
	 1	

Data Visualization of the EchoQuery System

Ying Su

ying_su@brown.edu

Dec. 2016

1. Abstract

EchoQuery is a proof-of-concept voice-based database querying system initially implemented
by Lyons, et al.1 The original EchoQuery system allows the use of natural language based version
of SQL command to query the relational database, and eventually it returns a voice-based result to
the user. To make the interface more user friendly, in addition to the voice response returned from
Alexa Voice Service (AVS), visual results (e.g. tables and charts) as well as a history navigation
tree containing all the requests in current session are also provided to the user on screen. Users can
navigate to any previous query node in the navigation tree and raise further requests based on the
existing visual results.

2. Introduction

The current EchoQuery system has two frontends to the user: one is the Echo, a hands-free
speaker connected to the AVS; the other is the screen, which displays the visualization of the query
results.

Figure 1 shows the workflow of the EchoQuery system. The user’s voice request is first
converted to audio request by the Echo and then sent to the AVS, which makes the speech
recognition and maps the audio request to different intent requests based on the intent schema and
spoken input data (i.e. sample utterance and custom slots). The intent request is sent to the AWS
Lambda, where the code of the EchoQuery application has been uploaded to. If the intent is
recognized as a query intent, it will be translated into SQL query and delivered to the database
stored at Amazon Relational Database Service (RDS) for execution; otherwise, if it is an intent
that does not need to fetch any new data from the database, the request will be handled by the
appropriate handler without reaching the RDS. After the response from RDS is returned to the
EchoQuery application, on the one hand, the data in the response is visualized and displayed to the
user on screen; on the other hand, the response is turned into a speechlet response recognizable to
AVS, and AVS would further convert it to an audio response and eventually the Echo broadcasts
the voice response to the user.

	 2	

Figure 1. Workflow of the EchoQuery system

3. Implementation

3.1 Backend Implementation

The backend of the application is built using Java, and the package diagram is shown in Figure
2. The main functions of the backend include:

 1) It recognizes the category of the intent request obtained from the AVS and invokes the
corresponding intent handler to deal with the intent. Currently there are 12 categories of intents
with 12 corresponding intent handlers, e.g. QueryHandler, RefineHandler, ClarifyHandler,
PlotHandler, SliceHandler, etc.

2) It translates the natural-language-like query into SQL query. Specifically, if the intent is a
query intent, the QueryHandler takes the intent object, and constructs a QueryRequest instance by
accessing all the relevant slots from the intent to populate the instance. Then the QueryHandler
calls Querier in the querier package to execute the request. When Querier executes the
QueryRequest, it asks RequestTranslator to build an AST query object from the current
QueryRequest, taking care of the selects, aggregations, where clauses, group-bys as well as
inferred joins; then SqlFormatter is responsible for formatting the AST query into a valid SQL
query string; eventually the SQL query is sent to the database by java.sql.Statement.

3) It maintains the “sessions” database and updates the two tables, “sessions” and “states”, in
this database. The schemas of the two tables are shown in Figure 3. The “sessions” table stores the
results to the current query in this session, and the “states” table stores all the queries and their
results in this session. With the “states” table, it is convenient to navigate back and forward through
the historical queries.

Alexa Voice Service (AVS)

Voice
Request

Audio
Request

Intent
Request

SQL
Query

SQL
Result

Speechlet
Response

Audio
Response

Voice
Response

Data
Visualization

EchoQuery
AWS Lambda

	 3	

Figure 2. Package diagram of the backend

Figure 3. Schemas of table “sessions” and table “states”

3.2 User Interface Implementation

With respect to the user interface (UI), here we focus on the visual interface between the system
and the user, as the voice-based interface has been fully discussed in Lyons’s paper1.

Sessions

id varchar
display varchar
result mediumtext
filterResult mediumtext
vis varchar
type varchar
label varchar
chartId int
links varchar
slices mediumtext
mappings mediumtext
dataChanged tinyint

States

id int
display varchar
query mediumtext
result mediumtext
filterResult mediumtext
vis varchar
type varchar
label varchar
slices mediumtext
mappings mediumtext
sessionId varchar

	 4	

The UI is implemented using ReactJS together with the Gulp + Browserify + Babelify to help
realize the modularity and maintain the chain of dependencies between components2,3. It also
adopts the Alt library to manage the dataflow within the JavaScript applications. The package
structure of the JavaScript application is shown in Figure 4. As can be seen, there are mainly three
packages in the JavaScript application: actions, components and stores.

Figure 4. Package structure of the js folder Figure 5. Dataflow direction among packages

As illustrated in Figure 5, in Alt architecture, the data flows from stores to components, then
from components to actions, and back to stores to complete a cycle. Specifically, when a
component in the components package mounts, it fetches data from stores, sets up its initial state
and visualizes the data if necessary. The component has listeners listening to the store change
events. Once it hears changes from stores, the component re-fetches data from stores and updates
its own state and visualizations. An action method is usually invoked by a component, with data
that needs to be saved into stores passed from component to the action. A store listens for events
from actions. Upon hearing an action event, the store updates its internal data using the data passed
from action, and emits a change event that some components are listening to.

The visual UI is started by typing “gulp” under the root package of the EchoQuery system,
which will execute the gulpfile.js to initially invoke the App component. Through SessionUtils,
session data is fetched from server using API calls, and the setDisplayData method in
DisplayAction is invoked. The SessionStore hears the action event and receives data passed from
the DisplayAction, then it updates its own data in the store. The DataView and TreeView
components hear the change event from SessionStore, and they re-fetch the data from the
SessionStore and update their visualizations, respectively. The data is updated from the server
every 1000 ms. The workflow of above activities is sketched in Figure 6.

components

actionsstores

	 5	

Figure 6. Workflow of the user interface activities

4. Contribution

My work in this project mainly focuses on the visual UI development and improvement, which
involves programming in both backend and frontend.

4.1 Using Visualization Elements in Query

One of the new features in the UI is that users can use the visualization elements that they see
on the screen in their future queries. These queries are classified as Slice Intents at AVS and are
handled by the SliceHandler in the application. In this current version, EchoQuery supports
selecting single or multiple (consecutive or inconsecutive) visualization elements (e.g. selecting
slices in a pie chart by color or selecting bars in a histogram by the bar’s position), then the selected
data is visualized in its original format (i.e. if it was a pie chart in the previous query, then the
selected slices will still be shown in the pie chart format in the new result).

The request for selecting a single element is of the following form:

{Select}	(the)	{MappingKeyOne}	[part|slice|bar]	

Here the {Select} slot includes verbs “select”, “choose”, “show”, “get” and “list”, and the
{MappingKeyOne} refers to the color name for the pie chart (e.g. “aqua”, “darkblue”, etc.) and
bar position (e.g. “first”, “second”, etc.) for the histogram.

The request for selecting multiple elements can be categorized into two basic types:

1) selecting consecutive elements: the request falls into one of the following formats:

	 6	

{Select}	 (from)	 (the)	 {MappingKeyStart}	 to	 (the)	 {MappingKeyEnd}	 [part|slice|bar] (e.g.
“select from the aqua to the darkblue slice”);

{Select}	(the)	{MappingKeyRangeFromStart}	[parts|slices|bars] (e.g. “select the first four bars”
or “select the leftmost five bars”);

{Select}	(the)	{MappingKeyRangeToEnd}	[parts|slices|bars] (e.g. “select the last three bars” or
“select the rightmost four bars”);

2) selecting inconsecutive elements: currently it is allowed to select at most 6 inconsecutive
elements, and the format could be:

{Select}	(the)	{MappingKeyOne}	(and)	{MappingKeyTwo}	[parts|slices|bars] (e.g. “select the
aqua and bluedark slices” or “select the first and third bars”);

{Select}	 (the)	 {MappingKeyOne}	 {MappingKeyTwo}	 {MappingKeyThree}	 {MappingKeyFour}	
{MappingKeyFive}	 (and)	 {MappingKeySix}	 [parts|slices|bars] (e.g. “select the aqua, darkblue,
darkgreen, purple, hotpink, and navy slices”);

The specific choices for each slot (expression inside the curly braces) can be referred to in the
IntentSchema.json file and the custom-slots folder under speech-assets package. Figure 7 shows
an example of the visualization comparison before and after the query selecting a series of
consecutive bars of a histogram. All the visualization examples used in this document are based
on the sample data in the mimic database, the main schemas of which is shown in Figure 8.

											 	

 (a) (b)

Figure 7. (a) is the histogram showing the age distribution (20–79) of all patients in the mimic database;
(b) is the histogram on age distribution (56–79), which is the visualization result after the query “select

the rightmost four bars” is executed based on the data shown in (a).

	 7	

Figure 8. Main schemas of the mimic database

4.2 Improvement on the History Navigation Tree

The history navigation tree shows all the queries in the current session, with each query
represented as a node in the tree. With the navigation tree, it is easy to determine the relationship
among queries, e.g. the parent-child relationship indicates that the child query is a refine query
based on the results of the parent query, while the sibling relationship indicates that the two sibling
queries use the same set of data.

 All the nodes in the navigation tree are properly numbered and labeled, so users can easily use
the node number to navigate back and forward through the nodes. The navigation can be divided
into two categories:

1) simply navigating to the last or next (if available) node: the request is of the following format:

{NavigateBack} (e.g. “back”, “go back”, and “back to last chart”);

{NavigateForward} (e.g. “next”, “next chart”, “forward”, and “go forward”);

With these requests, users can navigate one step back or forward at a time until they reach the
first or the last node in the tree.

2) navigating to any designated node in the tree: the request is of the following format:

(go	back|go|back|return)	to	[table|chart|graph]	{ChartIndex} (e.g. “go to chart two”, “back
to table one”, etc);

Here the {ChartIndex} should be a number, with which the node has already been existing in
the navigation tree. With this function, not only the data visualization will be switched to the

Admissions

hadm_id mediumint
subject_id mediumint
insurance varchar
language varchar
religion varchar
marital_status varchar
ethnicity varchar
diagnosis varchar
…...
supervisor smallint

Patients

subject_id mediumint
gender varchar
name varchar
age smallint

Doctors

cgid smallint
name varchar
label varchar
discription varchar

	 8	

designated node, but also the result data in the sessions table will be replaced by the designated
query result data, which means that users can raise further requests based on the data set that is
newly navigated to.

In addition to the navigation function, the navigation tree also provides thumbnails for each
query node, which can conveniently remind the user of any previous query results without the
necessity of really navigating to that node. The thumbnail sketch will display by its node when the
mouse hovers over the node. An example of the thumbnail function is shown in Figure 9.

Figure 9. History navigation tree with thumbnail shown by the node. The red circle indicates that node 3
is the current node, and the thumbnail of node 2 shows up when the mouse hovers over node 2.

4.3 Using One Graph as Filter for Another Linked Graph

In the current version of EchoQuery, two visualizations can be linked with each other and
displayed together using the Link Intent in the following format:

{Link}	 [chart|graph]	 {PlotOneID}	 [to|with|and]	 (chart|graph)	 {PlotTwoID} (e.g. “link chart
two with chart three”);

With two graphs linked together, when users select specific visualization elements in one
graph, the other graph will also use this filter to alter the appearance of its own visualization.
However, the prerequisite to use this function is that the two linked graphs must use the same set
of data, i.e. the two graphs are siblings in the navigation tree, otherwise the filter for one graph
might not be applicable for the other one. Figure 10 shows an example of using this function. As
can be seen, the query not only performs the selection on the slices of the pie chart, it also updates
the histogram using the filtered data.

	 9	

(a)

(b)

Figure 10. (a) shows the linkage between the histogram on age distribution of all patients and the pie chart
on name distribution of all patients; (b) shows the visualization result after the query “select the aqua,

darkblue, crimson, and purple slices” is executed based on the data result shown in (a).

	 10	

5. Conclusions

Besides the voice-based interface, the visual UI is added to the EchoQuery system, which
makes it possible for the user to see the data visualization, raise further requests using the
visualization elements, and navigate back and forward among the already existing query results.

6. Acknowledgement

I wish to thank my advisor Professor Ugur Cetintemel for his excellent guidance on this project.
I also would like to thank Professor Carsten Binning and Xiaocheng Wang for all their helpful
suggestions to my work.

7. References

[1] G. Lyons et al. Making the Case for Query-by-Voice with EchoQuery. Proceedings of the 2016
International Conference on Management of Data:	2129–2132, 2016.

[2] http://chris.house/blog/grunt-configuration-for-react-browserify-babelify

[3] https://tylermcginnis.com

	 11	

Appendix

Here are some instructions on how to get the EchoQuery system work:

1. Install mysql to your local machine. To browse the current database, run bin/connect-to-db under
the root package to get access to the database. The password for the database is in the file
EchoQuery/src/main/java/echoquery/utils/EchoQueryCredentials.java.

2. Install node.js. To build the sample utterances, run node build-utterances.js under the
EchoQuery/speech-assets package.

3. Install gulp. You will need gulp to start the frontend.

4. Make sure to install all the libraries listed under the “dependencies” in the EchoQuery/package.json
file to the root package; install all the libraries listed under the “dependencies” in the
EchoQuery/src/main/resources/js/package.json file to the EchoQuery/src/main/resources/js package.

5. Set up AWS Lambda function to write a skill for the Amazon Echo using the Alexa SDK. You can
learn to set it up by following any one of the samples in this link: https://github.com/amzn/alexa-skills-kit-
java/tree/master/samples/src/main/java

After you set up a sample Lambda function following the instruction, set up your own EchoQuery
Lambda function. To create a jar file for the EchoQuery project, you can directly run bin/assemble-jar,
and you can find the jar file (echoquery-1.1-jar-with-dependencies.jar) in the EchoQuery/target directory.

6. After step 5 is finished, run a test on the Alexa skill page, e.g. enter “get patients” in the text box,
and click “Ask EchoQuery”, you will find your userId in the Lambda Request box. Copy everything after
the string “amzn1.ask.account.” of this userId, and insert it into the id column in the sessions table in
sessions database. Note: please do not include “amzn1.ask.account.” when you save your id into the
database!

7. To start the frontend, type gulp in the command line under the root project directory. Open Chrome
browser and enter “localhost:4567/user/” + the string after “amzn1.ask.account.” of your userId into the
address box.

8. In current version of EchoQuery, a sequence of sample queries could be:

1) get patients

2) plot a piechart on name

3) plot a histogram on age

4) select the rightmost three bars

5) back to chart two

6) link chart two and chart three

7) select aqua and darkblue parts

