An Attempt to Build Object Detection Models
by Reusing Parts

Li Sun
Department of Computer Science
Brown University
Providence, RI 02912
liQcs.brown.edu

May 9, 2013

Abstract

Current state-of-the-art object detection methods, like the De-
formable Part Model(DPM)[3] method, have achieved remarkable per-
formance in detecting objects. However, the annotation collecting
process is very costly and it won’t scale as the number of categories
increases. In this work, we make use of the information provided by
part models of already trained deformable part models to decrease
the amount of training data required for building good models. For
easy categories like cars, aeroplanes and bicycles, we achieved decent
qualitative results and quantitative results.

1 Introduction

Current state-of-the-art object detection methods, like the Deformable Part
Model(DPM)[3] method, have achieved remarkable performance in detecting
objects. However, in order to train a good model for a certain category, it
usually involves collecting a large number of(typically thousands of) train-
ing examples with nontrivial human labeled annotations for these methods,
which is quite costly.

The purpose of this research work is to invent a method to reduce the
amount of training data required for building a reasonably good object detec-
tion model for a new class using some extra information other than training
examples, like already trained models of other categories.

The purpose hasn’t been achieved yet, but the goal of this technical report
is to record all the progress made so far. So far, our approach is able to build
fairly good models for easy categories like cars ,aeroplanes and bicycles. More
details of what has been achieved and how we achieved it will be discussed
below.

This report will be organized in the following way. In section 2, we will
discuss the ideas that we used to achieve the purpose of building good object
detection methods with less training examples. In section 3, we will give
details about our algorithm. Experimental results will be given in section 4,
and section 5 will discuss possible future works.

2 Ideas

To realize the purpose of building good object detection methods with less
training examples, we adopt the reusable parts idea, the one-exemplar train-
ing method idea and the Deformable Part Models method.

The intuition to reuse parts comes from the fact that a lot of object cat-
egories share parts with very similar appearances. For example, cars and
trucks share wheel parts; cows and sheeps share torso and leg parts. There-
fore, if we’ve already trained good models for some categories, it is possible
to reuse parts of those good models to build a model for a new category with
similar parts. By using the extra information provided by similar parts, we
should be able to build equally good models with less training examples.

The one-exemplar training method idea fits well with our purpose. Since
the whole goal is to train good object detection models with less training
examples, we want to make the best use of the information provided by each
training example. The idea of one exemplar training method is to build a
model from each training example so that the information provided by each
example won’t be averaged out.

The idea of using the deformable part models method comes naturally
here as well. Since we want to reuse parts of already trained models, we want
to have a clear way of representing parts. The deformable part models offer
very clear models for parts called the part models.

3 Algorithm

The general idea of the algorithm is that we want to build a component(the
same as defined in [3]), which is basically a submodel of a DPM model, for
each training example by picking part models and placing them at positions

in this component according to the similarity of the part models’ filters and
underlying patches in the training example.

Asin [3], each component is formally defined by a (n+2)-tupple (Fy, Py, - -+, Pk, b),
where Fj is a root filter, P; is a model for the i-th part and b is a real valued
bias term. Each part model is defined by a 3-tuple (Fj,v;,d;) where F; is a
filter for the i-th part, v; is a two-dimensional vector specifying an “anchor”
position for part 7 relative to the root position, and d; is a four dimensional
vector specifying coefficients of a quadratic function defining a deformation
cost for each possible placement of the part relative to the anchor position.

The main algorithm is given in Algorithm 1.

input : a library of already trained part models
P ={P|,Pj,---, P}, their corresponding histograms of
convolution scores with a large randomly selected number of
patches H = {H,, Hy, -+, H,}, a set of training examples
X ={Xj, Xy, -+, X;n} and their corresponding segmentation
maps S = {51, 52, -, S}, the number of part filters in each
component K
output: a set of components M = {M;, My, ---, M,,} such that M; is
built from training example X; using the part models in P’
1 for i< 1:m do
2 Initialize M;, with root filter Fjy < 0, and b < 0;
3 Initialize S < S; ;
4 for k< 1: K do
5 for j«<1:ndo
6 Convolve part filter Fg of part model P} with X; to get a
covolution score map C*;

7 CTY + segment_mask(C" S!) ;
// Collect the highest score
8 s <= max, ,(CTY);
// Collect the location of the hightest score in
the map
9 LY = argmax,,(CT}));
10 s <transform_score(s" H;)
11 end
12 [+ argmax; s,
13 Pl <+ P/;// Set kth part model P} in the component M,
14 vP < Ly; // Modify anchor position vf of P}

// Note we keep the filter F; and deformation cost
parameter d; components of selected P/

15 St «— wipe_out(S;, Ly);
16 end
17 end

Algorithm 1: Main Algorithm

The functions segment_mask(Line 7) , transform_score(Line 10), and wipe_out(Line
15) will be explained in more detail later in this section.

(a) HoG features (b) Components (c) Deformation Costs

Figure 1: Components built using the convolution scores. (a)Visualization of
HoG features of examples. (b) Visualization of built components’ filters. (c)
Visualization of deformation costs

3.1 Similarity Score

In Line 10 of Algorithm 1, we transform a convolution score s% to a similarity
score s% by the function transform_score. If we don’t do this step and use
convolution scores directly, we got the models shown in Figure 1 from the
algorithm.

Interestingly, the algorithm only picks part models from the person cat-
egory’s DPM models, although the underlying training example is from the
car category.

The reason is that, in the library of part models, the magnitude of weights
of their filters are very different. Therefore, the algorithm keeps picking parts
with large magnitudes regardless of how similar the part filter is to the patch
features. In the case of Figure 1, the part models for person category have
part filters with much higher magnitude. That’s why the algorithm keeps
picking part models from the person category DPM model even though no
patches underneath look very similar to those chosen part models.

Therefore, we want a score measure which reflects more about the simi-
larity between a part filter and a patch than a simple convolution score.

To achieve this goal, we will adopt the following idea: if a patch is similar
to the part filter, the convolution score between them should be higher than
most of convolution scores of random patches from natural scene with this
part filter.

According to this idea, we designed the following procedure to collect a
new similarity score sy given a convolution score s for a part model P:

1. Convolve part filter component F of P with N (very large) randomly
chosen patches from natural scene images, and collect the N convolution
scores

2. Given convolution score s of part filter F with a patch p, a new score

ss = (number of collected scores smaller than s)/N

This is basically what’s implemented in the function transform_score.
However, there exist some minor differences for practical reasons. First,
we compute and store the histogram H of the collection of convolution score
of P instead of the collection itself. Second, instead of recalculating H again
and again, we pre-compute it once, and take H and P as input of the function
transform_score.

Experimentally, we found the histograms of convolution scores are very
similar to Gaussian distributions, as shown in Figure 2. So, by approximating
the histogram with a Gaussian distribution, we only need to save the mean
and the variance of the convolution scores. This saves us a lot of space.

By applying the function transform_score to transform convolutions scores,
we got the components as shown in Figure 3.

Qualitatively, we can see that we get much better components using the
similarity score. Also, quantitively, when we combine all those components
of the same category into a model, we got decent performance (which will be
shown later in Section 4)

3.2 Using Segmentation Map

In Line 7 of Algorithm 1, we mask the convolution score map C% according
to the segmentation map S, with the function segment_mask, and output
the masked convolution score map CT%. In segment_mask, the new CTY is
obtained by masking entries in C%¥ to 0 if the fraction of overlapping area
of the mask(with the same size as part filters) with true segmentation map
S! of the example comparing to the mask’s size is under a threshold ¢. In
practise, we set t = %, which works well.

Also, to make sure each time a new area of the segmentation map is
covered, we use the function wipe_out to update the segmentaion map S,
which simply sets the latest covered area of the segmentation map S; to 0.

The reason to make use of segmentation maps is that, for ground truth
bounding boxes of some categories like the aeroplane category and the horse
category, they have a large portion of background clutter. By using infor-
mation provided by segmentation maps, we are able to focus finding parts
which agree best with foreground, instead of background clutter.

(a) Part filters (b) Histograms

Figure 2: Histograms of convolution scores. (a) Visualization of part filters.
The upper squares are visualization of the positive weights, and the lower
squares are visualization of the negative weights. (b) Corresponding his-
tograms of convolution scores with random natural scene patches of the part
filters.

S Y e e ———
i AN A\ Ay ~
e iy

(a) HoG features (b) Components (c) Deformation Costs

Figure 3: Components built with similarity scores. (a)Visualization of HoG
features of examples. (b) Visualization of built DPM components’ filters. (c)
Visualization of deformation costs

< e \,«)‘-

'y P

(a) HoG features (b) Without segmenta- (c) With segmentation
tion maps maps

Figure 4: Comparison of aeroplane components bwilt with and without using
segmentation maps. (a) HoG features. (b) Components built without using
segmentation maps. (¢) Components built using segmentation maps.

Some qualitative comparisons after using segmentation maps are shown
in Figure 4. We can see the components focus more on the foreground after
using segmentation maps.

However, not surprisingly, there is almost no difference in performance
between using or not using segmentation map for the car category, as shown
in Table 1 which we will see later, because usually bounding boxes for cars
don’t have much background anyway.

More quantitative results will be shown in Section 4.

4 Results

In this section, we will give quantitative results of detection performance of
variations of our algorithm in comparison with the the-state-of-the-art DPM
[3] method. We will also show some visualizations of the models built with
our method to give the readers a sense of how the models look like.

4.1 Performances

Object detector performance is usually measured by a PR curve, which is
basically constructed by ploting a set of precision recall pairs.
So, in our case, we’ll collect the precision recall pairs by Algorithm 2.

input : a test set with IV; true positives, a precision threshold p; and
a collection of components M = {M;, M, - -, M,,} built by
Algorithm 1
output: recall rate r
Initialize U < {};
for i < 1:m do
D; « build_model(M;);
end
for 1< 1:m do
PR; < test(D;);
U; < collect_set(PR;, py);
end
U+ U?;lUi;
re
Algorithm 2: Recall Rate Collecting Algorithm

© 00 N O 0ok W N

-
o

In line 3 of Algorithm 2, the funciton build_model takes in a component
M, and outputs a Deformable Part Model D. D consists of two components
M and M’', where M’ is the flipped version of M.

In line 6 of Algorithm 2, the function test takes in an object detection
model D and outputs the PR curve on the test set PR.

In line 7 of Algorithm 2, the function collect_set takes in a PR curve PR
and a precision threshold p;, and output the set of true positive detections
U.

Note we are cheating a little bit here, because we caliberate the detec-
tions from different D; with the knowledge of the performance(PR curve) on
the test set. In real cases, it’s impossible to get those information, thus we
need to figure out another method to caliberate the detections of different
components. However, for the purpose of having a sense of how our algo-
rithm is working, we want to see the performance of our algorithm with the
assumption that we already have the best caliberate method.

For the following experiments, we test the object detection models on
PASCAL 2007[2] test set. Note, during the training phase, we use the original
train_val data set in PASCAL 2007 for training DPM model[3], but we only
select a subset of 100 random training examples from the train_val data set
for building models with SS(similarity score) method and SS+Seg(similarity

10

score and using segmentation map) method.

Precision Threshold | 0.55 0.65 0.75 0.85 0.95
Recall(DPM |[3]) 0.56 0.51 0.45 0.35 0.22
Recall(SS) 0.5121 | 0.4413 | 0.3664 | 0.2831 | 0.1790
Recall(SS+Seg) 0.5098 | 0.4442 | 0.3699 | 0.2794 | 0.1790

Table 1: Performance comparison of DPM method from [3[(DPM),
SS(similarity score), SS+Seq(similarity score and using segmentation map)
methods for the car category

Precision Threshold | 0.55 0.65 0.75 0.85 0.95
Recall(DPM [3]) 0.30 0.26 0.18 0.13 0.09
Recall(SS) 0.0245 | 0.0140 | 0.0140 | 0.0105 | 0.0105
Recall(SS+Seg) 0.1579 | 0.1509 | 0.1474 | 0.1298 | 0.0842

Table 2: Performance comparison of DPM method from [3[(DPM),
SS(similarity score), SS+Seg(similarity score and using segmentation map)
methods for the aeroplane category

Precision Threshold | 0.55 0.65 0.75 0.85 0.95
Recall(DPM [3]) 0.57 0.53 0.49 0.40 0.32
Recall(SS) 0.0070 | 0.0070 | 0.0070 | 0.0070 | 0.0070
Recall(SS+Seg) 0.0105 | 0.0105 | 0.0070 | 0.0070 | 0.0070

Table 3: Performance comparison of DPM method from [3[(DPM),
SS(similarity score), SS+Seg(similarity score and using segmentation map)
methods for the horse category

Note that, for the car category(Table 1), using segmentation maps or not
doesn’t make much difference to the performance due to the small portion
of background included in a car true bounding box.

Using segmentation information does have a big impact on the perfor-
mance of detecting aeroplanes(Table 2), which suggests background clutter
is indeed a major reason why SS method didn’t work well with the aeroplane
category.

For the horse category(Table 3), the performance stays very poor with
or without using segmentation information. We’ll discuss more about this in
Section 5.

11

Precision Threshold | 0.55 | 0.65 |0.75 |0.85 | 0.95
Recall(DPM [3]) 0.6l |058 |055 |050 |0.30
Recall(SS) 0.4451 | 0.3857 | 0.3204 | 0.2136 | 0.1751

Table 4: Performance comparison of DPM method from [3[(DPM),
SS(similarity score) method for the bicycle category

4.2 Models

In each model we built, we have about 100 flipped component pairs. Al-
though it’s impossible to visualize all component pairs in a model, we’ll
show the visuzliation of component pairs with the “best” detecting perfor-
mances(details will be explained below). Experimentally, we found that the
top 10 component pairs usually detect more than 90% of all true positive
detections.

Now we will explain how we find the best component pairs.

We want a good component pair to detect as many as true positives
not detected by other component pairs. That is, a good component pair
should be both special and representative. Given true detection sets U =
{U1,Us, -+, Uy} of built DPMs D = {Dy, Dy, - -, D,,}, we use Algorithm 3
to collect k best component pairs.

input : A set of true positive sets U = {Uy,Us, - -+, Uy, }, a positive
integer k

output: A sequence of best components indexes (ji, Ja, -+, ji) in
order

1 fori<1:kdo

2 j; =argmax; |Uj;

3 for h< 1:m do

4 Uh < Uh — Uji ;

5 end

6

end

Algorithm 3: Collect top k components

After finding the best component pairs for cars, aeroplanes, and bikes
categories, we visualize the top 9 component pairs in Figure 5, Figure 6, and
Figure 7 . Note we only visualize one component in each pair, and the other
one is the flipped version of the visualized component.

12

- ¥

S -
e e o e

i .~ T e it e

i

- S

Figure 5: Visualization of best 9 components for the car category

13

Figure 6: Visualization of best 9 components for the aero category

14

Figure 7: Visualization of best 9 components for the bicycle category

15

5 Future Works

The work so far can produce reasonable models for detecting categories like
cars, aeroplanes and bicycles. However, for categories like the horse catgory,
the performance is still very poor. Using segmentation maps doesn’t help
much with the horse category(see Table 3). We think the reason is that for
horses, the root filter plays a more important role in detection, and the parts
are less reliable since parts are more variant for categories like the horse
category. This guess is supported by the experiments in [1] which shows
dropping part models from standard DPM method only introduces a minor
decrease in performance(56.8 — 55.3) for the horse category, as opposed
to a large decrease for the car category(57.9 — 39.8). To give the readers
some sense of how the components of the horse categories are like, we gave
some examples in Figure 8. Further research could concentrate on how to
incorporate root filters into this method.

Also, we need to figure out a way to caliberate all the component pairs so
that a detection decision can be made collectively, combining all the compo-
nents’ detections. Possible directions include applying similar method as in
[4] and collecting similar histograms of detecting scores for each component
pairs(same idea as the similar scores).

At last, as what we have seen, for our new method, we usually have as
many components as number of training examples. Since we usually have
a not too small number of training examples (about 100), the component
number is much larger than that in a normal DPM(about 10) model. So,
it’s natural to be concerned with testing time speed. However, we found
that among all the components, usually the top 10 components contribute to
the most detections. We might be able to use this characteristic to improve
testing speed. Also, applying the sparselet method in [5] is another possible
way to improve testing speed.

Acknowledgement
The Author would like to thank Prof. Pedro Felzenszwalb for his guidance
and valuable advices through the duration of this project.

References

[1] Santosh Kumar Divvala, Alexei A. Efros, and Martial Hebert. How im-
portant are ”deformable parts” in the deformable parts model? In ECCV
Workshops (3), pages 31-40, 2012.

16

2NN {&i
e . (G aacas & £ oy O G RN
7 \w}j:%*—\f*kﬂ‘-**—*—*::
it e et e s i b sl i

(a) Examples (b) HoG features (c) Components

Figure 8: Horse components built by method NS+Seg(using similarity scores
and segmentation maps)

17

2]

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC /voc2007 /workshop /index.html.

P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 32(9):1627—
1645, 2010.

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros. Ensemble of
exemplar-svims for object detection and beyond. In ICCV, 2011.

Hyun Oh Song, Stefan Zickler, Tim Althoff, Ross Girshick, Mario Fritz,
Christopher Geyer, Pedro Felzenszwalb, and Trevor Darrell. Sparselet

models for efficient multiclass object detection. In Computer Vision—
ECCV 2012, pages 802-815. Springer, 2012.

18

