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Abstract

This project explores how graph embedding repre-
sentations of network traffic can be leveraged with
Manufacturer Usage Descriptions (MUD) to improve
analysis and security for Internet of Things de-
vices. To expand on previous approaches, this project
builds graph embeddings from NetFlow-style network
traffic statistics readily available for enterprise net-
works and compares them using graph kernel-based
algorithms and finds promising results for device
identification and classification.

1 Introduction

Today, much of the connected world involves devices
simpler than computers or smartphones, but that
have access to local networks and the Internet. These
Internet of Things (IoT) devices are very useful, but
have brought with them a series of challenges that
the industry continues to grapple with. Namely, se-
curity solutions for IoT devices tend to fall short of
most modern standards for computers or phones —
due to their wide proliferation and simple functional-
ity, many devices are susceptible to malware that take
advantage of their connectivity to carry out cyber-
attacks[l] . To counter this trend, the security com-
munity has begun to reason about and develop tools
for handling unsecured devices that are already out in
the world, and recommend better practices for man-
ufacturers to follow as they release new products.

To better manage unsecured devices, the IEFT has
proposed a framework called MUD or Manufacturer
Usage Description that describes appropriate behav-
ior for IoT devices[2]. These act as registered safelists
that the IEFT proposes that device Manufacturers
distribute publicly. Comparing these profiles with
current device behavior would allow network super-
visors or automated systems to identify and analyze
the traffic from a given device.

For non-IoT devices, graph based methods of net-
work traffic analysis have emerged[3] and found suc-
cess in identifying malicious devices and otherwise
managing devices in an area network. Graph struc-
tures make sense for network traffic because devices
can be well represented as nodes, and connections be-
tween devices as edges. These usually take the form
of blocklists where the intrusion detection task at-
tempts to isolate devices that contact malicious end-
hosts. ToT devices are often used as compromised
instruments in larger volumetric attacks on external
webservers for the purpose of Denial of Service[4].
The reason these attacks may be hard to detect is
that the victim websites are usually not malicious
and so do not trigger any sort of blocklist style logic
systems for intrusion detection. Given the intended
limited network functionality of IoT devices in partic-
ular, it may be possible to detect anomalous network
behavior that deviates from the devices intended

This project extends the safelist-like logic of MUD
policies to explore a graph-based approach for specif-
ically analyzing the network traffic of IoT devices.
The main work of this project processes raw PCAP



data using a modified version of the University of
New South Wales team’s tool MUDgee[5] to produce
a usable "MUD” profile, that is assumed to be ground
truth for a device. Then, Netflow data collected from
Brown University’s Guest WiFi network is filtered for
IoT traffic, which then individual devices are selected
from and used to perform graph similarity and classi-
fication tasks on. Moderately promising results were
found for using graph-based comparison methods to
compute similarity between devices known to be the
same model.

Different embeddings were explored, where we
chose to include or exclude rule and flow features
from the data. A strong motivation emerged to ex-
plore the use of feature and label based graph anal-
ysis measures where we used the graph structure to
store data about devices behavior with the abstrac-
tions of nodes and edges. At a high level, we chose
nodes to represent individual end points, (devices,
web servers, local destinations) and edges to repre-
sent the properties of their connection (IP protocol,
volume of packets, byte counts). While the set of
features we ended up using is by no means complete,
we hope to provide the beginnings of a framework
to process enterprise network data and Manufacturer
Usage descriptions as graphs.

Once embedded into graphs, this project explored
various Graph Kernels for computing the similarity
of a device’s proposed safelist (MUD), and its actual
behavior on an enterprise network. Graph Kernels
are essentially internal products of graphs that trans-
late their structure and content into a vectorized form
that can be easily compared with other graphs. A de-
vice whose traffic graph significantly deviates from its
MUD graph may need to be monitored more closely
or quarantined to mitigate cyberattacks going to or
coming from the local network.

The eventual goal of this work is to provide a sug-
gested framework for the security community to rep-
resent network traffic as a series of graphs and their
subgraphs, and use this structure as a means of an-
alyzing network behavior to identify specific devices,
classify flows in the network, and detect malicious be-
havior from IoT devices. This approach makes sense
specifically for IoT devices because their behavior is
often limited to a predictable set of rules, rather than

a computer or phone that is expected to be able to
make web requests to any site. For these devices
whose functionality is intended to be more limited,
we expect to have an easier time identifying the type
of device, and whether or not it is playing nice, based
on the proposed graph-theory analysis on its network
behavior.

Code for this project is open source and can be
found on the project’s Gitlab page[6] (you must re-
quest access). The tools included in this repository
are the main focus of this project and do the data pro-
cessing and graph kernel analysis described above.

The main workflow for our approach was as follows
(See Figure 1 for a more complete workflow):

1. Obtain MUD policy for a device

2. Obtain Netflow Statistics from Enterprise Net-
work Administration (Brown Computing and In-
formation Services)

3. Generate Active Traffic Graph from Netflow
Statistics

4. Generate corresponding MUD graph embedding,
adapting to specific characteristics of enterprise
network environment

5. Compute Similarity score between two graphs,
indicating how likely it is that the devices are
the same

1.1 Related Work

Supporting this work by providing Netflow data from
Brown’s guest Wifi network is Nicholas DeMarinis re-
search in Rodrigo Fonseca’s systems research group
at Brown University. Their data pipeline generated
IoT traffic statistics from aggregated network flows
on the Brown Guest Wifi network and provided us
with those Netflow tables to work with. Their work
allows us to filter all of the flows found on the Brown
Guest Network by time/date, identify IoT traffic, and
pick out key information about the flows these devices
participate in. This was key to our work because we
used these Enterprise Network style statistics as the
basis for what a real-world implementation of IoT
Graph Analysis would begin with. Note that this



data is at the flow level, not the packet level - it
would be unfeasible and ill-advised for a large enter-
prise network to capture all traffic at the packet level,
but many tools for network intrusion detection rely
on packet level analysis.

IoT traffic analysis is being done by several re-
search groups. Most closely related to this work, Uni-
versity of New South Wales in Australia developed
MUDgee[5] to develop MUD profiles and have work
on identifying IoT Traffic in complex Smart Home
environments [7]. Their tool and related work ana-
lyzes IoT traffic from their lab and accurately catego-
rizes the devices based on statistics from their traffic.
Their push for the adoption of MUD is the basis of
this project - we run under the same assumption as
they did - that MUD will be more widely adopted by
the industry to be used as a standard for IoT device
traffic monitoring. We used their public IoT traffic
capture datasets to generate MUDs for devices that
we did not have running in our lab. Their analysis of
IoT devices looks at the content of the packet traces
from lab-run devices, and proceeds to use state-of-
the-art machine learning techniques to classify the de-
vices. Our graph-based approach may have promise
for this identification workflow as more deep learning
techniques using graph structures emerges|3].

On the topic of graph embeddings is X. Xu et al’s
work on using Graph Embeddings with deep learning
for similarity detection of binary code[9]. This work
explores how control flow graphs can be used to deter-
mine how similar two binary files are to one another
for the purpose of malware detection. Their work
goes further into the domain of deep learning, using
newer machine learning graph methods to detect ma-
licious code in the graph embeddings they form from
binary executables. Relating to this project is the in-
tuition of transferring data in the euclidean space into
the graph space for the purpose of machine learning-
style classification.

Florian Mansmann et al[3] explore graph based
methods for analyzing network traffic for intrusion
detection, but with a greater focus of personal com-
puters and mobile devices. Their work is important
to the field by introducing force-directed algorithms
for visualization that we took inspiration from here.
These algorithms allow for a semantically meaningful

representation of the graph to be studied by hand, us-
ing data from the node attributes to space the nodes
in the graph. Unlike our project, this work does not
involve any notion of pre-existing safelists, but rather
operates in the opposite direction trying to detect
when devices in the network form connections with
dangerous hosts that are part of known blocklists.
This approach is very effective, but in this project we
seek to identify malicious traffic that is not necessar-
ily connecting to dangerous websites, but rather vol-
umetrically significant requests benign victim web-
sites.

2 Approach

This source code for this project uses a modified ver-
sion UNSW’s MUDgee tool[5] that analyzes PCAP
data from an IoT lab to create a safelist of flows
for a device based on assumed-to-be benign traffic.
The modifications we made to MUDgee cause the
MUD rules to include volume statistics about the
flows found and to name the resulting fields in a
manner more similar to Netflow. Then we identify
a single device from the Brown Guest Netflow data
and use networkx to build and visualize graph em-
beddings from these sources. Then, using an open
source python package, GraKeL, we compute graph
kernels on the embeddings created from MUD graphs
and active traffic graphs to produce similarity scores.

2.1 Abstract Representation

Let us define a graph embedding to be a set of ver-
tices and edges that represent endpoints and their
connections in a local network. Graphs are formed
from two places: 1. The ground truth graph for a
device is assumed to be the graph formed from it’s
safelist of rules built from its MUD policy. From here
on, we will refer to these Ground Truth graphs as
MG gevice The second kind of graph we have decided
to name Active Traffic Graph, AGgevice. An Active
Traffic Graph for a device is the graph formed from
netflow statistics from a network with known IoT de-
vices on it. With these two sets of graphs, we chose
to encode them using the popular networkx package



in python for graph visualization. In this project, we
wanted to store information about the connection on
the edges, and information about the hosts on the
nodes so this representation made sense. Networkx
represents them as node and edge ”attributes” which
act more like labels than vector features. One of our
challenges for the networkx comparisons was convert-
ing our feature set into a coherent label that can be
compared efficiently in a Graph Kernel.

One key feature of our Netflow statistic to graph
embedding pipeline is the ability to choose the gran-
ularity of IP address to consider as the same node in
the graph embedding. When designing our pipeline,
we encountered the challenge of parsing the DNS res-
olution of hostnames that the devices make connec-
tions to. MUDgee includes DNS hostnames in it’s
rules created by processing PCAP traces from de-
vices - however, in the Netflow data collected from
Brown University’s Guest network (and by proxy, the
enterprise traffic representation we base this project
on) does not have DNS information, but rather the
DNS resolution (IP Addresses) for each flow in the
list. To manage the load-balancing feature of DNS,
which is that one DNS hostname may map to several
IP addresses depending on the location and time of
contact, we decided to include a subnet mask for the
graph embedding. When building a graph for a de-
vice, one may choose whether to differentiate nodes
by /32 (full address), /24, or /16 in order to account
for the load-balancing present in DNS resolution for
web servers that IoT devices contact. This is espe-
cially pertinent for the cloud services that many of
these devices contact, more often than not, these ser-
vices are not static mappings from DNS hostname to
IP address, however, data center addresses tend to
fall within the same subnet, if a large enough mask
is chosen.

2.2 Lab Setup and Datasets

Enterprise network datasets like the netflow statistics
obtained from Brown Guest do not give information
about packet-level statistics. Most approaches to IoT
security based on safelists act on this packet-level do-
main, doing analysis on packets going through the
network to determine if the packet should be allowed

to go through or not. For this project, we try to
analyze IoT traffic, but on the flow level, matching
graphs of flows to the rules that the devices on the
network are supposed to follow. We obtained high-
level netflow statistics from Brown’s Guest Wifi net-
work through its CIS department. Part of Nick De-
Marinis systems and networking research is focused
on this data collection and aggregation, paving the
way for us to use this data for making graphs of de-
vices in the network.

2.3 Challenges with Enterprise Net-
work Statistics

A major component of this project was working un-
der the assumption that enterprise network admin-
istrators do not have access to packet level data for
their network. Brown University’s Communications
and Information Services that provided the Netflow
data that we work with in this project confirm this
assumption to be accurate at the scale of a mid-sized
University’s public Wifi service. After the aggegation
and data-processing done by Nicholas Demarinis for
his research in the systems group at Brown, the fields
we had from this Netflow were time processed, sam-
pling rate , seq number, time flow, bytes, packets,
eth type, ip version, ip proto, ip tos, icmp type, icmp
code, if src, if dst, device field, class, ip device, ip
other, tp device, tp other, dns hostname, dns client
id, dns last update, dns id state, device class, device
type. Conversely, MUD often has unresolved DNS
hostnames that indicate the namespace of a website
that a device may contact. To manage this, at the
time of forming Gy p, we make a call to gethostby-
name() in the pythons socket library that resolves the
name to an IP address. By combining this with sub-
net masking, we attempt to recognize load-balancing
done by the cloud services that are often the hosts
being contacted by IoT devices.

2.4 Graph Comparison Methods

Once our graphs have been built and populated with
the relevant features, it is necessary to develop meth-
ods for comparing two graphs, producing some no-
tion of a similarity score, or confidence interval, that
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Figure 1: IoT Graph Analysis Workflow for this Project

they belong to the same device. This proved to be a
non-trivial task, as our graph representations contain
import feature information on both the nodes and the
edges. The methods we explored include traditional
graph theory methods of structural isomorphism and
graph kernel techniques. Here we explain a bit of
background on each technique:

Traditional graph comparison methods rely on no-
tions of graph isomorphism [10], which analyze two
graphs to try and form a bijection between the nodes
of one graph and the nodes of the other such that
the adjacency map of the graph is preserved. This is
a satisfying comparison method when nodes encode
nothing other than a label because it seeks to relabel
graphs to make them the most structurally similar
to the other graph. To implement this measure, we
used networkx’s built in graph_edit_distance() func-
tion that iteratively determines how many node or
edge additions, deletions, or modifications would be
necessary to produce a graph that is structurally iso-
morphic to the other graph. The major downside
to this approach is that it is not known to be com-
putable in polynomial time [10]. We found that try-

ing to compute it with graphs larger than 50 nodes
took far too long to be a feasible similarity measure.
The other downside is that it does not account for
node labels, which in our case contains the impor-
tant information about IP address and protocol that
identify flows.

The second area of methods of graph comparison
that we attempt make use of Graph Kernels. In
the domain of graph theory intersecting with ma-
chine learning, Graph Kernels are essentially vec-
tor representations of graphs that can be used to
compute their similarity[l1]. They are computed
by several different processes of generating internal
products of the graph structure and data. That is,
given a graph and the features/labels encoded on its
nodes/edges, output an internal product that is com-
parable with other graphs. Random Walk, Shortest
Path, Weisfeiler-Lehman, Graphlet Sampling, SVM
Theta, Neighborhood Hash, and Pyramid Matching.

Taking a closer look at two of the kernels we com-
puted, Shortest Path Kernels are an extension of ran-
dom walk kernels which are computed by counting
the number of common walks between two graphs.



A walk is a sequence of nodes that allows repeti-
tions. Shortest Path Kernels do this but on the Floyd
transformation of a graph, only considering walks of
length 1 to compute all of the shortest paths be-
tween pairs of nodes in the two graphs[12]. This mea-
sure also does not consider data stored as features
on the graphs, but may hold promise for determin-
ing if graph structure alone can identifying devices.
On the other hand, Weisfeiler-Lehman Graph Kernels
are computed using the labels encoded on the graph’s
nodes[13]. The algorithm is as follows: For each node,
concatenate its neighbors’ labels with its own, pro-
ducing a new label. Hash this label to get it into a
single label, and repeat for several iterations. The
result is a list of aggregated labels that denote graph
structure as well as the data stored on the nodes.
We found that this measure of similarity made a lot
of sense given structure of our Traffic graphs with
one central node labeled ”device” and the remain-
ing nodes having incoming or outgoing edges to that
central node. We chose a standard configuration of 5
iterations.

In addition to these two types of kernels, we
computed 5 other widely-used graph kernels found
in GraKel, a package for computing graph kernels
in Python[l4]. The full list of kernels we com-
puted is: Random Walk, Shortest Path, Weisfeiler-
Lehman, Graphlet Sampling, SVM Theta, Neighbor-
hood Hash, and Pyramid Matching. We discovered
this package rather late in the process, and due to
time constraints did not have time to test every pa-
rameter adjustment for all of the kernels, and believe
that there may be a more optimal setup. Future work
on this project should test out different parameters
for the kernels and make use of GraKeL’s graph struc-
ture that stores node labels, edge labels, and weights.
See Table 1 for the results.

For all of these methods we used normalized com-
parison methods that scaled their output from 1.0 to
0.0. In this way we could confirm when the same
graph is compared to itself, a score of 1.0 is pro-
duced, and then any structural or attribute/label (in
the case of Weisfeiler-Lehman) make the comparison
drift closer to 0.0.

Outside the scope of this project, but a highly
promising domain for further research is the use of

Graph Convolutional Networks[15] or Graph Neu-
ral Networks (GNN) for graph classification tasks.
GNNs are a relatively new subdomain of deep learn-
ing, and more research is needed to determine their
feasibility for this task, but we believe this project in-
dicates potential in their use for batched graph clas-
sification using node and edge features as described
here.

2.5 Transforming Flows into Graph
Embeddings

The algorithm we used for converting these flows into
graph embeddings filters for the flows corresponding
to one device on the network, identifies the unique
end-points that this device communicates with based
on IP address and ports, and then constructs a di-
rected graph based on the flow of packets from the
statistic. Here’s an example of the relevant fields from
a Netflow Statistic from an HP-Printer:

IP Device: 172.18.153.223

IP Other: 10.1.1.10

Transport Layer Port Device: 62134

Transport Layer Port Other: 53

DNS Hostname: hpb5702b

DNS ClientID: 3173da6fa07d4533{866709086a4c0d510

Given our framework, it was our original intention
to store the transport layer ports as features on the
nodes, however, given that many services choose ran-
dom ports, this led to many of the same flows being
categorized as different, exponentially increasing the
size of our graphs. After realizing this, we decided to
disinclude the ports as a part of each node’s feature,
leaving just the IP address clustered at whichever
subnet size is specified as an argument. Additionally,
we decided to include a boolean of whether or not to
aggregate internal traffic in the tool. For visualiza-
tion, it is useful to see all of the internal flows, how-
ever, when comparing a device to its MUD it is better
to combine all flows of the same protocol because the
MUD aggregates all local flows to the protocol used.
For example, the aforementioned printer’s MUD can-
not know in advance the IP addresses of devices that
will send it documents to print, so it might just say
something to the effect of ” Allow all internal UDP



traffic”. As such, we will want to take all UDP traf-
fic from within the device’s own subnet and aggregate
it to one node.

3 Experiment

3.1 Part 1: Visualizing Traffic Graphs

The following graph visualizations are from the net-
workx package with nodes clustered by IP address
and protocol from the Brown Guest Netflow dataset.
The legends are for identifying the external address
or internal address and protocol corresponding to the
nodes. To visualize the graph, we use networkx’s
spring layout format which uses the Fruchterman-
Reingold [16] algorithm for force-directed graph em-
bedding. The axis information corresponds to this
algorithm, however, it does not have any semantic
meaning in our context so you may ignore it. The re-
sulting visualization shows us the distinction between
internal and external endpoints (though sometimes
in the counter-intuitive way, with external nodes dis-
played as close to the center). We can tell by the
legend which has node label and address if it is an
external endpoint, and node label, address, protocol
if it is an internal endpoint. Figure 3 shows the graph
of a single Amazon Echo’s traffic on Brown Guest on
a given day clustered by /24. IP addresses begin-
ning with 52 are all part of Amazon’s cloud services.
In Figure 4, we see that clustering by /16 instead,
produces a much smaller graph corresponding to the
larger IP spaces that the Amazon echo connects to,
many within Amazon’s own cloud infrastructure.
Figure 5 shows the graph of an HP Printer on
Brown Guest the same day. Notice the size differ-
ence of graphs - the HP printer has fewer nodes in
the graph because its functionality is relatively sim-
ple. This smaller graph is much easier to inspect
manually, though. We can see that node 5 is outgo-
ing broadcast traffic (255.255.255.xxx). The flow be-
tween node 1 and the device (node 0) is bidirectional.
The two internal traffic flows (edges 0,1 and 0,4) are
just labeled by their protocols (UDP and TCP re-
spectively). We identify them as internal based on
the Netflow data produced from Nick Demarinis’s

pipeline which identifies IP addresses behind Brown
Guest’s NAT or not. When a graph is formed without
clustering these internal flows (Figure 4), we see all
of the different internal TCP and UDP flows to the
printer which presumably come from devices sending
data to the printer to print.

3.2 Comparing Graphs

To test the viability of this graph embedding for de-
vice identification and anomaly detection, we com-
pared a series of ground-truth MUD Graphs from our
lab IoT setup with a series of Active Traffic Graphs
from the Brown Guest Network. Graph edit distance
is discussed in Section 2.4, but we did not include the
results here because of their exponential run time and
our given time constraints. See Table 1 for summa-
rized results.

The comparisons we made identify a few trends.
First, we found that graph edit distance was only
possible for the smallest of the graphs - likely be-
cause it not feasible to compute in polynomial time.
Because of this we omitted the small subset of results
we obtained with it. The Weisfeiler-Lehman (WL) al-
gorithm was did produce the highest similarity score
between a device’s MUD and it’s own Active Graph,
but not with a much higher score than the other de-
vices. For WL, the best distinguishing power seemed
to come for the Chromecast, where it correctly iden-
tified it as at least .12 more similar than the other
devices.

Some of the measures were not very effective at all
with their current settings - the Shortest Path Kernel
gave zeros across the board except for the HP-Printer
which was 1. Given that shortest path algorithms are
pretty similar to graph isomorphism and do not take
into account node labels, this makes sense because
the MUD and Active Graphs for the Hp Printer were
both 7 nodes.

Another promising Kernel was the SVM Theta
Kernel[17] which did a pretty good job at identify-
ing devices from their MUD Graphs. The one device
this kernel did not perform as well for was the Ama-
zon Echo where it computed that the chromecast’s
Active Graph was more similar to the MUD Graph
of the Echo. That this kernel was otherwise accurate



Random Walk Kernel:

Gprinter
AGp’r‘inte'r‘ 0.9876
AGecho 0.9925
AGchromecast 0.9920
Shortest Path Kernel:
MGprinter
AGpm'nter 1.0
AGecho 0.0

AGchromecast 0.0

Weisfeiler-Lehman:

MGecho
0.9925
0.9974
0.9969

MGecho
0.0
0.0
0.0

MGecho
0.3055
0.6522
0.6280

MGecho
1.0

MGprinter
AG ppinter 0.6634
AGecho 0.5004
AGchromecast 0.6076
Graphlet Sampling Kernel:
MGprinter
AGprinter 1.0
AGecho 1.0

AGchromecast 1.0
SVM Theta Kernel:

MGprinter
AGprinter 0.9998
AGecho 0.0
AGchromecast 0.3118

Neighborhood Hash:

MGprinter
AGprinter 0.0909
AGecho 0.0

AGchromecust 0.0
Pyramid Matching:

MGp'r'inter
AG printer 0.1666
AG echo 0.0

AGchromecast 0.0

Table 1:

for a device

1.0
1.0

MGecho
0.4966
0.8001
0.9198

MGecho
0.0

0.0
0.0153

MGecho
0.0

0.0
0.0314

Graph Kernel comparisons for 3 devices
found in both IoT Lab and Brown Guest. MG gevice
indicates a column for the MUD graph for a device
and AGgevice indicates a row for the Active Graph

is an unexpected result given that the SVM Theta

MGChmmemStKernel assumes that the graphs are unlabeled. It’s

0.9904 accuracy may be due to the difference in size between
0.9956 ) :
0.9947 the graphs of the three devices. Testing on more de-

vices will be necessary to determine the feasibility of

this Kernel for this graph classification task.
MGchromecast

0.0
0.0
0.0
4 Discussion
MGC romecas 3 3
0 451?5 ‘4.1 Device complexity
0.6342
0.7511 IoT devices have a wide range of uses, some as sim-

ple as pulling the weather down from a single web-

site every hour, some nearly as complicated as a

MGChmmeC“Stcomputer or smart phone. An important finding of

1.0 this project was the impact of device complexity on
1.0 . . . .
1.0 the effectiveness of analysis on its graph embedding.

Here we define complexity as the number of different
endpoints in its active traffic graph - similarly, the
MG chromecasfl/NSW team uses the length of device MUDs to mea-

0.6603 sure the complexity of a device’s network behavior.
0.7477 Contrary to our expectations, we found that more
0.8589

complex devices were actually easier to classify us-
ing non-isomorphism based methods. Upon further
MG chromecasexamination, this is actually a logical result because

0.0 with more endpoints and features in the graph, there
0.0 are more possible nodes and edges to match on be-
0.1276 tween devices with similar features, even if the total

number or specific IP addresses varied.

MG chromecast More research is needed to determine to the cor-
0.0 rect level of complexity to produce good results for
0.0 graph based comparison methods. We suspect that
0.2791 it would fall somewhere in between the simple func-

tionality of a printer, and the almost web browser-like
functionality of a Google chromecast. Narrowing in
on the right type of device to do this type of analysis
on will also aid manufacturers in specifying the class
of device they are releasing. Is it closer to simple sen-
sor, or a smartphone. Graph analysis could hold the
key to making these determinations - if comparisons
are not accurate then it may be too simple or too
complex of a device to perform the comparisons on.



4.1.1 Close Look at HP Printer Graphs

Here we examine more closely the Active Graph and
MUD Graph generated from data for an HP Printer.
This device’s MUD is quite short, and as a result,
it’s graphs are simple and manageable to analyze by
hand, Figure X shows the MUD Graph from an HP
Printer in UNSW’s IoT lab, next to is is the graph
formed from an HP Printer on Brown Guest. Both
graphs have 6 nodes total, including the device in the
center that is connected to all of the other devices.
This ismorphic similarity is what causes the short-
est path kernel to evaluate to 1.0 - all the possible
paths in the two graphs are the same. With non-
external traffic clustered by protocol, we see that the
HP printer on Brown Guest uses both TCP and UDP
internally, presumably devices sending documents to
print. The MUD graph however does not contain
any TCP flows, only UDP is included in the inter-
nal rules. This may be because the printer model
is different between the datasets - the Brown Guest
Netflow does not tell us the specific device, while the
HP Printer whose traffic is used to generate the MUD
Graph is known to be DesignJet 70 Printer based on
the MAC prefix that the UNSW IoT lab published
on their website [7].

The common  subnetwork they  contact,
15.72.255.xxx resolves to an HP web server,
tre01hpiibpe.ams.hp.net that the devices share. As
part of the safelist, we would expect this flow to be
present for the device in practice, and this indicates
more than one HP printer use that address space for
communication with HP’s cloud services.

In terms of differences the Active Graph
shows a node corresponding to Brown University’s
DNS server,( reverse DNS lookup resolves tobru-
ns2.brown.edu), while in the MUD Graph the cor-
responding node is associated with 239.255.255.xxx
which resolves to sns.dns.icann.org, a root level DNS
server. The MUD Graph also contains a node for
192.168.1.0, the typical address of a gateway router
in a simple NAT setup. Given that Brown Guest
(and other enterprise network setups) are more com-
plicated than a typical NAT, future work on this
topic should process MUDs into graphs such that
their general or nonapplicable rules are translated

into the appropriate form for the given enterprise
network. In this case, if the network administra-
tion server processing these statistics knows that this
printer is connected to gate way with example ad-
dress 123.456.789.1, then it should translate the rule
for 192.168.1.0 in MUD, into this more locally spe-
cific address. In this way, MUD can be parsed into a
more relevant form for a network with known config-
uration.

4.2 Future Work

Much remains to be done in this field of study -
this project lays the groundwork for the theoretical
approach of using graphs to represent network traf-
fic for Internet of Things devices on enterprise net-
works. Eventually and pending industry adoption of
MUD, this technique could be very useful for deter-
mining whether devices have been compromised or
not. There is potential for this work to be utilized
in the development of an enterprise network security
system that keeps track of all the IoT devices on a
network and quarantines them if their graph differs
too much from MUDs downloaded from the device
vendors. A sample workflow for this type of system
is diagrammed in Figure 2 Diving more into the realm
of deep learning with graphs is also an emerging field
and as new developments come forward it may be-
come easier to perform deep-learning graph compar-
isons on more robust feature vectors encoded on the
graph.

Deep Graph Library (DGL)[18] is a new python
package that performs deep learning tasks on graph-
structured data using a pytorch backend. DGL’s doc-
umentation provides examples of batched graph sim-
ilarity testing, however, this does not make use of
edge features where we would store connection infor-
mation. Better integration of the DGL system would
suit this project very well with adjusted forward and
backward algorithms for training and testing that
take into account the way that our data is structured.
Along with this comes better vector encodings of the
features we identified in this project. For example,
for our final implementation we did not use server-
side ports as part of the graph embedding, however,
UNSW’s IoT Lab[7] identifies a bag-of-words model
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Figure 2: Workflow for Future Deployment of Anomaly Detection System using IoT Graph Analysis

for labeled instances of present port numbers an ef-
fective model for encoding this part of the feature
space for an Iot Device.

Additionally, for future work on this topic a larger
dataset of IoT devices with ranging degrees of func-
tionality complexity would be useful - we were lim-
ited to the devices known to be on the Brown Guest
network and in our lab. The confirmed overlap be-
tween our two data sources was small, and so it did
not allow for classification across a wider range of de-
vices. Our original intention was to capture PCAP
of the specific devices in Brown University’s IoT Lab,
but change their configuration to use Brown Guest
as their Wifi network. In this way then, it would
be possible to isolate a specific device’s flows in the
enterprise Netflow data. Unfortunately, due to time
and hardware-related technical constraints, we were
unable to connect our devices to Brown Guest while
also capturing their traffic on a mirroring server, so
we ended up using PCAP from similar devices from
UNSW’s IoT lab. While we know some of the devices
to be very similar (Amazon Echo, Chromecast), the

specific HP printer model was likely different between
the datasets, as well as potentially different firmware
versions for all the devices. A future project might
solve this problem, or obtain Netflow from a privately
managed network and convert it to the enterprise net-
work style flows that we used here.

Future collaborators are encouraged to contribute
to our code [6], to update the feature generation
portion of the pipeline, and to try out different
graph comparison methods on the MUD and Active
Graphs. Given the success of graph embeddings for
non-IoT traffic in network security, we see a lot of
potential for this work to be expanded upon to more
accurately classify IoT devices based on their graphs.

5 Conclusion

This project finds promising results for IoT Device
network analysis by way of using graph representa-
tions of their traffic patterns. The organized struc-
ture of a graph is very effective for storing the infor-



mation relevant to an IoT Device’s traffic flows, and
we found that graph comparison methods demon-
strate potential for comparing graphs for the purpose
of identifying devices or detecting malicious traffic.
While our specific implementation does not provide
enough comparison power to definitively determine
what device a traffic pattern belongs to, or if that
device is behaving maliciously, it certainly points to
the need for more research in this domain, especially
as the field of machine learning on graph-like data
structures continues to develop as well. We stress
the importance of choosing feature sets to use to en-
code traffic information on nodes and edges of the
graph structure. We suspect our modest results are
due to the incompatibility of how we encoded this
information on the nodes to be used in the Graph
Kernel Computations. With the labels as part of a
more coherent alphabet, and the correct balance of
generalized vs. specific features encoded in the la-
bels could lead to more definitive comparison results.
Deep learning also holds great potential to classify
graph structured data more effectively than the tra-
ditional methods we tried here, and we feel this is the
logical next direction for this research to go.
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Figure 3: Active Traffic Graph from an Amazon Echo on Brown Guest Wifi network. Legend corresponds
to the IP address of the nodes or the protocol of internal IP flows
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Figure 4: Active Traffic Graph from an Amazon Echo on Brown Guest Wifi network. Legend corresponds
to the IP address of the endpoints. This figure includes internal traffic not clustered by protocol.
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