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Abstract

I have used a data-driven approach to detect functional
attributes of objects in images. Using ImageNet and Ama-
zon Mechanical Turk, I have created a dataset of more than
7000 images with functional attribute labels. I have used
these labels to train functional classifiers, and I compared
the precision and recall of these classifiers to the precision
and recall of the Amazon Mechanical Turk workers who
provided the labels.

1. Introduction

When a person has a task to complete, missing the cor-
rect tool for the job is not an insurmountable barrier. If a
person wants to carry water, any concave, impermeable ob-
ject will do; if a person wants to sit down, a nearby tree
stump will likely suffice. People are capable of improvi-
sation: using objects in novel and unexpected ways. This
means that objects can be used to complete many actions:
some can be sat upon, some can carry water, and some can
do both. These uses are functional attributes.

I attempted to capture the visual features of these func-
tional attributes, using a data-driven approach. In order to
determine the most common ways of interacting with ob-
jects, I looked at a list of the most common English verbs.
From this set of common interactions, I created a set of 18
functional attributes, common to everyday objects. Func-
tional attributes that I explore in this paper describe how
a human can interact with an object or use the object to
perform a task. From ImageNet, I collected URLs for all
man-made objects. Using this data, I collected functional
attribute labels using Amazon Mechanical Turk. Finally, I
used these labels to train functional classifiers, and tested
them on a held-out test set.

2. Related Work

Past work has explored both attribute detection in scenes
[7] and also using attributes to classify objects [8], but nei-
ther has explored functional attributes of images.

2.1. Sun Attribute Database: Discovering, Anno-
tating, and Recognizing Scene Attributes

Patterson and Hays explored attribute-based representa-
tions for scenes [7]. Rather than classifying images as be-
ing depictions of kitchens or beaches, they chose to focus
on scene attributes. Specifically, they explored five types
of scene attributes: materials, surface properties, functions,
spatial envelope attributes, and object presence.

They built the SUN Attribute Database, using images
from the SUN categorical database and collecting labels us-
ing Amazon Mechanical Turk. They chose 102 scene at-
tributes and collected labels on 14,000 images. While they
crowdsourced their collection of attributes, I chose mine by
hand. The authors used a combination of low-level features
like gist and HOG to detect scene attributes.

Functional Features
Be turned on or off
Write or make a mark
Be heard
Be smelled
Be opened or closed
Be thrown
Hold liquid
Roll
Be sat upon
Float
Be broken
Be folded
Be climbed
Carry objects
Be eaten
Be worn
Protect
Harm

Table 1: This is the full list of functional attributes I consid-
ered. Example images of functional attribute occurrences in
my dataset are in Figure 1.
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This is a similar problem to the one I have tried to solve,
though it is focused on scenes and scene attributes, rather
than objects and object attributes. Both their approach and
mine classify higher-level features of images without di-
rectly classifying the scene or object. My approach focuses
specifically on functional features of objects, and rather
than using low-level features for classification, I have used
a convolutional neural net.

2.2. Recognition by Functional Parts

Rivlin, Dickinson, and Rosenfeld [8] worked on recov-
ering shape and function from 2-D image data. They seg-
mented images into sets of parts; possible functions were
then assigned to groups of parts and to single parts. To do
this, they used shape primitives, like sticks, strips, plates,
and blobs, and enumerated the possible spatial relations
which combine multiple shape primitives. Once they ob-
tained a set of shape primitives, they were able to map func-
tional primitives to shapes. For example, something which
is intended to be picked up, like a handle, must be stick-like
and small enough that a human hand can wrap around it.

This paper attempted to solve two problems: a bottom-
up approach, where an unknown object was identified by its
functional parts, and a top-down approach, where a specific
object in an image was found by matching its functional
parts to the expected attribute predictions.

Their bottom-up approach is similar to the problem I am
attempting to solve: given an unknown object, what func-
tions can it be used for? However, the authors attempt to
determine the object category from the functions; while my
classification scheme may also be used to identify object
categories, the functional attributes are the goal. Their ap-
proach to solving the problem was also very different than
my approach. They estimated specific relationships be-
tween object parts and used these relationships to predict
functions, while my method abstracts away from these rules
by collecting a large amount of data.

3. Data Collection
I collected functional labels for objects in images using

ImageNet [5] and Amazon Mechanical Turk.

3.1. Data Acquisition

I determined the most common ways to interact with ev-
eryday objects from a list of the 500 most commonly used
English verbs. I created a list of 18 interactions with or uses
of an object to use as my functional features. For this list, I
chose interactions which apply across object categories and
which I believed may require visual features which distin-
guish them from other objects. Something that is ”Able to
hold water” may be a cup, a trash can lid, or a canoe, so this
function applies across object categories. Something which
is ”Able to be turned on or off” will not be a natural object,

may emit its own light (like a lamp or computer screen), and
will likely be made out of plastic or metal; these features are
visually distinctive.

In addition to features relating to how humans interact
with the world, I was also interested in some features which
relate to how humans perceive the world. When the typi-
cal person sees an object, he may be able to anticipate what
other senses will be triggered by the same object. A study
performed by Jadauji et al. [6] has shown that, in addition
to there being a close connection between olfactory and vi-
sual responses, activation of the visual cortex improves per-
formance on olfactory tasks. This is motivation for explor-
ing the relationship between visual stimuli and other senses.
To this end, I included ”Able to be heard,” ”Able to be
smelled,” and ”Able to be eaten” as functional attributes.
I assumed all objects in my dataset are able to be seen and
touched, as the objects appear in camera images, and ”Able
to be eaten” is a stand-in for the sense of taste.

I collected my dataset from ImageNet. I used the list
of image urls from the Fall 2011 release of ImageNet[1],
which contains approximately 14 million images. From the
list of synset IDs, I chose the sensets for objects which
were man-made. A synset in ImageNet is a collection of
images for words occurring in the equivalent synset taken
from WordNet. WordNet groups words into distinct con-
cepts these sets of synonyms are called ”synsets”[3]. Word-
Net also includes relationships between synsets; the rela-
tionship between a general synset, like the ”man-made ob-
ject” concept, and more specific synsets, like the ”couch”
set, allowed me to retrieve all images in ImageNet which
were part of the general synset I selected. Because I was
interested in how people can possibly interact with objects,
I explored only objects which were labelled as man-made;
my theory was that choosing objects which had been created
by humans would result in objects which have a purpose,
and therefore also have functional features.

3.2. Processing by Hand

For each synset that was a child of the manmade objects
synset, I selected up to 5 images. Not all images could be
downloaded from the ImageNet url provided, so any which
did not load were skipped. This resulted in a set of approx-
imately 30,000 images. I then cleaned the images by hand
to remove any images where the focal point was unclear,
functional features did not apply, the images were inappro-
priate for MTurk workers under the age of 18, or the image
took too long to load from the external source. This process
resulted in 11,749 images for which I collected labels.
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(a) Functional attributes do
not apply.

(b) Unclear focal point.

Figure 2: These images are examples of the kinds of images
which were removed.

4. Image Annotation
4.1. Pilot Tasks

I used Qualtrics and Amazon Mechanical Turk to collect
functional labels for my images. I created a survey using
Qualtrics, which displayed a single image and asked par-
ticipants to make 18 binary choices for the image: whether
or not an object in the image could be used for each of the
functions I am exploring. The participants were given these
instructions: ”Please choose all actions which could be per-
formed with this object. Select the actions which complete
the sentence, ’This object is able to .’ for any salient
object in the image. People and animals are not objects.”
For each participant, I collected responses for 20 images
randomly selected from my set of image URLs.

I tested using both binary choices and Likert scales for all
features. Using a Likert scale allowed participants to make
non-binary choices; rather than saying whether or not an
object in an image could be used for a function, participants
were able to describe how well the object could be used.
I found this task to be significantly more challenging and
time-consuming than the binary classification, so I decided
to use classification instead. This decision was supported
by a study at Brown in 2014, performed by Cavanagh et al.
[4], which showed that decision conflict is a cost in select-
ing actions. As a result, answering Likert scale questions,
which require more difficult decisions, could have become
an aversive event causing an increase in the time and ex-
pense of paying Mechanical Turk workers.

4.2. Mechanical Turk Details

Using Amazon Mechanical Turk, I collected responses
from 637 participants. Of these, 604 finished the task. Each
participant gave functional labels for a random selection of
20 images, chosen from my set of 11,749 images.

Each participant was paid $0.02 per image labelled. Af-
ter removing a few outliers who had required more than an
hour, participants took an average of 8 minutes and 45 sec-

Figure 3: Example question from Qualtrics survey. A
worker would be shown 20 random images, and for each
image, the worker can select any combination of features.

onds to complete the task, so were paid an hourly wage of
$2.84. Participants were allowed to take the survey more
than once.

5. Dataset Statistics

5.1. Collecting Ground Truth from Humans

When I had collected responses from 637 participants,
7554 of my images had been seen and responded to by a
person. I discarded data from humans who did not finish the
task. In order to ensure that my ground truth responses were
reasonable, I created a system which uses multiple partici-
pants’ responses to create a correct answer. For each image,
I determined the most common response for each feature,
and I discarded any images where there were not at least
two people who agreed. This became the ground truth label
for the image. This resulted in 2896 images with labels, all
of which had been independently verified by more than one
person.

These ground truth labels allowed me to examine the
types of mistakes humans make in labeling this sort of data.
Not all disagreements are mistakes; some may occur be-
cause participants had a different understanding of what a
functional feature means.

In Figure 4, below, there are some examples of images
which at least three workers labeled as being able to hold
liquid. There is quite a bit of variety in the object classes
being labelled. Many of the objects which can hold liquid
are mugs, but some are paint cans, thermoses, and artifacts.

4



Figure 4: These are all images of objects which can hold liquid.

Figure 5: This is an image that was labelled by four different
Mechanical Turk workers. Three out of four of them agreed
that it can be opened or closed, it can be climbed, and it
can protect. Two of the workers believed it can be sat upon,
and one worker believed that it can be turned on or off, be
smelled, be broken, and harm.

6. Human Accuracy, Precision, and Recall

6.1. Human Errors

In general, my participants were more likely to miss la-
bels than to give incorrect labels. Intuitively, this seems
reasonable. Some of the features are difficult to determine,
like ”Be smelled,” and some of them relate to small objects

in images: Pens and pencils are often very small, and they
are important to determine whether ”Write or make a mark”
is a valid classification. In addition, some humans may have
many false negatives because they are not taking the time to
look closely at images.

People were most likely to give false negatives for ”able
to be thrown,” ”able to be broken,” and ”able to protect.”
People were most likely to give false positives for ”able to
be turned on or off,” ”able to be opened or closed,” ”able to
be thrown,” and ”able to be broken.” ”Able to be thrown”
and ”able to be broken” have both many false positives and
false negatives, and were the two categories on which hu-
mans made the most mistakes. People made the fewest total
mistakes on the feature, ”able to be eaten.”

Figure 6: Mechanical Turk worker precision and recall for
each functional feature. Some functional features had more
consistent answers than others.

5



6.2. Recall and Precision

The errors made by humans are displayed in Table 2.
”Be worn” and ”Be turned on or off” have the highest recall,
while ”Be eaten” has the highest precision.

7. Classification Method
7.1. CNN Features

I used the MatConvNet implementation of the neural net
from Very Deep Convolutional Networks for Large-Scale
Visual Recognition [10][9] to generate my features. I re-
sized the images I was working from to 224x224x3 and re-
moved the average image that the neural net was trained on.
I then ran each image through the neural net, and extracted
the outputs from the last five layers. Finally, I created an ad-
ditional set of features, by combining the outputs of layers
36 and 38.

7.2. Linear SVM on Last Convolutional Layer

For each question and layer, I randomized the order of
the image features and split them into training and test data.
I used 80% of my data to train a linear SVM, and tested
on the remaining 20% of my data. The results of the SVM
classifier trained on each layer are shown in Figure 4, be-
low. These are the precision and recall for a single set of
features across all functional attributes. Additional images
displaying the precision and recall of features from layers
for specific attributes appear at the end of this paper.

While I was performing analysis on the classifier, I no-
ticed some variance in the success of my models, and their
performance in relation to models trained on features from
earlier layers. I believe this variance was caused by the ran-
dom splits of test and training data, resulting in different
levels of success on the test set. To reduce the variance
across runs, I performed ten different splits for each set of
features, trained ten different SVMs, and calculated the pre-
cision and recall curve on the concatenated results for all
SVMs on their respective test sets.

The combined feature of layers 36 and 38 performed
better than either layer 38 or layer 36 on their own. Con-
ceptually, layer 38 is the output of the softmax layer of the
convolutional neural net, which takes in an image, and out-
puts the probabilities of the 1000 different object categories
represented in the ImageNet Challenge, ILSVRC 2014 [2].
Layer 36 is the output of the final convolutional layer of the
neural net, which is a 4096-element vector.

8. Classification Results
8.1. Recall, Precision, and Accuracy

The SVM classifier is good at the following features:
”Hold liquid”, ”Float”, ”Be eaten”, and ”Be worn”. It has
greater than 50% precision and recall in all of these features.

Figure 7: The result of multiple SVMs trained on features
constructed from the output of different layers of the CNN.
The legend shown applies to all precision and recall curves
throughout this paper.

However, the classifier has much worse performance on the
following features: ”Be smelled”, ”Roll”, ”Write or make a
mark”, and ”Be climbed”.

In Figure 4, the precision and recall curves across all
functional features have been plotted for each feature layer.
Layer 38, the layer that performs object categorization,
achieves high precision when recall is low. However, it per-
forms less well than other layers when recall is greater than
0.4. Intuitively, this makes sense; consider the functional
feature, ”be sat upon.” In general, most items that can be
sat upon will be members of one of only a few categories,
like chairs or couches. The classifier which uses object cat-
egories as features will learn a mapping between those cat-
egories and functions. However, it will be less likely to de-
tect outliers for the function, like tables or beds, meaning
that its performance with high recall will be worse than the
performance of other layers.

8.2. Comparison to Human Precision and Recall

The categories that the SVM classifiers performed best
at were in the top right section of the human workers’
precision-recall plot, while the categories that the classifier
performed worst at were in the bottom left section of the
human precision-recall plot.

”Be worn” and ”Hold liquid”, which the SVM classi-
fiers performed well on, are clearly functions that humans
had high precision and recall while labeling. However, ”Be
smelled”, ”Write or make a mark”, and ”Roll” have com-
paratively low precision and recall. This indicates that some
categories may be harder to label than others. It is possible
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Functional Features Total Responses Total Mistakes Human Accuracy # of Disputed Responses
Be turned on or off 6773 288 0.957478 971
Write or make a mark 7300 125 0.982877 444
Be heard 7002 248 0.964582 742
Be smelled 6983 215 0.969211 761
Be opened or closed 6519 386 0.940788 1225
Be thrown 6114 489 0.92002 1630
Hold liquid 7204 155 0.978484 540
Roll 6770 289 0.957312 974
Be sat upon 6794 354 0.947895 950
Float 7230 157 0.978285 514
Be broken 5857 550 0.906095 1887
Be folded 7106 226 0.968196 638
Be climbed 7079 206 0.9709 665
Carry objects 6728 325 0.95169 1016
Be eaten 7600 52 0.993158 144
Be worn 7276 170 0.976636 468
Protect 6541 384 0.941293 1203
Harm 7081 216 0.969496 663

Table 2: This table displays participant accuracy for each feature. The same number of possible responses were available
for each function. The number of disputed responses is the number of responses where positive count equaled the negative
count, so the image was thrown out of my dataset and was not considered in calculating ground truth.

that the instructions for labeling these functions were un-
clear, or that they are simply more difficult to see.

8.3. Results on the Output of Other Layers

Using the softmax layer as the set of features rather than
the convolutional layer output made a vast improvement for
”Be sat upon” and ”Harm”. In Figure 7, compare the green
line to the yellow line. These may be features for which
only a few types of objects can be used, or where there is
little relationship between two images which share the same
functional feature. For example, it is possible that only a
few types of objects were labelled as being able to be sat
upon. In contrast, it could be that guns and knives do not
share very many visual characteristics, though they are both
able to cause harm.

Some of the features that the category estimate per-
formed poorly on were ”Be eaten”, ”Be smelled”, and
”Hold liquid”. The precision-recall curves for these layers
are shown in Figure 6. The output of the final convolutional
layer outperformed all other layers for both ”Be eaten” and
”Be smelled”, while the combined feature of the final con-
volutional layer and the category estimation outperformed
other layers for ”Hold liquid”.

”Hold liquid” is an attribute that relies on the shape and
material of an object, more than on its object category.
Some object categories, like cups and mugs, will almost al-
ways be able hold liquid, while others, like trash cans, may
be able to hold liquid. A trash can made of wire will not

be able to hold liquid, but a trashcan made of plastic likely
can.

Some functions have a small set of typical object classes
with which the functions are performed, like ”Be sat upon”
or ”Harm”. Other functions are more varied, and, in the
case of ”Be eaten” and ”Be smelled”, depend on the state
of the objects in question: a warm apple pie straight out of
the oven can be smelled, but a cold apple pie wrapped in tin
foil cannot. Essentially, when information beyond object
category is required, layers which encode more information
are more useful than an object category estimate.

9. Discussion and Future Steps
For future work, there are a few modifications I would

be interested in exploring: these include pre-training, us-
ing bounding boxes, and allowing more classifications per
person.

9.1. Different Methods for Collecting Data

9.1.1 Pre-training

Not all Mechanical Turkers interpret instructions in the
same ways. For many images, two or more different work-
ers provided different labels for a given feature in an image.
For the functional attribute ”Be turned on or off”, 417 of the
2718 images with two or more responses had an equal num-
ber of positive and negative votes. It is not clear why each
disagreement occurred, but it is possible that many of these
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Figure 8: In this figure, compare the green line (the category estimate) to the yellow line (the output of the final convolutional
layer).

Figure 9: Layer 36 has good performance on both ”Be eaten” and ”Be smelled”, while the combined feature of Layer 36
and Layer 38 has good performance on ”Hold Liquid”. Both features outperform the category estimation layer for all three
functions.

mistakes could have been avoided by using a pre-training
task.

There are some attributes in particular for which the
meaning could be unclear, or for which the boundary be-
tween binary classifications is blurry. For example, con-
sider the attribute, ”Able to be thrown.” In general, a human
conjuring images of objects which can be thrown comes up
with small objects, which would typically be thrown. These
objects, like balls or paper airplanes, are easily gripped and
lifted in one hand. However, if one uses two hands, even
an object like a desk chair could conceivably be lifted and
thrown. In the case of a desk chair, whether or not it is clas-
sified as being able to be thrown depends on a few factors: is
the worker considering using two hands? Does the worker
have an accurate estimate of its weight? How strong is the
worker? Not only do workers interpret instructions differ-
ently, they are also different people, with different physical
capabilities.

In the case of ”Able to be heard” does the object in the
image need to be in the process of making noise, or does it

just need to be able to? For example, a trumpet on a desk
would not be heard, but a trumpet held up to someone’s
mouth would be; however, both trumpets are able to make
noise.

The features with the highest rates of confusion among
participants were, in order, ”Be broken”, ”Be thrown”, and
”Be opened or closed”. These three features were all fea-
tures which my classifier performed poorly on. See Fig-
ure 10 for precision and recall curves for these three func-
tions. The feature with the lowest rate of confusion was
”Be eaten”, and this was also a feature that my classifier
performed well on.

Some sort of pre-training for each feature would likely
result in more consistent responses. It would likely only
require a few examples of potentially confusing images for
each feature. In fact, I could use some of the images on
which workers did not agree, which I ended up throwing
out, like the ones in figures 11 and 12.
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Figure 10: These three features were all confusing for humans and were also features which my classifier performed poorly
on.

Figure 11: Three of the six people who saw this image be-
lieved that it could be thrown, and the other three believed
that it could not be.

9.1.2 Bounding Boxes

All images associated with a given object category in Im-
ageNet are guaranteed to have an instance of that object.
However, not all instances of the object are the focus of the
image, nor do they take up the majority of the pixels in the
image, nor are they even guaranteed to be entirely contained
within the image. There are typically also other objects in
the image. This meant that it was not always clear what ob-
ject or objects in the image should be labelled, and some
small objects may have been lost or ignored.

Figure 12: Two of the four people who saw this image be-
lieved that it could be heard. It is easy to see that the fan is
not currently spinning, so in its current state, it is unlikely
to be heard. However, one can easily imagine hearing it
when it is spinning. The images in both Figure 10 and Fig-
ure 11 were thrown out before training due to this type of
disagreement.

Including bounding boxes around objects would likely
help to mitigate this problem, by drawing the workers’ at-
tention to a specific object. This would remove the possi-
bility that two workers who are looking at the same image
may provide labels for two different objects within it, and
would likely produce more consistent answers as a result. It
would also result in labels for objects in images which are
comprised of relatively few pixels: for example, a pen on
top of a desk.

9.1.3 Allow More Classifications Per Person

The way that I performed data collection limited the num-
ber of labels that I collected per person. This meant that
approximately 600 workers labelled 20 images each. This
means that I had many different workers, all of whom may
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Figure 13: Is this a picture of a canoe, a power tool in the
background, the clamps holding the canoe together, or all
of these things at once? One participant said that an object
in this image could be turned on and that an object in this
image could float. Both of these statements are true, but the
object that is able to be turned on is not the clear focus.

have slightly different interpretations of the task. Allowing
a single person to perform more classifications would im-
prove the consistency of the labels.

9.2. Different Methods for Determining Ground
Truth

The most significant increases in my classifier’s accu-
racy, precision, and recall came from modifying my meth-
ods for determining the ground truth functional labels for
images. There are two areas in which improvements could
be made: the first is in adding verification measures when
labels are collected, and the second is in removing labels
from inconsistent workers.

In future iterations of data collection, it would be a good
idea to include sentinel tasks: easy images which have pre-
determined ground truth labels, to test worker accuracy [7].
It could be that some workers are always inconsistent at
labeling certain features, or it could be that some workers
are missing possible positive labels, because they are mov-
ing too quickly. Of the 604 participants who completed the
task, 68 took less than three minutes to complete the task.
Completing the task in three minutes exactly requires that
the participant view a new image every 9 seconds. Because
there are 18 binary classifications to be made per image,
a participant viewing an image every 9 seconds can only
spend half a second on any single classification, and is much
more likely to miss a functional feature than a participant
who is moving through images more slowly. In fact, when I
removed the labels from participants who finished the task
in under three minutes, the total human precision and recall
scores increased. Human recall improved by 4.3% from this
change alone; this indicates that people who are completing

Minimum Time Total Precision Total Recall
0 minutes 85.96% 66.74%
3 minutes 87.59% 70.98%
5 minutes 89.33% 76.63%
7 minutes 92.84% 82.65%

Table 3: This table shows the total precision and recall
values for humans across all functions. The humans who
finished faster than the minimum time allowed were re-
moved from consideration. Recall and precision both im-
prove when fast workers are removed.

the task quickly are likely to mislabel valid functions.
Alternatively, adding another layer of user input in which

people check the accuracy of other’s responses may also be
helpful. In looking at worker responses, I observed a trend
in my own reactions to the responses: it seems easier to
confirm a positive classification than to invent one. In other
words, when I saw a set of features for an image, if I saw
a feature that had been labelled as positive that I would not
have labelled as positive, it was relatively easy to under-
stand why the classification had been made and consider it
to be reasonable. This would have resulted in a different
set of features than I would have supplied without another
person’s input. Because of this observation, it might be in-
teresting to add one or more layers of worker verification
in order to reduce the effect of differing opinions among
workers, and to allow workers to converge to a single con-
sensus. As a result, I think more positive classifications will
be made, and more incorrect positive classifications will be
caught.

While these measures are useful for future data, there
may be more opportunities to remove problematic results
even without sentinel tasks and verification steps: there may
be people who are working significantly faster than oth-
ers, or there may be people who disagree with other peo-
ple often. My current voting strategy already removes la-
bels when the majority of other workers who saw the image
disagrees, but it acts on an image-by-image and feature-by-
feature basis. It is possible that I have workers who are
wrong on significantly more images than other workers, like
my workers who completed the task too quickly. Including
their results for any of their labels may be affecting the va-
lidity of my ground truth labels; it may be better to iden-
tify inaccurate workers and remove their labels entirely, as I
have done with fast workers and those who did not complete
the task.

Finally, there may be other voting methods which are
reasonable. Initially, I had made the assumption that false
negatives were going to be much more likely than false pos-
itives, based on the idea that it is easier to miss a positive
feature than to mark an incorrect feature as positive. As a

10



result, I counted all positive votes as true, without consider-
ing the number of people who had supplied a negative vote.
While this was less successful than my majority strategy, I
think that this may be an interesting area to explore, given
that there is a bias toward false negatives.

10. Conclusion
After collecting images and functional labels using Ima-

geNet, Amazon Mechanical Turk and Qualtrics, I was able
to train classifiers which detected these functional features
in images. Some functions were more successful than oth-
ers, both for my classifier and for my human workers. Layer
38, the feature that allowed for the best classification on
most functional features, performed less well than layer 36
on the functions relating to human senses, like ”Be eaten”,
”Be smelled”, and ”Be heard”. However, the composite fea-
ture of 36 and 38 did very well across the board.
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