CSCI 2980
Master’s Project Report

How to Reason about Correctness of Programs
Designed for Non-Volatile Memory?

Submitted in partial fulfillment of
the requirements for the award of the degree of

Master of Science
in
Computer Science

Submitted by

Kartik Singhal

kartik@cs.brown.edu

Under the guidance of

Maurice Herlihy

@ Eﬂ Computer Science

Department of Computer Science
BROWN UNIVERSITY
Providence, RI, USA — 02912

Spring 2017

Copyright © 2017 Kartik Singhal.
@O0

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0

International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

Traditional storage stack necessitates a separate data format for the persistence
of in-memory data structures, requires additional code for conversion to that data
format and wastes a lot of CPU time. Upcoming byte-addressable non-volatile
memory (NVM) technologies such as memristors or phase change memory offer
an opportunity to rethink how code interacts with persistent data. Researchers
have come up with a variety of programming models to make effective use
of NVM but, unfortunately, it is considered hard to reason about the safety
properties provided by these models.

In this report, we look at existing work in a somewhat related field of formal
reasoning about the correctness of concurrent software and discuss whether those
techniques can be applied to software designed for NVM or persistent memory.

We also document our design of a concurrent graph data structure for non-volatile
memory which offers crash-resilience with the help of Atlas programming model.

Contents

1 Introduction 1
2 A Concurrent Graph Data Structure for Non-Volatile Memory 3
2.1 Problem Overview 3
2.2 Design and Implementation 4
2.2.1 System Architecture oL 4

2.2.2 Data Structure Design 4

2.3 Evaluation and Discussion 6

3 Formal Reasoning about Correctness of Persistent Programs 8
3.1 Why Reason about Correctness of Programs? 8
3.2 Current State of the Art in Reasoning about Concurrent Programs 10
3.3 Connection between Reasoning about Concurrency and Persistence 11
3.4 What about Crashes and Recovery? 13
3.5 The Road Ahead 14

4 Conclusion and Future Work 16
Acknowledgements 17

References 18

Chapter 1

Introduction

An ongoing development in the world of storage is the proposed non-volatile
memory (NVRAM) that combines the characteristics of storage hierarchy in-
volving DRAM (latency) and disk based storage (persistence). NVRAM offers
higher density, lower power and comparable latency as DRAM while providing
persistence with byte addressability as opposed to block-based storage offered
by solid state disks and hard disks. A clear advantage is being able to store
data structures in a single data format instead of serializing them to disk and
eliminate both time and effort required to write and maintain code that keeps
the two formats consistent.

There is a lot of ongoing research to define the semantics of how to program
for persistent memory. A widely accepted system model consists of traditional
DRAM (transient) and NVRAM (persistent) being used together as primary
storage with the address space divided between the two. CPU registers and the
cache hierarchy remain transient. This hierarchy with persistence available at a
lower latency than traditional secondary storage comes with its own interesting
problems.

To illustrate, we borrow an example from the Atlas paper]]:

1: t = pmalloc(...); // allocate persistent memory
2: %t = ..., // initialize
3: 1.lock(); ptr_to_persistent->x = t; l.unlock(); // publish

In this code, if the program crashes when store to persistent memory in line 3
has been written to NVRAM but the store to persistent memory in line 2 is
still in cache, then the data structure in NVRAM will be in inconsistent state.
On recovery, the program will see uninitialized data on dereference of x. To
prevent this problem, it is easy to see that updates to NVRAM should be done
atomically and in the correct order with respect to other updates. Unfortunately,
optimizations implemented in compilers and hardware neither ensure atomicity

nor exact program ordering. This is the same problem that programmers writing
scalable concurrent algorithms face.

Programming models such as Mnemosyne, NV-Heaps, Atlas, NVML, NVL-C
offer trade-offs between safety guarantees, performance and familiarity of API
for ease of use|]. Soon, the state of art is expected to reach a consensus
and some model built on top of these may become the foundation for writing
future persistent programs. But no work has been attempted in our knowledge
to formally reason about the correctness of any of these programming models.
If these foundations are not strong enough, we may face a deluge of bugs in
the applications written for persistent memory reminiscent of the bugs that are
found in existing software especially in lower level code that requires similar
subtle reasoning such as racy concurrent software.

We focus on the Atlas|] programming model which exposes C/C++ APIs
for writing persistent programs and provides an all or nothing guarantee around
critical sections. In other words, with minimal changes it is possible to transform
multi-threaded code to crash-resilient code. However, Atlas cannot provide such
guarantees for lock-free programs. To get familiar with Atlas, we designed a
concurrent graph data structure optimized for Atlas, ie, limiting ourselves to
using lock based synchronization.

In the rest of this report, we present the design of our concurrent graph data
structure in the next chapter and then move on to the discussion about existing
work in reasoning about concurrent software and our understanding of what
needs to be done to apply formal methods for proving correctness of persistent
programs.

Chapter 2

A Concurrent Graph Data
Structure for Non-Volatile
Memory

2.1 Problem Overview

The Internek o o .
of THINGS . O ®
o s o ® o o
> o 9 o9
T e% 0':'0 ‘.:.
o (XY — =S
 elece oo 40 o
PP % %% % . Analysis
y 0% 0 00 ® ° Snapshot | v
0% %% o%0 Dump W »p
P o o Y o, ®) 4
ol ,‘/r’j’/ % 0 1 2 3 4 5 6 7 8 9
- NN . CITTTTTITT]
CONNeCT
THE WORD Updates o ®
. Transiegt
Persistent (Disposable,
(Precious, Analysis-friendly)

Update-friendly)

Figure 2.1: Overview

Imagine a large analytics system (see Figure 2.1) that receives input from all over
the world in the form of data collected from a variety of Internet of Things (IoT)
devices. To store such data, a graph data structure offers the most flexibility
and as such this system uses a graph as its primary data store. This graph

continuously keeps on changing as the updates keep coming in from various input
sources. Doing any analysis on this graph is a hard problem, doing a real time
analysis even harder. Existing parallel graph analysis frameworks such as the
Parallel Boost Graph Library, Galois, or Ligra either do not support analyses on
dynamically changing graphs, or do so inefficiently.

A reasonable current practice involves taking read-only snapshot for analysis.
However, there are certain problems associated with this practice: 1) taking a
snapshot of such a large graph dataset can take a long time, which can slow down
analysts, 2) a consistent snapshot requires taking a global lock on the complete
graph which prevents any updates to be persisted on the graph, ie, updates
need to be throttled, 3) there is no feasible way to record and replay large input
streams during snapshot, 4) in case, a crash occurs during any operation in the
system storing the central graph data structure, there is no resilience-mechanism.

In this work, we propose a way to make this sensible practice of taking snapshots
faster while ensuring crash-resilience with the help of non-volatile (persistent)
memory. We design our system to make use of the Atlas programming model
that provides durability guarantees for persistent memory.

2.2 Design and Implementation

2.2.1 System Architecture

Consider the Figure 2.1 again. Our design involves storing the central graph
data structure in persistent memory because it is precious and keep it update-
friendly so that there is minimal cost involved in persisting incoming inputs
to the graph. The snapshots taken from this central graph may be stored on
transient memory (DRAM) as they are disposable, read-only and optimized for
analysis. We use Compressed Sparse Row (CSR) format for snapshots, which
preserves locality information on the graph (useful for running most analyses)
and is time-and-space efficient. This approach allows concurrent updates to the
graph while a snapshot is in progress.

Atlas runtime ensures crash resilience for the persistent graph, ie, recover to a
consistent state in case of system failure.

The challenge is in obtaining efficient and consistent snapshot dumps concurrently
without throttling updates to the persistent graph store.

2.2.2 Data Structure Design

Refer Figure 2.2 which describes the design of the central persistent graph data
structure. The algorithm that operates on this data structure involves three
global states — NORMAL, SNAPSHOT and CLEANUP. This state is stored

a)
State =

NodeTable[1..NVertex] Edge

Map<String, NodeIndex> 2 ID from

inEdges[..] D to
Vertex * outEdges[..] edgeInfo
LogQueue vertexInfo

Per-Thread

ThreadState[1. .NThread]
(aaaaaa)
bbb

LogEntry opCode

State INSERT_VERTEX
opCode INSERT_EDGE

(void *) logInfo DELETE_VERTEX
NCIRAL DELETE_EDGE

SNAPSHOT UPDATE_INFO
CLEANUP

Figure 2.2: Data Structure Design

both in a global State variable which is protected by a mutex lock and is
replicated in per-thread ThreadState variable. Further, the nodes are stored
in a globally accessible array. Each entry in the array represents a node in the
graph and points to two types of information related to a node: 1) primary
node information (called Vertex in the diagram), such as metadata stored at
that node and the incoming and outgoing edges, and 2) a log queue that stores
changes on that node that are done during the SNAPSHOT phase to be lazily
merged to Vertex later. There is a single lock per Node that guards either the
Vertex or the LogQueue depending on what phase the algorithm is currently
operating in.

The system operates in NORMAL mode where there is no snapshot in progress,
switches to SNAPSHOT phase when a snapshot is requested and goes to
CLEANUP after the snapshot is over; the cycle resumes after CLEANUP.

Operations performed in each phase:

¢ NORMAL phase — each worker thread takes lock on required node and
does the update

e SNAPSHOT phase — snapshot thread waits for each worker thread to
acknowledge that they are switching to SNAPSHOT phase before starting
to linearly copy the primary vertex data from each node (without any
other lock acquisition). Each worker thread after switching to SNAPSHOT
phase gives up on writing to a vertex directly and instead appends to the
log associated with each node. The node lock previously protecting the
vertex data now protects the logQueues for each node. Since there is no
thread writing to the vertex data (just the snapshot thread reading it),

there is no need of a lock for vertices any more.

CLEANUP phase — When snapshot thread is done dumping the snapshot,
it switches the global state to CLEANUP. The worker threads need to
do the cleanup before going back to NORMAL mode. They do this by
reading the logQueue associated with each node and merging the log with
the primary vertex data.

2.3 Evaluation and Discussion

real, user and sys

240 oys

—ser

— real
180

120

60 ——

4 8 12 16 20 24

Threads

Figure 2.3: Time for V=1M, E=~7.6M inserts

We tested our prototype transient version of the implementation available at
https://github.com/k4rtik /concurrent-graph for 1M vertices and 7.6M edges for
1) inserts and 2) inserts with periodic snapshots (Figures 2.3 - 2.5). The initial
prototype included use of a STL map which severely affected performance, but
we think our approach is promising and a second iteration on the implementation
will provide a better picture.

https://github.com/k4rtik/concurrent-graph

real, user and sys
300 sys
= user

— real

=l adiih G

150
[—

225

Threads

Figure 2.4: Time for V=1M, E=~7.6M inserts with periodic snapshots (1 per
second)

real and real (with SS)

80 — real
—— real (with

55)

80

]

60

50

4 8 12 16 20 24
Threads

Figure 2.5: Comparison of wall clock time for just inputs vs inputs with periodic
snapshots

Chapter 3

Formal Reasoning about
Correctness of Persistent
Programs

3.1 Why Reason about Correctness of Pro-
grams?

Most software written today, either free or commercial, comes with a license
agreement disclaiming any warranty that the product is bug-free or will perform
exactly as it is supposed to. While a civil engineer as a professional provides
specific guarantees about the efficacy and failure modes of a bridge, a software
engineer for a software product, does not. Computer Science as a scientific
discipline has come a long way, but as an engineering discipline, it has a long
way to go.

Adam Chlipala begins his excellent book on formal logical reasoning about
correctness of programs and Coq proof assistant[coq] (a tool for machine-checked
mathematical theorem proving), Formal Reasoning About Programs| , Ch.
1], as follows:

Why Prove the Correctness of Programs?

The classic engineering disciplines all have their standard mathe-
matical techniques that are applied to the design of any artifact,
before it is deployed, to gain confidence about its safety, suitability
for some purpose, and so on. The engineers in a discipline more or
less agree on what are “the rules” to be followed in vetting a design.
Those rules are specified with a high degree of rigor, so that it isn’t

a matter of opinion whether a design is safe. Why doesn’t software
engineering have a corresponding agreed-upon standard, whereby
programmers convince themselves that their systems are safe, secure,
and correct? The concepts and tools may not quite be ready yet for
broad adoption, but they have been under development for decades.

As humanity becomes increasingly dependent on software, software that keeps
on becoming more and more complex, increasingly difficult to understand, and
involving increasingly greater risk when it fails, there is an urgent need to change
this status quo by improving our tools and techniques to produce correct, reliable
software systems.

A high-level idea of the current state of the art in formal methods for software
correctness can be gained from a recent NIST report (Dramatically Reducing
Software Vulnerabilities: Report to the White House Office of Science and
Technology Policy)] , §2.1]:

In the early days of programming, some practitioners proved the
correctness of their programs. That is, given language semantics, they
logically proved that their program had certain properties or gave
certain results. As the use of software exploded and programs grew
so large that purely manual proofs were infeasible, formal correctness
arguments lost favor. In recent decades, developments, such as the
breathtaking increase in processing capacity predicted by Moore’s law,
multi-core processors and cloud computing, made orders of magnitude
more computing power readily available. Advances in algorithms for
solving Boolean Satisfiability (SAT) problems, satisfiability modulo
theories (SMT), decision procedures (e.g., ordered binary decision
diagrams - OBDD) and reasoning models (e.g., abstract interpretation
and separation logic) dramatically slashed resources required to
answer questions about software.

By the 1990s, formal methods had developed a reputation as taking
far too long, in machine time, person years and project time, and
requiring a PhD in computer science and mathematics to use them.
This is no longer the case. Formal methods are widely used today. For
instance, compilers use SAT solvers to allocate registers and optimize
code. Operating systems use algorithms formally guaranteed to avoid
deadlock.

The report] , §2.1.9] continues about the potential impact of formal
methods:

Rationale for Potential Impact

The greatest potential impact is likely in costs avoided for components
that, over time, become heavily relied upon. The Heartbleed debacle
is an example of a modest code base with outsized importance: a

judicious use of formal methods might have avoided the problem
in the first place. Generally, higher quality software, such as can
be produced using formal methods, can be used to lower long-term
maintenance and replacement costs of software components. Unlike
physical systems that wear out and eventually fail, software systems
suffer failures when they are incorrect and the flaws are triggered by
environmental factors, such as, particular sequences or combinations
of inputs.

As mentioned in the introductory chapter, various programming models have
been proposed for writing persistent programs, however, none has been widely
adopted yet. We believe there is a lot to be gained in terms of assurance if formal
reasoning techniques are adopted to ensure correctness of persistent programs
right from the start.

In this report, we focus on separation logic and its variants as they apply to
reasoning about correctness of concurrent programs and possibly for persistent
programs.

3.2 Current State of the Art in Reasoning about
Concurrent Programs

We enlist increasingly advanced mathematical logics that help us reason about
correctness of programs, from simplest single-threaded programs with no support
for linked data structures to the most complicated racy concurrent ones.

Hoare Logic is used for proving correctness properties for imperative programs.
It introduces Hoare Triples: {P} ¢ {Q}, where P and @ are precondition and
postcondition (assertions) and ¢ is command. The assertions are formulae in
predicate logic. The logic consists of axioms and inference rules for each construct
of the imperative language. Basic intuition behind Hoare triples is that if we
start in a state where P is true, then execute ¢, we will end up in a state where
Q is true. A major limitation of Hoare Logic is that is not capable of reasoning
about linked data structures. Some example Hoare triples:

{r=a} if (x <0) then v := —z {z =|a|}
{false} z:=3 {x =8}

Separation Logic (SL) is an extension of Hoare logic that supports reasoning
about programs that involve pointer manipulation and allows localized reasoning
about portions of the heap (as opposed to global state as a whole). It introduced
the idea of transfer of ownership of portions of heap where ownership refers
to the notion that a code fragment can access only those portions of the heap
which it owns. It also introduced a novel logical primitive: * (called star or

10

separating conjunction). Intuitively, { P} x {Q} partitions the overall heap into
two subheaps each of which respectively satisfy one of P and). Though a
significant improvement over previous state of the art in reasoning about sharing
of mutable memory across libraries and data structures in sequential programs,
SL was not sufficient for reasoning about most concurrent programs.

Concurrent Separation Logic (CSL) is a variant of SL that allows indepen-
dent reasoning about threads that access separate pieces of memory. This was
done with the introduction of Parallel Composition Rule|] that allowed
using the separating conjunction with multiple threads owning separate portions
of memory. It supports dynamic ownership transfer of memory and modular
reasoning. This was a major step forward in being able to reason about concur-
rent programs and the inventors were awarded 2016 Godel Prize for that, which
cites: “For the last thirty years experts have regarded pointer manipulation as an
unsolved challenge for program verification and shared-memory concurrency as
an even greater challenge. Now, thanks to CSL, both of these problems have been
elegantly and efficiently solved; and they have the same solution.” It facilitated
automation of proofs in practice because of its simplicity and similarity to com-
mon programming idioms. Most concurrent program logics in the past decade
derive from CSL (a recent restrospective paper|] on CSL by the inventors
has more context). The original paper|] on CSL by O’Hearn describes
several worked examples to gain intuition.

With most recent derivatives of CSL, it is possible to reason about even the
most subtle racy concurrent programs, ie, those utilizing non-blocking techniques
and those that require reasoning with the help of weak/relaxed memory models.
GPS|] (Ghost State, Protocols, Separation Logic) was the first logic to
support structured reasoning about weak memory. While GPS depended on
protocols, Iris 1.0] | proposed that monoids and invariants are all that are
needed to reason about most concurrent programs, with partial commutative
monoids (PCMs) used for expressing protocols on shared state and invariants
used for enforcing them. Iris 2.0]] extended Iris to support higher-order
ghost state by generalizing PCMs to resource algebras. An interesting aspect of
all of these logics is that each of these come with Coq implementations available
which makes them quite promising for building over them.

3.3 Connection between Reasoning about Con-
currency and Persistence

So far we have not explicitly mentioned why the work on correctness of concurrent
programs may be relevant to the same for persistent programs, we discuss that
here.

Aaron Turon, in his dissertation on “Understanding and Expressing Scalable
Concurrency”| , §2], writes (emphasis theirs):

11

The fundamental problem of concurrency, in our view, follows from
the inherently shared-state, nondeterministic nature of expressive
interaction:

Concurrent programming is the management of sharing and timing.

Here ‘timing’ refers to when synchronized or unsynchronized (racy) access to
shared state is allowed while ensuring global progress. Common mechanisms to
control timing include, but are not limited to, locking, waiting on conditions,
software transactional memory (STM) and optimistic mechanisms such as a
retry loop, each with their own trade-offs.

Coming to persistence, the Atlas programming model recognizes that visibility
(threading) and persistency (fail safety) critical sections are similar and that
persistence depends on atomicity and ordering| , Dage 2]:

In this paper we argue that for multithreaded lock-based programs. . .,
the locking operations usually give us enough information to infer
NVRAM atomicity and ordering requirements, and that it is useful to
extend locking primitives with failure-atomicity semantics. A section
of code is failure-atomic if the effects of either all or none of the
enclosing updates are visible in NVRAM.

Further, we realize how relaxing memory consistency models allows greater
performance to be achieved by (racy) concurrent programs. Similarly, there are
several proposals for “memory persistency models” which define the semantics
of pushing writes to the persistent (NVM) storage. Izraelevitz et al| , §3.2]
write:

The semantics of instructions controlling the ordering and timing
under which cached values are pushed to persistent memory comprise
a memory persistency model. Since any machine with bounded
caches must sometimes evict and write back a line without program
intervention, the principal challenge for designers of persistent objects
is to ensure that a newer write does not persist before an older write
(to some other location) when correctness after a crash requires the
locations to be mutually consistent.

Many of these persistency models propose two primitive hardware instructions
(often using different terminology): 1) pfence or persistence fence, which ensures
ordering of persistent writes without confirmation from the memory device
(asynchronous), and 2) psync that waits for the hardware buffer of ordered writes
to drain (synchronous). pfence is especially quite similar to the memory fence
instruction that enforces ordering constraints on memory operations and allows
implementation of low-level high-performance concurrent programs. Programs
written using fences available in the C11 memory model can already be verified
using a recently proposed program logic called Fenced Separation Logic|].
We think it it should be promising to apply similar reasoning to the persistency
related primitives.

12

Apart from these similarities, it is clear that without incorporating concurrency,
reasoning about persistent programs may be worthless as most interesting
software that utilizes persistent memory is inherently concurrent.

But concurrency alone is not sufficient as we will see in the next section.

3.4 What about Crashes and Recovery?

The problem with reasoning about correctness of persistent programs is that when
a system crash occurs it is not clear whether the data that was in registers/cache
got persisted to NVM. A basic requirement of a correct persistent program is
that when a crash occurs for any reason and the system reboots, the system
should recover to a consistent program state. Concurrent Separation Logic and
its variants though quite powerful even for reasoning about highly subtle racy
programs are insufficient to reason about crashes.

Fortunately, Crash Hoare Logic (CHL)|] deals with exactly this
problem, albeit for disk consistency, by extending traditional Hoare Logic with
crash conditions and recovery semantics and uses Separation Logic to represent
parts of disk (as opposed to memory):

Crash conditions| , §3.2]:

To reason about the behavior of a procedure in the presence of
crashes, CHL allows a developer to capture both the state at the end
of the procedure’s crash-free execution and the intermediate states
during the procedure’s execution in which a crash could occur.

Recovery execution semantics| , §3.2] (given log_recover is the recovery
procedure, emphasis theirs):

To state that log_recover must run after a crash, CHL provides a
recovery execution semantics. In contrast to CHL’s regular execution
semantics, which talks about a procedure producing either a failure
(accessing an invalid disk block), a crash, or a finished state, the
recovery semantics talks about two procedures executing (a normal
procedure and a recovery procedure) and producing either a failure, a
completed state (after finishing the normal procedure), or a recovered
state (after finishing the recovery procedure). This regime models
the notion that the normal procedure tries to execute and reach
a completed state, but if the system crashes, it starts running the
recovery procedure (perhaps multiple times if there are crashes during
recovery), which produces a recovered state.

Though not exactly the same as disk consistency, reasoning about failure scenarios
in persistent programs has a lot in common with what CHL tries to solve.

13

3.5 The Road Ahead

We have looked at a lot of work that takes us closer to proving correctness of
both persistent programs and programming models being proposed to write
them. But there are still some pieces missing that may lead to a new logic that
can be used to model persistent memory and its various properties, most likely
building on some CSL variant and CHL.

Currently, the specifications of the basic persistency primitives are still being
finalized and we are yet to reach a consensus on which persistent programming
model is the most flexible and suitable. But the work we need to do does not
require waiting on standardization efforts as a recent abstract framework|]
for reasoning about correctness of persistent programs demonstrates. It proposes
theoretical safety conditions such as durable linearizability and buffered durable
linearizability that can be used to reason about safety of persistent objects at a
higher-level. The problem with this framework is that it builds over linearizability,
which is the most well accepted theoretical safety condition for concurrent objects,
but that has been found difficult to incorporate in mechanical proof systems; to
quote Turon| , §3.4.2] again (emphasis theirs):

Linearizability, ..., is defined in terms of quite abstract “histories,”

seemingly without reference to any particular language. But to actu-
ally prove linearizability for specific examples, or to benefit formally
from it as a client, some connection is needed to a language. In
particular, there must be some (language-dependent) way to extract
the possible histories of a given concurrent data structure—giving a
kind of “history semantics” for the language.

If linearizability is a proof technique for refinement, its soundness is
a kind of “context lemma” saying the observable behavior of a data
structure with hidden state can be understood entirely in terms of
(concurrent) invocations of its operations; the particular contents of
the heap can be ignored. The problem is that the behavior of its
operations—f{rom which its histories are generated—is dependent on
the heap. Any proof method that uses linearizability as a component
must reason, at some level, about the heap. Moreover, linearizability
is defined by quantifying over all histories, a quantification that
cannot be straightforwardly tackled through induction. Practical
ways of proving linearizability require additional technical machinery,
the validity of which must be separately proved.

This suggests that a potential new logic compatible with these correctness
conditions will still need a machinery like separation logic to reason about the
heap.

Finally, we propose two ways that this work can be taken forward with our

14

current understanding, both of which may be easier if attempted with sequential
programs first:

o Bottom-up: We start with certain well-defined specifications (operational
semantics) of basic persistency primitives such as pfence and psync; model
them in a variant of a logic such as FSL; come up with well-defined
safety properties that can be encoded suitably in this logic; and iterate
over the design of this new logic by trying to prove these properties and
specifications of higher-level data structures.

e Top-down: Choose a particular persistent programming model such as
Atlas and treat the guarantees ensured by this model as a trusted base;
pick a specific example program that uses this model to focus on (e.g.
the code shown in chapter 1) and prove it correct with a variant of CHL;
iterate over the design of this new logic with more examples, possibly by
integrating properties of a powerful CSL variant such as Iris; and then start
looking for ways to prove the design on the programming model correct.

15

Chapter 4

Conclusion and Future
Work

We described our design of a concurrent graph data structure for non-volatile
memory which offers crash-resilience with the help of Atlas programming model.
Our current transient implementation seems promising but can be improved
before attempting a persistent version.

We described the landscape of current research into proving the correctness of
persistent programs and related work in the field of reasoning about concurrency
(variants of CSLs) and failure scenarios (CHL). We plan to come up with a new
logic and a (Cog-based) machine-checkable proof system for reasoning about the
correctness of software written for persistent memory. The goal is to provide
usable tools to programmers and designers of programming models working
in the area of persistent memory to validate their assumptions. Crash Hoare
Logic for crash scenarios and variants of Separation Logic seem to have the most
essential foundations that seem necessary and that we expect to be able to build
upon.

16

Acknowledgements

I am extremely grateful to my advisor Maurice Herlihy for his guidance and
support during the course of this work. I am also thankful to my mentors at HP
Labs: Dhruva Chakrabarti, who saw a research potential in me, and both him
and Terence Kelly who guided me throughout the summer on my concurrent
graph data structure project. I would also like to thank researchers from the
verification community who helped me think through the problem of proving
correctness of persistent programs and provided various insights — Derek Dreyer
at MPI-SWS, Lars Birkedal and Ales Bizjak, both at Aarhus University.

Kartik Singhal

May 2017
Brown University

17

References

[Ball6]

[BBGF16]

[BO16]

[CBB14]

[Chl17]

[coq]
[CZC+15]

[DV16]

Piotr Balcer. Persistent Memory Semantics in Program-
ming Languages — Overview of the Ongoing Research, Oc-
tober 2016. LinuxCon+ContainerCon Europe 2016 (talk
slides): http://events.linuxfoundation.org/sites/events/files/slides/
linuxcon_pmem_lang ext_ v2 0.pdf.

Paul E. Black, Mark L. Badger, Barbara Guttman, and Elizabeth N.
Fong. Dramatically Reducing Software Vulnerabilities: Report to
the White House Office of Science and Technology Policy. NIST
Interagency /Internal Report (NISTIR) 8151, National Institute of
Standards and Technology, December 2016. Available at: https:
//dx.doi.org/10.6028 /NIST.IR.8151.

Stephen Brookes and Peter W. O’Hearn. Concurrent Separation
Logic. ACM SIGLOG News, 3(3):47-65, August 2016.

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari.
Atlas: Leveraging Locks for Non-volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
14, pages 433-452, New York, NY, USA, 2014. ACM.

Adam Chlipala. Formal Reasoning About Programs. MIT, Cambridge,
MA, USA, 2017. Book webpage: http://adam.chlipala.net/frap/.

The Coq Proof Assistant. https://coq.inria.fr/.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for Cer-
tifying the FSCQ File System. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 15, pages 18-37, New York,
NY, USA, 2015. ACM.

Marko Doko and Viktor Vafeiadis. A Program Logic for C11 Memory
Fences, pages 413-430. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

18

http://events.linuxfoundation.org/sites/events/files/slides/linuxcon_pmem_lang_ext_v2_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/linuxcon_pmem_lang_ext_v2_0.pdf
https://dx.doi.org/10.6028/NIST.IR.8151
https://dx.doi.org/10.6028/NIST.IR.8151
http://adam.chlipala.net/frap/
https://coq.inria.fr/

[IMS16]

[JKBD16]

[JSS+15]

[0’HO7]

[Turl3]

[TVD14]

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Lin-
earizability of Persistent Memory Objects Under a Full-System-Crash
Failure Model, pages 313-327. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer.
Higher-order Ghost State. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016,
pages 256269, New York, NY, USA, 2016. ACM.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and Invariants
As an Orthogonal Basis for Concurrent Reasoning. In Proceedings of
the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 15, pages 637-650, New York,
NY, USA, 2015. ACM.

Peter W. O’Hearn. Resources, Concurrency, and Local Reasoning.
Theoretical Computer Science, 375(1):271 — 307, 2007.

Aaron Turon. Understanding and Expressing Scalable Concurrency.
PhD thesis, College of Computer and Information Science, North-
eastern University, Boston, Massachusetts, April 2013. Available at
https://people.mpi-sws.org/~turon/turon-thesis.pdf.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating
Weak Memory with Ghosts, Protocols, and Separation. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages € Applications, OOPSLA 14, pages
691-707, New York, NY, USA, 2014. ACM.

19

https://people.mpi-sws.org/~turon/turon-thesis.pdf

	Introduction
	A Concurrent Graph Data Structure for Non-Volatile Memory
	Problem Overview
	Design and Implementation
	System Architecture
	Data Structure Design

	Evaluation and Discussion

	Formal Reasoning about Correctness of Persistent Programs
	Why Reason about Correctness of Programs?
	Current State of the Art in Reasoning about Concurrent Programs
	Connection between Reasoning about Concurrency and Persistence
	What about Crashes and Recovery?
	The Road Ahead

	Conclusion and Future Work
	Acknowledgements
	References

