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Abstract

This thesis considers prescriptive evacuation planning for a region threatened by a
natural disaster such as a flood, hurricane, or bushfire. The evacuation planning prob-
lem is modeled as a dynamic network flow problem on an evacuation graph, where
the objective is to maximize the number of people evacuated within a given time hori-
zon. In particular, this work considers convergent evacuation planning, which means
that the chosen evacuation routes must be free of forks. Then two types of decision
variables are required: binary variables that select road segments and continuous
variables that track vehicle flows. Vehicle dynamics are modelled macroscopically.
Experimental results show that maximizing the flow of evacuees while also select-
ing the road segments for the evacuation routes does not scale to realistic problem
instances. Therefore, an alternative procedure using the Benders decomposition is
proposed. The results show that the Benders decomposition approach leads to prov-
ably optimal solutions in many cases. The model can be extended to include the
possibility of infrastructure improvements, which is an important consideration for
many areas of the world where road networks are ill-equipped for evacuations, due
to limited vehicle capacity and minimal protection from the effects of natural disas-
ters. Recognizing the limitations of macroscopic simulation, this work additionally
considers mesoscopic simulation through an implementation of the Cell Transmission
Model.
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Chapter 1

Introduction

Controlled evacuation plans are essential to minimize injury and loss of life during

a natural disaster such as a flood, hurricane, or bushfire. The aim of an evacuation

planning algorithm is to produce an operationally viable set of instructions to author-

ities, who will need to close roads and manage traffic, as well as clear directions to

evacuees for when to leave their homes and where to go. This task is computationally

challenging because many factors must be taken into account, such as the nature of

the natural disaster, the layout of the road network, the locations of evacuees, and

human behavior. Most automated evacuation planning systems only control the road

management component, leaving evacuees to choose their own departure times and

routes. However, this approach often leads to congestion when many people choose

to use the same roads. An additional significant source of delays, observed during the

Hurricane Katrina evacuation, is driver hesitation at forks [25]. In order to eliminate

the delays associated with forks, [6] introduced the Convergent Evacuation Planning

Problem (CEPP). When designing evacuation plans, it is important to keep their

real-world execution in mind. From the operational point of view, convergent paths

are easy to enforce because once the necessary roads are blocked, minimal vehicle

guidance is required. This thesis builds upon the work by [6] using a Benders de-

composition approach. The Benders decomposition is an iterative method for solving

complex MIP problems. During an iteration of the algorithm, the complicating vari-

ables are temporarily fixed, the subproblem is solved, and a cut is generated for the
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master problem.

Contributions

1. The Benders decomposition is applied to a large-scale evacuation planning prob-

lem (see [22]).

2. The Benders decomposition is applied to the problem of designing an evacuation-

ready road network (see [26]).

3. The Cell Transmission Model is used to model and simulate evacuations.

The remainder of the thesis is organized as follows: Chapter 2 outlines a method where

the master problem selects a set of convergent paths for evacuation and the subprob-

lem schedules the flow of evacuees on those paths, mirroring the two-stage approach

of [6]. Experimental results on a real case study show that major improvements can

be made by applying the Benders decomposition to the two-stage approach within

reasonable computation time. Chapter 3 extends the evacuation planning problem

to include the possibility of infrastructure upgrades. Chapter 4 gives an implementa-

tion of the Cell Transmission Model for finer evacuation simulation, and Chapter 5

concludes the thesis.

1.1 Literature Review

Evacuation planning studies are diverse in the approaches they take to model evacu-

ation scenarios and solve the evacuation problem. An evacuation scenario is typically

modeled as a graph, where nodes represent junctions, such as road intersections, and

arcs represent physical connections between the nodes, such as roads, in the case

of a city-level evacuation. Evacuation models differ in the components that are in-

cluded such as contraflow lanes, and the factors considered, such as evacuee behavior.

They may be time-dependent, and may take uncertainty into account. Approaches

to evacuation planning can broadly be classified as microscopic or macroscopic [10].
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Microscopic evacuation planning seeks to accurately model individual evacuee behav-

ior, while macroscopic approaches, such as the one used in this thesis, treat evacuees

collectively as flows. Objectives for evacuation planning algorithms include finding

the maximum flow, the quickest flow, or the minimum cost flow. The work by [7]

on the Maximum Dynamic Network Flow Problem (MDFP) for shipping goods is

the foundation for much of later work on maximum flow evacuation problems. The

same authors also defined the notion of a time-expanded graph for solving dynamic

network flow problems [8]. [3] introduced the quickest (single) path problem for data

transmission, which was generalized to include multiple paths by [1] in the quickest

flow problem (QFP). The QFP was extended by [11] to include multiple sources and

sinks in the quickest transshipment problem (QTP).

The evacuation planning problem has several key requirements not shared by other

dynamic network flow problems. For example, evacuees living near each other (part

of the same evacuation node) should follow the same path in order to avoid confusion

and increase compliance. Also, any traffic controls should be simple for authorities

to enact. Few papers have proposed plans consistent with these requirements. [12]

developed a two-stage approach for giving instructions to evacuees, where the first

stage creates possible paths and departure times and the second stage assigns them

to evacuees. [6] proposed another two-stage approach. In the first stage, which

they call the Tree Design Problem (TDP), they solve a relaxation of the maximum

flow problem with aggregated arc capacities, generating an evacuation network with

convergent paths. This tree is then passed into the second stage, the Flow Scheduling

Problem (FSP), which schedules the flow of evacuees on the corresponding time-

expanded network. They also use a dichotomic search to find the minimum clearance

time.

Few studies have applied the Benders decomposition to evacuation planning. [2]

introduced the Building Evacuation Problem with Shared Information (BEPSI), using

the Benders decomposition to solve the quickest flow problem in a building evacua-

tion. They showed that the BEPSI is NP-hard. Andreas and Smith (2009) solved a

variant of the quickest flow problem, using arc traversal penalty functions in order

3



to encourage earlier evacuation. The model includes a number of possible scenarios,

each with a given probability of occurring, and the objective is to minimize the ex-

pected sum of arc traversal penalties. The master problem chooses an evacuation

tree and the subproblem solves the corresponding flow problem. However, the master

problem does not explicitly consider the flow variables, and thus some of the trees

it generates contain subtours that make scheduling the evacuation infeasible. As a

result, subtours have to be removed, either as they appear or with the addition of

dummy flow variables at each node that force a spanning tree structure.

Very few studies on evacuation planning include the possibility of improving road

infrastructure, yet existing infrastructure capacity is often well below that which is

required for a large-scale evacuation [16]. Several studies use contraflow in order to

increase road capacities ([27], [24], [5], [14]). However, [27] warns that the presence

of contraflow lanes can lead to congestion due to drivers’ unfamiliarity with lane

reversal. [21] considered structural upgrades that would strengthen roads against

earthquake damage. In their model, the upgrades increase the probability that a

road will withstand an earthquake. This thesis applies the Benders decomposition

to a two-stage evacuation planning problem that is based upon the work by [6], but

with the addition of infrastructure upgrades.

1.2 Case Study: The Hawkesbury-Nepean Flood-

plain

The algorithms developed in this thesis will be tested on a case study of the Hawkesbury-

Nepean Floodplain. The Hawkesbury-Nepean Floodplain is a low-lying region located

near Sydney, Australia (Figure 1-1). Evacuation planners are concerned about the

prospect of a 1 in 100 years flood that would require the evacuation of the entire

region (Figure 1-2). For example, this could occur if the Warragamba Dam on the

Hawkesbury River fails and spills over (Figure 1-3). As the population of the region

is 80,000 people and quickly growing, traditional guideline-based evacuation planning
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will be insufficient to ensure the safety of the population, and robust computational

methods must be designed.

Figure 1-1: Hawkesbury River Basin. (from [9]).
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Figure 1-2: Areas at Risk of Heavy Flooding. (from [9]).

Figure 1-3: Warragamba Dam. (from [18]).

6



1.3 Convergent Evacuation Planning

Following [6], an evacuation scenario is represented by an evacuation graph 𝒢 = (𝒩 =

ℰ ∪ 𝒯 ∪ 𝒮,𝒜), where ℰ , 𝒯 , and 𝒮 are respectively the set of evacuation, transit, and

safe nodes, and 𝒜 is the set of arcs. Each evacuation node 𝑖 has a demand 𝑑𝑖, and

each arc 𝑒 is characterized by its travel time 𝑠𝑒, its capacity 𝑢𝑒, and the time 𝑓𝑒 at

which it becomes unavailable due to flooding. Figure 1-4 offers an example of how

evacuation instances are modeled. Figure 1-4a shows an evacuation scenario with one

evacuation node, labeled “0”, and two safe nodes, labeled “A” and “B.” The times on

each arc indicate when that arc will be flooded. Figure 1-4b is the corresponding

evacuation graph. The evacuation node has a demand of 20 vehicles. Arc (0, 1) has

a travel time of 2 min and a capacity of 5 vehicles/min, and is flooded at 13:00.

In order to model the evolution of the evacuation over time, we discretize the time

horizon and use a time-expanded graph 𝒢𝑥 = (𝒩 𝑥 = ℰ𝑥 ∪ 𝒯 𝑥 ∪ 𝒮𝑥,𝒜𝑥). To construct

the time-expanded graph from the static graph, we create copies of nodes over time

and replace each arc 𝑒 = (𝑖, 𝑗) with arcs 𝑒𝑡 = (𝑖𝑡, 𝑗𝑡+𝑠(𝑖,𝑗)), for each time that 𝑒 is

available. Figure 1-4c illustrates the corresponding time-expanded graph.

Definition 1. A graph 𝒢 = (𝒩 ,𝒜) is connected if for all 𝑘 ∈ ℰ, there exists a path

from 𝑘 to a safe node.

Definition 2. A graph 𝒢 = (𝒩 ,𝒜) is convergent if for all 𝑖 ∈ ℰ ∪ 𝒯 , the outdegree

of 𝑖 is 1.

As stated by [6], any connected evacuation graph 𝒢 contains a connected and conver-

gent subgraph 𝒢 ′. If an evacuation graph is connected and convergent, each evacuation

node will have a unique path to a safe node.

The Convergent Evacuation Planning Problem (CEPP) is defined as follows:

Definition 3. Given a connected evacuation graph 𝒢, the Convergent Evacuation

Planning Problem (CEPP) consists of finding a convergent subgraph 𝒢 ′ of 𝒢 and a

set of evacuee departure times that maximize the flow from evacuation nodes to safe

nodes.
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(a) Evacuation scenario (b) Evacuation graph

(c) Time-expanded graph

Figure 1-4: Modeling of an Evacuation Planning Problem. (from [6]).

1.4 A First Attempt

This section presents a Mixed-Integer Programming (MIP) model for solving the

CEPP. The model is adapted from [6]: Variable 𝑥𝑒 is binary and indicates whether

arc 𝑒 is selected and variable 𝜙𝑒𝑡 is continuous and represents the flow on arc 𝑒𝑡 ∈ 𝒜𝑥.

The evacuation is scheduled over a discretized time horizon ℋ.

max
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 (1.1)

s.t.∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥 (1.2)
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∑︁
𝑒∈𝛿+(𝑖)

𝑥𝑒 ≤ 1 ∀𝑖 ∈ ℰ ∪ 𝒯 (1.3)

𝜙𝑒𝑡 ≤ 𝑥𝑒 · 𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (1.4)∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (1.5)

𝜙𝑒𝑡 ≥ 0 ∀𝑒𝑡 ∈ 𝒜𝑥 (1.6)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝒜 (1.7)

In the models, 𝛿−(𝑖) and 𝛿+(𝑖) denote the set of incoming and outgoing edges of

node 𝑖 respectively. Constraints (1.2) require flow conservation at each of the transit

nodes, constraints (1.3) ensure that the output paths are convergent, constraints (1.4)

are the capacity constraints, constraints (1.5) state that no more than the demand

can be evacuated for each residential area, and the objective (1.1) maximizes the

total evacuee flow. Unfortunately, [6] showed that this MIP model does not scale to

the Hawkesbury-Nepean evacuation instances: After 24 hours of running time, the

number of people evacuated in the MIP model was substantially smaller than in their

two-stage approach.

1.5 Benders Decomposition: Theory

This section is adapted from the slides by [20]. The Benders decomposition is an

iterative algorithm for solving complex mixed-integer programs (MIP). The general

form of a linear MIP is

max 𝑧(𝑥, 𝑦) = 𝑐𝑇𝑥+ 𝑓(𝑦)

s.t. 𝐴𝑥+𝐵𝑦 ≤ 𝑏

𝑥 ≥ 0⃗

𝑦 ∈ 𝑆
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The idea behind the Benders decomposition is that maximizing 𝑧 over 𝑥 and 𝑦 can be

made easier by temporarily fixing the complicating 𝑦 variables, since max𝑥,𝑦 𝑧(𝑥, 𝑦) =

max𝑦 max𝑥 𝑧(𝑥, 𝑦). With 𝑦 is fixed, the Benders subproblem is

max 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏−𝐵𝑦

𝑥 ≥ 0𝑛

The dual of the subproblem is

min(𝑏−𝐵𝑦)𝑇𝑢 (1.8)

s.t. 𝐴𝑇𝑢 ≥ 𝑐 (1.9)

𝑢 ≥ 0𝑚 (1.10)

When solving the master problem, one must look ahead to ensure that the chosen 𝑦

leaves the subproblem feasible. Then 𝑦 must be chosen from the set 𝐹 := {𝑦 ∈ 𝑆 :

∃𝑥 ≥ 0𝑛 s.t. 𝐴𝑥 ≤ 𝑏−𝐵𝑦}. To choose such a 𝑦, we apply Farkas’ Lemma ([28]):

Lemma 1.5.1. If 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚, then the system {𝐴𝑥 = 𝑏, 𝑥 ≥ 0𝑛} has a

feasible solution 𝑥 iff the system {𝐴𝑇𝑢 ≥ 0𝑚, 𝑏𝑇𝑢 < 0} has no feasible solution 𝑢.

The subproblem is feasible (for fixed 𝑦) if

𝐴𝑥+ 𝑠 = 𝑏−𝐵𝑦

𝑥 ≥ 0𝑛

𝑠 ≥ 0𝑚

is feasible. For 𝑦 to lie in 𝐹 , Farkas’ lemma tells us that {𝐴𝑇𝑢 ≥ 0𝑛, (𝑏−𝐵𝑦−𝑠)𝑇𝑢 < 0}

cannot have a solution. Alternatively, we need

𝐴𝑇𝑢 ≥ 0𝑛 =⇒ (𝑏−𝐵𝑦 − 𝑠)𝑇𝑢 ≥ 0

10



If we restrict 𝑢 ≥ 0𝑚, then an equivalent condition is

𝐴𝑇𝑢 ≥ 0𝑛 =⇒ (𝑏−𝐵𝑦)𝑇𝑢 ≥ 0 (1.11)

Define 𝐶 to be the polyhedral cone {𝑢 : 𝑢 ≥ 0𝑚, 𝐴𝑇𝑢 ≥ 0𝑛}, and let 𝑅 denote the set

of extreme rays of 𝐶. Condition (1.11) holds for all 𝑢 ∈ 𝐶 if and only if it holds for

𝑢𝑟 ∈ 𝑅. Therefore 𝑦 ∈ 𝐹 if and only if (𝑏−𝐵𝑦)𝑇𝑢𝑟 ≥ 0 for all 𝑢𝑟 ∈ 𝑅.

The original problem can be rewritten as

max 𝑓(𝑦) + 𝑐𝑇𝑥

s.t. 𝑦 ∈ 𝐹

𝐴𝑥 ≤ 𝑏−𝐵𝑦

𝑥 ≥ 0𝑛

Alternatively, we can use the dual of the subproblem and write

max 𝑓(𝑦) + min(𝑏−𝐵𝑦)𝑇𝑢

s.t. 𝑦 ∈ 𝐹

𝐴𝑇𝑢 ≥ 𝑐

𝑢 ≥ 0𝑛

Letting 𝐸 denote the extreme points of the feasible region of the subproblem, ranging

over all 𝑦 ∈ 𝐹 , we write

max
𝑦∈𝐹

𝑓(𝑦) + min
𝑢𝑒∈𝐸

(𝑏−𝐵𝑦)𝑇𝑢𝑒

This can be expressed as

max 𝑧

s.t. 𝑧 ≤ 𝑓(𝑦) + (𝑏−𝐵𝑦)𝑇𝑢𝑒 ∀𝑢𝑒 ∈ 𝐸
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(𝑏−𝐵𝑦)𝑇𝑢𝑟 ≥ 0 ∀𝑢𝑟 ∈ 𝑅

In practice, the sets 𝐸 and 𝑅 would not be know a priori, so the extreme points

and rays must be added one by one. Let 𝐸 ′ and 𝑅′ respectively denote the possibly

incomplete set of extreme points and rays. The Restricted Master Problem is:

max 𝑧

s.t. 𝑧 ≤ 𝑓(𝑦) + (𝑏−𝐵𝑦)𝑇𝑢𝑒 ∀𝑢𝑒 ∈ 𝐸 ′

(𝑏−𝐵𝑦)𝑇𝑢𝑟 ≥ 0 ∀𝑢𝑟 ∈ 𝑅′

Since not all constraints are necessarily included in the Restricted Master Problem,

the solution 𝑧 is an upper bound. After solving the Restricted Master Problem, the

dual of the subproblem is solved. Note that the objective value of the subproblem is

a lower bound. If the objective value of the subproblem solution is unbounded, then

the solution 𝑢 is added to 𝑅′. If the objective value is finite, then 𝑢 is added to 𝐸 ′.

We call the constraint 𝑧 ≤ 𝑓(𝑦) + (𝑏−𝐵𝑦)𝑇𝑢 a Benders cut. The optimal solution to

the original problem is attained when the objective values of the Restricted Master

Problem and subproblem match. Since the number of extreme points and directions

in any polyhedron is finite, the Benders decomposition algorithm terminates in a

finite number of iterations.

1.5.1 Magnanti-Wong Method

While the Benders decomposition is guaranteed to converge in a finite number of

iterations, in practice it may not converge within a reasonable amount of time. One

reason for slow convergence is that the subproblem may be degenerate: for any fixed

𝑦 there can be multiple optimal subproblem solutions, and hence multiple possible

Benders cuts. In order to generate stronger Benders cuts, one can use the Magnanti-

Wong method [17]. At each iteration of the Benders decomposition, the Magnanti-

Wong method generates the strongest possible cut, called a Pareto-optimal cut.
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Algorithm 1 Benders decomposition [19]
Require: A tolerance 𝜖.
1: lowestRMP ←∞, highestSP ← −∞.
2: while true do
3: Solve the Restricted Master Problem → 𝑦, 𝑧(𝑅𝑀𝑃 ).
4: if 𝑧(𝑅𝑀𝑃 ) < 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑀𝑃 then
5: 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑀𝑃 ← 𝑧(𝑅𝑀𝑃 )
6: end if.
7: Solve the subproblem with 𝑦 fixed → 𝑥, 𝑧(𝑆𝑃 ).
8: if 𝑧(𝑆𝑃 ) > ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑃 then
9: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑃 ← 𝑧(𝑆𝑃 )

10: end if.
11: if 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑀𝑃 − ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑃 < 𝜖 then
12: return highestSP
13: end if
14: Generate a Benders cut from the subproblem dual variables and add it to the

Restricted Master Problem.
15: end while

Definition 4. A cut 𝑧 ≤ (𝑏−𝐵𝑦)𝑇𝑢* is Pareto-optimal if it dominates all other cuts,

i.e. (𝑏−𝐵𝑦)𝑇𝑢* ≥ (𝑏−𝐵𝑦)𝑇𝑢, for all y in S and for all u such that 𝑢 ≥ 0𝑚, 𝐴𝑇𝑢 ≥ 𝑐.

In that case we also say that 𝑢* is Pareto-optimal.

In order to generate a cut, the Magnanti-Wong method requires a core point of 𝑆.

Definition 5. Core point: Let 𝑟𝑖(𝑆) and 𝑆𝑐 be the relative interior and convex hull

of a set 𝑆 ⊆ R𝑚. Then a point 𝑦 ∈ 𝑟𝑖(𝑆𝑐) is called a core point.

Let 𝑦0 be a core point of 𝑆, let 𝑦 be fixed from the Restricted Master Problem, and

let 𝑢 be a solution to the dual of the subproblem (1.8) - (1.10). Then the Magnanti-

Wong Problem is given by

min(𝑏−𝐵𝑦0)𝑇𝑢

s.t. (𝑏−𝐵𝑦)𝑇𝑢 = (𝑏−𝐵𝑦)𝑇𝑢

𝐴𝑇𝑢 ≥ 𝑐

[17] showed that the solution 𝑢 to the Magnanti-Wong Problem is Pareto-optimal.

[19] recommends using the dual of the Magnanti-Wong Problem instead in some

13



circumstances:

max 𝑐𝑇 (𝑥+ 𝜉 · 𝑥)

s.t. 𝐴𝑥+ (𝑏−𝐵𝑦)𝜉 ≤ 𝑏− 𝑦0

𝑥 ≥ 0𝑛

Algorithm 2 Magnanti-Wong Method [19]
Require: A tolerance 𝜖.
1: lowestRMP ←∞, highestSP ← −∞.
2: while true do
3: Solve the Restricted Master Problem → 𝑦, 𝑧(𝑅𝑀𝑃 ).
4: if 𝑧(𝑅𝑀𝑃 ) < 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑀𝑃 then
5: 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑀𝑃 ← 𝑧(𝑅𝑀𝑃 )
6: end if.
7: Solve the subproblem with 𝑦 fixed → 𝑥, 𝑧(𝑆𝑃 ).
8: if 𝑧(𝑆𝑃 ) > ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑃 then
9: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑃 ← 𝑧(𝑆𝑃 )

10: end if.
11: if 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑀𝑃 − ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑃 < 𝜖 then
12: return highestSP
13: end if
14: Solve the dual Magnanti-Wong Problem with 𝑦 and 𝑥 fixed.
15: Generate a Benders cut from the dual variables of the dual Magnanti-Wong

Problem and add it to the Restricted Master Problem.
16: end while

14



Chapter 2

The Convergent Evacuation Planning

Problem

This chapter presents a Benders decomposition approach for solving the Convergent

Evacuation Planning Problem (CEPP), which separates the choice of the convergent

paths from the flow scheduling. The Master Problem, called the Tree Design Problem

(TDP), chooses the convergent evacuation paths. The subproblem, called the Flow

Scheduling Problem (FSP), schedules the departure times of evacuees on those paths.

2.1 Benders Decomposition

2.1.1 Tree Design Problem (Master Problem)

The Master Problem for the Benders decomposition will be the TDP, as defined

by [6]. The TDP is a relaxation of the CEPP where the evacuation flows and arc

capacities are aggregated over time. The objective of the TDP is to maximize the

flow of evacuees to safe nodes within the time horizon. The TDP is formulated as a

MIP model with a binary arc selection variable 𝑥𝑒 and a continuous flow variable 𝜓𝑒

for each arc 𝑒 ∈ 𝒜:

max
∑︁
𝑘∈ℰ

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒 (2.1)
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subject to∑︁
𝑒∈𝛿−(𝑖)

𝜓𝑒 −
∑︁

𝑒∈𝛿+(𝑖)

𝜓𝑒 = 0 ∀𝑖 ∈ 𝒯 (2.2)

∑︁
𝑒∈𝛿+(𝑖)

𝑥𝑒 ≤ 1 ∀𝑖 ∈ ℰ ∪ 𝒯 (2.3)

𝜓𝑒 ≤ 𝑥𝑒
∑︁
𝑡∈𝐻

𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜 (2.4)

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (2.5)

𝜓𝑒 ≥ 0 ∀𝑒 ∈ 𝒜 (2.6)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝒜 (2.7)

Constraints (2.2) impose flow conservation at each transit node, constraints (2.3)

ensure a convergent plan, constraints (2.4) and (2.5) enforce the capacity and demand

constraints, and the objective (2.1) maximizes the total evacuee flow.

2.1.2 Flow Scheduling Problem (Subproblem)

The output of the TDP is a connected and convergent evacuation graph 𝒢 encoded by

the values 𝑥𝑒. In the second stage, the Flow Scheduling Problem schedules the flow

of evacuees on the associated time-expanded graph 𝒢𝑥. The FSP can be formulated

as follows:

max
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 (2.8)

subject to∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥 (2.9)

𝜙𝑒𝑡 ≤ 𝑥𝑒 · 𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (2.10)∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (2.11)

𝜙𝑒𝑡 ≥ 0 ∀𝑒𝑡 ∈ 𝒜𝑥 (2.12)
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Constraints (2.9) are the flow conservation constraints, constraints (2.10) and (2.11)

are the capacity and demand constraints, and the objective (2.8) maximizes the flow.

2.1.3 Restricted Master Problem

The Benders cuts are of the form:

𝑧 ≤
∑︁
𝑒∈𝒜

𝑥𝑒
∑︁
𝑡∈ℋ

𝑢𝑒𝑡 · 𝑦𝑒𝑡 +
∑︁
𝑘∈ℰ

𝑑𝑘 · 𝑦𝑘. (2.13)

where {𝑦𝑒𝑡} and {𝑦𝑘} are the dual variables associated with constraints (2.10) and

(2.11) respectively. Note that the subproblem is never infeasible, since it is always

possible to send zero flow.

The RMP then becomes an extension of the TDP with the set of Benders cuts 𝒞:

max 𝑧

subject to

𝑧 ≤
∑︁
𝑘∈ℰ

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒

𝑧 ≤
∑︁
𝑒∈𝒜

𝑥𝑒
∑︁
𝑡∈ℋ

𝑢𝑒𝑡 · 𝑦𝑐𝑒𝑡 +
∑︁
𝑘∈ℰ

𝑑𝑘 · 𝑦𝑐𝑘 ∀𝑐 ∈ 𝒞

∑︁
𝑒∈𝛿−(𝑖)

𝜓𝑒 −
∑︁

𝑒∈𝛿+(𝑖)

𝜓𝑒 = 0 ∀𝑖 ∈ 𝒯

∑︁
𝑒∈𝛿+(𝑖)

𝑥𝑒 ≤ 1 ∀𝑖 ∈ ℰ ∪ 𝒯

𝜓𝑒 ≤ 𝑥𝑒
∑︁
𝑡∈𝐻

𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ

𝜓𝑒 ≥ 0 ∀𝑒 ∈ 𝒜

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝒜
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2.2 Magnanti-Wong Method

The Benders decomposition presented so far is guaranteed to converge in a finite

number of iterations. However, in practice, the algorithm rarely converged within a

reasonable amount of time, so the Magnanti-Wong Method was used to accelerate

convergence. A single core point was used for all iterations: for each node 𝑖, 𝑥𝑜𝑒 =

1
|𝛿+(𝑖)|+1

for each edge 𝑒 ∈ 𝛿+(𝑖). To obtain a Pareto-optimal Benders cut, the dual of

the Magnanti-Wong Problem was solved, as suggested by [19]:

max
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡+

𝜉
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 (2.14)

subject to∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥 (2.15)

𝜙𝑒𝑡 + �̄�𝑒 · 𝑢𝑒𝑡 · 𝜉 ≤ 𝑥0𝑒 · 𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (2.16)∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 + 𝑑𝑘 · 𝜉 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (2.17)

𝜙𝑒𝑡 ≥ 0 (2.18)

where {�̄�𝑒} are from the optimal solution of the RMP and {𝜙𝑒𝑡} are from the optimal

solution of the Benders subproblem. In order to generate a Pareto-optimal Benders

cut, the values {𝑦𝑒𝑡} and {𝑦𝑘} in the cut come from constraints (2.16) and (2.17)

respectively.

2.3 Results

This section presents experimental results for a case study of the evacuation of the

Hawkesbury-Nepean (HN) floodplain, which is located near Sydney. The HN evacua-

tion graph has 80 evacuation nodes, 184 transit nodes, 5 safe nodes, and 580 edges. A

time horizon of 600 min is used for scenarios without flooding and 1000 min for sce-
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narios with flooding, discretized into 5 minute time-steps. Several flood scenarios are

considered for this region. The population is scaled by a factor 𝑥 ∈ [1.1, 3] to model

projected population growth in the region. Each instance was run for ten hours, un-

less the algorithm converged earlier. The algorithms were implemented using JAVA 8

and GUROBI 6.0 and the results were obtained on a 64 bit machine with a 1.4 GHz

Intel Core i5 processor and 4 GB of RAM. Algorithms based upon the work by [6]

were reimplemented.

There are two main experimental settings: (1) The deadline setting used in [6]

that requires the evacuation to be completed by a deadline (10 hours); (2) A flood

setting in which the flood affects the road network at various times. In the deadline

setting, the road network is available for the duration of the evacuation. In contrast,

the flood setting takes into account the flood extent, the timing, and the height of

the water produced by an hydro-dynamic simulation for a severe, 1 in 100 years flood

event. The flood reaches the road network at 8, 9, 10, or 11 hours into the evacuation.

Table 2.1 displays the results for the deadline setting. The table reports the

number of evacuees reaching safety (in percent) in the tree design problem (TDP),

the flow scheduling problem (FSP), the last restricted master problem (LRMP), and

the Benders decompositions (BD) (using the Magnanti-Wong method). The table

also gives the CPU time and the duality gap. The duality gap is computed using the

formula 𝑧(𝐿𝑅𝑀𝑃 ))−𝑧(⋆)
𝑧(⋆)

where 𝑧(⋆) is the total number of evacuees reaching safety in

model ⋆.

The results show that the Benders decomposition closes all these instances in less

than 5 minutes (1.5 minutes on average). The Benders decomposition improves the

two-stage approach by an average of 0.4%. Notice that the TDP objective value is

a good approximation for the true objective value in these scenarios, as the initial

duality gap is very small. Figure 2-1 depicts the solution progress of the Benders

decomposition over time for Instance HN-2.5.

Table 2.2 displays the results of the two-stage and Benders decomposition ap-

proaches for the flood setting. Three versions of the Benders decomposition are

used: “Benders” denotes the standard decomposition, “Stationary M-W” denotes the
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2-Stage Approach Benders Decomposition
Instance CPU

(s)
TDP
(%)

FSP
(%)

Gap
(%)

CPU
(s)

LRMP(%) BD
(%)

Gap
(%)

HN 1.8 100 99.1 1.0 34.3 100 100 0
HN-1.1 0.8 100 99.8 0.2 11.7 100 100 0
HN-1.2 1.3 100 100 0 1.3 100 100 0
HN-1.4 1.1 100 100 0 1.1 100 100 0
HN-1.7 1.4 100 100 0 1.4 100 100 0
HN-2.0 7.7 96.2 95.5 0.7 165.5 96.1 96.1 0
HN-2.5 3.5 81.1 80.3 1.0 292.8 80.8 80.8 0
HN-3.0 1.5 68.1 67.5 0.9 174.4 68.0 68.0 0
Average 2.4 93.2 92.8 0.5 85.3 93.1 93.1 0

Table 2.1: Results for the HN Instances in the Deadline Setting.

Magnanti-Wong method with a stationary core point, and “Moving M-W” denotes

the Magnanti-Wong method with a moving core point, where at each iteration the

core point is taken to be the average of the previous core point and the current edge

selection variable values. The results indicate that these instances are significantly

harder since the Benders decomposition cannot always prove optimality in 10 hours

and the duality gap can be as high as 35% (instance HN-2.0/ 8 h) initially. But the

results also show that the Benders decomposition provides significant improvements

in solution quality compared to the two-stage approach, bridging about half of the ini-

tial duality gaps. The Benders decompositions may improve the two-stage approach

by more than 25% (instance HN-2.0/ 8 h). For the HN-1.7, HN-2.0, and HN-2.5

instances, the average improvements are 10.3%, 17.7%, and 10.6% for the standard

decomposition, 0.3%, 16.9%, and 10.9% for the stationary Magnanti-Wong method,

and 0.3%, 17.3%, and 11.1% for the standard decomposition. This is substantial in

the context of evacuation planning for the HN region, since this corresponds to the

evacuation of thousands more people. The duality gaps produced by the Benders

decompositions are reasonably small: For the HN-1.7, HN-2.0, and HN-2.5 instances,

they decrease from 10.7%, 19.1%, and 15.0% initially to 0%, 0.3%, and 3.5% for the

standard decomposition, to 0%, 1.0%, and 3.2% for the stationary Magnanti-Wong

method, and to 0%, 0.6%, and 3.0% for the moving Magnanti-Wong method. These

results show that the three decomposition methods yield comparable results when

run for the same amount of time.
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Figure 2-1: The Behavior of the Benders Decomposition in the Deadline Setting for
Instance HN-2.5.

2-Stage Benders Stationary M-W Moving M-W

Instance TDP
(%)

FSP
(%)

Gap
(%)

LRMP
(%)

BD
(%)

Gap
(%)

LRMP
(%)

BD
(%)

Gap
(%)

LRMP
(%)

BD
(%)

Gap
(%)

HN-1.7

8 h 100 88.4 13.1 100 100 0 100 100 0 100 100 0
9 h 100 83.0 20.5 100 100 0 100 100 0 100 100 0
10 h 100 93.3 7.2 100 100 0 100 100 0 100 100 0
11 h 100 98.1 2.0 100 100 0 100 100 0 100 100 0
Average 100 90.7 10.7 100 100 0 100 100 0 100 100 0

HN-2.0

8 h 98.8 73.1 35.1 98.8 97.8 1.0 98.8 95.8 3.1 98.8 96.3 2.5
9 h 99.6 81.5 22.3 99.6 99.6 0 99.6 98.9 0.8 99.6 99.6 0
10 h 100 88.6 12.8 100 100 0 100 100 0 100 100 0
11 h 100 94.3 6.0 100 100 0 100 100 0 100 100 0
Average 99.6 84.4 19.1 99.6 99.3 0.3 99.6 98.7 1.0 99.6 99.0 0.6

HN-2.5

8 h 97.4 78.6 23.9 97.4 90.0 8.2 97.4 90.6 7.5 97.4 90.4 7.7
9 h 98.1 80.2 22.3 98.1 94.1 4.2 98.1 94.2 4.1 98.1 94.7 3.5
10 h 98.8 89.5 10.4 98.8 97.1 1.8 98.8 97.7 1.1 98.8 98.2 0.6
11 h 99.5 96.2 3.4 99.5 99.5 0 99.5 99.5 0 99.5 99.5 0
Average 98.4 86.1 15.0 98.4 95.2 3.5 98.4 95.5 3.2 98.4 95.7 3.0

Table 2.2: Results for the HN-1.7, 2.0, and 2.5 Instances on the Flooding Setting.
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Chapter 3

The Convergent Evacuation Network

Design Problem

The Convergent Evacuation Network Design Problem (CENDP) extends the Conver-

gent Evacuation Planning Problem by allowing for the possibility of infrastructure

upgrades. The problem was proposed and formulated by [15] in his thesis. There are

two possible infrastructure upgrades: adding new lanes and elevating roads. Each

edge has an existing number of lanes 𝑛𝑒 as well as a maximum number of lanes that

can be added 𝑛+
𝑒 . We assume that capacity increases linearly with the number of

lanes. Each road segment can also be elevated, extending its availability by a given

amount of time. The costs of the upgrades are given by 𝑐𝑙(𝑒) for adding a single lane

to arc e and 𝑐𝑒(𝑒) for elevating arc e to extend its availability by a single time step.

These costs are given per unit length.

The Convergent Evacuation Network Design Problem can now be defined:

Definition 6. The Convergent Evacuation Network Design Problem (CENDP) con-

sists in finding a convergent evacuation plan that includes two kinds of infrastructure

upgrades: lane additions and road elevations.
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3.1 The MIP Model

This section presents a MIP model for solving the CENDP, adapted from [15]. Here

𝑥𝑒 is a binary variable that indicates whether arc 𝑒 is selected, 𝜙𝑒𝑡 is a continuous

variable representing the flow on arc 𝑒𝑡 ∈ 𝒜𝑥, 𝑧𝑒 is an integer variable indicating

the number of lanes added to arc 𝑒, and 𝑣𝑒𝑡 is a binary variable indicating whether

arc 𝑒 is available at time 𝑡, corresponding to a road elevation. The objective (1)

maximizes the total flow of evacuees, with 𝛿−(𝑘) and 𝛿+(𝑘) respectively denoting the

set of incoming and outgoing edges of node 𝑘. Without loss of generality, we assume

that all roads have the same cap on the number of additional lanes, 𝑛+, and that

the upgrade costs per unit distance are the same for all edges (𝑐𝑙 and 𝑐𝑒). The MIP

model for the CENDP is given by

max
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 (3.1)

s.t.∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥 (3.2)

∑︁
𝑒∈𝛿+(𝑖)

𝑥𝑒 ≤ 1 ∀𝑖 ∈ ℰ ∪ 𝒯 (3.3)

𝜙𝑒𝑡 ≤ 𝑥𝑒

(︂
1 +

𝑛+

𝑛𝑒

)︂
𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜, ∀𝑡 ∈ ℋ (3.4)

𝜙𝑒𝑡 ≤ 𝑣𝑒𝑡

(︂
1 +

𝑧𝑒
𝑛𝑒

)︂
𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜, ∀𝑡 ∈ ℋ (3.5)∑︁

𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (3.6)

𝑣𝑒𝑡 ≥ 𝑣𝑒𝑡+1 ∀𝑒𝑡, 𝑒𝑡+1 ∈ 𝒜𝑥 (3.7)

𝑣𝑒𝑡 = 1 ∀𝑒 ∈ 𝐴, ∀𝑡 ∈ [0, 𝑓𝑒) (3.8)
ℎ∑︁

𝑡=𝑓𝑒

𝑣𝑒𝑡 = 𝑤𝑒 ∀𝑒 ∈ 𝒜 (3.9)

∑︁
𝑒∈𝒜

𝑙𝑒 (𝑐𝑙 · 𝑧𝑒 + 𝑐𝑒 · 𝑤𝑒) ≤ ℬ (3.10)

𝑧𝑒 ≤ 𝑛+ ∀𝑒 ∈ 𝒜 (3.11)
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𝜙𝑒𝑡 ≥ 0 ∀𝑒 ∈ 𝒜 (3.12)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝒜 (3.13)

𝑧𝑒, 𝑤𝑒 ∈ Z+ ∀𝑒 ∈ 𝒜 (3.14)

𝑣𝑒𝑡 ∈ {0, 1} ∀𝑒 ∈ 𝒜, ∀𝑡 ∈ ℋ (3.15)

Constraints (3.2) ensure flow conservation at each transit node, constraints (3.3)

impose a convergent evacuation plan, and constraints (3.4) ensure that flow will only

travel on selected edges. Constraints (3.5) limit the flows to the edge capacities, taking

into account additional capacity due to road widening, and constraints (3.6) limit the

total outflow of each evacuation node to its demand. Constraints (3.7) ensure that

road blockages due to flooding will be permanent, and constraints (3.8) preserve road

availability before the onset of the flood. Constraint (3.10) is the budget constraint,

where 𝑙𝑒 is the length of arc 𝑒 and 𝑤𝑒 is number of units of elevation upgrades on 𝑒.

Note that constraints (3.5) are nonlinear as they contain products of two decision

variables. The next section, which presents the Benders decomposition, shows how

to linearize these constraints.

3.2 Benders Decomposition

The MIP formulation is computationally intractable for real-sized instances because

it attempts to simultaneously choose paths, add road upgrades, and schedule the

departure times of evacuees. In order to rectify this, the decisions are split into two

stages. The first stage is called the Tree Design Problem with Upgrades (TDP-U),

and it selects a set of convergent paths with accompanying infrastructure upgrades.

The second stage is called the Flow Scheduling Problem (FSP), and it schedules the

departure times of evacuees. Together, the two stages are referred to as the TDFS-

U. This section details a Benders decomposition approach (BD-U) for improving the

two-stage method, where the first stage becomes the master problem and the second

stage becomes the subproblem. The Magnanti-Wong method is applied in order to

generate Pareto-optimal cuts.
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3.2.1 Tree Design Problem with Upgrades (Master Problem)

The first stage in the algorithm, on which the restricted master problem will be based,

is the Tree Design Problem with Upgrades (TDP-U), adapted from [15]. The TDP-U

is formulated as a relaxation of the CENDP, where the flows and capacities have

been aggregated over time. The objective of the TDP-U is to maximize the flow

from evacuation nodes to safe nodes within the time horizon, given the infrastructure

upgrade budget. The TDP-U is a MIP model with a binary arc selection variable 𝑥𝑒,

continuous flow variables 𝜓𝑒 for each arc 𝑒 ∈ 𝒜, integer lane addition variables 𝑧𝑒,

and binary road elevation variables 𝑣𝑒𝑡 :

max
∑︁
𝑘∈ℰ

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒 (3.16)

s.t.∑︁
𝑒∈𝛿−(𝑖)

𝜓𝑒 −
∑︁

𝑒∈𝛿+(𝑖)

𝜓𝑒 = 0 ∀𝑖 ∈ 𝒯 (3.17)

∑︁
𝑒∈𝛿+(𝑖)

𝑥𝑒 ≤ 1 ∀𝑖 ∈ ℰ ∪ 𝒯 (3.18)

𝜓𝑒 ≤ 𝑥𝑒

(︂
1 +

𝑛+

𝑛𝑒

)︂∑︁
𝑡∈ℋ

𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜 (3.19)

𝜓𝑒 ≤
(︂

1 +
𝑧𝑒
𝑛𝑒

)︂∑︁
𝑡∈ℋ

𝑣𝑒𝑡 · 𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜 (3.20)

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (3.21)

𝑣𝑒𝑡 ≥ 𝑣𝑒𝑡+1 ∀𝑒𝑡, 𝑒𝑡+1 ∈ 𝒜𝑥 (3.22)

𝑣𝑒𝑡 = 1 ∀𝑒 ∈ 𝐴,∀𝑡 ∈ [0, 𝑓𝑒) (3.23)
ℎ∑︁

𝑡=𝑓𝑒

𝑣𝑒𝑡 ≤ 𝑤𝑒 ∀𝑒 ∈ 𝒜 (3.24)

∑︁
𝑒∈𝒜

𝑙𝑒 (𝑐𝑙 · 𝑧𝑒 + 𝑐𝑒 · 𝑤𝑒) ≤ ℬ (3.25)

𝑧𝑒 ≤ 𝑛+ ∀𝑒 ∈ 𝒜 (3.26)

𝜓𝑒 ≥ 0 ∀𝑒 ∈ 𝒜 (3.27)
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𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝒜 (3.28)

𝑧𝑒, 𝑤𝑒 ∈ Z+ ∀𝑒 ∈ 𝒜 (3.29)

𝑣𝑒𝑡 ∈ {0, 1} ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (3.30)

Constraints (3.17) impose the aggregate flow conservation at each transit node, con-

straints (3.18) enforce a tree structure, and constraints (3.19) ensure that flow will

only be sent on selected arcs. Constraints (3.20) and (3.21) are the capacity and

demand constraints, and constraint (3.25) is the budget constraint. The objective

(3.16) maximizes the aggregate flow. Constraints (3.20) are nonlinear as they contain

products of variables 𝑧𝑒 · 𝑣𝑒𝑡 . These constraints can be linearized by replacing each

product with a new variable 𝑝𝑒𝑡 to represent such a product and adding the following

constraints:

𝑝𝑒𝑡 ≤ 𝑧𝑒 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (3.31)

𝑝𝑒𝑡 ≤ 𝑣𝑒𝑡 · 𝑛+ ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (3.32)

𝑝𝑒𝑡 ∈ Z+ ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (3.33)

Theorem 3.2.1. The optimal solution of the RMP is an upper bound to the CENDP.

Proof. The proof relies on showing that any optimal solution to the CENDP is also

a feasible solution to the TDP-U with the same objective value, and is an extension

of the result by [6] for the CEPP. Let Φ = ({𝜙𝑒𝑡}, {𝑥𝑒}, {𝑧𝑒}, {𝑣𝑒𝑡}) be an optimal

solution to the CENDP, with an objective value of 𝑧(Φ). Clearly, constraints (3.18)

and (3.22) through (3.30) in the TDP-U will be satisfied. Let

𝜓𝑒 =
∑︁
𝑡∈ℋ

𝜙𝑒𝑡

for each arc 𝑒 ∈ 𝒜. The objective value of the TDP-U will be the same as the CENDP
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because

𝑧(Φ) =
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡

≡
∑︁
𝑘∈ℰ

∑︁
𝑒∈𝛿+(𝑘)

∑︁
𝑡∈ℋ

𝜙𝑒𝑡

=
∑︁
𝑘∈ℰ

∑︁
𝑒∈𝛿+(𝑘)

𝜓𝑒

Since Φ is a solution to the CENDP, we have

∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥

⇒
∑︁

𝑒∈𝛿−(𝑖)

∑︁
𝑡∈ℋ

𝜙𝑒𝑡 −
∑︁

𝑒∈𝛿+(𝑖)

∑︁
𝑡∈ℋ

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯

⇒
∑︁

𝑒∈𝛿−(𝑖)

𝜓𝑒 −
∑︁

𝑒∈𝛿+(𝑖)

𝜓𝑒 = 0 ∀𝑖 ∈ 𝒯

so that constraints (3.17) are satisfied. Similarly,

𝜙𝑒𝑡 ≤ 𝑥𝑒

(︂
1 +

𝑛+

𝑛𝑒

)︂
𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ

⇒
∑︁
𝑡∈ℋ

𝜙𝑒𝑡 ≤
∑︁
𝑡∈ℋ

𝑥𝑒

(︂
1 +

𝑛+

𝑛𝑒

)︂
𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜

⇒ 𝜓𝑒 ≤ 𝑥𝑒

(︂
1 +

𝑛+

𝑛𝑒

)︂∑︁
𝑡∈ℋ

𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜

satisfying constraints (3.19). Also,

𝜙𝑒𝑡 ≤ 𝑣𝑒𝑡

(︂
1 +

𝑧𝑒
𝑛𝑒

)︂
𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ

⇒
∑︁
𝑡∈ℋ

𝜙𝑒𝑡 ≤
∑︁
𝑡∈ℋ

𝑣𝑒𝑡

(︂
1 +

𝑧𝑒
𝑛𝑒

)︂
𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ

⇒ 𝜓𝑒 ≤
(︂

1 +
𝑧𝑒
𝑛𝑒

)︂∑︁
𝑡∈ℋ

𝑣𝑒𝑡 · 𝑢𝑒𝑡 ∀𝑒 ∈ 𝒜
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Finally,

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ

≡
∑︁

𝑒∈𝛿+(𝑘)

∑︁
𝑡∈ℋ

𝜙𝑒𝑡 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ

⇒
∑︁

𝑒∈𝛿+(𝑘)

𝜓𝑒 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ

3.2.2 Flow Scheduling Problem (Subproblem)

The TDP-U produces a convergent upgraded evacuation graph G. Next, the Flow

Scheduling Problem (FSP) determines the departure times of evacuees. The TDP

produces a convergent evacuation graph 𝒢 with infrastructure upgrades, specified by

𝑥𝑒, 𝑧𝑒, and 𝑣𝑒𝑡 . The Flow Scheduling Problem (FSP) uses these optimal values as

inputs to determine the departure times of evacuees in the time-expanded graph so

as to maximize the number of evacuees reaching safety. The FSP can be formulated

as follows (adapted from [15]):

max
∑︁
𝑘∈ℰ

∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 (3.34)

s.t.∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥 (3.35)

𝜙𝑒𝑡 ≤ 𝑥𝑒 · 𝑢𝑒𝑡
(︂

1 +
𝑛+

𝑛𝑒

)︂
∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (3.36)

𝜙𝑒𝑡 ≤ 𝑣𝑒𝑡 · 𝑢𝑒𝑡
(︂

1 +
𝑧𝑒
𝑛𝑒

)︂
∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ (3.37)∑︁

𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (3.38)

𝜙𝑒𝑡 ≥ 0 ∀𝑒𝑡 ∈ 𝒜𝑥 (3.39)
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Constraints (3.35) are the flow conservation constraints. Constraints (3.36) ensure

that flow will only be sent on edges in the network. Constraints (3.37) and (3.38) are

the capacity and demand constraints. Note that the right-hand sides of constraints

(3.36), (3.37), and (3.38) are constants. The objective (3.34) maximizes the flow.

3.2.3 The Benders Cuts

The Benders cuts are of the form:

𝑧 ≤
∑︁
𝑒∈𝒜

𝑥𝑒

(︂
1 +

𝑛+

𝑛𝑒

)︂∑︁
𝑡∈ℋ

𝑢𝑒𝑡 · 𝑦𝑒𝑡

+
∑︁
𝑒∈𝒜

∑︁
𝑡∈ℋ

(︂
𝑣𝑒𝑡 · 𝑢𝑒𝑡 +

𝑝𝑒𝑡 · 𝑢𝑒𝑡
𝑛𝑒

)︂
𝑦′𝑒𝑡

+
∑︁
𝑘∈ℰ

𝑑𝑘 · 𝑦𝑘 (3.40)

where {𝑦𝑒𝑡}, {𝑦′𝑒𝑡}, and {𝑦𝑘} are the dual variables associated with SP constraints

(3.36), (3.37), and (3.38) respectively. The Restricted Master Problem (RMP) is

then an extension of the TDP-U with the set of Benders cuts 𝒞.

3.3 Magnanti-Wong Method

The Magnanti-Wong Method is used again in order to strengthen the Benders cuts.

The dual of the Magnanti-Wong Problem is solved:

max
∑︁
𝑘∈ℰ

⎛⎝ ∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 + 𝜉
∑︁

𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡

⎞⎠ (3.41)

s.t.∑︁
𝑒𝑡∈𝛿−(𝑖)

𝜙𝑒𝑡 −
∑︁

𝑒𝑡∈𝛿+(𝑖)

𝜙𝑒𝑡 = 0 ∀𝑖 ∈ 𝒯 𝑥 (3.42)

𝜙𝑒𝑡 + �̄�𝑒 · 𝑢𝑒𝑡
(︂

1 +
𝑛+

𝑛𝑒

)︂
· 𝜉 ≤ 𝑥0𝑒 · 𝑢𝑒𝑡

(︂
1 +

𝑛+

𝑛𝑒

)︂
∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ (3.43)

𝜙𝑒𝑡 + 𝑣𝑒𝑡 · 𝑢𝑒𝑡
(︂

1 +
𝑧𝑒
𝑛𝑒

)︂
· 𝜉 ≤ 𝑣0𝑒𝑡 · 𝑢𝑒𝑡

(︂
1 +

𝑧𝑜𝑒
𝑛𝑒

)︂
∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ (3.44)
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∑︁
𝑒𝑡∈𝛿+(𝑘)

𝜙𝑒𝑡 + 𝑑𝑘 · 𝜉 ≤ 𝑑𝑘 ∀𝑘 ∈ ℰ (3.45)

𝜙𝑒𝑡 ≥ 0 ∀𝑒𝑡 ∈ 𝒜𝑥 (3.46)

where {�̄�𝑒}, {𝑧𝑒} and {𝑣𝑒𝑡} are from the optimal solution to the RMP and {𝜙𝑒𝑡} are

from the optimal solution to the SP. As a core point, we take

𝑥𝑜𝑒 = 1
|𝛿+(𝑖)|+1

, ∀𝑖 ∈ 𝒩 , ∀𝑒 ∈ 𝛿+(𝑖)

𝑧𝑜𝑒 = min
(︁

ℬ
2·𝑙𝑒·𝑐𝑙·|𝒜| ,

𝑛+

2

)︁
𝑤𝑜

𝑒 = ℬ−1
2·𝑙𝑒·𝑐𝑒·|𝒜|

𝑣𝑜𝑒𝑡 =

⎧⎪⎨⎪⎩1 if 𝑡 < 𝑓𝑒 + 𝑤𝑜
𝑒 − 1

0 if 𝑡 ≥ 𝑓𝑒 + 𝑤𝑜
𝑒 − 1

Note that this is not a true core point, since the unfixed {𝑣𝑜𝑒𝑡} should strictly decrease

with time due to constraints (3.22). However, this would cause issues with numerical

precision. The Benders cuts use dual variables from the Magnanti-Wong Problem:

which means {𝑦𝑒𝑡}, {𝑦′𝑒𝑡}, and {𝑦𝑘} are the dual variables associated with constraints

(3.43), (3.44), and (3.45) respectively.

3.4 Results

This section compares the results of using the simple two-stage approach versus the

Benders decomposition on the Hawkesbury-Nepean case study. Each experiment was

run with a time horizon of 600 min, with flooding arriving 5, 6, or 7 hours into the

evacuation period. The time horizon was discretized into 5 minute intervals. The

upgrade costs were taken to be 5 units per kilometer of additional lanes built and

0.01 units per kilometer for elevating a road to extend its availability by one time

step. The budget is 100 units. The algorithms were compared on three high popu-

lation instances, HN-1.7, HN-2.0, and HN-2.5, representing a 70%, 100%, and 150%

increase in population, respectively, in order to reflect future population growth in the

Hawkesbury- Nepean region. Each instance was run ten hours, unless it converged
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2-Stage Benders Stationary M-W Moving M-W

Instance TDP
(%)

FSP
(%)

Gap
(%)

LRMP
(%)

BD
(%)

Gap
(%)

LRMP
(%)

BD
(%)

Gap
(%)

LRMP
(%)

BD
(%)

Gap
(%)

HN-1.7

5 h 100 91.1 9.7 100 99.4 0.6 100 99.0 1.0 100 98.2 1.8
6 h 100 90.1 11.0 100 100 0 100 100 0 100 100 0
7 h 100 98.5 1.5 100 100 0 100 100 0 100 100 0

HN-2.0

5 h 100 92.2 8.4 100 96.1 4.1 100 97.8 2.3 100 96.4 3.8
6 h 100 92.7 7.9 100 100 0 100 99.5 0.5 100 99.9 0.1
7 h 100 95.8 4.4 100 100 0 100 100 0 100 100 0

HN-2.5

5 h 100 88.9 12.5 100 93.4 7.0 100 92.0 8.6 100 93.1 7.5
6 h 100 91.5 9.3 100 96.5 3.6 100 97.2 2.8 100 97.0 3.1
7 h 100 94.3 6.1 100 99.0 1.0 100 98.6 1.4 100 98.6 1.5

Table 3.1: Results for the HN-1.7, 2.0, and 2.5 Instances on the Flooding Setting.

earier. The algorithms were implemented with JAVA 8 and GUROBI 6.0. The FSP

algorithm from [6] was reimplemented. The results were obtained on a 64 bit machine

with a 1.4 GHz Intel Core i5 processor and 4 GB of RAM.

Table 3.1 compares the results of the two-stage approach to the Benders method,

the Magnanti-Wong method with a stationary core point and the Magnanti-Wong

method with a moving core point. The two-stage method yields duality gaps ranging

from 1.5% to 12.5%. The Benders approaches are able to close three of the instances,

and reduce the duality gap substantially in other instances.
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Chapter 4

The Cell Transmission Model

So far, the progress of the evacuation has been modeled macroscopically. Vehicles

have been modeled as a uniform flow traveling from one road segment to the next,

sent only if road capacity allowed. Due to its simplicity, this kind of macroscopic

modeling misses key traffic flow phenomena, such as congestion propagation when

traffic density is near capacity, which is commonly seen during evacuations. This

chapter presents the implementation of an alternate, mesoscopic, traffic simulation

method called the Cell Transmission Model.

4.1 Background

The Cell Transmission Model (CTM), introduced by [4], is a model of vehicle flow in

networks, where roads are divided into segments called cells. The CTM is a discrete

approximation to the hydrodynamic traffic model. Through a series of difference

equations, the CTM expresses the following density-flow relationship:

𝑞 = min (𝑣𝑘, 𝑞𝑚𝑎𝑥, 𝑣(𝑘𝑗 − 𝑘))

where 𝑞 is the flow, 𝑣 is the free-flow speed, 𝑘 is the density, 𝑞𝑚𝑎𝑥 is the maximum flow,

and 𝑘𝑗 is the jam density. The term 𝑣(𝑘𝑗 − 𝑘) represents a backwards-moving shock-

wave, limiting 𝑞 when the density is sufficiently close to the jam density. Substituting
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into the differential flow conservation equation,

𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
= −𝜕𝑘(𝑥, 𝑡)

𝜕𝑡

one obtains

𝜕min (𝑣𝑘, 𝑞𝑚𝑎𝑥, 𝑣(𝑘𝑗 − 𝑘))

𝜕𝑥
= −𝜕𝑘(𝑥, 𝑡)

𝜕𝑡

This coincides with the differential hydrodynamic traffic model [4].

A time step ℎ is fixed, and vehicle counts in each cell are maintained incrementally

at each clock tick, with several difference equations relating flows to densities. The

length of a cell is set to be the distance traveled by a vehicle moving at free-flow speed

during time ℎ through that road. The road network has a source node, linked to all

evacuation nodes by single time step length cells. Vehicles leaving evacuation nodes

go through a series of transit nodes to eventually arrive at one of the safety nodes,

with 𝑆 collectively denoting the set of safety nodes.

4.1.1 CTM Simulation

The CTM simulation maintains the amounts of vehicles in each cell at each time step

through update equations, for a given evacuation graph described by binary values

{𝑦𝑐} and evacuee departure schedule given by {𝑟𝑐(𝑡)}.

Inputs:

𝑦𝑐: A binary value that equals 1 if a cell is included into the evacuation network, and

0 otherwise

𝑟𝑐(𝑡): The number of vehicles entering a cell 𝑐 that is going out of the source at time

𝑡

Values Maintained:

𝑥𝑐(𝑡): The number of vehicles in cell 𝑐 (not going out of the source) at time 𝑡

𝑓 𝑖𝑛
𝑐 (𝑡): The number of vehicles flowing into cell 𝑐 at time 𝑡

𝑓 𝑜𝑢𝑡
𝑐 (𝑡): The number of vehicles flowing out of cell 𝑐 at time 𝑡
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Parameters:

𝑢𝑐(𝑡): The capacity of cell 𝑐 at time 𝑡, measured in number of vehicles/ time step in 𝑐

𝑤𝑐: Congestion wave speed, in lengths of 𝑐 per time step

𝑥𝑗𝑐: The jam density of cell 𝑐, in vehicles

The number of people successfully evacuated is maintained by 𝑐𝑜𝑢𝑛𝑡.

Initialization

Initially, the road network is empty, i.e. 𝑥𝑐(0) is set to 0 for all cells 𝑐.

Propagation

For each cell 𝑐, the next edge along the evacuation route, 𝑐′, is identified through

examining the edge binary values (as long as 𝑐 doesn’t enter into a safe node). For

a time 𝑡 ≥ 0, the following updates are performed. The notation
∑︀

𝑐′→𝑐 means “sum

over all cells 𝑐′ immediately upstream from 𝑐.”

1. For edges leaving the source:

𝑤𝑐(𝑡) = 𝑤𝑐′(𝑥
𝑗
𝑐′ − 𝑥𝑐′(𝑡))− 𝑓

𝑖𝑛
𝑐′ (𝑡) + 𝑓 𝑜𝑢𝑡

𝑐 (𝑡− 1)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) = min(𝑥𝑐(𝑡), 𝑤𝑐(𝑡))

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑟𝑐(𝑡)− 𝑓 𝑜𝑢𝑡
𝑐 (𝑡)

The outflow is the minimum of what is currently in the cell and the shock wave

quantity 𝑤𝑐(𝑡). A shock wave is a traffic phenomenon where high density traffic

causes delays to occur upstream, and is a distinctive feature of the CTM. The

value of 𝑤𝑐(𝑡) models the shock wave coming from the downstream cell. If 𝑥𝑐(𝑡)

is very close to the jam density 𝑥𝑗𝑐, the flow into cell 𝑐 will be limited. The

outflow from 𝑐 into 𝑐′ is also limited by how much flow enters 𝑐′ at time 𝑡,

except that which arrives from 𝑐 itself.

2. For edges between transit nodes:

𝑤𝑐(𝑡) = 𝑤𝑐′(𝑥
𝑗
𝑐′ − 𝑥𝑐′(𝑡))− 𝑓

𝑖𝑛
𝑐′ (𝑡) + 𝑓 𝑜𝑢𝑡

𝑐 (𝑡− 1)
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𝑓 𝑜𝑢𝑡
𝑐 (𝑡) = min(𝑢𝑐(𝑡), 𝑥𝑐(𝑡), 𝑤𝑐(𝑡))

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑓 𝑖𝑛
𝑐 (𝑡)− 𝑓 𝑜𝑢𝑡

𝑐 (𝑡)

The min for these edges additionally limits flow to the capacity of the cell.

3. For edges coming into safe nodes:

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) = min(𝑢𝑐(𝑡), 𝑥𝑐(𝑡))

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑓 𝑖𝑛
𝑐 (𝑡)− 𝑓 𝑜𝑢𝑡

𝑐 (𝑡)

𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡+ 𝑓 𝑜𝑢𝑡
𝑐 (𝑡)

4. In order to move the exiting flow along, set 𝑓 𝑖𝑛
𝑐 (𝑡 + 1) =

∑︀
𝑐′→𝑐 𝑓

𝑜𝑢𝑡
𝑐′ (𝑡) for all

cells 𝑐 with incoming edges, and add this inflow on to 𝑥𝑐(𝑡+ 1).

Finally, at the end of the time horizon, the number of people successfully evacuated

is reported to be 𝑐𝑜𝑢𝑛𝑡.

4.1.2 CTM Optimization

Optimization over the CTM is largely similar to the CTM simulation. The parameters

remain the same, and the values {𝑦𝑐}, {𝑥𝑐(𝑡)}, {𝑟𝑐(𝑡)}, {𝑓 𝑜𝑢𝑡
𝑐 (𝑡)}, and {𝑓 𝑖𝑛

𝑐 (𝑡)} become

variables.

4.1.3 The CTM Equations

The implementation of the CTM mixed-integer linear programming model is based

on the work of [13].

The number of vehicles in a cell 𝑐 at time 𝑡+ 1 is equal to the number of vehicles in

𝑐 at time 𝑡 plus the net inflow:

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑟𝑐(𝑡)− 𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ∀𝑒 ∈ 𝛿+(𝑠),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑓 𝑖𝑛
𝑐 (𝑡)− 𝑓 𝑜𝑢𝑡

𝑐 (𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝒮),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ
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𝑥𝑐(𝑡+ 1) = 𝑓 𝑖𝑛
𝑐 (𝑡) ∀𝑒 ∈ 𝛿−(𝒮),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

Flow conservation is ensured by

∑︁
𝑐∈𝛿−(𝑖)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡)−

∑︁
𝑐∈𝛿+(𝑖)

𝑓 𝑖𝑛
𝑐 (𝑡+ 1) = 0 ∀𝑖 ∈ ℰ ∪ 𝒯 ,∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

The demand constraints are expressed as:

∑︁
𝑡∈ℋ

𝑟𝑐(𝑡) ≤ 𝑑𝑐.ℎ𝑒𝑎𝑑 ∀𝑒 ∈ 𝛿+(𝑠)

Outflows are governed by three main equations:

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑟𝑐(𝑡) ∀𝑒 ∈ 𝛿+(𝑠) (4.1)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑥𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆) (4.2)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑢𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆) (4.3)

Equation (4.1) limits outflow from cells leaving the source to the current inflow,

equation (4.2) limits outflow from intermediary cells to be less than what is currently

inside the cell, and (4.3) is the capacity constraint.

Inflows are limited according to the shock wave quantity:

𝑓 𝑖𝑛
𝑐 (𝑡) ≤ 𝑤𝑐

(︀
𝑥𝑗𝑐 − 𝑥𝑐(𝑡)

)︀
∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

Taken together, the inequalities governing 𝑓 𝑜𝑢𝑡 and 𝑓 𝑖𝑛 mimic the flow-density rela-

tionship in the CTM simulation. However, they do not capture the min part; as min

is nonlinear, we must settle for a series of inequalities instead.

Cell densities are related to the availability of cells by the following equations:

𝑥𝑐(𝑡) ≤𝑀𝑦𝑐 ∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ∑︁
𝑐′∈𝛿+(𝑒)

𝑦𝑐′ ≤ 1 ∀𝑒 ∈ 𝒜

36



𝑦𝑐 ∈ {0, 1} ∀𝑒 ∈ 𝒜

Additionally, there are several boundary conditions on flows and densities. Taken

together, they ensure a clear network at the beginning and end of the simulation.

4.2 Evacuation Planning over the Cell Transmission

Model

This section proposes a Mixed Integer Programming model for maximizing the num-

ber of evacuees reaching safety using the Cell Transmission Model to simulate vehicle

flow during evacuation. The objective function maximizes the number of evacuees

entering the network (who all reach safety), based on the equations governing vehicle

flows in the CTM.

4.2.1 MIP Model

max
∑︁
𝑡∈ℋ

∑︁
𝑐∈𝛿+(𝑠)

𝑟𝑐(𝑡) (4.4)

s.t.

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑟𝑐(𝑡)− 𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ∀𝑒 ∈ 𝛿+(𝑠),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.5)

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑓 𝑖𝑛
𝑐 (𝑡)− 𝑓 𝑜𝑢𝑡

𝑐 (𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝒮),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.6)

𝑥𝑐(𝑡+ 1) = 𝑓 𝑖𝑛
𝑐 (𝑡) ∀𝑒 ∈ 𝛿−(𝒮),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.7)∑︁
𝑐∈𝛿−(𝑖)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡)−

∑︁
𝑐∈𝛿+(𝑖)

𝑓 𝑖𝑛
𝑐 (𝑡+ 1) = 0 ∀𝑖 ∈ ℰ ∪ 𝒯 ,∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.8)
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∑︁
𝑡∈ℋ

𝑟𝑐(𝑡) ≤ 𝑑𝑐.ℎ𝑒𝑎𝑑 ∀𝑒 ∈ 𝛿+(𝑠)

(4.9)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑟𝑐(𝑡) ∀𝑒 ∈ 𝛿+(𝑠)

(4.10)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑥𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

(4.11)

𝑓 𝑜𝑢𝑡
𝑐 ≤ 𝑢𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

(4.12)

𝑓 𝑖𝑛
𝑐 (𝑡) ≤ 𝑤𝑐

(︀
𝑥𝑗𝑐 − 𝑥𝑐(𝑡)

)︀
∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

(4.13)

𝑥𝑐(𝑡) ≤𝑀𝑦𝑐 ∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ

(4.14)∑︁
𝑐′∈𝛿+(𝑒)

𝑦𝑐′ ≤ 1 ∀𝑒 ∈ 𝒜

(4.15)

𝑦𝑐 ∈ {0, 1} ∀𝑒 ∈ 𝒜

(4.16)

𝑓 𝑖𝑛
𝑐 (0) = 0 ∀𝑒 ∈ 𝒜

(4.17)

𝑓 𝑜𝑢𝑡
𝑐 (𝑇 ) = 0 ∀𝑒 ∈ 𝒜

(4.18)

𝑓 𝑖𝑛
𝑐 (𝑡) = 0 ∀𝑒 ∈ 𝛿+(𝑠)

(4.19)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) = 0 ∀𝑒 ∈ 𝛿−(𝑆)

(4.20)

𝑟𝑐(𝑇 ) = 0 ∀𝑒 ∈ 𝛿+(𝑠)

(4.21)
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𝑟𝑐(𝑡) ≥ 0 ∀𝑒 ∈ 𝛿+(𝑠),∀𝑡 ∈ ℋ

(4.22)

𝑥𝑐(0) = 0 ∀𝑒 ∈ 𝒜

(4.23)

𝑥𝑐(𝑇 ) = 0 ∀𝑒 /∈ 𝛿−(𝒮)

(4.24)

𝑥𝑐(𝑡) ≥ 0 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ

(4.25)

4.3 Benders Decomposition

The CTM MIP model is computationally intractable for real-sized problem instances,

so the Benders decomposition is applied again. The master problem will be the

TDP-CTM, which is a relaxation of the MIP. The subproblem, called the FSP-CTM,

schedules the departure times of evacuees on the paths generated by the TDP-CTM.

4.3.1 TDP-CTM (Master Problem)

The Master Problem is the Tree Design Problem on the Cell Transmission Model

(TDP-CTM), and is a relaxation of the MIP. 𝑅𝑐, 𝑋𝑐, 𝐹 𝑖𝑛
𝑐 , and 𝐹 𝑜𝑢𝑡

𝑐 represent aggre-

gated inflow, occupancy, and flow variables respectively. All constraints have been

summed over time.

max
∑︁

𝑐∈𝛿+(𝑠)

𝑅𝑐 (4.26)

s.t.

𝑅𝑐 − 𝐹 𝑜𝑢𝑡
𝑐 = 0 ∀𝑒 ∈ 𝛿+(𝑠) (4.27)

𝐹 𝑖𝑛
𝑐 − 𝐹 𝑜𝑢𝑡

𝑐 = 0 ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝒮) (4.28)

𝑋𝑐 − 𝐹 𝑖𝑛
𝑐 = 0 ∀𝑒 ∈ 𝛿−(𝒮) (4.29)∑︁

𝑐∈𝛿−(𝑖)

𝐹 𝑜𝑢𝑡
𝑐 −

∑︁
𝑐∈𝛿+(𝑖)

𝐹 𝑖𝑛
𝑐 = 0 ∀𝑖 ∈ ℰ ∪ 𝒯 (4.30)
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𝑅𝑐 ≤ 𝑑𝑐.ℎ𝑒𝑎𝑑 ∀𝑒 ∈ 𝛿+(𝑠) (4.31)

𝐹 𝑜𝑢𝑡
𝑐 ≤ 𝑅𝑐 ∀𝑒 ∈ 𝛿+(𝑠) (4.32)

𝐹 𝑜𝑢𝑡
𝑐 ≤ 𝑋𝑐 ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆) (4.33)

𝐹 𝑜𝑢𝑡
𝑐 ≤

∑︁
𝑡∈ℋ

𝑢𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆) (4.34)

𝐹 𝑖𝑛
𝑐 ≤ 𝑤𝑐

(︀
|ℋ|𝑥𝑗𝑐 −𝑋𝑐

)︀
∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆) (4.35)

𝑋𝑐 ≤𝑀𝑦𝑐 ∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ (4.36)∑︁
𝑐′∈𝛿+(𝑒)

𝑦𝑐′ ≤ 1 ∀𝑒 ∈ 𝒜 (4.37)

𝑦𝑐 ∈ {0, 1} ∀𝑒 ∈ 𝒜 (4.38)

𝐹 𝑖𝑛
𝑐 = 0 ∀𝑒 ∈ 𝛿+(𝑠) (4.39)

𝐹 𝑜𝑢𝑡
𝑐 = 0 ∀𝑒 ∈ 𝛿−(𝑆) (4.40)

𝑅𝑐 ≥ 0 ∀𝑒 ∈ 𝛿+(𝑠) (4.41)

𝑋𝑐 ≥ 0 ∀𝑒 ∈ 𝒜 (4.42)

4.3.2 FSP-CTM (Subproblem)

The Flow Scheduling Problem on the Cell Transmission Model (FSP-CTM) takes

the edges selected by the TDP-CTM and schedules the departure times of evacuees,

propagating flows according to the CTM.

max
∑︁
𝑡∈ℋ

∑︁
𝑐∈𝛿+(𝑠)

𝑟𝑐(𝑡) (4.43)

s.t.

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑟𝑐(𝑡)− 𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ∀𝑒 ∈ 𝛿+(𝑠),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.44)

𝑥𝑐(𝑡+ 1) = 𝑥𝑐(𝑡) + 𝑓 𝑖𝑛
𝑐 (𝑡)− 𝑓 𝑜𝑢𝑡

𝑐 (𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝒮),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.45)

𝑥𝑐(𝑡+ 1) = 𝑓 𝑖𝑛
𝑐 (𝑡) ∀𝑒 ∈ 𝛿−(𝒮),∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.46)
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∑︁
𝑐∈𝛿−(𝑖)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡)−

∑︁
𝑐∈𝛿+(𝑖)

𝑓 𝑖𝑛
𝑐 (𝑡+ 1) = 0 ∀𝑖 ∈ ℰ ∪ 𝒯 ,∀(𝑡, 𝑡+ 1) ∈ ℋ ×ℋ

(4.47)∑︁
𝑡∈ℋ

𝑟𝑐(𝑡) ≤ 𝑑𝑐.ℎ𝑒𝑎𝑑 ∀𝑒 ∈ 𝛿+(𝑠)

(4.48)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑟𝑐(𝑡) ∀𝑒 ∈ 𝛿+(𝑠)

(4.49)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) ≤ 𝑥𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

(4.50)

𝑓 𝑜𝑢𝑡
𝑐 ≤ 𝑢𝑐(𝑡) ∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

(4.51)

𝑓 𝑖𝑛
𝑐 (𝑡) ≤ 𝑤𝑐

(︀
𝑥𝑗𝑐 − 𝑥𝑐(𝑡)

)︀
∀𝑒 : 𝑒 /∈ 𝛿+(𝑠), 𝑒 /∈ 𝛿−(𝑆)

(4.52)

𝑥𝑐(𝑡) ≤𝑀𝑦𝑐 ∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ

(4.53)

𝑓 𝑖𝑛
𝑐 (0) = 0 ∀𝑒 ∈ 𝒜

(4.54)

𝑓 𝑜𝑢𝑡
𝑐 (𝑇 ) = 0 ∀𝑒 ∈ 𝒜

(4.55)

𝑓 𝑖𝑛
𝑐 (𝑡) = 0 ∀𝑒 ∈ 𝛿+(𝑠)

(4.56)

𝑓 𝑜𝑢𝑡
𝑐 (𝑡) = 0 ∀𝑒 ∈ 𝛿−(𝑆)

(4.57)

𝑟𝑐(𝑇 ) = 0 ∀𝑒 ∈ 𝛿+(𝑠)

(4.58)

𝑟𝑐(𝑡) ≥ 0 ∀𝑒 ∈ 𝛿+(𝑠),∀𝑡 ∈ ℋ

(4.59)
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𝑥𝑐(0) = 0 ∀𝑒 ∈ 𝒜

(4.60)

𝑥𝑐(𝑇 ) = 0 ∀𝑒 /∈ 𝛿−(𝒮)

(4.61)

𝑥𝑐(𝑡) ≥ 0 ∀𝑒 ∈ 𝒜,∀𝑡 ∈ ℋ

(4.62)

4.3.3 Benders Cuts

The Benders cuts are of the form

𝑧 ≤
∑︁
𝑘∈ℰ

𝑑𝑘𝑣𝑘 +
∑︁
𝑡∈ℋ

∑︁
𝑐∈𝒞

𝑢𝑒(𝑡)𝑣𝑐(𝑡) +
∑︁
𝑡∈ℋ

∑︁
𝑒/∈𝛿+(𝑠),𝑒/∈𝛿−(𝑆)

𝑤𝑐𝑥
𝑗
𝑐𝑣𝑐(𝑡)

′ +𝑀
∑︁
𝑐∈𝒜

𝑦𝑐𝑣𝑐

where {𝑣𝑘} are the dual values associated with the demand constraints (4.48), {𝑣𝑐(𝑡)}

are the dual values associated with the capacity constraints (4.51), {𝑣𝑐(𝑡)′} are the

dual values associated with the shock wave flow constraints (4.52), and {𝑣𝑐} are the

dual values associated with the “flow on paths” constraints (4.53). The cuts are

added one by one to the Restricted Master Problem, which is based on the TDP-

CTM. In practice, the 𝑀 constant is dropped because constraints (4.53) could have

been represented as

1

𝑀
𝑥𝑐(𝑡) ≤ 𝑦𝑐 ∀𝑒 ∈ 𝒜, 𝑡 ∈ ℋ

4.4 Results

The algorithms were evaluated on two of the higher population instances, HN-1.7

and HN-2.0. The time horizon was 600 min, with flooding arriving 5 or 8 hours

into the horizon. The jam density was set to 56 vehicles per kilometer lane and

the congestion wave speed was set to 20 kilometers per hour (as suggested by [23]).

Each instance was run for one hour, unless the algorithm converged earlier. The

algorithms were implemented using JAVA 8 and GUROBI 6.0 and the results were
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obtained on a 64 bit machine with a 1.4 GHz Intel Core i5 processor and 4 GB

of RAM. The Cell Transmission Model (CTM) was compared to the macroscopic

model from Chapter 1 (Macro) on the same evacuation graph. When constructing

evacuation graphs from the original road network, two settings were used. “A” denotes

the standard setting, and “B” denotes the setting where additional cells are included

at intersections. Through a transformation of the evacuation graph, the “B” setting

allows for additional patterns of flow at intersections that would have ordinarily been

classified as divergent, but are actually easy for authorities to separate.

Overall, the results show that the macroscopic model evacuates more people than

the CTM. This suggests that either the macroscopic model overestimates the number

of people that can be evacuated, or the CTM is much slower to converge. The next

section evaluates the plans proposed by the CTM and the macroscopic model by

running them on CTM and macroscopic simulators.

The “B” setting led to drastic improvements in the number of people evacuated

compared to the “A” setting. This was not entirely obvious, since though the presence

of extra edges around intersections in the “B” setting greatly increases the number of

paths that can be chosen from, adding edges comes at a price of making the model

more complicated and slower to run.
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2-Stage Benders

Instance TDP
(%)

FSP
(%)

Gap
(%)

CPU
(s)

RMP
(%)

BD (%) Gap
(%)

HN-1.7, 5h

Macro-A 97.8 84.5 15.7 2370.3 97.8 93.0 5.1
CTM-A 97.7 87.3 11.9 3358.4 97.7 91.6 6.6
Macro-B 99.3 84.0 18.2 2635.5 99.3 93.9 5.7
CTM-B 99.2 85.9 15.5 3322.5 99.2 87.5 13.3

HN-1.7, 8h

Macro-A 100 95.9 4.3 1050.5 100 99.7 0.3
CTM-A 100 89.5 11.8 730.2 100 94.8 5.4
Macro-B 100 94.3 6.0 3131.2 100 99.8 0.2
CTM-B 100 87.4 14.4 2898.5 100 94.3 6.0

HN-2.0, 5h

Macro-A 87.3 77.6 12.5 927.9 87.3 84.9 2.9
CTM-A 92.8 79.1 17.3 1403.8 92.8 80.9 14.8
Macro-B 98.5 84.2 16.9 857.0 98.5 94.6 4.1
CTM-B 98.4 80.9 21.6 3306.4 98.4 87.9 13.1

HN-2.0, 8h

Macro-A 100 95.3 5.0 19.2 100 97.0 3.1
CTM-A 99.4 85.8 15.8 2619.6 99.4 87.9 13.1
Macro-B 100 93.8 6.6 259.0 100 99.6 0.4
CTM-B 100 86.7 15.4 479.9 100 92.7 7.8

Table 4.1: Results for the HN-1.7 and 2.0 Instances

4.5 Model Evaluation

The macroscopic and CTM models were verified by running their proposed solutions

on a macroscopic simulator and a CTM simulator, for the HN-1.7 instance. The

macroscopic simulator propagates flows just as in the optimization models that use

the macroscopic approach. Specifically, flow moves through the network without

waiting as long as there is capacity. The CTM simulator, however, propagates flows

differently than the optimization models that use the CTM approach. Namely, the

CTM simulator makes one of the flow equations tight through the use of a min. With

the min replaced by inequalities, the CTM optimization model allows for lagged flow,

which expands the feasible solution set greatly. Results show that the macroscopic

plans perform well when they are tested on the CTM simulator, validating the macro-

scopic model. By contrast, the CTM plans perform poorly on both the macroscopic
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Instance Obj. (%) Macro (%) CTM (%)

HN-1.7, 5h

Macro-A 93.0 93.0 90.7
CTM-A 91.6 48.8 42.8
Macro-B 93.9 93.9 90.9
CTM-B 87.5 47.2 48.8

HN-1.7, 8h

Macro-A 99.7 99.7 97.5
CTM-A 94.8 50.3 55.8
Macro-B 99.8 99.8 95.9
CTM-B 94.3 53.7 56.8

Table 4.2: Model Evaluation Results

simulator and the CTM simulator. The likely reason for the difference in performance

between the CTM plans and the macroscopic plans is that the CTM solution fully

permits waiting, whereas the macroscopic simulation forbids it and the CTM simula-

tion controls it. Inspection of the flows over time in the CTM plans shows that many

times there is a sizeable gap between the outflow and the minimum of the quantities

limiting the outflow.

It is possible to represent the CTM exactly through a MIP model. For example, to

represent a constraint of the form 𝑧 = min(𝑥, 𝑦), one can introduce a binary variable

𝑏 and write

𝑧 ≤ 𝑥

𝑧 ≤ 𝑦

𝑧 ≥ 𝑥− 𝑏𝑀

𝑧 ≥ 𝑦 − (1− 𝑏)𝑀

where 𝑀 is a constant and 𝑀 ≥ max(𝑥, 𝑦). The case 𝑏 = 0 means 𝑧 = 𝑥 and

𝑏 = 1 means 𝑧 = 𝑦. However, with this approach one would not be able to apply the

Benders decomposition since the subproblem would be a MIP. The linear relaxation

of the MIP could be solved instead of course, but it is not clear that such an approach

would perform better than the present one.

45



Chapter 5

Conclusion

This thesis applied the Benders decomposition to the Convergent Evacuation Plan-

ning Problem (CEPP) and the Convergent Evacuation Network Design Problem

(CENDP). For both problems, the master problem in the decomposition selected a

convergent road network while the subproblem scheduled the departure times of evac-

uees. The Magnanti-Wong method was used to generate stronger, Pareto-optimal,

Benders cuts. Compared to the two-stage approaches, the Benders decomposition

methods yielded substantial improvements, often on the order of 10%, which is sig-

nificant in the context of evacuation planning. The improvements were especially

pronounced for severe flood scenarios, which shows that the Benders decomposition

approach can be used to extend the two-stage method to flood scenarios, as well as

to other evacuation scenarios involving road blockages such as bushfires, earthquakes,

and volcanic eruptions. One limitation of the Benders decomposition approach is that

it does not always converge to an optimal solution, which is due to the high degree

of solution degeneracy.

The work on the CENDP has several limitations. Lacking data on infrastructure

upgrade costs, we assumed that costs per kilometer did not differ among roads. In

reality, some roads may be more expensive to upgrade than others. The costs are

unitless, but we do assume a certain ratio between the cost to add a lane and the

cost to elevate a road, which may not be accurate. It was also assumed that all

roads had the same maximal number of additional lanes that could be added. It may
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not be the case that capacity increases linearly with the number of lanes. Once more

data becomes available, this model will be better equipped to make recommendations

regarding infrastructure upgrades.

Chapter 4 proposed using the Cell Transmission Model for evacuation planning.

Results show that the Benders approach is effective when using the CTM as well.

Unfortunately, the CTM optimization model does not accurately translate the non-

linearities of the CTM, and permits lagging flow. When plans generated from the

CTM model were tested on the CTM simulation, the number of people was substan-

tially lower than reported by the CTM model. The CTM simulation can be used to

evaluate the accuracy of plans proposed from macroscopic models. Preliminary ex-

periments show that plans made from macroscopic models perform very well on the

CTM, evacuating nearly the same number of people as reported by the macroscopic

models. This is encouraging, because the macroscopic models are easier to implement

and faster to run than the CTM models. Unfortunately, there is no way to re-express

the nonlinearities of the CTM simulation in a linear program, which is what we are

restricted to in the Benders decomposition framework.

A major underlying limitation of this work is that everything in the model is

deterministic, yet there is a high degree of uncertainty in any evacuation scenario,

particularly with regards to road capacities, which can change drastically in the event

of a traffic accident. Future work will address this limitation by building a probabilis-

tic model of edge capacities that depend on the flow, and will consider minimizing

some notion of risk in the evacuation.
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