
Shape From Tracing Report

Loudon Cohen
loudon cohen@brown.edu

Advisor: Daniel Ritchie

Forward & Abstract

The following is a supplemental research report re-
garding the individual contribution of the present author
to the paper Shape from Tracing: Reconstructing 3D
Object Geometry and SVBRDF Material from Images via
Differentiable Path Tracing [1]. As this work is, as of yet,
unpublished, the following includes abbreviated elements
for context and older results. One may refer to the footnotes
for details regarding individual contribution which mainly
entail material reconstruction.

In this preliminary work, we explore the capability of dif-
ferentiable path tracing for inverse rendering. We present
a full pipeline for reconstruction of 3D geometry and tex-
ture from a series of 2D images all while capturing complex
physically-based phenomena through global illumination.

1. Introduction
High-quality, realistic 3D content is a critical asset across

several industries—film, games/interactive VR, AV simula-
tion, to name a few—where its functions range from impart-
ing a sense of visual realism to allowing a user to perform
destructive operations that would not be possible in the real
world. Creating such content by hand requires skill and is
labor intensive, often requiring large teams of artists to be
done at even moderate scale. For these reasons, acquiring it
directly from real-world objects is an attractive alternative.

There are many approaches for doing this, including
MVS, volumetric fusion using time-of-flight sensors, etc.
All share the same core approach: taking multiple views of
the object/scene via some sensor, and using that information
to infer the underlying geometry and material properties.

Most 3D reconstruction systems do this bottom up: fus-
ing observed sensor information together to construct a 3D
model. However, there is another approach inspired by the
alternative school of thought of “vision as inverse graphics”:
generate a 3D model that, when rendered, is consistent with
the 2D observations.

While this view has a long history and is theoretically el-

egant, it is difficult to realize in practice and its applications
have been limited. Now, new tools are available which merit
revisiting these ideas in detail. In particular, differentiable
path tracing allows a full global illumination renderer to be
added to any gradient-based optimization pipeline, making
it possible to optimize for renderer output.

In this paper, we present the first system which performs
multi-view 3D reconstruction via differentiable path trac-
ing. Given multiple calibrated views of an object under
known lighting, our method reconstructs both the 3D ge-
ometry of the object (as a surface mesh model) as well as
the material of the object.

For material modeling, the system supports a Torrance-
Sparrow SVBRDF model, a physically-based “microfacet”
model that is a standard within the film and games indus-
tries. Using such a model allows our system to capture a
wide range of materials, from highly specular plastic to dif-
fuse drywall.

Through simulation studies, we demonstrate that the use
of a full global illumination renderer results in better recon-
structions in settings with non-local illumination effects (i.e.
effectively disentangling surface albedo from illumination).
Moreover, our pipeline acts as a refinement upon input fed
from other reconstruction approaches.

2. Related Work
Given the age and prevalence of the shape-versus-

shading problem, there are many approaches for inverse
modeling. Classic approaches generally consist of multi-
view stereo [14] and/or space carving [5] techniques in the
multi-image domain. Results in this area have also been fur-
thered with deep learning versions of these same techniques
[4].

Also with the advent of deep learning-based approaches,
another mode of reconstruction has emerged in the form
of neural rendering. These approaches tackle the act of
learning to render: here meaning converting a representa-
tion such as (but not limited to) 3D into a 2D space. As
these representations are designed to be naturally differen-
tiable, it becomes a simple training process to optimize with
respect to real targets. Li et al. use this approach to capture

1



material but not geometry from a single mobile phone im-
age [7]. Likewise, Peterson et al. use neural rendering to
capture geometry with no texture variation [12]. Most re-
cently, Lombardi et al. use a voxel-based method with a
differentiable raymarching operator to recover both shape
and texture [8].

While neural rendering is a promising field of study for
inverse graphics, creating such systems can take consider-
able amounts of data and training resources to produce rea-
sonable results. An alternative is more traditional render-
ers with differentiable rendering integration [9]. Generally
these techniques use some amount of jitter, blur, or explicit
sampling to smooth out edge discontinuities. Among these
renderers, two utilize path tracing for lighting estimation:
Redner [6] and Mitsuba 2 [11]. As global illumination al-
lows for rendering of physically based phenomena, these
renderers allow for the most realistic inverse rendering. We
build off of the Redner framework for our work.

3. Method

Our strategy can be broken up roughly into three
components—setup, geometry and texture initialization,
and geometry and texture optimization—which are de-
scribed in detail in their respective subsections.

3.1. Setup

In simulation, we begin with a set of rendered images
of our target object, simulating real-world photographs. We
use a Fibonacci sphere distribution to determine the posi-
tions of 32 cameras, each with two different zoom levels,
giving us 64 distinct views of the object in total. We set
the object against a completely black background that con-
tributes no illumination. The illumination is introduced in a
controlled way via a single point light, placed at a constant
offset to the camera. This setup represents the best case
scenario for our system to determine the best hypothetical
reconstruction quality.

As for real world results, we take a high-resolution video
circling the hemisphere around the object in an uncon-
strained environment. As an approximation to the lighting
conditions, we also use a 360 degree camera co-located with
the object’s original position.

3.2. Geometry & Texture Initialization

We have experimented with many different methods of
constructing an initial guess for input (Figure 1). We have
found that voxel carving generally performs best for sim-
ulated data and that COLMAP [13] performs best for real
world data 1.

1COLMAP/Redner interoperation was a significant group effort. In ad-
dition, I was responsible for creating appropriate dense model reconstruc-
tions as initialization to our pipeline.

MVS Space Carving

In
iti

al
Fi

na
l

Ta
rg

et
D

iff

Figure 1. Visualization of different initialization strategies for our
reconstruction system. Row one shows initializations produced
by COLMAP’s multi-view stereo reconstruction (top left), voxel
carving (top right), Row two shows the results of geometry-only
optimization starting from each corresponding initialization. Row
four shows a difference (2x magnified) between the final recon-
struction result and the target ground truth model.

3.3. Geometry & Texture Optimization

After choosing an initial guess, the next step is to re-
fine the position of its vertices with respect to the target im-
ages. This way, we can capture the target’s desired shape
and topology. Through gradient descent, we shift the posi-
tions of the vertices and calculate a loss value by comparing
the rendered views of the intermediate mesh with the ini-
tial target images. In simulation, the varying zoom levels
of the target images encapsulate both coarse and fine sur-
face detail to capture. In order to automatically get finer
detail where relevant, we periodically perform subdivision
and quadric simplification on the intermediate mesh. This
results in adaptive remeshing, where vertices that remain af-
ter simplification are pushed towards areas of greater detail.
Lastly, since gradient descent over vertex positions can re-
sult in noisy mesh interiors and backwards-facing triangles,
we resample the surface of the mesh by raycasting from the
original viewpoints. By performing a Poisson reconstruc-
tion on the resulting pointcloud, we continue the optimiza-
tion with a new, clean mesh.

As traditional UV texture mapping doesn’t lend itself
to simultaneous optimization with significantly changing
geometry, we employ a per-triangle color representation.
Specifically, we use a differentiable version of the Mesh
Colors [15] extension of vertex colors, which defines a color
for vertices, edges, and faces of triangles. To extract texture
information for objects, we simply optimize with respect
to the Mesh Color texels per-triangle in order to match the

2



Object Condition F1 Full Diffuse Roughness
Dragon

Local + Shadows 87.51 21.922, 0.8591 27.815, 0.8884 21.450, 0.7564
Global 87.51 27.546 0.9003 28.150, 0.8968 21.418, 0.7633

Table 1. Quantitative results for Figure 2. Geometry is kept the
same when global illumination is introduced so therefore F1 score
is the same for both lighting conditions. F1 score is computed
with a tolerance of 0.01. Average PSNR (left value) and SSIM
(right value) are computed as the render accuracy for each material
acquisition.

same target images. For further details see Appendix A. 2

As joint shape and texture optimization introduces a
large parameter space, we currently alternate between tex-
ture and geometry optimization steps. In simulation, loss
for both of these optimization steps is the summed L2 dis-
tance of gaussian pyramids across all camera views. 3

4. Results & Evaluation

4.1. Full System

Here, a single example from an early iteration of [1]
is provided: the Stanford dragon with a spatially varying
wood-grain texture which can be seen in Figure 2. The im-
provement of material reconstruction for this case is shown
in Table 1. 4

4.2. Ablations

For sake of brevity in this report, ablations of the pipeline
are omitted. However, for evaluations regarding number of
input views as well as local illumination vs. local illumi-
nation + shadows vs. global illumination for geometry and
texture, one may reference the paper [1].5

4.3. Comparisons

While this work is somewhat unique in its simultaneous
capture of texture and geometry, parts of the pipeline can be
compared against other methods.

For instance, the quality of material reconstruction can
be evaluated against that of SVBRDF-only techniques [2,
3]. To compare with these methods, we rendered a flat plane
orthographically in simulation and ran just the material cap-
ture section of our pipeline. Notably, this optimization also
included normal maps for a full comparison. Due to the dif-

2I was solely responsible for this implementation which required di-
rect modification to the Redner framework. As such, I created a unique
indexing scheme which is addressed in Appendix A.

3While the optimization cycle was a large group effort of tuning, I
specifically authored the main optimization script, Google Colab tools for
online editing, and pyramidal loss.

4I generated the content (not the renderings) for all of the included
diagrams [1, 2] and evaluated the material results in Table 1.

5I was responsible for an ablation on the number of camera view inputs.

ferences in material model, results are compared between
each respective ground truth and not each other.

Preliminary results show that, while the neural ap-
proaches have a significant advantage in material smooth-
ness due to their learned prior, our approach can get in-
creased re-render accuracy. At the very least, we show that
hundreds of images are not necessary for an accurate mate-
rial reconstruction [2]. For conclusions on this comparison
as well as refinement of neural geometric systems, one may
refer to [1]. 6

5. Conclusion & Future Work
We have found that our method works well under simu-

lation. In controlled environments, where we simulate pho-
tographs using rendered images, and we assume the object’s
materials are diffuse, our method can reconstruct the shape
and texture of 3D objects. One may refer to [1] for our re-
sults regarding real world data.

The main limitation of our system is falling into local
minima when optimizing from a poor initialization. As
such, we present this work, not as a standalone method, but
as a refinement step for existing methods.

In the future, this pipeline may be extended to include
materials other than the diffuse and partially specular ob-
jects shown, such as mirrors and glass. However, through
just these preliminary results, we show that differentiable
rendering is a useful tool for reconstructing 3D scenes from
a set of images via joint lighting, shape, and texture estima-
tion.

References
[1] Loudon Cohen and anon. Shape from tracing: Reconstruct-

ing 3d object geometry and svbrdf material from images via
differentiable path tracing. 2020.

[2] Valentin Deschaintre, Miika Aittala, Frédo Durand, George
Drettakis, and Adrien Bousseau. Flexible svbrdf capture
with a multi-image deep network. Computer Graphics
Forum(Eurographics Symposium on Rendering Conference
Proceedings), 38(4):13, jul 2019.

[3] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu,
and Xin Tong. Deep inverse rendering for high resolution
SVBRDF estimation from an arbitrary number of images.
ACM Transactions on Graphics, 37(4), July 2019.

[4] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. Deepmvs: Learning multi-view
stereopsis. CoRR, abs/1804.00650, 2018.

[5] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of
shape by space carving. Int. J. Comput. Vision, 38(3):199–
218, July 2000.

[6] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge

6I was solely responsible for material comparison work which involved
running both systems on the same input and evaluating each upon their
respective ground truth renders.

3



Object Render Target Init 1 bounce 2 bounce

Dragon

Full

Geo

Albedo

Roughness

-
Figure 2. Our system’s reconstruction of the Stanford dragon model, textured with a spatially-varying glossy wood material. The opti-
mization used 32 cameras distributed in a Fibonacci sphere, each with 2 light angles (one offset along the tangent and one aligned with the
camera), making for a total of 64 images. The image resolution was 128×128, except for the final texture optimization cycle. This uses an
image resolution of 256× 256, and optimizes a UV map texture representation, to facilitate rendering under novel illumination conditions.
The final target images and optimization images were rendered with a sample count of 512 spp and 64 spp respectively.

sampling. ACM Trans. Graph., 37(6):222:1–222:11, Dec.
2018.

[7] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chan-
draker. Materials for masses: SVBRDF acquisition with a
single mobile phone image. CoRR, abs/1804.05790, 2018.

[8] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, July 2019.

[9] Matthew M. Loper and Michael J. Black. OpenDR: An
approximate differentiable renderer. In Computer Vision –
ECCV 2014, volume 8695 of Lecture Notes in Computer
Science, pages 154–169. Springer International Publishing,
Sept. 2014.

[10] Ian Mallett, Larry Seiler, and Cem Yuksel. Patch tex-
tures: Hardware implementation of mesh colors. In High-
Performance Graphics (HPG 2019). The Eurographics As-
sociation, 2019.

[11] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. Transactions on Graphics (Proceedings of SIG-
GRAPH Asia), 38(6), Nov. 2019.

[12] Felix Petersen, Amit H. Bermano, Oliver Deussen, and
Daniel Cohen-Or. Pix2vex: Image-to-geometry recon-

struction using a smooth differentiable renderer. CoRR,
abs/1903.11149, 2019.

[13] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016.

[14] Steven M. Seitz, Brian Curless, James Diebel, Daniel
Scharstein, and Richard Szeliski. A comparison and eval-
uation of multi-view stereo reconstruction algorithms. In
Proceedings of the 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition - Volume
1, CVPR ’06, pages 519–528, Washington, DC, USA, 2006.
IEEE Computer Society.

[15] Cem Yuksel, John Keyser, and Donald H. House. Mesh col-
ors. ACM Trans. Graph., 29(2):15:1–15:11, Apr. 2010.

4



Appendices
A. Mesh Colors

In our implementation, a mesh colors texture is stored in
a one-dimensional array a, the size of which is determined
by the number of triangles in the mesh and an integer reso-
lution level r. Given the barycentric coordinates (α, β) of a
point in mesh triangle number t, the texel at that can point
is defined by

m(r, t, α, β) = a[k]

k =
t · (r + 1) · (r + 2) + i · (2r − i+ 3)

2
+ j

(i, j) = br · (α, β)c

Note that this storage scheme duplicates edge and vertex de-
tail for parallelism at the slight cost of additional memory.
This approach more closely matches that of the newer Patch
Textures [10], rather than the original mesh colors. To com-
pute derivatives for optimization, we use finite differences
(necessary for all discretely-sampled representations of tex-
ture, including UV maps).

5


