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Abstract

The two canonical modes of human visual attention bottom-
up and top-down have been well-studied, and each has been
demonstrated to be active in different contexts. Much work has
investigated the computational underpinnings of visual atten-
tion, and several models have been developed to explain and
predict where humans look in images. Recently, convolutional
neural networks have been shown to learn useful visual fea-
tures efficiently from large numbers of images, and they have
demonstrated recent success in predicting visual saliency. In
this work, we computationally model bottom-up and top-down
attention independently in children and show how each mode
contributes to childrens attention in a visual search task.

Introduction
Historically, two complementary forms of visual attention
have been identified and studied: a fast, scene-based form,
and a slower, task-modulated, and deliberate form (Treisman
& Gelade,1980). These are often referred to as bottom-up and
top-down, respectively, and this is how the terms will be used
in this report.

Several methods have been proposed to investigate the
mechanisms of attention, from examining the neural under-
pinnings to observing the higher-level manifestation of atten-
tion. One popular method to indirectly measure visual at-
tention is tracking eye fixation locations while subjects view
static images or videos or interact with the real world. This
experimental paradigm can elucidate which scene parts peo-
ple find most interesting, the relative importance of color, tex-
ture, and other object properties in inducing fixations, and the
temporal dynamics of attention.

In both computer vision and neuroscience, predicting the
locations of humans eye fixations in an image is an impor-
tant problem. This task has been termed saliency predic-
tion, and several computational models have been proposed
that predict where humans will look in an image (see (Itti &
Koch,2001) for a review). Prior to the advent of deep learn-
ing and the availability of large computing power, most mod-
els made predictions based on low-level image statistics. The
first such model proposed was that of Itti and Koch(Itti &
Koch,2000), which integrated saliency maps for color, inten-
sity, and orientation of an images contents.

Within the last few years, convolutional neural networks
(CNNs) have proven their capacity to automatically learn
meaningful features that are useful for image classifica-
tion, object detection, and segmentation, among other tasks.
These features have also been successfully leveraged for
saliency prediction. Recently, a saliency prediction architec-
ture called DeepGaze II was proposed (Kümmerer, Wallis,
& Bethge,2016), which combines a CNNs features (VGG19)
from several layers to read out saliency maps with a fully
convolutional network. We refer to DeepGaze simply as

DeepGaze in this report, but it should not be confused with
DeepGaze IIs precursor, DeepGaze I. [4] trained and tested
DeepGaze using the MIT300 Saliency Benchmark (Bylinskii
et al.,2015) dataset in which the training examples are static
images, and the training labels are averaged, smoothed fix-
ation maps across several human participants. This model
showed improved performance over all previous saliency pre-
diction models in a majority of metrics, and it is currently the
leader of the benchmarks leaderboard.

In this work, we present a method to computationally
model two contributing forms of saliency and visual atten-
tion: a bottom-up, scene-drive contribution, and a top-down,
task-driven contribution. Using deep architectures, we train a
separate predictive model for each form of saliency, and we
find the optimal weighting between the two to explain true
fixations. We show that influence of each attentional model
varies across participants and contexts. We first review the
methods used, and then present results.

Methods
Smart Playroom
For all training and testing, we use egocentric video data col-
lected in a developmental psychology lab, which carried out
behavioral experiments in children ages 4-6. As part of a
suite of testing in an experimental room termed the smart
playroom, video data was collected in which the camera is
head-mounted on a child participant. This playroom is de-
signed to allow the study of childrens behavior in naturalistic
environment, and it includes many toys and objects. Data was
collected from 22 participants.

Importantly, in addition to the head-mounted video cam-
era, every child participant also wears a head-mounted eye-
tracker, which estimates the childs gaze location on each
frame. This eye-tracker/video headset is mobile and allows
the child to move about the room freely.

These videos allow for easy collection of many images
within each participants session. This large number of images
is helpful in this work, as training CNNs with many param-
eters is known to require many training samples to converge
correctly.

During a given childs session, multiple experimental tasks
are performed. For the purposes of this study, we focus on
two of these: the free play session and the visual search ses-
sion.

In the free play session, the child is allowed to explore the
room freely and play with toys. No other people are present
during this task, and the child is not given any specific task.
As such, the model trained on data from the free play session
forms our representation of bottom-up attention.



Figure 1: Overview of DeepGaze II architecture. An images features are extracted from several of VGG19s layers and are fed
into a fully convolutional readout network that produces a saliency map.

The more structured visual search session is composed
of several subtasks. In each subtask, the experimenter first
shows a paper placard with a picture of a toy to the child,
who is then instructed to retrieve the toy from the room and
bring it back to the experimenter.

Data preparation
For both the free play and visual search sessions, we trim
the videos to the start and end times, which were manually
annotated. We remove any frames in which the eye-trackers
fixation measurement is not within the frame.

To account for the eye-trackers measurement error, we use
smooth fixation maps to represent the participants gaze loca-
tion on each frame. Specifically, for each frame, we center
a 2-dimensional Gaussian on the fixation location, and the
Gaussians variance was chosen to represent the eye-trackers
listed error.

Saliency models
We use DeepGaze to model bottom-up attention and an object
detector to model top-down attention.

DeepGaze To model bottom-up attention, we focus on
building a model that can predict saliency for images in the
free play session. Specifically, we train DeepGaze (Figure 1)
using frames from all subjects. In DeepGaze, features from
several layers of VGG19 (conv5 1, relu5 1, relu5 2, conv5 3,
and relu5 4) are concatenated and fed into a fully convolu-
tional readout network. The readout network consists of four
layers, each with 1x1 convolutions. A Gaussian blur is ap-
plied to the final layers output, after which a softmax is ap-
plied. The final output is a 112x112 normalized saliency map,
where each value represents a saliency prediction value for
the corresponding location in the input image. We implement
the DeepGaze architecture in TensorFlow.

We train DeepGaze on frames from the free play session
videos. We hypothesize that, becauase there is no task in the
free play session, the child is primarily employing bottom-up
attentional behavior. In each DeepGaze training session, we
train the model for at least 20 epochs, and until the last five
epochs show decreased performance.

To validate the DeepGaze model in the playroom setting,
we first perform 10-fold cross validation across subjects with

Figure 2: Example output of DeepGaze that has been trained
on free play videos. Columns from left to right: initial video
frame, ground truth fixation, and estimated saliency map.

a 50/50 train/test split. We then train a model on all subjects
for all dual-model (DeepGaze and object detector) tests.

Object detector To model top-down attention, we train an
object detector to identify the toys placed in the room in the
visual search session. Specifically, we train the Faster R-
CNN6 (Ren, He, Girshick, & Sun,2015) architecture for mul-
ticlass detection. Object bounding box predictions were gen-
erated for each frame of the visual search videos. For each
visual search subtask, bounding box predictions were only
generated for the toy that was currently being searched for.

Combined top-down and bottom-up saliency To model
the relative contribution of the bottom-up (DeepGaze) and
top-down (object detector) pathways on fixations, we sought
to find a linear combination of the two that could explain the
true fixation maps. We fit a linear model, α∗SBU +β∗ST D =
F , where for each frame, SBU is DeepGazes estimate of a
bottom-up saliency map, ST D is the object detectors top-down



Figure 3: DeepGaze prediction AUC values for 10-fold cross-validation split across subjects in the free play session videos.

Figure 4: Comparison of prediction results from a DeepGaze
model trained on smart playroom videos and a DeepGaze
model trained on SALICON data.

estimate, and F is the ground truth fixation map. We fit a sep-
arate model for each participant using least squares regres-
sion, obtaining weighting coefficients for all subjects.

Results
Baseline results for DeepGaze on free play videos

To validate DeepGaze for saliency prediction in the smart
playroom video data, we performed 10-fold cross-validation
across subjects, with a 50/50 train/test split in each fold us-
ing free play videos. The results, presented in Figures 3 and
4, demonstrate DeepGazes ability to predict saliency in play-
room videos. As a comparison, we also trained DeepGaze on
the SALICON dataset (Jiang, Huang, Duan, & Zhao,2015),
which contains images and fixation maps from a free-viewing
task. As demonstrated in Figure 2, predictions from a
DeepGaze model trained on playroom videos outperforms
DeepGaze trained on the SALICON dataset when tested on
a hold-out playroom dataset.

Having validated DeepGazes ability to predict fixations in



Figure 5: From left to right: Object detector annotation;
DeepGaze saliency prediction; ground truth fixation; egocen-
tric image (with bounding box on predicted object).

playroom videos, we next sought to combine DeepGaze and
object detector predictions to try to explain ground truth fix-
ations. Figure 5 contains example predictions for both the
top-down and bottom-up models.

Bottom-up and top-down attention weights
After computing the optimal linear weighting between the
bottom-up and top-down models, we find that the subjects
show a fairly wide range of weightings (Figure 6).

We next examined how these weightings vary across cer-
tain demographic conditions. We performed correlational
analyses for age and socioeconomic status and performed hy-
pothesis tests for development status (Autism Spectrum Dis-
order vs. typically developing children) and sex. The results
are presented in Tables 1 and 2. Although none of the tests
reach statistical significance, we propose that this paradigm
could be useful to test more conditions and contexts in the
future.

Table 1: Spearman correlations between weight ratios (top
down / bottom up) and demographics. SES: socioeconomic
status, as measured by income-to-needs ratio

Variable Spearman’s rho p-value
Age -0.023 0.92
SES 0.174 0.439

Conclusion
We present a framework for modeling top-down and bottom-
up attention using saliency prediction. Our computationally-
driven approach is particularly useful in the context of ego-
centric video, in which data can be easily collected and ex-

Figure 6: Histogram of results for finding optimal weight be-
tween bottom-up and top-down models. The horizontal axis
is the ratio of the top-down models weight to the bottom-up
models weight.

Table 2: Hypothesis tests between weight ratios (top-down
/ bottom-up) and categorical demographics. ASD: Autism
Spectrum Disorder; TD: Typically Developing.

Variable t-statistic p-value
Development status (ASD vs. TD) 1.62 0.155
Sex -1.11 0.299

Figure 7: Saliency prediction results for the top-down (object
detector), bottom-up (DeepGaze), and combined models.

periments with and without tasks can be carried out. We
validate that deep features are useful for predicting eye fixa-
tions in egocentric video in children. In particular, our models
can predict saliency with improved performance over models



trained on SALICON, in which fixations are measured in a
passive fixation task. A limitation of our training procedure
is the technical error associated with the mobile eye-tracker,
which we account for in our work, but this could inhibit the
precision of our measurements. In addition to saliency pre-
diction, our framework also allows for computing the relative
contribution of the bottom-up and top-down attention mod-
els to the participants’ fixations in each frame. After doing
so in the playroom egocentric video dataset, we observed a
wide range of behavior, as measured by the weight ratios,
across participants. Although our tests for relationships be-
tween saliency model weight ratios and demographics were
not significant, our results using DeepGaze for saliency pre-
diction show promise for future work using deep features to
model saliency in egocentric video. In the future, this mod-
eling paradigm could be applied in several new settings, in-
cluding in adults, in participants with various developmental
and psychological disorders, and in more complex tasks. In
addition, we discuss one possible future improvements below.

Temporal DeepGaze
While our saliency prediction framework operates on a
frame-wise basis, our egocentric video dataset could be used
to model and assess saliency across time. The dynamics
of saccadic eye movements over time has been extensively
studied in the neuroscience literature; for one example in
the context of bottom-up and top-down attention, see (Schill,
Umkehrer, Beinlich, Krieger, & Zetzsche,2001). To extend
our framework, when predicting the saliency map for a given
video frame, we could not only use DeepGaze features for
the current frame, but also features for previous frames. One
specific approach would be to train an LSTM network on
DeepGaze features for sequences of n frames, where n could
be optimized from the data. We hope to explore this ap-
proach in the future and compare its performance to our cur-
rent frame-wise prediction framework.
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