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Abstract:

Objective of this research project is to design an effective and stable data transmission solution for our Distributed
Visual Sensor Systems. On one hand, to achieve “effective”, we need to reduce network traffic by precisely eliminating
unnecessary communications among cameras; on the other hand, to achieve “stable”, we must ensure that each camera

does receive its deserved data in time.

To fulfill these two points in our distributed system, after object enters/leaves certain camera, we keep track of its
appearance times in other cameras with corresponding time interval, then store them to camera’s own database. Each
camera takes these records as reference to select destinations of sending, and updates its database based on runtime
feedback it received. Network issues including unexpected latency, redundant sending and packet missing are taken into

consideration as well to ensure the accuracy of our application.

1 Introduction

In processing perspective, system is divided to two parts: offline part and online part. After setting up the cameras,
system starts on offline mode: sample data of single object’s travelling is collected to a central database. Once enough
data is collected, system analyzes all data centrally and generates a prime relationTable for each camera. System then
switches to online mode: when object appears in camera A, A looks through its relationTable, selects proper destination
cameras and then sends object’s info to them; meanwhile, feedback is sent to A’s source cameras for updating their
relationTable. In design perspective, system is composed of three modules. Data module implements the interaction
between local data structures and database; network module, which follows RIP, provides stable communication among
cameras; control module takes the charge of connect all three parts together, monitor object’s moving, coordinate data
processing between itself and other cameras, pick up proper cameras for sending incoming/feedback message, update

local data structure and deal with potential issues.

Cameras are classified according to their viewpoints. Single camera, which has no intersection on viewpoint with
others, follows a standard processing procedure. It receives potential object’s info from its source cameras, sends reply to
its source cameras when object enters, spreads potential info to its destination cameras when object leaves, and updates
its relation table when reply message is received. Overlap camera, which has intersection on viewpoint with others,
except all procedures mentioned above, contains lots of new features to make the whole cluster work as a single camera.
For example, potential object’s info should be spread inside overlap group when it enters, one and only one camera in

cluster should be selected to take the charge of sending object’s info after object leave.

This paper will introduce offline part in Section 2 first, which is kind of centralizing processing and independent from

application’s core modules. Section 3 reviews the data structure designed for online part. In Section 4 and Section 5,




features of single camera processing and overlap camera processing of online mode are investigated. Finally, Section 6

and Section 7 illustrates application level processing and future work.

2 Offline Part

Offline part implements centralizing processing, objects’ travelling data that detected by all cameras are stored
together in a central database. When enough data is collected (before switching to online mode), system analyzes these
data, generates a prime relationTable, and then distributes proper part of copies to each camera. Since all records are
stored in a central database, it’s easy to get a rudimentary relation map among all cameras by sorting records by their

timestamp. The only problem lies in how to make it compatible with our former database.

In former system, if two objects get to an overlap status (two or more objects have a conjunction in camera’s view), a
new object ID is given to represent them. For example, object 101 and object 102 enter camera A, we have records in
central database’s frame table for “object 101 and object 102 were in camera A” with certain timestamps. Then object
101 and object 102 walk towards each other and have a conjunction in A’s view, old system takes “101 & 102” as a new
object with object ID 103, we have new records for “object 103 was in camera A”, information for object 101 and object
102 is temporary “lost” till these two objects separate. To get a precise map, we solve this issue by keeping an active
object list (objects currently in camera) and carefully checking each record’s object description of its predecessor records

(early records from same camera) and its successor records (later records from same camera) when description changed.

After offline part processing, each camera receives a prime relationTable as following (take camera 126 as example),

this table is stored in camera’s own database.

Source Destination <0 (s) 0-20 (s) 20-50 (s) 50-90 (s) No limit
126 91 0 0 3 2 2
126 121 3 5 3 0 0

3 Overview of Data Structure

In this section, data structures with their design purpose, definition, functionality and basic operations will be

introduced. Operations across multiple data structures will be discussed in later sections with real cases.
dataView:

To reduce database’s workload, we load camera’s relationTable from database to a local data structure, dataView. For
each camera, dataView stores all its destination cameras’ ID, IP address and possibility (times) of appearance for both

single (non-overlap, with time interval) cases and overlap cases.

It supports basic operations such as reload from database, modify dataView according to runtime feedback (authorized
reply entry), return a list of all overlap cameras, or a list of single cameras with a specific time interval (lists are ordered

by appearance/weights) and update back to database.

potentialTable & unknownTable:

potentialTable stores objects that may appear in current camera later, which is called potential objects. It records
potential object’s ID, object’s description, object’s source camera and its enter/leave timestamp in source camera. Based
on potentialTable, camera identifies incoming objects and gets a list of source cameras to which it should send reply

messages.




For example, if there is a “link” between camera A and camera B — object that leaves camera A usually appears in
camera B later. When object M leaves camera A, camera A sends M’s info to camera B, camera B receives this info,
validates it, then stores it in its potentialTable (or take other actions, explain later). When object M enters camera B,
camera B finds its info in potentialTable along with source camera A, camera then identifies object M and sends a reply

message back to A.

unknownTable stores object that is currently in camera but not identified (includes new coming object). When
potential message receives, camera checks unknownTable for object identification, if finds, camera moves object from
unknownTable to activeTable. Object that stays in unknown table exceeds a certain threshold will be taken as a new

object.

potentialTable and unknownTable are complementary for each other. One stores objects in camera but not identified,
one stores objects may appear for identification. When object enters, it checks potentialTable, if found, add it to
activeTable, if nothing found, then adds to unknownTable; when potential message receives, it checks unknownTable, if

found, move it to activeTable, if nothing found, then adds to potentialTable.

activeTable & broadcastTable:

activeTable stores object that is currently in camera and identified.

broadcastTable stores objects that need to be “broadcast” to other cameras. For each object, two broadcast records
are created: Type O (E/E) for overlap cameras only, which is sent immediately when object enters (be identified), then
deletes after sending. Type 1 (L/E) for all cameras, which is sent timely to high weights cameras (selected according to
relationTable, time interval and network capacity) when object leaves, entry will be delete when related reply message is

received.

There is a “link operation” between activeTable and broadcastTable. For example, when object M is added to
activeTable, M is added to broadcastTable as well with type 0, which means “object M enters, broadcast it to all overlap
cameras”; when object M is removed from activeTable, M is added to broadcastTable with type 1, which means “object

M leaves, broadcast it to proper cameras”.

replyTable:

When incoming object finds its info in potentialTable and gets identified, it sends reply messages back to its source
cameras (stored in potentialEntry) to inform them update their relationTable. replyTable is designed to store these reply

messages, it ensures all these messages are correctly received by source cameras.

To achieve this point, firstly, one specific process takes the charge of timely sending these reply messages. Secondly,
when source camera receives reply message, a replyACK message is sent back, inform destination camera to remove

related entry from replyTable.

historyTable:

HistoryTable stores the latest status for each object that once appeared in current camera, including object’s ID,
object’s description, enter/leave timestamp and an updateTime array. historyTable is designed to validate potential

messages and reply messages, it handles network issue such as latency, package missing and duplicate messages.

When object gets identified, the enter/leave timestamp, together with updateTime array in historyTable are set to
object’s enterTime; when object leaves, only leave timestamp is updated. That is to say, if enter timestamp and leave
timestamp are equal, object is currently in camera. updateTime array is used to validate reply message, it prevents

camera for accepting outdated or redundant messages.




4 Single Camera Processing

Camera that has no intersection on viewpoint with others is called single camera. Communications among single
cameras are the simplest cases in our application. Mostly, packets arrive in a predicted order; cameras then search,
modify and update their data structures step by step. The only matter to attention here is all about network transmission
issues such as latency and package missing. In this section, Normal cases for processing of enters/leaves object will be

introduced first, followed by several network issues and solutions.

Object enters camera:

found get object's global ID iterate 'PO'F"ﬁﬂlTﬂble with add to replyTable
check potentiallable @ > information of this object @  add object fo acfiveTable @—#  object's global ID &> | lelete from potentialTable
already received update historyTable find entry with same ID*

e dd object o activeTabl
check historyTable* ®—>  object entered camera  @—p  9°C opiech fo aclivetable
before update historyTable

not found
no such entry in ®—> add object to unknownTable
historyTable

=  When object M enters, camera A firstly checks its potentialTable with incoming object's description. If M's info is
found, object M's ID will be saved, camera A starts a new iteration in potentialTable to find all source cameras of
the same objectID, then creates Reply messages for each source camera, add them to replyTable for sending and
delete related entries in potential table. Meanwhile, camera A updates its historyTable of entry M, add M's info
to activeTable, then return.

= Secondly, if nothing is returned from potentialTable, camera A checks its historyTable. If found, camera A
updates its historyTable, camera adds M's info to activeTable then return; if not, camera A adds M to

unknownTable for further processing then return.
Comments:

1, Since it's more convenient to compare between integer values rather than huge strings, system uses object's ID

instead of description for a new iteration in potentialTable to retrieve all objects with same object ID.

2, Generally speaking, historyTable shouldn’t be used for object checking, but one case may happen. If object M leaves
A then re-enters A again, there is no info about M in A's potentialTable (M’s records are deleted when it enters first time),
but A shouldn’t be stored in unknownTable and be identified as different object later. Under this circumstance,

historyTable is used for complementary object identification.

Object leaves camera:




e

check objectiD >

update historyTable
®—» add to broadcastTable (L/E & E/E)
remove from unknownTable

objectiD equals to -1
unknown obiject

find object in

®—> assign object a new objectiD unknownTable

update historyTable
L add to broadcastTable (L/E)
remove from activeTable

objectiD not -1
recognized object

=  When object M leaves, camera A checks its object ID first. If M's object ID equals -1, M is an unidentified object
and currently stored in unknownTable. Camera A takes M as a new object, assigns M a new object ID, deletes M
from unknownTable, updates historyTable, adds M's info to broadcastTable with both type 0 and 1 step by step,
then return.

= |f M's object ID isn't equal to -1, M is identified and currently stored in activeTable. Camera A deletes it from

activeTable, updates historyTable, adds M's info to broadcastTable with type 1 then return.

Aside from those normal cases mentioned above, since all transmissions are under an unreliable network, each camera

should take network issues into consideration. Several cases are discussed in the following.

Outdated potential message:

|II

Due to unexpected network latency, before “all” potential messages are received, object may already arrive, get
processed and even leave from current camera. For example, consider the situation that object M enters camera A,

camera B and camera C in sequence.

» Camera Creceives potential message (M) from A, stores it in C's potentialTable.

» Object M enters C and finds its info in C’'s potentialTable, object M gets identified, camera deletes M from its
potentialTable.

> Object M leaves camera C.

> B's potential message (M) reaches camera C.

Although there is no M's info in both C’s potentialTable and unknownTable, potential message (M) from B shouldn't be
stored in C’s potentialTable (M already showed up in C) or just abandoned (B should know M's appearance in C). In
contrast, reply message of M must be generated and sent back to B for updating B's relationTable. Here we use
historyTable to achieve this point. As mentioned before, historyTable stores latest enter/leave timestamp of object that
once appeared in current camera. When potential message is received, camera checks historyTable to find out whether
this object already appears after it leaves source camera, if object already appeared, camera directly sends a reply
message back to source camera; if not, camera checks unknownTable or stores it in potentialTable. In above example,
after object M entered and left, both enter timestamp and leave timestamp of M are updated (or added) in C’s
historyTable. When B's outdated potential message (M) reaches, C checks its historyTable and finds a larger enter
timestamp compared to B's leave timestamp, system realizes it's a outdated but validated potential message, reply

message is generated and sent back to B.

Duplicate/invalid reply message:

Due to unreliable network, both reply message and replyACK message may lose during transmission. To solve this issue,

on one hand, replyACK message is required to confirm the receiving of reply message; on the other hand, some work is




essential to deal with lost of replyACK message, which may lead to duplicate reply messages and redundant update on

source camera’s relation table. Consider the situation object M appears in camera A and camera B in sequence.

> Camera B receives potential message (M) from A, stores it in B’s potentialTable.
Object M enters B, finds its info in potentialTable and sends reply message back to A.
Camera A receives reply message, updates its relation Table and send replyACK back to B.

replyACK message lost, B resents reply Message later.

YV V V V

A receives reply message from B again.

A receives the same reply message (M) twice from B. For the second time, A should refuse B’s reply message and avoid
redundant update to its relationTable. To achieve this, A maintains an updateTime array that stores M's latest n (current
3) timestamps of entering other cameras after it leaves A. For each reply message receives, A checks its destETime with
updateTime array. If a equal timestamp is found, reply message is taken as a duplicate one, A refuses this message and
sends replyACK message back to B; If not found, A modifies its updateTime array to reply message’s destETime, accepts

this reply message and send replyACK message back to B.
Comments:

updateTime array is renewed when object re-enters camera (set to enter time).

5 Overlap Camera Processing

A group of cameras that have intersections on their viewpoints is called a cluster of overlapped cameras. As mentioned
above, to other cameras out of this group, a cluster behaves as a single camera. When object M enters cluster and gets
identified, all cameras in cluster are informed ASAP; when object leaves, one and only one camera is selected to take the
charge of “broadcast” M's info to outside cameras. In this section, communication issues among overlap cameras will be

discussed first, followed by analysis with real cases and solutions to solve these issues in a distributed system.

Firstly, communications inside cluster inherit all features of single camera's case.
camera A.
Partially intersection on viewpoints means no intersection on other parts, for two
i H camera H
overlapped cameras A and B, object M may show up in both of them at the same v

time (red line), or leave A then enter B later (black line). To ensure the correctness

of inner communication, all rules of single camera's processing must be followed.

When object M leaves A, M's info should be sent to B according to A's relationTable; when object enters B, replyACK

message is sent back to A to stop M's spreading in A and update A's relation table.

Secondly, to keep object's constancy, extra messages with higher sending priority are required inside cluster. Especially
for new object (system treats object as new if it stays in unknownTable for a certain time, or leaves camera without a
valid object ID), these messages are essential to avoid other cameras in cluster identify it as a different object. To achieve
this point, once object gets identified, its info must be spread inside cluster ASAP in forms of potential message. Here

comes the first issue, processing of potential message.

Processing of potential message.

In cluster, potential message is sent twice, when object gets identified, potential message is spread among the entire
cluster, which is named broadcastEE (enter & enter) entry; when object leaves camera, potential message is sent to
selected destination cameras, which is named broadcastLE (leave & enter) entry. For camera, along with the first point, it

may receive potential messages from same camera twice of different type. Also, without the help of direction parameter,




potential message may be sent back to cameras, which it just leaves from. That is to say, camera should be able to make
out which potential message is acceptable, which potential message should be refused. Classification & validation part

for potential messages is designed to solve these issues.

1, Ignore incoming potential message from source camera.

» Object M leaves camera A first. camera A |

camera B

> Object M leaves camera B, camera B sends potential message (L/E) to camera A.

\ 4

Mostly, M is walking in opposite direction towards A and won't enter A again; even if M

turns around, potential message (E/E) will be sent to A when M re-enters B first. In this case, A

should ignore B’s potential message (L/E).

2, Ignore incoming potential message from source camera, send reply back to stop source camera’s broadcasting.

> Object M enters camera B, then enters camera A. | camera A

> Object leaves camera B, B sends potential message (L/E) to A, which M is still in. T

In this case, object still in A, which means camera A now takes the charge of broadcasting

M’s info. A should ignore this message and send a feedback to B for stopping M's broadcasting

in B.

3, Accept incoming potential message from source camera and find related info in destination camera’s unknownTable,
update destination camera’s own relation table or send reply to update source camera’s relation table.

> A new object enters B, B stores object’s info in its unknownTable.

camera B

> New object enters A and leaves camera A, object is taken as a new object M.

> A sends potential message (L/E) back to B.

In this case, object M gets identified in camera B when it receives potential message from A.

Y elswed y

Since M enters B earlier and is still in B, B should update its own relation table, then sends a

reply message back to A to stop M’s broadcasting in A.

4, Accept incoming potential message from source camera, if object enters in future, send reply back to stop source

camera’s broadcasting and update its relation table.

camera A

> Object M leaves camera B, B sends potential message to A.

camera B

» Object M is still on its way to camera A. PRI ¥ S——

In this case, A should accept B’s potential message. If M enters A later, A will send

reply message back to B to inform M’s coming, stop M’s broadcasting in B and update B’s relation table.

In implementation, take network latency & packet missing (when object appears in camera, parts or all potential
messages are still on their way) into account, to cover all possibilities, totally 16 cases are counted. 10 cases are for
checking historyTable, 5 cases are for checking unknownTable and 1 left is for adding to potentialTable. Codes for each

case can be found in function processingPotentialEntry, Graphs and descriptions can be found in Appendix A.

Thirdly, to ensure cluster acts as a single camera, when object M leaves cluster, one and only one camera in cluster is
selected to take the responsibility of sending M's info to others outside cluster. In distributed system, when object M
leaves cluster, the camera, which M leaves latest, is chosen as such an “administrator” camera. While object is still in
camera, we also need an administrator camera to control others’ sending, in this phase, “administrator” camera is

selected dynamically, camera that currently holds object M works as an administrator, when it receives potential




message (broadcastLE entry) from other cameras in cluster, it sends reply back to announce “stop sending M, | take
charge of M now”, in forms of reply message. That is to say, aside from the functionality of informing update, in some

cases reply message is used to inform source camera to delete broadcast entry only. The second issue emerges, how to

differentiate varieties of reply messages.

Pre-processing of reply message.
As we discussed in processing of single camera, reply message is used to inform camera to update its relationTable &

delete related potential entry in broadcastTable. Now, under some circumstance, reply message is used to stop source

camera’s broadcasting only. Pre-processing part for reply messages is designed to solve these issues.

1, Delete broadcast entry & update relation table.

> Object M leaves B, B sends potential message (L/E) to A. A receives B’s potential camera B
message and store it in A’s potentialTable. . o A
> Object M enters A, A finds related info in potentialTable, then sends reply message
back to B. B receives A’s reply message, delete M from its broadcastTable and
update its relationTable.
2, Delete broadcast entry only.
> Object M enters B, B sends potential message (E/E) to A.
> Object M enters A, A sends reply message back to B. B receives A’s reply message accepts it. - A :
> Object M leaves A, since M may enter B after leave A (black line), A sends potential message : - &;
(L/E) to B. B receives A’s potential message, send reply message to inform A stop broadcasting. s
> Areceives B’ reply message; delete M’s info in its broadcastTable only (no duplicate update). ._>

Not as the same as classification & validation of potential message, which includes 16 cases, there are only 3 cases for
pre-processing of reply message: delete & update, delete, ignore (duplicate reply, discussed in processing of single
camera section). The truth lies in the sequence of processing: classification & validation part of potential message

eliminates several cases for pre-processing of reply message in advance, it also makes processing of reply message easier,

which will be discussed later.

6 Application level Processing

After the independent introduction of single camera and overlap camera, along with the discussion of several issues so

far, a rudiment map of this application is out. Now we combine them together and move discussion to application level.

Processing of reply message
After the pre-processing of reply message, which filters lots of illegal cases, camera takes both historyTable and reply

message as reference to update its relationTable. If overlap, update its overlap column, if not, update its non-overlap

column, based on exact time interval.




object is sfill in overla
sourceCamera P

. sourceCamera's leaveTime
object leaves h
is less than overlap
sourceCamera

destCamera's enterTime

non-overlap

= |f object is still in source camera, which means object still in source camera when enters destination camera,
overlap.

= |f object leaves source camera, check the relation between time that object leaves source camera and time that
object enters destination camera. If object enters destination camera earlier, update overlap column. If objects

leaves source camera earlier, update non-overlap column with time interval (destETime - sourcelLTime).

Priority hierarchy of sending
Till now, camera has four different kinds of message for sending. Details of each kind with its priority are in the

following:

Potential message (E/E): high priority. When object enters (be identified), camera spreads potential message (E/E)
inside cluster immediately to prevent other cameras in cluster taking the same object as a different one. Potential

message (E/E) is stored in broadcastTable with type 0, deleted after sending.

ReplyACK message: high priority. Camera sends reply message to stop its destination camera sending reply message
that already received by source camera, network traffic will be reduced effectively. ReplyACK message will be send

immediately when reply message is received and validated.

Reply message: medium priority. On one hand, reply message is used to update dataView, on which all our
broadcasting operations based, to provide a more precise destination list. On the other hand, reply message prohibits
source camera to send potential message (L/E). Reply message is stored in replyTable, deleted when related replyACK

message is received.

Potential message (L/E): low priority. Camera sends potential message (L/E) to selected destination cameras when
object leaves camera. Since it usually takes seconds, even minutes between object leaves current camera and enters
destination camera, potential message (L/E) has the lowest priority. Potential message (L/E) is stored in broadcastTable

with type 1, deleted when related reply message is received.

Recall amendment:
Under runtime observation, following case may happen.

> Object M leaves camera A, due to network capacity at that time, A is

A's potential
allowed to send only one potential message. A sends potential \zgspoen amessaR
message (M) to camera B, which has a higher possibility than C ¥ —
when time interval is 20s.

cam}z(a A

camera C
object M mov:
30 e OV
_——|..C's.potential. message




> Object M enters camera C (stored in unknownTable). When M leaves C, it is taken as a new object name N. C
sends potential message (N) to camera D.

» Since A doesn’t receive any reply message, it sends potential message to camera D, which has the highest
possibility than others when time interval is 40s.

> Object M enters D. Now in D’s potentialTable, M (from A) and N (from C) represent the same object.

In earlier implementation, since camera uses object ID to retrieve source cameras, to which destination camera sends
reply messages. In this example, either M or N gets processed depends on their position in potentialTable. Here, camera
D not only needs to reply to both of them, but also sends extra reply message to A on behalf of C. To achieve this

purpose, replyVector is used when processing enter object.

When object enters camera D, all entries in potentialTable is checked by comparing its object description with incoming
object’s description. If validated, camera D inserts that potential entry into replyVector, sorted by enter time (replyVector

contains M (from A), N (from C)). Then camera D iterates replyVector from its beginning, for each entry in replyVector:

= Step 1: Camera D sends reply message to current entry’s source camera (D sends reply message to A).

= Step 2: Camera D checks its following entries, if object ID in following entries is different from current entry, D
sends reply message to current entry’s source camera again on behalf of that following entry. (D sends reply
message to A on behalf of C).

= Step 3: Camera D deletes current entry. If replyVector is empty, return; if not, go to step 1.

Simply speaking, according to its potentialTable, camera D reconstructs object M’s path before it enters D. Then
camera D gets to know to which it should send an extra reply message. Along with updateTime array in historyTable, no

redundant update will happen.

Fault tolerance:
Like other distributed systems, when one or some nodes fail, system should work it out and keep working.

On network level, application implements Routing Information Protocol (as Jie suggested), nodes send routing-update
message at regular intervals and when the network tropology changes. When one node fails, or path weight between two
nodes changes, each node’s routing table updates on cascade, new shortest path is found and the whole network returns

to normal.

On control level, if destination node fails, for reply message and potential message (E/E & L/E), both of them are stored
in table, sent timely and deleted when related feedback comes. An expiration time threshold is set for both tables, after a
certain time, entries without receiving feedback expire and get deleted. For replyACK message, it is sent when

destination camera’s reply message received, since destination node already failed, no more reply message comes.

On database level, dataView is updated back to database timely, by which information loss of node failure reduces to

minimum.

7 Future Work

Partition camera scene

The idea of partition scene comes from Jie. In his suggestion, scene of
P €8 ! camera B camera A camera C

camera is divided into 16 rectangles (4 x 4), marked them from 0 to 15. I o 3

0
4 5 6 7
8
1

By doing this we figure out a method to indicate object’s position in « S0k
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camera, through which we can improve our application. For example, by tracing the position object leaves, camera can
select its destination camera more precisely: object leaves camera A with grid numbers (4, 8), then camera knows object

leaves from its left side, it sends potential message (L/E) to camera B instead of C.

This idea comes to me when offline part was totally done, online part is in progress and mostly completed, so | marked
it as further work. To achieve this, firstly, almost all data structures should be changed. Secondly, | need to figure out a
way for A to select its destination cameras based on both grid info and relationTable while taking network issue together

into consideration.

Network Capacity:

As discussed in “Priority hierarchy of sending, Section 5”, application has four kinds of messages for sending. The first
three, potential message (E/E), replyACK message and reply message are essential for either ensuring correctness of
system, or informing camera to stop sending something and reduce network traffic, or both. These three kinds of

messages can’t be skipped even network is busy.

The only kind of message that can be altered according to network condition is potential message (L/E). Camera can
decide the number of its destination cameras for sending. For example, if network is busy, camera sends potential

message (L/E) to top 2 destination cameras; if network is free, camera sends it to top 5 destination cameras.

Number of destination cameras should be dynamically decided base on some parameters that can precisely reflect the
current network capacity, | used to take “number of redundant reply message it received” for this functionality, just like
what we do in TCP, each time a redundant ACK message is received, cut the window by half and increase by 1. But reply
message mostly works independent with potential message, and then it can’t cover all cases. Now this number is hard-

coded, I'm seeking for a better one to reflect runtime network capacity.

8 Conclusion

In summary, while ensuring system’s correctness, application discussed above effectively eliminates unnecessary
packet sending and reduces network traffic. It also provides a proper solution for coordinating the data processing in
overlap cameras, which keeps object’s consistence and makes the distributed overlap camera cluster work as a whole.
Besides these, several solutions are discussed & implemented to deal with potential errors caused by unexpected

network issues.
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Appendix A: all cases of classification & validation part for potential messages

Case 1:
SRC camera sends
potential message
when object leaves.

Case 2:
SRC camera sends
potential message
when object leaves.

Case 3:
SRC camera sends
potential message
when object leaves.

Case 4:
SRC camera sends
potential message
when object enters.

Case 5&7:
SRC camera sends
potential message
when object leaves.

Case 6 & 8:
SRC camera sends
potential message

when object enters.

Caseloj
SRC camera sends
potential message
when object leaves.

Case 10:
SRC camera sends
potential message
when object leaves.

e
S T

<—DEST— —>

<—DEST— —>

Case 1:
SRC camera sends
potential message

when object leaves.

Case 2:
SRC camera sends
potential message

when object enters.

Case 3:
SRC camera sends
potential message

when object leaves.

Case 4:
SRC camera sends
potential message

when object leaves.

Case 5:
SRC camera sends
potential message

when object leaves.

DST camera refuses
this potential message.

DST camera sends
reply to stop SRC's
broadcasting.

DST camera sends
reply to stop SRC's
broadcasting.

DST camera sends
reply to stop SRC's
broadcasting and
update SRC's table.

DST camera sends
reply to stop SRC's
broadcasting.

DST camera refuses
this potential message
and update DST's table

DST camera refuses
this potential message.

DST camera refuses
this potential message
and go to next step.

DST camera sends
reply to stop SRC's
broadcasting and
update SRC's table.

DST camera sends
reply to update SRC's
table.

DST camera sends
reply to stop SRC's
broadcasting and
update SRC'S table.

DST camera sends
reply to stop SRC's
broadcasting and
update DST's table.

DST camera sends
reply to stop SRC's
broadcasting and
update DST's table.




