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Background and Motivation
Non-photorealistic rendering (NPR) is the area of computer graphics that is concerned with 

rendering images in styles other than photorealism, such as a variety of art-based styles.  Stylized 

rendering in general may have a number of perceived advantages, the most obvious being the potential 

for a diversity of visual appeal.  Other motivations include visual clarity (illustrative diagrams are 

frequently simpler to comprehend than photographs or photorealistically rendered models), or practical 

asset limitation (applying a visual style other than photorealism may reduce the need for detailed textures 

and geometry).  

We present a library of utilities for applying art-based NPR effects to 3d models in WebGL.  The 

goals of the project are to provide a reasonable variety of customizable effects, as well as utilities for 

authoring and prototyping effects and assets for these effects.

Our work is motivated primarily by the visual possibilities of art-based rendering for digital art.  

Of particular interest is the application of NPR techniques to real-time digital art such as games, but 

increasingly including other forms such as installation art, interactive visualization for performance, and 

web-based work involving any or all of the aforementioned.

Recent developments in web standards (HTML5) allow for dynamic multimedia content using 

only standard HTML and JavaScript that previously required the use of browser plugins such as Adobe 

Flash.  This has given rise to a large number of multimedia web experiments and applications.  The 

integration of these technologies into the web standard serves a purpose further than just allowing a 

theoretically greater dissemination of such content to devices without common plugins.  By embedding 

this functionality into the fabric of the web, HTML5 multimedia can interact with the DOM (Document 

Object Model) directly, which in turn would allow for a wide range of possibilities for the future of web 

content.

The HTML5 specification adds a canvas element which operates as a context for arbitrary 

procedural graphics.  The canvas element offers contexts for 2d graphics, as well as a context for 

OpenGL programming.  The JavaScript API for OpenGL through which this is possible is called WebGL 

[WGL], and is the basis for our project implementation.

The specific effects and algorithms implemented are based heavily on previous work in the field.  

Existing work is discussed in each implementation section.



 

Challenges/Limitations
The chosen platform provides both one of the most exciting aspects of the project and the most 

challenging.  3D graphics development of this kind in WebGL faces two main hurdles: the performance 

issues inherent in using an interpreted language, and the specific limitations of using WebGL (versus the 

more complete desktop OpenGL).  These are discussed in the following sections.

 

JavaScript Performance
The first challenge is the performance implication of using JavaScript in the web browser as the 

primary platform. JavaScript implementations across browsers have made dramatic gains in performance 

in recent years (and this has facilitated such HTML5 developments as WebGL). However, there remains 

a considerable difference between what is feasible real time processing with native code and what is 

feasible in the browser through Javascript.

Google has recently released version 1.0 of its Native Client (NaCl) SDK, a framework for running 

sandboxed portable native code in the browser [NACL].  This would likely increase performance for some 

tasks, but has the distinct disadvantage that it runs only in the newest releases of Google’s Chrome 

browser, and is disabled by default at this time.  WebGL, on the other hand, has support in most modern 

browsers (with the notable exception of Internet Explorer) and an active developer community, and so 

remains the choice for implementation.

Instead of seeking to run native code, the main strategy used for performance is to leverage the 

capabilities of the GPU as much as possible, and modify existing algorithms to use the GPU for tasks 

previously done on the CPU.  One example of such a modification can be found in [HS04], where the 

authors lessen the need for expensive CPU depth sorting of surface-bound particles by performing a 

depth test in the fragment shader.  The particles whose depth does not match the corresponding value 

from a depth pass texture are interpreted as occluded, and their pixels are discarded.  Such modifications 

may result in a compromise of functionality: the focus of our library is determining the best feasible 

WebGL approximation to the original algorithm.

 

OpenGL ES Limitations
The second challenge posed by WebGL development is the limitation of newer hardware 

capabilities.  WebGL is an implementation of the OpenGL ES 2.0 API, designed for low-power embedded 

systems.  As such, it lacks access to some new capabilities of consumer graphics hardware.  Notably 

absent is the Geometry Shader, or the capability to generate additional geometry on the GPU based on 

the vertex input.  This could be used to generate geometry for strokes or graftals given single sample 

points, which would greatly decrease the memory footprint and amount of computation on the client side.

Another important feature unsupported by WebGL is instanced drawing, in which a piece of geometry is 

specified once and drawn an arbitrary number of times in a single draw call.  As draw calls are expensive, 



it is critical that heavily instanced geometry be handled this way.  

Furthermore, WebGL lacks support for rendering to multiple render targets.  This requires 

reference passes for deferred rendering to be drawn in separate draw calls, using different shaders.  

Ultimately this is not as critical a feature, but where multiple deferred passes are used, performance 

suffers from its absence.  Where possible, information that would otherwise be rendered to reference 

passes is instead computed directly in the shaders that would be reading it.

 

Implementation
The following sections discuss our implementation.  In the next section, a technique of creating 

instanced geometry that is common to most of our implemented algorithms is discussed.  In the sections 

following, each implemented algorithm is discussed in some detail.

 

Particle-based instanced geometry techniques
A common technique across many of the implemented algorithms is the usage of uniformly 

sampled random points and normals across the surface of a mesh to position pieces of stylized geometry.  

These pieces of geometry may be textured quads (as in the case of painterly rendering, or particle-based 

lapped texture splats for hatching) or arbitrary 2d shapes (as in the graftal case).  Regardless of the style-

specific differences, they share the property of being instanced across the surface of the model and 

benefit from a common implementation.

There are a number of possible approaches to implementing instanced geometry in general.  

On newer hardware that allows for the usage of a geometry shader stage, one might specify single 

sample points in a Vertex Buffer Object.  These could each be transformed into the desired geometry in 

hardware, minimizing the amount of memory required to specify the stylized details. One might also use 

another feature of modern graphics hardware, instanced drawing, wherein a geometry buffer specified 

once may be repeated a given number of times in a single draw call.  Each instance is given a separate 

index so that it may be transformed separately.  Unfortunately, neither of these features is exposed in 

OpenGL ES, and both are therefore unavailable for use in WebGL.

A possibility for the billboarded quad case involves the use of hardware point sprites.  Specified 

as a separate drawing mode, screen-aligned hardware point sprites may be given a specified size in the 

vertex shader program, and textured in the fragment shader. This allows each billboard to be specified as 

a single point for minimal memory consumption.  The most obvious limitation of this approach is that the 

hardware point sprites do not directly support rotation or non-uniform scaling.  Both of these limitations 

can, however, be worked around in the fragment shader, as both scaling and rotation transformations can 

be applied before the texture lookup in the fragment shader at a small computational cost.  Such rotation 

requires padding within the point sprite to accommodate the longest diagonal of the rendered area.  In 

practice, however, the maximum point size for hardware point sprites is capped differently across devices.  

On our main machine used for development, a laptop with a high-end graphics card (Nvidia GeForce 



GTX 460M), this maximum value is 64 pixels.  Particularly with padding to allow for rotation, this value is 

small enough to limit practical use.

Instead, we choose a method that is suboptimal with regard to memory usage, but is 

otherwise performant and of high quality.  We copy the geometry once for each instance to be drawn and 

store the concatenated result in a Vertex Buffer.  As WebGL does not support drawing with quad 

primitives, we have the further memory inefficiency that each billboard must be specified as two triangles, 

a total of six vertices per billboard instance.  As the purpose of this large buffer is to allow instanced 

drawing, each instance must also contain a sequential index, and this index must be passed with each 

vertex of the instance.  All per-instance attributes other than this index are stored in a floating-point 

texture, making use of the OES_TEXTURE_FLOAT extension which is currently supported on many 

WebGL implementations (such as Google Chrome and Mozilla Firefox).  To minimize the size of the 

geometry buffer, the geometry is specified as 2d points in billboard space, with the instance index stored 

as the z-component.  The object space position (as well as the normal) for each instance is then stored in 

the attribute texture.  This attribute-texture technique for instanced drawing is crucial to our 

implementation, as it allows for an arbitrary number of attributes to be stored and referenced in the vertex 

shader.  If each attribute were stored as a geometry buffer, it would have had to be needlessly repeated 

for each vertex.  Similarly, were each attribute encoded into a separate texture, we would quickly exceed 

the hardware limit for vertex texture units (4, on our primary development machine).  As such, the library 

includes a utility function for encoding an arbitrary list of three or four dimensional vectors into a power-of-

two sized texture of three or four floating point channels respectively.

Some other benefits of this approach not available in hardware point sprites are that it extends 

nicely to arbitrary graftal geometry, and that the geometry is no longer required to be screen-aligned.  

Additionally, because the buffer geometry is specified only in billboard space, the same buffers may 

be used to apply the same effect to different models.  Ideally, future implementations of WebGL will 

feature support for hardware instanced drawing, which will drastically alleviate the memory usage of the 

technique in general.

  

 

 

 

 

 

 

 

 

 

 



Implemented Algorithms
The following sections provide information on the specific effects implemented.  Each of the 

four effects is heavily based on an existing published implementation.  Relatively high-level overviews 

are given, with more detail provided as it relates to where our system diverges from the reference 

implementations.

 

Painterly Rendering
Our implementation of painterly rendering is based on [BM96].  The technique ultimately results in 

an image made up of similarly shaped brush strokes that animate smoothly with a changing viewpoint.  A 

general explanation of the algorithm is as follows.

The scene is rendered once with multiple deferred rendering passes.  In particular, a normal 

pass is generated, along with a color pass, which functions like a target image for the render.  The 

color pass includes lighting and texture.  It is also possible to specify passes for billboard size, opacity, 

or conceivably other attributes.  From there, the geometry of the scene is rendered using instanced 

billboards that are statically positioned relative to the model.  Each billboard has an alpha channel defined 

by a brush image, The color for the billboard is sampled from the target color pass, the entire billboard 

is colored according to the color pass color behind its center in screen space.  Similarly, the orientation 

of the billboard (rotation within the screen plane) is defined by the normal pass.  The billboards are then 

rendered with alpha blending and potentially depth sorting to create the final image.  In the case where 

the billboards are not dense enough to cover the models entirely, a version of the color pass may be 

composited behind the brush strokes to prevent the background color from showing through.

Our implementation uses only the target color pass and a depth pass as deferred rendering 

passes.  As the per-stroke texture reads are more efficiently done in the vertex shader once per billboard 

instance, rather than once per instance-pixel in the fragment shader, it is imperative that we remain below 

the hardware limit of four vertex shader texture units.  The two passes constitute two of these textures, 

and the instance attribute texture for the billboards constitutes a third.  The fourth unit is left free for 

further customization of any of the properties based on values that cannot be computed in the vertex 

shader, because they depend on either rendered images or values otherwise determined in screen space 

(i.e. a user painting on attributes directly).  Because the normal information for each billboard is stored 

in the attribute texture directly, we have no need for a separate normal pass.  Likewise, billboard size is 

currently determined by a uniform value and attenuated in hardware as any other geometry.

We draw with alpha blending using a premultiplied alpha channel for the brush texture, 

depth testing disabled, and no depth sorting (since it is quite detrimental to performance).  With partially 

transparent brush strokes, this gives reasonable results.  Because the draw order of the particles remains 

constant, disabled depth testing works to the benefit of temporal coherence: a particle drawn on top of 

another will always be drawn on top, eliminating popping artifacts.  However, the lack of depth testing 



also presents problems with occluded surfaces, namely that strokes on the sides of objects facing away 

from the viewport will still be rendered.  To prevent this, we disable drawing of back faces by comparing 

the normal of the point sample to the look vector of the camera, and prevent drawing at some minimum 

threshold.  The tuning of this threshold is important.  If the value too low, and a vector at the threshold 

faces away from the camera, the purpose of the test is somewhat defeated, as the billboards facing 

somewhat away will possibly be rendered on top.  It too high (facing forward, or perpendicular), the image 

suffers from popping artifacts where billboards meet the threshold are suddenly removed.  Ultimately the 

only way to eliminate these popping artifacts is to ensure a smooth transition from the visible to invisible 

state.  This may be done either by shrinking the billboards down to a point, or by fading out the alpha 

channel.  Both approaches gave usable results, but ultimately the alpha fading approach was more 

applicable to a general case because it appeared more seamless.  Thus the alpha blending is enabled by 

default in the library’s painterly billboard shader.  The thresholds at which fading begins and full 

disappearance is attained are adjustable via uniform parameters.  These will likely need to be adjusted on 

a per-object basis.

There is yet another occlusion problem that occurs due to lack of depth testing that is not solved 

by the simple facing ratio test.  For all but the simplest meshes, and for any configuration of multiple 

meshes, it is possible for a front facing surface to be occluded by another front facing surface.  The result 

is an undesirable artifact, where the color of all strokes looks correct (as they are sampled in screen 

space from the color pass) but upon movement it is apparent that there are two separate groups of 

strokes.  If the orientation/normal pass is rendered as a separate pass and sampled, then the orientation 

of the strokes will conform to that of the visible object, and so the only artifact will be one of motion 

(which could conceivably be used for artistic effect, but is not desirable in the general case).  In our 

implementation, with normals stored per-particle in object space, orientation of the offending particles 

conforms to that of the occluded object.  To mitigate the effect for scenes with multiple meshes, a back-

to-front drawing of primitives is beneficial, though not sufficient.  In general, we follow the approach 

described in [HS04].  Particle depths are computed from clip space position, and this value is compared 

to the value stored in the depth buffer from the depth reference pass.  If the geometrically determined 

depth for a billboard is greater than the depth stored in the depth pass buffer at the point corresponding to 

the screen-space position of the center of the billboard, then the billboard is treated as occluded and not 

rendered.

The largest performance bottleneck for this technique is the fill rate of the graphics processor.  

Because we are drawing with alpha blending and no depth testing, there is a great deal of overdraw.  

Each stroke is drawn to the screen in its entirety each frame, which degrades performance significantly if 

a large number of strokes are scaled to be large enough.  In our experience, however, a large number of 

strokes can be drawn at a sufficient size with acceptable real time performance.

 



A dolphin with and without a painterly effect.  Dolphin model and texture from http://thefree3dmodels.com
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A grassy well scene rendered without and with a painterly effect.   Note that the texture maps provide color variation 
but not texture or detail.

 
 
 
 
 



 
 

Hatching
Hatching is a technique by which levels of tone are indicated by the density of close parallel lines, 

but we have generalized it to any technique in which tone is indicated by the density of layered marks.  

The implementation of the hatching effect is inspired by the implementation in [PH01].  Praun divides the 

problem into the synthesis of Tonal Art Map (TAM)  textures and the creation of surface parameterizations 

suitable for their application.  The latter will be discussed first, and is approached using the technique 

of ‘Lapped Textures’ [PF00].  

The lapped texture approach seeks to take irregular blob-shaped portions of a tileable and 

repeatable texture and paste them over the mesh until the mesh is entirely covered.  The paper employs 

a sophisticated technique to optimize the patch placements and distortions.  First, each triangle in the 

model is given a desired texture orientation that is computed from the local curvature of the mesh.  Next, 

each lapped patch of triangles (enough geometry to apply one splatted blob) is ‘grown’ breadth-first 

from a central triangle.  This is completed until enough patches are made to cover the model.  Finally, 

the texture parameterization of each lapped patch is adjusted.  The patch is rotated to align with the 

central triangle’s desired texture orientation, and then the optimal texture coordinates for each point are 

formulated as a solution to least-squares optimization problem.  With the error between the actual texture 

orientation and each triangle’s desired orientation minimized, the resulting parameterization nicely curves 

the strokes along the curvature of the mesh.  The resulting parameterization may be either converted to a 

texture atlas, or the patches may be drawn directly (necessitating a reformulation of the geometry as well 

as the drawing strategy).

Our implementation forgoes the more sophisticated techniques at a cost of some image quality.  

Our primary implementation simply assumes acceptable texture coordinates on the model, which 

provides reasonable results for models with largely continuous texture coordinates.  Certainly nothing 

prevents a texture atlas created from an offline preprocessing lapped texture step from being used with 

our implementation, but utilities are not provided to do so.

We also implemented a secondary approach that takes the spirit of lapped textures, but utilizes 

the same particle-based approach as the painterly rendering technique.  The main functionality that is 

missing from this approach is the texture coordinate optimization. At best, this approach gives results 

similar to lapped texture patches that are rotated to align with the center triangle but not warped to 

account for the orientations of each triangle in the patch.  However, this is still a potential improvement for 

models with unsuitable texture coordinates, as it makes no assumptions about surface parameterization.  

The technique takes minimal preprocessing (akin to the painterly rendering technique), and works as 

follows:

Static object space position and normal samples are taken for the target model, and an attribute 

texture is made encoding this information.  Geometry buffers identical to those made in the painterly 



rendering technique are made.  Unlike for the painterly rendering technique, however, here no target 

color pass is used.  Instead, lighting is computed directly in the shader, which currently uses a single 

directional light.  A depth pass is still used to resolve the occlusion culling issues that arose for painterly 

rendering.  The primary difference between the vertex shader for this hatching technique and for painterly 

rendering is that whereas in painterly rendering, the billboards were rotated in the screen plane to align 

with the screen projection of the normal (or its 90 degree rotation), in hatching we rotate the quads so 

that their normal is aligned with the object space normal in 3d space.  That is to say, we rotate each quad 

so that it is flush with the surface of the mesh at its center.  This is done without sending any additional 

information to the GPU; a rotation matrix is constructed directly from the object space surface normal in 

the attribute texture.  The result of this technique is a crude approximation of lapped textures: the model 

is covered with splatted patches that approximate the shape of the underlying surface.

One limitation of this technique is that because each patch is planar, the tesselation of the result 

is dependent of the number and size of billboards used.  A larger number of smaller billboards will use 

more memory but may be necessary to cover the model with an acceptable tessellation.  Furthermore, 

areas of high curvature may be poorly approximated by the planar patches.  What we may lose in quality, 

we make up for somewhat in convenience and portability: the technique can be applied to any mesh with 

vertices and normals regardless of texture parameterization, with minimal preprocessing and only a TAM 

texture and patch ‘splat alpha’ texture.

 

An example of a TAM.  Figure from [PH01].

 

The second component of the algorithm is the Tonal Art Map texture synthesis.  A TAM texture 

stores tileable swatches of stroke textures at a number of different tone levels.  At render time, these 

tone textures are interpolated based on the value of the lighting at a point.  Praun et al make the key 

observation that a given tone should be represented as a fixed density of marks across different screen 

space scales. Using a regular mipmapped texture of strokes will work at one optimal resolution, but as the 

textured object becomes smaller in screen space (due to changes in distance, scale, or facing ratio), the 

texture will blur out to an even gray.  To combat this, an important property of the TAM is that each tone 



level contains custom mipmap levels consisting of fewer strokes.  To maximize coherence, the following 

algorithm is used to synthesize the TAM texture for a given number of tone levels:

We begin with the lowest resolution level of the lightest tone.  Strokes are added to the image and 

recorded until the average tone (computed as an arithmetic mean) of all pixels in the image passes the 

required threshold.  Then we move to the next higher resolution, redrawing the (parametrically positioned) 

existing strokes in their corresponding positions and sizes on the larger texture.  We then continue adding 

strokes until average tone of this patch is similarly over the required threshold.  This continues until the 

highest resolution image is complete.

Next, we begin the next darker tone level, starting from where we left off by copying each tone 

image over to a new image.  The process is then repeated for a darker tone threshold, and again until all 

of the resolutions of all tones have been completed.

Our implementation uses six TAM tone levels with four size levels (the smaller mipmap levels are 

the result of standard mipmapping from the lowest resolution level).  We store the six single-channel tone 

textures in different channels of two different RGB textures, which are both bound before drawing.

Our library provides some utilities to aid creation of TAM textures.  It supports loading a power-

of-two texture given multiple mipmap images explicitly.  In addition, the general 2d paint utilities built 

on top of the HTML5 Canvas API for the 2d graphics context contain representations for redrawable 

and transformable strokes. To demonstrate these utilities, one of the sample applications includes a 

system similar to that described in [WP02], in which TAM textures are created as a result of an interactive 

process.  First, a user creates some example strokes in a drawing area.  Afterwards, the system will 

choose from the example stroke list at random to synthesize the TAM texture.  When it is complete, it 

packs the texture into the RGB channels of an image and displays it for saving.

 

A hatched sphere with and without the custom mipmaps.
 



Top left: A hatched blobby object rendered with the pseudo lapped texture approach.
Top right: The same configuration with a reduced number of point samples shows insufficient coverage.
Bottom: Rendered with the standard texture mapped approach.  Where continuous texture coordinates are 
available, the result from this method is typically superior.

 

 

 

 

 

 

 

 

 

 

 



Graftals
The graftal technique used in the library is based on the technique described in [KM99] to create 

cartoon rendering of fur, grass, and similar surfaces in a style inspired by the illustrations of Theodor 

Geisel (Dr. Seuss).  The basic idea is to augment simple models with ‘fins’ of graftals: billboarded 

geometry of an arbitrary 2d shape with an arbitrary rotation in the screen plane that is placed on the 

surface of the mesh.  When rendering exclusively with solid colors (or conceivably toon shading), the 

graftal fins appear as natural extensions of the underlying mesh, as bunches of fur, leaves, cloud-like 

tufts, or other protruding surface detail.  The graftal protrusions are in general rendered as a solid color 

with a solid color outline.  The authors use a system where the graftal fins may be fully outlined, partially 

outlined, or not outlined at all, mapping this variation to an attribute such as facing ratio.

Our implementation is a limited approach, omitting some sophisticated but costly parts of the 

pipeline such as screen-space density control and dynamic level of detail (though nothing precludes a 

simple LOD scheme from being implemented by combining different sets of model samples based on 

camera distance).  The graftal technique is again a particle-based approach, and as such makes further 

use of our existing infrastructure for random mesh samples and attribute textures.  It is similar to painterly 

rendering in that the particle geometry is aligned to the screen and oriented relative to the screen-

space projection of the surface normal at the sampled point.  It differs, however, in several ways.  First, 

the graftal geometry is not a simple two-triangle quadrilateral, but instead an arbitrary two dimensional 

mesh.  Second, the graftals as implemented require no texturing and no transparency.  This works to our 

advantage in that it allows us to use hardware depth testing effectively to cull occluded graftals.  As a 

result, we do not need a depth pass or any other deferred rendering pass to render.  This is convenient, 

but does occasionally result in popping artifacts when one graftal moves closer to the camera than 

another.

Our implementation has a few limitations in flexibility.  First, we adhere to the convention that 

graftals near the contours of models (a low facing ratio) are meant to be drawn, and that graftals are 

oriented according to the surface normal.  One could imagine a system with a wider range of options 

for graftal visibility and orientation, for example [KM99] allows for graftals that are always oriented 

downwards, to give the appearance of drooping fur. Furthermore, graftals that are not being rendered 

are simply faded to an opaque ‘fill’ color that is meant to be identical to the solid fill color of the underlying 

geometry.  This works well for the supported case where the underlying geometry is a solid color, but 

would need to be adapted for any other case, such as toon shading.   Finally, graftal outlines are not 

as dynamic as in the [KM99] implementation.  Their implementation utilizes immediate mode drawing 

and so may easily decide to draw partial or complete outlines on a per-graftal basis.  Because our 

implementation is dependent on storing static buffers of graftal geometry, such adjustments are less trivial 

and must be determined in the vertex shader. Each graftal is simply always drawn as fully outlined.  This 

could be altered by using a different storage format for the edges that would allow portions of edges to 

be dynamically collapsed into degenerate geometry in the vertex shader, with ‘bottom’ and ‘top’ edges 



annotated dynamically using an additional vertex attribute.

The outline buffers themselves are stored separately from the graftal bodies.  These are drawn 

in a separate OpenGL call from the graftal bodies, using the same shader (the fade out color is kept 

the same and the main color set to the desired color for the outlines).  Ultimately this approach is quite 

memory intensive, as the outline buffers are generally larger than those created for graftal bodies, which, 

in turn, are generally larger than the buffers used for the techniques requiring only square billboards.  

An implementation of instanced drawing for the WebGL specification would relieve this memory usage 

drastically.  

In addition to the implementation of the basic graftal algorithm, the library provides utilities for the 

interactive creation of graftals.  A simple 2d polygon class is provided, where points may be dynamically 

added and specified as triangles, triangle strips, or triangle fans.  The polygons provide utilities for 

normalization and uploading to the GPU as instanced geometry buffers (in fact, the instanced billboard 

utilities for the other techniques rely on this framework).  Furthermore, a simple JSON (JavaScript Object 

Notation) format is provided for the reuse and serialization of graftal styles.  The format includes the list 

of points of the base polygon for the graftal (along with the primitive type), as well as parameters for 

color, scale, outline thickness, static rotation, number of instances, and position offsets for tweaking the 

appearance of graftals for individual models, etc.

 

 

 

 

 

 

 

 

 



A portion of our graftal editing interface.  The polygon on the left is defined by clicking points in a triangle strip pattern, 
and is automatically instanced and uploaded to the GPU for drawing as graftals on the right.
 

Our WebGL rendition of the Truffula scene from [KM99].
 

 

 

 
 
 



 
Contour Edges

The final NPR effect supported by the library is that of stylized edge drawing.  The problem 

of extracting edges for stylized rendering is one that has been approached from both geometric and 

image-based directions.  Image-based approaches generally extract feature edges from a framebuffer or 

combination of framebuffers (such as depth and normal passes), perhaps by using a convolution kernel 

such as the Sobel.  While this approach yields good results (and is in fact implemented as a post process 

pass in our library), it provides limited opportunity for parametric stylization.  One cannot simply apply an 

oriented stroke texture to a framebuffer of detected edges.  Thus, geometric object space approaches 

are useful for analytically identifying edges which can be used for a wider variety of effects.  Object space 

techniques are, however, typically more computationally intensive. 

 [NM00] introduces an interesting hybrid screen space and object space approach where object 

space edges are found on the model and are later linked into coherent chains based on their screen 

space position.  This allows for rendering the model as a smaller number of long, flowing strokes.  This 

provides excellent results, but requires a good deal of dynamic processing on the CPU.

For our library, it is imperative that we provide a solution that runs entirely on the GPU, 

and is compatible with OpenGL ES functionality.  Fortunately, [MH04] provide such an algorithm, and 

their approach inherently makes similar tradeoffs to the other techniques implemented by the library.  In 

particular, some degree of quality, as well as a large amount of GPU memory, is sacrificed in order to 

render in real time on the GPU.  This approach builds an 'edge mesh' data structure that contains 

information for every edge in the model, and sends it to the GPU once.  The basic principle is similar to 

that used to render graftals near the edges of models: based on a decision made by the analysis of 

normals (facing ratio for the graftals), a decision of whether or not to render a given edge is made.  The 

edge mesh information contains the vertex positions for each edge, as well as the vertices of the two 

adjoining triangles (assuming each edge is shared by no more than two triangles).  From this information, 

it is simple to construct the face normals for the two triangles by taking the cross product of two edge 

vectors from the same triangle.  This is performed in the vertex shader, and the resulting normals are 

used to identify whether the given edge should be rendered.  The original implementation identifies a 

number of renderable edge scenarios (concave and convex creases, contours, border edges) but our 

system focuses on contour edges, with the other cases being left as simple extensions.  A contour edge 

is detected when the two normals of the adjacent triangles point in opposite directions relative to the view 

vector, i.e. when the signs of the z components of the view space normals differ.  While face normals in 

object space could be stored directly in the edge mesh rather than computed in the vertex shader, storing 

vertices theoretically allows for accurate normals to be computed after mesh distortions such as skinned 

animation.

The full edge mesh of four vertices per edge is drawn in a single draw call. Where a renderable 

edge is detected, the drawn vertices are positioned to make a quadrilateral of arbitrary thickness in 



screen space.  Each vertex is placed according to its index within the edge itself, the first two vertices 

are placed on the vertices of the underlying geometry, and the second two are displaced the desired 

thickness away in screen space.  The paper implementation displaces the outer vertices in a direction 

perpendicular to the edge in screen space, filling the holes left between adjacent convex edges with 

triangular caps in a separate drawing pass, using different indices into the same edge geometry buffer as 

well as a modified placement strategy for edge caps in the vertex shader.

One of the main advantages of using this geometric technique is to allow for the arbitrary 

stylization of strokes via texture mapping, so texture parameterization is important.  As the entire edge 

width generally maps to the entire texture height, the parameterization problem is reduced to finding the 

single horizontal texture coordinate.  [MH04] presents two texture parameterizations, one in object space 

and one in screen space.  The former favors temporal coherence over spatial coherence, and the latter 

the reverse.

The object space parameterization simply assigns to each edge a texture coordinate range 

proportional to the length of the edge.  To mitigate obvious tiling, each edge is optionally given a static 

random value to offset into the texture space.  This approach is dependent on mesh resolution, and works 

best for relatively low resolution meshes, with the short edges of high resolution meshes degenerating 

into noise. 

The screen space parameterization computes a coordinate by comparing the screen space edge 

points with the screen space projection of the object space origin.  For edges that are more vertical, the 

coordinate is a line-width and direction dependent constant factor, times the vertical distance of the point 

from the screen space origin.  For horizontal edges, the horizontal distance is used.

Worth noting is the implementation by [HV09], an improvement on the technique that uses the 

Geometry Shader stage to generate the outline geometry dynamically.  This approach greatly reduces 

preprocessing and memory consumption.  They also make a further modification to the screen space 

texture parameterization.  Instead of using a horizontal or vertical distance from the screen space origin, 

they use the angular distance in polar coordinates.  This gives good results for edges that do not radiate 

outward from the origin  To accommodate this degenerate case, the distance from the screen space 

origin is used as an additional scaling factor. The influence of this secondary scaling factor is adjustable 

via a uniform parameter.  While we cannot use the improved Geometry Shader implementation of the 

pipeline, we do use this polar coordinate schema for texture parameterization.

 

The values supplied for the edge from 



v0 to v1. Figure from [MH04].

 

Our implementation makes a modest memory improvement over the original by using the 

library’s attribute textures to full effect.  The original constructs an ‘edge mesh’ entirely using vertex buffer 

data with many attributes, which results in repeated information whenever per-edge information is needed 

by each vertex in the edge mesh.  Specifically, each vertex is supplied with a tuple <v0, v1, v2, v3, n0, n1, 

r, i> where v0 and v1 are the positions that define the actual edge, v2 and v3 are the remaining vertices 

of the triangles sharing this edge (if v2 = v3, there is only one such triangle), n0 and n1 are the mesh 

normals at vertices v0 and v1 respectively, r is the random offset used for the object-space texture 

parameterization (a single floating point value), and i is the index of the specific vertex relative to the 

single edge that it represents.  This index ranges from 0-3, and is used in the Vertex Shader to determine 

which vertex of the rendered quadrilateral is being processed.  All of these values except for i are 

constant for a given edge, and so are repeated exactly for each set of four edge vertices.  This was a 

necessity at the time of the original implementation, as Vertex Shaders were not yet able to perform 

texture reads.  We take advantage of this modern luxury, and instead store the edge mesh in a texture, 

with one entry per edge index that contains the above information, except for the index i.  This is 

particularly beneficial when we note that due to the lack of a quad drawing mode in WebGL, we must 

draw the edges with two triangles, which uses an additional two edge vertices worth of memory per edge. 

With this scheme, our edge mesh VBOs are reduced to two values: the index i of the vertex within the 

edge, and the index j of the edge itself (used to index into the edge mesh attribute texture).

We also make a few other deviations from the original algorithm.  When drawing edges, rather 

than displacing the outer vertices in a direction perpendicular to the edge and filling holes with triangular 

caps in a second pass, we draw in a single pass with less ideal edge geometry.  We avoid gaps by 

displacing the vertices according to the screen projected normals of the vertices at the edges.  We also 

use the screen space texture parameterization described in [HV09]. 

For drawing edge quads that begin at the edge and extend outward (rather than quads centered 

on the edge), it is somewhat suitable to draw with depth testing enabled.  However, it is likely desirable 

to draw strokes centered on the edges with proper blending, and so the contours must be drawn after the 

geometry with depth testing disabled.  This presents the familiar occlusion culling problem encountered 

with the particle based techniques - contour edges on the far side of the object may be rendered.  This 

problem is again dealt with by rasterizing the depth buffer and performing a manual depth test in the 

Vertex Shader.  For the fill-related particle techniques that faded off towards the edges, a single sample 

was sufficient.  For edges, due to aliasing of the framebuffer, fetching a depth value at the screen space 

projection of the edge vertex is error-prone.  We accommodate by instead sampling a small 3x3 window 

around the desired point and using the minimum depth.

 



A blobby object with stylized contours.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results and Considerations for Future Work
Our resulting library provides reasonable implementations of the four main algorithms discussed.  

All of the techniques run in real time by offloading the majority of their work to the GPU.  The techniques 

are packaged into shaders with accompanying utilities for creating the buffers and textures necessary 

for their use.  Common functionality (that is not applicable to all WebGL applications) is factored out into 

library utilities, such as the creation of instanced billboard buffers and arbitrary attribute textures.  The 

sample applications demonstrate the parameters for each of the algorithms, as well as provide examples 

of rendering full scenes with each of the effects.

Each of the techniques is customizable with a predefined set of parameters.  While this is 

sufficient to provide a wide range of effects, the ultimate goal of a library to aid in the prototyping of new 

effects would benefit from a more modular structure.  A modular structure for shader creation based on 

required attributes would be particularly helpful.  Such a system would allow for the runtime creation of 

custom shader source code in a way that would facilitate experimentation with a part of the pipeline that is 

not currently customizable.

The library also contains general utilities for making WebGL applications, particularly for deferred 

rendering.  However, as a number of existing libraries provide similar functionality and are widely used, a 

future implementation of the library should allow for simple interfacing with these existing frameworks.
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