
Assembly of 3D Rooms into Floor Plans from Retrieved Layouts

LEON LEI
BROWN UNIVERSITY
MAY 14, 2020
ADVISOR: DANIEL RITCHIE

Fig. 1. Sequence of building up a floor plan. At each step, rooms are retrieved and their positions are optimized before insertion.

3D scene data is in high demand but current options are limited. Given
this disparity, we propose to learn from existing floor plans and generate
new data by retrieving and arranging rooms in novel ways, optimizing
the geometry of the new layout, and editing existing 3D meshes to yield
new 3D floor plans. This paper provides a high-level overview of the entire
pipeline but focuses primarily on the design and implementation of the
layout optimizer (Section 5) and its contribution to the overall pipeline.

1 INTRODUCTION
Despite an increasing demand for 3D scene data, current options are
fairly limited. Synthetic data is usually not realistic enough, whereas
scanned data is only available in limited quantities. The benefits
of having large quantities of data are tremendous and can result
in greatly improved results when training vision or reinforcement
learning tasks. Despite the relative scarcity of 3D floor plan data,
we noticed that 2D floor plan data is available in large quantities.
Given this disparity, we propose a novel paradigm of retrieving,
optimizing and editing rooms from existing layouts to assemble
new structures.

2 BACKGROUND & RELATED WORK
Several previous works share the same goal of generating floor plans
[Merrell et al. 2010] [Liu et al. 2013] [Wu et al. 2019], however our
approach is intended to be more flexible and aims to assemble exist-
ing data rather than provide a method of unconstrained generation.
In the context of the layout optimizer, our formulation draws most
from [Wu et al. 2018]. Other projects in the realm of scene synthesis
also share similar ideas to ours [Yu et al. 2011] [Fisher et al. 2012] [Li
et al. 2018] [Zhang et al. 2018] [Wang et al. 2018] [Ritchie et al. 2019]
[Wang et al. 2019], but floor plans constitute a different domain and
thus require different methods.

3 OVERVIEW
The overall pipeline of our method can be seen in Figure 2. In this
paper, we provide an overview of the entire pipeline but focus
primarily on the contributions of the layout optimizer (Section 5).
In the first stage of the pipeline, we want to take existing 3D

room data and use them to assemble novel configurations. Starting

with a graph describing the floor plan, we retrieve rooms that are
likely to match the graph along with a partially complete floor plan.
This is done with a neural network that combines both graph and
image-based features, and trained with a embedding loss similar
to that in [Sung et al. 2017]. Since there is a limited amount of 3D
room data, we first learn from a dataset consisting of 2D floor plans.
Next, since the layout retrieved by the previous stage of the

pipeline is unlikely to have rooms that already fit together perfectly,
we want to make changes to the room geometry by setting up and
solving an optimization problem.
Finally, we can convert the generated floor plan to a full 3D

scene by transferring the changes of the optimized 2D layout to its
3D counterpart. We propose two possible methods for doing this:
either by applying a straightforward interpolation or by applying
As-Rigid-As-Possible (ARAP) deformation to the original mesh.

4 ASSEMBLING FLOOR PLANS VIA ROOM RETRIEVAL
The overall idea is similar to [Wang et al. 2019], in which the relation
graph is used as a guide and missing details are filled in. Directly
finding rooms that fit together perfectly will leave each insertion
with a very limited number of options and is also challenging to learn
(would need to learn a joint parameterization of exact polygonal
shapes and their locations). Instead, we adopt a metric learning
perspective [Sung et al. 2017]. Instead of predicting rooms that will
fit perfectly, we learn an embedding of rooms, such that similar
rooms are grouped closer to each other. Given a partial floor plan,
the goal is then to predict a distribution over the embedding space
of rooms that will yield rooms that can fit well into the current
floor plan. This is not going to be a perfect fit, so we need to run
an additional optimization process after every step to resolve the
conflicts.
In learning to retrieve rooms, we jointly train two networks,

like [Sung et al. 2017]: The first of these is a retrieval network that
takes the relation graph, as well as the current partial floor plan, and
predicts a distribution over the likely rooms. The second of these is
an embedding network that takes a room, and predicts its position



2 • Assembly of 3D Rooms into Floor Plans from Retrieved Layouts

Database of floor plans

Database of 3D rooms

Graph

Floor plan
relation graph

Learn to generate

2D Plan

Current 2D floor plan

Current graph

Graph
Highlight

next-node-to-add

Retrieve

3D 
Room

3D 
Room

3D 
Room

3D 
Room

...

2D Plan
Insert 2D & 
Optimize 2D Plan

Final 2D floor plan

2D Plan

3D floor plan

Fit 3D Rooms 
to 2D Layout

Generating Floor Plan Graphs (Section 4) Assembly via Room Retrieval (Section 5)

Conversion to 3D (Section 6)

Fig. 2. Overall pipeline of our method. Floor plans are retrieved from the graph and inserted after an optimization step. The changes are then applied in 3D.

in the room embedding space. The two networks share the same
embedding space, and are trained jointly.

5 OPTIMIZING RETRIEVED LAYOUTS
Given a list of rooms represented as 2D rectilinear polygons, the
goal of the layout optimizer is to piece together these rooms in such
a way so as to produce a valid final arrangement for the floor plan.
Since the set of rooms selected by the retrieval network is likely to
be a novel combination, it is unlikely that the selected rooms will
naturally fit together as is. Furthermore, the graph representation
obtained through the retrieval pipeline is not very sensitive to the
geometry of the floor plan, and if left unchecked can result in a floor
plan with various issues such as spatial gaps between rooms. To
ensure that the final floor plan has certain intrinsic qualities such
as non-overlap of rooms and adjacency of room portals, we solve
an optimization problem to satisfy all imposed constraints while
minimizing the overall distortion of rooms in the final layout. Our
formulation requires mixed integer quadratic programming (MIQP)
as a result of having a quadratic objective function and the need for
Boolean variables in expressing the constraints.

5.1 Basic Formulation
We can start with a simplifying assumption and only consider rooms
that are rectangles rather than arbitrary 2D rectilinear polygons. In
our solver, we express each rectangle 𝑖 in terms of 4 variables: its
upper-left vertex position ⟨𝑥𝑖 , 𝑦𝑖 ⟩, its width𝑤𝑖 , and its height ℎ𝑖 .

Objective function: We want the initial arrangement of rooms
to distort as little as possible. There are two options for this: we
could either choose to just penalize changes in the width/height of
rooms, or we could also choose to penalize changes to the positions
of rooms in addition to their widths/heights. Depending on the
usage and desired results, both approaches are reasonable, and we
set up our objective function to minimize the amount of distortion
in both instances. The amount of distortion can be defined as a least
squares, i.e. the sum of the squared differences between the initial
and final values of variables. Thus, our objective is simply:

minimize ∥𝐴x − b∥22 (1)

where 𝐴 is the identity matrix, x is a vector of variables, and b is a
corresponding vector of initial values.
We also define the following categories of constraints similar to

those in [Wu et al. 2018], for all rectangles 1 ≤ 𝑖 ≤ 𝑁 where 𝑁 is
the number of rectangles:

Non-negativity: We define all variables to be non-negative
so that our solution lies in the positive quadrant and no output
rectangles have a negative width and height:

𝑥𝑖 , 𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ≥ 0 (2)

Bounding box: We want our solution to lie within a provided
bounding box, i.e. no corners of any rectangles fall outside of the
predefined range. Let 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 represent the upper-bounds of the
range. Then, the constraints can be expressed as:


𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝑦𝑖 ≤ 𝑦𝑚𝑎𝑥

𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑚𝑎𝑥

𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑚𝑎𝑥

(3)

Non-overlap: We require the solution to have no overlapping
rectangles between any given pair of rooms 𝑖, 𝑗 . There are four pos-
sible relationships to account for: 𝑖 is either to the top, bottom, left,
or right side of 𝑗 . Let 𝐷 ∈ {𝑇, 𝐵, 𝐿, 𝑅} represent these relationships
respectively. For example, 𝐷 = 𝐿 means that 𝑖 is to the left of 𝑗 .
Expressed as constraints, these are:


𝑥𝑖 −𝑤 𝑗 ≥ 𝑥 𝑗 ,when D = R
𝑥𝑖 +𝑤𝑖 ≤ 𝑥 𝑗 ,when D = L
𝑦𝑖 − ℎ 𝑗 ≥ 𝑦 𝑗 ,when D = B
𝑦𝑖 + 𝑑𝑖 ≤ 𝑦 𝑗 ,when D = T

(4)

However, we can’t apply these constraints all at once because at
the time of optimization we won’t knowwhich of the 4 relationships
would result in the best arrangement. Instead, we let the optimizer
select for this relationship by introducing an auxiliary binary vari-
able 𝜎𝐷

𝑖,𝑗
. When 𝜎𝐷

𝑖,𝑗
= 1, rectangles 𝑖 and 𝑗 have the relationship 𝐷 .



Assembly of 3D Rooms into Floor Plans from Retrieved Layouts • 3

This results in the following set of constraints for each pair 𝑖, 𝑗 :

𝑥𝑖 −𝑤 𝑗 ≥ 𝑥 𝑗 −𝑀 · (1 − 𝜎𝑅
𝑖,𝑗
)

𝑥𝑖 +𝑤𝑖 ≤ 𝑥 𝑗 +𝑀 · (1 − 𝜎𝐿
𝑖,𝑗
)

𝑦𝑖 − ℎ 𝑗 ≥ 𝑦 𝑗 −𝑀 · (1 − 𝜎𝐵
𝑖,𝑗
)

𝑦𝑖 + 𝑑𝑖 ≤ 𝑦 𝑗 +𝑀 · (1 − 𝜎𝑇
𝑖,𝑗
)∑4

𝐷=1 𝜎
𝐷
𝑖,𝑗

≥ 1

(5)

where𝑀 is a large constant to ensure that rectangles 𝑖 and 𝑗 do not
overlap in direction 𝐷 when 𝜎𝐷

𝑖,𝑗
= 1. When 𝜎𝐷

𝑖,𝑗
= 0, the inequality

is always satisfied, so we need to add the last constraint which re-
quires that at least one of the four auxiliary variables has a value of
1.𝑀 is set to 𝑥𝑚𝑎𝑥 + 𝑦𝑚𝑎𝑥 in our implementation.

Rectangle adjacency: Since the output of the retrieval pipeline
includes adjacency relationships between rooms, e.g. the living
room is adjacent to the bedroom, we want the optimizer to be
able to enforce these adjacencies in the final solution. To achieve
this, we add constraints so that the two rooms will overlap, and in
combination with the non-overlap constraint this forces the overlap
to occur only on the edges of the rooms. Additionally, it can be
useful to specify the length of overlap 𝐿𝑖, 𝑗 between two rooms for
instance if there is a door or opening along the walls of the room. As
with the non-overlap constraints, we can introduce a binary variable
𝜃𝑖, 𝑗 to determine the direction of connection, where 𝜃𝑖, 𝑗 = 1 means
the connection is vertical and otherwise it is horizontal.

𝑥𝑖 ≤ 𝑥 𝑗 +𝑤 𝑗 − 𝐿𝑖, 𝑗 · 𝜃𝑖, 𝑗
𝑥𝑖 +𝑤𝑖 ≥ 𝑥 𝑗 + 𝐿𝑖, 𝑗 · 𝜃𝑖, 𝑗
𝑦𝑖 ≤ 𝑦 𝑗 + ℎ 𝑗 − 𝐿𝑖, 𝑗 · (1 − 𝜃𝑖, 𝑗 )
𝑦𝑖 + ℎ𝑖 ≥ 𝑦 𝑗 + 𝐿𝑖, 𝑗 · (1 − 𝜃𝑖, 𝑗 )

(6)

Ignore rooms: We also provide the ability to specify optional
constraints that fix the size and position of a room in the final
solution. This is useful from the perspective of building a room
layout iteratively, where we have already determined an optimal
arrangement for some number of rooms and are now trying to add
an additional room to the existing layout. These variables could also
be refactored out of the optimization problem, although the effect
is negligible. An experiment was conducted which removed these
variables and constraints from the optimization problem, with no no-
ticeable difference in solve times. Given initial values {𝑥 ′

𝑖
, 𝑦′

𝑖
,𝑤 ′

𝑖
, ℎ′

𝑖
},

the constraints are simply to set each variable of an ignored room
to be equal to its initial value.

Next, we expand our set constraints to handle rooms represented
as arbitrary 2D rectilinear polygons and not just as rectangles.

5.2 Maximal Decomposition of Rooms into Rectangles
To simplify and make our constraints easier to express, our algo-
rithm first takes the initial set of rooms represented as arbitrary 2D
rectilinear polygons and computes a maximal rectangle decompo-
sition (See Figure 3). A maximal rectangle decomposition has the
property such that two adjacent rectangles will always share their
edge completely. This makes it easy to impose additional constraints
to bind the decomposed rectangles of a given room together in the

Original Rooms Decomposed Rectangles

Fig. 3. Example of a floor plan before and after decomposition

final solution. In combination with the individual constraints on
each rectangle, the final solution preserves the properties of the
room while also satisfying all the other constraints imposed on rect-
angles. Without this initial decomposition step, constraints such as
non-overlap quickly become unfeasible to express linearly, because
unlike in rectangles, the shapes of arbitrary rooms are non-convex.

Decomposition constraints: For each room that has been de-
composed into rectangles, we introduce the following constraints for
all pairs of rectangles 𝑖, 𝑗 such that 𝑖 is to the left of 𝑗 (the rectangles
share a vertical edge): 

𝑥𝑖 +𝑤𝑖 = 𝑥 𝑗

𝑦𝑖 = 𝑦 𝑗

ℎ𝑖 = ℎ 𝑗

(7)

and the following constraints for all pairs of rectangles 𝑖, 𝑗 such that
𝑖 is to the top of 𝑗 (the rectangles share a horizontal edge):

𝑦𝑖 + ℎ𝑖 = 𝑦 𝑗

𝑥𝑖 = 𝑥 𝑗

𝑤𝑖 = 𝑤 𝑗

(8)

Algorithm for computing maximal decomposition: Given
a list of vertices representing a room, a simple algorithm to produce
a maximal rectangle decomposition is as follows: Construct a grid
by building a set of all x-positions and a set of all y-positions from
the vertices of the input list, and iterate over each rectangle-cell
of the grid. Run a check to determine whether this rectangle-cell
lies inside the polygon defined by the input room, and add it to
the resulting set if so. While this is done, a list of the vertical and
horizontal adjacencies between rectangles in the grid can also be
saved for the purposes of expressing decomposition constraints.

After the optimization problem is solved, the resulting room can
then be reconstructed by undoing the decomposition of rectangles.

5.3 Room level constraints
In addition to the constraints provided for rectangles, it is useful to
have higher-level controls on the scale of rooms. Up until now, we
have been able to express adjacencies between two rectangles 𝑖, 𝑗 ,
but the same notion of adjacency becomes more difficult to express
when the rooms are not necessarily rectangles. One possibility is to
explicitly enforce constraints on the decomposed rectangles within



4 • Assembly of 3D Rooms into Floor Plans from Retrieved Layouts

the rooms, but this is not always practical from a caller perspective.
For instance, if room 𝐴 consists of three decomposed rectangles,
which of these should a rectangular room 𝐵 be made adjacent to?
The optimal solution could involve an adjacency to one, two, or even
all three rectangles. Furthermore, room 𝐴 could also be composed
of multiple rectangles, and we may want any number of those to
be adjacent. The goal is for the caller to be able to just specify that
rooms 𝐴 and 𝐵 are adjacent, and have the optimizer select for the
best possible adjacency.

Room adjacency: Expanding on the non-overlap and adjacency
constraints defined for rectangles, we define the following set of
constraints for each 𝑖, 𝑗 combination of decomposed rectangles such
that 𝑖 ∈ room 𝐴 and 𝑗 ∈ room 𝐵 to handle the possibility of any
given pair of decomposed rectangles being adjacent to one another.
The constraints are then expressed as follows:

𝑥𝑖 ≤ 𝑥 𝑗 +𝑤 𝑗 − 𝐿𝑖, 𝑗 · 𝜃𝑖, 𝑗 +𝑀 · (1 − 𝜎𝑖, 𝑗 )
𝑥𝑖 +𝑤𝑖 ≥ 𝑥 𝑗 + 𝐿𝑖, 𝑗 · 𝜃𝑖, 𝑗 −𝑀 · (1 − 𝜎𝑖, 𝑗 )
𝑦𝑖 ≤ 𝑦 𝑗 + ℎ 𝑗 − 𝐿𝑖, 𝑗 · (1 − 𝜃𝑖, 𝑗 ) +𝑀 · (1 − 𝜎𝑖, 𝑗 )
𝑦𝑖 + ℎ𝑖 ≥ 𝑦 𝑗 + 𝐿𝑖, 𝑗 · (1 − 𝜃𝑖, 𝑗 ) −𝑀 · (1 − 𝜎𝑖, 𝑗 )

(9)

and then for each pair of adjacent rooms 𝐴, 𝐵, we add the following
constraint over all valid combinations 𝑖, 𝑗 of rectangles:∑

𝜎𝑖, 𝑗 ≥ 1 (10)

where 𝜃𝑖, 𝑗 is a binary variable that determines the direction of
connection (horizontal or vertical), 𝜎𝑖, 𝑗 is a binary variable that
determines whether or not there is a connection between rooms 𝑖, 𝑗 ,
and 𝐿𝑖, 𝑗 is the minimum length of overlap between 𝑖, 𝑗 . As with the
non-overlap constraints, we require in the last constraint that the
adjacency of at least one combination of decomposed rectangles 𝑖, 𝑗
within rooms 𝐴 and 𝐵 is non-trivially satisfied.

Modified Objective: A feature of most floor plans is that rooms
are not merely adjacent to each other but usually fit together as
snugly as possible so as not to introduce voids in the floorplan. With
this in mind, we can use a modified objective function that attempts
to maximize the total value of

∑
𝜎𝑖, 𝑗 across all room adjacencies in

the floor plan. The intuition is that we want the binary variable 𝜎𝑖, 𝑗
to have a value of 1 as frequently as possible. Let Σ be the number of
𝜎𝑖, 𝑗 that are assigned a value of 1 in the optimization. Our modified
objective can then be expressed as:

minimize ∥𝐴x − b∥22 − 𝛼Σ (11)

where 𝛼 is a constant that weights the relative importance of the
term in the objective function. In our implementation, we set 𝛼 = 50.

5.4 Expressing Portal information
In addition to fitting together the shapes of the rooms, the layout
optimizer is also expected to produce floor plans that satisfy several
portal constraints. We define a portal as any hole/opening in the
wall(s) of a room, although for our purposes we are most concerned
with portals in the context of doorways or passageways that con-
nect to other rooms. This is crucial because we want to produce
not just individual rooms but a complete floor plan (i.e. one that

Fig. 4. Optimized output of Figure 3 with adjacency constraints applied

a navigation agent could walk through). Therefore, we need to be
able to specify in our layout which rooms’ portals line up and have
the optimizer produce a final result that reflects these constraints.
In our model, we describe a portal 𝑖 as a line with centroid position
⟨𝑝𝑥𝑖 , 𝑝𝑦𝑖 ⟩ and radius 𝑝𝑟𝑖 that can slide along any of the walls in a
room, and add three additional variables to our optimization prob-
lem for each portal in the floor plan. Then we can introduce the
following constraints for portals:

Portal sliding: We require that portals stay on the samewall that
they are initially defined to be on, and that their new position/length
do not extend beyond the range of the wall that they lie on. We first
handle the case where a room is just a rectangle. Since we know
which wall 𝐷 the portal lies on ahead of time (for example, 𝐷 = 𝑇

means the portal lies on the top wall), we can express the constraints
in four cases as follows:

if D = T


𝑝𝑦𝑖 = 𝑦𝑖

𝑝𝑥𝑖 ≥ 𝑥𝑖 + 𝑝𝑟𝑖

𝑝𝑥𝑖 ≤ 𝑥𝑖 +𝑤𝑖 − 𝑝𝑟𝑖

if D = B


𝑝𝑦𝑖 = 𝑦𝑖 + ℎ𝑖
𝑝𝑥𝑖 ≥ 𝑥𝑖 + 𝑝𝑟𝑖

𝑝𝑥𝑖 ≤ 𝑥𝑖 +𝑤𝑖 − 𝑝𝑟𝑖

if D = L


𝑝𝑥𝑖 = 𝑥𝑖

𝑝𝑦𝑖 ≥ 𝑦𝑖 + 𝑝𝑟𝑖

𝑝𝑦𝑖 ≤ 𝑦𝑖 + ℎ𝑖 − 𝑝𝑟𝑖

if D = R


𝑝𝑥𝑖 = 𝑥𝑖 +𝑤𝑖

𝑝𝑦𝑖 ≥ 𝑦𝑖 + 𝑝𝑟𝑖

𝑝𝑦𝑖 ≤ 𝑦𝑖 + ℎ𝑖 − 𝑝𝑟𝑖

(12)

However, since our optimization operates on variables correspond-
ing to decomposed rectangles rather than entire rooms, we need to
be able to handle the case where a portal may lie on a room wall that
is shared by more than one decomposed rectangle. This essentially



Assembly of 3D Rooms into Floor Plans from Retrieved Layouts • 5

uses the same constraints as defined above, but requires us to know
the indices of the rooms between which the portal can slide. For
instance, if a portal slides along the left side of a wall shared by
three rectangles 𝑖, 𝑗, 𝑘 where 𝑖 is the top-most rectangle and 𝑘 is the
bottom-most rectangle, then the constraints for this case would be
as follows: 

𝑝𝑥𝑖 = 𝑥𝑖

𝑝𝑦𝑖 ≥ 𝑦𝑖 + 𝑝𝑟𝑖

𝑝𝑦𝑖 ≤ 𝑦𝑘 + ℎ𝑘 − 𝑝𝑟𝑖

(13)

In our implementation, we determine the indices of these rectan-
gles at the same time as when we execute the decomposition step,
and dynamically build up these constraints from those indices.

Portal adjacency: If two portals are defined to be adjacent to
each other, then we want their centroid positions and radii to be
equivalent. This constraint can be expressed simply as follows for
each pair 𝑖, 𝑗 of adjacent portals:

𝑝𝑥𝑖 = 𝑝𝑥 𝑗

𝑝𝑦𝑖 = 𝑝𝑦 𝑗

𝑝𝑟𝑖 = 𝑝𝑟 𝑗

(14)

Objective function: Since we want the optimized portals to
change as little as possible from their initial values in both position
and length, we include all new variables representing portals in our
least squares objective.

5.5 Implementation Details
We implemented our algorithm in Python using the CVXPY inter-
face and used Gurobi to solve the MIQP. We tested several solvers
that are able to solve mixed-integer programs and found that Gurobi
produced the most favorable results for our problem formulation in
both speed and optimality.

Using the CVXPY interface: CVXPY made it easy to express
the constraints of our problem in a natural way. In converting our
problem from paper to code, we found it most effective to set up
a separate array for each category of constraints and dynamically
build them up before concatenating and sending the final array as
input to the solver. In representing our variables using CVX contain-
ers, we separated the position variables from the length variables
for ease of indexing and so that we could easily switch between
using both types of variables or just the variables corresponding
to lengths in our objective function. For our objective function, we
were able to take advantage of CVXPY’s sum_squares method to
express our problem as a least squares.

6 CONVERTING FLOOR PLANS TO 3D SCENES
After the layout optimizer has produced a final layout for the floor
plan, the final step is to take a room corresponding to the origi-
nal layout and edit it to match the specifications of the optimizer.
Namely, the positions and lengths of walls and portals may have
changed between the original and final layout, so we want to deform
the geometry of the original mesh such that it respects the new 2D
outline while simultaneously minimizing the non-rigid distortion
applied to semantically meaningful objects. Although we can use

any 3D scene data, the results we present currently use the Matter-
port3D dataset.

Next, we present high-level descriptions of two possible approaches
that can be used to achieve this conversion: one that involves a
straightforward interpolation and another that uses ARAP defor-
mation.

Straightforward interpolation: Along with the output from
the optimizer, we can use bilinear interpolation to determine the
new positions of vertices in the mesh. This is facilitated by the fact
that the optimizer already computes a rectangle decomposition for
all rooms, which aids in the interpolation step. For all vertices with
a label that corresponds to a non-rigid object, e.g. wall, floor, or
ceiling, we can just move them to their new interpolated positions.
For all other vertices corresponding to rigid objects, e.g. pillow, bed,
tv, we can just compute how much the centroid position of this
object has moved via interpolation and translate the entire object
by the change in centroid positions. Further enhancements to this
approach include the cutting out of objects from the mesh before
moving them in a separate step to avoid stretching effects, as well
as the grouping of objects in close proximity as one entity to avoid
unnecessary distancing (e.g. a bed and a bedside table). Figure 5
shows a sample of preliminary results that includes the method of
cutting out objects but not their grouping (e.g. pillow and bed are
still treated as separate entities).

ARAP deformation: Another possible approach that is less
naive than the straightforward interpolation method is to use As-
Rigid-As-Possible (ARAP) techniques to deform the mesh. First, a
preprocessing step selects the largest connected component in the
mesh as required by ARAP. Control points are then determined and
selected along the walls of the room and moved to their interpolated
new positions. Rigid objects are treated as such and their vertices
are just moved to their new positions in a similar manner to the
straightforward interpolation approach. ARAP then solves for the
positions of the remaining vertices in the mesh keeping the overall
mesh as rigid as possible. One benefit of the ARAP approach is that
it does not introduce holes as a result of cutting objects out of the
mesh. More importantly, it is guaranteed to never cause inversions
in the mesh, whereas the straightforward interpolation approach
provides no such guarantees. For instance, in an extreme case where
a wall compresses around a window, the straightforward approach
would simply move the wall to overlap the window, whereas ARAP
would squeeze and wrap the mesh of the wall around the window.

7 RESULTS
The overall pipeline is capable of producing a large variety of visually
reasonable results. More specifically, the layout optimizer described
in Section 5 works effectively and produces reasonable results across
a wide range of inputs. Within the context of the overall pipeline,
the optimization step for inserting a single room into the floor plan
takes around 2-3 minutes, although there are instances of problems
with difficult solutions that can cause the optimizer to exhaust its
allotted time limit. These instances are not considered for final floor



6 • Assembly of 3D Rooms into Floor Plans from Retrieved Layouts

Fig. 5. Preliminary results of a room mesh edited with bilinear interpolation that has been intentionally moved and stretched to an extreme degree.

Fig. 6. Pre-optimized results corresponding to Figure 1 selected by the retrieval network. Some overlaps, gaps, and varying portal lengths are apparent.

plans as they likely correspond to infeasible arrangements in the
first place.
Figure 6 shows the generated sequences of a sample floor plan

presented in Figure 1, taken from before the layout optimizer is
applied. The optimizer is able to successfully fix all the obvious
issues in these pre-optimized floor plans, including the removal of
gaps and the lining up of portals at each step.

8 CONCLUSION
The main contribution of this work is a novel paradigm of retrieving,
optimizing, and editing existing rooms to create new 3D floor plan
data. In the context of the layout optimizer, the formulation of the
room arrangement problem as a MIQP allowed us to generate valid
floor plans that satisfied the various qualities we imposed with the
least amount of deformation to the original rooms. These optimized
results can then be used for the editing and stitching of 3D room
meshes into floor plans.

One of the main limitations of our method is its inability to han-
dle complex room geometries. Although the bulk of available data
can be characterized by rectilinear shapes, future work in handling
other room geometries would make our method more robust. From
the perspective of the layout optimizer, in addition to the possibility
of handling more complex room geometries, additional work can
be done looking into speeding up its runtime. Although analyz-
ing the runtime of MIQP programs is a challenging task, a faster
optimizer would aid in the process of generating large amounts

of floor plan data in a shorter time. One consideration may be to
implement the project in another language such as C++, since the
Gurobi-CVXPY interface has been reported to be slower. Another
consideration is to modify the formulation of the problem. For ex-
ample, when decomposing rooms into rectangles, it may be possible
to compute a minimal nonoverlapping cover (MNC) instead of a
maximal decomposition. A MNC is a partition with the fewest pos-
sible number of rectangles, and this would reduce the number of
rectangles in the optimization problem, hopefully resulting in faster
solve times. However, the constraints under such a method would
become significantly more complicated to express, and it’s possible
that would conversely contribute to slower solve times. Addition-
ally, algorithms for computing a MNC are also more complex than
that of a maximal decomposition, and bring with them their own
runtime considerations.

Lastly, a good deal of future work for this project can be done in
refining the mesh editing approaches in Section 6. This would entail
producing more realistic floor plans that have convincing object
arrangements and are seamlessly connected with other rooms in
the layout of the floor plan. With ample new data in hand, we also
open up the possibility for future experiments, e.g. the use of our
model for training navigation agents.

REFERENCES
Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.

2012. Example-based Synthesis of 3D Object Arrangements. In SIGGRAPH Asia
2012.



Assembly of 3D Rooms into Floor Plans from Retrieved Layouts • 7

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,
Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2018. GRAINS:
Generative Recursive Autoencoders for INdoor Scenes. CoRR arXiv:1807.09193
(2018).

Han Liu, Yong-Liang Yang, Sawsan Alhalawani, and Niloy J Mitra. 2013. Constraint-
aware interior layout exploration for pre-cast concrete-based buildings. The Visual
Computer 29, 6-8 (2013), 663–673.

Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated residential
building layouts. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 181.

Daniel Ritchie, Kai Wang, and Yu an Lin. 2019. Fast and Flexible Indoor Scene Synthesis
via Deep Convolutional Generative Models. In CVPR 2019.

Minhyuk Sung, Hao Su, Vladimir G Kim, Siddhartha Chaudhuri, and Leonidas Guibas.
2017. ComplementMe: Weakly-supervised component suggestions for 3D modeling.
ACM Transactions on Graphics (TOG) 36, 6 (2017), 226.

Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X Chang, and Daniel
Ritchie. 2019. PlanIt: Planning and instantiating indoor scenes with relation graph

and spatial prior networks. ACM Transactions on Graphics (TOG) 38, 4 (2019), 132.
Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. 2018. Deep Convolu-

tional Priors for Indoor Scene Synthesis. In SIGGRAPH 2018.
Wenming Wu, Lubin Fan, Ligang Liu, and Peter Wonka. 2018. MIQP-based Layout

Design for Building Interiors. In Computer Graphics Forum, Vol. 37. Wiley Online
Library, 511–521.

Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu. 2019.
Data-driven interior plan generation for residential buildings. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 234.

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, and
Stanley J. Osher. 2011. Make It Home: Automatic Optimization of Furniture Ar-
rangement. In SIGGRAPH 2011.

Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth, Etienne
Vouga, and Qixing Huang. 2018. Deep Generative Modeling for Scene Synthesis via
Hybrid Representations. CoRR arXiv:1808.02084 (2018).


	Abstract
	1 Introduction
	2 Background & Related Work
	3 Overview
	4 Assembling Floor Plans via Room Retrieval
	5 Optimizing Retrieved Layouts
	5.1 Basic Formulation
	5.2 Maximal Decomposition of Rooms into Rectangles
	5.3 Room level constraints
	5.4 Expressing Portal information
	5.5 Implementation Details

	6 Converting Floor Plans to 3D Scenes
	7 Results
	8 Conclusion
	References

