General Baggage Model for End-to-End
Tracing and Its Application on Critical
Path Analysis

A PROJECT REPORT
BY
Hongkal Sun
TO
THE DEPARTMENT OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE
IN THE SUBJECT OF
COMPUTER SCIENCE

BrowN UNIVERSITY
PROVIDENCE, RHODE ISLAND
MAY 2016

© 2016 - HONGKAI SUN
ALL RIGHTS RESERVED.

Project advisor: Rodrigo Fonseca Hongkai Sun

General Baggage Model for End-to-End Tracing and Its
Application on Critical Path Analysis

ABSTRACT

Many monitoring and diagnosis systems have been proposed based on causal
tracing for end-to-end executions in distributed systems as more and more
modern computer applications become distributed systems. These applications
are based on metadata propagation along the request’s executions, which has
been closely tied to the application logic, the metadata formats, and the
developer APIs. Such kind of coupling makes it impossible to reuse the metadata
propagation code added by the developers to their systems and duplicates the
efforts. Such duplicate efforts have been identified as the main barrier to entry for
these tracing applications.

In this report, we propose a general metadata container called the Baggage
Model, which enables us to reuse the metadata propagation. Baggage provides
necessary flexibility, extensibility, and isolation to allow different tracing
applications to share the same instrumentation, which should significantly
reduce the duplicate efforts for the developers. Three tracing applications are
modified by us to take advantage of the general baggage model. We have also
briefly analyzed the performance of our baggage implementation.

Based on the baggage model, we propose a new tracing application called
CPath for critical path analysis. This tool measures the overall latency, the critical

execution path, and the slack of the request’s executions to help developers to

iii

Project advisor: Rodrigo Fonseca Hongkai Sun

figure out the slow-down factors. We also propose the idea of hypothetical
speedups to simulate the optimization plans with the real request executions to
see how much improvement on the overall latency the plans can work out, which
helps the performance engineers to set up feasible and meaningful peformance
goals for the development teams.

We also talk about the lessons we have learnt and future work with both

baggage model and CPath.

iv

Contents

1 INTRODUCTION

2 BACKGROUND & MOTIVATIONS

3 GENERAL BAGGAGE MODEL

3.1 Goals ... e
3.2 Design o
3.3 Implementation.

4 EXISTING APPLICATIONS

4.1 X-Trace e e e e
42 Retro e e
43 PivotTracing

s CRITICAL PATH ANALYSIS (CPATH)

5.1 Motivation e e
s2 Design
5.3 Implementation.

6 CONCLUSIONS

REFERENCES

18
18
21

22

24
24
25
29

37

40

Acknowledgments

I would like to thank my advisor Rodrigo Fonseca for the awesome advising on
this project and the generous help in getting started in this field, and Jonathan
Mace for his excellent ideas on this topic and the extensive helpful suggestions on
this report. I also want to thank my office-mates as well as all my friends for such

great companions during my years at Brown.

vi

Introduction

Many modern computer applications are distributed systems, comprising multi-
ple application layers spread across many machines. Examples include the increas-
ingly popular domains of data analytics, microservices, web services, and more.
Monitoring and troubleshooting distributed systems is a fundamental challenge
faced by operators and developers, because unlike in standalone systems, prob-
lems in distributed systems often span multiple machines and application layers.
The tools commonly used today to diagnose problems, such as logs, counters, and
metrics, cannot coherently reason about end-to-end executions across a distributed
system, because important context is lost whenever an execution crosses software
components or machine boundaries.

Consequently, a variety of monitoring and diagnosis systems have been pro-
posed to reason about end-to-end executions in distributed systems. For example,

X-Trace [7] is an end-to-end tracing system that produces directed acyclic execu-

tion graphs. An execution graph records events that occur during an execution,
and organizes them by capturing causality between events, even across applica-
tion layers and machines. X-Trace enables system operators to observe execution
paths across an entire system, and has been used for both anomaly detection and
diagnosing steady-state problems. Retro [10] is a resource management frame-
work for multi-tenant systems that collects end-to-end resource consumption in-
formation. Retro enforces resource management policies even in common layers
such as storage that might traditionally lack the necessary context for attributing
executions to tenants. Pivot Tracing [11] is a monitoring tool that enables users
to correlate statistics generated from potentially multiple points along an end-to-
end execution. Prior to Pivot Tracing, it was typically difficult or impossible to
correlate statistics across different applications, because applications do not share
context with each other to make correlations.

Causal metadata propagation is a fundamental component used by X-Trace,
Retro, Pivot Tracing, and several other systems in both research and academia |2,
4, 5, 12]. Causal metadata propagation is a white box instrumentation strategy
whereby metadata is carried alongside requests as they execute. For example, Retro
propagates an 8-byte tenant ID alongside each request as it traverses application
layers and machines. Causal metadata propagation requires up-front developer
effort to instrument systems, by changing their source code to, for example, pass
metadata across thread boundaries, or include metadata within remote procedure
calls (RPCs).

In theory, each system should only need to be instrumented once, because its
execution boundaries will be the same regardless of the tracing application being
used. However, all existing tracing applications today tightly couple their applica-
tionlogic, their data formats, and their developer APIs for system instrumentation.
As aresult, one tracing application today cannot reuse the system instrumentation
of another tracing application, despite the fact that the developer efforts and in-
strumentation points are identical. This presents a significant barrier to adoption
due to the additional developer efforts required to deploy each additional tracing

application.

In this report, we address this issue with a general model for causal metadata
propagation, the baggage model, which decouples the data format and the prop-
agation rules from the end-to-end tracing applications. With the baggage model,
system instrumentation is a one-time cost incurred by developers. Tracing appli-
cations are deployed as plugins to the baggage model, which re-use the same un-
derlying metadata propagation. Baggage enables multiple tracing applications to
coexist and share the same underlying metadata propagation and system instru-
mentation. New tracing applications can be deployed in the system with negligible
cost, as no additional developer instrumentation effort is required.

This rest of this report proceeds as follows. In §2 we outline the challenges of
instrumenting systems today and demonstrate by an example of how instrumen-
tation is incompatible between different tracing applications. In §3 we detail our
proposed general baggage model that addresses these challenges and enables trac-
ing applications to share a common metadata propagation layer. §4 details how we
convert X-Trace, Retro, and Pivot Tracing to be baggage plugins, and §5 outlines
a new tracing application called CPath, which measures critical path latencies and
calculates hypothetical speedups. Finally, in §6 we discuss several practical con-

straints that we encountered, and challenges for future work.

Background & Motivations

In this section, we give an overview of two distributed system debugging tools,
X-Trace and Retro, which are built based on end-to-end metadata propagation.
We show the similarities between them with an example, where we go through a
developer’s experience of using the tools.

The graph which shows the activities during an execution is called an execution
graph. Traditionally, developers use logging to figure out the activities of programs.
However, even on the same machine, the log messages from different threads would
interleave when they come concurrently, which makes debugging hard, let alone
the hardness of matching the logs generated on different machines. In contrast,
the execution graph can intuitively show developers and operators about what the
system does during the execution. X-Trace obtains the execution graph by propa-
gating metadata to keep the causal relation between the log messages, which are

called events in X-Trace. Therefore, the concurrent log messages can be distin-

guished by X-Trace and shown with their different threads. If a developer wants
to use X-Trace, some modifications are necessary to be made to the application’s
source code.

When the system starts serving a request, the developer should call the follow-
ing function provided by X-Trace to generate an 8-byte task ID to uniquely identify
the request and store into a thread local variable, and all the events generated by
this request will contain this task ID so that X-Trace can collect all the events as-

sociated to this request.

XTrace.startTask () ;
As most non-trivial systems are not single-threaded, a request’s execution is likely
to create new threads or do asynchronous operations by making RPC calls or en-
queuing callbacks to a thread pool. In these cases, developers must copy over the
task ID or include it in the asynchronous requests so that the new threads created

have the task ID. For example, to propagate the task ID to another thread, a devel-
oper can propagate the task ID by calling

XTraceContext.getThreadContext () ;
to get the metadata from the thread local variable, copying or carrying it to the new
thread, and loading into the new thread by calling

XTraceContext.setThreadContext (...);

The developer can log some events for debug purposes, for example
XTrace.log("User Logged In");

In the end, the developer wants to link the threads together after they join, so

events should be recorded from the joining thread by calling

report = XTrace.createReport();

report.addParent (otherContext) ;

In another aspect, the systems shared by multiple tenants have the difficulties in
performance guarantees and isolation, since the tenants are sharing the resources

not only within a process but also across processes and machines. The traditional

resource management mechanisms cannot work in this case. Retro is created to
audit and control the resource usage along the execution of a request.

Now, if the developer wants to add Retro for multi-tenant resource manage-
ment, the developer should set the tenant ID to uniquely identify the tenant by

calling

Retro.setTenant () ;

Similar to X-Trace, Retro must guarantee that the tenant ID is available through-
out the execution of this request so that all the resource consumptions are recorded
by the system based on the tenant ID. Likewise, this information should be copied
to the new threads or carried with the callbacks and RPC calls. Appropriate func-
tion calls by the developer in the system are necessary.

Noticeably, X-Trace and Retro focus on different problems, where X-Trace does
not care about Retro’s resource attribution, while Retro does not care about X-
Trace’s log API. However, both systems need to make some piece of data available
throughout a request’s execution as the request traverses from machines to ma-
chines, processes to processes, applications to applications. They both need mod-
ifications on the application’s source code in order to do such metadata propaga-
tion, and such functionality is hard to be implemented correctly, but their prop-
agation parts are highly tied to the particular systems and cannot be reused for
different systems. Namely, if a developer wants to use both X-Trace and Retro,
this person would have to duplicate the effort required by adding metadata prop-
agation.

Ideally, we would like to remove this redundancy and avoid the duplicate work
by reusing the metadata propagation, since the real work this component does is
to propagate information along with a request’s execution. However, the metadata
used in the current systems is not designed for reuse by other tracing applications.
The metadata has inflexibly fixed formats, and some of the formats are fixed sized,
which means new systems cannot extend the metadata. As a result, each new sys-
tem requires new instrumentation with its own metadata format. In the previous

work [7, 10, 11], such duplicate efforts have been identified as the main barrier to

entry for these tracing applications, and a general extensible reusable design for

metadata propagation is necessary for tracing applications.

General Baggage Model

3.1 GOALS

Our goal in this section is to allow developers to instrument their system only once
with metadata propagation for all the different end-to-end tracing applications.
The code for metadata propagation is called instrumentation module, and unlike
previous systems, we want a flexible extensible metadata format that can be shared.
Instead of a fixed definition with, for example, a fixed length of data, we would like
to have a dynamic metadata container.

To allow different tracing systems to utilize the same instrumentation module,
the metadata container should be able to host any type of data and should isolate
the metadata from different tracing systems. For example, the task ID used by X-
Trace should, by no means, affect the tenant ID used by Retro. In addition, the

costs of the data representation conversions for the container should be relatively

‘ Tracing Applications (Plugins)

get; add; remove; has; replace; ...
- ‘ pre-merge; post-merge; pre-split; ...

3‘ General Baggage Layer :
: merge; split

General Tracing Framework

il serialize; deserialize
| Causal Instrumentation Layer |

Figure 3.2.1: General tracing framework is built up with layers, where bag-
gage sits as the interface to the tracing applications.

cheap. We use the term baggage to refer to our proposed dynamic metadata con-
tainer.

Different applications can use our baggage as they previously did with their own
metadata. For example, X-Trace had a method getTaskId to retrieve the task ID.
Instead of such direct access to the variables, X-Trace would now look up some key
in the generic baggage. Similarly, instead of XTraceContext . getThreadContext ()
andRetro.getTenantId (), now there would onlybe one call: Baggage . get ().

3.2 DESIGN

Based on the layered model by Fonseca [6], we propose a layered design as shown
in Figure 3.2.1 where tracing applications are built atop the General Baggage Layer
over the Causal Instrumentation Layer. We call these two layers general tracing
framework, and the tracing applications that use this framework to propagate the
tracing data is called tracing plugins. We call the systems that are being instru-
mented host systems, since they host the instrumentation module on the instru-

mentation layer.

3.2.1 CAUSAL INSTRUMENTATION LAYER

The instrumentation layer is the base layer of the general tracing framework to han-
dle the logic of propagating metadata. This layer does not access the contents of

the metadata, but simply specifies where the data needs to be propagated. Neces-

10

sary function calls to this layer should be added to the host systems that are being
instrumented.

The instrumentation layer only captures the propagation rules with the APIs
provided by the baggage layer. To cross the boundary, the layer needs to use the
serialization APIs (serialize and deserialize); to hand over the metadata
along thread join and fork, the layer needs the baggage manipulation APIs (merge
and split).

3.2.2 GENERAL BAGGAGE LAYER

The baggage layer is the interface between the causal instrumentation layer and the
tracing applications. The baggage on this layer implements serializations and the
baggage manipulation APIs to the lower layer, while it also exposes to the higher
layer the data access APIs (get, set, etc.) and the event hooks related to baggage
manipulations for different split/merge requirements by different tracing plugins.
Therefore, the tracing plugins sitting on the higher layer have access to their data
stored in the baggage and can register handlers on the event hooks.

An isolation of the data access between tracing plugins are necessary to avoid
naming conflicts of the field keys. Although we do not fully address in this design,
such isolation can also prevent a buggy tracing plugin from breaking other plugins
and help on the security concerns aroused by the security auditing tracing appli-

cations built atop the causal metadata propagation.

3.2.2.1 NAMESPACES

Namespaces provide the logical separation of data between different tracing plu-
gins. Each tracing plugin stores its metadata within its own namespace. For ex-
ample, X-Trace would use the “XTrace” namespace, while Retro would use the
“Retro” namespace. Therefore, different tracing applications can then share the
same tracing infrastructure without interfering each other, where baggage is passed
through the host system. Each tracing application should define their own unique

namespaces and should only have access to their own namespaces.

11

3.2.2.2 KEY-VALUES

In each namespace, a tracing application can define multiple slots to store the nec-
essary information. The slots are identified by the keys, while the values are stored
as sets that belong to the corresponding slots. When multiple baggage instances
merge, by default, the new value set of a resulting slot is the union of the corre-
sponding value sets from the parent baggage instances. Meanwhile, by default, a
baggage instance splits into two identical baggage copies for different threads to
propagate.

For example, in the case where we want to express IDs, all the IDs show up in
the merged baggage for the plugin to process whenever it gets them, and if an ID
does not change in branched baggage, the merged baggage will only include the

same ID once to keep its size small.

3.2.2.3 SPLIT AND MERGE

As a metadata container, baggage would branch and merge during instrumenta-
tion along with thread fork and join. These operations are challenging, because a
general model really has no idea about what to do. For example, if we have two bag-
gage instances {x = 1} and {x = 2}, the possible merge output could be {x = 1},
{x =2}, {x = 3}, or {x = 1,2} depending on what we want to do with it. More-
over, let’s say we are counting something and get {x = 10} at some point. If the
baggage branches here what should the outcome baggage instances be? A simple
duplicate might cause the count doubled to {x = 20} at the merge point, while
both sides might all need the result from previous counting.

Hence, different tracing applications have different requirements for split and
merge. To be general, baggage must be able to support them all. For a particular
attribute, all distinct values from the merged baggage instances should be kept as
a minimum requirement. Tracing applications can implement their own rules and
do their own fine tuning before and after the default split and merge provided by

the general model.

12

post-split pre-merge

pre-split ! | post-merge

32 I Baggage Merge

Figure 3.2.2: Events are triggered at the event hooks throughout baggage
manipulations.

Baggage Split

3.2.2.4 EVENT HOOKS

Tracing plugins might have their own rules for baggage manipulations, especially
for baggage merge. Although the default split and merge enable us to lazily resolve
baggage merge, some applications might wish to eagerly operate the rules for split
and merge. A tracing plugin can register event handlers to the corresponding event
hooks on the baggage (Figure 3.2.2). Handlers are fed with the sub-baggage under
the plugin’s namespaces, and the tracing applications should not pose any assump-

tion on the order in which the handlers attached by different plugins would run.

« pre-split(B): a pre-processing on the baggage before the default split-
ting

. post-split(B,, 3,): a post-processing on the baggage after the default
splitting

. pre-merge(B3,, BB,): a pre-processing on the parent baggage instances be-

fore the default merging operation

. post-merge(B): a post-processing on the baggage given by the default

merging operation

13

f "Monkey"
"Animal" "Dog"

M Tracing App 1| Bi < "Fruit"

B |
Tracing App n@

Namespace (set) Key-Values (Multimap)

Figure 3.3.1: Baggage is implemented with multiple levels.

3.3 IMPLEMENTATION

Asshownin Figure 3.3.1, baggage is implemented with Set and Google Guava Mul-
timap [1], where Set is for the namespaces and Google Guava Multimap is for the
key-values maps. Keys and values are represented by ByteString, an immutable
byte-array provided by Google Guava, since common data types can be serialized
to and deserialized from ByteString by Google Protocol Buffers [3] with a rela-
tively low cost due to its lazy serialization feature. Meanwhile, we also use Protocol
Buffers to deal with the serializations of the baggage when it goes across the net-
work or other boundaries.

Figure 3.3.2 lists the Protocol Buffers message for the serialized representation
of baggage. BaggageMessage is the main baggage object, and contains zero or
more NamespaceData objects. NamespaceData contains the data for one names-
pace. It has its namespace key (eg. “XTrace”), stored as bytes, and zero or more
BagData objects. Each BagData object has a key, and zero or more values. The
application-level implementation takes the responsibility for the checking such
as pruning BagData with zero values, pruning NamespaceData with zero bags,
merging BagData with the same key, and merging NamespaceData with the
same key.

Here are the APIs exposed to the instrumentation layer by the baggage:

14

package baggage;
option java_package = "edu.brown.cs.systems.baggage";
message BaggageMessage {
/% Mapping of key to several wvalues */
message BagData {
required bytes key = 1;
repeated bytes value = 2;
X
/% Mapping of a namespace to a BagData */
message NamespaceData {
required bytes key = 1;
repeated BagData bag = 2;
X

repeated NamespaceData namespace = 1;

Figure 3.3.2: The description of the Protocol Buffers Message for Baggage
Serialization

. serialize(B) — byteString

deserialize(byteString) — B

. split(B) — (B,,B,)

merge(B,,B,) — B

Here are the APIs exposed to the plugins, which can only access their own names-

paces:
. keys()
- get(key)
+ has(key, value)
. add(key, value)
. replace(key,valueSet)

. remove(key)

15

« Event Hooks: pre-split, post-split, pre-merge, post-merge

In summary, within the general framework, the lower instrumentation layer
calls merge and split APIs respectively when threads join and fork, and it uses
the serialization APIs provided by the baggage. A tracing application can register
handlers with the baggage to implement its own metadata splitting rule and merg-
ing rule.

The performance test of our baggage implementation is shown in Table 3.3.1,
and some of them have average CPU time larger than the average world time,
which are the measurement errors due to the short time period between reading

timestamps from the two sources.

16

S6°Sc€ogoot gt €g1L10T 0000T sanjeA oot *@on o1 *moummmwﬁmc OI ©9ZTITeTJIsessp
g6°g€9SSor 1¢26v1€11 00001 sanjea oot *@on or1 *mwummmoﬁmc oI 9ZTTeTIos
89°QLSESL TL'QTLOLL 00001 sanjeA oot mkum o1, sacedsawreu o1 111ds
86°767T T1°967 0000000T sanpea ooeTdex
(430842 S9:6701 000000T sy mau ooetrdax
og'tTglbet 08'TISISTI 0000T so[qeIoN ooeTdex
totlt TO'TLT 000000T aoedsoureu sures ‘s£9y 1oUnISIp aAOWSI
15 1SS €o'1SS 000001 sooedsoureu sAOWSI + SA3Y JoUTSTP aAOWD I
86°00665 £€:58L6S oor1 son[ea JuIolsIp , 0007 utol
99°€90SS 78'€66¥%S 0000T son[eA oot w\ﬁvﬂ o1 sasedsowreu u_Eo_m% 4 utol
g9¢-otortr 97T'96L¢TT 000T SON[eA 000T , SA3Y u.Eo.Hm% T utol
oLtk Lo'zS 0000000T Aoy aures {sanfeajo jos e 1838
St ¢t TS €61 0000000T Aoy suures ‘onyea oﬁmEm 1038
to¥ ¢ 10'¥¢€ 00000001 saoedsawreu js1x9-uoU 188
ot¥g T1'9¢€T 0000000T @Aux ISIX9-uou 103
78°87T 0S'gte 00000T saoedsaureu Jounsip 103
Lg 61 6L'6%1 0000001 aoedsoureu sures ‘s£9y 1ounSIp 103
(4334 9L tY 0000000T Ao sures {sanfea payeorydnp ppe
£€0°698 8E'QITI 000001 %ux awres {saneA JounsIp Ppe
L9rogY 1008t 00000T sooedsawreu Jounsip ppe
to'oo¢ €Y ESL 000000T soedsoureu aures s£9y 1ounsIp ppe
(su)suny, NgD (su)awiy, Bay juno)

uorejuswa|dw| s3e33eq uno Jo 1s9] SduUBWIOMS{ T'EE dqel

17

Existing Applications

In this section, we discuss about three existing tracing applications, and describe
how we modified them to be tracing plugins utilizing the baggage model. For each
tracing application, we give a brief description of the application as well as the

metadata it uses, followed by our modifications.

4.1 X-TRACE

It is hard for developers to diagnose on distributed systems due to its crossing-
boundary nature. X-Trace [7] generates execution graphs based on metadata prop-
agation. Events are created when the developerslog anything or threadsjoin. These
events are collected and organized in the causal order by X-Trace for developers
and operators to intuitively understand the behaviors of the applications for de-

bugging and monitoring purposes.

18

(O} A}

‘ {B}
2

Figure 4.1.1: Report A’s parent is Report O; Report C has two parents, Re-
port A and Report B; Report D has the only parent of Report C.

4.1.1 DESIGN

X-Trace provides an API called 1ogEvent, which creates an event object and re-
ports the event to X-Trace’s reporting server. Each event has a randomly generated
8-byte ID. Each event also contains the IDs of all the immediate parent events that
causally precede it. In order to know the parent events, X-Trace propagates the
event ID of the most recently logged event. Events also include the task ID of the
current request, which is also propagated along the request’s execution. With the
propagated parent event IDs, each event knows its immediate causal predecessors,
which enables X-Trace to reconstruct the full execution graph of a request after re-
ceiving all of the events, as shown in Figure 4.1.1.

To summarize, each report includes the following fields:

o Task ID: a unique request identifier to distinguish it from other requests

concurrently running in the guest application;
« Event ID: a unique identifier for this report;
o Parent Event IDs: identifiers for its causally parent reports;
« Timestamp; and

« Source information for the report including the hostname, the process ID,
the process name, the thread ID, the thread name, the source code location,

and the function call name where the report is generated.

19

The task ID is added to the metadata at the beginning of the execution for the
task, while the parent event IDs are collected when the execution routines merge.
All the other fields can either be generated or collected at the location where the
event gets triggered.

X-Trace’s metadata propagation fits the baggage model perfectly. In baggage,
when multiple baggage instances merge, the same values in the same field are only
kept as one copy, while different values in the same fields are all kept. Meanwhile,
in X-Trace, task ID is not changed for the same request during the execution, so
the Task ID field should be always the same single value. The event IDs from the
parent baggage instances are merged automatically into a set, which contains all
the parent event IDs. X-Trace only needs to read the set out, put to the Parent
Event IDs field.

4.1.2 IMPLEMENTATION

Previously, X-Trace metadata was a fixed specification:
(Flags, TaskID, ParentID, EventID, EdgeType, DestInfo, Options)

where only Flags and EventID are necessary to the execution graph reconstruc-
tion, and ParentID is the legacy field that denotes the immediate causally pre-
ceding event, which can actually be obtained during metadata propagation from
EventID from the previous metadata.

As aresult of the fixed size, the event IDs from the parent events were required
to be reported at time threads join, because they could not be both carried by this
metadata structure, which could only store one event ID. This added overheads.

In the new implementation with the general framework, X-Trace baggage con-
tains task ID and event ID, and X-Trace does not register any baggage event han-

dler. It creates a X-Trace event report with the following algorithm.

1: function XTRACE-REPORT([3, otherInfo)
2: Define areport R
3: if B.TaskID is multivalued then

20

4: raise TaskIdLeakage

5 else

6: newEventId < EventIdGenerator|()

7: R.TaskID < B.TaskID

8: R.ParentEventIDs < B.EventID > EventID can be

multivalued after baggage merge

9: R.EventID < newEventId
10: R.otherInfo ¢<— otherInfo
11: B.EventID < newEventId © Update the baggage with the new
Event ID
12: return R
13: end if

14: end function

The new baggage does not have a fixed size, so the event IDs can be kept as multi-
valued and the reporting can be postponed, while due to the way we serialize the

baggage, the size of metadata is increased.

4.2 RETRO

Retro [10] is a multi-tenant resource management system that monitors the re-
source usage by tenants and molds their usage. It has an application-level instru-
mentation to record resource usage whenever resource API calls are made. For
example, if a disk read API call is made, Retro records the resource usage and at-
tributes it to the tenant making the disk read API call. To do this, a tenant identifier
must be propagated alongside a request’s execution. This propagation is done by

a similar process of the metadata propagation in X-Trace.

4.2.1 DESIGN

In Retro, an execution is associated to some tenant ID, which identifies the tenant

that is responsible to these activities. This identifier is added to the metadata at the

21

beginning of each execution and identifies the tenant at all the resource reporting
points and the control points.

In baggage model, the tenant ID can be stored into a field for the propagation
layer to propagate along the execution, and it should be set at the beginning of
executions and removed in the end. Retro has access to it at any time during each
execution, and tenant IDs should always be the same when threads merge, since

by definition the executions for different tenants should not join.

4.2.2 IMPLEMENTATION

Retro baggage has a TenantID field, and it does not register any baggage event
handler. When Retro retrieves Tenant ID from the baggage, it checksifthe TenantID
is single-valued. If multiple values show up in the field, executions for different ten-

ant might join, which must be due to potential propagation layer bugs.

4.3 Prvor TRACING

Operators often need to correlate the statistics to do anomaly detections and root
cause analysis, while such kind of work is hard since the data points they get from
different nodes are not necessary aligned. Pivot Tracing [11] allows the operators
to correlate the statistics generated at different points along an end-to-end execu-

tion based on causal metadata propagation.

4.3.1 DESIGN

Pivot Tracing stores the intermediate results under the field for each query in the
baggage. The results are grouped into tuple containers and get combined based on
the query logic. At any point, the data stored in the baggage has an active instance
and multiple inactive instances due to versioning, where the active one contains
the result for the current branch of the execution. Their contents get merged when

the execution rejoins.

22

4.3.2 IMPLEMENTATION

Pivot Tracing baggage uses the field name as the query identifier, and it has one
namespace for the active instances and one for the inactive instances. Each in-
stance is serialized and stored as a value of the corresponding field. It registers
handlers to pre-split and post-merge events, where in the pre-split han-
dler, the active instances are moved into the inactive namespace so that the active
instance for each field is added into its inactive counterpart, and the active names-
pace is cleared for the new branch. For post-merge, the active instances from

both sides are merged by merging the tuples represented by the instances.

23

Critical Path Analysis (CPath)

In this section, we describe a new tracing plugin called CPath, which is imple-

mented based on the general tracing framework with the baggage model.

5.1 MOTIVATION

Good performance is a major goal people are striving for. Itis hard for performance
engineers to figure out the slow-down factors, and it is even harder if multiple ser-
vices get involved due to the large involvement of asynchrony and network cross-
ing. The engineers need to set the goals for different teams which maintain the
services in order to improve the overall product performance. However, it is likely
that the goal makers are not confident if the goals they set could actually speedup
the product as expected. It would be very helpful if they have a tool to tell them

what modules might slow down their products and how much their optimization

24

plans could work out.

In an execution graph, the overall latency of the execution is the longest path
from the start point to the end point, which is called the critical path. Recall that
in the concept of end-to-end tracing, metadata is propagated along the actual ex-
ecution of the host system, in the same way latency gets accumulated. If we put a
“timer” into the metadata to propagate along the execution while the “timer” gets
paused at certain points where we are not interested in and resumed afterwards, we
should be able to measure the critical latency as well as the details along the way
the latency gets accumulated. These details should help discover the dominants of
the overall latency.

When performance engineers have the critical path in hand, they can construct
potential plans for performance optimization. Such plans can then be loaded into
latency measurement to simulate the impacts on the overall latency. With the sim-
ulation results, the engineers can improve their plans to make the performance

goals more meaningful and the expectations more realistic.

5.2 DESIGN

Theoretically, a critical path is the productively' longest path from the start point
to the end point in the execution graph of a request, and the critical path latency
is the productive CPU time on this path. At any node v in this graph, we can rep-
resent the longest path from the start point by d,, which is the critical path length
of this partial execution. As proposed by Hollingsworth[8], for any node u and its

preceding node set P,, we have

d, = max(d, +1,,,)

veEP,

where I,_,, is the edge length from v to u.

So, we store the timestamp at the start of each run, and we can track the la-

"The edge lengths in the execution graph are the productive CPU time, while the non-
productive counterpart is excluded.

25

pre-merge~ post-merge

g

pause o o resume

Productive

H /
hread 2 O--7 ‘ ————— Non-Productive

Figure 5.2.1: When a thread joins another one, each of them pauses their
experiments, and they get merged and resumed.

tency by subtracting the timestamp stored in baggage with timestamp at the end
point. To eliminate the non-productive CPU time [9] spent on overheads on the
operation system or the tracing system, we break such latency measurement into
small productive segments. The latency measurement (or the “timer”) is paused
before any non-productive operations to checkout the latency from the last times-
tamp where it starts and is resumed afterwards to timestamp the new start point.
When threads join, we should take the baggage which has the largest intermediate
latency, since the other branch would wait if this branch takes longer time.

The process of a thread joining another is as shown in Figure 5.2.1, where Thread
1 and Thread 2 both pause their measurements to checkout the intermediate la-
tencies accumulated so far when they initiate a thread join operation, and the bag-
gage instances from both sides are fed to the pre-merge handlers, merged by the
lazy merge operation in the general model, and fed to the post-merge handlers,
and then the measurement resumes by updating the timestamp inside the baggage.
Other operations are measured in the same way.

An example measurement is shown in Figure 5.2.2, where the metadata along
the highlighted path is collected in the end to show the critical path. At the merge
point d, the lower branch is taken since its intermediate latency of 11ms is larger,
while at e, the lower one is taken and at f the lower one is taken. When the baggage
reaches the end point, the critical path latency measured is 28ms.

Therefore, the critical path latency is calculated while the host system is running.
We also keep track with the critical path information with d, in the baggage that is

handed over throughout the system so that we can reconstruct the path.

26

T oo -on- e END |
/ ‘ . 3ms 1lms - ,
/
c I
/ ‘" 5ms 2ms !
, _
! e', Productive
Sms g/ 15ms roductiv
|START » - D2 . Non-Productive

Figure 5.2.2: Each time baggage merges, the one with the largest latency
from the start point is taken to be propagated. A critical path is then ob-
tained in the baggage collected at the end point.

Although the critical path can be calculated offline by collecting all the events
with tracing systems like X-Trace, an execution graph might have too many events
to be scalable. In contrast, with the online algorithm described above, we only
need to collect the baggage at the nodes whose partial critical paths are interesting
to us. The overall critical path is retrieved from the baggage from the verylast node

in the execution graph, where the execution terminates.

5.2.1 SLACK AND ToPr N CRITICAL PATHS

The critical path shows the worst case of the performance optimization and im-
plies the possible modules to be considered for speedup, but the developers would
be also interested in the upper bound of the optimization on the critical path -
namely, how much latency can be taken out before the critical path shift to a sub-
critical one in the former measurement. Hollingsworth [9] has proposed the met-
ric of slack to characteristic the lower bound of possible improvement on a proce-
dure. This metric is helpful for developers to figure out where which part of the
program can be optimized.

Surprisingly, it is not very hard to adapt the CPath algorithm to get additional
information. With CPath, we can instrument the top N critical paths with minor
modifications, and figure out the slack in the much smaller execution graph that

consists of these top critical paths.

27

5.2.2 HYPOTHETICAL SPEEDUPS

Meanwhile, it would be great if we could know how much an optimization plan can
work out for the overall performance (saying the overall running latency). The
speedup goals in the optimization plans should be verified to make sure feasible
and helpful to the global speedup before they are assigned to the development
teams.

Since CPath instrumentation is done in real-time when requests are being served,
we can simulate the impacts on the critical path and other measurements of speed-
ing up different parts of the execution by discounting the latency measured within
the parts that are planed to speed up, which is so-called the hypothetical speedup.

A measurement with such kind of hypothetical speedups is called an experiment,
while a baseline experiment is a trivial case which does not do any hypothetical
speedup. An experiment comes with the designated speedup parts, the hypotheti-
cal speedup zone, and a latency discount factor to describe the speedup goals. Hav-
ing multiple experiments set up would help observe the difference between differ-

ent speedup plans in terms of the critical path latency.

5.2.3 PrAcCTICAL CONSTRAINTS

This measurement requires necessary bookkeeping in baggage. If the host system
is built atop multiple subsystems, we would need all the subsystems to have CPath
running; otherwise, if a subsystem that lacks of CPath does not resume the latency
measurement, the overall critical path would ignore the time spent within this sub-
system.

We are also assuming the clock drift on each machine is so subtle that in the
tiny time period of a measurement segment it does not affect the measurement.
Note that the clocks on different machines are not necessary to be synchronized.
Network crossing is non-productive, and we only take the difference of the times-
tamps taken on the same machines when calculating incremental productive CPU

time.

28

Experiment Note S \
baseline \\\\

timestamp:
2016/5/5
12:47:36.274 UTC

state: RUNNING

baseline |XXXXX ’ latency: 1,732 ns

experimentl XXXX}()
experiment2

stackCount: 0

discount: 1.0

Figure 5.3.1: The baggage in CPath uses the key-values pairs for experi-
ments, where each key refers to a critical path experiment and values are the
serialized experiment metadata possibly from the threads it merged from.

5.3 IMPLEMENTATION

5.3.1 DBAGGAGE

For critical path instrumentation, we need the following metadata:

o Timestamp: the timestamp of the most recent baggage update, where the

latency might be accumulated
« State: the state which indicates if the experiment is paused or resumed

« Latency: the accumulated latency of the critical path from the execution

begin to the current point

« Stack-Count: the count of how many times the current thread has entered

the speedup zone

« Discount: the discount factor which should apply within the hypothetical

speedup zone

29

RUNNING “\\\\gigse()
daemonize/()
res!il?r\\‘_

DAEMON PAUSED

(any) daemonize ()

Figure 5.3.2: The experiment state pauses or resumes the latency measure-
ment.

A critical path experiment is represented by these fields, and the structure that
organizes them is called an Experiment Note, whose serialization is stored in the
critical path namespace of the baggage under an experiment key (as shown in Fig-
ure 5.3.1). A critical path baggage can contain multiple experiments for possible
speed up plans, among which a baseline experiment does the measurement with-

out any hypothesis.

StaTEs The state of a critical path experiment can be RUNNING, PAUSED, Or DAE-
MON, where DAEMON is a special pausing state introduced in subsubsection §.3.2.4
to avoid the effects from daemon threads. Their transition diagram is shown in Fig-

ure 5.3.2.

START EXPERIMENT To define an experiment, we only need to add the necessary
metadata to baggage. The experiments should be defined when a request execu-
tion starts, and the baseline experiment is defined by default. Predefined experi-
ments can be started by static injection with Aspect], while other experiments can

be dynamically declared with Dynamic Instrumentation.

5.3.2 HANDLERS

As shown in Figure §.2.1, the latency measurement is closely tied to thread activi-
ties, which are not supported by the baggage layer but the propagation layer. CPath

injects propagation handlers with Aspect] and Dynamic Instrumentation to pause

30

timestamp:
2016/5/5
12:47:36.274 UTC

baseline

timestamp:
2016/5/5
12:47:36.274 UTC

state: PAUSED

post—merge (B)> state: PAUSED

latency: 1,500 ns

latency: 1,273 ns
stackCount: 0 stackCount: 0

discount: 1.0 discount: 1.0

Figure 5.3.3: The experiment note with the largest latency is taken at
post-merge.

and resume the measurement. Meanwhile, CPath implements its baggage merg-
ing rule with a post-merge event handler based on the general baggage model

after a general baggage merge, which merges the multimaps in the baggage.

5.3.2.1 BAGGAGE HANDLER

POST-MERGE HANDLER For each experiment, this handler collapses the exper-
iment notes by taking the one with the largest latency after a baggage merge (Fig-
ure 5.3.3).

1: function POST-MERGE(]3)

2: t < CurrentTime
3: forB; € Bdo > for each experiment B,
4 Dimax argmax, p (bij.latency)
s if bimax is in DAEMON but Jb;; € B; is not DAEMON then
6: Dimax.State <— PAUSED D> exit DAEMON state
7: end if
8: B; < {bimax} > only keep one experiment note
9: end for

10: return 3

11: end function

31

5.3.2.2 STATICALLY INJECTED HANDLERS

The following handlers can be statically injected to the metadata propagation layer
with Aspect].

Pause Eachtimebefore the host system goes for non-productive overheads (such
as forking or joining threads), the critical path measurement of each experiment in-
side the baggage should be paused to avoid measuring non-productive CPU time,
where the 1atency field should be added with the latency accumulated since last

resume, and the experiment state should be transitioned to PAUSED.

1: function PAUSE([3)

2: t < CurrentTime
3: for B, € Bdo > for each experiment B;
4 for b; € B;do > for each experiment note b;;
5 At <t — b;.timestamp
6: if b;.state = RUNNING then
7: if b;.stackCount > o then > in hypothetical speedup
zone
8: bj.latency < b;.latency + b;.discount X At
9: else > outside hypothetical speedup zone
10: bj.latency < b;.latency + At
11: end if
12: bj.timestamp <t
13: bj.state < PAUSED
14: end if
15: end for
16: end for
17: return BB

18: end function

32

RESUME When the host system finishes its non-productive activity, the mea-
surement should be resumed by updating the t imestamp field and transitioning

the experiment state to RUNNING.

1: function RESUME(]3)

2: t < CurrentTime
3: for B, € Bdo > for each experiment B;
4 for b; € B;do > for each experiment note b;;
5 if b;.state = PAUSED then
6: bj.timestamp < ¢t
7 bj.state < RUNNING
8: end if
9: end for
10: end for
11: return 3

12: end function

5.3.2.3 DYNAMICALLY INJECTED HANDLERS

The following handlers can be injected with Dynamic Instrumentation for the hy-
pothetical speedups while the host system is running. They are adjustable at run-
time and can be injected based on pattern matching with the source code of the
host system. For the time being, we only support hypothetical speedups on single
functions. The enterFunc can be injected to the beginning of a selected func-
tion for an experiment where the function should be hypothetically optimized.
The exitFunc is injected to the end of the corresponding function. These func-
tions maintain a counter that represents the number of times the selected function

shows up in the current callstack.

ENTERFUNC

1: function ENTERFUNC(B3, ExperimentID)

2 B < rause(B) > start doing non-productive work

33

7t
8:

take B; € I3 such thati = ExperimentID
for b; € B;do

bj.stackCount < b;.stackCount +1
end for
B < resumE(B)

return BB

9: end function

ExiTFunc

1: function xiTFuNc(B, ExperimentID)

2

3:

4:

5:

6:

7:
8:

B < rause(B)
take B; € BB such thati = ExperimentID
for b; € B;do

b;.stackCount < b;.stackCount —1
end for
B < resuME(B)

return B3

o: end function

5.3.2.4 DAEMON THREAD DECLARATION

A thread might run as a daemon to periodically check the states of others to wait
for other threads. In this case, it does not make sense to count such waiting as
productive time; otherwise, the path passing through this thread would probably
become the critical path, while the daemon thread does not determine the running
time in the context of performance optimization. To avoid this issue, we allow

the developers to declare a DAEMON state for a thread, which lasts until the thread

merges into a non-daemon thread.

DAEMONIZE

1: function DAEMONIZE(D)

34

Table 5.3.1: CPath Performance

Count Avg. Time (ns)

start 1000000 446.3
pause/resume 1000000 876.3

2 B < rause(B) > pause the experiment to checkout new latency

3: for B, € Bdo

4 for b; € B;do

5 if b;.state 7# DAEMON then

6: bj.state <— DAEMON

7 end if

8: end for

9: end for

10: return 3

11: end function

5.3.3 PERFORMANCE CONSIDERATIONS

The performance of CPath operations is shown in Table 5.3.1, where the second
row is the average of both pause and resume. The Experiment Note needs fre-
quent modifications, so we implement the serialization by concatenating fields di-
rectly instead of Protocol Bufters, because Protocol Buffers seems not helpful in
terms of performance in the CPath scenario according to our comparisons.

The slowness of using Protocol Buffers might be due to the heavy usage of serial-
ization. To use lazy serialization, we should leverage the Protocol Buffers structure
instead ofloading all fields to our own objection and dumping them back to Proto-
col Buffers later. Meanwhile, the lazy serialization only helps reduce the overhead

of serialization, not the one of deserialization.

35

5.3.4 APPLICATIONS

We have instrumented HDFS, MapReduce, and Spark with CPath. However, their
pipelining processing seems to prevent the parallelism that is complicated enough
to use critical path analysis. In those architectures, the execution graphs are broken
into stages and the slow-down factors are generally obvious to find. We believe the
critical path analysis would be useful for the systems which have more complex

parallelisms, such as microservices.

36

Conclusions

In this report, we have proposed a general baggage model as a general metadata
container that can be used for different tracing applications. With this general
model, we are able to share the metadata propagation code by implementing trac-
ing applications as tracing plugins based on the general tracing framework. Such
reuse removes redundancy and saves the developers from the tricky part of adding
metadata propagation to their systems, which allows them to easily use different
tracing systems. We have modified for X-Trace, Retro, and Pivot-Tracing based on
our design.

With the general model, we have also proposed a new tracing application, CPath,
running as a tracing plugin atop the tracing framework to measure the running la-
tency information and verify potential optimization plans based on hypothetical
speedup. The application can help developers and operators to figure out the slow-

down factors and set up realistic optimization plans.

37

LESSONSLEARNT Our baggage implementation did not utilize the features such
as lazy serializations provided by the third-party packages, and the baggage can
have better performance with more careful implementation.

As for CPath, we found it is hard to analyze critical paths when the system being
instrumented has a heavy use of pipelining (eg. Hadoop) and buffering, since their
slow-down factors are obvious. Hadoop was not the best choice for critical path,
since its execution is broken into multiple stages due to synchronizations so that
the execution graph is never complex and the slow-down factors become obvious.
A more suitable case could be with the microservices architecture, where requests
go to different microservices with complicated parallelism. It is generally hard for
performance engineers to understand what is going on exactly within such kind
of architecture due to the number of microservices getting involved for a single
request, and an online automated tool like CPath would definitely help.

Meanwhile, critical path should not count non-productive CPU time, and this is
done by pausing and resuming measurements before and after the non-productive
work. However, if a pause or resume is missing, the measurement could get extra

latency in.

FuTurREWoORK We would like to have much more optimized baggage with lower
overhead presumably by utilizing lazy serialization and reducing the copying op-
erations by implementing copy-on-write, and we would like to evaluate the alter-
natives to Google Protocol Buffers to see if we can get better performance.

For CPath, we would like to verify our tracing application with the systems
which have more complicated parallelism. We also want to support more flexi-
ble definitions for the hypothetical speedup zone and figure out a way to improve

the measurement accuracy.

38

[1]

[2]

[3]

(4]
[s]

References

Guava: Google core libraries for Java.
https://github.com/google/guava.

Apache HTrace - a tracing framework for use with distributed systems.
https://htrace.incubator.apache.org/.

Protocol Bufters — Google’s data interchange format.
https://developers.google.com/protocol-buffers.

OpenZipkin - a distributed tracing system. https://zipkin.io/.

Anupam Chanda, Khaled Elmeleegy, Alan L Cox, and Willy Zwaenepoel.
Causeway: Operating system support for controlling and analyzing the
execution of distributed programs. In HotOS, 200s.

Rodrigo Fonseca and Jonathan Mace. We are losing track: a case for causal
metadata in distributed systems. 2015.

Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion
Stoica. X-Trace: A pervasive network tracing framework. In Proceedings of
the 4th USENIX conference on Networked systems design & implementation,
pages 20—20. USENIX Association, 2007.

[8] Jeffrey K Hollingsworth. An online computation of critical path profiling.

In Proceedings of the SIGMETRICS symposium on Parallel and distributed
tools, pages 11-20. ACM, 1996.

[9] Jeffrey K Hollingsworth and Barton P Miller. Slack: a new performance

metric for parallel programs. University of Maryland and University of
Wisconsin-Madison, Tech. Rep, 1994.

39

https://github.com/google/guava
https://htrace.incubator.apache.org/
https://developers.google.com/protocol-buffers
https://zipkin.io/

[10] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi.
Retro: Targeted resource management in multi-tenant distributed systems.
In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 5§89—-603, 2015.

[11] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot Tracing:
dynamic causal monitoring for distributed systems. In Proceedings of the
25th Symposium on Operating Systems Principles, pages 378-393. ACM,
2015.

[12] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure.
Technical report, Google, Inc., 2010. URL http:
//research.google.com/archive/papers/dapper-2010-1.pdf.

40

http://research.google.com/archive/papers/dapper-2010-1.pdf
http://research.google.com/archive/papers/dapper-2010-1.pdf

	Introduction
	Background & Motivations
	General Baggage Model
	Goals
	Design
	Implementation

	Existing Applications
	X-Trace
	Retro
	Pivot Tracing

	Critical Path Analysis (CPath)
	Motivation
	Design
	Implementation

	Conclusions
	References

