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Abstract

The infinite possible complex scenes from visual world
are composed by finite number of simple concepts i.e. im-
ages that depicts human activities could decompose into
composition of subject-verb-object triplets; and images of a
single salient object decompose into attribute-object pairs.
Most of data-driven computer vision approaches do not ex-
plicitly model compositionality and instead rely on large
number of examples of varying complex visual concepts.
On the other hand, visual recognition tasks starts leverag-
ing human language to annotate complex concept within a
scene, and consequently learning an image-text multimodal
representation using so-called visual-semantic models be-
come increasingly important. However, despite their suc-
cess in tasks such as cross-modalities retrieval or image
captioning, the compositionality aspect of these models has
yet to be evaluated explicitly. Our goal in this work is mea-
sure the extent of a state-of-the-art visual semantic model
called VSE++ [Faghri et al., 2017|] in generalizing to un-
seen attribute-object composition. We compare its perfor-
mance with models that are trained explicitly to compose
multiple classifiers proposed by [Misra et al., 2017]. De-
spite its advantage of having only a single model for ar-
bitrary number of primitive visual concepts (e.g. subjects,
verb, attribute, or object), we show that the visual-semantic
model can perform competitively.

1. Introduction
1.1. Visual-Semantic Embedding

The holy grail of high level computer vision is to have a
model with holistic understanding of visual scene. Namely,
the model should be able to recognize and detect objects
along with the visual attributes, and also describe their in-
teraction and spatial relationship. This ability would allow
various downstream perceptual tasks which require seman-
tic interpretation such as image retrieval, caption genera-
tion, visual question-answering and human-robot interac-
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Figure 1: We are interested in the problem of attribute-
object compositionality in the visual domain. As can be
seen above, applying an attribute (adjective) to objects
could transform or modify their appearance very differently.

tion. Recent advances towards this direction are largely
made possible by the grounding of visual perception into
its semantic. In particular, given large scale examples of
images paired with their textual annotations e.g. captions;
a visual-semantic model is trained to project input images
and text into a shared representation space in which se-
mantically related inputs are located nearby. The com-
pact vector representation within this shared space is al-
ready useful for several tasks such as image classification
and its zero-shot variant [Frome et al., 2013|], and cross-
modalities retrieval [Kiros et al., 2014, Wang et al., 2016,
|[Faghri et al., 2017]]. Additionally, several image caption-
ing works [Kiros et al., 2014, |Karpathy and Fei-Fei, 2015]
show that significant caption quality improvement could be
achieved by projecting images into this space to retrieve its
intermediate representation and later decode them using ad-
ditional recurrent network to output captions.

Despite the consensus regarding the importance of mul-
timodal image-text embedding and how to learn them, it
is not clear whether a representation in this space respect
the complexity of real world visual scene which possibly
contains exponential number of composition of objects, at-
tributes, and relationship. That is, having a visual and lin-
guistic model that produce a distributed compositional se-
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Figure 2: The visual-semantic model is used to perform attribute-object recognition by the following procedure: all possible
combination of attributes and objects are encoded into the space in the initial phase and cached for the test time. A queried
image is later projected to the same space and top-k nearest attribute-object phrases will be taken as its label.

mantic still remains an open question to be solved. Ideally,
the linguistic model should be able to capture the relation-
ships between words and how their composition results to
a new meaning in the visual world. Equivalently, its visual
model counterpart should have the abstraction capacity to
encode visual concept (e.g. attributes) on its nodes activa-
tion and compose them into meaningful representation on
each layer. Take for example an image of a white dress:
the semantic composition of the word “white” and “dress”
needs to be consistent with how the visual model in com-
posing the abstraction of color white and object dress across
its layer. Thus, the projection of this image to the shared
space should be located very closely to the projection of the
phrase text “white dress”.

In a visual recognition task, the capacity of a model to
compose could be indicated by how well it recognize un-
seen complex scene that comprises of seen visual concepts
such as objects or attributes. It should suggest that the
model is able to build up simpler concepts into a complex
one. The capacity to generalize beyond seen composition is
critical since the number of possible combination of simple
visual concepts is intractable. Image examples of obscure
combination are scarcely available and it is practically un-
feasible to collect them as the training data.

Compositionality is especially challenging as it also has
to respect contextuality and common sense, as shown by
[Pavlick and Callison-Burch, 2016] in the context of lin-
guistic. Namely, visual meaning modification using the
same attribute will result differently on varying object in-
stance, depending on its context. One notable example for
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this aspect is the composition of visual attribute concept of
“ripe” with various fruits such as lemon and coffee: lemon
turns into yellow as it ripens whereas ripe coffee is red.
Other examples can be seen on Figure[T]

In this work, we are particularly interested in evaluating
the compositionality of the state-of-the-art visual-semantic
model recently proposed by [Faghri et al., 2017]. We at-
tempt to study the behaviour of the multimodal model as
well as the structure of the shared representation space. To
this end, we consider a particular task of composing the
semantic of attribute and object (adjective and noun from
the linguistic perpective) and recognizing them in the vi-
sual domain. The images examples is split such that there
are no overlapping attribute object pairs during the train-
ing and testing phase. However, we make sure that the
model is trained on all invidual classes of objects and at-
tributes. We perform quantitative performance comparison
with other baseline models which are formulated to explic-
itly model composition of m numbers of visual primitives.
Additionally, we experiment with alternative compositional
functions for the text encoder to see whether Recurrent Neu-
ral Network (RNN) used in visual-semantic model is the
most suitable to compose word meaning. Our quantitative
result shows that visual-semantic model perform reasonably
well in composing unseen visual primitives. We also ana-
lyze the predictions made this model to see its behaviour in
deciding which combination of attribute and object to out-
put. Lastly, our inspection suggests that the resulting mul-
timodal representation space posses some convenient arith-
metic properties.



2. Approach

Our evaluation task is formally defined as follow: given
an input image I, the goal is to predict its object class
o € O along with its salient visual attribute a € A. Model
output of a given image is considered as correct only if
both the object and attribute prediction match with the la-
bel ground truth. We consider the state-of-the-art mul-
timodal image-text representation learning model VSE++
[Faghri et al., 2017] with several modifications. Addition-
ally, we propose different compositional functions for the
text encoder to validate if the LSTM-based compositional
function in VSE++ is best suited for the evaluation task.

VSE++ grounds visual and text input to a shared se-
mantic space of D dimensions using a two-way model
which consist of a Convolutional Neural Network as the
visual encoder and a Recurrent Network as the word se-
quence encoder. We denote ¢(i;04) € RP¢ as the
feature vector representation of image ¢ which is com-
puted by feed-forwarding the image into a CNN param-
eterized by weights matrices 6. The vector represen-
tation is retrieved by taking the activation values of the
layer before fully-connected layer. The overall model is
essentially invariant with the CNN architecture used, but
deeper Residual Network [He et al., 2016|] has shown to
perform best. Next, we denote ¥(p;0y) € RPv as
the distributed compositional representation of a phrase
p which consist of attribute-object word pair computed
by an LSTM [Hochreiter and Schmidhuber, 1997]] or GRU
[[Cho et al., 2014]] based Recurrent Neural Network (RNN)
encoder. Note that the parameters v include word embed-
ding vector for each word in the vocabulary. We take the last
hidden state of the RNN cell as the phrase representation.

Both representation is then projected into a shared space
by two separate linear functions f and g with Wy € RP¢
and W, € RP% as their parameters respectively. Namely:

FG; Wy, 05) = Wy - 6(i;6) n
9(& Wy, 0p) = Wy - (35 0y)
The metric that is used as the similarity measure between
image and phrase representation in this space is cosine dis-
tance, i.€.,

_ G W, 04) - g6 Wy, 0y)
1 (& Wy, 00)lllg(é W, 0y |

In practice, we first normalize the vectors into unit norm
and compute the similarity by taking their dot product.

In total, we have set of model parameters § which con-
sist of 8, Wy, and W,. The CNN parameters are initialized
by weights from pre-training over 1K-ImageNet classifica-
tion challenge. During the later stage of the training for our
task, we fine-tune the weights of CNN and therefore 6 is

s(i,p) )
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included in 6. In addition, we also initialize the word rep-
resentation weights in 6, using pre-computed word embed-
dings of dimension K = 300 learned using enriched skip-
gram model [Bojanowski et al., 2017 on Wikipedia corpus.

VSE++ is trained to optimize a triplet loss variant which
put emphasis on hard negative example. Namely, let s(7, p)
as the similarity measure between a pair of an image and
its corresponding attribute-object phrase description (pos-
itive example). Next, let s(i,pney) as the similarity be-
tween an image with a randomly sampled contrastive or
non-descriptive phrase and s(p, i,4) to be vice-versa (we
refer them as negative examples). As can be seen on fig-
ure [2} once the images and their phrases get projected to
the shared space, we take the negative examples of each
image and phrase which are located the closest and push
them further away by certain margin. These nearest nega-
tive examples of each image and phrase are referred as hard
negative and we denote them as s(i,p\,,) and s(p,i}.,)
respectively.

The triplet loss function for each image-text pair exam-
ple is formally defined as follow:

losszeg(iap) - maac{O, o+ 5(i7pjzreg) - S(Zap)}+

. . 3

maz{0, o + s(p,it.,) — s(i,p)}
The function comprises of two hinge function terms with
the margin distance around the positive image or phrase
set by constant . The training minimizes the empirical
risk £ with respect to parameters € which is defined by
the mean of Sum of Max of Hinges over the training set

S= {(irupn)}g:l, namely:
1 N
£(6;S) = N Z loss;teg(in,pn)
n=1

In practice, the negative phrase examples is sampled over
the entire training data by treating all phrases paired with
other images within the mini-batch as negative examples.
Similarly, for every phrase description within a mini-batch,
all images other than its pair are counted as the negative
examples. Note that, although the chances are low, a mini-
batch might contain two or more distinct images with the
same phrase description. In order to alleviate any optimiza-
tion issue because of this outliers, we randomly pick only
one example of pairs that belong to the same phrase.

During the test stage, the attribute and object of an im-
age is predicted by taking the top-k nearest phrase located
around its projection. Phrases representations are computed
only once in the initial step by encoding all possible combi-
nation of attribute and object labels in the dataset using the
trained Recurrent Network. The image representation in the
share space is then computed by the CNN image encoder.



2.1. Tensor-based Composition Function

We describe an alternative text encoder ¥ as the alterna-
tive to the Recurrent Neural Network encoder. Inspired by
[Socher et al., 2013]], which uses a tensor-based function in
the context of Recursive Tree Network, we implement and
experiment with a similar function to compose the distribu-
tional semantic representation of attribute and object words
before it is being projected to the shared embedding space.
The function is formally define as follow: let b € R as the
tensor product, and let w,; and wey; as the word embed-
ding of attribute and object respectively with d dimension-
ality. Let V € R?9x24xd pe the tensor product operator
that compose wq¢¢ and wyp; into h. For brevity, we denote
the i-th slice of V as VIl € R24x2d and this slice will
correspond to the i-th element of vector h, i.e., Rl The
computation of hl¥ is defined as follow:

Watt ]

T
Bl — _ylil | Watt
Wobj Wobj

Finally, the phrase representation W(p; fy) € RP¥ is com-
puted by the following operation:

] T
Watt

‘P(p;(?xy)—W«z'f<h+Wﬁ [w D

obj

“4)

Watt

Watt .
Wobj

|:wobj

®)

where f is a leaky RELU function and Wy is a the weights
of a linear model that projects tensor product to the shared
embedding space. In summary, the tensor model W is pa-
rameterized by g = {VIH9, Wy, Wy, way, Wobj }-

2.2. Multilayer Perceptron Composition Function

We describe another text encoder denoted as 7. This text
encoder consist of similar composition function as one de-
fined in [Misra et al., 2017]). It is essentially a feedforward
neural network which consist of three fully connected layers
with a LeakyRELU [He et al., 2015]] non-linearity operator
in between. Similar to the setup of section 2.2, we define
Watt, Wobj € R? as the word embeddings for attribute and
object. Let fc; be the intermediate representation computed
by j-th fully connected layer. The phrase representation
T (p; 0) is then computed as follow:

T
rer= (e )igen = g (el w2 )
obj
(6)
ng = f(fcg1 ! W3)7T(pa 97—) = fCB . Wproj
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where f is the non-linearity Leaky RELU function and the
dimensions of each linear model weights matrix are as fol-
low: W, € R34 W, e R¥GA i, ¢ RGEDx,
Wproj € R4xD,

Additionally, we describe a slight modification of the
fully connected model which allow the vector representa-
tion of attribute and object word to interact more explic-
itly. Similar to [Conneau et al., 2017]], the input to the first
layer is extended from just a concatenation of wgs and
wep; With other vectors consisting of: (i) element-wise
product Wz * Wepj, (i1) absolute element-wise difference
|Watt — Wop;|. Formally, the fc; will be then computed by
the following:

T

")

where the dimension of Wy, Wy, Wsand W)p,.,; adjusted ac-
cordingly. The explicit interaction allowed by this function
is more restrictive than the tensor-based function proposed
from the previous section. We argue that this vector interac-
tion might already be sufficient while maintaining the num-
ber of parameters to be small and thus less prone to overfit-
ting over training data.

2.3. Weak Baseline: CRF-based Classifier

Watt
Wobj
Watt * Wobj
|watt - wobj|

fclzf(

As a baseline, we would like to have a single visual
model that predicts multiple output in a less naive way then
predicting all possible combination of attributes and objects
as a separate classes. We describe a structured prediction
model based on a Conditional Random Field for the base-
line. The CRF model, given an image ¢ will predict the set
of output S = {attribute, object}. We model the distribu-
tion of the output by the following:

P(att, objli; 0) = P(obj|i; 0)P(att|obj;i; 6)
= wobj (Obja i; 9) X watt (atta Obj7 i; 9)
@)

where potential function ¢op; and ¢4, are both a log linear:
U]obj (Obj, i 0) — Pobi(0b5,1,0)
att(att, obj, i;0) = ePate(att,0bj,i,0)

These function are computed by feedforward multilayer
perceptron ¢op;(0bj, %, 0) and ¢qu(att, obj, i,0) which take
as input an image vector representation given by a pre-
trained CNN e.g. ResNet152 [He et al., 2016] or VGG net-
work [Simonyan and Zisserman, 2014]).

The model parameters 6 is trained to optimize the sum of
log-likelihood of observing the correct pair of attribute and
object over the training example set M, i.e.:

6 = arg max Z log (P(att, obj|i; 9))

ieM

®)

9



Top-k accuracy

Average Accuracy

k— 1 2 3

Chance 0.14 0.28 0.42 0.28
Visual Product 9.8 16.1 20.6 15.5
Label Embedding (LE) 11.2 17.6 22.4 17.06

[Misra et al., 2017] LE Only Regression (LEOR) 4.5 6.2 11.8 7.5
LE+Reg (LE+R) 9.3 16.3 20.8 15.46
Composition Func. 131 21.2 27.6 20.63
Tensor Text Encoder 52 11.1 15.9 10.7
MLP Text Encoder 6.53 13.215 19431 13.05
MLP+Explicit Interaction Text Encoder 8.4 16.44 22813 15.88

Ours RNN Text Encoder Resnet 101 9.129 16.45 22.479 16.01
RNN Text Encoder Resnet 101+finetune 9.83 17.99 24.27 17.36
RNN Text Encoder Resnet 152 9.47 17.04 22.85 16.45
RNN Text Encoder Resnet 152+finetune N/A N/A N/A N/A

Table 1: Evaluation result on unseen pair of attribute and object on MITStates dataset [Isola et al., 2015]]. We evaluate on

700 unseen pairs which consist of around 19k images.

The inference of this model is done via a max-marginal ap-
proach. Namely, we first take the object which has the high-
est marginal score over the attributes:

obj = argmaxP(oij;@) + Z P(att|i; 0bj6)

obj att€c A

Given the highest scoring object obj, we take the attribute
of this obj which gives the highest potential.

2.4. Strong Baseline: Multi-classifiers Composition

[Misra et al., 2017] addresses the visual composition
problem by introducing a transformation network that com-
pose the output of multiple classification models trained to
recognize primitive visual concepts e.g. attributes, and ob-
jects. The method first assumes access to limited set of
primitive concept combinations (e.g. red-wine), and train
an individual model on each primitive concept. These clas-
sifiers is then taken as inputs to the transformation network
that perform a non-linear mapping to produce a composi-
tional representation. Lastly, they take the dot product of
this compositional representation with image representation
from a pretrained CNN to compute a log-likehood for each
attribute-object combination. Note that it is not clear how
the inference is done during the test time. We presume
that, given an image, the maximum log-likehood is found
by computing the score all possible combination.

3. Experiments

3.1. Implementation Details

The Convolutional Neural Network (CNN) architec-
ture of our choice is 101 layers Residual Network
[He et al., 2016] (except for the last experiment where we
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use 152 layers to push the accuracy result). The Recurrent
Network text encoder uses LSTM cell to compose the word
sequence representation. We train all model using Adam
solver [Kingma and Ba, 2014]] with a learning rate of 2e~*
for 20 epochs. We increase the exploitation during the train-
ing by decaying the learning rate by 10 for every 6 epochs.
To avoid the gradient leading the optimization to a steep sur-
face, we perform gradient clipping i.e. the magnitude of the
gradient is clipped to 2.0 while the direction is preserved.
All CNN models are pre-trained on ImageNet 1K classifi-
cation task; we first exclude the parameters of the CNN to
be optimized. After we finished the first 20 epochs, we fine-
tune the CNN parameters for another 20 epochs, and starts
the learning rate from 2e~°.

3.2. Evaluation Dataset

We perform our compositionality evaluation on MIT
States Dataset [Isola et al., 2015]] which consist of images
labeled with pair of attribute and object. It comprises of
roughly 53k images from 245 classes of objects and 115 at-
tribute classes. The dataset is particularly challenging due
to the range of visual attribute classes it covers. The at-
tributes range from simple parametric changes such as color
and geometry; to physical transformation with complex se-
mantic meaning e.g. bending, peeled, dry, or aged. This
dataset also suffers from annotation artifacts where an im-
age might accept multiple correct attribute or object labels.
The procedure in how the data is collected also introduce
many mislabeling noise.

Similar to [Misra et al., 2017]], we randomly split the
dataset into training and test set such that there are no at-
tribute-object overlap between the two. The training set
covers 1292 attribute-object pairs consisting of nearly 34k
images, while the test set has 700 pairs with around 19k



a) g <) e)
GT steaming pot eroded beach lighweight coat young iguana straight desk
pred@1 steaming bowl eroded beach lightweight coat new iguana empty table
pred@2  steaming pot eroded coast heavy coat young iguana empty desk
pred@3  steaming coffee eroded shore thick coat old iguana large table
pred@4  steaming plate weathered shore thin coat small iguana small table
pred@5  steaming tea weathered beach crinkled jacket large iguana straight desk

Yoz

f) g) . 5 : / / 4
GT cut cable straight blade coiled gemstone painted building diced apple
pred@1 thin cord large knife engraved jewelry old boat mashed garlic
pred@2 cut cable engraved knife engraved necklace heavy boat crushed garlic
pred@3  winding cord curved sword pierced jewelry grimy boat diced garlic
pred@4  thin cable straight knife small chains burnt boat fresh garlic
pred@5 winding cable engraved sword large chains new boat mashed banana

Table 2: We show the predictions by VSE++ on images of unseen composition. We observe that the behaviour model depends
on the visual properties of the attributes and how they change visually across different objects.

images. Using this setup, we are able to measure how the
models perform in zero-shot setting.

3.3. Quantitative Results

The accuracy measures on MITStates data of our visual-
semantic models compared with [Misra et al., 2017]] base-
lines are summarized in the table [ The highest perfor-
mance is shown by RNN-ResNet101 model after it is fine-
tuned. Its average accuracy is arguably stronger than most
of the baselines used in by significant
margins and only 3% lower than their best model.

Interesting observations can be seen from the choice of
composition function for the text encoder. The tensor-based
function surprisingly perform worst with only 5.2% top-1
accuracy. Simpler feedforward fully-connected model can
actually give higher accuracy than the tensor-based func-
tion. Making the feature representation interaction explicit
(although in a limited way) turns out can give a performance
boost by nearly 3% of average accuracy.

Lastly, we can see that adding depth to the Convolutional
Network can add some degree of improvement. Although
insignificant, the result from ResNetl152 is higher than
ResNet101. Unfortunately, we cannot finetune ResNet152
parameters to our dataset due to the limitation of GPU mem-
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ory. We expect that the finetuned ResNet152 can give even
higher accuracy quantity. The hypothesis is that the deeper
network has higher abstraction capacity and can encode
more number of visual concepts, ranging from simple to
complex ones. Note that the CRF model almost cannot rec-
ognize unseen composition during the test time. Thus, we
exclude its measures from the table.

3.4. Qualitative Results

Figures in table [2] shows a lot about how the visual-
semantic model behave on the attribute-object recognition.
We can see that the model perform really well on attributes
that are visually salient in the image. In example (a), the
steam is very obvious to recognize and therefore the top-5
predictions include “steaming” as their attributes. The vi-
sual appearance of other attributes such as “eroded” from
example (b) are not too different across varying objects and
so it is easily recognize by the model.

It is also interesting to see how our model actually makes
a correct prediction on example (e) and (i) but counted as in-
correct due to inherent ambiguity of the images: the desk in
example (e) could be either described as empty and straight;
while image (i) contains both building and boat. Predictions
on images (f), (g), and (h) are incorrect but they are seman-



Table 3: We show the arithmatic properties of the multimodal representation space.

column are used to retrieve the labels on the right-most column.

The resulting vector from the middle

peeled banana

huge kitchen

Ground Truth | Operations Result (ordered)
wrinkled fabric, crinkled fabric,
crinkled paper -F, <“paper”> + Fp (“ f abm’c”) folded fabric, frayed fabric,
ruffled fabric

) - F (“banana”) + F, (“apple”)

-F, <“kitch6n”> + F, <“bathroom”)

ripe apple, sliced apple,
peeled apple, cored apple,
pureed apple

large bathroom, wide bathroom,
full bathroom, huge bathroom,
small bathroom

(a) object modification

Ground Truth

Result (ordered)

ruffled cake

large bowl

> - I, (“coiled”) +

coiled hose

. > Fp<“ruffled”> +

F, ( - > -F, (“large”) + F, (“steaming”)

sliced cake, sliced apple,
sliced cheese, sliced bread,
sliced meat

F, <“sliced”)

steaming bowl, steaming pot,
steaming soup, steaming water,
steaming bubble

straight tube, straight screw,
straight hose, straight blade,

F, (“straight”)
straight sword

(b) attribute modification

tically very related to the ground truth. Example (d) and (c)
could actually show the drawback of using distributional se-
mantic for performing inference. Notice that on image (c),
the second highest prediction is actually the contradiction
of the first prediction, but since they are contextually simi-
lar, their projection on the embedding space located closely.
Furthermore, the attributes of top two predictions are se-
mantically related, but “new” is not a suitable modifier to
“iguana” according to human common sense.
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3.5. Exploring Embedding Space Regularities

Word vector representation learned using skip-gram
model in [Mikolov et al., 2013]] has shown to posses a lin-
guistic regularities which could be used to perform ana-
logical reasoning simply by using vector arithmetic. The
prominent example of this word embedding property in-
clude: emb(“king”) — emb(“man”) = emb(“queen”) —
emb(“woman”). Here we are interested to see whether




similar phenomenon emerge in the multimodal space.

Table |3b| shows some convenient results from perform-
ing vector addition and subtraction in the shared space. We
first encode the image into the space using learned CNN to
retreive its representation. We then compute the projection
of a single word (either object and attribute) using the text
encoder. The word representation in this space is then sub-
tracted and added to the image representation. The resulting
vector is used to retrieved nearest k labels.

4. Conclusion

We presented an evaluation of visual-semantic model
VSE++ on the task of predicting unseen composition of
attribute and object from open world images. Our experi-
ments on MIT States dataset shows that this model posses
some degree of compositionality considering how it per-
forms competitively with compositional model baselines
which are trained explicitly to compose multiple classifiers
of visual primitives. Our qualitative results indicate that our
visual-semantic model performs better than what the quan-
titative result suggest by making semantically reasonable
predictions. We also show that the resulting space has some
regularities which could be useful for many task including
images retrieval.

References

[Bojanowski et al., 2017] Bojanowski, P., Grave, E., Joulin, A.,
and Mikolov, T. (2017). Enriching word vectors with sub-
word information. Transactions of the Association for Com-
putational Linguistics, 5:135-146.

[Cho et al., 2014] Cho, K., van Merrienboer, B., aglar Giilehre,
Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.
(2014). Learning phrase representations using rnn encoder-
decoder for statistical machine translation. In EMNLP.

[Conneau et al., 2017] Conneau, A., Kiela, D., Schwenk, H., Bar-
rault, L., and Bordes, A. (2017). Supervised learning of uni-
versal sentence representations from natural language inference
data. In EMNLP.

[Faghri et al., 2017] Faghri, F., Fleet, D. J., Kiros, J. R., and Fi-
dler, S. (2017). Vse++: Improving visual-semantic embeddings
with hard negatives.

[Frome et al., 2013] Frome, A., Corrado, G. S., Shlens, J., Ben-
gio, S., Dean, J., Ranzato, M., and Mikolov, T. (2013). Devise:
A deep visual-semantic embedding model. In NIPS.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1026-1034.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Identity mappings in deep residual networks. In ECCV.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmid-
huber, J. (1997). Long short-term memory. Neural computa-
tion, 9 8:1735-80.

4328

[Isola et al., 2015] Isola, P., Lim, J. J., and Adelson, E. H. (2015).
Discovering states and transformations in image collections. In
CVPR.

[Karpathy and Fei-Fei, 2015] Karpathy, A. and Fei-Fei, L.
(2015). Deep visual-semantic alignments for generating im-
age descriptions. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 39:664-676.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam:
A method for stochastic optimization. CoRR, abs/1412.6980.

[Kiros et al., 2014] Kiros, R., Salakhutdinov, R., and Zemel, R. S.
(2014). Unitying visual-semantic embeddings with multimodal
neural language models. CoRR, abs/1411.2539.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G. S., and
Dean, J. (2013). Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781.

[Misra et al., 2017] Misra, 1., Gupta, A., and Hebert, M. (2017).
From red wine to red tomato: Composition with context. 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1160-1169.

[Pavlick and Callison-Burch, 2016] Pavlick, E. and Callison-
Burch, C. (2016). Most “babies” are “little” and most “prob-
lems” are “huge”: Compositional entailment in adjective-
nouns. In ACL.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman,
A. (2014). Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556.

[Socher et al., 2013] Socher, R., Perelygin, A. V., Wu, J., Chuang,
J., Manning, C. D., Ng, A., and Potts, C. (2013). Recursive
deep models for semantic compositionality over a sentiment
treebank.

[Wang et al., 2016] Wang, L., Li, Y., and Lazebnik, S. (2016).
Learning deep structure-preserving image-text embeddings.
2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5005-5013.



