
Approximate Logic Synthesis Using
Boolean Matrix Factorization

Jingxiao Ma

Advisor: Prof. Sherief Reda

Submitted in partial fulfillment of the requirements for the
Master’s of Science

Department of Computer Science
Brown University

May 15, 2020

Contents

I Introduction 1

II Previous Work 2

III Background 3

IV Proposed Methodology 4
IV-A Approximate Synthesis Using Boolean Matrix Factorization 4

IV-A1 Factorization Algebra . 5
IV-A2 Output Weights . 6

IV-B Partitioning and Design Space Exploration . 6
IV-B1 Greedy Heuristic DSE . 7
IV-B2 Loss function . 8

IV-C Hyperparameters . 9
IV-C1 Step size . 9
IV-C2 Size of subcircuits . 9
IV-C3 Multi-path exploration . 10

V Experimental Results 10
V-A Work Flow . 10
V-B Number of test vectors . 11
V-C BMF-based Approximate Logic Synthesis . 11

V-C1 Semi-Ring vs Field Algebra . 11
V-C2 Output Weight Schemes . 12

V-D Design Space Exploration . 13
V-E Runtime Characterization . 15

VI Conclusions 16

References 18

https://github.com/scale-lab/BLASYS

Abstract

Approximate computing is an emerging computing paradigm, offering benefits in hardware metrics,
such as design area and power consumption, by relaxing the requirement for full accuracy. In circuit
design, a major challenge is to synthesize approximate circuits automatically from input exact circuits
requiring minimal expert input. In this work we present a method for approximate logic synthesis based on
Boolean matrix factorization, where an arbitrary input circuit can be approximated in a controlled fashion.
Our methodology enables automatic computation of the dominant elements, bases, of the truth table of
the circuit, and later combining the bases to approximate the original truth table. Such compression can
reduce the complexity of the hardware implementation significantly, while introducing different degrees
of error. Furthermore, in our approach, the factorization algorithm can be fine tuned as required by the
application, to effectively improve control over degree of approximation. In this work, we provide a
unified approach enabling the factorization algorithm to utilize semi-ring algebra, field algebra, and a
combination of both for truth table factorization. In addition, we provide an automatic circuit breakdown
approach and a design space exploration heuristic to navigate the search space. We implement our
methodology using a full stack of open-source tools, and thoroughly evaluate our methodology on a
number of representative circuits showcasing the benefits of our proposed methodology for approximate
logic synthesis. Finally, we compare our methodology against a well-established library of approximate
designs, to demonstrate our approach results in state-of-the-art performance.

I Introduction
Since the emergence of power as the main factor limiting the scale of the computational power,

novel techniques have been proposed aiming at reducing the power and energy footprint of conventional
computing systems. Approximate computing is an emerging low-power technique where computational
accuracy is traded for improvements in hardware cost and complexity, e.g. design area, power consumption
or energy cost. Effectively, approximate computing introduces a third dimension (specifically accuracy)
to the conventional design area vs. design delay trade-offs. Approximate computing is effective for
application domains that inherently tolerate small inaccuracies in their output. Such tolerance can originate
from different sources including noise in input data, inherent approximate calculations, or human tolerance
to variations in the outputs. Few examples of such domains include signal processing, machine learning,
computer vision, and computer graphics.

A primary challenge of approximate computing is to devise techniques for automated approximate
circuit synthesis that can generate approximate circuits from arbitrary exact input circuits, while offering
a wide range of trade-off between accuracy and hardware metrics. Such techniques, while less optimized
for specific designs, enable a more versatile approach where any input design amenable to approximations,
can be readily optimized without requiring added guidance from the designer.

The proposed approach utilizes recent advance in multivariate analysis, namely Boolean matrix factor-
ization [1], that can reduce the dimensionality of the problem, by identifying the common bases which
can be later combined to yield the original Boolean matrix. Our methodology operates on truth tables
and introduces approximations in the circuit by simplifying the input truth table based on statistical
analysis [1], [2]. Compared to our previous publications, this article provides the following contributions.
• We provide a unified approach to approximate logic synthesis utilizing matrix factorization. Our

approach utilizes three factorization techniques, relying on different algebra. Such methodology
introduces an exponentially large search space which requires careful navigation.

• In order to improve the scalability of our methodology, we partition an input circuit into manage-
able subcircuits [3], and perform a detailed design space exploration over factorization degrees of
subcircuits to optimize the resulting approximate top-level design. Meanwhile, our approach is able
to handle various error metrics, such as Normalized Hamming Distance (HD), Mean Absolute Error
(MAE), etc.

• We provide a more comprehensive set of experiments, including the well established EPFL [4]
and ISCAS ’85 [5] benchmark suites commonly used in the literature. Evaluation on 15 total

1

benchmarks, we clearly demonstrate the versatility of our proposed technique. Furthermore, we
compare our approximation designs against EvoApproxLib, a library of approximated adder and
multiplier circuits, in order to show that our approach reaches state-of-the-art performance.

• We implement our approach using a full stack of open-source tools, while adopting a more runtime
aware approach and introducing techniques, e.g. parallelization and computation reuse, to reduce the
runtime overhead of our methodology.

The organization of this paper as follows. In Section II we overview relevant previous work on
approximate logic synthesis and the broader approximate computing paradigm. Next, in Section III we
discuss the necessary background on Boolean matrix factorization, as it related to our methodology. In
Section IV, we describe our new approaches, mainly the XOR field-based circuit approximation method
We also describe the integration of our approach in a circuit decomposition and design space exploration
technique. We provide a comprehensive set of experimental results in Section V. The conclusions of this
work are summarized in Section VI.

II Previous Work
Within the approximate computing paradigm, approximations can be introduced in many different

levels of the computing stack [6], [7], ranging from the software and algorithm [8]–[12], to system
architectures [13]–[15], and circuit and transistor levels [16]–[20]. In this section, we briefly discuss
some of the existing researches to explore different aspects of approximate computing and their findings.

First, in software and algorithmic domains, one popular methodology is loop perforation, where the
iterative computation can be stopped prematurely, to reduce the computation cost while introducing errors
in precision [8], [9]. In this domain, approximations based on approximate GPU kernels [10], approximate
compression [11], and approximate parallelization [12] have also been proposed.

In addition, on the computer architecture front, approximate instruction set architectures (ISA) have also
been explored. Esmaeilzdeh et al. proposed an approximate processing pipeline within which approximate
versions of all main arithmetic and logical operations are implemented as an ISA extension [13]. Similarly,
utilization of approximate computing techniques for many specific computing components, such as
dynamic random access memories (DRAM) [14], and cache and register file subsystems [13], [15] have
also been proposed.

On circuit level, voltage over-scaling (VOS) has received significant attention [16]. Here, the operating
voltage is reduced beyond safe operation thresholds reducing the energy consumption. However, the
indeterministic nature of such approximations has resulted in limited applicability of such methodologies.
Logic approximation of the underlying hardware have also been explored. Here, two main approaches
have been evaluated; (i) architectural approximations of specific designs (such as adders and multipliers),
and (ii) automated approximations of arbitrary circuits. Arithmetic blocks, due to their utilization in many
other applications, have received significant attention. Here, approximate adders [17], multipliers [18],
[19], and dividers [20] are few examples where architectural approximations for specific hardware blocks
are proposed.

Approximate synthesis methodologies operating on arbitrary circuits have also been proposed [21]–
[28]. For example, in SALSA, a miter is created to compute the error between the original circuit and the
approximated circuit [22] using existing methodologies in logic synthesis. The don’t cares of the outputs
of the approximate circuit with respect to outputs of the difference circuit can be used to simplify the
approximate circuit using regular logic synthesis techniques. This approach was extended in ASLAN [23]
to model error arising over multiple cycles. In SASIMI [24], a technique is proposed to identify similar
signals, such that their values agree over a large number of input test cases, and then substitute one for
the other, simplifying the logic.

2

For higher-level synthesis, ABACUS generates variants of an input high-level Verilog description file
by applying a set of possible transformations on the circuit to generate a set of mutant approximate
circuit variants [21]. A multi-objective design space exploration technique is then used to identify the
best set of approximate variants. Vasicek et al. propose evolutionary approaches, EvoApprox, on datapath
circuits that are composed of basic arithmetic blocks (e.g., adders and multipliers) and logic blocks [26],
where the exact circuit is encoded in a string-based representation as a ”chromosome” and then a genetic
algorithm mutates the circuit to create approximate versions as long as the error is kept below target.
Raising the approximate synthesis to C-based design, Lee et al. propose a new technique to synthesize
approximate circuit directly from C descriptions [29].

Finally, approximate computing techniques have also been deployed in specific applications such as
deep learning [30], and computer vision. More recently, impact of approximate computing on end-to-end
systems such as biometric security [31], and smart camera system [32] has also been studied.

III Background
In this chapter, we describe problem of Boolean matrix factorization (BMF), as it forms the basis of

our methodology. Then, we briefly discuss some existing algorithms of BMF. Matrix factorization (or
decomposition) is a class of algorithms that propose to factor an input matrix n×m A into two matrices:
a n× f matrix, B, and a f ×m matrix, C, such that A ≈ BC. In many applications the factorization
degree, f , is required to be smaller than m in approximations in the multiplication results. Note that one
can interpret the columns of B as factors or bases that are linearly combined using C.

While generic matrix factorization algorithms allow for both negative and positive matrix entries, non-
negative matrix factorization (NNMF) restricts the elements to non-negative values [33]. Non-negative
values occur in many physical domains, such as computer vision and document clustering [34]. More
recently, NNMF has been extended to Boolean matrix factorization, where all elements of all matrices
are limited to ‘0’s and ‘1’s. Different algebra can be used for the arithmetic [35], [36]. Boolean matrix
factorization algorithms have many applications, including data mining, noise detection, and document
clustering.

Boolean matrix factorization has been proved to be NP-hard [37], which can also be formulated as an
optimization problem solving,

argminB,C|A−BC|, (1)

where the elements of A, B and C are ‘0 or ‘1’. Therefore, many algorithms take a heuristic approach.
For example, in ASSO, an association matrix is computed as candidates of bases vectors using association
rule mining [37]. Intuitively, the association matrix evaluates the likelihood among all pairs of columns
in the input matrix. Then, for each candidate base in the association matrix, ASSO calculates a paired
column by enumerating all possibilities, and picks the optimal pair in order to greedily cover ’1’s in the
input matrix. As it is fast and straightforward, there exists one drawback, such that errors of covering
’0’s by ’1’s are irreversible. Therefore, some improvements have also been proposed, such as clustering
input matrix before factorization or transposing input matrix.

Besides heuristic approach, some other methods have also been studied, which first solve non-negative
matrix factorization problem and then extend to binary case [38]. Penalty function algorithm attempts
to build a loss function and optimize by computing derivatives. Thresholding algorithm aims to solve B
and C in real numbers, and then find thresholds to binarize two matrices. Recently, more methodologies
are proposed, such as using Minimum Description Length principle [36] or Message Passing [39].

3

Fig. 1. General flow of BLASYS for approximate logic synthesis using Boolean matrix factorization (BMF).

IV Proposed Methodology
In this chapter, we first describe our proposed BLASYS methodology for utilizing Boolean matrix

factorization (BMF) in automated approximate logic synthesis. Here, we also discuss our techniques
for improving accuracy and versatility of our methodology, by introducing XOR algebra and weighting
schemes in subsection IV-A. Later on, we discuss the consideration required, when applying the pro-
posed methodology on larger circuits. Since, the proposed BMF based methodology operates on truth
tables, in order to keep the truth table within manageable size, we propose to use circuit partitioning.
We then introduce methodologies for design space exploration (DSE) of the resulting search space in
subsection IV-B.

Figure 1 illustrates the general flow of BLASYS algorithm. As demonstrated in the figure, an input
circuit can optionally be decomposed into smaller subcircuits, if required by its input size. Next, each
subcircuit is approximated to a specific degree, and the approximate components are connected together
to generate the approximate design. For each approximate design, the Quality of Results (QoR) and
design area are evaluated, which is then used for design space exploration and guide the factorization
degree during next iteration. Next subsections describe, in more details, the exact inner workings of the
proposed technique.

A. Approximate Synthesis Using Boolean Matrix Factorization

As discussed in Section III, Boolean matrix factorization is a special extension of matrix factorization,
where all elements of all matrices are limited to ’0’s and ’1’s. There exists an inherent connection between
logic circuits and Boolean matrix, where truth tables of circuits can be represented by Boolean matrix.

To use Boolean matrix factorization methods for approximate logic synthesis, the truth table of the
input circuit is first generated and given as the input matrix for a binary matrix factorization algorithm,
where the factorization degree, f , is chosen to be smaller than the number of outputs of the original
circuit. The two factorized matrices from the algorithm are then treated as truth tables synthesized into
two subcircuits and connected together to generate the approximate circuit as illustrated in Figure 2. In
Figure 2, the first subcircuit receives the n outputs as the original circuit, but instead produces f < m
outputs, and thus referred to as the compressor circuit. The second subcircuit receives f < m inputs
and produces m outputs and thus referred to as the decompressor circuits. In prior work where only
semi-ring Boolean algebra is considered, the implementation of the decompressor is very simple as it
uses a network of only OR gates [1].

4

. . .

n
in

pu
ts . . .

m
 outputs

n
in

pu
ts . . .

f signals
decompressor circuit

(a) original circuit

compressor circuit

(b) approximate circuit using matrix factorization

. . .

. . .

m
 outputs

Fig. 2. Utilization of binary matrix factorization for approximate logic synthesis. (a) an arbitrary input circuit, and (b) the
compressor and decompressor circuits used in binary matrix factorization methodology.

1 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

1 1 0
0 0 1
1 0 0
0 1 0
1 0 1

1 0 1 0 1
0 1 0 0 1
0 0 0 1 0

1 1 1 0 1
0 0 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

(a) input matrix (b) factorization using semi-ring Boolean algebra (c) factorization using field modulo-2 algebra

Fig. 3. Example of binary matrix factorization using different algebra. (a) input matrix, (b) matrix factorization using Boolean
algebra where addition is carried out using logical ORs, and (c) matrix factorization using modulo-2 algebra, where the addition
is carried out using logical XORs. The errors are highlighted in red.

1) Factorization Algebra
Boolean matrix factorization aims at minimizing the number of mismatches between an input matrix

and the approximate multiplication result of the factorized matrices. In Boolean matrix factorization,
the multiplications are carried out using the logical AND operation, and the addition operation can be
either based on semi-ring Boolean algebra, or field modulo-2 algebra. In the case of Boolean matrix
factorization (BMF), the algebra implements a semi-ring algebra, where the addition is carried out using
logical OR, i.e., 1+1 = 1. In the case of field modulo-2 algebra, the addition is carried out using logical
XOR, i.e., 1 + 1 = 0 Figure 3 shows an example of an input matrix as well as the factorized matrices
and their multiplication result for both Boolean and Modulo-2 arithmetic.

Using different arithmetic can result in significantly different characteristics in the factorized matrices
as well as the best approximation degree. In the specific case of Figure 3, modulo-2 algebra generates
better quality of results. Next we describe the utilization of binary matrix factorization methodologies in
the approximate logic synthesis problem.

One possible drawback of using OR-based Boolean arithmetic is that the number of bases from B,
i.e., outputs of the compressor circuits, that can be combined to produce one column in C, i.e., output
of the decompressor circuit, is limited. ORing two bases from B with a ‘1’ in the same location will
lead to a ‘1’ in the corresponding location in the resulting output column, and this result will not change
regardless of any additional bases that can be further ORed with the two. In contrast, in modulo-2 algebra,
1 + 1 = 0, thus a ‘1’ can be reduced back to ‘0’ and therefore combining additional bases in modulo-2
implementation can offer more diversity in the results. Interestingly, modulo-2 based approximate logic
synthesis closely resembles that of the Boolean based approach, where the only differences are (1) a
modulo-2 approach is utilized for the matrix factorization, and (2) the decompressor circuit needs to be
mapped to network of XOR gates instead of a OR gates.

Currently there are no modulo-2 matrix factorization algorithms and the complexity of the problem

5

is unknown [36]. Note that the Boolean counterpart is proven to be NP-Hard, and therefore all existing
algorithms are based on heuristics. To enable our methodology using modulo-2 arithmetic, we devise a
simple heuristic based on the methodologies used for the Boolean matrix factorization. More specifically,
we use ASSO [35], [36] for initial matrix factorization, where we further do an exhaustive search for
the decompressor matrix to minimize the error assuming modulo-2 arithmetic. Note that this operation
incurs a timing complexity of O(m2n) as different columns of the decompressor circuit can be identified
independently.

Finally, as different columns of the decompressor matrix represent different combinations of the
compressor circuits, one can mix the OR-based and XOR-based methodologies, where some outputs
are implemented using OR and other outputs are implemented using XORs, i.e., the decompressor circuit
uses both OR and XOR gates. We refer to this approach as XOR/OR, as it chooses the better outcome
of OR versus XOR results to implement. We will evaluate OR, XOR and OR/XOR methodologies in the
experimental results highlighting the benefit of each in different circumstances.

2) Output Weights
In BMF algorithms, the objective is to minimize ||M−BC||2, which translates to Hamming distance

in Boolean systems. In approximate circuit design, however, such metric does not provide a good
representation of QoR in many cases. As an example, if the columns of a m-column matrix represent
an m bit signal, minimizing the Hamming distance as the cost function can lead to significant errors in
numerical value. For instance, a bit flip in the least significant bit will lead to a numerical error of 1,
whereas a bit flip in the nth bit leads to an error of 2n−1.

To account for the bit significance, we augment existing BMF algorithms with custom QoRs enabling
weighted cost functions. Specifically, we propose to define the cost function as ||(M−BC)w||2, where w
is a constant weight vector, instead of ||M−BC||2 as the standard hamming distance cost function. Here,
if the numerical difference is the objective QoR, then w will be defined to introduce bit significances
based on powers-of-two (e.g., 8, 4, 2, 1); therefore, giving different numerical weights for different bit
positions. In our experiments, we modify the ASSO [36] algorithm as to penalize mismatches on higher
bit indices more than lower significant bits. We will provide experimental results showcasing the benefits
of such weighting schemes in contrast to uniform weights (Hamming distance) in Section V.

B. Partitioning and Design Space Exploration

Since the truth table size of a circuit grows exponentially with the number of its inputs, we break down
any large circuit into sub-circuits, where each sub-circuit has a limited number of inputs (e.g., n ≤ 10) and
then approximate each sub-circuit individually using the proposed binary matrix decomposition method
with mixed OR/XOR decompressor implementation.

As our methodology operates on the truth table of the input circuit, the size of the input matrix, i.e.
the number of rows, grows exponentially as the number of primary inputs increases. Furthermore, BMF
is a NP-hard problem, and the existing methodologies are based on heuristics [33], [35], [36]. Therefore,
the applicability of our method can be limited as the complexity of the circuit increases. Therefore, we
propose a circuit decomposition technique to scale the BMF algorithm for larger circuits. The overall idea
of our method is to first partition a large circuit into a number of subcircuits, such that each subcircuit
has a maximum of k inputs as illustrated in Figure 4.a and then each of the subcircuits is approximated
as shown in Figure 4.b. The values for k and m, the number of outputs, are determined based on the
afforded runtime of the factorization algorithm.

To limit the number of inputs and outputs in subcircuits, we propose to use hypergraph partitioning
algorithm [3] recursively until all subcircuits have a maximum of k inputs and maximum of m outputs.
Also, we will discuss the relation between size of subcircuits and performance of approximation in section
V.

Dividing a large circuit into smaller subcircuits of size k×m requires a change to the way we compute
the QoR. More specifically, we can no longer evaluate the accuracy of a subcircuit in isolation, as errors

6

large	circuit

(a) circuit
decomposition

(b) subcircuit
approximation

f	=	3

f	=	5

f	=	4

f	=	4

f	=	5

f	=	4

f	=	2

Fig. 4. Illustrated methodology for partitioning circuits.

in one component can propagate through the circuit leading to larger errors in the final outputs. Therefore,
in our work instead of evaluating the QoR of a subcircuit individually, we evaluate the QoR of the entire
approximate circuit, denoted by Cir(si → Tsi,fi), where an accurate subcircuit, si, is substituted by its
approximate version, Tsi,fi , with a factorization degree of fi.

1) Greedy Heuristic DSE
Our design space exploration algorithm starts by identifying the sub-circuits; we calculate the possible

approximate realizations for each sub-circuit using various factorization degrees, OR/XOR implemen-
tations. We then greedily explore the space of generated approximate sub-circuits to identify a good
approximation order. We assess the QoR as measured by a user-defined error metric for each of its
approximate realization by substituting the original subcircuit by its approximate realization and evaluating
the outcome using the primary outputs of the circuit. The sub-circuit that leads to the smallest value of
loss function is then chosen, and its approximated realization is then substituted in the main circuit. This
sub-circuit approximation process is repeated until the maximum target error is reached.

Since a large input circuit will have multiple subcircuits, the order and the degree to which the
approximations are introduced to the circuit has to be carefully analyzed. We devise Algorithm 1 to
gradually approximate the circuit. In our algorithm, first, the circuit is partitioned into smaller subcircuits
(line 1). In the next stage (lines 3-9) and for each subcircuit, the set of potential approximate versions
under various approximation degrees are profiled. Next, starting from the accurate design, approximations
are gradually added to the input design by exploring the neighbors of the current design (lines 14-24).
Here, neighbors of a given design are defined as top-level circuits for which the degrees of approximation
only reduce by one in one subcircuit. Here in lines 16-20, each neighbor is synthesized, where its QoR
metric and chip area are assessed. The subcircuit with the least loss value, defined in line 18, is then
chosen to replace the current circuit for next iteration in lines 21-23. The process is repeated iteratively
until the QoR gets higher than a predefined threshold. The output approximation Cir is the one with
smallest chip area in explored design space.

7

Algorithm 1: BLASYS: Boolean Level Approximate Circuit Synthesis
Input : Accurate Circuit ACir, Error Threshold
Output: Approximate Circuit Cir

1 subcircuits=Decompose input circuit ACir by using k-way hypergraph partitioning recursively
2 // Factorization profiling Phase
3 for each subcircuit si with mi ≤ m outputs do
4 M=Construct truth table of si
5 // profile for every possible factorization degree
6 for f=1 to mi-1 do
7 [B,C] = BMF(M, f)
8 Tsi,f=Construct truth table of BC
9 end

10 end
11 // Circuit Space Exploration Phase
12 Cir=ACir;
13 ExploredSpace=Empty List;
14 Let fi = mi for all subcircuits si
15 while QoR(Cir) ≤ threshold +ε do
16 for each subcircuit si with fi > 1 do
17 Cir′=Cir(si → Tsi,fi−1)
18 lossi = (area(Cir′)− area(ACir)) /QoR(Cir′)
19 Add Cir′ into ExploredSpace
20 end
21 b = argmini(lossi)
22 Cir = Cir(sb → Tsb,fb−1)
23 fb = fb − 1
24 end
25 Cir=Best design in ExploredSpace
26 return Cir

2) Loss function
In Algorithm 1, our goal is to reduce design area and power consumption as much as possible with a

fixed error threshold. We choose design area as an estimation of approximation degree, and propose the
following loss metric to greedily explore the design space. Assuming we denote design area of accurate
circuit by area(ACir) , the approximate circuit by area(Ciri), and degradation in QoR by QoR(Ciri),
the loss is defined as

Li =
area(Ciri)− area(ACir)

QoR(Ciri)
(2)

For each iteration, we choose the neighbor with smallest loss to replace the current circuit. Recall that
neighbors of a given design are defined as top-level circuits for which the degrees of approximation only
reduce by one in one subcircuit. To minimize this loss metric, on one hand, a larger degradation in design
area is preferable. On the other hand, since the loss value is negative, a smaller degradation in QoR is
also preferable in order to minimize the loss. The intuition of the loss function is that, the design space
of approximate circuit is expected to reduce sharply, while the design accuracy should remain relatively
high. Thus, we balance the trade-off between reduction in design area and QoR. Although design area
and power consumption are not strictly proportional to each other, design area is a better representative
of circuit complexity, and able to reflect the changes in other metrics in general.

This loss metric performs even better with output weights scheme. Since different outputs could have
different weights in QoR estimation, our loss metric will first explore design space which approximates
less significant output bits, and then gradually move to more significant ones.

The loss function may be further modified in a stepwise manner. In each iteration, we first choose
from designs with very small degradation of QoR (e.g. 0.01%). If there is no better design in this range,

8

Fig. 5. Relationship between average size of subcircuits and design area, for 0.1% Mean Absolute Error on 7-bit unsigned
multiplier.

we then gradually increase the range of QoR degradation. The reason for this stepwise loss metric is to
prevent design accuracy from dropping rapidly.

C. Hyperparameters

Besides Algorithm 1, we also introduce a few hyperparameters, in order to control the range of explored
design space and balance trade-off between runtime complexity and approximate performance.

1) Step size
In Algorithm 1, Cir′ = Cir(si → Tsi,fi−1) (line 17) means that the factorization degree for one

subcircuit is decreased only by one. In practice, in order to factorize truth table efficiently, large input
circuits might be partitioned into hundreds of subcircuits. To speed up Algorithm 1, we are able to set
a larger integer as step size. With a larger value, each approximation realization will take a larger step,
meaning that there will be a more significant reduction in design area and QoR. In this case, the algorithm
will converge more quickly with a set error threshold. On the other hand, larger step size will ignore
many approximate design in-between, lead to smaller exploration space.

2) Size of subcircuits
The first step of Algorithm 1 is to break down input circuit in subcircuits, whose number of inputs and

outputs is limited. Algorithm 1 calls k-way hypergraph partitioning recursively, and may further break
down subcircuits to smaller ones, which introduces more subcircuits. Figure 5 demonstrates relationship
between average size of subcircuits, which is assessed by average number of NAND gates, and the
area of output circuit. We test on 7-bit unsigned multiplier with 0.1% error threshold. Generally, when
average size of subcircuits is smaller, which means input circuit is partitioned into more pieces of
subcircuits, the approximate circuit has smaller design area. On one hand, our algorithm relies on synthesis
capacity. Smaller subcircuit corresponds to smaller truth table, which then leads to smaller truth tables
of compressor and decompressor. In practice, it is easier to optimize synthesis result with a smaller truth
table. On the other hand, with smaller subcircuits, each of them represents less information in terms of
top-level design, and each step of approximation leads to a slower degradation in QoR. With a fixed error
threshold, we are able to explore more designs with smaller subcircuits, which is more likely to end up
with a better approximate design.

However, with smaller subcircuits, the algorithm take longer to converge to the error threshold. As
Algorithm 1 (line 16) suggests, for each iteration, it will evaluate n designs, where n is the number of

9

subcircuits. In practice, having more subcircuits is more likely to improve approximation results, but will
dramatically increase runtime.

3) Multi-path exploration
In Algorithm 1 (line 22), the current design is substituted by the best approximation realization in

each iteration based on the loss metric. In order to expand explored design space for global optimum,
we also propose a multi-path version of greedy DSE. Instead of only choosing the best approximation
realization, the first b best design are chosen as current designs and explored in each iteration. Specifically,
all neighbors of b designs are assessed. Then again, among all neighbors, best b designs are chosen to
substitute original b designs as starting point of next iteration. Multi-path exploration has a larger explored
design space, which is roughly b times than before, and thus often leads to a better design with the same
error threshold.

V Experimental Results
In this section, we discuss our experimental results and highlight the benefits offered by the proposed

methodology. For hardware metrics, all designs are implemented in Verilog and synthesized using ABC
logic synthesis tool [40] using an industrial 65 nm technology node at the typical processing corner.
We evaluate combinational benchmarks available in ISCAS [5] and part of EPFL arithmetic benchmark
suite [4]. For smaller benchmarks, we generate the truth table and directly pass the truth table to the
factorization algorithm. For the larger ones, however, we first decompose the circuit as described in
Subsection IV-B. Furthermore, we compare approximate designs from our algorithm against EvoAp-
proxLib, a library of approximate arithmetic circuits, to demonstrate that our algorithm is able to reach
state-of-the-art performance.

For design accuracy, we report the normalized Hamming distance (HD), which is defined as

Normalized HD =
|A−BC|

Nm
, (3)

and mean absolute error (MAE) defined as

MAE =
1

N
ΣN
i=1

|Ri −R′i|
2m

, (4)

for logical and binary numerical outputs, respectively. Here, N represents the size of the test vectors
while Ri and R′i, represent the accurate and approximate numerical results. m is the number of primary
outputs. Furthermore, for smaller circuits, we define the accuracy over all possible inputs, while for larger
networks, we estimate standard deviation of QoR with different number of test vectors, and choose a
proper size as discussed in the first subsection.

A. Work Flow

In this subsection, we briefly describe the work flow of our methodology. Figure 6 demonstrates various
tools in BLASYS tool-chain, which is used for all following experiments [41].

To begin with, Yosys [42] parses the input exact circuit and assesses its chip area with a given liberty
file, which in our case, is an industrial 65 nm technology node. Using the provided set of test vectors,
Icarus Verilog [43] simulates the input exact circuit, which is then used for QoR estimation.

Next, LSOracle [44] is used to partition the input circuit to multiple subcircuits, each of which has a
similar size. Considering runtime efficiency of Boolean matrix factorization, our methodology partitions
an input circuit until all subcircuits have less than 10 inputs and 10 outputs. Then a set of test vectors
is generated for each subcircuit. We use the ASSO algorithm [36] to factor each truth table based
on a vector called f-stream, which consists of factorization degree for each subcircuit. This vector is

10

https://github.com/scale-lab/BLASYS

Fig. 6. Structure of BLASYS Tool-chain.

determined by the design space exploration method as discussed in Section IV-B. As a result, each truth
table is factorized into a compressor and decompressor. We use ABC [40] to synthesize the compressor
matrix to a circuit and uses a network of logic OR or XOR to represent decompressor, depending on
heuristic search of XOR/OR-based approach. Thus, an approximated version of the input circuit can be
obtained by recombining all approximated subcircuits. Afterwards, we use Yosys to estimate the chip
area of the approximate circuit and executes a simulation using the input set of test vectors. From the
original and approximated simulation results, QoR can be defined arbitrarily based on the functionality of
input circuit. In our experiments, we consider the Normalized Hamming Distance error (HD) and Mean
Absolute Error (MAE). The area reduction ratio and QoR are used to optimize f-stream iteratively as
mentioned in Algorithm 1.

The implementation of work flow is available at http://github.com/scale-lab/blasys.

B. Number of test vectors

Before experimenting our methodology with various benchmarks, we need to create testbench for
each benchmark. Since most benchmarks have large number of inputs, it is impossible to enumerate
all possible combination of test vectors. Therefore, for each benchmark, we generate a set of distinct
random test vectors of size s. To find out proper size for each benchmark, we evaluate standard deviation
of Normalized Hamming Distance with different sizes of test vectors. Specifically, for one benchmark,
we generate 200 random sets of test vectors respectively, from size 100 to 10,000 for every 100, and
assess standard deviation of Normalized Hamming Distance for each size. Figure 7 illustrates relationship
between number of test vectors and standard deviation of Normalized Hamming Distance in Max circuit
of EPFL benchmarks. After reaching 0.1%, reduction of standard deviation becomes slower and standard
deviation begins to converge. Considering runtime efficiency of our algorithm, the number of test vectors
cannot be arbitrary large. Therefore, sizes with 0.1% standard deviation is reasonable in terms of both
accuracy and efficiency. Table I demonstrates the number of test vectors required to achieve below 0.1%
and 0.2% standard deviation of Normalized Hamming Distance in EPFL arithmetic benchmarks.

C. BMF-based Approximate Logic Synthesis

1) Semi-Ring vs Field Algebra
In this section, we compare approximate results among different boolean matrix factorization algebra.

As Section IV-A1 mentions, semi-ring boolean algebra is implemented by ASSO algorithm, which is
also referred to as OR-based. In order to implement field modulo-2 algebra (XOR-based), we perform an
exhaustive search over the results of semi-ring algebra. Specifically, for A ≈ BC, we fix B and greedily
replace columns in C with field modulo-2 algebra. Moreover, we mix OR-based and XOR-based method
and derive XOR/OR-based method. After computing OR-based A ≈ BC by ASSO algorithm, we fix B,
and for each column in C, we do an exhaustive search with both semi-ring algebra and field modulo-2

11

http://github.com/scale-lab/blasys

Fig. 7. Relationship between number of test vectors and standard deviation in Normalized Hamming Distance in benchmark
Max.

TABLE I
SIZE OF TEST VECTORS REQUIRED TO ACHIEVE 0.1% AND 0.2% STANDARD DEVIATION OF HAMMING DISTANCE.

Area 0.2% σ 0.1% σ
Name I/O (um2) Size Size
Adder 256/129 1743.48 700 2100

Barrel shifter 135/128 4878.00 600 2100
Max 512/130 4320.00 1500 4600

Multiplier 128/128 37799.28 500 2000
Sine 24/25 8308.44 2300 9400

Square 64/128 25733.16 5400 -

algebra. Then the one which leads to smallest QoR degradation is chosen. In this case, the decompressor
circuit uses both OR and XOR gates. We evaluate OR-based, XOR-based and XOR/OR-based method
on x2 benchmark in LGSynth 91. Since x2 is a small benchmark, we generate the truth table and
directly pass the truth table to the factorization algorithm without partitioning. Figure 8 demonstrates
the approximate results from three methods. x2 benchmark has 7 output bits. Therefore, each method
derives 6 approximate designs, ranging from approximation degree 1 to 6. According to Figure 8, with
XOR-based and XOR/OR-based method, we make huge improvement in terms of area saving with similar
Hamming distance error. And in most case, XOR/OR-based method has best performance. With 5.47%
Hamming distance error, XOR/OR-based method can save 14.00% design area. For designs with higher
error, XOR/OR-based method can save 34.11% design area with 10.74% Hamming distance error, which
significantly outperforms other two methods.

2) Output Weight Schemes
As Section IV-A2 mentions, considering that significance of output bits may be different, output weights

in BMF algorithm sometimes improve approximate results. For example, with arithmetic circuit which
outputs binary numbers, bit flips in least significant bit and a more significant bit have different impact
on QoR. Therefore, for unsigned arithmetic circuits, we introduce output weight into ASSO algorithm,
where nth output bit has weight 2n−1. We approximate 8-bit unsigned adder with both unweighted and
weighted BMF algorithm. To eliminate the interference of exhaustive search in XOR-based method and
highlight the benefit of using output weights, we only use OR-based method in this section. Figure 9
demonstrates the necessity of using output weights. Since outputs of adder are numerical results, we use
mean absolute error (MAE) as QoR metric. As Figure 9 shows, output weight scheme provides decent

12

Fig. 8. Difference between OR-based, XOR-based and XOR/OR-based method on x2 benchmark.

Fig. 9. Benefit offered by output weight scheme on 8-bit unsigned adder.

approximate results with good QoR performance, while approximate designs from unweighted scheme
have much higher mean absolute error, which are all above 18%. If no output weight is provided,
BMF algorithm will factorize truth table while minimizing number of total flipped bits. However, the
algorithm does not consider bit significance. Therefore, although more bits in truth table are accurate,
more significant bits might be flipped, which leads to much higher mean absolute error.

D. Design Space Exploration

In previous subsection, we approximate small benchmarks x2 and 8-bit unsigned adder by directly
passing the truth table to the factorization algorithm without partitioning. As Section IV-B mentioned,
the size of truth table grows exponentially with the number of primary inputs. In order to approximate
larger circuit, we first partition input circuit into subcircuits with maximum 10 inputs and 10 outputs,
generate truth table for each subcircuits, and perform BMF on each truth table of subcircuit. Since output
bit significance within each subcircuit is hard to analyze, when approximating each subcircuit, we use
XOR/OR-based method and the target QoR metric to evaluate the simulation results that guide the design

13

TABLE II
ISCAS ’85 BENCHMARKS EVALUATED USING THE PROPOSED METHODOLOGY WITH NORMALIZED HAMMING DISTANCE.

Original 5% Error Metric 10% Error Metric 15% Error Metric
Name Area Power Delay Area Power Delay Area Power Delay Area Power Delay

(um2) (uW) (ns) % % % % % % % %
c1355 457.92 64.20 0.81 6.8 6.8 1.7 6.1 6.1 1.7 5.4 5.4 1.7
c17 - - - - - - - - - - - -
c1908 339.84 52.90 1.25 39.3 37.8 28.8 23.9 22.9 23.2 20.0 19.9 23.7
c2670 625.68 219.00 1.16 36.0 28.5 65.4 24.3 19.0 50.6 15.2 13.2 34.5
c3450 959.76 222.00 1.75 60.7 71.6 93.1 56.2 67.1 88.8 50.3 64.4 90.7
c432 152.64 38.60 1.62 85.6 77.7 85.6 83.0 75.1 86.3 71.5 53.6 67.4
c499 460.80 91.50 0.88 47.0 39.8 99.3 21.3 21.9 57.9 19.1 18.7 57.8
c5315 1543.68 487.00 1.31 59.3 58.3 77.2 36.3 32.9 72.1 21.3 18.9 60.7
c6288 3066.84 264.00 4.39 96.3 83.3 91.4 93.7 92.8 92.0 90.3 110.2 97.3
c880 362.16 75.90 1.34 56.6 50.0 53.0 34.5 29.0 32.8 14.3 11.3 25.0

Average 54.2 50.4 66.2 42.1 40.8 56.2 34.2 35.1 51.0

TABLE III
EPFL ARITHMETIC BENCHMARKS EVALUATED USING THE PROPOSED METHODOLOGY WITH NORMALIZED HAMMING

DISTANCE.
Original 5% Error Metric 10% Error Metric

Name Area (um2) Power (uW) Delay (ns) Area % Power % Delay % Area % Power % Delay %
Adder 1325.16 59.40 11.56 89.4 94.8 90.8 79.4 84.0 80.9
Barrel shifter 2828.88 1270.00 2.69 95.8 79.5 105.6 90.0 64.7 88.5
Max 3131.28 851.00 13.45 91.0 65.5 114.3 77.6 58.0 94.3
Multiplier 30417.48 1230.00 12.24 87.7 78.4 99.4 80.5 57.6 93.8
Sine 6608.16 754.00 10.08 84.3 81.2 93.1 71.7 65.2 79.9
Square 24736.32 876.00 9.48 95.8 93.6 85.8 88.5 80.7 75.5

Average 90.7 82.2 98.2 81.3 68.4 85.5

space exploration. In this section, we demonstrate the approximate result with design space exploration on
ISCAS and EPFL benchmarks. We also compare our approximate results against EvoApproxLib, which
is a well-established library of adders and multipliers.

Table II demonstrates approximate designs of ISCAS ’85 benchmarks. Since these benchmarks are
not arithmetic circuits, we use Normalized Hamming Distance as QoR metric. For each benchmark, we
set 3 error thresholds, which are 5%, 10% and 15%, and evaluate best approximate designs for them.
Since c17 benchmark only has 2 primary outputs, our algorithm has only 1 factorization degree, where
Hamming distance is above 15%. Within 5% hammming distance error, on average the area utilization
is 54.18% and power consumption is 50.44% of original. Within 10% Hamming distance error, the area
utilization drops to 42.14% and power utilization is 40.75%. Therefore, our algorithm shows remarkable
saving of area and power on ISCAS ’85 benchmark.

Furthermore, Table III summarizes approximate designs of EPFL arithmetic benchmarks. This bench-
mark suite has 10 circuits, which have larger chip areas than ISCAS ’85. Due to computational capacity,
we test our algorithm on 6 benchmarks. Since EPFL benchmark suite does not provide bit numbering
of outputs, we use normalized Hamming distance as QoR metric. For each benchmark, we set two error
thresholds for approximate design, which are 5% and 10%. Within 5% Hamming distance error, the area
utilization drops to 90.7% and power utilization drops to 82.2%.

Finally, we test our method on four commonly used arithmetic circuits and compare results against
EvoApproxLib, which provides approximate designs for adders and multipliers. Since circuits in EvoAp-
proxLib are synthesized from a different standard cell library, we first synthesize their approximate

14

TABLE IV
COMPARISON BETWEEN EVOAPPROXLIB AND BLASYS ON 7-BIT UNSIGNED MULTIPLIER

EvoApproxLib BLASYS
Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW)
0.0299% 448.20 82.40 0.0290% 445.68 74.40
0.0515% 417.60 79.00 0.0488% 421.92 75.00
0.1400% 351.72 63.10 0.1337% 356.40 61.70
0.2428% 272.16 44.80 0.2369% 317.16 62.40
0.4583% 225.36 41.80 0.4532% 252.72 39.00
1.1330% 133.20 22.30 1.1203% 125.28 19.70
2.2738% 80.64 14.00 2.2298% 69.12 12.30
5.0938% 30.96 4.26 4.4771% 30.96 4.36

TABLE V
COMPARISON BETWEEN EVOAPPROXLIB AND BLASYS ON 8-BIT UNSIGNED MULTIPLIER

EvoApproxLib BLASYS
Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW)
0.0002% 682.92 120.00 - - -
0.0014% 666.72 113.00 0.0011% 640.08 92.10
0.0076% 612.00 106.00 0.0069% 622.44 92.80
0.0370% 522.00 88.20 0.0346% 534.96 72.60
0.1812% 358.56 47.40 0.1757% 413.64 54.60
0.8859% 170.64 24.10 0.7973% 239.76 31.60
4.8338% 26.28 3.42 4.4782% 52.56 5.13

designs with the same industrial 65 nm technology node. Then we use our algorithm to generate designs
using their QoR metrics as thresholds, and compare area and power utilizations. Since outputs represent
numerical value, we use mean absolute error (MAE) as QoR metric. Table IV to VII compare approximate
designs between EvoApproxLib and BLASYS on 7-bit unsigned multiplier, 8-bit unsigned multiplier,
16-bit unsigned multiplier and 16-bit unsigned adder respectively. As a unified approach that generates
approximate designs for general circuit, our algorithm outperforms EvoApproxLib in terms of power
consumption. Among 24 designs of unsigned multipliers, our algorithm has better power utilization in
17 designs. Although we only beat 6 designs in terms of area utilization, the numbers are close in other
designs while ours have better QoR. Figure 10 illustrates the explored design space of our algorithm
compared to designs of EvoApproxLib, where blue points are designs from our algorithm, and red
points are designs from EvoApproxLib. It shows that our algorithm is competitive in terms of area
utilization, and outperforms EvoApproxLib in terms of power utilization. Therefore, our algorithm is
able to reach state-of-the-art performance in many commonly used circuits. Table VII shows that our
algorithm has worse results in 16-bit unsigned adder. Since it is a relatively small design, it has less
number of subcircuits, which leads to a small explored design space. In this case, lack of design space
exploration might sometimes affect performance.

E. Runtime Characterization

In this subsection, we briefly discuss the improvement of runtime. As mentioned in Section IV-A1, the
time complexity of exhaustive search for XOR/OR-based method is O(m2n), where m is the number of
output bits, and n is the number of input bits. In order to speed up this process, we break down input
circuits into subcircuits with maximum 10 inputs and 10 outputs. Also, in practice, to exhaustively search

15

TABLE VI
COMPARISON BETWEEN EVOAPPROXLIB AND BLASYS ON 16-BIT UNSIGNED MULTIPLIER

EvoApproxLib BLASYS
Area Power Area Power

QoR (um2) (uW) QoR (um2) (uW)
3e-10 3056.40 287.00 0.00% 3038.76 265.00

5.7e-09 2900.88 275.00 5.1e-09 2925.72 251.00
4.5e-08 2665.80 246.00 3.4e-08 2702.16 242.00
7.5e-07 2291.76 218.00 7.5e-07 2322.36 215.00
7.3e-06 1735.92 170.00 7.3e-06 1864.80 155.00

0.0110% 1182.24 121.00 0.0110% 1100.16 95.70
0.1000% 732.24 65.60 0.0958% 654.48 49.20
1.5400% 225.72 18.30 1.4824% 166.68 10.60
18.750% 2.16 0.09 - - -

TABLE VII
COMPARISON BETWEEN EVOAPPROXLIB AND BLASYS ON 16-BIT UNSIGNED ADDER

EvoApproxLib BLASYS
Area Power QoR Area Power

QoR (um2) (uW) % (um2) (uW)
0.0002% 167.40 56.50 - - -
0.0018% 134.28 46.40 0.0015% 164.16 51.60
0.0063% 119.52 41.10 0.0034% 145.44 49.10
0.0210% 101.16 34.60 0.0147% 138.60 44.10
0.0570% 85.68 27.60 0.0289% 119.88 35.80
0.2000% 63.72 20.10 0.1996% 92.88 24.90
0.9100% 42.12 13.10 0.7864% 77.40 17.50
3.5200% 24.84 6.42 3.2475% 60.84 11.20
9.9000% 9.72 1.84 - - -

columns in truth table of decompressor, we compute all possible combinations of columns at first, and
then choose the best for each column.

Then, instead of approximating all subcircuits at once as Algorithm 1 suggests, in practice we approx-
imate subcircuits on-demand. The approximation realizations of subcircuits are stored and can be reused
later for other designs. With a multi-core system, we are able to parallel evaluation of designs in each
iteration, since the degrees of approximation is reduced by step size in different subcircuits.

After implementing improvements mentioned above, our method is speed up by 35%. Figure 11
illustrates the distribution of runtime. Due to on-demand approximation of subcircuits and reusing,
subcircuit approximating only takes 0.2% of runtime. Simluation, which is QoR estimation of approximate
designs, takes 33.2% of runtime. And most of runtime is spent on synthesizing top-level designs from
approximate subcircuits using Yosys.

VI Conclusions
In this paper we proposed a new approach for approximate circuit synthesis by generalizing matrix

factorization techniques to incorporate field (XOR) and semi-ring (OR) algebra implementations. This
led to a wider range of possible approximate circuit realizations that can be explored to identify the
best one. We integrated our approach into a design space exploration method with the capability to
partition larger circuits into manageable sub-circuits for approximation. We implemented and evaluated
our approach on a large range of circuits using a number of error metrics such as numerical differences

16

(a) Area utilization of 7-bit unsigned
multiplier

(b) Power utilization of 7-bit unsigned
multiplier

(c) Area utilization of 8-bit unsigned
multiplier

(d) Power utilization of 8-bit unsigned
multiplier

(e) Area utilization of 16-bit unsigned
multiplier

(f) Power utilization of 16-bit unsigned
multiplier

Fig. 10. Comparison between EvoApproxLib and BLASYS. Red points represent designs explored by BLASYS. Blue points
represent designs provided by EvoApproxLib.

Fig. 11. Runtime distribution. Approximate corresponds to the time of approximating subcircuits. Synthesis corresponds to the
time of synthesizing top-level design from sub-circuits. Simulation corresponds to QoR estimation.

and Hamming distances, and we have demonstrated that our method is able to reach state-of-the-art
performance while being flexible for all kinds of input design. Furthermore, we elucidated the large
space of possible approximate designs generated from our approach, and the trade-off between accuracy
and design metrics such as power and area.

Acknowledgment
This work is partially supported by NSF grant 1814920 and DoD ARO grant W911NF-19-1-0484.
We thank Dr. Soheil Hashemi for his work on this project.

17

References
[1] S. Hashemi, H. Tann, and S. Reda, “BLASYS: approximate logic synthesis using boolean matrix factorization,” in Design

Automation Conference, 2018, pp. 55:1–6.
[2] S. Hashemi and S. Reda, “Generalized matrix factorization techniques for approximate logic synthesis,” in 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 1289–1292.
[3] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz, “k-way hypergraph partitioning via n-level

recursive bisection,” in 18th Workshop on Algorithm Engineering and Experiments, (ALENEX 2016), 2016, pp. 53–67.
[4] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational benchmark suite,” in Proceedings of the 24th

International Workshop on Logic & Synthesis (IWLS), no. CONF, 2015.
[5] D. Bryan, “The iscas’85 benchmark circuits and netlist format,” North Carolina State University, vol. 25, p. 39, 1985.
[6] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22,

2015.
[7] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-efficient design,” in 2013 18th

IEEE European Test Symposium (ETS). IEEE, 2013, pp. 1–6.
[8] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing performance vs. accuracy trade-offs

with loop perforation,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 124–134. [Online].
Available: http://doi.acm.org/10.1145/2025113.2025133

[9] S. Li, S. Park, and S. Mahlke, “Sculptor: Flexible approximation with selective dynamic loop perforation,” in Proceedings
of the 2018 International Conference on Supercomputing, ser. ICS ’18. New York, NY, USA: ACM, 2018, pp. 341–351.
[Online]. Available: http://doi.acm.org/10.1145/3205289.3205317

[10] A. Li, S. L. Song, M. Wijtvliet, A. Kumar, and H. Corporaal, “Sfu-driven transparent approximation acceleration on
gpus,” in Proceedings of the 2016 International Conference on Supercomputing, ser. ICS ’16. New York, NY, USA:
ACM, 2016, pp. 15:1–15:14. [Online]. Available: http://doi.acm.org/10.1145/2925426.2926255

[11] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-tuning approximation for graphics engines,”
in 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec 2013, pp. 13–24.

[12] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “Helix-up: Relaxing program semantics to unleash
parallelization,” in Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 235–245. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2738600.2738630

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for disciplined approximate programming,”
SIGPLAN Not., vol. 47, no. 4, pp. 301–312, Mar. 2012. [Online]. Available: http://doi.acm.org/10.1145/2248487.2151008

[14] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving dram refresh-power through
critical data partitioning,” SIGPLAN Not., vol. 46, no. 3, pp. 213–224, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1961296.1950391

[15] P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das, “Exploiting staleness for approximating loads on
cmps,” in 2015 International Conference on Parallel Architecture and Compilation (PACT), Oct 2015, pp. 343–354.

[16] G. Karakonstantis and K. Roy, “Voltage over-scaling: A cross-layer design perspective for energy efficient systems,” in
2011 20th European Conference on Circuit Theory and Design (ECCTD). IEEE, 2011, pp. 548–551.

[17] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic designs,” in Proceedings of the 49th
Annual Design Automation Conference, 2012, pp. 820–825.

[18] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased multiplier for approximate applications,” in
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, ser. ICCAD ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 418–425.

[19] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an underdesigned multiplier architecture,” in
24th International Conference on VLSI Design, 2011, pp. 346–351.

[20] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider for approximate applications,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016, pp. 1–6.

[21] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated high-level generation of low-power approximate
computing circuits,” IEEE Transactions on Emerging Topics in Computing, pp. 1–13, 2016.

[22] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan, “Salsa: Systematic logic synthesis of
approximate circuits,” in DAC Design Automation Conference 2012, June 2012, pp. 796–801.

[23] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “Aslan: Synthesis of approximate sequential circuits,”
in Design, Automation & Test in Europe Conference, 2014, pp. 1–6.

[24] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify: A unified design paradigm for approximate and
quality configurable circuits,” in Design, Automation and Test in Europe, 2013, pp. 1367–1372.

[25] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis under general error magnitude and frequency
constraints,” in Proceedings of the International Conference on Computer-Aided Design, 2013, pp. 779–786.

[26] Z. Vasicek and L. Sekanina, “Evolutionary design of complex approximate combinational circuits,” Genetic Programming
and Evolvable Machines, vol. 17, no. 2, pp. 169–192, Jun 2016.

18

http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/3205289.3205317
http://doi.acm.org/10.1145/2925426.2926255
http://dl.acm.org/citation.cfm?id=2738600.2738630
http://doi.acm.org/10.1145/2248487.2151008
http://doi.acm.org/10.1145/1961296.1950391

[27] S. Frohlich, D. Grobe, and R. Drechsler, “Error Bounded Exact BDD Minimization in Approximate Computing,” in
International Symposium on Multiple-Valued Logic, 2017, pp. 254–259.

[28] ——, “Approximate hardware generation using symbolic computer algebra employing grobner basis,” in Design, Automation
and Test in Europe, 2018, pp. 889–892.

[29] S. Lee, L. K. John, and A. Gerstaluer, “High-level synthesis of approximate hardware under joint precision and voltage
scaling,” in Design, Automation and Test in Europe, 2017.

[30] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn: energy-efficient neuromorphic systems using
approximate computing,” in 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).
IEEE, 2014, pp. 27–32.

[31] S. Hashemi, H. Tann, F. Buttafuoco, and S. Reda, “Approximate computing for biometric security systems: A case study
on iris scanning,” in 2018 Design, Automation Test in Europe Conference Exhibition (DATE), March 2018, pp. 319–324.

[32] A. Raha and V. Raghunathan, “Towards full-system energy-accuracy tradeoffs: A case study of an approximate smart
camera system*,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), June 2017, pp. 1–6.

[33] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, pp.
788–791, 1999.

[34] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix factorization,” in Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in informaion retrieval, 2003, pp. 267–273.

[35] P. Miettinen and J. Vreeken, “Model order selection for boolean matrix factorization,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 51–59.

[36] ——, “Mdl4bmf: Minimum description length for boolean matrix factorization,” ACM Transactions on Knowledge
Discovery from Data, vol. 8, no. 4, pp. 18:1–31, 2014.

[37] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila, “The discrete basis problem,” IEEE transactions on
knowledge and data engineering, vol. 20, no. 10, pp. 1348–1362, 2008.

[38] Z. Zhang, T. Li, C. Ding, and X. Zhang, “Binary matrix factorization with applications,” in Seventh IEEE International
Conference on Data Mining (ICDM 2007). IEEE, 2007, pp. 391–400.

[39] S. Ravanbakhsh, B. Póczos, and R. Greiner, “Boolean matrix factorization and noisy completion via message passing.” in
ICML, 2016, pp. 945–954.

[40] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification tool,” in International Conference on
Computer Aided Verification. Springer, 2010, pp. 24–40.

[41] J. Ma, S. Hashemi, and S. Reda, “Approximate logic synthesis using blasys,” 2019.
[42] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/, 2016.
[43] S. Williams, “Icarus verilog,” http://iverilog.icarus.com/, 2006.
[44] W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and P.-E. Gaillardon, “Lsoracle: a logic synthesis framework driven

by artificial intelligence,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November 2019.

19

http://www.clifford.at/yosys/
http://iverilog.icarus.com/

	Introduction
	Previous Work
	Background
	Proposed Methodology
	Approximate Synthesis Using Boolean Matrix Factorization
	Factorization Algebra
	Output Weights

	Partitioning and Design Space Exploration
	Greedy Heuristic DSE
	Loss function

	Hyperparameters
	Step size
	Size of subcircuits
	Multi-path exploration

	Experimental Results
	Work Flow
	Number of test vectors
	BMF-based Approximate Logic Synthesis
	Semi-Ring vs Field Algebra
	Output Weight Schemes

	Design Space Exploration
	Runtime Characterization

	Conclusions
	References

