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Abstract

In this paper, we study the feasibility of scene attributes
as the intermediate scene representation for automatic im-
age captioning, tag predicting and semantic image search.
we show that when used as features for these tasks, low di-
mensional scene attributes can compete with or improve on
the state of art performance. In particular, we propose a
new method of content-based image retrieval, which takes
advantage of the correlation between scene attributes and
caption key words. When compared to simple uni-gram tf-
idf image search, our method offers more promising results.

1. Introduction

Patterson and Hays create and verify the SUN attribute
database [7] in the spirit of analogous database creation ef-
forts such as ImageNet [1], LabelMe [8] and TinyImages
[9]. It is the first large-scale scene attribute database. In
their work, they first derive a taxonomy of more than 100
scene attributes from crowd-sourced experiments. Next,
they use crowd-sourcing to construct the attribute-labeled
dataset on top of a significant subset of SUN database [11],
spanning more than 700 categories and 14,000 images.

In order to use scene attributes for computer vision tasks,
Patterson and Hays use the database to train classifiers for
each attribute category to predict attributes. The final rep-
resentation of scene attributes is a 102-dimensional feature
representation, where each of the 102 values corresponds
to the prediction confidence of a particular attribute in an
image.

These simple attribute classifers have demonstrated their
abilities to recognize a variety of attributes related to materi-
als, surface properties, lighting, functions and affordances,
and spatial envelope properties. In this paper, we want to
investigate how this set of attribute classifers, as a low-
dimensinal feature representation, can catch semantic infor-
mation in images and improve the performance of tasks that
require a deep understanding of image semantics. We carry

out three experiments, including the areas of automatic im-
age captioning, image tag predicting and content-based im-
age retrieval.

2. Automatic Image Captioning

The im2text task [5] is to automatically generate a plau-
sible caption for a given image. The published baseline first
searches for the nearest neighbor of the query image accord-
ing to some visual features, and then directly transfers the
caption from the nearest neighbor to the input image. The
authors investigate both gist descriptors and tiny images [9]
as the features for global matching. Semantic similarity of
captions is measured by BLEU [6] score. The experiments
were carried out on the SBU Captioned Photo Dataset 1

which contains 1 million Flickr images with captions.
In im2text [5], the whole pipeline also includes a content

matching step. Ordonez et al. rerank the nearest neigh-
bors from global matching according to their content simi-
larity to the query. The 5 kinds of image content are objects,
stuff, people, scenes and the term frequency-inverse docu-
ment frequency (TFIDF) weights. The authors then propose
two ways, linear regression and linear SVM, to combine in-
dividual content measures into a final ranking. Their global
plus content matching pipeline obtains BLEU scores 0.1215
+- 0.0071 for linear regression and 0.1259 +- 0.0060 for lin-
ear SVM on 1M dataset [5]. Note that these BLEU scores
are not directly comparable to our performance scores in
Table 1 because of some rounding in double precision of
their released features.

The original im2text task uses captions that are not clean,
which means the captions contain upper case letters, punc-
tuations and stop words. The stemming process is not per-
formed, either. The stemming process only keeps the root
part of words, for example, stemming makes “run”, “ran”
and “runs” the same word “run”. To better investigate how
appropriate BLEU metric is for the image captioning task,
we preprocess the captions. This includes removing punc-

1http://dsl1.cewit.stonybrook.edu/vicente/py/
website/search
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tuations and stop words, making all lower-case and stem-
ming. In Table 1, the columns titled 10K*, 100K* and 1M*
are the BLEU scores of the im2text task after preprocessing
the 10K, 100K and 1M datasets. We observe that the scores
are greatly decreased, and close to zero. We conclude that
BLEU is not correlated well with semantic similarity be-
tween images and their captions.

Even though the scores are approaching zero, we find
that the advantage of using scene attributes as features be-
comes much more significant. The BLEU scores obtained
using scene attributes are about 1.4 times the BLEU scores
obtained using baseline features(gist + tiny images). In 10K
case, the chance score is close to the baseline results. This
is further evidence showing the weakness of BLEU metric
in captioning tasks.

It turns out that under the BLEU evaluation scheme used
in im2text, much of the quantitative performance comes
from chance matching of articles and prepositions between
predicted and ground truth captions. As shown in Table 1,
chance (random image retrieval) produces a score of 0.086
compared to 0.109 from the global feature baseline. We per-
form three operations to try and make the caption evaluation
more rigorous: (1) stemming captions to root words, e.g.
“run”, “ran”, “running” and “runs” are stemmed to “run”,
(2) converting all words to lower case and (3) removing fre-
quent “stop words” such as articles and prepositions. While
steps 1 and 2 make it easier for captions to match under the
BLEU criteria, step 3 dramatically decreases performance
as shown in Table 1, bottom. Chance performance drops
by a factor of 6, to .014. The difference between attributes
and the baseline global image features is more pronounced
under this scheme – 0.0551 vs 0.0398, respectively. These
numbers are quite low in absolute terms because the cap-
tions in the im2text database are exceedingly diverse, even
for very similar scenes.

Fig. 1 shows some example results where scene at-
tributes provide better global matching results on the
im2text task than the results obtained from baseline fea-
tures (gist + tiny images). For all examples, the generated
captions obtained using attributes get higher BLEU scores
than the generated captions from the baseline features. We
observe that in all four cases, global matching using at-
tributes returns images that are more semantically related
to the query images. For example, in the first row in Fig. 1
the query is an image of grasslands, with a tree. Attribute
based global matching returns the similar scene of grass-
lands, with a tree in the foreground. However, gist and tiny
images based global matching returns an indoor scene. In
the last row from Fig. 1, both query image and the image re-
turned by attribute based global matching depict a furnished
room, but the gist and tiny images based global matching
returns a horse.

While our compact attribute representation improves

Table 1: Global matching BLEU score comparison between base-
line features and attributes on 10K, 100K and 1M dataset, 10K*,
100K* and 1M* are the dataset results with caption preprocess-
ing(removing stop words, punctuations, stemming, all lower case)

10K 100K 1M
Gist + Tiny Image 0.0869 +- 0.002 0.0999 +- 0.009 0.1094 +- 0.0047

Attributes 0.0934 +- 0.01 0.1058 +- 0.015 0.1140 +- 0.0199
Chance 0.086

10K* 100K* 1M*
Gist + Tiny Image 0.02 +- 0.006 0.0255 +- 0.0079 0.0398 +- 0.0122

Attributes 0.0298 +- 0.0052 0.0366 +- 0.0132 0.0551 +- 0.0258
Chance 0.0144

Figure 1: Attribute Search vs. Im2Text Baseline. Example search
queries that show how scene attributes provide more relevant im-
age search results than the Im2Text baseline.

data-driven image captioning over the global scene fea-
tures, it does not represent state-of-the-art performance.
Im2text [5] also investigates an image retrieval scheme
which reranks the nearest neighbors based on recognized
objects, materials, people, and scenes. This more sophis-
ticated method outperforms our attribute-based retrieval,
with BLEU scores up to 0.1259 +- 0.0060 on the un-
stemmed dataset.

3. Predicting Image Tags

In this section, we investigate the performance of tag pre-
dicting tasks using 102 scene attributes as features. The
dataset we use for these experiments is the MIRFlickr 25K
dataset [4].
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This set contains 25,000 images from the Flickr website,
with user provided tags for each image. These Flickr tags
are very noisy. Some tags may not be relevant to the image
contents, such as the tag about camera model which was
used to take the picture. Moreover, people tend to assign
few tags to images instead of exhaustively listing all rele-
vant tags.

More useful for our experiments are the 38 manual an-
notations of the dataset images. The images were annotated
in two rounds. In the first round, 24 concepts are manually
annotated and people are asked for each image whether it
is at least partially relevant for each concept. In the sec-
ond round, a stricter rule is used for 14 concepts. Only
images labeled as relevant for a concept in the first round
are considered here. They are considered relevant only if a
significant portion of the image is relevant for the concept.

3.1. Tag Prediction with SVMs

We are very interested in how our scene attributes can do
at tag predicting tasks. One of the state-of-art tag predict-
ing methods is the TagProp model proposed by [2]. Later,
Verbeek et al. applied the TagProp model to the MIRFlickr
25K dataset for tag predicting task and obtained promising
results [10]. Verbeek et al. also compared their TagProp
model to SVM classifiers for annotation predition [10], and
found SVMs performed better than their model. They ar-
gued that by sacrificing the cost of precision, the training
process of TagProp is faster than the training of SVMs.

Because [10] shows that SVMs for tag prediction always
perform better than the TagProp model, we would like to
train SVM classifiers to predict a confidence value for each
of the 38 annotation categories using our scene attributes.
We compare the performance of this method to the SVMs
prediction results using the features proposed by the Tag-
Prop paper. According to [10], 15 distinct features are used,
including one gist descriptor, 6 color histograms (RGB,
LAB and HSV with 2 layouts), SIFT and hue descriptors
(both with dense multi-scale grid and Harris-Laplacian de-
tector, for 2 layouts). The TagProp features turn out to be
37,152 dimensions. In contrast, scene attributes provide a
hugely more compact feature representation – only 102 di-
mensions.

Following the experiment setup of [10], we measure av-
erage precision (AP). To calculate the AP of a concept, we
rank all images according to SVM confidence values and
compute the precision at each position where the image is
indeed relevant according to the manual annotation. The AP
averages precision over all positions of relevant images. Ta-
ble 2 shows the AP scores of 38 annotation concepts using
scene attributes and 15 features, as well as the combina-
tion of all features. From our experimental results, scene at-
tributes alone results in very promising prediction precision.
The mean AP value over all annotation categories for scene

attributes is 45.42%. This value is close to the results using
the TagProp model. Verbeek et al. proposes two ways to
define the training image weights, distance-based and rank-
based weights, for the TapProp model, and the mean AP
scores are 45.9% for distance-based weights and 46.5% for
rank-based weights [10]. If we look at individual annotation
categories, for some cases, like structure and transporta-
tion, the AP scores of attributes and 15 features are almost
the same. We can say that with this compact feature rep-
resentation, the 102 scene attributes still contains enough
information for tag predicting tasks. An important thing
to note is that most of the annotations are object-based,
not attribute-based, like “baby”, “car”, etc. This may hurt
the attributes’ performance on this MIRFlickr dataset since
there are no individual scene attribute classifiers for those
particular objects. We also find that adding scene attributes
and 15 features together does not improve AP scores signif-
icantly.

3.2. Principal Component Analysis Compression

We are impressed by the compactness and effectiveness
of 102 scene attributes as features for tag predicting task.
We want to further investigate the compactness of attributes.
We decide to use principal component analysis (PCA) to re-
duce the dimensions of our feature space. We experiment
using the first 32 principal components and first 16 princi-
pal components of the attribute features for the MIRFlickr
images. Compared to using the full attribute features, per-
formance decreases when fewer principal components are
considered. when using 32 principal components, we get a
mean average precision of 41.44%, which is acceptable. We
get a mean average precision of 36.88% when considering
16 principal components.

We also quantize the 32 dimensional feature vector into
binary values. The threshold between positive and negative
labels is set at the mean of each dimension. This results in
a 32-bit string feature representation. This feature represen-
tation obtain a mean AP score of 30.97%. Even with only
32 bits, attributes still do a much better job than chance.

3.3. Image Retrieval

Attributes Words Correlation. Our idea of applying
attributes keywords correlations to image retrieval task is
inspired by [3]. Mori et al. propose a method to count
the number of co-occurrences of image patch based features
and caption key words in a dataset of segmented images, to
find correlations between key words and features. Mori el
al. then use the calculated feature-keyword correspondence
to predict the keywords in novel images. We discover the
correspondence of attributes and keywords by counting the
number of times that a given attribute and keyword appear
in the same images. We also design a weighting scheme
to make this method robust to noise. Our goal is to see if
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Table 2: Comparison in terms of AP(%) of tag prediction with SVMs. ‘Attr’ is the results using 102 attributes as features, ‘15 feat’ is the
15 features proposed by TagProp, and ‘all’ is Attr+15feat.

animals baby baby* bird bird* car car* clouds clouds* dog dog* female female*
Attr 38.47 7.78 12.31 10.15 12.11 31.37 46.2 79.7 64.62 17.17 18.87 52.2 46.5
15feat 48.01 12.39 16.18 16.40 22.57 34.68 51.57 84.84 77.12 29.97 32.94 58.42 54.75
All 48.09 12.25 16.19 16.47 22.68 34.88 51.51 84.96 77.20 30.16 33.10 58.46 54.78
Rand 12.9 1.1 0.5 3.0 2.0 5.0 1.7 14.5 5.4 2.7 2.3 24.8 15.9

flower flower* food indoor lake male male* night night* people people* plant portrait
Attr 39.46 44.36 40.01 71.37 24.1 47.46 37.18 60.73 48.54 76.45 69.81 74.89 59.53
15feat 52.09 62.55 50.22 75.55 27.73 51.79 42.73 65.07 53.93 80.31 75.9 79.75 68.81
All 52.16 62.66 50.25 75.74 27.69 51.86 42.81 65.03 54.03 80.37 76.1 79.82 68.91
Rand 7.4 4.4 4.0 33.5 3.0 23.9 14.2 10.3 2.5 41.3 31.1 34.8 15.6

portrait* river river* sea sea* sky struct. sunset transp. tree tree* water Mean
Attr 59.26 21.83 6.73 51.51 28.86 84.26 78.43 58.22 44.06 61.85 40.86 58.57 45.42
15feat 68.71 25.51 6.92 56.2 31.46 88.91 78.38 67.83 45.74 68.03 52.63 62.58 52.08
All 68.81 25.47 6.72 56.2 31.6 88.93 78.63 67.84 45.79 68.02 52.71 62.72 52.15
Rand 15.1 3.7 0.6 5.3 0.8 31.0 40.4 8.4 11.9 18.3 2.7 13.1 12.3

scene attributes convey semantic information and if they are
suitable for image captioning or tag prediction tasks.

We use the 10,000 images and captions from im2text
dataset as our training set. We only consider the 1000 most
common words in the im2text dataset as key words. We let
n be the size of image dataset, and create an n-long vec-
tor Wi, for each word wi and an n-long vector Aj for each
attribute aj . The kth element of Wi indicates if the word
wi exists in the caption of the kth example in the dataset.
Similarly the kth element of Aj indicates if the attribute ai
exists in the image of the kth example in the dataset.

We also use a binary-idf, binary-inverse document fre-
quency, style weighting for word vectors and tf-idf, term
frequency-inverse document frequency, style weighting for
attribute vectors. In detail, if wi exists in the caption of the
kth example, the weight of the kth element in Wi is set to be
1/fw, where fw is the inverse document frequency of wi;
otherwise the weight is zero. Similarly, if aj exists in the
image of the kth example, the weight of the kth element in
Aj is set to be conf/fa, where conf is the sigmoid scene
attribute confidence score, and fa is the inverse document
frequency of aj ; otherwise the weight is zero. Finally, the
correlation between word wi and attribute aj is simply the
inner product of Wi and Aj - Cij = Wi ∗Aj .

Table 3 shows top correlated words for attributes and
Table 4 shows top correlated attributes for words. We
set a threshold -0.75 on the SVM confidence to deter-
mine if a particular attribute exists in the image. We find
that attributes and keywords are semantically correlated.
Looking at the top correlated key words for attribute ‘sail-
ing/boating’, the top correlated key words are ‘cruise’, ‘har-
bor’, ‘ocean’, ‘sail’, ‘swim’, etc. Note some words are
transformed because of stemming. Intuitively these key
words are related to ‘sailing’ and ‘boating’.

Word-to-Attribute Correlation Applied to Image Re-
trieval. In this section, we apply the word-to-attribute cor-
relation scores to the image retrieval task. We want to
achieve content-based image retrieval with text queries. For

Table 3: Examples of top correlated words for attributes. Note:
words are stemmed.

Attr. sail./boat. driving eating railroad camping

To
p

20
C

or
re

la
te

d
W

or
ds

cruis sand bar moon grass
harbor road cabinet railwai pastur
ocean sidewalk desk lit field
sail lane kitchen exposur forest

swim dune oven harbour landscap
boat highwai tv track fallen
dock moon een southern lone

sunset traffic shelf train hidden
sky canyon breakfast mother hill

airplan track dine star flow
beach wind tabl light stream

sea order ceil tank canyon
coast cross candl traffic oak
wave bridg lit night trail
ski cabl sunris glow distanc

clear ga chocol pass road
lake drive second shadow camp
ship fallen room salt creek

moon colorado bathroom site grow
sunris toward cherri wing wind

example, if user inputs a text query “sky”, we can convert
the text to its corresponding visual features, such as blue
background, clustered clouds and horizon line, and retrieve
images using those visual features. This way we do not have
to look at the image captions in the database. Here we use
the attribute-keyword correlation we have obtained to do the
conversion from text features to visual features. We again
use the im2text dataset, with 10,000 examples for training,
and 90,000 examples for testing.

Given the query text, we break the text into words. Let-
ting Tquery be the vector of query word indices. These in-
dices are the positions of the query words in the list of 1000
most common caption words. We use Tquery and word-
attribute correlation we have obtained to create an estimated
scene attributes representation. We call these estimated at-
tributes ‘fake’ attributes in this paper. Each word wi has
a vector of correlations Ci =< ci,1, ..., ci,j , ..., ci,102 >,

4



Table 4: Examples of top correlated attributes for words

Words kitchen mountain

To
p

10
C

or
re

la
te

d
A

ttr
. tiles far-away horizon

enclosed area hiking
cleaning camping
reading natural

wood (not part of a tree) foliage
glossy vegetation

electric/indoor lighting trees
glass rugged scene
eating shrubbery

studying/learning leaves

Words beach dress

To
p

10
C

or
re

la
te

d
A

ttr
. ocean cloth

far-away horizon medical activity
sand enclosed area

waves/surf paper
sunbathing no horizon

sailing/boating sterile
diving research

swimming electric/indoor lighting
still water stressful
open area man-made

where each element ci,j is the correlation of word wi and
attribute aj . The fake scene attribute representation is de-
fined as the average of correlation vectors of the words in
the query,

Ffake =
1

N

N∑
k=1

CTquery,k
(1)

where N is the length of Tquery, and Tquery,k is the kth ele-
ment of Tquery, the index of the kth query word in common
words list. We consider the same word multiple times if it
appears multiple times in the caption.

We then learn multi-linear regressions to map fake scene
attributes to predicted scene attributes, which are the out-
put feature vectors of attributes classifiers. In the training
dataset, for each image, we know both its fake attributes
and predicted attributes. We then learn the regression to
map from those attributes in the fake representation to aj
in the predicted representation. Finally, we search for the
nearest neighbors of the query’s predicted attribute repre-
sentation in the test dataset.

We compare our method to tf-idf based image retrieval
method because tf-idf is a widely used baseline method for
text-based image retrieval. Fig. 2 and 3 show the results of
both methods separately. From the results, we can see that
attribute-based image retrieval gives very promising search
results. For most search results returned by attribute-based
method, the target specified by the query text are the dom-
inant objects or scenes in the retrieved images. However,
that is not the case for tf-idf based method. For example,
for the “flower” query, the five images returned by attribute-
based method are all depicting flowers directly, while the

dominant objects in images returned by tf-idf based method
contain mug, pony and bee. Another interesting thing we
find is that our method can understand the semantics of not
only single words but also phrases. For example “snow
mountain” and “dark sky”, most of the results have the cor-
rect semantics. For the “dark sky” example, there are some
false positives, such as the second image where a boat is
agaist the blue sky. It seems our method thinks the rela-
tively dark boat is a part of the sky.

4. Discussion
We have seen that using scene attributes as features can

compete with or improve on the performance of several
computer vision tasks, including automatic image caption-
ing, tag predicting and content-based image retrieval. How-
ever, the applications are not limited to these areas. There
are other computer vision tasks requiring features provid-
ing sufficient semantic information, such as automatic im-
age illustration. In our future experiments, we will further
explore the interplay between scene attributes and image se-
mantics through a variety vision tasks.

Currently, our proposed image retrieval method enables
us to input keywords or phrases for image search. However,
our goal is to make the algorithm understand more compli-
cated input queries, such as a whole sentence. For image
captioning, we also need to find a better metric to measure
the semantic similarity between captions and images, since
BLEU does not work well.
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