Developing an annotations system for the collaborative web
application MAGI (Mutation Annotation and Genome Interpretation)

John Shen
Advisor: Ben Raphael
Masters’ Report

1/6/2015
Section 1: Introduction

As genomic sequencing data from cancer samples becomes more available due to efforts such
as The Cancer Genome Atlas (TCGA), the need for visualization and collaboration tools to
make sense of genetic data also increases. MAGI (for Mutation Annotation and Genome
Interpretation) was created for the purpose of visualizing and sharing information on tumor
sequences’. MAGI provides preloaded, public cancer datasets from TCGA but also allows
users to load their own datasets. Another goal of MAGI is to allow users to annotate genetic
entities with literature references that may be helpful in sharing information. The final goal, on
the developer’s side, is to make MAGI easier to maintain, extend, and deploy.

While MAGI has met the first goal of combining and visualizing genomic datasets, it has been
difficult to implement references and annotations in a maintainable way. In this paper | describe
my approach and accomplished work to provide flexible annotation capabilities within MAGI,
including all basic creation, modification, viewing, and deletion operations, as well as user
provenance, and a structured interface. | outline a relational data model for mutations and
protein interactions that allows for multiple, extensible mutation types. In addition, |
implemented the pages within Django, a new web framework. Finally, | also discuss related
work on the operations portions of MAGI towards faster deployment and testing.

Section 2: Development Background and Approach
1. Previous Work

In order to understand our choice of frameworks we describe MAGI’s particular application
requirements. MAGI has two primary components; an interactive visualization application for

' Leiserson, M., Gramazio, C.C., Hu, J., Wu, H., Laidlaw, D.H., & Raphael, B.J. Nature Methods 12,
483-484 (2015)

http://www.nature.com/nmeth/journal/v12/n6/full/nmeth.3412.html#auth-6

large, mostly static datasets and a collaborative annotation platform for tagging and
cross-referencing genes, mutations, and protein interactions. In this paper, we focus on
reference and annotations that refer to genetic aberrations and protein interactions.

Client-side browser 1 PR
P l J
i / L

HTTP request HTML H HTTP request | HTML
e I >
| |
| |
| |
A I ! |
HTTP request HTML | HTTP request | | HTML |
Y | | |
| |
| |
| |

CLS
T |
| |
| |
Mongo Query Hocieent I I
| |
| |
| |
) | . |
Main server [Annotations server)
_ A,

Figure 1: Software stack diagram for previous (solid black) and proposed (dashed blue) MAGI. Red dashed indicates
connections that will be deleted. The proposed MAGI architecture uses two servers to handle samples and
annotations separately. Annotation queries initiated from the user occur through the annotations server; from the
MAGI web page they are SQL queries initiated by Express.js.

The previous version of MAGI was built with an ad-hoc set of web frameworks that were readily
available to developers. These included a visualization engine on the client side built in D3, a
back-end for storing tumor samples built in MongoDB, and a server written in Node.js (Figure 1).
While user queries that retrieved and created tumor samples containing a given gene were well
served, the frameworks were poorly suited user queries that acted upon annotations for reasons
we describe below.

https://github.com/raphael-group/magi

2. New Functional Requirements for Annotations

One goal was to extend MAGI’s abilities to researchers for managing annotations.
We now allow users to individually add and manage references and related, curated information
to as wide a variety of genetic mutations and protein interactions as possible. In detail, users
should be able to
e add a genetic aberration (of varying detail) and attach a literature reference that
discussed that aberration
e add an annotation to any reference to describe the reference’s content (w.r.t to a
particular mutation)
e view both curated and user-defined references (and attached annotations) that mention
a gene and mutation
approve the consensus annotation for a particular reference
specify a particular protein-protein (PPI) interaction and attach a literature reference to it
upvote or downvote a reference attached to a PPI
delete their own annotations and references but not those of others.

In addition, developers should be able to easily modify and attach new schemas to the existing
database (new types of mutations, new fields for a reference or annotation), and guarantee the
integrity and consistency of the extant database. This will in turn enhance the maintainability
and extensibility of the program.

3. Choosing a database designed for read-write transactions

In previous versions, MAGI used MongoDB, a document-based database, as its backend,
because static dataset samples lend themselves more to hashing views in a document-like
format. However, there are a few issues with this hashed representation (Figure 1). For
instance, not all the data for a given sample is stored within the sample; sample annotations are
kept within the dataset. Also, there is no index that relates annotations for a given gene or
mutation to samples that contain that mutation. This relationship can be easily captured by a
gene relation with an index in an SQL framework.

{ {
"_id" : Objectld("5634fee1b2a%b"), - "_id" : Objectld("5634feed1b2"), { "_id" : Objectld("557e5d6cf89"),
"dataset_id" : Objectld("5634fee1b2"), e "samples” : ["cancer” : "Breast invasive carcinoma”,
"mutations” : ["TCGA-OU-A5PI", ... "change" : null,
{ 1 "domain" : null,
"mutations” : ["sample_annotations™ : { "gene" : "PIK3R1", // reference
{ "TCGA-OU-A5PI" : { "mutation_class" : "snv",
"gene™ : "PIK3R1", "Gender" : "female”, "mutation_type" : null,
"type" : "del", "Survival : "NA", "support” : [
"elass™ : "ena™ "Current Status™ : "alive”, { # reference
} "Ethnicity” : "not hispanic or latino™, "comment” : null,
1 "Histological Type" : null "user_id" : “"5528365092b9d",
"name" : "PIK3R1" } "ref” : "test”
b }
} "title" : "BRCA", 1,
"name" : "TCGA-OU-ASPI" "summary" : { "references" : [
} "num_mutated genes” : 10457, {
"mutation_plot_data™ : { "source” : "Community",
"MENT" : { “pmid" : "test”,
"in_frame del" : 0, ... "upvotes” : [], # user id listv
} "downvotes” : []
} # summary informatien }
"most_mutated_genes" : [... | 1
"num_snvs" : 11644, }
"mosLmukﬂedﬁqeneﬁsefs" E: [],
}

Figure 2: MongoDB examples of an A) sample, B) dataset, and C) an annotation. One advantage is that summary
data for a dataset is hashed within the dataset document. However, we also note that sample data are distributed
between the sample document and dataset document (for sample annotations). Also, the data for an annotation for a
mutation and reference are completely unlinked to other documents; therefore lookups for related annotations and
mutations are less efficient.

We currently use both MongoDB for samples and datasets and PostgreSQL for annotations.
For annotations, we chose a relational data model over a document database model for two
reasons. First, write operations on annotations are more clearly expressed and require less
maintenance to establish consistency. In a document-based database such as Mongo above,
annotations would either need to be manually given an index, or otherwise replicated and
rewritten for each write and update. In database language, PostgreSQL supports the
transactions of adding, editing and removing annotations more simply than MongoDB.

Second, relational data models more naturally represent the relational nature of adding
annotations. In the long-term, implementing samples and datasets in PostgreSQL will provide
greater benefits in development and space savings that offset the performance benefits in
MongoDB. The new, proposed data model is described in section 3.1.

3. Choosing a web framework with modern features

In addition to a database, we also chose a web framework, Django, built atop Python, that
implements many of the commonplace web features needed in MAGI (Figure 1). The previous
iteration of MAGI uses the Express.js framework built on top of Node.js, in Javascript. On one
hand, Django and Node.js both follow the Model View Controller framework (MVC). In these

frameworks, the model describes the physical organization of data and resources within the
database, and the view describes the user’s interface to the data. The controller, which lies
between these two layers, determines the logic of the application; which resources are
retrieved, modified or displayed for a given page. As a note, Django refers to its framework as a
Model Template View (MTV) framework, where templates are the views of MVC and views are
the controllers.

On the other hand, Express.js and Django differ most in the availability of built-in web features.
Express.js supplies a rather flexible framework, without committing to specific databases or
templating systems. While this admits a powerful web application that can handle many
persistent users, the MAGI application most requires static retrieval and viewing of resources,
without persistent connections. Therefore, Express.js requires several additional layers of
specification, such as the need for maintaining client pools for databases, specifying custom
SQL commands (Figure 3A), or custom markup-language templating via Jade (Figure 3B), all
with relatively little benefit.

In contrast, Django provides several features by default, which we illustrate with MAGI in detail
below. lillustrate the model and its advantages in detail in section 3.2. Most of these features
are provided within the MTV framework by subclassing Django’s classes and using Django
scripts. Specifically, Django has its own object-relational model (ORM) that wraps database
objects within its own Python objects, as well as a templating language that sits over regular
HTML. Because of Django’s features, several otherwise difficult features are much simpler to
implement; these are further described in section 4. Overall, Django embodies the design
tradeoff of convention over configuration.

One additional benefit of Django is a built-in testing framework for models and controllers (views
in Django). While we do not yet implement tests at this level in Django, testing is important for
maintaining the correctness of the application. | have some demo tests within the original MAGI
repository written in Watir over Ruby: these are described within the original MAGI repository on
Github.

import sgl, pg;

aberrations = sql.define({
name: ‘annotations_mutation’,
columns: [
{name: "gene_id’. dataType: “varchar{30) . notWull: truel,
{name: "id", dataType: 'serial’. notMull: true}.
{name: "mutation_class’, dataType: “wvarchar(2g}’, notNull: true}
{name: “mutation_type', dataType: ‘warchar(35)}"},
{name: "Tocus'., dataType: 'integer’}.
{name: "new_amino_acid’, dataType: "varchar{30)'},
{name: ‘original_amino_acid’. dataType: “varchar(3o)'}....
]
i3]

function execute(guery, ch){
// gets a client from the client pool
pg.connect{constring. functionferr, client. done) {
if(err) return console.error(err);
guery = client.guery(query.toguery (0 .text,
guery.toQuery().values,
function(err. result) {
done(); // releases the client back to the pool
cberr, result);
B
1
15

function handleErr(err, subresult, query) {} //

function upsertaber (data., callback){
var abers = Schemas,aberrations;

wvar aberInsertQuery = abers.insert(
abers.gene_id.value(data.gene).
abers.mutation_class.value(data.mut_class),
abers.mutation_type.value(data.mut_type).
abers.locus.value(locus}),
abers.original_amino_acid.value(data.acids[0]).
abers.new_amino_acid.value(data.acids[1]),
abers.last_edited.value (now) .
abers.created_on.value(now)).returning(abers.id);

execute(aberInsertQuery. function(err, subresult) {
handleErr(err, subrasult, aberInsertQueryl);
if Cerr) {
wvar aber_u_id = subresult.rows[0].id;
data.aber_id = aber_u_id;
upsertsourceannol{data, callbackl;

13

models.py

class Mutation{models.Model):
gene models.Foreignkey (Genel
Tocus models.IntegerField(" Tecus")
original_amino_acid = models.CharField({max_length=30) # describes SNV
mew_amino_acid models.CharField{max_length=300

mutation_type models.CharField{max_Jlength=15,
choices=mutationTypeChoices)

mutation_class = models.CharField(max_length=15,
choices=mutationClassChoices)

Tlast_edited = models.DateField{auto_now=Trusl

created_on = models.DateField(auto_now_add=Truel

class Meta:
unigue_together = (("gene”, locus”,
“original_amino_acid”,

“mutation_type", "mutation_class"))

#uiews. py
@login_required
def save_mutation(request):
it request.method == "POST":
mutationForm = MutationForm{request.POST)

validMutation = None
if mutationForm.is_valid(:
validdutation = mutationForm.save()
elif mutationForm.non_field errors(}.as_text() =—
"= Mutation is not unigque.”:
validiutation = Mutation.objects.get(
**remove_extra_fields (mitationForm.cleaned _data, Mutation))

if walidMutation:
upsertSourceAnno{validMutation, reguest.POST)

div(id="collapseAnnotation”. class="panel-collapse collapse in")
div{class="panel-body”, style="padding:Spx;font-size:00&™)

br
form{method="post™, role="form", id="annotations™)
div{id="mutations™)
select(class="form-control™, id="gena")
br
select{class="form-contrel”, id="aberration™)
option{value="") -- choose aberration type —-

option{value="amp™) is amplified in
option({value="del™) is deleted in
option(value="sav™) is mutated in
option{value="expression”) is expressed {over/under) in
option{value="methylation”) is methylated Chypo/hyper} in
br
input(class="typeahead form-comtrol”, id="cancer-typeahead”,
type="text"”. placeholder="Cancer™)
Jabel PMID
input{class="form-control”, id="mutation-pmid~,
placeholder="PMID", maxlength="8")
/7~ optional cancer Tields
label(class="toggle™)
| Mutation type
input(class="form-control toggle”, id="mut_ty~,
placeholder="Mutation type™)

«div class="panel panel-default™>
<div class="panel-heading">
<h3 class="panel-title">
Provide & referenced mutation (required)
</h3>
</fdiv=
=div class='panel-body >
<div class="form-group”>
{{ mutation_form.gene.label_tag 1}
{{ mutation_form.gene|add_class: ‘form-control”® }}
</divs
<div class="form-group”>
{{ mutation_form.mutation_class.label_tag 1
{1 mutation_form.mutation_classladd_class: "form-control’ }}
<fdive
<div class="form-group”>
{1 mutation_form.mutation_type.label_tag }}
{{ mutation_form.mutation_typeladd_class:’ form-control” }}
=fdive

«div class="form-group™s
<label for={{ reference_form.0.identifier.id_for_label }}=
Reference Identifiers</label>
{{ reference_form.0.db|add_class: ‘form-control” }}
{{ reference_form.0.identifier|add_class: form-control”™ }}
</dive

{% for anno_form_field in anno_form.0.visible_fields %}
<div class="form-group”>
{{ anno_form_field.label_tag 1}
{{ anno_form_field|add_class: 'form-control” }}
= dive
1% endfor X}
=/dive

Figure 3: Express.js (left) vs Django code (right) for mutation annotations (A, top) and form templating (B, bottom).
Note that Express.js requires more boilerplate code for database transactions (at top) and also explicit declarations of

choices and defaults for form fields.

Section 3: Design Process and Implementation Details:

1. Designing an SQL Data Model for Maximal Reuse and Consistency

Our model must first satisfy the functional requirements, so each entity mentioned in those
requirements should have a corresponding field or entity in the database; mutations, gene
aberrations, protein interactions, references, annotations and votes) . However, | also designed
our data model to remove redundancies and duplications; this solves the problem of creating
and maintaining multiple instances of the same data across multiple documents (in MongoDB)
or relations (as in SQL).

The practice of minimizing redundancy in a database is known as normalization, and it
corresponds to optimizing disk and memory space for an algorithm. For instance, if many tumor
samples contained the same mutation, then the data for that mutation should be stored in a
single relation, rather than repeated in multiple samples. In MongoDB, the same mutation was
duplicated across multiple samples and references (see Figure 1), but in order to find related
samples, the system would have to lookup all documents by a hash of the mutation, which may
be unindexed and require slower lookups. Therefore, data can be reused A relational database
design such as SQL allows us to quickly cross-reference references to samples, and to update
a single source if we decide to add new fields to the mutation, such as affected pathways.

However, beyond normalization, we also desire proper encapsulation of entities. This allows us
to maintain database integrity without joining relations unnecessarily or using unnatural NULL
entries. For instance, if a user's email must be a valid email, and annotations of a reference
must specify the user that annotated them, then a user ID field belongs in the annotation, but
not the user email; the user email belongs in a separate relation.

The fact that reference annotations must specify a proper user is a dependency, and that a user
email must be proper is a constraint. Dependencies require placing only the necessary fields in
a given relation. Broadly, the practice of encapsulating entities to keep dependencies within a
single relation is known as dependency preservation in database design, and it corresponds
to maintaining correctness (integrity) within the database with minimal time complexity.
Practically, this means that relations ought to refer to one another via a unique primary id.

With those goals in mind, we can identify entities that are multiply referred by several separate
MAGI domains:

® users,
e cancers,

e mutations,

e genes,

e and samples.

These entities are given a unique relation, and are given a natural primary key by their name.
We can see how these relations connect to other entities in (Figure 3). Normalization allows for
data to be non-duplicated and indexed more quickly; for example, mutations can naturally
indicate all samples that contain them, and all references that refer them.

In addition, we can identify entities that should be given separate relations:

e multiple annotations can be given to a single reference (and by different users), so
references and annotations are separated

e multiple votes can be given to an interaction reference (and by different users), so
interaction references and votes are separated

e all mutations can be included in samples and referenced, but different mutation types
have different attached data; thus, each mutation class should have a separate relation
for annotations specific to that class. For example, single nucleotide variants should
have a separate relation from copy number annotations. Incidentally, this is an area
where document database models such as Mongo perform more naturally.

 ~ Reférenics —) Haar
| __ Annotation __ | id
|ceference id PO o Husername
== | password
lcam:er PO -refers to s first_name
lherltahle | ancer —}+{1ast_name
lmeasurement,type ‘ \ () Hname | . \ email
I characterization | abbreviation uploads
comment color |
L,“_’ i SR) < Dataset
) title
contains samples about- (O<Juser
describes these = — || |cancer
features of within is_public
. Sample
Reference name RE e
id dataset_title [HeatmapEntry R
db = (PMID, PMC) mutation_list : (sample_id | adds a
identifier V - - —— ’1 gene |
source = (DoCM, PMC Search, comm) ‘ e annotates——, L!alue 3
= ==)
mutation_id 4 \vi A) 4
contains rS;nTe »;n;at;nj Y [sample Annofation) V;ei T
P!
o J \ o ey | NN 1
lsamgle name | _isan kdalﬂsn name user |
|ggtaser name | expression of i property_name interaction |
describes iy lprvpeny,name | I\mlue | dalence]
i B value color S S
H uts (e D] = e e <
id Gene
gene_name mutates—— | {name. votes on
mutation_class = (SNV, CNA, other) chromosome
E 3 locus
is either/or = I
0 SNV_Mutation 0 - CNA_Mutation 0 . ‘ Interaction Reference
L r B 4 ; 4
____________________________ K 5
' ji I l i | Interaction =
‘mutauun,clus =SNV |mmﬂon,clu‘s =CNA | db = (PMID, PMC)
i ion_type = (mi: frarne-shln.u)l |muution_type=(AMP,DEL) | source 1 |- (7| identifier
lIm:us | |stnrt | destination source = (DoCM, PMC Search, comm)
i original_amino_acid | lEm’ B ppi_network interaction_id

new_amino_acid

Figure 4: A normalized schema for the MAGI application as a crows’ foot E-R diagram. Underlined fields are primary
keys: italicized fields are fields that refer to other tables. Entities with a dashed boundary are dependent on their

parent entity (thick line). For example, a sample is implemented as a name, dataset, and list of mutations and a
linked group of annotations, with dependent sample annotations and heatmap values.

Colors indicate related entities. Foundational entities that are referenced multiple times are the user, gene, cancer,
mutation, and reference. A sample is implemented as a list of mutations and a linked group of annotations.

Normalization allows for data to be non-duplicated and indexed more quickly.

One design choice of note is the duplication of a reference table for both mutation and protein
interactions. This illustrates a design tradeoff between normalization and dependency
preservation. According to normalization, we would create a single relation for any reference,
including references that attach to both mutations and protein interactions, and each reference
would be included once, even if it referenced multiple mutations and protein interactions.

However, if we recall our functional requirements, we want to be able to annotate references
attached to a mutation, and vote on references attached to a protein interaction. Therefore, if
we create one reference relation, we would have two difficulties:

1. In order to verify whether an annotation was correctly applied to a mutation reference
(and not a protein interaction reference), we would at least have to check the reference
type within the reference relation, which requires an extra join, thus violating
dependency preservation.

2. If we want to annotate two mutations within the same reference, we must distinguish
which mutation we are annotating, as well as which reference we annotate. This further
violates dependency preservation, because we need to make sure the reference and
mutation are associated in the reference relation. This illustrates that, in the
one-reference schema, an annotation actually describes the relationship between a
mutation and reference.

The second point demonstrates that an annotation is actually a tertiary relationship between a
mutation, reference, and the facts of an annotation. In the one-reference schema, we would
require an in-between relation that pairs annotations and mutations. An annotation, in turn,
would contain a foreign key to. Therefore, we choose an alternate, denormalized approach:

1. we use two relations for references, one for mutations and one for protein interactions.
This mitigates the first difficulty.

2. areference relation encapsulates both the identifying facts of a reference, and its
relationship to a particular mutation (thus, references contain the mutation they refer to).
Therefore, annotations can contain a foreign key to the reference itself, with the tradeoff
that we allow multiple references within the database to exist to refer the same logical
reference.

One other concern with database models is how to extract entities from existing resources and
transform them data to be loaded into the database (ETL). In order to preload the annotations

with public cancer sample datasets, | wrote a set of Python scripts to convert the existing MAGI
format .tsv files into a serialized JSON format. These JSON files are called fixtures and are

Django’s way of providing initial data to the database. Instructions are given in
annotations/fixturess§README.md for loading these fixtures.

2. Providing Annotation Manageability with Django

In this section | describe the pages served by the annotations side of MAGI. We can categorize
these pages according to their operations they perform on the database: those that create,
retrieve, update, and delete entries from the database, known as CRUD operations. Django
wraps these database operations as API calls on models, so that development is simplified. In
addition, Django also provides a simple API for registering user logins.

Authentication:

From the main MAGI page, we currently allow server-side Javascript to access the underlying
database for read requests to annotations MAGI for speed and convenience (Figure 2).
However, for all write operations on the database, we provide pages through the annotations
MAGI site, because we want to track all reference and annotation additions to with a particular
user, which requires authentication. For annotations, it is easier to provide a single login on the
annotations page rather than require that a login from the main MAGI page be transferred to the
annotation server. Because the main MAGI page and annotation page are currently on different
domains, it is difficult to provide a secure single-sign on system. Therefore, we currently require
users to sign on to the annotations MAGI page, and defer sign on requests from main MAGI to
annotations MAGI.

Retrievals:

| wrote pages to retrieve annotations for a particular mutation reference or for a gene. In the
latter case, annotations are presented in table form by summarizing across mutations and
references, and users can delete an annotation from that page if they are the user that provided
it.

Similarly, | wrote a page to retrieve protein interactions through a list of genes, also in table
form. The user has the option to upvote and downvote references attached to a protein
interaction through the tabular page.

Input forms (creation and updates):

Several pages add or update content to the annotations database, using web forms defined in
the Django system. Beyond only saving data, we also would like input validation and user
tracking. These add or update pages should have the following properties:

http://asp.cs.brown.edu/annotations/details/2496/
http://asp.cs.brown.edu/annotations/NGF/
http://asp.cs.brown.edu/annotations/interactions/STAG2/

If a page reports success, it should save data to the underlying page and redirect either
to a page that displays the information submitted, or a new page to create another item.
A page should require a current user login; if an input page is accessed without a login,

then the user should be allowed to authenticate, and then redirect to the requested
page.

e An input page should be able to be pre-filled with query parameters from the web
address.

e |[f a user tries to input an object that already exists, the page should not fail but refer to
the existing entity.

e If a page reports failure while trying to save data, then no objects should be saved to the
database.

e If a page reports failure while trying to save data because of user input error, then the
page should indicate how the user can fix the error (for example, an input out or range).

Individual annotations for a mutation reference can be created as the same page that displays
the detailed annotations for a mutation reference via a form. In addition, if the reference the
user wants to annotate does not exist in the database, then users should also be able to add a
new reference via a compound form. Users can also add a reference to a protein interaction
using a form.

Also, users should be able to add simple objects to the database that do not require any input
fields. Therefore, | wrote routes to save annotations based on the majority annotation for a
given mutation reference, and also to add upvotes and downvotes to interaction references.

3. Example Django code for database operation

Figures 4A-D show standard Django code for adding an interaction and its reference. The
components of the page follow the MTV pattern, which we describe below.

Models: Database abstraction

The models for an interaction are described in the models.py file (Figure 5A). These models
files are the authoritative source for an object relational model (ORM), which abstracts the
database schema as a set of Python objects. We can declare types for fields, choices within
those fields, and also express foreign keys and many-to-many relationships to other models,
and create unique constraints on the model. This allows the code in the view to create and
retrieve objects within the database without having to write raw SQL.

Django also provides a built in user relation, which is referenced in the interaction reference.
References and annotations are tracked with user input, but biological entities (genetic
aberrations and protein interactions) are not, for simplicity.

class Gene(models.Model):
name = models.CharField(max_length=30, primary_key = True)
chromosome = models.CharField(max_length=2, null = True)

class Interaction(models.Model):
source = models.ForeignKey(Gene, related_name="source')
target = models.ForeignKey(Gene, related_name="target')
input_source = models.CharField(max_length=25)

class Meta:
unique_together = (("source", "target", "input_source"))

dbChoices = ((PMID', 'PubMed’), (PMC', 'PubMed Central'))
class InteractionReference(models.Model):
identifier = models.CharField(max_length=40)
db = models.CharField(max_length=30, choices=dbChoices)
interaction = models.ForeignKey(Interaction)
user = models.ForeignKey(User, null = True)

class Meta:
unique_together = (("identifier", "interaction"))

Figure 5A: Django model code. Unique constraints are specified by the unique_together attribute.
Django defines fields in a database-independent format, so all standard flavors of SQL such as
SQLite, Oracle SQL, and PostgreSQL. Django provides utility commands to help maintain a

consistent database by providing migrations when the database schema changes.

Views: Form management

The views (controllers in MVC) in Django are further divided into two portions; those that
describe the logic of a web form in forms.py (Figure 5B), and those that describe interactions
with the database in views.py (Figure 5C).

The web form is responsible for presenting HTML to the user that contains the proper form and
form fields, as well as validating and converting the returned form data back to an object (which
is shown in the clean method). For example, Django provides character fields with a select
widget to restrict the possible values of the field to the choices in the set provided. | can also
control the rendering for fields; for instance, we choose the input_source field to be hidden.

class InteractionForm(ModelForm):
reference_identifier = forms.CharField(max_length=40)
db = forms.CharField(max_length=20,
widget = forms.Select(choices=dbChoices))
source = GeneField()
target = GeneField()

class Meta:
model = Interaction
fields = ['source’, ‘target’, 'input_source]
widgets = {'input_source": forms.HiddenInput()}

error_messages = {
NON_FIELD_ERRORS: {
‘unique_together": '%(model_name)s is not unique.'
}
}

class GeneWidget(forms.TextInput):
def __init__(self, *args, **kwargs):
if 'attrs' not in kwargs:
kwargs['attrs'] = {'class": 'gene-typeahead’}
elif 'class' not in kwargs['attrs']:
kwargs['attrs']['class'] = 'gene-typeahead'
else:
kwargs[‘attrs['class] += ' gene-typeahead'

super(forms.TextInput, self).__init__(*args, **kwargs)

class Media:
js = (components/d3/d3.min.js/,
‘components/typeahead.js/dist/typeahead.bundle.min.js',
‘components/handlebars/handlebars.min.js',
']s/gene-typeahead.js’)

def validate_gene(val):
if Gene.objects.filter(name=val).count() > 0:
return True
else:
raise ValidationError(_('Gene %(value)s not known"),
code='Unknown,
params = {'value". val})

class GeneField(forms.CharField):
description = "typeahead field for selecting genes”
default_validators = [validate_gene]
widget = GeneWidget

def clean(self, value):

cleaned_data = super(GeneField, self).clean(value)
return Gene.objects.get(name=cleaned_data)

Figure 5B: Django form code, and the typeahead widget that it generates. Widgets have built-in code that specifies
the HTML that is displayed.

In the example above | declare a custom field, the GeneField, in order to provide additional
features: first, in order to provide user-defined validation for logic, and second, to customize
both the Javascript (and even the HTML) that is needed for a field. For example, the GeneField
validates that the returned string corresponds to a Gene object, and the clean method converts
the returned string to a Gene Object. In order to implement typeahead, the GeneWidget adds
the class attribute ‘gene-typeahead’ to the HTML, and also stipulates the necessary Javascript
for the field. In this way, multiple forms can use the GeneField with a minimum of code
duplication in the template (the view in MVC), one instance where Django implements a don’t
repeat yourself (DRY) philosophy.

Views: Application logic

On the views.py script (Figure 5C), the view handles both form generation (when the incoming
HTML request is a GE)T and retrieving form input (when the request is a POST). If the request
is a GET, the view pre-fills the form with query parameters and then returns a rendered form. If
the request is a POST, then the application prepares to save the interaction. If the interaction is
valid, then it is saved, but if it exists already, then the existing interaction is retrieved. This
framework allows us to add further logic to individual fields to restrict interactions. For example,
a validate method on the form could ensure that the source and target protein were not
identical.

Afterwards, if a reference is provided by the user, the reference is also saved. Finally, the user
is redirected to a list of annotations, which should contain the interaction and reference just
added.

def add_interaction(request):
if request.method == 'GET"
initialinteraction = dict(request.GET.append(‘input_source": 'Community'))

base_form = InteractionForm(initial = initiallnteraction)

context = dict(path = request.path,
user = request.user,
interaction_form = base_form)
return render(request, 'annotations/add_interaction.html’, context)
elif request.method == 'POST":

interaction_form = InteractionForm(request.POST)
interxn =[]
if interaction_form.is_valid():
interxn = interaction_form.save(commit = False)
interxn.save()
elif interaction_form.non_field_errors().as_text() == ** Interaction is not unique.":

interxn = Interaction.get(**interaction_form.cleaned_data)

if interxn:
ref_id = interaction_form.cleaned_data['reference_identifier']
db = interaction_form.cleaned_data['db]
if ref_id:

InteractionReference.get_or_create(identifier=ref_id,
interaction = interxn,
db = db,

defaults = {‘'user’: request.user})

return redirect('list_interactions', interxn.source.name + ;' + interxn.target.name)

return render(request, 'annotations/add_interaction.html,
dict(path = request.path,
user = request.user,
interaction_form = interaction_form))

Figure 5C: Django view code. Error handling is checked in the is_valid and get_or_create methods.

If a validation error is produced at any point while creating model instances, then the form with
the user’s data is rendered and sent back to the user, but Django also adds reported errors
back to the form to be rendered as well; the template below provides space for these errors to
be displayed. One functional requirement on this point which is not yet satisfied is that nothing
should be saved to the database if an error has occurred while saving. This ought to be
handled with database transactions, which specify an all or nothing semantics - either every
entity is saved at once, or none are.

Templates: User Interface elements

| wrote a simple HTML page with Django’s template facility to render the form (Figure 5D).
Django allows plain HTML in its template language. Thus, the tags that include form fields in
double branches can be embedded within normal HTML tags. Also, Django provides simple
branching and looping capabilities as well. For instance, if the form was sent with errors, those

errors will be rendered above the form. One last (possibly overlookable) feature is that Django
allows dictionary lookups and no-argument member function calls through the dot operator; this
lets much of the retrieval of related objects occur within the template rather than being
prefetched in the view.

{% extends "layout.html" %}

{% load annotation_tags %}

{% load widget_tweaks %}

{% block title %}MAGI: Add protein-protein interaction {% endblock %}
{% block content %}

<h3> Add protein-protein interactions </h3>

{% if interaction_form.errors %}
<div class = 'alert alert-danger'>
Errors occurred while adding your referenced interaction.
{{interaction_form.errors }}
</div>
{% endif %}
<form method='POST' action="{% url 'annotations:add_interactions' %}">
{% csrf_token %}
<div class = "panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">
Provide a referenced interaction
</h3>
</div>
<div class='panel-body'>
<div class='form-group'>
{{interaction_form.source.label_tag }}
{{interaction_form.source|add_class:'form-control' }}
</div>
<div class='form-group'>
{{interaction_form.target.label_tag }}
{{interaction_form.target|add_class:'form-control' }}
</div>
<div class='form-group'>
{{interaction_form.reference_identifier.label_tag }}
{{interaction_form.dbladd_class:'form-control' }}
{{interaction_form.reference_identifier|add_class:'form-control' }}
</div>
{{interaction_form.input_source }} {# hidden #}

</div>
</div>
<button class="btn btn-primary">Submit</button>
</form>
{% endblock %}
{% block scripts %}

{{interaction_form.media }}
{% endblock %}

Figure 5D: Django template code.

Notably, Django also allows template extension (via the extends tag), so that multiple pages on
annotation MAGI can have the same MAGI header and footer as main MAGI.

Urls: Providing internal and external addresses

The urlpatterns variable contains a mapping of regular expressions on URIs to both view
functions and names within Django (Figure 5E). The URL pattern for adding interactions maps
both GET and POST requests to the add_interactions method, and also maps the name
‘add_interactions’ to the URI for certain methods within Django. One instance of this is in the
view page (Figure 4C) where a successfully added interaction redirects to ‘list_interactions’,
which is another url listed within the patterns. This allows code within Django to rely on
individual names rather than hard-coded URIs, another instance of the DRY principle.

from django.conf.urls import url
from . import views

urlpatterns = [

url(r'‘interactions/add/$', views.add_interactions, name='add_interactions'),
url(r'Ainteractions/(?P<gene_names>[A-Za-z0-9,]+)/$', views list_interactions, name='list_interactions'),

Figure 5E: Django URL code. URI’s are captured by regular expressions and sent to the corresponding method.

Section 4: Feature Highlights:

To recap, | implemented an extension to main MAGI for annotations on the Django platform.
Aside from reproducing the work previously done in Mongo on main MAGI, | also implemented
several extensions and improvements.

One highlight of this work is providing simple and extensible validation and error reporting on
any input forms (Figure 6). Rather than relying on the database to report which constraints are
violated, Django allows the developer to catch and declare errors at the form and model layer.
This makes errors more understandable to the user and provides a better experience. | also
note that Django’s language makes it possible to handle errors without relying on the
cumbersome callback pattern of passing success or failure handlers common to Express.

Errors occured while adding your referenced mutation.
s new_amino_acid
o New amino acid must be different from original.
* gene
o Gene NOT_A_GENE not found in genome

Provide a referenced mutation (required)

NOT_A_GENE
Gene

Mutation class

Single Nucleotide Variant

Mutation type

Missense

h
O

Protein sequence change C 3

Figure 6:Example of error reporting within a form.

In addition | also provided user access to all references and annotations, and allow the user to
delete those entities (Figure 7). This capacity is made very simple by Django’s ORM, which
abstracts the delete operation on objects. This is important for two reasons: it allows defaults
such as cascading deletes (the deleting of related objects) to be handled by the Django
developer, and also allows simple safety checks for deletion. For instance, we retrieve the
object to check for existence, and check whether the user owns the annotation he/she is
deleting. These operations would require SQL query generation and manual error checking in
Express, but can be succinctly expressed in Django.

Your Mutation References
Gene Class Type Protein Sequence Change ‘ Reference Actions

STAG2 SNV MS 1201M ‘ PMID 12341234 Cannot remove until all annotations are removed.

Your Mutation Reference Annotations

Protein

Sequence Measurement
Gene Class Type Change Reference Cancer Somatic? Type Characterization Actions
STAG2 SNV MS 1201M PMID Kidney renal Unknown Unknown Unknown « Edit

12341234 clear cell +« Remove
carcinoma
(kirc)

Your Interactions
You have not annotated any reference mutations.

Your Interaction Votes

Source Target ‘ Reference Your Vote Delete?

SMC1A STAG1 ‘ PMID 15657099 Disagree Delete

Figure 7: Interface for logged in users to manage their added references and annotations.

Another highlight is providing cross-origin access to the Django database from main MAGI in
the back end. | configured the PostgreSQL database on cobra to allow host-based
authentication (HBA) from hosts other than cobra, such as hepburn and cbio-test. | then wrote
code for main MAGI to lookup references and annotations from the Django SQL database. This
relieves us from having to use Express to manage the SQL database, but we now have to
synchronize the database definitions in Django with main MAGI’s view of the SQL database
schemas.

| also allow annotation MAGI to redirect their URLs to main MAGI. Because we expect that
multiple MAGI instances may be interested in the same knowledge curated by different MAGI,
we would like them all to see the annotations MAGI pages. However, we would need to ensure
that all links on annotation MAGI return the user to the main MAGI pages of origin. Because
both main MAGI and annotation MAGI provide the exact same navigation bar

I can do this through reading the referring HTTP page in HTTP request headers, and keeping
them within a session cookie for each time the user navigates to the annotation pages. This is a
feature in progress; we currently allow a single hop from other main MAGI pages to navigate
back to main MAGI from the annotations page.

As experimental work, | implemented a different form of the sample view page in annotations
MAGI. This page uses a cascading view to first list mutated genes, then references on those
genes, then annotations on those references. In addition, | implemented filters for genes and
mutations, so that the user can view only genes or mutations with references or user

annotations, respectively. Designs like this allow sample view pages to be loaded more quickly
because less data has to be pulled from the database and sent over the network at once.
However, this may be offset by Python’s slower runtimes. The work is developed in the
tumorsamples branch on Bitbucket.

Section 5. Additional operations work:

1. Docker for fast deployment

Early in the project, we foresaw a need to deliver private instances of MAGI to other users
without requiring complex setup or superuser privileges. The existing solution was to deliver
MAGI as an Amazon machine image, but the installing user would still need to run all the
necessary services. | wrote scripts and instances to start a MAGI instance reproducibly with a
minimal number of commands, and also put MAGI on the Docker hub so that other users could
potentially pull MAGI as if they were pulling repositories. These MAGI instances host the
standalone MAGI version with one Express.js server, rather than the hybrid system.

Currently, the Brown department VMs have stability issues with Docker containers; long-running
Docker processes tend to be stopped after 2-3 weeks, so we instead use detached tmux
consoles

Background

Docker is a container virtualization tool to isolate different processes of a server or operating
system environment in a lightweight, portable, and independent manner. It allows processes
that rely on different OSes to work and communicate with each other (similar to a hypervisor).
Docker takes advantage of the Linux container system (LXC) to efficiently share memory,
networking, and I/O resources, and layered file systems (AUFS) to share disk resources without
redundancy (Figure 8A).

For our use, containers are analogous to processes that run on a machine, but within their own
environment. Images are analogous to packages that outline process execution. Docker is
meant to make container execution simple.

For MAGI, we use Docker to:
e provide a pre-built version of MAGI for rapid deployment
e maintain a separate MAGI server environment from the host machine
e maintain separate database operations from MAGI

Notably, Docker also hosts a centralized registry of containers from other developers called the
Docker Hub; most OSes and development environments have containers available that can be

https://bitbucket.org/raphaellab/magipy/branch/tumorsamples
http://hub.docker.com/
http://hub.docker.com/

pulled from Docker. As well as providing open-source access to the MAGI docker containers,
the Docker Hub also provides automated build testing (Figure 8B).

A
MAGI webserver
Node 5.3 Mongo PostgreSQL
MongoDB requests (27017)
Debian Jessie 8.0 Debian Wheezy 7.5 Debian Jessie 8.0
" NGINX _J HTTP traffic _ Docker Engine))
PostgreSQOL requests (5432)
Host OS
;
PUBLIC | AUTOMATED BUILD
group/magi v¥
Build Details
Status Tag Created Last Updated

latest 7 days ago 7 days ago

stats-server 7 days ago 7 days ago

Figure 8: MAGI Docker architecture (A) and automated builds within Docker Hub (B)

Installation instructions:

For more details about the Docker command line options, see the documentation.
Currently, MAGI deploys by separately starting three containers within docker.

MAGI web server: This container contains MAGI and all of its dependencies (node/npm, node
libraries, gd3, and the TCGA PanCancer data) as well as nginx (a web server). These
dependencies are retrieved while building the underlying image.

The MAGI container relies on the mongo database and the statistics server to run properly.
Because these reside as containers, these must be linked when running the MAGI image. (This
requires the --link parameter when starting the container.)

https://docs.docker.com/reference/commandline/cli/#pull
https://docs.docker.com/reference/commandline/cli/#pull

MAGI relies on several different parameter values to run: these are described in MAGI Github.
These are equivalent to configuration files for MAGI instances and should be given as
key=value pairs to Docker. (This requires the --env-file parameter when starting the container.)

When the container starts, nginx forwards requests from port 80 to the MAGI server port within
the container before MAGI starts. (In order to forward traffic from a host to a container, use the
-p parameter.)

Once the other containers are running, the following command starts the MAGI container
> docker run -i -t \ #interactive mode with attached tty
--1ink boxed-stats:enricher --1link boxed-mongo:mongo \
-p 80:80 \
--name magi-instance \
--env-file=magi.env \
raphaelgroup/magi:latest

Mongo container: This container runs a Mongo database, exposing port 27017 to the host
machine and to other containers. This container is provided by Mongodb and can be pulled
from the Docker Hub.

Importantly, the Mongo container (and others) can mount a host directory into its container,
allowing existing databases to be imported, e.g. from other MAGI instances. (Mounting is done
with the -v option.)

To run the mongo container:
> docker run -d \ # detached mode
-v /path/to/database/on/host:/data/db \
--name boxed-mongo \
mongo

By default, port 27017 is opened to the host.

Implementation details:
Docker containers are built from scripts called Dockerfiles; the MAGI images Github repository
stores the current version of the dockerfiles. There is an associated_Dockerhub repository for
MAGI, with the following images

e raphaelgroup/magi:stat-server

e raphaelgroup/magi:latest

https://github.com/raphael-group/magi
https://github.com/raphael-group/magi-images
https://registry.hub.docker.com/u/raphaelgroup/magi/

Under the hood, Dockerfiles are responsible for downloading packages and other software to
support the container (i.e. node/npm, gd3, nginx, git, etc.) See the Dockerfile documentation for
more info.

Whenever commits are pushed to the MAGI repository on any branches, Docker initiates an
automated build of the MAGI Docker image (using Webhooks). Automatic builds can be
checked here or can trigger downstream services with Webhooks.

Startup scripts are provided in the Github repo as well: ./deploy-all.sh is the one-touch startup
script. There is important initial configuration that must occur when an individual container is
run: these commands are stored within ./run-server.sh INSIDE the container. In addition,
Jload-TCGA-data.sh downloads and imports the data from the Raphael group website into
Mongo.

Section 6: Deployment and Current Status

We are currently in the process of migrating from the old Express.js version of MAGI. Each new
instance of MAGI will now have two servers, one for the Express.js side of MAGI that includes
gene queries, and one for the Django side of MAGI that manages annotations. Below is a table
of which VMs will be used for each instance.

MAGI Instance

Express server VM

Django server VM

Public bogart annotations (cobra)
PAAD hepburn (paad) finch
Staging cbio-test beagle

Deployment guides are found in the README of each repository. In brief, the setup steps for
the Express server are:
e Install MongoDB and node.js dependencies
Retrieve the latest version of gd3
Start MongoDB
Download and preload public gene and cancer datasets
Configure environment variables for MAGI, MongoDB and Django connections

The setup steps for the Django server are:
e Install postgres, Python and Bower
e Configure environment variables for MAGI
e Run all migrations to initialize the database
e Convert data files to fixtures and load initial datasets as fixtures

https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
https://registry.hub.docker.com/u/raphaelgroup/magi/builds_history/169196/
https://registry.hub.docker.com/u/raphaelgroup/magi/builds_history/169196/

Create a superuser.
For remote postgres communication purposes, allow host-based authentication
from the express Server VM.

Section 7: Conclusion

In this paper | described implementing annotations into MAGI within the Django framework atop
PostgreSQL. The PostgreSQL backend allows more memory-efficient access that is easier to
maintain. Using the Django framework lowers the difficulty and amount of code required for
development while also providing useful functionality such as reusable code, database
management and interface enhancements. In addition, Django and PostgreSQL can be
integrated in parallel with Express.js for a smooth transition between sites.

It will be helpful to extend the scope of MAGI’s mutations to include copy number aberrations
and other types of mutations. Another point of improvement would be to implement the main
view pages of MAGI in Django. Towards this effort, future directions should explore
performance enhancements to offset Python’s relatively slow runtime. Finally, implementing
in-browser testing with Watir in Ruby should improve development cycles and reliability; an
appendix describes the work done thus far towards in-browser testing.

Acknowledgments:
| would like to thank Ben Raphael for advising me through my Master’s project and for providing

part of my summer funding. Also, many thanks to Max Leiserson for providing direction and for
many helpful conversations.

