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1 Cancer Genomics Background for Two Projects

Cancer is a disease that can be characterized by a heterogeneous mixture of tumor cells,
each with their own mutations, a concept called intratumor heterogeneity. One of the greatest
challenges is to identify which mutations provide a fitness benefit to the tumor cells, so called
driver mutations. Driver mutations help these tumor cells proliferate and sometimes grow
to resist treatment. Most tumor sequencing studies use bulk DNA sequencing, resulting in a
mixture of hundreds or thousands of sequenced tumor cells, to identify these driver mutations.
Importantly, these driver mutations are thought to be clonal, i.e. present in all tumor cells.
Only recently the existence of subclonal driver mutations has been shown, i.e. mutations
that only affect a subset of tumor cells [32]. Not accounting for the possibility of subclonal
driver mutations may compromise the efficacy of targeted cancer therapies [26, 37, 60, 67].
Furthermore, distinct somatic events in different tumor subclones can affect the same gene or
pathway, suggesting constraints to tumor evolution (i.e. convergent evolution). In Section 2,
we present a pipeline to identify subclonal driver mutations. We discover several novel
subclonal driver events across 9 cancer types.

In order to truly know which mutations influence each other, we must look at individ-
ual cells, because mutations occur in each individual cell. Tumors form through cellular
acquisition of fitness enhancing mutations over the lifetime of an individual. Copy-number
variants (CNVs) are a type of mutation affecting consecutive positions in the genome, and
are pervasive across many cancer types [10, 16, 78]. Such mutations can lead to gene dosage
effects in oncogenes and tumor suppressor genes. Different subpopulations of cells, or clones,
have different complements of CNVs. CNVs occur in individual cells, and thus should be
identified at single-cell resolution. Single-cell DNA sequencing (scDNA) is a useful technique
to identify the complement of CNVs in individual cells, thus also enabling us to infer the
clones directly. In Section 3, we present a method to infer the complement of CNVs for each
clone, while jointly identifying clonal composition of a tumor from scDNA data. Inferring
tumor composition provides an opportunity to improve our understanding of intratumor
heterogeneity, clonal expansion and metastatic dissemination [44, 71].

2 Method to Identify Subclonal Driver Events Across

9 Cancer Types

GOAL: Develop a method to identify subclonal driver events.

2.1 Introduction: Characterizing Mutation Events

When a gene acquires a mutation, that can be described as a mutation event. Only a
subset of these events contribute to the progression of the tumor, so called drivers events.
Mutated driver genes are those that confer a selective proliferation advantage for the tumor
cell, and are difficult to identify amidst the large number of passenger mutations. In an
average tumor, there are about two to eight driver mutations, and anywhere from 10 to 1000
passenger mutations [67]. It is thus, very difficult to identify the somatic mutations which
are drivers, and which mutations are passengers.
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We can examine the deleteriousness of a mutation in a gene to distinguish between
passenger and driver events. To do so, we examine the protein product encoded by the gene
in question. Functional alterations in the protein can result from activating or inactivating
mutations in the genome. Vogelstein et al. 2013 [67] proposes that the majority of activating
mutations form from missense mutations. A missense mutation is a single nucleotide variant
(SNV), or point mutation, which alters the amino acid in the encoded protein. Activating
mutations that recur at one position (i.e. locus) in the genome are called hotspot mutations
[56]. Vogelstein defines a gene which has acquired a hotspot mutation, an oncogene (OG).
We also adopt these definitions for activating mutations, hotspots, and OGs in this work.

Inactivating mutations cause the encoded protein to acquire a loss of function mutation.
Vogelstein et al. 2013 [67] proposes that the majority of inactivating mutations form by three
types of protein-truncating mutations, which can span the full length of the gene. When
protein-truncating mutations occur in a gene, this gene is a tumor suppressor gene (TSG).

Specific types of protein-truncating mutations include nonsense, where one amino acid
changes to a stop codon; non-stop, where a mutation deletes the stop codon; and splice-site,
where there is an insertion, deletion or change in the number of nucleotides in a particular
site, at which splicing occurs. These three types of mutations alter or terminate the encoded
protein’s function, and are hence said to be driver mutations. As a result, these driver
mutations render the gene to be a driver gene.

Note the strong distinction between OGs and TSGs. OGs drive abnormal cell growth
caused by mutations that either increase gene expression or cause uncontrolled activity of
the oncogene-encoded proteins. TSGs control cell growth in the opposite manner, generally
by inhibiting cell growth. In many tumors, TSGs become inactivated or lost, therefore
eliminating negative regulators of cell growth. Hence, TSGs contribute to the abnormal
proliferation of tumor cells [22].

Both OGs and TSGs describe driver genes. A single driver gene can have both driver and
passenger mutations. The challenge is to distinguish which mutations could cause the gene to
be considered a driver gene. For example, as Vogelstein [67] points out, the driver gene APC
has driver gene mutations which truncate the encoded protein within its N-terminal 1600
amino acids and are therefore tumor suppressor mutations. APC also contains missense
mutations and C-terminal 1200 amino acids found throughout the APC gene, which are
passenger gene mutations [67].

Most cancer research is performed under the assumption that the majority of driver mu-
tations are present in all tumor cells, which are known as clonal mutations [67]. However, the
intratumor heterogeneous nature of cancer also suggests that there are mutations in only a
subset of the cells that give fitness benefits to the tumor. These types of mutations are called
subclonal mutations. Little is currently known about subclonal driver mutations, and their
importance within the context of intratumor heterogeneity. Dr. Marco Gerlinger points out
that intratumor heterogeneity presents significant difficulties for personalized medicine and
development of biomarkers [20]. Dr. Bert Vogelstein expresses that understanding the role
of subclonal driver genes is of great clinical importance [67]. These subpopulations of cells
with different mutations develop and compete with one another, forming specific genetic
signatures that drive tumor development [23, 51] and treatment options [21]. These sub-
populations may therefore provide insights into the complexities of intratumor heterogeneity,
and reasons for drug resistance.
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Figure 1: Pipeline illustrating the central questions and method to identify subclonal driver events.

Past research has shown evidence for subclonal driver events, such as Gerlinger et al.
2012 [20], who identify several instances of subclonal driver events within one tumor. Specif-
ically, they show that SETD2, PTEN, and KDM5C genes experienced multiple different and
spatially separated inactivating mutations within a renal carcinoma tumor, which points
to instances of convergent evolution. Furthermore, McGranahan et al. 2015 [42], identi-
fies subclonal frequencies of driver events across 9 different cancer types. They identify 32
driver genes, of which several could lead to subclonal expansions. The analysis in this paper
expands on the work performed by McGranahan et al. 2015 (see Section 2.2.1).

Thus, the goal of this work is to accurately identify and characterize the driver mutation
events which are subclonal. Said differently, we aim to identify mutation events occurring in
a subset of tumor cells which contribute to functional changes in protein function. Mutations
which occur in only a subset of the cells within a tumor have the potential to accumulate
deleterious mutations, and yet go unidentified and ignored due to their small frequency within
the tumor, and their previously presumed innocuous nature. These types of mutations can
cause problems for patients such as drug resistance, relapse, and metastatic tumor growth [60,
37, 26]. Examining the driver mutations found in only a subset of the tumor enables us to
more accurately characterize the heterogeneity within tumor cells. Moreover, this more
robust characterization of tumors facilitates better personalized therapeutic treatment.

2.2 Method: Novel Method to Identify Subclonal Driver Muta-
tion Events

We accomplish our goal to accurately identify and characterize subclonal driver mutation
events by studying the deleteriousness of a mutation in a given gene, and examining the
protein product encoded by the gene in question. Figure 1 illustrates our pipeline, presenting
both the central questions and method used to identify subclonal driver events. First, we ask
how to find the small amount of driver mutations amidst potentially thousands of passenger
mutations. In tandem, we ask how to discern between the driver SNV mutations that
are clonal and subclonal. These two questions prompt two kinds of input, (1) data which
provides both the list of SNVs and their clonal statuses (Section 2.2.1), and (2) their encoded
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protein level mutation information (Section 2.2.4). (3) By then merging these two types of
data, we can resolve which SNVs cause functional changes in a cell. Using stringent criteria
(4,5,6) for how to determine subclonal driver mutation events (Section 2.2.5), we are able to
identify subclonal driver events, some of which are novel, and not reported by McGranahan
et al. 2015 [42], but supported by the literature as being deleterious cancer mutations (see
Section 2.3).

2.2.1 Published Data from 9 Cancer Types

Tumor cells can form from large regional mutations in the genome (affecting multiple
genes), and from SNVs within a gene. To focus on SNVs, we use the 9 cancer type dataset
from McGranahan et al. 2015 [42], which comprises of a subset of The Cancer Genome Atlas
(TCGA) data from breast cancer (BRCA), urothelial bladder cancer (BLCA), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma (LUSC), cutaneous melanoma (SKCM),
colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), and clear cell kidney carcinoma (KIRC). There are 2694 patients
and a total of 516,672 somatic mutations [42].

In the analysis performed by McGranahan et al. 2015 [42], they analyze the aforemen-
tioned 9 cancer types to determine subclonal frequencies of driver events, and to identify
patterns of tumor evolution across the 9 cancer types. They additionally identify a few
mutation events which could lead to subclonal expansions.

2.2.2 Our Method Provides Output to Characterize Subclonal Drivers.

Our analysis builds off of the annotated subset of TCGA by McGranahan et al. 2015 [42],
by incorporating protein level information, known hotspot genes, and TSGs to identify driver
events occurring in only a fraction of cancer cells, so called subclonal drivers. Our method
highlighted in Figure 1 outputs identified subclonal drivers and divides them into those which
are subclonal TSGs, subclonal hotspot mutations (called oncogenes at the gene level), and
robustly subclonal hotspot mutations and TGS (i.e. mutations are only present in at most
80% of the tumor cells). Our method then identifies which of these subclonal drivers are
instances of either convergent evolution, 2-hit-hypothesis (both gene copies must be targeted
by a truncating mutation to cause tumor cells to develop), co-occurring mutations in the
same cells, and the top subclones across 9 different cancer types. Additionally, all SNVs,
their protein level annotation, clonal status, and any label aforementioned is output into a
.csv file for the user.

2.2.3 Determining Clonal and Subclonal Events

Step (1) illustrated in Figure 1 is to determine clonal and subclonal mutations. The
clonal status of genetic mutations can be determined by identifying the fraction of cancer
cells which harbor the mutation in question, that is to calculate the cancer cell fraction
(CCF), see Eq. 1. In the [42] dataset, the authors integrate ASCAT derived copy-number
profiles (i.e. the complement of detected CNVs across the genome), δ ploidy (i.e. average
genome copy-number) and ρ purity estimates (i.e. the proportion of tumor cells in the sam-
ple) with the SNVs and associated variant allele frequencies (VAF - the proportion of reads
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at a locus which contain the SNV) as reported by TCGA [63]. Mutations are classified as
clonal if the upper limit of the 95% confidence interval for the CCF (Eq. 1) is greater or
equal to 1, and subclonal otherwise. We add a more stringent classification by deeming
mutations as robustly subclonal if the upper limit of the 95% confidence interval falls below
80%, signifying that those mutations are only present in at most 80% of the tumor cells.

CCF =
VAF× (ρ× δ + (2× (1− ρ)))

ρ
(1)

The CCF gives a measure of the proportion of cells with the mutation in question. This
CCF calculation assumes that there is one mutated chromosome copy within the subset of
tumor cells, and that there is the same ploidy for all tumor cells.

2.2.4 Classification of Functional Mutations

Step (2) is to obtain the protein level annotations for each SNV extracted from the TCGA
dataset. For this we use the Ensembl Variant Effect Predictor (VEP), which analyzes,
annotates, and prioritizes genomic variants in both coding and non-coding regions of the
genome [43]. VEP provides gene and transcript-related information, including the type of
mutation, the associated amino acid change, and protein sequence position for every SNV,
which are all used in this analysis. Specifically for TSGs, the types of mutations we consider
are missense, nonsense, nonstop, and splice-site. To identify hotspot mutations we use
the protein sequence position and associated amino acid change. In step (3), protein level
annotation is then added for each mutation in the dataset.

Given 2694 patients, 516,672 somatic mutations, their clonal statuses, and their encoded
protein alterations, in step (4), we provide a reliable way to identify the more frequently mu-
tated positions (so called hotspots) and genes (tumor suppressors), across all cancer types
and patients. In order for a gene to be classified as a TSG, we adopt the “20/20 rule” by
Vogelstein et al. 2013 on the basis of mutation patterns rather than frequencies [67]. This
rule states that genes with ≥20% truncating (inactivating) mutations are tumor suppressor
genes, and can be used to identify even the “modestly mutated driver genes” [67]. Inacti-
vating mutations denote those that are non-stop, splice-site, or nonsense. The score of each
TSG is simply the sum of all inactivating mutations, divided by all mutations for that gene
across all patients (inactivating and activating) as shown in Eq. 2.

TSG =
non-stop + splice-site + nonsense

missense + non-stop + splice-site + nonsense
(2)

We imposed an additional constraint that there should be at least 20 total mutations
across patients for a gene to be considered. We use these two constraints to identify a list
of TSGs from the McGranahan dataset, to which we then union with the list of 71 TSG
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Figure 2: A. Histogram of the average number of mutations across the 9 cancer types used in this analysis.
B. Table of all tumor samples with and without hypermutator samples. C. (left) Numbers of subclonal
drivers at gene level, and (right) numbers of subclonal drivers at event level, meaning that oncogenes are
labeled by their hotspot mutation.

provided from Vogelstein et al. 2013 [67], giving a total of 107 TSGs. Between our list of 56
identified TSGs and Vogelstein’s list, there is significant overlap, with 20 TSGs in common.

In order for a gene to be classified as having a hotspot mutation, we obtained a list of
159 hotspot mutations using MutationAligner, which is an online resource that uses multiple
sequence analysis to locate protein domain hotspots [18]. Hotspot mutations are identified
by summing the number of missense mutations found across comparable residues of domain-
containing genes. The MutationAligner database contains information on ∼500,000 missense
mutations from more than 5000 patients across 22 cancer types. There are two main criteria
for counting the missense mutations at each position: at least two missense mutations are
found at each position in the alignment, and at least three-quarters of the aligned sequence
domains have no gaps at the analyzed positions [18]. Then, those filtered positions are used
for further analysis.

2.2.5 Criteria for Subclonal Driver Events

In order to accurately determine subclonal driver mutations, in step (5) we apply the
following criteria as a filter to every SNV: the mutation is one of 107 TSGs or 159 hotspot
mutations, the upper limit of the 95% confidence interval for the CCF is below 1, and only
genes with VAFs below 0.55 are considered to have valid subclonal mutations. Furthermore,
to avoid hypermutator samples (mostly found in cutaneous melanoma, see Figure 2 A), we
only analyze samples with less than 400 mutations. Without hypermutator samples, we
analyze 2512 out of 2693 patients, which is about 93% of the original amount of patients.
See Figure 2 B for details by cancer type.

We imposed an additional criterion to the CCF calculation to identify robustly subclonal
mutations: for each mutation in question, the upper limit of the 95% confidence interval falls
below 80%, signifying that those mutations are only present in at most 80% of the tumor
cells. The addition of protein level information to identify hotspot and tumor suppressor
mutations permits a focused analysis of which point and truncating mutations cause the
encoded protein function to change. We considered these types of mutations to be true
potential driver mutations for further downstream analysis.

In step (6) we integrate a large protein-protein interaction network to scan for instances
of convergent evolution across 9 cancer types between interacting genes. To determine which
genes interact, we created a merged network between KEGG, HI2014, and HINT to obtain
a total of 760,856 pairs of interacting genes. We used this large network to identify patients
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Table 1: Left: Number of subclones total and by cancer type. All robustly subclonal mutations are subsets of
either subclonal hotspots or subclonal tumor suppressor genes. Right: Top 10 subclonal hotspots, subclonal
tumor suppressors, and robustly subclonal hotspots and tumor suppressors.

with subclonal driver mutations that are known to interact.

2.3 Results: Our Method Output Recapitulates and Highlights
Novel Subclonal Driver Events

The goal of this work is to accurately identify subclonal driver events, which we accom-
plish by analyzing changes in protein function. In this Section 2.3, we summarize our results
and highlight interesting events. In Section 2.3.1 we highlight novel and known instances of
convergent evolution across 9 different cancer types. Of these 2512 patients, we identified
266 patients with subclonal driver mutations, based on our classification. Total across 9
cancer types there are 69 subclonal oncogenes/hotspot mutations, 229 subclonal TSG genes,
and 130 robustly subclonal events. Figure 2 C presents these results at the (left) gene level
and (right) event level. The left shows oncogenes, which overlap with TSGs, whereas the
right disambiguates those hotspot mutations in oncogenes to remove overlap with TSGs.
For example, a hotspot mutation in PIK3CA 545 and PIK3CA 542 are considered as two
separate events, but by collapsing at the gene level, we say that PIK3CA is mutated (i.e. one
event). In later analysis, we characterize an activating mutation using the more accurate
description: hotspot mutation, rather than oncogene.

Highlighted in Table 1 (left), we identify 69 subclonal hotspot mutation events by consid-
ering only hotspot mutations, coupled with our constraints discussed in Section 2.2.5. Table 1
(right) illustrates that TP53 and PIK3CA mutations dominate the top ten hotspot muta-
tions. We similarly identify 229 tumor suppressor mutation events, where we see the largest
number of mutations in NBPF1, most of which are robustly subclonal (see Section 2.3.1 for
further details). Of the 130 robustly subclonal mutations, which are a subset of subclonal
hotspots or subclonal TSGs, NBPF1 has by far the largest number of robustly subclonal
mutations inactivating mutations.

Considering all 9 cancer types, the overall proportion of robustly subclonal TSG mu-
tations make up 0.086% of the total number of inactivating TSG mutations (Figure 3 A).
The proportion of robust subclonal hotspot mutations make up 0.023% of the total number
of activating mutations for these known hotspots (Figure 3 A). Figure 3 C and D show the
proportions of robust subclonal, subclonal, and clonal mutations for each tumor each hotspot
mutation, and suppressor gene that appeared in our dataset. Importantly, notice in Figure 3
B that NBPF1 is both the most frequent subclonal driver event and is most often robustly
subclonal, given all mutation events for that gene.
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Figure 3: A. Proportion of total robustly subclonal mutations to total clonal mutations for both TSG events
and hotspot mutation events. B. Table of subclonal drivers discussed in this text. C. Proportions of robustly
subclonal, subclonal, and clonal hotspot mutations. D. Proportions of robustly subclonal, subclonal, and
clonal tumor suppressor genes.

2.3.1 Identification of Several Novel Subclonal Events

As aforementioned, the most frequent subclonal driver TSG is NBPF1, comprising of 33
events, of which 26 are robustly subclonal. We identified only 1 clonal driver event, which
means that 76.5% of the driver events were robustly subclonal. NBPF1 (Neuroblastoma
BreakPoint Family, member 1) is a member of the NBPF gene family, which are predomi-
nantly located on duplicated regions of chromosome 1. NBPF genes have been found to be
involved in cancer and in brain and developmental disorders [3]. Of the 33 subclonal events,
all but one were splice-site events. The exception is a nonsense mutation in a LUAD patient,
which has as low tumor purity of 29%. The most frequent position for this splice-site is occurs
at position 16918653. There are mutations in the NBPF1 gene in 7/33 BLCA, 1/33 GBM,
11/33 HNSC, 1/33 KIRC, 7/33 LUAD, and 6/33 SKCM samples. Recent reports about this
gene point to its importance in several cancer types [2]. For example, NBPF1-expressing
colon cancer cells formed fewer colonies than the control cells, signifying that NBPF1 could
be suppressing anchorage-independent growth. Nevertheless, little focused research has been
done outside neuroblastoma, where NBPF1 exerts growth inhibitory effects by inducing a
G1 cell cycle arrest [2].

We identify two co-occurring mutations in colon adenocarcinoma patient COAD-D5-6922.
Specifically, COAD-D5-6922 has two nonsense subclonal driver mutations in the interacting
genes APC and PIK3R1. APC contains a mutation present in 76% of the cells, and PIK3R1
contains a mutation in 72%. The purity of this sample is 74%. Both mutations are char-
acteristically mutated in colon cancers, especially APC, where loss of this gene is known to
play a major role in the molecular and histological changes of colorectal cancers [48, 68, 15]
For both genes, the cancer cell fractions (CCFs) are consistent with mutations occurring in
the same tumor subclone. This is a strong example of two subclonal mutations co-occurring
in the same cells, contributing to the tumor phenotype.
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Figure 4: A. (left) NRAS Q61K mutation from Glutamine to Lysine. (right) NRAS mediated pathway
modified from Vu et al. 2016 [69] B. Proposed model of ROCK1-mediated PTEN regulation. C. (left) Sites
of biopsies and regions collected from nephrectomy and metastasectomy samples, where “G” indicates the
tumor grade. (right) Phylogeny of acquired mutations. Branch lengths are proportional to the number of
nonsynonymous mutations separating the branching points. Potential driver mutations were acquired by the
indicated genes in the branch (arrows). Figure altered from Gerlinger et al. 2012 [20].

Multiple mutations in the same driver gene illustrates the idea that a gene can be targeted
more than once by an activating or inactivating mutation. We identify several such events
where a gene in targeted twice. Most notably, in patient SKCM-DA-A3F3 afflicted with skin
cutaneous melanoma, we identify two missense mutations to the hotspot in the NRAS, in
protein sequence position 61, changing a Glutamine to a Lysine (Q61K) as shown in Figure 4
A (left). At a tumor sample purity of 97%, one mutation occurs in 76% of the cancer cells,
and the other occurs in 75%. For both mutations, the cancer cell fractions (CCFs) are
consistent with mutations occurring in the same tumor subclone. NRAS is a member of
the RAS family of proteins and when mutated, deregulates growth pathways leading to
uncontrolled cell proliferation. This is highlighted in Figure 4 A (right) modified from Vu
et al. 2016 [69]. Q61K mutations to NRAS codon 61 is the most frequent RAS alteration in
primary sporadic melanomas with reported frequencies in up to 50% of cases [55]. Targeting
this NRAS Q61K mutation in tumor patients is an area of active research [31].

2.3.2 Discovery of Novel and Known Instances of Convergent Evolution

When there are distinct somatic events in different tumor subclones that can affect the
same gene or pathway, this suggests constraints to tumor evolution, so called convergent
evolution. Convergent evolution describes the fact that, within one tumor there are multiple
subpopulations which develop similar functions (e.g. by mutating the same gene) even though
the most common ancestor did not have that mutation. Two good indicators for convergent
evolution used here are to see more than one subclonal driver mutation in the same patient,
and to identify which of these subclonal drivers interact. Here we present three instances of
convergent evolution missed by McGranahan et al. at both the gene and pathway levels.

Patient HNSC-CV-6955 head and neck squamous cell carcinoma contains two nonsense
subclonal driver mutations in FAT1. One occurs in 41% of the cancer cells, and the other
occurs in 48%, with a tumor sample purity of 42%. The CCFs for both mutations are
consistent with mutations occurring in independent tumor subclones, which then target the
same gene independently. FAT1 mutations are common in HNSC and its mutational status
is a strong prognostic factor in patients with HPV-negative HNSCC [29].

In glioblastoma patient GBM-28-2513 we identify two subclonal driver mutations that
interact in the RhoA-ROCK-PTEN pathway. [62]. ROCK1, which has a nonsense mutation
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in 52%, and PTEN, which contains a splice-site mutation in 36% of the cells. For both genes,
their CCFs are consistent with mutations occurring in independent tumor subclones. Rho-A-
dependent activation of PTEN likely occurs through the Rho-A-dependent kinase ROCK1.
Figure 4 B (left) schematically shows that ROCK1 plays an important role to regulate levels
of PIP3/AKT through receptor activation of PTEN, thus suppressing inflammatory cell
migration [64]. Figure 4 B (right) shows that in ROCK1 deficient cells, ROCK1 cannot
regulate PTEN phosphorylation and stability, thus causing increased cell migation. This is
a strong example of convergent evolution not identified by McGranahan et al., where the
RhoA-ROCK-PTEN pathway is disrupted independently by distinct subclones within the
same tumor. McGranahan et al. identify another example of convergent evolution in this
tumor sample between PTEN and PIK3R1. We do not identify this relationship because
PIK3R1 has a missense mutation but not a hotspot mutation. Therefore, our strict definition
for subclonal driver mutations does not include this event.

Lastly, our results identify two kidney renal clear cell carcinoma (KIRC-B0-5399 and
KIRC-B4-5835) patients, each with two tumor-suppressor subclonal driver mutations in
SETD2, which converge on loss of function. We uniquely identify two distinct mutations in
SETD2 for KIRC-B4-5835, where the tumor purity is 0.55. One subclonal driver mutation
occurs in 73% of cells, and the other occurs in 27%. The CCFs for both mutations suggest
independent subclone formation. We and McGranahan et al. identify the two distinct mu-
tations in SETD2 for KIRC-B0-5399, where the tumor purity is 0.59. One subclonal driver
mutation occurs in 19% of the cancer cells, and the other occurs in 40%. Again, the CCFs
for both mutations are consistent with mutations appearing in distinct subclones. Gerlinger
et al. 2012 also identify distinct mutations which occurred in the SETD2 gene in the adipose
capsule of the kidney, highlighted in a phylogeny in Figure 4 C [20]. Each instance of con-
vergent evolution aforementioned points to possible constraints to tumor evolution, which
could be exploited for therapeutic treatment in the future.

2.4 Conclusions

We designed a novel method to identify subclonal driver events from SNV mutation data,
across 9 cancer types. Our results recapitulate several known driver genes, as well as identify
several novel subclonal drivers. We accomplished this by examining those mutations which
contribute to changes in protein function. McGranahan et al. used a list of driver genes
from Lawrence et al. 2014, which may be why McGranahan et al. missed several subclonal
drivers [33]. In the future, we would like to add several features to this method, including
identifying subclonal copy-number variants, clonal drivers, and mutually exclusive mutation
events. We would also like to draw direct comparisons between cancer types, patients, and
their gender and age.

Past researchers have shown that some subclonal driver mutations are associated with
negative clinical outcomes [32, 67]. Landau et al. 2013 discovers patterns of clonal evolution
which provides an understanding into the adverse clinical outcomes caused by subclonal
mutations. He claims that the presence of subclonal mutations increases with treatment,
which indicates that previously untargetted subpopulations could continue to proliferate
and diversify. Most treatment stategies are biased to detect clonal drivers occurring at high
frequency within single cancer samples [67]. Landau points out that it is compulsory to
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focus also on subclonal events, to be able to have effective targeted therapy. Our method
presented here moves us closer to identifying these subclonal driver events which negatively
influence treatment.
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3 Inference Model to Identify Copy-Number Variants

from Single-Cell DNA Sequencing of Tumors

GOAL: Develop a model to accurately identify copy-number variants in single-cell DNA
sequencing data.

3.1 Introduction: Single-Cell DNA Copy-Number Inference

Noninherited mutations acquired over the lifetime of an individual drive tumor progres-
sion [16, 51]. Copy-number variants (CNVs) are a type of mutation that are pervasive across
many cancer types [10, 16, 78]. A cell has a CNV in a genomic region when the number of
copies of that region differs from the heterozygous diploid state, i.e. one copy inherited from
the mother and one from the father. Gains in a region also amplify any point mutations
residing in that region, thus magnifying their potency. Different subpopulations of cells, or
clones, have different complements of CNVs. In contrast to the commonly used technique
of bulk DNA sequencing, where a mixture of hundreds or thousands of cells are sequenced,
single-cell sequencing DNA (scDNA) is technique which allows us to identify the complement
of CNVs in individual cells, thus allowing us to infer the clones directly. Inferring tumor
clones provides an opportunity to improve our understanding of intratumor heterogeneity,
clonal expansion and metastatic dissemination [44, 71].

Fluctuations in read count, i.e. the number of reads mapping to different genomic regions,
provide signal to detect CNVs. Higher read count from the diploid state indicates a gain in
the number of copies of a region of a chromosome, and lower read count indicates a loss. The
complement of detected CNVs across the genome form a cell’s copy-number profile (CNP),
characterized by a vector of integers from 0 to an upper-bound (generally below 10) [16, 78].

In scDNA, the DNA source material is from a single cell and is thus significantly smaller
than in bulk, where many cells are sequenced at once. To arrive at measurable quantities
of DNA source material, whole-genome amplification (WGA) is a necessary step in scDNA.
Currently, this step leads to high amounts of experimental noise due to uneven coverage
depth, false-positive errors and false negative sites without coverage depth leading to allelic
dropout in which not all copies of a segment are amplified and can occur at 10%-30% of
mutation sites [46], and other sequencing and amplification errors [19, 57, 8]. Consequently,
these errors lead to non-uniform read counts of genomic segments that have the same number
of copies [45], which makes copy-number calling, (i.e. identifying CNVs) in scDNA data a
challenging task. This problem is particularly pronounced with whole exome sequencing
(WES) data, where only the coding part (∼3%) of the genome is sequenced. Furthermore,
WES data suffers from inherent noise due to various biases that are introduced in target
capture and sequencing phases [1]. In contrast to WES, whole genome sequencing (WGS) of
single cells improves the read count uniformity and helps classify non-coding and structural
variants, which may extend past the exomes [19].

There are currently few methods which identify CNPs of scDNA data [4, 17, 81, 82, 75],
and while many scDNA cancer studies produce WES data [19, 27, 36, 50, 72, 76], current
methods use WGS data, and do not claim to extend to WES data. Furthermore, these
methods consider cells independently when inferring CNPs, even though it is known that
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tumor cells are the result of a common evolutionary process [51], and as such many cells have
similar CNPs [12, 16]. To leverage this fact, similar cells can be considered jointly to enhance
the power of inferring the CNPs (i.e. clones) of a tumor. Dr. Nicholas Navin points out in
Chen et al. 2016’s single-cell sequencing review [8] that amplification errors are randomly
distributed and can be mitigated by detection across multiple single cells. Nevertheless, no
current scDNA CNP inference methods consider cells jointly.

3.2 Method: Overview of Proposed Model for Single-Cell DNA
Copy-Number Profile Inference

Current approaches to solving this problem of inferring cell CNPs relies on algorithms
such as hidden Markov models (HMM) and circular binary segmentation (CBS), which can
normalize noisy read count data after single-cell WGA to identify regions which are over
or under represented when compared to the diploid genome [41, 52]. Here, we propose a
model in which we are given m cells with read counts across the genome, each divided into
n bins, i.e. defined-length regions of the genome (typically each is about 500 to 50 kilobases
(KB)) [81, 17], with the goal of determining the CNP for each single cell by jointly consid-
ering all cells in the cohort. More formally, given a cell, the observations are the corrected
(for GC bias and other errors) read counts r = (r1, . . . , rn) where each rj is the corrected
read count for bin j. The corresponding CNP p = (p1, . . . , pn), where pj denotes the integer
copy-number for bin j. We have m such vectors r, which form a corrected read count matrix
R = [rij] ∈ Rm×n

≥0 and denotes the corrected read count for cell i in bin j. Its corresponding
CNP matrix P = [pij] ∈ Nm×n

≥0 denotes the integer copy-number for cell i in bin j. More
formally, we consider the following problem:

scDNA CNP Inference Problem: Given a training set T = {(R1, P1), . . . , (R|T |, P|T |)} and a
number of clones k, find f : Rm×n → Nm×n that minimizes the error over the training data1,
where f satisfies f(Rt) = Pt and for every corrected read count matrix R, P = f(R) has at
most k unique rows.

Note that m ≫ k for samples of tumor cells, as we assume that a tumor is composed
of clones (groups of cells that have the same complement of CNVs). First, beginning in
Section 3.3, we present the motivations for solving this problem, and analyze results from
current methods. Next, in Section 3.4, we describe a deep learning approach which infers
the assignment of cells to clones, and the CNPs for those cells and clones, by considering
cells jointly. Our proposed method leverages the known evolution of the tumor in which cells
evolve from a common ancestor, and thus share similar CNPs [13, 16, 19].

3.3 Review of Current Methods: Robustness Issues

Current methods for scDNA copy-number inference include Ginkgo [17], AneuFinder [4],
nbCNV [81], Poisson-CNV [75], and the method by Zhang et al. 2013 [82]. Importantly,
these methods do not consider cells jointly when inferring the CNPs for each cell and thus

1explained in Section 3.4
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do not infer clones. We analyze results from the currently most commonly used methods
AneuFinder and Ginkgo. Note that although Ginkgo and AneuFinder report a dendrogram
that relates cells, they do not use the relatedness of cells during CNP inference. There are
two versions of AneuFinder and Ginkgo. AneuFinder uses both a hidden Markov model and
a change-point [52, 65] approach. Ginkgo has a fixed bin length setting, which fixes the sizes
of all bins as specified by the user, and a variable bin length setting in which the bin size is
set by the user but can change as determined by Ginkgo.

We first compared the concordance in CNP inference between AneuFinder and Ginkgo
using tumor and normal WGS scDNA data from patients with triple-negative breast cancer
patients from Gao et al. 2016 [16], where they identified 1-3 predominant clones per tumor.
We analyzed 3 patients (T4, T5, and T7) due to their very different CNV patterns, to assess
the robustness of Ginkgo and AneuFinder. Patient T5 data comprises of 128 cells (38 normal
cells and 90 tumor cells). Two populations (i.e. clones) were identified in the study of this
patient, in the primary tumor [16]. Patient T4 data comprises of 54 tumor cells and 3 clones
were identified. Patient T7 data comprises of 68 tumor cells, and two clones were identified.
Neither T4 nor T7 has matched normal cell data. We then assess the performance of both
methods using a simulated dataset (∼ 1× coverage) comprising of two cells populations, one
harboring a very small CNV (either deletion or tandem duplication).

3.3.1 Low Concordance Between Ginkgo and AneuFinder

We compared the inferred cell CNPs produced by AneuFinder [4] and Ginkgo [17] from
patients T4, T5, and T7 [16] at a large bin size of 250KB, the closest option in Ginkgo to the
220KB median bin size used in the analysis by Gao et al. 2016 [16]. We chose a normal cell
SRR3082324 from patient T5 as AneuFinder’s reference, given its low read count variance
across the genome, ∼0.11× average breadth of coverage across the genome (measure of read
coverage uniformity), and overall inferred CNP with little deviation from 2 across all bins
when inferring the CNP using Ginkgo.

We can see through Figure 5 B that as CNV events become more complicated (see Figure 5
C), both AneuFinder and Ginkgo have increasingly more difficulty producing commensurate
results. This is very apparent for patients T4 and T7, where many of the cells have very
complicated events, and For example, results for patient T7 show that Ginkgo (variable bins)
and AneuFinder (change-point) achieve less than 30% similarity between their inferred CNPs
on 41.4% of the cells at the large bin size of 250KB. We show AneuFinder (change-point) and
Ginkgo (variable bins) as these versions produced the best results for these CNP inferences.

Ginkgo infers many small CNVs and also produces copy-number ‘peaks’, which drastically
impact the average ploidy calculation and contribute to incorrect CNP inference (see arrow
Figure 5 D. Figure 5 D illustrates several examples of cell integer CNPs, where the dotted
circles in A are associated with the corresponding dotted plots in D.

The percent similarity between many of the inferred CNPs is either quite low, or quite
high, which could indicate that several CNPs differ by just a constant. If this is the case,
considering cells jointly would give more power to detect the true CNPs for all cells. After
scaling all inferred CNPs for Ginkgo (variable bins) and AneuFinder (change-point), we
determined that although the percent similarity did increase for many cells, there are still
significant differences between the results of the two methods for many cells, indicating a
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Figure 5: A. Illustration of percent similarity (percent of positions with the same copy-number called)
calculation used to compare CNP results between Ginkgo and AneuFinder. B. Percent similarity between
cells sequenced in patients T4, T5, T5N (normal cell sample) and T7, between Ginkgo (variable bins) and
AneuFinder (change-point). The percentage of cells with a percent similarity below 30% is denoted in black.
C. Log2 copy-number ratio plots as reported by Gao et al. 2016 [16]. The log2 copy-number ratio is the
absolute ratio to the cell ground (i.e. the median ratio of that cell) and is not equivalent to the integer
copy-number but is conceptually similar. Blue indicates deletion events, white indicates diploid regions, and
red indicates amplification events. Clones identified (clone A, B or C) are indicated on the left. Single cells
are plotted on the y-axis, and CNVs are plotted on the x-axis, ordered by genomic location. Note that over
half of the tumor cells in patient T5 are mostly diploid, and are not shown in B, but are considered in A.
D. Several examples of copy-number profiles which correspond to A. Ginkgo occasionally infers extremely
unlikely CNVs for very small segments of the genome, which results in small ‘peaks’ throughout CNPs,
drastically affecting average ploidy calculations.

more complicated disparity between both methods. If cells from the same clone had been
considered jointly, this would enable us to infer true CNVs with higher precision.

3.3.2 Low Concordance Between AneuFinder and Ginkgo at Various Bin Sizes
for Cells of Normal Clone

As we attempt to identify smaller CNVs by decreasing bin size, AneuFinder and Ginkgo
deteriorate in their abilities to robustly infer CNPs. To illustrate this, we compared the
inferred CNPs of 35 normal cells from patient T5 by Ginkgo and AneuFinder, against the
ground truth diploid CNP. Figure 6 shows the fraction of diploid bins inferred for each cell
across both versions of Ginkgo and AneuFinder at various bin sizes. As bin size decreases,
the variance in read counts across the genome increases, which significantly hinders these
methods from inferring diploid bins for these normal cells. Importantly, even when setting
the bin size, Ginkgo’s “variable” bin setting means that Ginkgo can change the binsize. For
this reason, the plots may be deceptively showing fairly strong fractions of diploid bins, when
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Figure 6: Each panel shows the fraction of diploid bins inferred by AneuFinder and Ginkgo methods for
35 normal cells and two merged cells at bin sizes 250KB to 10KB. There are two versions of both methods:
AneuFinder change-point (ADNACOPY), AneuFinder (AHMM), Ginkgo fixed bin size (GFIXCP), and
Ginkgo variable bin size (GVARCP). Each point is either one of 35 normal cells (2 outliers removed and one
is AneuFinder reference), a merged down sampled cell (red star) to measure an average cell of all normal
cells. Percent of cells below diploid bin fraction 0.3 are noted in black for 20KB, 15KB, and 10KB.

in fact Ginkgo is altering the bin sizes, such as for Ginkgo (variable) at 10KB. Note that we
used one of the normal cells (SRR3082324) as AneuFinder’s reference.

Small CNVs involving a single gene or portion of a gene are not well understood, yet
instrumental in disease progression as several studies note across many conditions including
cancer, immunodeficiency, neurodevelopmental, and metabolic disorders [5, 54, 61, 79, 73, 25,
28, 40]. For example, Xi et al. 2011 [73] detect and quantitative PCR validate many CNVs
between 100 basepairs (BP) and 1000BP in an Acute Myeloid Leukemia patient, including
one 40BP event, at 10BP bin resolution. No currently used scDNA CNV inference methods
are accurately able to infer CNPs at small bin sizes.

Figure 6 illustrates how the number of diploid bins inferred by both methods decreases
as the bin size decreases. Each lightly colored point is one of 35 cells. 2 outlier cells
with high sequencing error were removed to provide the best dataset for AneuFinder and
Ginkgo to analyze, and cell SRR3082324 was used as AneuFinder’s reference. AneuFinder’s
HMM method begins to deteriorate rapidly in its ability to call diploid bins at 100KB. The
ADNACOPY method is overall less sensitive than AHMM, and maintains high fidelity when
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Figure 7: Simulation results show how many known small copy-number variations Ginkgo and AneuFinder
are able to identify. (top) Depiction of small simulated CNV events. (bottom) Each box-plot highlights the
called copy-number at the location of the copy-number variation (the search flanked 30KB on both sides).
The percent above each plot illustrates how many of 10 cells were correctly identified to have the CNV.

inferring diploid bins for most cells until 20KB, when it rapidly declines. Both Ginkgo fixed
and variable bin size methods begin to fail inferring diploid bins across all cells starting at
a high bin size of 250KB. At 10KB bin size, while AneuFinder fails to infer diploid bins,
Ginkgo fails for only a couple of cells. This could again be predominantly due to the fact
that Ginkgo’s “variable” setting enables it to change the bin size, although a fixed size is set.
Overall, it is clear that currently used scDNA CNP inference methods are unable to robustly
detect true CNVs at small bin sizes, and not even at 100KB for AneuFinder’s HMM model.

3.3.3 Current Methods Miss and Incorrectly Call Small Copy-Number Changes

Ginkgo and AneuFinder are unable to accurately identify small CNV events, and return
many erroneous CNV events. To evaluate this claim, we simulated several small CNV events,
generated 10 cells for each, and ran Ginkgo and AneuFinder at a 10KB bin size. More
specifically, we generated four aberrant genomes harboring either a 40KB deletion, 40KB
tandem duplication with copy-number 5, 40KB tandem duplication with copy-number 11,
or 20KB tandem duplication with copy-number 5). We simulated 10 cells from each of the
these aberrant genomes. We ran AneuFinder and Ginkgo on these sets at a 10KB bin size.
Figure 7 (top) illustrates which small events Ginkgo and AneuFinder were to detect. The
box plots illustrate the difference from the true copy-number for each region. We considered
30KB up and down from the location where we inserted the CNV. In the ideal scenario, the
difference is 0. The percentage above each plot indicates what percent of cells were correctly
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Navin 2014

A. B.

Figure 8: A. Figure from Navin et al. 2014 [45] depicting that coverage uniformity varies per cell, and is
often more uniform when sequencing a population of cells (i.e. bulk sequencing). B. Histogram showing the
non-uniform read count distribution for 38 normal cells from Patient T5 and a merged down sampled cell
(magenta). This is a real data example of the diagram in A. See [appendix] for read count histogram at
10kb bin size.

classified as having that CNV. Overall, very few of the small CNV events were correctly
identified by Ginkgo and AneuFinder.

3.3.4 Proposed Solution: Consider Cells Jointly to Alleviate Single-Cell DNA
Errors in Individual Cells and Improve CNP Inference

Considering cells jointly helps identify true CNV events, especially in the case of small
CNVs and at small bin sizes. scDNA fluctuations in coverage and sequencing errors signif-
icantly hinder accurate estimates of CNVs occurring across cells of the same clone [45, 46,
47, 8, 7, 16, 4, 17, 81]. In order to utilize read depth information across cells of the same
clone, we show that (1) coverage uniformity varies from cell to cell for regions with the same
copy-number, and (2) sequencing errors are uniformly distributed across the genome (thus
independent between cells). To show that points (1) and (2) can be alleviated by merging
information across cells of the same clone, we analyzed 38 normal cells from patient T5 from
Gao et al. 2016 [16].

3.3.5 Single-Cell DNA Coverage Uniformity Varies from Cell to Cell

Towards point 1, Figure 8 A from Navin et al. 2014 [45] shows how, compared to bulk
sequencing coverage (green), scDNA sequencing’s WGA step results in non-uniform read
coverage across the genome for regions of the same copy-number (cells 1 - 4). The histogram
in Figure 8 B illustrates what is depicted in A, that scDNA WGA errors cause non-uniform
read counts across the genome for these 38 normal cells. As coverage uniformity varies from
cell to cell, considering cells of the same clone would enable us to more robustly determine
the true clone CNP (see Section 3.3.7). One can use a merged cell to illustrate this (see
magenta distribution in Figure 8 B).

3.3.6 Single-Cell DNA Errors are Uniformly Distributed and Contribute to
False Positive CNVs for Current Methods

Towards point 2, as Navin suggests in [8], amplification errors are randomly distributed
across the genome, and can be mitigated by considering cells of the same clone, jointly. For
current methods such as Ginkgo, these randomly distributed sequencing errors are sometimes
inferred as true events. Figure 9 illustrates this in a bar graph of the frequency of non-diploid
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Figure 9: Bar plot of the frequency of non-2 copy-number calls across the genome for 38 normal cells from
patient T5 as produced by Ginkgo variable bins (250KB bin size). Large peaks could be a result of issues
including germline copy-numbers, unaddressed GC rich and centromeres.

inferred bins for the 38 normal cells (y-axis) across all genomic bins (x-axis) for Ginkgo’s
variable bin method. The left histogram shows the number of bins where that many cells have
a non-diploid copy-number, with only 1.3% of all bins having a non-2 copy-number across
all 38 cells, which could be unaddressed GC rich and centromeric regions. In most bins
(49.97%), only 2 cells at a time have a non-2 copy-number. Very few non-diploid inferred
bins are shared by 38 cells across the genome, indicating that sequencing error is indeed
random across each cell. This story holds for Ginkgo’s fixed bin method and AneuFinder’s
methods. As bin size decreases, current methods infer higher amounts of sequencing errors
as true events (see Figures 6 and 7).

3.3.7 Integrate Information Across Cells of the Same Clone to Improve Single-
Cell DNA CNP Inference

scDNA coverage variation between cells in regions of the same copy-number (Section 3.3.5)
and uniformly distributed sequencing errors (Section 3.3.6) can be addressed by considering
cells jointly to more accurately infer scDNA CNPs, especially at small bin sizes. Using a
simple approach to consider cells jointly; pooling all reads across all cells to create a ‘merged
cell’ enables us to remove some of the confounding sequencing errors, and determine where
the changes in read depth are consistent across cells, signifying a true CNV for that clone.

Figure 6 illustrates how this technique of merging information across cells generally helps
increase the fraction of diploid bins inferred by both Ginkgo and AneuFinder. In addition to
35 normal cells, there is a merged cells (red star). The red star is the merged down sampled
cell, formed from 35 normal cells, and has been down sampled to the same coverage as the
other 35 cells (∼0.1×).

At higher bin sizes 250KB and 100KB, the merged down sampled cell (red star) shows
that by merging information across cells of the same clone, we remove the variability present
in many single cells. At smaller bin sizes, we see that in most cases, the merged down
sampled cell (red star) has a higher fraction of diploid bins compared to the majority of the
35 normal cells. ADNACOPY starts to break down significantly at 20KB and 15KB, and
although about half of the cells have close to zero inferred diploid bins at 15KB, the merged
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Figure 10: [Change Ginkgo histo.] A. Hierarchical clustering dendrograms (complete linkage and Euclidean
distance) comparing vectors of normalized read counts between 8 cells (4 with small CNV(s)- red cells). A.
(right) Alone most red cells with the 40KB duplication cluster with black cells, not harboring the small
CNV. (left) When all four red cells are considered together, the small CNV is identified and the red cells
cluster together. B. Hierarchical clustering dendrograms relating 8 cells using: simple clustering of noisy
read count vectors, Ginkgo (variable bins) inferred CNP vectors and AneuFinder methods’ CNP vectors.
Red cells harbor a small 40KB duplication in chromosome 7. C. Same comparison as in B but red cells
also harbor a small 20KB duplication in chromosome 6. D. Same comparison as in B but red cells harbor a
small 40KB deletion in the same location of chromosome 7. Overall, simply clustering without copy-number
inference and segmentation does better than both methods to identify small CNVs.

downsampled cell is still inferred as diploid.
AHMM is unable to accurately call these diploid cells beginning at 100KB. As the merged

downsampled cell represents information from a collection of the other cells, it is AHMM is
unable to accurately classify the merged downsampled cell as diploid in some cases, which
could be due to the fact that the merged cell is a downsampled average of the 35 normal
cells, which were also mostly unable to be classified as diploid. Ginkgo is consistently unable
to infer all the normal cells at diploid, but does not deteriorate like AneuFinder. Further,
at each bin size the fraction of diploid bins remains high for the merged downsampled cell.

In conclusion, in most cases for both Ginkgo and AneuFinder, these results show that
merging information across cells of the same clone can help accurately infer the CNP of the
normal clone and thus, these 35 normal cells. Importantly, especially for the cases where
the merged cells do not have a high fraction of diploid bins, it is crucial to consider the
conclusions one can draw from this naive method of utilizing information across cells (via
pooling reads across all .bam files of 35 cells). Algorithmically, we are not interested to pool
reads from similar cells together. We are instead interested to build a consensus copy-number
for particular bins which present ambiguous information denoting a possible amplification
or deletion.

22



3.3.8 Using All Cells of the Same Clone to Detect Small CNVs Outperforms
Ginkgo and AneuFinder When Relating Cells

We do not have reliable read count data to determine single cell events by considering one
cell at a time due to scDNA WGA sequencing errors and other sequencing biases. However,
under the assumption that such errors occur uniformly at random throughout the genome
and are thus independent for all cells, we can look across cells of the same clone to determine
a consensus CNP for that clone, thus mitigating the errors and biases which affect individual
cells. Some cells will be more correlated with others across bins, as the same fluctuations serve
as a proxy to determine the underlying CNV events. This is especially useful when trying
to detect small but true CNVs. So, can we identify small CNVs by looking at multiple cells
from the same clone? Do these events go undetected when considering all cells separately?

Figure 10 shows several hierarchical clustering dendrograms using complete linkage clus-
tering and Euclidean distance to relate two cell populations; black cells harbor 3 large CNVs,
and red cells harbor those 3 large CNVs and either one or two small CNVs (20KB tandem
duplication with copy-number 5, 40KB tandem duplication with copy-number 5, or 40KB
deletion). In Figure 10 A, when considering each of the cells harboring the small CNV sep-
arately (Figure 10 A. (right)), most cells harboring the 40KB tandem duplication CNV (red
cells) cluster with cells not harboring that event (black cells). However, when considering
all cells harboring the small event (A. left), we can detect the 40KB duplication, which
elucidates that we can identify small CNVs by looking at multiple cells from the same clone.

In some instances it is difficult to judge whether or not an event has been detected. It
is more useful to consider the resulting relationships between cells, which can be illustrated
through a dendrogram. Although Ginkgo and AneuFinder report a dendrogram to relate
cells, they do not use the relatedness of cells during CNP inference. Figure 10 B,C, and D
show how clustering read counts without segmentation or copy-number calling outperform
segmentation and copy-number calling to identify the small events (outlined in Table 7).

3.4 Method: Simultaneous Clustering and Classification of Single-
Cell DNA CNVs by Considering Cells Jointly

3.4.1 Single-Cell Copy-Number Identification Using Deep Learning

All cancer cells share a common evolutionary lineage, resulting in groups of cells (i.e.
clones), with different complements of copy-number variants (CNVs). In order to understand
tumor composition and progression given a cohort of single-cells, we must identify which cells
are part of the same (1) clone, and (2) identify the complement of CNVs which characterize
the cells in each clone, so called the copy-number profile (CNP). In this way, we obtain the
pattern of CNV events (complement of CNVs) which uniquely characterize each clone.

For (1), this is essentially a clustering problem. Unsupervised deep learning architectures
have been widely applied to cluster, to learn low-dimensional feature representations from
high-dimentional unlabelled data, similar to classical principal component analysis (PCA)
or factor analysis, yet it uses a non-linear model. These types of approaches include stacked
autoencoders, restricted Boltzmann machines, and deep belief networks. Clustering has been
heavily studied to determine appropriate distance functions and grouping algorithms yet very
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Figure 11: Approach to jointly infer cell-clone assignments, and clone copy-number profiles.

little work has focused on learning representations for clustering [74, 66, 53, 30, 14]. This
task entails learning feature representation which divide the cells into groups based on their
read count profiles, and then clustering once these features have been identified to separate
the cells into groups (i.e. clones). Then supervised learning can be applied to infer the CNPs
for all clones. In what follows, we present a model which leverages information across cells
to infer the cell to clone assignments for each clone, and then infers the CNP for each clone.

3.4.2 Method Overview

Figure 11 illustrates the proposed approach to jointly infer cell to clone assignments
and the clone CNP. Given m single-cells, each divided into n bins, the goal is to determin-
ing the CNP for each clone to which each single-cell belongs, and determine the cell-clone
assignments themselves by jointly considering all cells in the cohort.

More formally, given a cell i, the observations are the corrected (for GC bias and other
errors) read counts (CRC) r = (r1, . . . , rn), where there are n bins. We want to generate
the corresponding CNP p = (p1, . . . , pn), where pj denotes the integer copy-number for bin
j. We have m such vectors r, which form a CRC matrix R = [rij] ∈ Rm×n

≥0 , where rij de-
notes the CRC for cell i in bin j. Each matrix R has a corresponding copy-number matrix
P = [pij] ∈ Nm×n

≥0 , where pij denotes the copy-number for cell i in bin j, and P has k unique
rows. Thus, our training set is formed by T = {(R1, P1), . . . , (R|T |, P|T |)}. We can now
consider the following formal problem statement:

scDNA CNP Inference Problem: Given a training set T = {(R1, P1), . . . , (R|T |, P|T |)} and a
number of clones k, find f : Rm×n → Nm×n that minimizes the error over the training data
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Figure 12: Diagram of Deep Embedded Clustering algorithm with R corrected read count matrix input.
Modified diagram from Xie et al. 2016 [74]. Green box associates this figure with the green box in Figure 11.

where f satisfies f(Rt) = Pt and for every corrected read count matrix R, P = f(R) has at
most k unique rows.

Note that we assume m ≫ k for samples of tumor cells, as we assume that a tumor is
composed of clones (groups of cells that have the same complement of CNVs). In the follow-
ing sections, we explain the steps of this approach, each with the title in Figure 11. Where
‘REPEAT’ is written indicates when a step should be repeated to inform the assignment
of cells to clones, segmentation, and classification of segments to a copy-number state (as
illustrated by the black back arrows in Figure 11.

3.4.3 Dimension Reduction of R, Cluster Cells of R

Input to this approach is a training data set T and a number of clones k. One training
dataset T is a tuple (Rt, Pt) composed of a CRC matrix R. Now consider our first problem
of clustering a set of m cells ri ∈ R into k clusters which are each represented by a centroid
µc, c = 1, . . . , k.

Summary: We adopt the Deep Embedded Clustering (DEC) algorithm proposed by Xie
et al. 2016 [74] is an unsupervised clustering method which learns a non-linear mapping
g(θ) : R → Z from the data space R, onto a lower dimensional latent feature space Z
(using an autoencoder), where θ are the learned parameters, and simultaneously learns the
clustering, using a deep neural network. DEC iteratively optimizes a clustering objective
(Fig. 12), with the goal of simultaneously solving for soft cluster assignment of data points
(i.e. cells) to a fixed number of k clusters (i.e. clones) and determining the underlying feature
representation of the clusters.

Clustering is done gradually by iteratively optimizing a Kullback-Leibler (KL) divergence
based clustering objective with a self-training target distribution. Stochastic gradient de-
scent (SGD) via back propagation on the clustering objective enables us to learn the mapping
g(θ), which is parameterized by a deep neural network. Thus, DEC jointly performs feature

25



embedding and clustering, while being robust to hyper-parameter values and allowing for
imbalanced clustering data.

Method Steps: More specifically as shown in Figure 12, DEC has two phases, (1) in
which DEC is initialized with a stacked autoencoder (SAE) to reduce the dimensionality of
the data and learn the best representation of each cell read count sequence. After training
the autoencoder, the encoder layers are used as the initial mapping between the data space
R and the feature space Z.

During the parameter optimization phase (2), the data are passed through the initial-
ized deep neural network to obtain the embedded (i.e. encoded) data points, which are then
clustered using k-means clustering in the feature space Z, to obtain initial centroids µc,
c = 1, . . . , k. With these initial centroids, DEC improves the clustering by alternating be-
tween two steps of an unsupervised algorithm. First, soft assignments are computed between
the embedded points and the cluster centroids. Second, the non-linear mapping g(θ) is up-
dated and the cluster centroids are fine-tuned by learning from the current high confidence
soft assignments using an auxiliary target distribution [74]. In this way, DEC iterates be-
tween computing an auxiliary target distribution and minimizing the KL divergence to that
auxiliary distribution until a convergence criterion is satisfied.

Advantages: DEC can be viewed as an unsupervised extension of a more semisupervised
self-training method, where it is possible to learn a representation which is appropriate for
clustering data without any ground truth cluster membership labels. This is therefore ideal
to uncover cell to clone assignments and representations of each cluster (i.e. clone) in the
data, given that we only know the clone assignments for normal cells.

Contributions: This method provides several novel contributions which can be leveraged in
this work. 1) DEC jointly optimizes the representation of the input data (i.e. the deep em-
bedding of each cell in R), and the clusters themselves, 2) DEC iteratively refines the model
via soft cluster assignment, and 3) achieves ‘state-of-the-art’ clustering results (in terms of
accuracy and speed) [74]. Xie et al. 2016 [74] studied the performance and accuracy of their
method on two very well known image datasets (MNIST [34] and STL-10 [11]) and one text
dataset (Reuters [35]).

Value of Autoencoder: Importantly, as explained by Xie et al. 2017 [74], Vincent et al.
2010 [66], Hinton and Salakhutdinov et al. 2006 [24] and others, SAEs have shown to con-
sistently produce semantically significant and well separated representations on real-world
data [74]. Autoencoders naturally fit into the deep neural network architecture, and this sort
of non-linear technique is useful to discover better and more compact representations of fea-
tures [66]. For this reason, it is easier for this unsupervised representation which is learned
by SAE to facilitate learning cluster assignment and representations with DEC. Another
beautiful advantage of using an autoencoder is to be able to learn the noise present in nor-
mal cells, and incorporate this learned model when reconstructing and denoising tumor cells.

Model Assumptions: DEC makes the important assumption that the initial classifier’s high
confidence predictions are mostly correct. To avoid misclassification due to improper place-
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Figure 13: Depiction of convolutional neural network used to segment multiple musical signals concurrently,
along with windowed input and full output depiction. Altered image from Schluter et al. 2014 [59]

ment of initial cluster centroids, Xie et al. 2016 [74] run k-means with 20 restarts to pick the
result with the best objective value. Note that this model also assumes that we know the
number of clusters k. In most single-cell sequencing (scDNA) cancer studies, the number of
clones ranges from 3 to about 5 [44, 6, 81], thus, by fixing the number of clones k within
this range, we can compare the classification performance to determine the optimal number
of clones for a given dataset.

3.4.4 Segment Cells in Each Cluster

For each clone (i.e. cluster), we perform segmentation of the cells in that cluster to iden-
tify the change points common to those cells. Let R′ = [r′ij] ∈ Rl×n

≥0 , denote the matrix of
the subset l of cells, such that l < m, which belong to a clone, such that k > 1. Entry r′ij
denotes the CRC for cell i in bin j for that clone.

Onset and change point detection: Following Schluter et al. 2014 [59] and Neuner et al.
2015 [49], we can look across multiple cell CRC vectors (i.e. signals represented by R′) of one
or several KB bin sizes and detect swift vertical changes in those cell CRC vectors across
genomic positions (i.e. change points). Detection of changes in our CRC vectors (or signals)
are akin to detection of musical onsets using musical audio signals. In Figure 13, Schluter
et al. 2014 [59] detect musical onsets by finding the starting points of all musically relevant
events in an audio signal. As it pertains to spectral representation, onset detection is closely
related to edge detection in images, and change point detection in signals [38, 59, 49, 83].
Onsets are characterized by sharp shifts in the signal over time, and highlighting such edges
requires local information. This task of identifying the sharp shifts can be accomplished
by convolution with a small filter kernel, which is the basic operation of a convolutional
neural network (CNN). Schluter et al. 2014 [59] claims that if a randomly initialized CNN
can detect edges, it should be able to learn a set of suitable filter kernels to detect onsets,
which they demonstrate. In what follows, we explain their model and draw parallels to our
task.

Training and output for onset detection: To train a CNN for onset detection, the input to
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the CNN are spectrogram excerpts centered on the frame to classify (see Figure 13 far left).
Each excerpt can be represented as a matrix E = [eij ∈ Ql×f ] composed of l spectrogram
frequency bands by f frames. eij describes the sound decibel at frequency band i at the
time in frame j. Binary labels (0,1) distinguish onsets from non-onsets, and are the labels
to predict. Figure 13 illustrates the input to the network during training, which consists
of a matrix of m = 80 frequency bands by f = 15 frames by 3 channels (i.e. magnitude
spectrograms, described later), and the label to predict. The initial filters across the inputs
are 7 frames by 3 frequency bands, by 3 channels, and the learned filters change in the con-
secutive convolution and pooling layers. For each input window, the output unit computes a
weighted sum of the hidden unit states (256 in Figure 13), and then applies a logistic sigmoid
function, resulting in a prediction value between 0 and 1, which is interpretable as an onset
probability for that window of 15 frames across 80 frequency bands.

Training and output for change point detection: For change point detection training, the
input similarly consists of several matrices E = [eij ∈ Rl×f ] defining windows (i.e. genomic
regions), each comprising of l cells by f bins, where eij describes the corrected CRC for cell
i in bin j. Binary labels (0,1) distinguish change points from non-change points, and are the
labels to predict for each window. The input structure from [59] would correspond directly
to training data of f = 15 consecutive bins across all cells in a clone, where each of the 3
channels would correspond to a higher or lower KB bin size. Note that we begin with a
simpler model considering only one KB bin size. Importantly, in [59], the authors say that it
did not improve predictions to replace the binary targets with sharp Gaussians and turn the
classification problem into a regression one, but we can try to see if this improves our results.
The output for each window would similarly return a value between 0 and 1, interpretable
as a change-point probability occurring in that window, considering all cells in that clone.

Desired output for change point and onset detection: The onset detection output for a full
input spectrogram (see Figure 13 far right “Full Input spectrogram”) consists of an output
vector o = (o1, . . . , on) such that for each i, 0 ≤ oi ≤ 1 (see Figure 13 “Output across all
windows”), where n is the length equal to the entire duration of the spectrogram of music
(equivalent to the entire genome length), with prediction values oi between 0−1 denoting the
probability/confidence of onset events over time. The desired output for detecting change
points over genomic regions is similarly a vector equal to the length of the binned genome
(n), with prediction values 0− 1, where values in genomic bin locations closer to 1 indicate
higher probability/confidence of change point events.

Convolution explanation: The task of finding changes in the spectrogram signal over time
requires filters that are wide in time, and narrow in frequency [59]. Just as with onset
detection, change point detection requires high time/space resolution, but is oblivious to
frequency (or height of the signal). Thus, similar to Schluter et al. 2014 [59], we can perform
max pooling in the CNN over only the corrected read counts domain, just as they do for the
frequency domain (see Figure 13).

Channels in onset detection: The use of several channels in [59] is comparable to extracting
features across multiple color channels of an input image. In their onset detection method,
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the authors train on a stack of spectrograms with a different window size in each channel
(e.g. 23ms, 46ms, and 93ms [59]), while maintaining the same frame rates. By using loga-
rithmic filter banks, they are able to reduce to the same number of frequency bands across
all channels. In this way, each neuron integrates information of high frequency and temporal
accuracy for its temporal location [59].

Channel equivalence for CNV change point detection: In change point detection of signals,
this would be equivalent to having multiple channels where the inputs are the same cells
with larger or smaller KB bin sizes. For example channel 1 would contain cell CRC vectors
of 50KB bin size, channel 2 would contain 250KB, and channel 3 would contain 500KB. To
begin, we choose a simpler model, and consider all cells in a clone as one channel. To handle
the variability in cluster size, we set a minimum number of cells to belong to each cluster (b),
and set a mini-batch size for training input where b× f randomly selected cells (i.e. signals)
to be fed as input to the CNN for training. The discrepancy between each label prediction
and its corresponding target is used to improve the performance of the network through the
back-propagation step for several epochs. Training then continues with a new mini-batch of
b randomly selected input signals from the clone, until all signals have been passed through
the network, x times. x is a hyper parameter that must be determined in the calibration
phase. This is just one example of how to culminate results across all cells within a clone,
while using the same CNN model for all clones (i.e. clusters).

Testing for onset detection: During testing, Schluter et al. 2014 [59] aim to detect onsets
in a new input signal (see Figure 13 “Full Input spectrogram” and Figure 14 “Spectrogram
1” and “Spectrogram 2”). Each full spectrogram matrix S = [sij] ∈ Ql×n is composed of l
spectrogram frequency bands by n frames (milliseconds), which define the windows across
the full spectrogram (see Figure 13 far left), centered on the frame to classify. S is fed
into the network, and using a sliding window approach, the authors apply convolution and
pooling operations to the windowed input, and obtain an onset activation function over time
as output (o). This function (Figure 13 bottom right) is smoothed by convolution with a 5
frame Hamming window, and local maxima higher than a threshold are reported as onsets.

Testing for change point detection: During testing to segment cells assigned to a clone, if the
number of cells l > b, we sample b cells from that cell-clone assignment, and compute the
change point predictions across the genome for those cells, and then resample until all cells
have been considered in the network, s times. The final output change point predictions are
the average of all change point probabilities across all cells in the clone, and form the output
change point vector o for the cells of that clone.

This output (Figure 14 “Output change points” blue lines) gives as a measure of confi-
dence in change point events for the cells assigned to the same clone. Moreover, this output
can also be used to determine how well the cells have been assigned to clones (see Figure 14),
and help inform our choice of k clusters.

Figure 14 shows two spectrograms and the associated predicted change points. In grey
are the equivalences to the task of determining change points for CNV events across the
genome. Thus, consider the output onset (i.e. change point) probabilities for spectrogram 2
in Figure 14. Let τ denote the threshold to accept a particular change point. If this output
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Figure 14: Output of CNN for two spectrograms. Gray figure labels indicates parallels to [59]. This figure
is modified from Schluter et al. 2014 [59].

were characterizing several cells assigned to the same clone, that overall confidence measure
is low (for example Figure 14 B Spectrogram 2), which could indicate poor cell-clone assign-
ments, or that either τ or k should be changed.

REPEAT: In the event that we want to improve cell-clone assignments or change k, the
algorithm returns to the dimension reduction of R and cluster cells of R phase to try and
refine the clusters so to determine which cells should be reassigned to another clone. In
the event that this process has been repeated and the soft cell-clone assignment does not
change, we have two options. (1) It is possible that the cell(s) may have sequencing errors
that are significantly overcome by considering other cells in that same clone to which it has
been assigned. (2) We can alter k and recluster and measure the difference in between and
within cluster distance between the clusters formed by the two choices of k. In contrast,
spectrogram 1 shows several high confidence peaks, indicating likely time points of musical
onsets. This would correspond to high confidence change points in copy-number across the
genome. There are several extensions and modifications possible for the current model for
segmentation, including:

1. It may not be enough to look across cells, so also look at bin size. Thus, add multiple
channels, where inputs are the same cells with larger or smaller KB bin sizes. For
example channel 1 would contain cell CRC vectors with 50KB bin size, channel 2:
250KB, and channel 3: 500KB. This would allow us to determine the best level of
granularity (i.e. what bin size) for determining copy-number events. Bin size has a
huge influence on the discovery and accuracy to detect true copy-number events (see
Figure 6 for examples).

2. Use normal cells to train model, and not just rely on simulation data.

3. Several other approaches to segment include:
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Figure 15: Illustration of a recurrent neural network with either long short-term memory or the hyperbolic
tangent function. it is the input gate, ft is the forget gate, and ot is the output gate.

(a) Consider implementing multiple networks to accommodate different size inputs
for the varying number of cells l < m.

(b) Add several types of max pooling layers at the beginning of the CNN to facilitate
size reduction of various size input number of cells l, and then use the same CNN
structure thereafter.

(c) Compare this approach (segmentation then assigning copy-number to each seg-
ment), to another approach without segmentation.

3.4.5 Compute f() for Each Cluster

Each segment is then passed into a recurrent neural network (RNN) to predict the copy-
number state of that segment. Each cell is represented by a corrected copy-number (CRC)
vector, which can be thought of as an aperiodic and noisy CRC signal over space (i.e. genomic
loci). RNN are a type of deep neural network widely used to model sequential and temporal
data such as signals [9, 58, 39], with connections occurring in a directed cycle. Many types
of neural networks require fixed size inputs with fixed size outputs, where the information in
the hidden layers is only based on the input data as it flows in one direction, i.e. feedforward.
RNNs use internal memory to handle different input sequence sizes and are thus ideal for
sequential learning processes where positional memory matters.

For the input at each each time step (i.e. window or region) a1,t, Figure 15 illustrates the
network unfolding in space. For example, if the sequence we cared about was 15 bins, the
network would unroll into a 15-layer neural network. st represents the hidden state at time
step t, and is the memory of the network which is calculated based on the previous hidden
state as well as the input at the current time step t.

st = f(Ua,t +Wst−1), (3)

where Uat denotes input to the network for a window at time t and Wst−1 denote the weights
from time t − 1. Two examples of this function f are illustrated on the right of Figure 15.
Please note that s−1 is required to calculate the first hidden state and is normally initialized
to all zeroes. a2,t is the output at step t and the input for the next step. If a2,t were the final
output layer, we would be able to use this output to predict the next region of the sequence,
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or classify the sequence (to determine the copy-number classification). So, the RNN receives
information from a combination of the current input data and the hidden layer at the last
time step. Given that the inputs to the RNN can be of varying sizes, this allow for learning
representations of the segments that are of varying lengths.

REPEAT: Across a number of segments s, if the output maximum integer copy-number
classification probabilities are below a threshold δ, the algorithm returns to the dimension
reduction of R and cluster cells of R phase, to try and refine the clusters so to determine
which cells should be reassigned to another clone. When both the soft cell-clone assignments
and the segmentation for the cells assigned to each cluster do not change, each segment
for each clone is classified and denoted its final copy-number, along with the classification
probability for each segment.

Normal RNNs cannot look too far back in time due to vanishing gradient problems. More
explicitly, when error back propagates to the previous layers, it multiplies the gradient of the
activation function, which is below 1. Thus, after so many steps, it will decay to about 0.
As shown in Figure 15, LSTM (Long Short Term Memory) can be incorporated into RNNs
which use the concept of gating where internal memory can be updated it, erased ft or read
out ot, to avoid the vanishing gradient problem found in RNNs. As many segments could be
quite long, we choose to incorporate LSTM into the RNN model.

3.4.6 Compute P

Each segment has now been classified with a copy-number, is assigned back to its corre-
sponding cell (and clone), and forms the clone’s full CNP. Each segmented and classified cell
ci = (c1, . . . , cn′) where cj ∈ N≥0 denotes a segment with an integer copy-number, and n′ are
the number of segments for that clone. This process is repeated for all cells of each clone.
Because each clone is segmented differently, the function h(ci) splits each classified segment
ci into bins such that each clone can be compared on the same scale. These converted data
form the final output matrix P = [pij] ∈ Nm×n

≥0 where pij denotes the copy-number for cell i
in bin j, and P has k unique rows.

3.5 Conclusions

Deep learning models eliminate the need to use hand-crafted features or rules, however
both supervised and semi-supervised learning tasks usually require labels. In Section 3.4
we describe an unsupervised cluster discovery approach through an iterative optimization
process of 1) feature extraction, and 2) clustering, followed by supervised 3) deep learning
(convolutional and recurrent) neural network models to segment and classify cells into clones,
each represented by a CNP. This iterative deep learning approach has been recently adopted
to address other problems. Wang et al. 2017 [70] (Figure 16 black) presents a looped deep
pseudo-task optimization framework to jointly extract deep CNN features and image labels.
Zeng et al. 2016 [80] (Figure 16 green) presents a deep model which automatically learns
scene-specific features in static video surveillance without labels from the target scene. Their
algorithm is able to jointly learn a scene-specific classifier and the distribution of the target
samples. And Yan et al. 2016 [77] (Figure 16 red) proposes a model to jointly learn deep
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Figure 16: Three iterative methods for joint feature selection, clustering, and classification.

representations and image clusters, where image clustering is performed in the forward pass
and representation learning on the backwards pass. The aforementioned three methods each
employ iterative approaches where each part of their algorithm informs the other. We used
these as a base for our iterative method.

As we highlight in Section 3.3, there is a need for new methods to consider cells jointly
when inferring the copy-number for scDNA data, where there is little starting material.
The benefits of considering cells jointly are heightened when inferring small CNVs, as il-
lustrated in Section 3.3.3 and Section 3.3.8. As single-cell sequencing is becoming more
popular, it is imperative to accurately measure copy-number changes across the genome for
cancer patients.x Accurate identification of putative and actionable CNV mutations will en-
able clinicians to prescribe more tailored therapies, an aid researchers to understand cancer
progression more broadly.
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