

Visualization of HashStash with Qt
 ​Zhe Zhao

 ​Department of Computer Science
 Brown University

 Providence, RI
 zhe_zhao at brown.edu

 May 8, 2015

 ​ ​ ​Abstract

HashStash is a new abstraction for the multi-query
optimization. By managing internal data structures which is
used by the individual operators between query sessions,
HashStash provides a new form to share the intermediate
result. The benefit of using HashStash than current
approaches for multi-query optimization is that current
approaches ignore the dominance of the main memory
system performance issues, such as code and cache efficiency.
Most of the query processing system should be run using
command in terminal, however this is not user friendly and
lack of interactivity. In this case, we use Qt to build an
interactive interface for HashStash to make it much easier to
run and display visualized result.

1. Introduction

Today researchers , businesses and scientists collect and analyze more
and more data in data warehouses. With the increasing amount of data,
the number of users and applications querying data grows exponentially
(Psaroudakis, Athanassoulis, Olma, Ailamaki 22). In this condition, big
data framework has played a big role. To increase larger data set, data
scientists can weight their analytical tasks by using big data framework.
However a big challenge in query execution is the increasing concurrency,
queries may share the similar work or touch the common data. So we
introduce a new abstraction which is HashStash. By using HashStash, user
can reuse and share data stractors between related queries much easier.

 For most query processing system, user should run the system using
command. It is lake of interactivity and not user friendly. Running queries
in the back-end might be easy for the user who knows the system well,
but it is too complicated for the user who is new to the HashStash system.
Instead of complicated use, the second drawback of running a system
using command in the back-end is that it has low fault tolerance. When
user has a little mistake in the command, the system can not be run and
user needs to re-do again. Interactive HashStash uses HashStash as its
back-end system and Qt based front-end as the user interface. Instead of
typing long command in the back-end, user can simply type number or
use clickable box in the front-end to run the system and display visualized
result.

2. Overview

Qt is a cross-platform application framework(“Qt (Software)”,
wikipedia.com). It is used mainly for developing application software
with graphical user interfaces (GUIs). It is cross-platform and it uses the

system's resources to draw windows, controls, etc so the application will
get a native look (e.g on a Mac your app window will be lacking the menu
bar and the menu bar will appear on the system's menu bar as it is the
standard behavior on the Mac platform).

Since the back-end of HashStash is written by using C++. Qt which uses
standard C++ gives us great control and stable output and also possible to
work with libraries.

Another reason why we choose Qt is we can write html and CSS code in Qt
to decorate our front-end.

3. Design & Implement

Queries sharing can be reactive to the essence existing sharing
opportunity. By redesigning the query operators to maximize sharing
opportunities, queries sharing can also be proactive(Psaroudakis,
Athanassoulis, Olma, Ailamaki 22).

Based on these two properties, we make the interactive HashStash
front-end into two parts, Reactive Sharing and Reactive VS Proactive.
Reactive sharing shares common sub-plans and Global Query Plans’
intermediate result. Proactive sharing evaluate a single query plan with
shared operators​(​Psaroudakis, Athanassoulis, Olma, Ailamaki 22). We
have three pages for the interactive HashStash front-end:

● Main Page

● Reactive Sharing

● Reactive VS Proactive

 ​ Main Page

When user clicks “Reactive Sharing” button, it will jump to the second page

“ Reactive Sharing” page.

Reactive Sharing page

 ​User can enter the concurrent TPC-H queries, the size of TPC-H, location
of database and the number of cores in the text area individually or click
the default button to load the default value automatically. We show that
pull-based sharing for Simultaneous Pipelining​ ​eliminates the
serialization point imposed by the original push-based approach.

 When click “Reactive VS proactive”, it will jump to the third page
“ Reactive VS Proactive” page.

Reactive VS Proactive

We compare the performance of Simultaneous Pipelining and Global
Query Plans through a sensitivity analysis. We also show that by mixing a
query with common sub-plans, Simultaneous Pipelining can improve the
performance of Global Query Plans.

4. Visualization

In order to​ ​make the result more visualized and easy to read, we use two
ways to display the result:

● Line Chart
● Bar Chart

To create a line chart, a QVector instance is needed:

QVector<double>​ ​x(size),​ ​y(size);

To create a bar chart, a QCPBars instance is needed:
QCPBars​ ​*myBars​ ​=​ ​new​ ​QCPBars​(​ui​->​widget​->​xAxis​,​ ​ui​->​widget​->​yAxis​);

5. Other Features

● Button Hover: when user puts mouse over the button, the hover
selector will select the button.

● TextLine Highlight: when user chooses a textline and types the
input, a highlight will appear to show which textline is using.

● Button Highlight: when user clicks a button, the button will be
highlighted to show which button is clicked.

6. Summary

Since for most query processing system, user needs to run the system by
using command in terminal which is completed, low fault tolerance and
not user friendly, so this project build the front-end for HashStash by
using Qt which can make HashStash system interactively. Qt is a
cross-platform and it uses the system's resources to draw windows,
controls, etc so the application will get a native look. It is C++ based and
can combine html and CSS to decorate the page.

7. Acknowledgements

I would like to specially thank to my advisor Ugur Cetintemel who
offered this project to me and gave me a chance to take part in the
HashStash project. I would also like to thank to Kayhan Dursun who
helped me get familiar with HashStash system by sending me related
paper and communicated and discussed with me about the design and
some key points of this project during the whole process.

 ​ Citation

1. I. Psaroudakis, M. Athanassoulis, M. Olma and A. Ailamaki. Reactive

and Proactive Sharing Across Concurrent Analytical Queries. 2014
ACM SIGMOD International Conference on Management of Data
(SIGMOD 2014), Snowbird, UT, USA, June 22-27, 2014.

2. “Qt (Software).” ​Wikipedia​. Wikimedia Foundation, n.d Web. 13 May

2015

