
Visual Transfer for Reinforcement Learning
via Wasserstein Domain Confusion

Josh Roy∗
Department of Computer Science

Brown University
Providence, RI 02912
joshnroy@gmail.com

Author

George Konidaris
Department of Computer Science

Brown University
Providence, RI 02912

Advisor

Abstract

We introduce Wasserstein Adversarial Proximal Policy Optimization (WAPPO),
a novel algorithm for visual transfer in Reinforcement Learning that explicitly
learns to align the distributions of extracted features between a source and target
task. WAPPO approximates and minimizes the Wasserstein-1 distance between the
distributions of features from source and target domains via a novel Wasserstein
Confusion objective. WAPPO outperforms the prior state-of-the-art in visual trans-
fer and successfully transfers policies across Visual Cartpole and two instantiations
of 16 OpenAI Procgen environments.

1 Introduction

Deep Reinforcement Learning (RL) has enabled agents to autonomously solve difficult, long horizon
problems such as Atari games from pixel inputs [1, 2]. In high risk domains such as robotics and
autonomous vehicles, RL agents lack the ability to learn from their mistakes without destroying
equipment or harming humans. Instead, it would be preferable to train in simulated domains and
transfer to the real world. However, Deep model-free Reinforcement Learning agents trained on one
environment often fail on environments that require solving the same underlying problem but different
visual input [3, 4]. When transferring from a simulated source domain to a real-world target domain,
this is known as the reality gap [5, 6, 7]. More generally, this challenge is known as generalization in
Reinforcement Learning and is studied by transferring between simulated domains [3, 4, 8, 9, 10].

The main reason for such difficulty in generalization is the tendency of deep networks to overfit to a
single task [8, 9, 3, 11]. For example, an agent that learns to balance the cartpole depicted on the
left of Figure 1 will fail to generalize to the cartpole on the right due to visual differences alone. In
deep supervised learning, this can be addressed by smoothing the learned function using methods
such as data augmentation [12], dropout [13], and regularization [14]. However, these methods are
insufficient for generalization in Deep Reinforcement Learning [3]. Unlike supervised learning,
where all datapoints are drawn from the same underlying distribution, the problem of transferring
between differing RL tasks is akin to that of supervised domain adaptation where datapoints from
source and target tasks are drawn from different distributions [15, 16, 17].

Previous work such as Domain Randomization or Meta-Learning takes a brute force approach to this
problem, training on many source domains before fine tuning on the target domain for 0 or k episodes,
referred to as zero-shot or k-shot transfer, respectively. These methods require a large number of
source domains before they can transfer or adapt to the target domain. Domain Randomization learns
a representation sufficient to solve all source domains, implicitly aligning the distributions of features

∗joshnroy.github.io

Preprint. Under review.

extracted from each domain. It then assumes the features extracted from the target domain will fall
into a similar distribution [6, 18, 19]. Some recent work has attempted to more explicitly align the
feature distributions across domains but assumes access to pairwise correlations of states across
domains [20, 21, 22]. Other work relies upon style-transfer networks to “translate” target domain
states to source domain states before processing [23]. This adds additional computational complexity
during both training and inference and relies upon the quality of the translation network. Further work
attempts to learn the causal structure underlying such a family of visual Markov Decision Processes
(MDPs), leading to a causal representation independent of domain and successful transfer [24]. Both
translation and causal approaches require modeling of variables unrelated to the task given, leading
to additional complexity [23, 24].

We introduce an algorithm that explicitly learns to align the distributions of extracted features between
a source and target task without adding additional computation during inference or assuming access
to pairwise correlations of observations. By simultaneously training an RL agent to solve a source
task and minimize the distance between distributions of extracted features from the source and target
domains, our algorithm enables seamless transfer to the target domain. Specifically, we train an
adversary network to approximate the Wasserstein-1 distance (Earth Mover’s Distance) between the
distributions of features from source and target tasks, and an RL agent to minimize this distance via a
novel Wasserstein Confusion objective while solving the source task [25]. The Wasserstein-1 distance
between distributions can be intuitively described as the effort required to align two probability
distributions by transporting their mass [26]. As shown in [25], minimizing this distance allows
adversarial alignment methods to succeed where other distance metrics such as Jensen-Shannon
divergence fail. Our algorithm outperforms the prior state-of-the-art in visual transfer and successfully
transfers policies across Visual Cartpole, a visual variant of the standard cartpole task where colors
are changed across domains [27], and two varieties of 16 OpenAI Procgen environments [4].

2 Background and Related Work

Reinforcement Learning is concerned with sequential decision making [1]: an RL agent exists within
a world (environment) and must take an action a based on some information about the world (state) s.
This causes the environment to provide the agent with the next state s′ and a reward r. The agent’s
goal is to learn a policy π mapping states to actions that maximizes the expected sum of rewards
E[
∑
t γ

trt], where γ ∈ [0, 1) is a discount factor that weights the importance of short and long term
rewards. Return is defined as the sum of cumulative rewards. The interactions between the agent and
the environment are modeled as a Markov Decision Process (MDP) defined as a 5-tuple(S,A, T,R, γ)
where S is the set of states, A is the set of actions, T is a function mapping from state and action to
next state, R is a function mapping from state and action to reward, and γ is the discount factor.

Model-free Deep RL uses neural networks to predict both the value (expected future reward) of
a state and the optimal action to take. Proximal Policy Optimization (PPO) is a state-of-the-art
model-free policy gradient algorithm for Deep RL [28]. It parameterizes a policy πθ(a|s) and a
value function Vθ(s) that share the majority of their weights, splitting after the “feature extraction”
section of the network. The value network is trained to minimize the mean square error Lvalue =
1
n

∑n
i=1(V (s) − R)2, where R is the return. The policy network is trained to minimize Lpolicy =

−Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât], where Ê is the empirical expected value at timestep
t, Ât is the empirical advantage at timestep t, r(θ) = πθ(at|st)

πθold (at|st)
is the ratio of taking action at given

state st between the current and previous policies, and ε is a small hyperparameter. The two function
approximators are trained jointly, and their combined loss is LPPO = Lpolicy + Lvalue.

2.1 Transfer in Reinforcement Learning

Transfer in Reinforcement Learning has been a topic of interest far before the recent advent of Deep
Neural Networks and Deep Reinforcement Learning. Work on transfer is separated into questions of
dynamics, representation, and goals with environments differing in their states, actions, transition
function, or reward function, respectively [29, 30]. A policy that transfers perfectly is one that trains
on a source MDP and achieves target reward equivalent to that of an agent trained on a target MDP.

The most popular approach in k-shot transfer for RL is Meta Reinforcement Learning. These methods
optimizes a Deep RL agent’s parameters such that it can rapidly learn any specific task selected from

2

a set of tasks. Specifically, the agent first trains on n source tasks and then trains on the n+ 1th task
for k episodes before measuring performance on the n + 1th task [31, 32]. While Meta RL is an
interesting and relevant field of study, it requires the ability to fine tune by training in target domains.

Domain Randomization is the most popular approach to zero-shot transfer in RL. In Domain Ran-
domization, an RL agent trains on a set of n source tasks, implicitly learning a representation and
policy sufficient to transfer to zero-shot transfer to the n+1th task [6, 18, 19]. For successful transfer,
all n+1 tasks must be drawn from the same distribution. Furthermore to enable this implicit learning,
n is required to be sufficiently large that the agent is unable to memorize domain-specific policies.

Some work directly addresses dynamics transfer [33, 34, 35] by parameterizing the transition function
of an MDP and learning a conditional policy that can transfer between such tasks. Other work gener-
ates a curriculum to learn generalizable policies that can adapt to MDPs with differing dynamics [36].
This work is complementary to WAPPO which focuses on appearance-based transfer.

2.2 Visual Transfer in Reinforcement Learning

Visual transfer takes place within a familyM of related Block MDPs M ∈ M each defined by
a 6-tuple (S,A,X , p, q, R) where S is an unobserved state space, A is an action space, X is an
observation space, p(s′|s, a) is a transition distribution over the next state s′ based on the previous
state s and action a, q(x|s) is an emission function that represents the probability of an observation
x based on a hidden state s, and R(s, a) is a reward function that maps from a state and action to a
reward [37, 24]. The emission function q and the observation space X are the only quantities that
change across Block MDPs within a family. Block MDPs are similar to POMDPs but have emission
functions rather than observations functions [37, 38]. Both functions both map from hidden states to
observations but emission functions generate observations that are definitionally Markov [37].

To transfer across different visual domains, Robust Domain Randomization (RDR) [20] aims to learn
a domain-agnostic representation by training an agent to solve n source domains while minimizing
the Euclidian distance between internal representations across domains. It then attempts to zero-shot
transfer the n+ 1th domain. This method shows success in tasks where the background color is the
only varied property, but the visual randomization of complex tasks such as OpenAI Procgen [4]
is far higher. When the training data contains pairs of samples with the same semantic content in
each domain, minimizing the Euclidian distance will align the distributions of representations for
each domain. Without paired data, this will incorrectly align samples with different hidden states,
leading to unreliable representations. Similar works from Gupta et al. and Tzeng et al. learn a pairing
between source and domain images and minimize paired distance, aligning the feature distributions
across domains [21, 22]. However, these methods assume a pairing of images across domains exists
within the data given to the agent, which is unlikely to occur by chance in complex visual domains.

Other work uses causal inference to learn Model-Irrelevance State Abstractions (MISA) [24] for
transfer between Block MDPs. MISA successfully transfers between RL tasks with low-dimensional
states and visual imitation learning tasks with changing background color [24] but not visual RL
tasks. Since this algorithm relies upon reconstructing observations, it must model factors that may not
be relevant to the task. In visual tasks, MISA minimizes mean squared error between observations
and reconstructions, which is demonstrated to ignore small objects due to their low effect on the error
signal [39]. In visual RL, small objects such as the player character are essential to solving the task.

Work in supervised domain adaptation [40] and style transfer [41, 42, 43] translates images to different
“styles” such as those of famous painters by training Generative Adversarial Networks (GANs) to
map from an input image to a semantically equivalent but stylistically different output image. VR
Goggles for Robots [23] aims to transfer RL policies across visually differing domains by using a
style transfer network to translate target domain images into the source domain. This enables an RL
agent trained in the source domain to act in the target domain but adds additional computational and
algorithmic complexity during inference time and relies heavily upon the success of the style-transfer
network [23] as the policy does not train on translated images. As the style transfer network minimizes
the mean absolute error and mean squared error between real and generated images, it prioritizes
modeling factors that utilize a higher number of pixels. In complex visual RL tasks, important factors,
such as the player character, occupy a small number of pixels and recieve low priority [39]. While
style-transfer adds computational complexity and relies upon image reconstruction, other work in
GANs and supervised domain transfer aligns distributions without these drawbacks.

3

2.3 Adversarial Distribution Alignment

Prior work in GANs [44] shows that adversarial methods can align arbitrary distributions of data.
Specifically, given samples drawn from a “real” distribution Pr a GAN learns a mapping from noise
sampled from a Gaussian distribution Pz to samples from a “fake” distribution Pf . It jointly trains an
adversary network to classify samples as real or fake and a generator network to “fool” the adversary,
minimizing the Jensen-Shannon divergence (JS divergence) between the distributions [44].

Some domain adaptation methods in supervised learning uses a GAN-like adversary to align a
classifier’s internal representations across domains and solve the supervised classification analogue of
visual transfer in RL [15, 16, 17]. They each introduce and minimize different distribution alignment
objectives based on minimizing the classification accuracy of the adversary network [17, 15].

GAN-like adversarial algorithms align distributions but are unstable and prone to failures such as mode
collapse [25]. Furthermore, minimizing the JS divergence between two distributions has been shown
to fail is certain cases, such as aligning two uniform distributions on vertical lines [25]. Wasserstein
GANs solve both of these problems by changing the adversarial classifier into an adversarial critic
f that estimates the Wasserstein-1 distance W (Pr, Pf) between real and fake distributions Pr
and Pf [25]. Minimizing Wasserstein-1 distance is more stable and empirically shown to avoid
mode collapse [25]. Though directly estimating the Wasserstein-1 distance is infeasible [25], the
Kantorovich-Rubinstein duality [45] provides a reparameterization that is directly computable. The
gradient of the generator G with weights θ is defined as ∇θW (Pr, Pf) = −Ez∼Pz [∇θf(G(z))].

3 Wasserstein Adversarial Proximal Policy Optimization

Our novel algorithm Wasserstein Adversarial Proximal Policy Optimization (WAPPO) transfers from
any source task Ms to any target task Mt where both Mt,Ms are Block MDPs drawn from a family
M. For any two such tasks, the observation spaces Xs,Xt and emission functions qs, qt are different,
but the hidden state space S, action spaceA, transition function p, and reward functionR are identical.
The Visual Cartpole environments shown in Figure 1 illustrate difference in emission function; the
source domain has a green cart and pole as on a pink background and blue track while the target
domain has a brown cart with a green pole on a green background and yellow track. However, both
environments are defined by the same hidden states (position of the cart and pole), actions (push
the cart left or right), rewards (+1 for keeping the pole upright at each timestep), and transitions
(simulation of physics). Furthermore, the optimal policy that balances the pole is solely a function of
the hidden states representing the position of the cart and pole and not of the colors of the objects.

Figure 1: Example Visual Cartpole Source Domain (Left) and Target Domain (Right). The two
domains contain the same hidden states, actions, rewards, and transitions but differ in their emission
functions resulting in differing observations.

In model-free Deep RL, the agent does not learn the state of its MDP. Instead, by learning a policy
that maximizes its reward, the agent implicitly learns a representation function hθ parameterized by
the first few layers of the RL network that maps from observations x ∈ X to internal representations
r ∈ R. In the Block MDPs defined above, an optimal policy depends solely on the hidden state
space S. Thus, an optimal representation function h∗ will map observations x ∈ X to internal
representations r ∈ R that contain no more information than their corresponding hidden states.

Similarly, there exist optimal representation functions h∗s, h
∗
t for source and target tasksMs,Mt ∈M.

Since the hidden state spaces of Ms,Mt are identical, the optimal policies and representation spaces
Rs,Rt are identical. Thus, there exists a representation function h∗(s,t) that maps from both Xs and
Xm to a representation space R = Rs = Rt that is sufficient to solve both source and target tasks.

4

The goal of Wasserstein Adversarial PPO is to learn a representation function hθ,(s,t) that approxi-
mates the optimal representation function h∗(s,t). It is given the ability to train within Ms and access
a buffer of observations sampled from Mt. Note that the observations from Mt are not paired with
observations from Ms and are not sequential. Further, WAPPO does not have access to rewards from
Mt. Given that Block MDPsMs,Mt both belong to the familyM, they share hidden states, transition
function, and reward function but differ in observations. Therefore, an agent with a domain-agnostic
representation will be able to learn a policy in Ms and transition seamlessly to Mt. We define the
representation function hθ as the first few layers of the RL network with parameters θ. To learn a
domain-agnostic representation, Wasserstein Adversarial PPO jointly learns to solve Ms while using
an adversarial approach to align the distributions of representations from Ms and Mt.

Specifically, Wasserstein Adversarial PPO trains on a dataset D defined as
{(xs, xt, as, rs)1, ...(xs, xt, as, rs)m} where m is the length of the dataset, xs ∈ Xs is an
observation from the source MDP, xt ∈ Xt is an observation from the target MDP, as is an action
from the source MDP, and rs is a reward from the source MDP. Note that xs, as, rs correspond to the
same timestep from the source MDP: the agent takes action as from state xs, receives reward rt,
and transitions to the next state. xt does not correspond to the same timestep as the other variables.
Instead, it is drawn randomly from a buffer of observations from the target MDP. WAPPO uses the
output of an intermediate layer, denoted by hθ(x) as a latent representation r of the observation
x. To enforce that this latent representation x is agnostic to domain, WAPPO approximates h∗ by
minimizing the Wasserstein-1 distance between the distributions of hθ(xs) and hθ(xt).

Similar to supervised adversarial domain adaptation algorithms [15, 16, 17], WAPPO consists of two
networks: the RL network and the adversary network shown in Figure 5 in the Appendix. The RL
network learns a latent representation which is used to compute the best next action and the value of
each observation. This latent representation should be identical across source and target domain. The
adversary network takes the latent representation as input and is trained to distinguish between source
and target tasks. The policy network both maximizes performance on the source task and minimizes
the adversary’s ability to identify the domain. Specifically, the RL network minimizes

LWAPPO = LPPO + λLConf,

where LPPO is the PPO loss and LConf is the loss term that maximally confuses the critic and aligns
the distributions of source and target observations.

The Wasserstein GAN [25] approximates the Wasserstein distance between real and fake distributions
using a neural network. Additionally, it defines a derivative for this distance that is used in optimizing
the loss term for the generator, demonstrating higher stability than the standard GAN loss.

While the Wasserstein GAN loss term seems to align exactly with LConf, it has one key difference. It
assumes that one distribution is fixed, which is not true of domain adaptation. The goal of domain
adaptation is to align two distributions both parameterized by θ. Specifically, we wish to align the
distribution of extracted features from the source domain Phθs with the extracted features of the target
domain Phθt . Note that it is not possible to directly sample from Phθs , Phθt . Instead, we sample from
these distributions by first sampling from the distribution of observations, Ps, Pt and then mapping to
the representation by applying hθ. Thus, the Wasserstein distance is defined as

W (Ps, Pt) = Ex∼Ps [f(hθ(x))]− Ex∼Pt [f(hθ(x))], (1)

where f is the adversarial critic and the gradient is defined as:

∇θW (Ps, Pft) = ∇θ[Ex∼Ps [f(hθ(x))]− Ex∼Pt [f(hθ(x))]]
= ∇θEx∼Ps [f(hθ(x))]−∇θEx∼Pt [f(hθ(x))]

∇θW (Ps, Pt) = Ex∼Ps [∇θf(hθ(x))]− Ex∼Pt [∇θf(hθ(x))]. (2)

Moving the gradient inside the expectation is shown to be correct in the proof of Theorem 3 of [25].

4 Experimental Results

We validate our novel Wasserstein Confusion loss term and WAPPO algorithm on 17 environments:
Visual Cartpole and both the easy and hard versions of 16 OpenAI Procgen environments. To evaluate

5

the ability of the Wasserstein Confusion loss term to align distributions of features across environment
and enable successful transfer, we examine how an RL agent trained using WAPPO on a source
domain performs on a target domain. For each environment evaluated, the agent trains using WAPPO
with full access to the source domain and a buffer of observations from the target domain. The agent
does not have access to rewards from the target domain. We compare WAPPO’s transfer performance
with that of three baselines: PPO, PPO with the feature matching loss as described by Robust Domain
Randomization, the prior state of the art for feature alignment in RL [20], and PPO with VR Googles,
the prior state of the art for domain adaptation in RL [23].

Robust Domain Randomization originally trains on n source domains while matching their features
before attempting to transfer zero-shot to the target domain. It’s main contribution is a feature
alignment loss term. By minimizing this term and aligning the distributions of features extracted from
the n source domains, it hopes that the distribution of features from the target domain will also be
aligned. We directly evaluate RDR’s ability to match distributions of features by training an RL agent
on one source domain and evaluating on one target domain while minimizing it’s feature alignment
loss using observations from each domain. As in the zero-shot setting, the agent’s performance
on the target domain is proportional to the alignment of features from source and target domains.
Furthermore, this enables a direct comparison between the feature alignment loss used in Domain
Randomization and our feature alignment loss, Wasserstein Confusion.

VR Goggles trains an RL agent on the source domain and a style-transfer network between target and
source domain [23]. During evaluation on the target domain, it translates images to the style of the
source domain before applying the RL agent’s trained policy. As VR Goggles utilizes a pre-trained
source agent rather than a new RL algorithm, we report the target performance on Figures 2a, 3, and
4 as a horizontal line. We use the baseline PPO agent as the pre-trained source agent.

Each experiment’s performance is reported across multiple trials with identical random seeds across
algorithms. Visual Cartpole and Procgen Easy are evaluated across 5 trials and Procgen Hard is
evaluated across 3 trials. There is one source domain and one target domain per trial.

4.1 Visual Cartpole

We first demonstrate performance on a simple environment, Visual Cartpole, a variant on the standard
Cartpole environment [27] where observations are RGB images of the Cartpole rather than position
and velocity. Color of the cart, pole, background, track, and axle are varied across domains, converting
the original MDP into a family of Block MDPs where different emission functions correspond to
different colors. A sample source and target environment are shown in Figure 1.

As shown in Figure 2a, Wasserstein Adversarial PPO far outperforms both PPO and PPO using
RDR’s feature matching loss. As shown in Figure 2b, the target features extracted by both PPO and
RDR lie within a very small subset of their corresponding source features. This dense clustering
implies that the target features are not expressive compared to the source features, leading to low
transfer performance. When using Wasserstein Adversarial PPO, the target features are clustered at
similar density with the source features, demonstrating their distributional alignment and leading
to higher reward. The density plots in Figure 2b are generated by reducing the features space to 2
dimensions via Principle Component Analysis (PCA) [46] and estimating a density via Gaussian
kernel density estimation [47]. While VR Goggles outperforms WAPPO and the other algorithms
in Visual Cartpole, it does not in complex visual environments such as Procgen [4]. VR Goggles is
able to perform well in Visual Cartpole as the background color is the only visual distraction and the
cartpole system occupies a majority of the visual observation. We do not visualize distributions of
features for VR Goggles as it operates on the observation space rather than the image space.

4.2 OpenAI Procgen

The remaining 16 environments are from OpenAI’s Procgen Benchmark [4]. This benchmark
originally provides agents n source domains to train on and tests their generalization to a different
target domain. The domains differ according to their emission functions, dynamics, and states. As this
work focuses on visual domain adaptation in Reinforcement Learning, we modify the environments
such that each environment is a family of Block MDPs. All domains in a particular environment have
identical state spaces, transition functions, and reward functions but unique emission functions. This
decouples the different types of transfer and solely focuses on evaluating visual transfer. As in Visual

6

(a) Training Graph. (b) Feature Distributions.

Figure 2: Visual Cartpole Training Graph (a) and Feature Distributions (b): Solid and dashed lines
indicate source and target reward, respectively. Green indicates WAPPO, pink indicates PPO, blue
indicates RDR, and orange indicates VR Goggles. Shading shows standard deviation across 5 trials.
Gray and purple indicate source and target features, respectively. WAPPO has both higher target
reward and better alignment of source and target features than other methods.

Cartpole, we train the agent in one source domain with access to observations from the target domain
and test the agent’s performance on the target domain. The environments vary in the difficulty of
both the source task and generalizing to a new domain. Chaser, Heist, Maze, and Miner revolve
around navigating in 2-dimensional mazes of varying size. This is a difficult task for model-free
deep RL agents as they cannot plan a path betwen maze locations and causes difficulty for all of the
agents evaluated [48]. Furthermore, there are two different instantiations of each environment: an
easy version and a hard version. The easy version of each game has less variation across all factors,
such as colors, layouts, and goal locations [4]. In certain games, the easy version provides additional
hints to the agent that simplify the task, such as an arrow pointing in the direction of the goal.

We report both the reward on each task and the normalized return across all tasks. Normalized return
is calculated by averaging the normalized return on each task Rnorm = (R−Rmin)/(Rmax −Rmin),
where R is the vector of rewards and Rmin, Rmax are the minimum and maximum returns for each
environment as defined by [4]. Note that the minimum and maximum return for each environment
are defined by their theoretical limits rather than the minimum and maximum performance of any
algorithm. This quantity measures the overall source and target performance for each algorithm.

As shown in Figure 3, WAPPO’s target performance exceeds that of the other three algorithms in
14 of the 16 easy environments. In Coinrun and Chaser, the target performance of all algorithms
approximately matches their training performance, demonstrating the environments’ lack of transfer
difficulty. In Chaser, WAPPO’s performance exceeds that of Robust Domain Randomization and
matches that of PPO. In Coinrun, WAPPO matches the performance of RDR and exceeds PPO.

These results are mirrored in the hard versions of the Procgen environments, as shown in Figure 4.
WAPPO’s target performance exceeds that of the other algorithms in 12 of the 16 hard environments.
On Plunder, Chaser, and Leaper, WAPPO matches the performance of PPO and outperforms other
algorithms. Chaser has minimal visual variation, allowing all algorithms match their source and
target performance. On Maze, WAPPO performs worse than PPO but better than other visual transfer
algorithms. Maze tests an agent’s ability to solve mazes and has few visual differences across domains.
Maze solving is difficult for model-free Deep RL agents due to their lack of ability to plan a path
between locations [48]. As shown in Figures 3 and 4, WAPPO’s normalized return on easy and
hard Procgen environments far exceeds that of prior algorithms, demonstrating its superior ability to
generalize to a target domain. Furthermore, aligning source and target distributions allows WAPPO
to ignore distracting visual details in the source domain and achieve higher source domain reward.

7

Figure 3: Procgen (Easy) Training Graph. Solid lines and dashed lines indicate source and target
reward, respectively. Green indicates WAPPO, blue indicates PPO, pink indicates RDR, and orange
indicates VR Goggles. WAPPO matches or outperforms the other algorithms across all environments.

Figure 4: Procgen (Hard) Training Graph. Solid lines and dashed lines indicate source and target
reward, respectively. Green indicates WAPPO, blue indicates PPO, pink indicates RDR, and orange
indicates VR Goggles. WAPPO matches or outperforms the other algorithms across all environments
except Maze which primarily tests path planning ability rather than visual transfer.

5 Conclusion

We address the difficulty in transferring a learned policy across differing visual environments by
explicitly learning a representation sufficient to solve both source and target domains. Previous
approaches have added additional inference-time complexity [23], relied upon pairwise observa-
tions [21, 22], or ignored fine details by relying upon image reconstruction losses [23, 24]. We have
introduced a new method, WAPPO, that does not. Instead, it uses a novel Wasserstein Confusion
objective term to force the RL agent to learn a mapping from visually distinct domains to domain-
agnostic representations, enabling state-of-the-art domain adaptation performance in Reinforcement
Learning. We validate WAPPO on 17 visual transfer environments where our agent both achieves
higher reward in the target MDP and better matches distributions of representations across domains.

8

Broader Impact

Wasserstein Adversarial PPO will enable RL agents to better train in simulation and successfully be
applied to real-world scenarios. This transfer will be especially useful in fields such as robotics and
autonomous vehicles. Thus, it inherits the broader impacts of Reinforcement Learning as a whole
and those of work that makes RL more practical. By increasing the generalization of trained RL
policies, Wasserstein Adversarial PPO works toward enabling robots to help humans in daily life,
ranging from aiding elders in their homes to making autonomous deliveries. This also furthers the
applicability of RL in fields such as factory/warehouse automation and disaster robotics by enabling
RL agents to transfer across different environments. Although Wasserstein Adversarial PPO enables
Deep RL to be applied in a wider variety of domains, it does not solve safety guarantees inherent
to the use of Neural Networks. Specifically, there is no guarantee that a Deep RL agent (trained
with or without the Wasserstein Confusion objective) will act correctly in all situations. As this may
lead to undesirable behavior, we expect WAPPO to be utilized in systems that contain other safety
mechanisms. These mechanisms include but are not restricted to power and force limiting, automatic
breaking, and compliant robotic arms [49, 50]. WAPPO’s contributions are complimentary to that of
current and future safety mechanisms. When both used in the same system, safety mechanisms will
detect and prevent failure cases and WAPPO will enable successful transfer to real-world scenarios.

References
[1] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press,

2018.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[3] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Proceedings of the International Conference on
Machine Learning, pages 1282–1289, 2019.

[4] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

[5] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. Sim2real viewpoint
invariant visual servoing by recurrent control. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4691–4699, 2018.

[6] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 23–30. IEEE, 2017.

[7] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real
image. arXiv preprint arXiv:1611.04201, 2016.

[8] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

[9] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv preprint arXiv:1806.10729, 2018.

[10] Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter
Henry, Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization
challenge in vision, control, and planning. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 2684–2691. AAAI Press, 2019.

[11] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Tom Griffiths, and Alexei Efros. Investigating
human priors for playing video games. In Proceedings of the International Conference on
Machine Learning, pages 1349–1357, 2018.

9

[12] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convolutional neural
networks applied to visual document analysis. In Proceedings of the International Conference
on Document Analysis and Recognition, volume 3, 2003.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[14] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In
Proceedings of the International Conference on Machine Learning, page 78, 2004.

[15] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7167–7176, 2017.

[16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[17] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 4068–4076, 2015.

[18] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. International Journal of Robotics Research, 39(1):3–20, 2020.

[19] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube
with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[20] Reda Bahi Slaoui, William R Clements, Jakob N Foerster, and Sébastien Toth. Robust domain
randomization for reinforcement learning. arXiv preprint arXiv:1910.10537, 2019.

[21] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learn-
ing invariant feature spaces to transfer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949, 2017.

[22] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate
Saenko, and Trevor Darrell. Adapting deep visuomotor representations with weak pairwise
constraints. In Algorithmic Foundations of Robotics XII, pages 688–703. Springer, 2020.

[23] Jingwei Zhang, Lei Tai, Peng Yun, Yufeng Xiong, Ming Liu, Joschka Boedecker, and Wolfram
Burgard. Vr-goggles for robots: Real-to-sim domain adaptation for visual control. IEEE
Robotics and Automation Letters, 4(2):1148–1155, 2019.

[24] Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau,
Yarin Gal, and Doina Precup. Invariant causal prediction for block mdps. arXiv preprint
arXiv:2003.06016, 2020.

[25] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Proceedings of the International Conference on Machine Learning, pages 214–
223, 2017.

[26] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[27] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[29] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

10

[30] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Rein-
forcement Learning, pages 143–173. Springer, 2012.

[31] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Proceedings of the International Conference on Machine Learning,
pages 1126–1135. JMLR. org, 2017.

[32] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2:2, 2018.

[33] Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and
efficient transfer learning with hidden parameter markov decision processes. In Advances in
Neural Information Processing Systems, pages 6250–6261, 2017.

[34] Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A
semiparametric regression approach for discovering latent task parametrizations. In Proceedings
of the International Joint Conference on Artificial Intelligence, volume 2016, page 1432, 2016.

[35] Jiayu Yao, Taylor Killian, George Konidaris, and Finale Doshi-Velez. Direct policy transfer
via hidden parameter markov decision processes. In Proceedings of the Lifelong Learning: A
Reinforcement Learning Approach Workshop, 2018.

[36] Siddharth Mysore, Robert Platt, and Kate Saenko. Reward-guided curriculum for robust
reinforcement learning.

[37] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John
Langford. Provably efficient rl with rich observations via latent state decoding. In Proceedings
of the International Conference on Machine Learning, pages 1665–1674, 2019.

[38] George E Monahan. State of the art—a survey of partially observable markov decision processes:
Theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

[39] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. action-
conditional video prediction using deep networks in atari games. In Advances in Neural
Information Processing Systems, pages 2863–2871, 2015.

[40] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In Proceedings of
the International Conference on Machine Learning, pages 1989–1998, 2018.

[41] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2223–2232, 2017.

[42] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song. Neural
style transfer: A review. IEEE Transactions on Visualization and Computer Graphics, 2019.

[43] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576, 2015.

[44] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[45] Cédric Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business
Media, 2008.

[46] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics
and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

[47] David W Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. John
Wiley & Sons, 2015.

[48] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, pages 2154–2162, 2016.

11

[49] Tanya M Anandan. Safety and control in collaborative robotics. 2013.

[50] Philip Koopman and Michael Wagner. Autonomous vehicle safety: An interdisciplinary
challenge. IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, 2017.

[51] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

[52] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[53] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In Proceedings of the International Conference
on Machine Learning, pages 1407–1416, 2018.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[55] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2):26–
31, 2012.

[56] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of the International Conference on Machine Learning,
volume 30, page 3, 2013.

Appendix

Algorithm

The goal of the RL network is to simultaneously minimize the PPO loss LRL and the confusion loss
LConf. It samples observations, actions, and rewards from the source environment and observations
from the target environment. If then computes and minimizes these losses. f is a function that approx-
imates the Wasserstein distance between the source observation and target observation distributions.
Thus, it should be trained to convergence for every update of the RL network. As in Wasserstein
GAN, it is optimized for ncritic steps for each update of the RL network. This process is outlined in
Algorithm 1. Note that we use the weight clipping method defined in [25] rather than the gradient
penalty method defined in [51] to directly test the effect of the novel Wasserstein Confusion loss term.
We believe that combining Wasserstein Confusion with gradient penalty is a promising direction for
future work.

Algorithm 1: Wasserstein Adversarial PPO
for t = 0, ..., ntimesteps do

for j = 0, ..., ncritic do
Sample {ss,i}mi=1 ∼ Ps a batch from the source domain
Sample {st,i}mi=1 ∼ Pt a batch from the target domain buffer
ðw ← ∇w[1m

∑m
i=1 fw(hθ(ss,i))−

1
m

∑
i=1 fw(hθ(st,i))]

w ← w + α× RMSProp(w,ðw)
end
Sample {ss,i, as,i, rs,i}mi=1 ∼ Ps a batch from the source domain
Sample {st,i}mi=1 ∼ Pt a batch from the target domain buffer
ðθ ← ∇θ[− 1

m

∑m
i=1 fw(hθ(ss,i)) +

1
m

∑
i=1 fw(hθ(st,i)) +

LRL(ss,1, as,1, rs,1, ..., ss,m, as,m, rs,m)]
θ ← θ − α× RMSProp(θ,ðθ)

end

12

https://github.com/openai/baselines

Implementation Details

Figure 5: Network architecture. Layers are represented as rounded rectangles. Blue indicates use in
training the RL policy, orange indicates use in training the critic, and green indicates use in training
both. Note that the network architecture mirrors that of domain confusion and randomization but is
modified to work with Reinforcement Learning rather than Supervised Learning [17, 15, 16]. The
combination of the green and blue networks is identical in architecture to the IMPALA network used to
benchmark the Procgen Environments and mirrors that used in Robust Domain Randomization [4, 20].
Only the green and blue networks were used when measuring the performance of PPO and Robust
Domain Randomization.

There are four algorithms that we implement: PPO, Robust Domain Randomization, VR Goggles,
and WAPPO. All four are built off of PPO [28]. We use the high quality, open source implementation
of PPO provided by OpenAI Baselines [52]. Furthermore, we use the neural architecture and learning
rate provided by [4] as a baseline. This architecture consists of the CNN component from the
IMPALA network [53], which is shared between the policy and value prediction components of PPO.
The value and policy networks then branch and each have one fully connected layer which outputs
the policy or value, respectively. As in [4], we use a learning rate of 5× 10−4. We evaluated with
both the Adam Optimizer [54] and the RMSProp Optimizer [55] but find negligible difference.

For PPO, Robust Domain Randomization, and VR Goggles, the network does not have an adversary.
As such, we used the green and blue sections depicted in Figure 5 to train the PPO agent used in both
these algorithms. The VR Goggles training process is the same as that used in [23]. Specifically,
we collect a dataset of 2000 source domain images and 2000 target domain images and train the
VR Goggles translation network with a learning rate of 2 × 10−4 for 50 epochs. As in [23], we
found no performance gain when using a larger dataset or training for more epochs. As [23] does
not provide an implementation, we re-implement this method by adding their novel shift loss to the
open source CycleGAN implementation [41]. For Robust Domain Randomization, we implement the
regularization loss and use a regularization weight of 10 and as described in [20].

For WAPPO, we use the entire network depicted in Figure 5. The green and blue sections are
optimized according to the PPO loss LPPO and the green and orange sections are optimized according
to the Wasserstein Confusion loss LConf. Similarly to [25], we take 5 gradient steps of the adversary
network per step of the RL network. The adversarial critic network is made of 8 dense layers of width
512, separated by Leaky ReLU [56] activation function.

Observations Across Visual Domains

Two different domains for each of the OpenAI Procgen environment are depicted in Figure 6. To
evaluate the transfer performance of an algorithm, it is trained on one domain and evaluated on the
other. Note that Figure 6 shows one transfer task for each environment but the results in Figures 2a,
3, and 4 are evaluated across multiple trials.

13

(a) Bigfish. (b) Bossfight.

(c) Caveflyer. (d) Chaser.

(e) Climber. (f) Coinrun.

(g) Dodgeball. (h) Fruitbot.

(i) Heist. (j) Jumper.

(k) Leaper. (l) Maze.

(m) Miner. (n) Ninja.

(o) Plunder. (p) Starpilot.

Figure 6: Observations from each of the 16 Procgen Environments. Two different domains are shown
for each environment.

14

	Introduction
	Background and Related Work
	Transfer in Reinforcement Learning
	Visual Transfer in Reinforcement Learning
	Adversarial Distribution Alignment

	Wasserstein Adversarial Proximal Policy Optimization
	Experimental Results
	Visual Cartpole
	OpenAI Procgen

	Conclusion

