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Abstract

A commonly used paradigm in diverse application areas is to assume that an observed set
of individual binary features is generated from a Bernoulli distribution with probabilities
varying according to a Beta distribution. In this paper, we present our nonparametric
variational inference algorithm for the Beta-Bernoulli observation model. Our primary focus
is clustering discrete binary data using the Dirichlet process (DP) mixture model.

1 Introduction

In many biological and vision studies, the presences and absences of a certain set of engineered attributes
create binary outcomes which can be used to describe and distinguish individual objects. Observations of
such discrete binary feature data are usually assumed to be generated from mixtures of Bernoulli distributions
with probability parameters µ governed by Beta distributions. Such a model, also known as latent class
analysis [6], is practically important in its own right. Our discussion will focus on clustering discrete binary
data via the Dirichlet process (DP) mixture model.

2 Beta-Bernoulli Observation Model

The Beta-Bernoulli model is one of the simplest Bayesian models with Bernoulli likelihood p(X | µ) and its
conjugate Beta prior p(µ).

2.1 Bernoulli distribution

Consider a binary dataset with N observations and D attributes:

X =


x11 x12 · · · x1D
x21 x22 · · · x2D

...
...

. . .
...

xN1 xN2 · · · xND

 ,

where X1, X2, . . . , XN ∼ i.i.d. Bernoulli(X | µ). Each Xi is a vector of 0’s and 1’s.
For a single Bernoulli distribution, the probability density for each observation has the following form:

p(Xi | µ) =
D∏
d=1

µxid

d (1− µd)1−xid . (1)
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Now, let’s consider a mixture of K Bernoulli distributions. Each component has weight πk, where
∑K
k=1 πk =

1. Then, the density function for each observation can be expressed as follows:

p(Xi | µ, π) =
K∑
k=1

πk p(Xi | µk), (2)

where µ = [µ1, . . . , µK ], π = [π1, . . . , πK ], and p(Xi | µk) =
∏D
d=1 µ

xid

kd (1− µkd)1−xid .

2.2 Beta distribution

The conjugate prior to the Bernoulli likelihood is the Beta distribution. A Beta distribution is parameterized
by two hyperparameters β0 and β1, which are positive real numbers. The distribution has support over the
interval [0, 1], and is defined as follows:

p(µ | β1, β0) =
1

B(β1, β0) µ β1−1(1− µ) β0−1, µ ∈ [0, 1]. (3)

where B(β1, β0) =
∫ 1

0 µ
β1−1(1− µ) β0−1 dµ is the beta function, which also has the form,

B(β1, β0) =
Γ(β1)Γ(β0)
Γ(β1 + β0) , β0, β1 > 0. (4)

The hyperparameters β0 and β1 are “pseudocounts” which correspond to prior beliefs of the data before
starting the experiment. Figure 1 shows Beta distributions for different values of β0, β1.

Figure 1: Examples of Beta distribution for different choices of hyperparameters

In general, we would like to set both β0 and β1 to be less than 1, in order to encourage sparse behavior
within the sampled priors. In other words, by setting β0, β1 < 1, the sampled probability parameters µ
should biased toward 0’s and 1’s, which produces very distinct priors that are useful for clustering. However,
for some small datasets, Beta priors being too small could lead to bad local optima, which we will discuss in
detail in the last section.

2.3 Bernoulli mixture model

We now return to our discussion of the Bernoulli mixture model, illustrated by the graphical model in
Figure 2. For each observation Xi, we have a corresponding K-dimensional latent variable Zi with a single
component equal to 1 and the rest equal to 0. So, the conditional distribution of the latent variable Z given
the weights is in the form:

p(Z | π) =
N∏
i=1

K∏
k=1

πzik

k . (5)

Similarly, the Bernoulli likelihood of the observed data can be written as:

p(X | Z, µ) =
N∏
i=1

K∏
k=1

p(Xi | µk)zik . (6)
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Figure 2: Graphical model representation of the Beta-Bernoulli mixture model. Xi’s are observations which
are governed by the Bernoulli distribution parameter µ. The latent variable Zi is a K-dimensional vector
with a single component equal to 1 and the rest equal to 0, indicating cluster assignment of Xi. β0, β1 are
hyperparameters of the Beta distribution. π indicates the proportional of the components.

2.4 Dirichlet process (DP) mixture model

The Dirichlet process (DP) provides a nonparametric prior for partitioning exchangeable datasets into dis-
crete clusters [3]. It is parameterized by a base distribution G0 and a positive concentration parameter α.
Then, G ∼ DP (α,G0) is a distribution over probability distributions, with stick-breaking weights {πk}∞k=1
sampled as follows:

G ,
∞∑
k=1

πkδφk
, vk = Beta(1, α), πk = vk

k−1∏
`=1

(1− v`). (7)

Each instance then draws an assignment Zi from a categorical distribution of π, and an observation Xi from
the Bernoulli distribution with parameter µ indicated by assignment Zi. Here, we can also see the role of
the concentration parameter α, namely higher values of α allow πk to decay slower as k → ∞ and thus
encourage more clusters.

3 Variational Inference

Variational inference methods are well developed to provide solutions for mixtures of exponential families.
Due to the intractability of working with the true posterior distribution, variational methods formulate the
computation in terms of an optimization problem, which tries to approximate the posterior distribution of
latent variables with a tractable family and then maximizes a low-bound of data likelihood with respect to
variational parameters.
Specially, we define a variational distribution q(Z, µ, π) to approximate the true posterior distribution
p(Z, µ, π|X). To do this, we minimize the Kullback-Leibler (KL) divergence with respect to the posterior
distribution p:

q∗(Z, µ, π) = arg min
q

D(q||p) (8)

The minimization in Equation (8) can be cast alternatively as the maximization of the evidence lower bound
(ELBO) on the log marginal likelihood:

log p(X | β0, β1, α) ≥ Eq[log p(Z,X, µ, π | β0, β1, α)]− Eq[log q(Z, µ, π)] , L(q) (9)

Similar to the EM algorithm, the variational inference method alternates between local and global steps to
update hidden variables until the evidence lower bound (ELBO) converges. The local variables Zi only govern
the distributions of their respective observation Xi. The global variables µ, π govern mixture components
and mixture proportions. This algorithm is guaranteed to find a local optimum for ELBO.
Now, in order to avoid the algorithm converges to poor local optima, we also provide a memoized online
variational algorithm that divides the data into predefined B batches {B}Bb=1. At each batch, we perform
both the local and global updates. In addition, we develop two moves, “birth” and “merge”. The “birth”
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move can add useful new components to the model and escape poor local optima. The “merge” move, on
the other hand, combines two components into a single merged one. In one pass of the data, the memoized
algorithm performs a “birth” move for all batches, and several “merge” moves after the final batch.

4 Experiments

In this section, we evaluate the performance our model on a wide range of both synthetic and real-world
binary datasets. We first generate synthetic data to explore the model’s ability to infer the latent structures
from observations. The dataset consists of 6 attributes and 5 true clusters with each cluster having 20
instances. Given the Bernoulli parameter below, we sample the N = 100 instances and run from 10 random
initializations with K = 5:

µ =


µ1
µ2
µ3
µ4
µ5

 =


.95 .95 .95 .95 .95 .95
.05 .05 .05 .05 .95 .95
.95 .05 .05 .95 .95 .95
.05 .05 .05 .05 .05 .05
.95 .95 .95 .95 .05 .05

 .
Figure 3 shows that our variational algorithm successfully recovers the 5 true clusters. Each instance is also
assigned to the correct corresponding cluster.

Figure 3: Synthetic binary data with 6 attributes and 5 true clusters with each cluster having 20 instances.
White blocks have value “1” and black blocks have value “0”. The yellow lines indicate separations of the
clusters.

4.1 Animals with Attributes dataset

For their studies on attribute-based object similarity, Osherson and Wilkie collected judgements from human
subjects on the “relative strength of association” between 85 attributes and 48 animal classes. Kemp et al.
made use of the same data in a machine learning context and added 2 more animals classes. Figure 4
illustrates the resulting 50× 85 class-attribute matrix.
We run our model with a Beta prior ([0.1, . . . , 0.1], [0.1, . . . , 0.1]) that bias toward 0’s and 1’s and is uniform
among features. Figure 4 shows one of the best runs from 20 k-means initializations with initial K = 50. We
can see that the final number of components has merged down to 12. Importantly, the model also discovers
relationships among animals where we have clusters of aquatic mammals, large tough-skin animals, and so
on. Such partitions are almost indistinguishable from a human’s attempt to cluster the dataset.

4.2 MNIST Handwritten Digits Database

We now test our model on the classical MNIST dataset with all N = 60,000 images of handwritten digits 0-9.
Each image has 28×28 = 784 pixel features which are converted from real numbers to binary with threshold
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Figure 4: Animals with Attributes dataset with 50 animals and 85 binary attributes. Black blocks indicate
0 entries or absences of the attributes. White blocks indicate 1 entries or presences of the attributes. Yellow
line indicates the separations of the animals. In this example, the animals are clustered into 12 groups.

on 150. Here we set the Beta prior ([0.1, . . . , 0.1], [0.1, . . . , 0.1]) the same as before and runs from 10 k-means
initializations with initial K = 100. One of the best runs eventually converges to 132 final components.
Figure 5 shows the cluster means learned by the variational algorithm, which cover various styles of all the
digits.

4.3 SUN Attributes Dataset

In our last experiment, we next learn the large-scale scene attribute database that build on top of the fine-
grained SUN categorical database. The attribute database contains more than 14,000 images and 102 binary
attributes related to materials, surface properties, lighting, functions and affordances, and spatial envelope
properties. The dataset is again motivated by interests in “attribute-based” representation of visual objects
as a complement to the “category-based” representations. Our goal here is to learn possible relationships
between scene categories and attributes.
We again initialize our model with Beta prior ([0.1, . . . , 0.1], [0.1, . . . , 0.1]) and concentration parameter
α = 100 to encourage more clusters. We run the model from 10 k-means initialization with initial K = 100.
The final numbers of components merge to around 60. Figure 6 shows 10 image clusters with 10 randomly
selected images from each cluster and a word cloud visualization showing the categories of the images. We
can see that the attributes-based learning enable a higher understanding of the images which is difficult for
simple scene recognition to achieve. For example, we observed images from sports events are clustered into
the same group. Similarly, transportation terminals of flight and bus are in the same cluster. One can argue
that the learned clusters are strongly affected by the particular set of attributes in the dataset. But, we can
see that our model clearly learned the possible relationships between scenes in the images and cluster them
in a logical way.
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Figure 5: Visualization of the cluster means of the MNIST handwritten digits dataset. In this particular
example, there are 132 components which represents different configurations of all the digits.

Figure 6: SUN Attributes dataset. Each row represents an image cluster. The columns are 10 randomly
selected images from each corresponding cluster and a word cloud that visualize the scene categories of the
images within the cluster. The font size of the words are proportional to the number of occurrences of images
from the particular scene categories.
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5 Discussions and Conclusions

We presented the Beta-Bernoulli observation model and a nonparametric framework for simultaneously
clustering one or more sets of entities. The experiments above show our model successfully learned the
latent structures of the binary mixture data.
It worths noting that choice of hyperparameters, in particular the Beta priors being (0.1, 0.1), are not trivial.
In our sensitivity analysis of the hyperparameters, we can see from Figure 7 that Beta priors equal to 0.1
gives the highest values of ELBO for both MNIST and SUN Attributes datasets. In general, β1, β0 being
too big produces more uniform Beta priors among different clusters, which results in fewer clusters. For
small values of λ, however, the result can be very poor if the size of the dataset is small. In particular, the
Animals dataset with only 50 instances is extremely sensitive to the value of λ.

Figure 7: Comparison of the number of final components and ELBO versus λ. Upper left: Number of final
components versus λ for the MNIST dataset. Upper right: Converged evidence lower bounds (ELBO) versus
λ for the MNIST dataset. Lower left: Number of final components versus λ for the SUN Attributes dataset.
Lower right: Converged evidence lower bounds (ELBO) versus λ for the SUN Attributes dataset.
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