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Abstract

The recent advances and widespread availability of high-
resolution satellite imagery and other remote sensing data
have provided new avenues and applications for image anal-
ysis techniques. Satellite imagery is particularly useful in
biological contexts, such as quantifying population dynam-
ics and assessing biodiversity for ecosystem conservation.
However, remote sensing imagery analysis still poses many
challenges, and more research must be done to create effec-
tive and efficient computer-aided tools to best assist biolo-
gists. The present study focuses on the automatic mapping
of flowering trees in the Amazon rainforest to analyze pop-
ulation dynamics. The method uses a convolutional neural
network (CNN) to classify flowering trees and a sliding win-
dow approach to make individual pixel predictions on whole
images. Due to the lack of sufficient labelled data, two ap-
proaches are taken to evaluate the CNN. The first involves
training, validating, and testing on two 8000x8000 pixel
satellite images. The second involves training on only one
satellite image, and testing on the other. The results show
that the proposed CNN currently does not have enough train-
ing data to generalize on other satellite images, but it has
high potential for efficiently automating the process of tree
mapping if more labelled data is supplied. These findings
also demonstrate the possibility of applying deep learning
to satellite imagery analysis in general.

1. Introduction

Recent advances in remote sensing technologies have
greatly advanced our understanding of Earth’s surface and
ecosystems across large spatial gradients [13]. Satellite sen-
sors, for example, can track a variety of information, in-
cluding panchromatic, optical/infrared, thermal infrared, and
radar signals, and are now able to generate data at scales of
time and space aligned with biological processes [15, 13].
Remote sensing has thus been applied to a variety of bio-

logical contexts, such as population dynamics, ecosystem
and biodiversity conservation, and high-spatial-resolution
phenology [13]. Manually analyzing these large and com-
plex datasets is often infeasible, so computer vision and
machine learning techniques are needed to efficiently and
automatically annotate these images [26, 28].

The Kellner Lab at Brown University is currently inves-
tigating the use of satellite imagery to quantify population
dynamics. The images are obtained from constellations of
miniature satellites called CubeSats, which work together to
capture Earth’s entire land surface at 1-3m resolution every
day [13]. They are specifically working on mapping trees
in the genus Handroanthusmap in the Amazon rainforest.
These trees are particularly interesting and useful because
they exhibit conspicuous flowering patterns that can be cap-
tured from space. Only for a few days each year, these trees
produce vibrant floral displays that indicate the individual
is alive and ready to reproduce. By tracking these flowering
displays over successive years and across vast geographic
areas, we can better understand how forests are changing
over time.

The goal of this project is to help analyze these high-
resolution image time series by automating the process of
individual tree detection. Currently, they have explored sev-
eral methods; the two they took the furthest were: 1.) gen-
erating polygons around tree objects, and then classifying
each object based on the minimum spectral angles of the
collection of pixels, and 2.) running a principal component
analysis (PCA) on the 4-band satellite image, then using a
decision tree based on the PCs. However, both approaches
require prior knowledge for detection and manual work by
the researcher, which can get labor intensive and infeasible
when working with larger amounts of data.

In this project, I explore a deep learning approach, where
I train a classifier for tree detection with a convolutional
neural network (CNN). Training was conducted in two ways:
using a single 8000x8000 pixel satellite image and using both
satellite images. Evaluation was conducted by comparing
predictions to ground truths marked by individuals from the
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Kellner Lab. The lack of training data significantly limited
the performance and evaluation methods of the CNN, but the
results present a preliminary classifier that shows potential
for efficiently automating the process of tree mapping.

In addition to the biological applications, this project
also makes contributions to the field of computer vision
and image analysis. The use of deep learning and CNNs on
satellite imagery is still a relatively new field, and a lot of
current research focuses on land coverage analysis through
object detection, semantic segmentation, and image classifi-
cation [20, 9, 18, 16]. However, there are many challenges
associated with using a deep learning approach on satellite
imagery; for example, algorithms must take into account the
high resolution and spatial complexity of images, and unlike
traditional datasets like ImageNet, where objects take up the
majority of the image, objects in satellite images are small
and often densely grouped. There is also a lack of sufficiently
annotated images for training, especially those that are la-
belled pixel-by-pixel [14, 20, 6]. Lastly, images are often
affected by different atmospheric conditions like cloud cover
[17]. Thus, satellite imagery is an exciting new avenue for
computer vision and biology research alike [15, 26].

2. Related Work
Various machine learning algorithms have been used to

classify satellite images and produce feature maps of land
use. More recently, however, deep learning and CNN-based
approaches have shown great potential to outperform these
traditional techniques. The types of deep learning methods
applied to satellite imagery can largely be divided into three
main categories: land surface classification, semantic seg-
mentation, and object detection. Classification aims to assign
labels to entire scenes, while segmentation aims to produce
feature maps that assign a class to each pixel. Object detec-
tion aims to create ”bounding boxes” around parts of the
image that correspond to different labels [2].

2.1. Satellite Image Object Detection

Object detection in satellite imagery remains a very dif-
ficult task, and existing object detection methods cannot be
directly applied. The large input sizes of satellite images of-
ten make computation too slow for practical use, tiny objects
are difficult to detect, and complex backgrounds cause a sig-
nificant amount of false alarms [21, 6]. Etten, for example,
showed that performance is extremely poor when applying
YOLO, a standard object detection network architecture, to
416x416 pixel cutouts of satellite images of cars [6]..

Thus, new architectures must be created for accurate ob-
ject detection. Pang et al. prposed R2-CNN, a unified and
self-reinforced CNN, which joins a classifier used to predict
the existence of targets in each patch with a detector used
to locate these targets accurately [21]. Etten also created a
new network, YOLT, which is optimized for small, densely

packed objects. The pipeline was used to detect both smaller
objects, such as boats and airplanes, and larger objects, such
as airports and roads. Etten found that the pipeline yields an
object detection F1 score of approximately 0.6 - 0.9 if the
model is trained separately for small and large objects [6].

2.2. Satellite Image Classification

Classification tasks in satellite imagery analysis involve
labelling images based on land cover types, such as ”agri-
culture”, ”water”, and ”road.” Other tasks involve analyzing
atmospheric conditions, sorting images into categories such
as ”partly cloudy”, ”hazy”, or ”clear” [22, 16].

Numerous studies have found that CNNs can be used to
classify satellite images with high accuracy. For example,
Rakshit et al. achieved a testing accuracy of 96.71% by adapt-
ing the VGG model architecture to classify images from the
Amazon rainforest. The images were 128x128 pixels with 3
color bands and could be labelled into multiple categories
that described the land cover type, as well as the atmospheric
condition [22]. Kussul et al. compared an ensemble of mul-
tilayer perceptrons, a random forest approach, and a CNN
to classify land coverage and crop types, and found that the
CNN performed the best. For the CNN, they used a sliding
window approach with a 1-pixel step size and 7 × 7 pixel
window size to assign classes to the central pixel of each
sliding window. They attributed the CNN’s success to its
ability to ”build a hierarchy of local and sparse features” as
opposed to a ”global transformation of features” [16].

2.3. Satellite Image Segmentation

Previous studies show two main approaches to using
CNNs for image segmentation: a patch-based approach and
a pixel-to-pixel semantic segmentation approach [12].

The patch-based approach first creates smaller patches
from the input images. The classifier is trained to label the
center pixel of each patch. Then, a sliding window approach
is used to make predictions on each pixel of the entire image
[12]. The task is similar to the image classification technique
described above, but requires additional pre-processing to
generate training data and post-processing to combine pixel-
based predictions. The previously described study by Kussul
et al. is an example of this technique [16].

The second is based on fully convolutional networks
(FCNs) [14, 12]. This approach replaces fully-connected
layers at the end of a neural network with convolutional lay-
ers, so that the output has the same shape as the original input
image. The result is a feature map with category predictions
for each pixel [24]. Napiorkowska et al. demonstrated that a
VGG network, combined with FCN layers, can be used to
detect roads, palm trees and cars in images from Deimos-2
and Worldview-3 satellite images. They were able to achieve
accuracies as high as 98-99%, outperforming more com-
mon techniques in remote sensing such as Random Forest



or Support Vector Machines [20]. Other papers have also
tackled satellite image segmentation with a FCN approach
[14, 2, 9]. Khryashchev et al. compared three different FCN
architectures, U-Net, SegNet, and LinkNet, to compare im-
age segmentation performance for distinguishing between
classes such as ”forest”, ”crops”, and ”water”. They found
that all models displayed high accuracy results [14].

2.4. General Approaches for Object Detection,
Classification, and Semantic Segmentation

Deep learning has many applications outside of satel-
lite imagery and tree mapping problems, and some of these
techniques can be applied to the problems addressed in this
project. Jimenez and Racoceanu used two deep learning ap-
proaches to detect and classify mitosis in histopathological
tissue samples for breast cancer diagnosis. The first method,
a classification based method, involved a pre-processing step
of creating a blue ratio image to detect potential mitosis and
then extracting them as 71x71-pixel patches. These patches
were used as inputs to a fine-tuned version of AlexNet for
binary classification. The second approach, a segmentation
based method, used the U-Net architecture. Both methods
outperform classical image processing techniques. They ar-
gue that the U-Net approach requires further analysis to
improve border detection, but has advantages over AlexNet
in that it eliminates the need for pre/post-processing [10].

Similar to the AlexNet technique used by Jimenez and
Racoceanu, Haehn et al. extracted smaller 75x75 pixel
patches from a larger image, and used these patches as inputs
to a CNN to perform a binary classification task. The goal of
the project was to reduce boundary errors generated from au-
tomatic segmentation and classification of brain tissue. The
patches were created over the center of an existing boundary
and were labelled as having either a correct or erroneous
boundary. Jimenez and Racoceanu raised the issue of high
computational cost involved in the post-processing step of
patch-based classification approaches [10], but Haehn et al.
avoid this issue by only running the CNN on cell boundaries,
rather than analyzing every pixel [7].

2.5. Tree Mapping Using Satellite Imagery

Most of the current tree mapping approaches rely on
hand-crafted features and manual work by the researcher
[23, 1, 27]. For example, Rizvi et al. used an object based
image analysis (OBIA) method for agroforestry mapping,
which involved an in-depth understanding of the spectral in-
formation of trees [23]. Alganci et al. used a similar method
as the techniques proposed by the Kellner Lab to determine
the spatial distribution of olive trees. Their method involved
using geometric correction and a decision-tree classification
approach that integrated spectral properties of the image [1].

Deep learning approaches have only recently been used
for tree mapping. Most of these studies have taken a patch-

based classification approach: smaller samples are collected
using a sliding window technique, and detection results are
obtained by merging the coordinates of the trees from in-
dividual predictions. Both Li et al. and Bhattacharyya et
al. demonstrated high accuracy results using this technique
for detecting and counting oil palm trees and shade trees,
respectively. In both of these studies, predictions were more
difficult because the study area was densely populated, and
the tree crowns often overlapped [18, 3]. Sylvain et al. used
CNNs to detect and map tree health status and functional
type, evaluating the effect of window size, spectral channel
selection, and ensemble learning on classification accuracy.
The researchers found that channel size had a limited effect,
but larger window sizes led to better predictions. Aggregat-
ing multiple predictions using the ensemble approach also
increased classification accuracy [25].

2.6. Summary

Deep learning approaches have shown to outperform tra-
ditional machine learning techniques, but more work still
must be done to efficiently and accurately analyze satellite
imagery. All three of the main satellite imagery analysis
techniques mentioned above–object detection, classification,
and segmentation–can be associated to tree mapping, but
based on the works discussed, image segmentation methods
seem the most promising and relevant. Previous papers have
explored two main approaches for semantic segmentation:
a patch-based classification approach and a pixel-to-pixel
FCN approach. These techniques have not only been used
for satellite imagery analysis, but also for other areas like
boundary correction in connectomics and mitosis detection
in tissue samples [10, 7]. Many of the recent tree mapping
studies have shown successful results using the patch-based
technique. This project attempts to build on these previous
studies and apply deep learning to flowering tree detection
in the Amazon using the patch-based semantic segmentation
approach.

3. Data

In this study, two analytic Ortho tile images acquired on
August 17, 2016 from the PlanetScope Satellite are used.
Each image covers a single 25x25km (8000x8000 pixel) grid
cell from Rondônia, Brazil and comes with 4 multispectral
bands (blue, green, red, near-infrared) 1. These images were
chosen because they are part of a time series during which
some of the flowers emerge and disappear. In addition, the
grid cell covers non-forested areas, which the model can
learn to distinguish from the forested areas.

Planet Labs 2 creates orthorectified tile images by collect-
ing a series of overlapping consecutive scenes from a single

2https://assets.planet.com/docs/Planet_
Combined_Imagery_Product_Specs_letter_screen.pdf

https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf


satellite in a single pass. These images are radiometrically-,
sensor-, and geometrically-corrected and aligned to a carto-
graphic map projection.

The dataset is also extremely imbalanced. Flowering tress
make up a very small proportion of the overall image, so
there are significantly more negative than positive samples.
The imbalance ratio (IR), or skew, is often used to measure
the level of imbalance. However, Luque et al. proposed a new
measure, the imbalance coefficient, which is more intuitive
as values lie within the range of [−1, 1], with δ = 0 indicat-
ing a balanced dataset. The imbalance coefficient, denoted δ,
is calculated as follows:

δ = 2 ∗ mp

m
− 1

where mp is the number of positive samples and m is the
total number of all samples [19]. The first satellite image
has 12,119 positive and 63,987,881 negative pixels, and the
second image has 6,518 positive and 63,993,482 negative
pixels. Both result in δ ≈ −1, indicating an extreme imbal-
ance toward the negative class. This has several implications
for the creation and evaluation of the CNN, which will be
discussed later on.

4. Method
I use a patch-based segmentation approach to detect in-

dividual trees in the images. I first build a CNN trained
to classify the center pixel of each patch as either positive
(containing a flowering tree) or negative (not containing
flowering tree).

Due to the lack of labelled data, I experiment with two
approaches for training the CNN. First, I combine patches
from both satellite images and train the CNN on 70% of this
dataset, validate on 15%, and test on the remaining 15%. The
second experiment uses patches only from the first satellite
image, then tests on the patches generated from the second
image, in order to determine how well the first image can
generalize to the second. For the second experiment, the
CNN is used to predict labels for each pixel using a sliding
window approach.

4.1. Data Preprocessing and Labels

The two satellite images came with corresponding labels
created by individuals from the Kellner Lab. The labelled
images contain green pixels at locations with flowering trees
and black pixels everywhere else; this was converted to an
array of 1s and 0s, representing flowering trees and non-
flowering trees, respectively.

To generate training samples to feed as inputs to the CNN,
all of the coordinates of the green pixels were identified from
the labelled images, and 25x25 pixel patches were created
from the corresponding analytic satellite image, with each
green pixel at its center. This resulted in 12088 positive

Figure 1. Zoom up examples of the high-resolution Ortho tile im-
ages from the PlanetScope Satellite. The images capture individual
flowering trees in the Amazon forest (yellow objects) and cover
both forested and nonforested areas. The examples shown are the
visual (RGB) version of the analytic (RGB and near-infrared) image
used for training.

samples for the first image. To create a more balanced dataset,
12088 pixel locations were chosen at random to create the
25x25 negative sample patches. For the second image, 6518
positive samples were obtained and 6518 negative samples
were chosen at random. An undersampling approach was
chosen due to the extreme class imbalance. Buda et al. found
that oversampling performs better in all cases except for
when there is an extreme class imbalance ratio, in which case
undersampling performs on par with oversampling while
significantly reducing training time [4].

The 25x25 pixel dimension was chosen to be large enough
to encompass an entire tree (most of the trees only span
about 15x15 pixels), as recommended by Sylvain et al.’s
study [25]. This chosen patch size allowed the network



Figure 2. The CNN architecture consists of three convolutional layers with max pooling and dropout regularization. The output is the
probability of finding a flowering tree in the central pixel of the input image patch.

to obtain enough contextual information around the trees
while still maintaining an efficient computing time. I also
tested a 75x75 pixel patch size, but found that this only
increased training and testing time while decreasing classifier
performance.

Due to the lack of sufficient training data, augmentation
was performed on the training set. Three different augmen-
tations were applied: 1.) rotating the patches randomly in
four different angles (0°, 90°, 180°, and 270°). 2.) flipping
the images randomly up/down or left/right 3.) applying both
rotation and flip.

4.2. CNN Architecture

Transfer learning is the process of using weights from
a network pre-trained on a larger dataset, and applying it
to a smaller dataset by fine-tuning. Although this approach
has shown to be very successful, the pre-trained networks
generally only accept 3 band (RGB) images as inputs, which
differs from the 4 band (RGBI) satellite images used in this
study. In addition, the networks are trained on common im-
age datasets like ImageNet, which may have significantly
different features from satellite images [12, 8]. Thus, this
study implements a CNN from scratch, inspired by previ-
ously studied models.

I explored several different architectures. The final CNN
configuration has three convolutional layers, each followed
by max pooling with dropout regularization to prevent over-
fitting 2. Each convolutional layer, except the last one, is
batch normalized with a leaky rectified linear activation
(ReLU). The final layer uses a sigmoid function to generate
binary predictions. The CNN was implemented using Keras
and Tensorflow.

4.3. Classifier Training

The Adam optimizer was used to minimize loss with a
learning rate of 0.001. Loss was measured by the binary
cross-entropy loss function. A batch size of 124 was used.

For the first experiment, 25x25 pixel patches from both

Figure 3. Performance curves from experiment 1, using both satel-
lite images for training and testing. Left: training and testing accu-
racies. Right: training and testing loss.

Figure 4. Performance curves from experiment 2, using only one
satellite image for training and testing. Left: training and testing
accuracies. Right: training and testing loss.

satellite images were used to train the CNN. The dataset
was shuffled and split into a ratio of 70-15-15 for training,
validation, and testing. The model trained for 50 epochs 3.

For the second experiment, 25x25 pixel patches from only
one satellite image were used for training and testing the
CNN. The training dataset was shuffled and split into 70%
for training and 30% for testing. The model trained for 100
epochs but achieved a high accuracy and low loss already
from around epoch 10 4.

4.4. Classification Task

The resulting CNN is able to provide a class label for
every 25x25 pixel patch. Thus, in order to obtain a full
map of predicted locations of flowering trees for a given
satellite image, a sliding window approach is used with a



step size of 1 pixel. The decision of whether to label the
center pixel of each patch as a flowering tree or not is taken
by comparing the output of the CNN to a threshold of 0.5;
a value greater than or equal to 0.5 represents a positive
prediction, indicating the existence of a flowering tree.

The classification task was only performed on the second
satellite image using the CNN trained in experiment 2. This
step was not performed for the first experiment, since both
satellite images were used for training and testing the CNN.

Ideally, if more labelled data were available, the classi-
fication task would be performed on more images to better
evaluate the performance of the CNN.

5. Results

5.1. Evaluation Method and Metrics

To quantitatively evaluate the performance of the CNN,
the following metrics are calculated: accuracy, precision,
sensitivity, specificity, F1 score, geometric mean (GM), and
Matthews correlation coefficient (MCC).

The choice of an appropriate metric was an important
consideration, especially due to the extreme imbalance of
the dataset. While most authors use accuracy and F1 score,
recent papers have shown that these performance metrics are
highly biased and often show overoptimistic inflated results,
especially on imbalanced datasets [19, 5]. Consider accuracy,
for example, on an image where a very small percentage of
the pixels have positive labels–a prediction of all 0’s would
still result in a very high accuracy. F1 score is similarly
biased; it varies if the majority and minority classes are
swapped, and is also independent of the true negatives [5].

Luque et al. argue that the best performance metrics are
sensitivity, specificity, and geometric mean, because they do
not have bias due to imbalance. However, these measures
only focus on the classification successes as opposed to the
errors, so if errors must also be considered, MCC is the
next metric with the lowest bias [19]. MCC incorporates
both dataset imbalance and invariance for class swapping,
taking into account all four values in the confusion matrix [5].
While the first experiment avoids testing on an imbalanced
dataset using undersampling, the second experiment involves
making predictions on the entire satellite image. Thus, I
provide results for all of these metrics, defined as follows:

Total Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall / Sensitivity =
TP

TP + FN
, (3)

Metric Value

total accuracy 0.9918
precision 0.9837
recall/sensitivity 1.0000
specificity 0.9836
F1 score 0.9918
GM 0.9918
MCC 0.9837

Table 1. Evaluation metrics tested on 15% of the dataset for the first
experiment. Training and testing were done using 70% and 15% of
the dataset, respectively, which consisted of 25x25 pixel patches
from both satellite images.

Specificity =
TN

TN + FP
(4)

F1 Score =
2 ∗ precision ∗ recall

precision + recall
(5)

GM =
√

sensitivity ∗ specificity (6)

MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(7)

For the first experiment, the performance of the CNN was
tested on 15% of the dataset, which consisted of patches from
both satellite images. Testing was done at the end of training,
using weights from epoch 50 1. Examples of predictions
versus real labels are shown in Figure 5.

For the second experiment, the entire second 8000x8000
pixel satellite image was used for evaluation. This image
contains 6,518 positive pixels and 63,993,482 negative pix-
els. The model converges from very early on, as shown in
Figure 4. Through testing on a small region of the image,
epoch 50 was found to produce the best results; thus, the
weights saved from epoch 50 were used to make predictions.
Predictions were made on each 25x25 pixel patch using the
classification method described earlier. As the CNN requires
a 25x25 patch, the borders of the image were not used. Table
2 shows the results of the calculated metrics 2. Examples of
predictions versus real labels are shown in Figure 6.

6. Discussion
The model is able to fit very well in both experiments;

the performance curves indicate that the model achieves a
low loss and high accuracy from very early on in the training
phase 3, 4. In addition, the evaluation metrics from testing
in the first experiment are all extremely high 1.

However, the performance metrics from the second ex-
periment are much lower 2. Total accuracy is high, but this
tells us little about the performance of the CNN because of



Figure 5. Examples of predicted tree locations from small 300x300
pixel regions in the second satellite image, generated from exper-
iment 1. The left images are the actual labels, and the right are
predicted locations. Top: locations of trees are well predicted, with
sensitivity = 0.98, specificity = 1.00, GM = 0.99, MCC = 0.85. Bot-
tom: locations are similarly well predicted in another region, with
sensitivity = 0.97, specificity = 1.00, GM = 0.98, MCC = 0.74. The
MCC scores are not as high due to the lower precision scores, but
overall the model predicts locations of the trees almost perfectly.

Metric Value

total accuracy 0.9998
precision 0.2662
recall/sensitivity 0.6563
specificity 0.9998
F1 score 0.3788
GM 0.8100
MCC 0.4179

Table 2. Evaluation metrics tested on the second satellite image
for the second experiment. Training and validation were done us-
ing 70% and 30% of the dataset, respectively, which consisted of
patches only from the first satellite image.

the extreme imbalance of the dataset. The high specificity
shows that the classifier is able to identify true negatives
well, but the lower sensitivity indicates that the classifier
failed to identify the positive patches well.

These results can be attributed to the lack of sufficient
labelled data. The first experiment shows that using all of the
data from both satellite images can make predictions with
very high accuracy, but using only one satellite image is not
enough to generalize to other images. There is simply not

Figure 6. Examples of predicted tree locations from a small
300x300 pixel region in the second satellite image, generated from
experiment 2. The left images are the actual labels, and the right are
predicted locations. Top: a better predicted region, with sensitivity
= 0.99, specificity = 1.00, GM = 0.99, MCC = 0.65. Bottom: a badly
predicted region, with sensitivity = 0.64, specificity = 1.0, GM =
0.80, MC = 0.20. The general locations of the trees are not pre-
dicted poorly, but the CNN over-classifies the regions surrounding
the trees.

enough complexity and variety in a single image, although it
generated more than 12,000 positive samples. Despite this
lack of data, however, the model did not perform too poorly,
with a geometric mean of 0.81 and a MCC of 0.42 when
testing on the second image 2. The example results of the
classification task in Fig. 6 also show a well-predicted and
poorly predicted region. Surprisingly, many of the general
tree locations were actually predicted correctly.

These results reflect an underlying challenge with the ap-
plication of deep learning to satellite imagery. Deep learning
requires very large datasets, but there is a lack of sufficiently
annotated satellite images, especially those that are labelled
pixel-by-pixel [14, 20, 6]. Another issue is the extreme im-
balance when detecting sparse, tiny objects or rare events,
like the flowering of trees that only occur for a few days
each year. Juba and Le found that in highly imbalanced
datasets, the only way to achieve high precision and recall is
to use a large amount of data. None of the tested imbalance-
correcting methods, such as oversampling or undersampling,
were effective in increasing precision and recall. If a large
enough training set is not available, they recommend ”ex-
ploiting some kind of prior knowledge about the domain” to
create an effective classifier [11].

Thus, the most promising way to achieve a higher accu-



racy and correctly predict the locations of flowering trees
using a deep learning approach would be to train on a large
enough dataset. This might be challenging, however, as la-
belling images takes a lot of manual labor and time, and the
amount of labelled data needed to generalize to other areas in
the Amazon, or even other satellite images in general, could
be too large to be feasible. Thus, unless more labelled data
can be obtained, a combined approach of using hand crafted
features along with the features extracted from CNNs could
be useful.

7. Conclusion
In this project, I have explored a deep learning approach

to detect flowering trees from satellite imagery. A patch-
based segmentation approach is used. First, a CNN is trained
to classify the center of a 25x25 pixel patch as either contain-
ing a flowering tree or not. Then, a sliding window approach
with a step size of 1 pixel is used to generate predicted tree
locations for an entire image. Due to the lack of sufficient
data, two experiments were performed to evaluate the per-
formance of the CNN. The first method used both of the
8000x8000 pixel satellite images and a 70-15-15 split for
training, validation, and testing to train and evaluate the
CNN. The second method used only one of the satellite im-
ages to train the CNN, and performed the classification task
on the entirety of the second image.

The results indicate that the CNN was able to fit the data
well–the loss and accuracy of the model converged quickly,
and all performance metrics for the first experiment, includ-
ing geometric mean and MCC, achieved values close to 1.00,
indicating almost perfect performance. However, the results
for the second experiment are significantly worse, with a
geometric mean of 0.81 and MCC of 0.42. This suggests
that with more labelled images, the presented CNN has po-
tential for accurately predicting the presence and location
of flowering trees, but a single satellite image does not have
the complexity required for a CNN to generalize and make
predictions on other images.

The challenges faced in this study reflect an underlying
issue of using deep learning on satellite imagery: the lack
of sufficient labelled training data. Obtaining enough data,
especially those that are labelled pixel-by-pixel, is a very
labor intensive task. Thus, to make the most out of the cur-
rently available satellite images, either more labelled images
need to be generated, or perhaps classical image-processing
methodologies and deep learning approaches can be com-
bined with hand-crafted features to create more efficient
classifiers.

Another challenge faced in this study was extreme imbal-
ance of the dataset–the number of negative samples signifi-
cantly outweighed the positive samples. This project presents
an undersampling approach and discusses the ramifications
that such an imbalance has on the choice of appropriate

evaluation metrics.
This project presents a preliminary CNN-based classifier

that shows potential for automating the process of tree map-
ping using satellite images. Further analysis is needed on
more labelled data in order to improve accuracy and fully
evaluate the performance of the CNN. In addition, for future
study, the time complexity of the classification task could
also be considered. The sliding window approach must loop
through every pixel and make predictions on each 25x25
pixel patch, so it is not very time-efficient. Perhaps an alter-
native segmentation approach can be considered, such as the
use of fully connected networks to generate entire feature
maps more efficiently.
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