchmarks that measured the performance of different approaches in
rendering common types of SVG elements.

3.1 Adding support for Stardust.js

Stardust[9] uses the term “mark” for the graphical elements, such as circles, lines etc.
So for the three marks: lines, circles and rectangles I had to essentially modify SSVG’s
renderer to draw the appropriate mark call using the data available in SSVG’s virtual
DOM at that time.

3.1.1 Limitations and possible future work

Stardust, unfortunately, does not support closed splines3 so even a basic polygon like
a filled-in triangle is not possible natively.

Despite managing to implement a working solution for supporting non-convex poly-
gons from valid path data (using multiple wedge marks for its sub triangles), the per-
formance was not good enough to have polygons in the benchmarks. Future work could
involve modifying the Stardust library directly and adding an optimized custom polygon
mark natively.

Additionally, Stardust marks only support setting the fill color using RGBA in a
somewhat obscure format of an array of four floats, i.e., [[0,1], [0,1], [0,1]]. Un-
fortunately, performing the 3 division operations for every shape (RGBA colors in D3 are
represented like rgba([0,255], [0,255], [0,255], [0,1])) every rendering “tick” was
affecting performance, so I removed the ability to set the color for the benchmarks and
hard coded the color of all shapes. Future work could be done to cache the colors in some
way and add to SSVGs internal color translation methods to convert from D3/HTML’s
other color representations to a Stardust compliant format efficiently.

1WebGL: Cross-platform standard for a low-level graphics API based on OpenGL – https://khronos.org/webgl/
2Stardust: A library for rendering information visualizations with GPU – https://stardustjs.github.io/
3Spline: A special function defined piecewise by polynomials

12

https://khronos.org/webgl/
https://stardustjs.github.io/

Final Report Shash Sinha

3.2 Rewriting and running shape rendering benchmarks

Before I joined the project, there existed a few benchmarks for different shapes, how-
ever the code for each for the benchmark was difficult to follow, did not have a set structure.
Furthermore, results for each benchmark had to be manually copied from the developer
console. So I:

• Cleaned up all benchmarks into easy to read ES6 code with descriptive file names
that described the tests.

• Made all benchmarks essentially identical other than what SVG element was specif-
ically being tested by the benchmark.

• Added code to automatically save a CSV with the results.

• Created a README file for how to run the benchmarks in the same conditions I
ran them in.

Figure 3.2 and Figure 3.3 show the final results showcased in the paper while Figure 3.1
shows what an example benchmark looks like when running.

Figure 3.1: Spinning rectangles standard SVG benchmark screenshot. Observe that even
with only 6000 rectangles (this is printed in the developer console) the FPS is already only
13.

3.2.1 Future work and limitations

Currently each benchmark takes 15 to 30 minutes to run and has to be started manu-
ally. It would be ideal if all the benchmarks could be run one after another automatically.
If this was doable it would make the benchmark process much easier to perform and per-
haps more reliable. Additionally, further investigation into the reason for the dip in FPS
at 17000 lines in Figure 3.3 should be conducted as mentioned in the Figure’s caption.

13

Final Report Shash Sinha

V
er

y
S

m
oo

th
S

m
oo

th
M

ot
io

n
Im

ag
es

A
ve

ra
ge

 F
ra

m
es

 P
er

 S
ec

on
d

Number of Rectangles

Rendering Performance Comparison Between Techniques

40

1,000 5,000 10,000 15,000 20,000 25,000 30,000

30

20

10

50

60

SVG

Native
Canvas

Native
Stardust

Single thread

Code
rewrite
needed

SSVG with Stardust
SSVG with Canvas

SSVG with Stardust SSVG with Canvas

Figure 3.2: Rendering performance comparison between SVG (blue), SSVG (yellow),
SSVG with Stardust using WebGL (orange), custom native implementations of the same
visualization for Canvas (green) and Stardust (cyan), and a single-threaded version of
SSVG and SSVG with Stardust (yellow and orange, dash-dotted) that shows how much
multi-threading contributes to SSVG’s performance. At 20,000 nodes, the SVG only ren-
ders at about 6 FPS, leading to jank and a bad user experience. Meanwhile, both SSVG
implementations render at about 55 FPS, on par with and even outperforming custom
native implementations of the same visualization in Canvas and WebGL. Data and imple-
mentations in supplemental material.

V
er

y
S

m
oo

th
S

m
oo

th
M

ot
io

n
Im

ag
es

A
ve

ra
ge

 F
ra

m
es

 P
er

 S
ec

on
d

Number of Nodes

Performance Comparison with Shapes between SVG and SSVG

40

1,000 5,000 10,000 15,000 20,000 25,000 30,000

30

20

10

50

60

SVG
Circle
Rectangle
Line
TextA

SSVG
Circle
Rectangle
Line
TextA

Figure 3.3: Rendering performance comparison between SVG and SSVG for text, circle,
rectangle, and line primitives. SSVG outperforms SVG across all tested shapes. Around
17,000 line nodes, SSVG’s performance is lower than with more and fewer nodes. This is
an anomaly which requires further investigation.

14

Final Report Shash Sinha

4. Assisting with VisConnect Project
For the VisConnect project [11] various examples needed to be created of how VisCon-

nect could be used by the visualization community. For this purpose I created a Chrome
Extension called Live Website Annotate. 4.1 is the relevant section from the research
paper produced from the project essentially verbatim and section 4.2 covers some of the
current limitations and possible future work that could be conducted both regarding Live
Website Annotate and in general in relation to VisConnect.

4.1 Real-time Collaborative Annotation

Shared annotations are an ongoing research effort to tackle the challenges of communi-
cation and coordination during remote collaboration on visualizations [2, 7]. Collaborative
annotation functionalities enable group examinations of visualization and support collec-
tive and collaborative sensemaking [14], i.e., people actively pursue shared goals and group
interpretations [2]. For example, a new user of a complex interactive visualization may
need guidance in learning all the features and functions afforded in the visualization. The
tutelage of an expert to guide them with annotations can easily introduce them to the
affordances of the tool resulting in the user being more likely to use it again in the fu-
ture. To illustrate VisConnect’s capabilities in synchronized collaborative sensemaking, we
created a Google Chrome extension “Live Website Annotate” (LWA) which enables mul-
tiple users to collaboratively and simultaneously annotate existing online visualizations
and websites.1 To enable this collaboration, all collaborators need to install the LWA
extension from the Chrome Web Store.2 One collaborator can invite other collaborators
to a shared session by creating an invitation link for the current page they are on. Other
collaborators can then join the session by entering this link into the extension’s menu and
share it themselves once connected.

To enable synchronous annotation, the extension adds two stacked SVG elements to
a website. The first SVG is used for the user interface, including drawing options for the
annotations. The second SVG is used as a canvas for users to draw annotations on.3 To
allow the existing drawing block to be used as a collaborative annotation tool, the typical
process for using VisConnect is applied: Load the VisConnect script into the current page,
set the collaboration attribute to live for the the current pages body tag, and replace
d3.drag with vc.drag. We include some other code changes to add a user interface, as
shown in Figure 4.1. The annotation methods supported include drawing and highlighting
currently in a choice of ten different colors. The tool also includes a chat feature as to
enable communication during the drawing process.

Aside from annotations, the LWA extension could be useful for collaborative document
review, instruction for novices of complicated user interfaces, or expert data visualizations.

1Source code is available at https://github.com/shash678/Live-Website-Annotate/
2The extension is available at

https://chrome.google.com/webstore/detail/live-website-annotate/njhclbnmjgcghngbbbacndfcnbhgomac
3The core drawing functionality is based on the existing block at

https://bl.ocks.org/nitaku/d79632a53187f8e92b15/

15

https://github.com/shash678/Live-Website-Annotate/
https://chrome.google.com/webstore/detail/live-website-annotate/njhclbnmjgcghngbbbacndfcnbhgomac
https://bl.ocks.org/nitaku/d79632a53187f8e92b15/

Final Report Shash Sinha

Figure 4.1: A scenario where two collaborators are using Live Website Annotate to scruti-
nize a graph on Wikipedia. Live Website Annotate provides three main modes: Annotate
(currently active)–allows annotating with a solid line, Highlight–allows highlighting with
a opaque thicker line, and Interact–allows interaction with the underlying web page. A
text based chat is also available to communicate with other connected collaborators.

4.2 Limitations and future work

The main issue I faced when creating this tool was how to deal with collaborators hav-
ing varying screen sizes and resolutions. After trialing various solutions like dynamically
scaling the SVG canvas, aligning the SVG canvas with specific elements in the document
body, and rendering the underlying webpage in a standard size iframe. I concluded the
most stable solution that allowed for the accuracy desired would be to have all users of
the tool have approximately the same window size. To achieve this, since browser ven-
dors have stopped supporting changing a user’s browsers window size programmatically
for UX concerns, I instead interactively guide users to resize their browser windows to a
standard resolution before allowing annotation to begin. This can be seen in Figure 4.2
and Figure 4.3.

This current browser window resizing flow is not ideal UX—if in the future it could
be simplified further that would be great.

16

Final Report Shash Sinha

Figure 4.2: What a user would see after enabling the Live Website Annotate extension on
the Google homepage when their browser window is too big. Note the browser picture in
the extension menu is animated and shows how the browser window should be resized to
the guidelines in a loop.

Figure 4.3: What the user from Figure 4.2 would see after resizing their browser window to
the guidelines. Note the guidelines are translucent since they are fading out, and similarly
the black toast notification in the menu is animated and will disappear soon.

A straightforward improvement that could be made would be to add the ability to
move LWA’s UI around or to turn it off temporarily. This would solve the issue that for
certain websites the relevant content that you might want to annotate might exist in the
bottom left portion of the users window behind LWA’s UI.

17

Final Report Shash Sinha

4.2.1 Example of directly collaborative synchronous interaction for vi-
sualization

Shortly before the end of the project, I was working on a visualization powered by
VisConnect that required more than one person having to work together at the same time.
This visualization is shown in Figure 4.4.

Figure 4.4: An alpha version of the interface of a COVID-19 collaborative, interactive
quiz where two users are needed to progress. I.e., each user has control over one end of
a maneuverable line that can split the pictogram. Each user needs to attach the end of
the line that they have control over to the edge of the boundary box. While both line tips
are not attached, an area selection is not made, and therefore they cannot submit their
answer and progress to the next question/view how they did.

.

Although this exact example is not the most intuitive. The type of interaction it
shows, (more than one person having to work together at the exact same time), is a kind
of interaction that is really not possible with previous collaborative systems and could be
something to pursue in the future to effectively demonstrate VisConnect’s benefits.

18

Final Report Shash Sinha

5. Conclusion
Overall these past two semesters were a gratifying and edifying experience for my-

self. I learned a lot about the field of visualization and how real-world computer science
research is conducted from the people I worked with. I will definitely make sure to be
on the lookout for opportunities to implement innovative visualizations and participate in
computer science research throughout my career.

19

Final Report Shash Sinha

References
[1] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3 data-driven documents”.

In: IEEE transactions on visualization and computer graphics 17.12 (2011), pp. 2301–
2309.

[2] Sabrina Bresciani and Martin J Eppler. “The benefits of synchronous collabora-
tive information visualization: Evidence from an experimental evaluation”. In: IEEE
transactions on visualization and computer graphics 15.6 (2009), pp. 1073–1080.

[3] The World Wide Web Consortium. Document Object Model (DOM) Level 3 Core
Specification. 2004 (accessed September 24, 2019). url: https://www.w3.org/TR/
2004/REC-DOM-Level-3-Core-20040407/.

[4] The World Wide Web Consortium. HTML 5.2. 2017 (accessed September 24, 2019).
url: https://www.w3.org/TR/2017/REC-html52-20171214/.

[5] The World Wide Web Consortium. Portable Network Graphics (PNG) Specification
(Second Edition). 2003 (accessed September 23, 2019). url: https://www.w3.org/
TR/2003/REC-PNG-20031110/.

[6] The World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 (Second
Edition). 2011 (accessed September 23, 2019). url: https://www.w3.org/TR/

SVG11/.
[7] Petra Isenberg et al. “Collaborative visualization: Definition, challenges, and research

agenda”. In: Information Visualization 10.4 (2011), pp. 310–326. doi: 10.1177/

1473871611412817.
[8] Microsoft. Deep Zoom File Format Overview. 2011 (accessed September 29, 2019).

url: https://docs.microsoft.com/en- us/previous- versions/windows/

silverlight/dotnet-windows-silverlight/cc645077(v=vs.95).
[9] Donghao Ren, Bongshin Lee, and Tobias Höllerer. “Stardust: Accessible and trans-

parent gpu support for information visualization rendering”. In: Computer Graphics
Forum. Vol. 36. 3. Wiley Online Library. 2017, pp. 179–188.

[10] M. Schwab et al. Scalable Vector Graphics: Fast Drop-In Rendering for D3.js. Open
Source Framework, 2019. url: https://osf.io/mea2v/.

[11] M. Schwab et al. VisConnect: Distributed Event Synchronization for Collaborative
Visualization. Open Source Framework, 2020. url: https://osf.io/hkaxc/.

[12] Michail Schwab et al. “EasyPZ. js: Interaction Binding for Pan and Zoom Visual-
izations”. In: 2019 IEEE Visualization Conference (VIS). IEEE. 2019, pp. 31–35.

[13] Dave Shreiner and The Khronos OpenGL ARB Working Group. OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1. 7th.
Addison-Wesley Professional, 2009. isbn: 0321552628.

[14] James J Thomas. Illuminating the path: The Research and Development Agenda for
Visual Analytics. IEEE Computer Society, 2005.

20

https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
https://www.w3.org/TR/2017/REC-html52-20171214/
https://www.w3.org/TR/2003/REC-PNG-20031110/
https://www.w3.org/TR/2003/REC-PNG-20031110/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://doi.org/10.1177/1473871611412817
https://doi.org/10.1177/1473871611412817
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://osf.io/mea2v/
https://osf.io/hkaxc/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Attaining familiarity with SVGs
	Existing /r/dataisbeautiful examples site
	Remade /r/dataisbeautiful examples site using Openseadragon
	Possible future work and current limitations

	Assisting with SSVG Project
	Adding support for Stardust.js
	Limitations and possible future work

	Rewriting and running shape rendering benchmarks
	Future work and limitations

	Assisting with VisConnect Project
	Real-time Collaborative Annotation
	Limitations and future work
	Example of directly collaborative synchronous interaction for visualization

	Conclusion
	References

