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ABSTRACT
Finding patterns is a common task in time series analysis
which has gained a lot of attention across many fields. A
multitude of similarity measures have been introduced to per-
form pattern searches. The accuracy of such measures is often
evaluated objectively using a one nearest neighbor classifica-
tion (1NN) on labeled time series or through clustering. Prior
work often disregards the subjective similarity of time series
which can be pivotal in systems where a user specified pattern
is used as input and a similarity-based ranking is expected as
output (query-by-example). In this paper, we describe how
a human-annotated ranking based on real-world queries and
datasets can be created using simple crowdsourcing tasks and
use this ranking as ground-truth to evaluate the perceived ac-
curacy of existing time series similarity measures. Further-
more, we show how different sampling strategies and time
series representations of pen-drawn queries effect the preci-
sion of these similarity measures and provide a publicly avail-
able dataset which can be used to optimize existing and future
similarity search algorithms.
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INTRODUCTION
Data in the form of time series can be found in any do-
main. Stock prices, medical data, trajectories of objects,
crime statistics, “Quantified Self” data, temperatures or sales
figures can all be represented as data streams over time and
even higher dimensional data are straightforward to visual-
ize using two-dimensional line graphs. Such visualizations
enable humans to interpret and compare time series data.
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However, visually identifying patterns within large time se-
ries or across multiple time series is a tedious and error prone
task. Since traditional query languages (e.g. SQL) are often
not well suited for this type of temporal pattern search, re-
searchers have published an abundance of papers introducing
pattern-matching algorithms.

Modern hardware, which supports pen and/or touch input al-
lows users to swiftly sketch query patterns for time series
data. Consider a medical researcher who wants to find pa-
tients with a specific disease who have a decreasing platelet
count or a stock-trader who wants to find stocks following a
certain trend. While such queries are cumbersome to specify
through standard UI controls, drawing an upward or down-
ward line on a tablet through a pen-stroke or a touch-gesture
is simple and intuitive. These hand-drawn patterns, however,
are not exact and therefore, the retrieved results should be dis-
played as similarity-based rankings, where the first item is the
time series most similar to the input sketch.

Figure 1 shows a screenshot of TimeSketch, a pen and
touch-based application that allows users to query time se-
ries through such hand-drawn patterns and displays results
as similarity-based rankings. We implemented this proto-
type to test and experiment with different time series pattern-
matching algorithms and sampling strategies. Through an in-
formal user evaluation of TimeSketch, we realized that algo-
rithms oftentimes produce perceivably inaccurate results, as
depicted in the screenshot.

The accuracy of many existing pattern-matching algorithms
have been evaluated through nearest neighbor classification
(1NN) with much less attention given to how humans gauge
the results of such similarity searches. This does not come as
a surprise; label prediction with no further distinction within
a label group can be sufficient to compare the overall per-
formance of different techniques. However, in cases where
the expected output of a search is a similarity-based ranking,
a more detailed comparison is required. These rankings also
need to align with human intuition and a user’s perceived sim-
ilarity. “Good” matches, as defined by a distance metric of an
algorithm, might not coincide with the subjective similarity.
This is especially important for the top k matches, whereas
dissecting time series which are dissimilar to the query pat-
tern is more difficult and arguably less important to a user.
Due to the lack of datasets that contain hand-drawn patterns
and human-annotated similarity rankings based on those pat-
terns, it is currently hard to understand the type of patterns



Figure 1. Screenshot of TimeSketch, a pen and touch-based application which allows users to query time series through pen or touch-drawn query
patterns. Different combinations of sampling strategies and similarity measures (uniform linear downsampling to 80 points and SpADe similarity
measure, in this case) sometimes return a perceivably incorrect ranking of the search results. Result number 3, for instance, should be clearly ranked
first.

users draw as well as to measure the subjective accuracy of
existing algorithms for such use-cases.

In this paper, we present a methodology to create human-
annotated rankings of time series based on the perceived dis-
tance to a hand-drawn reference pattern. We then use these
rankings to evaluate the accuracy of existing time series simi-
larity measures, across different sampling strategies and with
varying time series representations. Furthermore, we provide
some analysis of our collected hand-drawn patterns and our
evaluation that provide insights for possible future research
efforts.

PRELIMINARIES AND RELATED WORK
In this section, we give an overview of research efforts in the
areas of query-by-example for time series data, time series
representations, and similarity measures. In addition, we in-
troduce definitions that we will refer to throughout this paper.
We refer the reader to [6] and [20] for a more comprehensive
summary of time series representations and similarity mea-
sures.

Definitions and Notations
In the upcoming sections will use similar definitions as in [21]
and [6]:

Time Series: A time series T is an ordered list T =
t1, t2, ..., tn where each ti is a data point in a d−dimensional
space.

Subsequence: A subsequence Ti,k of time series T where i
is the starting index in T and k = |Ti,k| is the length of the
subsequence in number of data points.
Query Pattern: A Query Pattern Q is a subsequence used
as input for similarity search whose data points correspond
to either a subsequence of an existing time series or to one
defined by other means (e.g. mouse/pen/touch-sketch).

Time Series Representations
An unmodified time series is called a raw representation [6]
and its length depends on both, the time-span of the recorded
data and the sampling rate. Typically, before a similarity
search is executed, the two time series are converted to a
different representation. This has the advantage of reducing
(or sometimes also increasing) the number of data-points i.e.
the dimensionality for reasons of space and search efficiency,
noise reduction or simply scaling both sequences to an equal
length. The GEMINI framework [8], for instance, proposes
to find candidate matches by downsampling the time series to
a dimension that works well with index structures. Once all
candidate matches are found, their full-resolution time series
is read from disk and compared with the query sequence us-
ing a distance metric such as the Euclidean Distance. This
greatly speeds up the pattern-matching process as opposed to
having to sequentially scan all time series.

Time series representations can be categorized as follows:
data-adaptive, non-adaptive, model-based and data-dictated



[22]. An overview and description of many representations
can be found in [6, 17]. In previous publications, time series
representations have been solely compared to each other in
terms of indexing performance using a metric called Tight-
ness of lower the bound (TLB). This is the ratio of the esti-
mated distance between two sequences under that representa-
tion, over the true distance between the same two sequences
[13]. Interestingly, it has been found that there is very lit-
tle difference between different representations in terms of
indexing speed [19, 6]. Moreover, it was claimed that a rep-
resentation should not be chosen based on its approximation
fidelity, but rather on other features such as the visual appear-
ance. In this paper, we exploit this fact to choose a suitable
segmentation technique in order to project a query pattern de-
fined by a pen stroke to a time series using different repre-
sentations. Specifically, we use variants of Perceptually Im-
portant Points (PIP) [9] and Piecewise Linear Segmentation
(PLS) [14] among two other approaches which we describe
in the Method section.

Similarity Measures
Similarity measures are used to compute a distance between
two time series. [6] distinguishes between lock-step, elastic,
threshold-based and pattern-based measures.

The simplest similarity measures are lock-step measures,
which compute the distance between two time series in a one-
to-one fashion, where each data point in one time series is
only compared to its direct counterpart in the other. Typically,
the Euclidean Distance is used because it penalizes larger dis-
tances more, but other Lp-norms such as the Manhattan Dis-
tance fall into this category. One of the biggest shortcomings
of lock-step measures is that they are sensitive to local time
shifting [4], such that even two time series that are perceived
to be similar could be separated by a large distance. This
makes the Euclidean Distance unsuitable for our application,
as hand-drawn queries should be invariant to local time shift-
ing and scaling. Nonetheless, we use this measure in our ex-
periments in order to draw a comparison to other methods.

Elastic measures support shifts and scaling in time-
dimension. Most notably Dynamic Time Warping (DTW),
which was recently claimed to be the best measure in terms of
speed and accuracy [21]. It tries to find the optimal alignment
between two time series by allowing for local warping within
a certain window. DTW uses the Euclidean Distance as dis-
tance measure between two points. Thus, the Euclidean Dis-
tance is essentially a special case of DTW, where the warping
window size is equal to 1. Other edit distance based measures
include Longest Common SubSequence (LCSS) [1, 24], Edit
Sequence on Real Sequence (EDR) [23], Swale [18], Edit
Distance with Real Penalty (ERP) [3]. Elastic measures are
especially important for human-drawn queries as the query
patterns are never exact. Due to its popularity and recent re-
search efforts, we use DTW in our experiments.

SpADe (Spatial Assembly Distance) is a pattern-based mea-
sure that promises to handle time/amplitude- shifting and
scaling and noise [4]. It works by computing features over
short subsequences of two time series, called local patterns,
finding similar patterns called local pattern matches in both

time series and eventually calculating the shortest distance
between all found matches from the start of the time series
to the end. As we consider time and amplitude invariance
important characteristics of similarity measures for human-
drawn queries, we also employ SpADe in our experiments.

Pattern-Matching Invariance
Some similarity measures reduce variance in pattern-
matching by making the measure flexible to time-
shifting/scaling and amplitude-shifting/scaling, which is im-
portant in applications where the query pattern is defined by
hand. Based on [2], we give a brief overview on how these
and other types of invariance can be implemented.

Even though many subsequences in a dataset may look sim-
ilar to a query pattern, they may be defined at different am-
plitude ranges or they are located at different offsets. Am-
plitude invariance can be achieved by normalizing the time
series which are compared to each other. It is known that a
z-score normalization follows the original shape of the data-
points more closely than a min/max normalization [17].
Elastic similarity measures handle local scaling in time-
dimension. To fix global scaling, on the other hand, we have
to either test all possible window sizes or define a time range
for a query pattern to eliminate the problem entirely. To tackle
phase invariance, we have to test all possible alignments in
time. Moreover, [2] suggests that occlusion invariance, the
case where we want to ignore one or multiple subsequences
in a pattern, can be achieve by simply ignoring the distance
on those time intervals.

Defining Query Patterns
The idea of specifying time series queries in a query-by-
example fashion has been around for over a decade. Typi-
cally, the goal of a similarity search is to perform a k-NN-
search i.e. to return the k nearest neighbors given an in-
put [25]. Similar to our prototype TimeSketch, QuerySketch
lets users define arbitrary queries by sketching onto an empty
graph, where the time scale can be adjusted by using a zoom
function [26]. The Euclidean Distance between the query
pattern and the time series in the dataset is used as similar-
ity measure and each result is labeled with the distance to the
query.

TimeSearcher uses the concept of timeboxes, rectangular re-
gions that can be drawn over a time series, and uses the con-
taining subsequences as query patterns [11]. Since time-
boxes define value-ranges rather than fix-valued data points,
the similarity of the specified query and the time series in a
dataset is determined by an orthogonal range tree algorithm
[5]. Counters are used as degree of similarity by measur-
ing how many data points lie in the specified amplitude and
time range. Even though the bulk of this paper focuses on
query patterns rather then range-queries, TimeSearcher pro-
vides inspiration for further research (see Discussion and Fu-
ture Work).

[10] presents TimeSearcher: Shape Search Edition (SSE),
an extension of TimeSearcher where query patterns can be
defined by shapes such as spikes, sinks, rises, drops, lines,
plateaus, valleys and gaps. The authors describe attributes of



these shapes by which they can be identified, compared and
ranked. The similarity measures we used in our evaluation
are purely mathematical. However, as we note in the Discus-
sion and Future Work section, a combination of high and low
level similarity measures is a promising research direction.

Methods to evaluate time series similarity
Keogh et al. propose two ways to measure the true similar-
ity of two time series [13], subjective evaluation and objec-
tive evaluation. The latter can be carried out by using a 1NN
classification to predict a label for a time series from its near-
est neighbor in a training dataset, where the classifier’s dis-
tance measure is the similarity measure in question. A major
drawback of this approach when evaluating similarity is that
both, the training and test data must be labeled. Even though
there are publicly available labeled datasets, new and unla-
beled datasets cannot be tested. Furthermore, this method
only measures how often the prediction of a label failed or
succeeded but fails to provide a distance of how well it ac-
tually matched a query pattern, which is inevitable to create
rankings. Also, it is often unclear who created the labels and
based on which decisions.

Subjective evaluation relies on human judgment. A trivial
way to evaluate the perceived accuracy of time series is to
simply visualize matching results of different similarity mea-
sures and let people assess the quality of the algorithm. An-
other commonly used approach is to create a dendrogram
of multiple time series using the single linkage method and
let humans determine, if similar time series are reasonably
linked. The authors of [15] and [14] note that the “correct”
distance measure depends on user preference and the data
domain. They describe an approach to adjust the similarity
metric by using feedback from users. More specifically, they
propose the time series to be represented as piecewise linear
segments (PLS) and a weight vector to describe the relative
importance of each segment. The weights are dynamically
updated based on the user’s relevance feedback, which allows
for a custom weighting scheme for each user and domain.

METHOD
While existing time series datasets, such as [16], are suitable
to benchmark classification and clustering accuracy, there are
currently no datasets that provide a distance-based ranking or
other means to fine-tune a similarity search algorithm which
returns an ordered list of results, based on a given input se-
quence. The subjective accuracy of a similarity search algo-
rithms depends on the data-domain and user preference [15,
14]. Therefore, when creating a system similar to TimeS-
ketch, it is important to evaluate the perceived accuracy on
a case-by-case basis. In this section, we show how human-
annotated rankings can be created for any type of time series
data based on [12] and using simple crowdsourcing tasks. Us-
ing the help of the crowd is especially advantagous in the ab-
sence of expert annotators or when annontating large amounts
of time series data becomes unfeasible.

In Computer Vision, for instance, the human-perceived accu-
racy of image classification systems can be determined by

testing the classifier against a human-annotated set of im-
ages (ground-truth). Borrowing this idea, we describe how
a ground-truth for selected subsequences in a given dataset
can be created using a crowdsourcing platform and use this
ground-truth to compute a similarity-based ranking over all
subsequences.

Creating Human-Annotated Rankings
In order to create a human-annotated ranking for a specific
query, we first generate all possible subsequences in a dataset
that match the length of a query pattern. We then create a
set of all unordered pairs of subsequences and use a pair-
wise comparison between each of the subsequences to build
a global ranking, according to their similarity to the query
pattern.

More formally, for a given query pattern q and a dataset d,
we generate a set Sq comprising all subsequences in d of the
same length as q, where Sq is the set of all subsequences that
will be part of the similarity ranking. Let USq be the set of all
unordered pairs in Sq . For each pair of subsequences 〈a, b〉
in USq, we create a task on a crowdsourcing platform, where
the workers’ task is to decide, which of the two subsequences
resembles the query pattern more (binary classification). We
let the same task be answered by n distinct workers, in our
case n = 9. The degree of agreement among all workers
i.e. the probability of one subsequence being more similar to
the query pattern than the other, can then be used to compute
a global score of similarity. To obtain such a score for any
subsequence a ∈ Sq , we can sum up the probabilities of a
being more similar to q then all other subsequences in Sq .

score(a) =
∑
b∈Sq

p(〈a, b〉) (1)

Where p in Equation 1 is a function that returns the probabil-
ity of a being more similar to q than to the other subsequence
b of a pair, according to the number of received votes in the
binary classification task. To create the ranking, Sq can be
sorted by the score of its elements.

Comparing Rankings
Computing a ranking from the distances provided by a simi-
larity measure is as simple as ordering all subsequences based
on their distance in ascending order. Once all rankings for
all similarity measures and query pattern representations have
been established for a particular query, they can be compared
to the human-annotated ranking to see how well both rank-
ings align. Given a human-annotated ranking RH and any
similarity-measure based rankingRS , we compute the Spear-
man’s rank correlation coefficient

ρ = 1− 6
∑
d2i

n(n2 − 1)
(2)

where di is the difference of the ith ranking in RS and RH

respectively and n is the total number of ranks. A Spear-
man coefficient of 1 or −1 indicates that the two ranking cor-
relation perfectly (positively or negatively) which means the
produced ranking is identical to the human created one. We
use this correlation coefficient as a measure of how well two



ID Dataset Length
1 Daily reported crimes in Chicago 4,748
2 Microsoft Stock Values 5,036
3 NBA Player Scores 930
4 City Temperatures 2,920

Table 1. List of all datasets used in survey

Dataset Question
1 Crime rate which fluctuates periodically for a

couple of months
1 A period of a year, where the crime rate in-

creased steadily
2 Find the 2008 stock market crash
2 A situation where the stock value dropped and

remained low for a while
3 Find a player who started off really well at

the beginning of his career, but had decreas-
ing scores over his entire career

3 Find a period where a player consistently
scored more than 20 points per game

4 Find a place in the United States where it is
warmer in Winter than in Summer

4 Find places with hot months in 2013
Table 2. Example questions users tried to answer with a pen/touch-based
interface.

rankings align because the distance between two ranks are
squared. Thus small differences in ranks (i.e., transpositions)
are less penalized than larger ones.

EVALUATION AND ANALYSIS
Using the method described in the previous section, we cre-
ated 8 different human-annotated rankings through Amazon
Mechanical Turk, using 8 pen-drawn query patterns over 4
different datasets and compared the accuracy of 3 different
similarity measures in conjunction with 4 distinct sampling
strategies.

Datasets
To avoid bias in queries towards a certain domain, we cre-
ated 4 different datasets with varying lengths and context, as
shown in Table 1. Dataset 1 contains daily reported crime in-
cidents in the city of Chicago from 2001 to 2013. In the sec-
ond dataset, we listed the Microsoft stock closing values of all
trading days over a period of 10 years (1994-2013). Dataset
3 contains the number of points former NBA player Michael
Jordan scored per game for all season games he had played.
Finally, dataset 4 comprises maximum daily temperatures of
8 different cities in the United States.

Collecting Query Patterns
Instead of merely using a subsequence of a time series as
query pattern, we asked 6 users to draw queries using a
pen/touch-based application, which records all strokes and
pen-related meta-data. Before recording a query pattern, we
instructed the participants on how to use the tool and which
dataset their queries should target. For instance, a user was
requested to draw an arbitrary number of queries for a data-
set comprising the maximum daily temperature of 8 different

Query Pattern 1
Time Range: 7
Points: 383

Query Pattern 2
Time Range: 365
Points: 571

Query Pattern 3
Time Range: 10
Points: 160

Query Pattern 4
Time Range: 365
Points: 134

Query Pattern 5
Time Range: 365
Points: 331

Query Pattern 6
Time Range: 31
Points: 309

Query Pattern 7
Time Range: 78
Points: 520

Query Pattern 8
Time Range: 12
Points: 15

Figure 2. Eight hand-picked query patterns used to create human-
annotated rankings.

cities in the United States. The user was then asked to define
a pattern length in terms of number of data points (e.g. 30
days) and optionally instructed the application to draw guide
lines, which some users found helpful to define their queries
more precisely. Also, the participants were able to choose
whether or not they wish to ignore the given minimum and
maximum amplitude in their query and to change the size of
the drawing area.

We recorded a total number of 112 pen-drawn queries (shown
in Figure 8 at the end of this paper) over the 4 different
datasets. The participants of our survey were all graduates
students with no prior experience in time series analysis. For
each pattern, we recorded what question the user wants to an-
swer with her/his query, some of which can be found in Table
2.

Query Pattern 4
Time Range: 365
Points: 134

(1)

(2)

(3)

(4)

(5)

(6)

(7) (11)

(8)

(10)

(9)

(12)

(13)

(14)

(15)

Figure 3. Example of a human-annotated ranking created through
crowd-sourcing tasks.

Creating a Human-Annotated Ranking
After collecting sketches, we proceeded to creating human-
annotated rankings based on our method outlined earlier in
the paper. Since the number of required pairwise comparisons
becomes very large for a large number of subsequences, we
followed the following procedure: from the set of all recorded



Query Pattern 1 Query Pattern 2 Query Pattern 3 Query Pattern 4

Query Pattern 5 Query Pattern 6 Query Pattern 7 Query Pattern 8

Figure 4. Spearman correlation coefficients of different algorith ms and sampling methods when compared to human-annotated rankings (1 indicating
perfect positive correlation, −1 perfect negative correlation).

query patterns, we hand-picked eight (two for each dataset)
to assure coverage of the most distinct types of user-drawn
queries. Using a window of the size of the pattern length,
we then generated all possible subsequences with step size
1. Next, we assigned each retrieved subsequence to one of
25 clusters using k-means clustering and randomly picked 4
from each cluster. This left us with 100 subsequences to be
compared with the query pattern. Since this would still re-
quire us to do 44,550 pairwise comparisons (9 ·

(
100
2

)
), we

used a two-task crowdsourcing strategy. In a first task, we
displayed the query pattern and a plot of one of the 100 subse-
quences. The workers’ task was to judge the similarity of two
graphs by selecting a value from 1 to 10. We let each com-
parison between the query pattern and every subsequence be
answered 5 times and then selected the 15 subsequences that
resemble the query pattern most, according to the workers’
median answer. Using these steps, we were able to reduce the
number of required pairwise comparisons for each query pat-
tern to 105. In a second crowdsourcing task, we employed our
method of creating a human-annotated ranking. We created a
set of all unordered pairs of the 15 subsequences and built a
binary classification task where the query pattern is displayed
along with the two subsequences of a pair. The workers’ task
was then to select the one subsequence of a pair which resem-
bled the query pattern more. We let each task be answered 9
times and then computed the score of each subsequence using
Equation 1.

Evaluating Similarity Search Accuracy
In order to create a similarity measure based ranking for the
query pattern, we first need to transform the sketch into an
evenly spaced time series. This is a delicate task, as the
strokes provided by pen/touch hardware consist of a varying
number of non-uniformly distributed 2D-points, whereas the

time series in our datasets are evenly spaced. To conduct this
transformation, we first order all points by their time stamp.
We then remove all points that are not monotonically spaced
in time. Next, we sample the points to match the length of the
query pattern with one of the following algorithms:

Uniform Linear: A uniform linear sampling stores the val-
ues of all points in an array and performs up/down-sampling
using a linear smoothing kernel. It is naive in the sense that it
distorts the shape of the originally drawn pattern by directly
converting an unevenly spaced time series to an evenly spaced
one.
Geometric Linear: A geometric linear sampling maps each
point of the resulting time series to a location between two
2D-points of the input stroke. The value at that location is
computed using linear interpolation.
PLS: PLS sampling performs a piecewise linear segmenta-
tion on the input stroke as described in [14]. The value is
then retrieved in the same manner as in the Geometric Linear
approach.
PIP: PIP sampling applies the PIP-algorithm on the input
stroke as described in [9]. As in PLS, the value is then re-
trieved in the same manner as in the Geometric Linear ap-
proach.

Once the query pattern is converted to a time series, we can
z-normalize both the pattern and subsequences and use a sim-
ilarity measure to compute the distance between them. We
employ three different algorithms in our experiments: Eu-
clidean Distance, DTW and SpADe. To avoid implementa-
tion bias, we use the original implementation from [21, 4]
respectively. The results of our comparisons can be seen in
Figure 4. DTW produces rankings that are closest to the
human-annotated rankings. For short query patterns (1, 3,



(a) Ink (c) Pressure(b) Velocity

Figure 5. Heat-maps visualizing different properties across all query
patterns over the normalized sketching area. Dark-red indicates a
higher value.

(a) (b) (c) (d) (e) (f)

Figure 6. More involved multi-stroke query patterns that are not sup-
ported by tested time series pattern-matching algorithms.

6 in Figure 3), SpADe was unable to output meaningful dis-
tances. We verified this fact with the author, who confirmed
that SpADe does not work well for very short time series. For
larger time series it yields competitive results (query patterns
2, 4 and 5). The Euclidean Distance expectedly performed
worse than DTW or equally well in some cases. Interestingly,
it performed very badly in combination with Geometric Lin-
ear and PIP sampling in some cases (query pattern 3 and 6).
We found that, especially for short time range queries, Geo-
metric Linear and PIP sampling significantly distort the origi-
nal sketch, which can lead to a comparitively large Euclidean
Distance. DTW, however, manages to remedy a poorly sam-
pled sketch to a certain extend. The naive uniform linear sam-
pling did surprisingly well. One plausible reason for its good
performance is that even though there are changes in veloc-
ity across the drawing area, as can be seen in Figure 5, the
smoothing kernel makes up for the non-uniformly distributed
points.

Overall, different sampling strategies do not seem to impact
the accuracy of algorithms drastically. In fact, Geometric Lin-
ear, PLS and PIP actually often yield roughly the same results
due to their identical interpolation method and only differ in
the way the points are chosen during down-sampling.

Query Patterns
In order to get a better understanding of the types of ques-
tions users try to answer with the patterns they draw, we ana-
lyzed various properties of the sketches. Figure 5 shows some
results of that analysis. (a) depicts the average ink distribu-
tion of all queries over a normalized sketching area (note that
users were able to adjust the size of the sketching area). Users
tend to focus on patterns that either target some extrema (cor-
ners) or align their patterns within the center region. We also
recorded pen-speed as well as pen-pressure for each pattern.
On average, velocity is highest within the center of the sketch-
ing area (b). We explain this through the ease-in/ease-out
style that users tend to draw their patterns with. (c) suggests
that there is no clear trend for pen-pressure as it appears to be
uniform across the drawing area.

Figure 7. Automatic layout of all query sketches generated by applying
PCA to the feature histograms of individual sketches.

While most of our 112 pen-drawn query patterns were simple
single stroke patterns that were intended to find subsequences
which followed a specific trend, some of our users wanted to
search for more complex relations in the data. Questions like
“Find a period where a player consistently scored more than
20 points per game” were usually drawn with multi-stroke
sketches by our users. Figure 6 shows some queries with
these characteristics. The sketches in (a), (b) and (c) are in-
stances where users wanted to search for inequalities (e.g.,
“find everything above / below X”), while (d) depicts a range
query (e.g., “find everything within X and Y”). Query (e) is
an example where a user wanted to find time series which
shows periodic fluctuations over a specific time period (“find
all inconsistent basketball players”) . However, our user did
not intend to find time series that were close in shape to her
sketch. (f) is a case, where a user annotated the sketch to pro-
vide some more information to the system. It is important to
note that current state of the art time series pattern-matching
algorithms, such as the ones we tested, do not support such
queries directly. In a future effort, we aim to collect more
hand-drawn sketches and try to extract a common sketching
language that could be used to express other relations such as
inequalities, ranges, fuzziness or fluctuations.

DISCUSSION AND FUTURE WORK
To get an intuition of the quality of the produced human-
annotated rankings we inspected them visually. Although we
agreed on most of the decisions made by the crowd, there
were cases where we felt that a pair of subsequences should
have been swapped. It is important to note that apart from
a qualification test, the workers’ answers were not validated
or filtered using sentinel tasks or any other noise reduction
technique. Also, with only 9 votes per pairwise compari-



son, chances are relatively high that some subsequences re-
ceive the same score. Increasing the number of required votes
could help reducing ambiguities in generated rankings. Alter-
natively, multiple 9-round tasks could be averaged.

The analysis of the sampling methods used in our evaluation
suggests that there are more suitable sampling methods than
the ones used in our experiments. Sampling between two
points artificially distorts the resulting time series. This is
especially the case for short-length query pattern with high
complexity. An adaptive sampling method, where the per-
ceivably important points are aligned with the resulting time
series could potentially lead to better results.

To further understand the different types of queries that users
draw, we wanted to see if there are certain categories of pat-
terns that occur across users and across datasets. Just by vi-
sually inspecting Figure 8, we can identify that for example
straight-line or upward/downward trend patterns are drawn
frequently. We obtain automatic clusters of such sketch cat-
egories by applying a similar approach as discussed in [7].
Each sketch is rendered as an image which we then repre-
sent by using a normalized feature histogram that is com-
puted through a bag-of-words model over densely sampled
local features. Figure 7 shows an automatic layout gener-
ated by applying dimensionality reduction (PCA) over these
feature histograms. This initial experiment hints at the pos-
sibility of creating an accurate classifier to assign category
labels to input sketches. Such labels could in turn be used
to detect different pattern types, such as inequalities, range
queries, etc. or to optimize algorithms through fast-rejection
techniques.

We are planning to conduct a more rigorous study on what
type of time series queries users are interested in. The results
of the study could be used to define a visual vocabulary i.e.
sketching-language which supports common types of queries.
Because our approach of evaluating the subjective accuracy
in time series pattern-matching can be extended to an entire
conceptual query space, algorithms supporting these kind of
queries could then be evaluated using the method proposed in
this paper. Other possible areas for future research include
finding better sampling/alignment methods for hand-drawn
queries (possibly using weighted strokes) and combining high
and low-level similarity measures to improve the perceived
accuracy of pattern-searches. For instance, DTW could be
used to retrieve the top n matches while shape attributes de-
scribed in [10] could be used to generate a ranking over the n
matches.

Our comparison of algorithms and sampling strategies
through our 8 collected human-annotated rankings offers
anecdotal evidence that human-rankings can differ drastically
from rankings generated by algorithms. For a better under-
standing of the different approaches, rigorous statistical anal-
ysis is needed. Such an analysis should cover a wide range
of time series from different domains and queries drawn by
experts in these domains. Our method to create human-
annotated rankings can be used to create datasets for different
domains that would, over time, allow for such an extensive
analysis.

CONCLUSION
In this paper, we showed why currently available datasets are
not suitable for testing the subjective accuracy of similarity
measures and demonstrated how human-annotated rankings
can be created using crowdsourcing tasks. We published
a freely available dataset comprising 8 different human-
annotated rankings including the query pattern and 15 sub-
sequences per query. This dataset can be used to optimize
new and existing algorithms and serves as starting point for
further research in this area. Furthermore, we collected 112
different query patterns from different users, analyzed their
meaning and characteristics and proposed future ideas for a
visual vocabulary for time series queries.

All queries and human-annotated rankings are available on
http://cs.brown.edu/˜peichmann/timeseries/
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Figure 9. A human-annotated ranking for query pattern 2 and three different rankings produced by DTW, ED, and SpAde similarity measure using
PIP sampling. The algorithms produce reasonable results according to the Spearman coefficient (SpC). Note that even the crowd sometimes fails to
agree upon a most similiar shape (see rank 3 in the human-annotated ranking).
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