
Making Programming More Easily in

Code Bubbles

Project Report

Yu Li (yli3@cs.brown.edu)

Advisor: Andries van Dam

mailto:yli3@cs.brown.edu

1. Introduction

Because most of contemporary Integrated development environments(IDEs) are file-

based it is difficult to create and maintain a view in which multiple fragments are

visible simultaneously. However, Code Bubbles is a novel user interface that is based

on collections of lightweight editable fragments, called bubbles, which when grouped

together form concurrently visible working sets. The previous quantitative evaluation

showed that users were able to perform complex code understanding tasks

significantly more efficiently when using bubbles than when using Eclipse due to

reduced navigation.

In this report I will describe several visualization cues and advanced features

implemented in Code Bubbles, which makes programming easier for developers. In

general, those cues and features offer developers critical information of code context

and automatic bubble re-arrangement, which save significant amount of time for the

users and make them better focus on programming itself. Furthermore, a quantitative

evaluation method about comparing the efficiency and the capability of interruption

recovery between Eclipse(Paradigm of contemporary IDEs) and Code Bubbles will be

proposed.

2. The Bubbles Metaphor

The basis for Code Bubbles is the bubble metaphor described fully in[2]. In this

section I will briefly recap the bubble metaphor. The bubbles metaphor represents

working set code fragments as individual bubbles that can be freely positioned on the

2-D display surface. In addition, the display surface is treated as portal on a large

scrollable canvas which both lets more bubbles be open in the workspace than fit

onscreen and also encourages programmers to pan over to create room for new

working set fragments when needed. The bubbles metaphor fundamentally differs

from the multi-window UI based in contemporary IDEs, such as Visual Studio or

Eclipse. Furthermore, the bubbles have following critical characteristics:

• Bubbles never clip text horizontally, but instead automatically reflow long

lines, ensuring that code can be easily read and edited regardless of the

dimensions of its bubble.

• Bubbles are not allowed to overlap each other, making groups of bubbles

easier to read since no Z-order management is needed.

• Bubbles have no space-consuming UI decoration, facilitating the simultaneous

display of large numbers of bubbles.

3. Bubble Background

3.1 Scenario and Design

Because Code Bubbles is not a file-based Integrated development environment it is

easy for programmers to lose the context of entire class. For a instance, several

bubbles are opened in current viewport, some of them come from the same class, and

the others come from different classes. In order to find the bubbles that come from the

same class as the focused bubble, programmers need to read text literally on bread-

crumb bar of bubble. If the programmer get interrupted, he might lose the context and

need to read text again for resuming programming tasks. Thus, the motivation of

using bubble background decoration to highlight important inter-bubble relationships

and information is based on the common sense that visualized impression will stay

longer.

Specifically, there are two types of bubble background decorations: gradient color and

icon image. Each background decoration can indicate either class or package. Users

are allowed to enable/disable bubble background decorations and also to change the

detailed settings by their own preferences. For example, if gradient background color

for class is enabled, all the bubbles which come from the same class will share the

same background color; and the bubbles belong to different classes will have different

background colors. Figure 3.1 shows the all the possible settings for bubble

background. Bubble background only works for code bubble(code fragments bubble)

instead of other types of bubbles, for example, note bubble and flag bubble.

Figure 3.1. Bubble background settings in Option Panel. Bubble
background decoration can be either gradient background color or icon, or
both. Users are able to assign gradient color or icon to either class or
package, which makes a unique color/icon indicates one class/package. For
gradient color, direction of gradient can be changed to vertical, horizontal or
skew. For icon, the transparency of icon can be changed to any number
between 0~100; the size of icons user can be changed to small, medium and
large; and also the location of icons can be set to top right, top left, bottom
right and bottom left.

For the implementation, I used the HashCode of class name or package name to get

the unique color/icon. As we know, many colors are too brighter or too darker to be a

background color, so I created a color pool of appropriate background colors for Code

Bubbles as well.

3.2 Screenshots

Figure 3.2.1. Screenshot for current viewport. None of the background decorations
are enabled at this time. It is difficult to figure out which bubbles are from the same
class or package without reading the text on bread-crumb bar of bubble.

Figure 3.2.2. Screenshot for current viewport. Bubble gradient background color for
class is enabled; so the bubbles come from the same class share the same background
color.

Figure 3.2.3. Screenshot for current viewport. Both bubble gradient background color
for package and background icon for class are enabled; so the bubbles come from the
same class have the same small icon displayed on top right corner of bubble; and the
bubbles belong to the same package have the same background color.

4. Partial Call Graph

4.1 Scenario and Design

A call graph is a directed graph that represents calling relationships between

subroutines in a program. Specifically, each node represents a procedure and each

edge(F, G) indicates that procedure F calls procedure G. Call graph is a basic program

analysis result that can be used for human understanding of program, or as a basis for

further analyses, such as an analysis that tracks the values between procedures. The

call graph I discussed here is the static call graph, which intends to represent every

possible run of the program. The exact static call graph is undecidable, so static call

algorithms are generally overapproximatons. That is, every call relationship that

occurs is represented in the graph, and possibly also some call relationships that

would never occur in actual runs of the program.

Code Bubbles offers a decent feature called Package Viewer for programmers to view

full static call graph of program, and also provides programmers with several

displaying methods. However, in this report I will talk more about partial call graph,

which is significantly useful for the larger code base. Partial call graph only shows

calling relationships within certain procedures. For example, developer Queenie

wants to know calling relationships involving procedure A within procedures A, B and

C; so that the partial call graph won't display edge(A, D) and edge(C, B). Figure 4.1.1

shows a typical partial call graph for bass.BassNameLocation.createBubble within the

bubbles appeared in Figure 3.2.1. Most of contemporary IDEs are able to generate this

kind of call graph.

Figure 4.1.1. A typical partial call graph for bass.BassNameLocation.createBubble
within the bubbles shown in Figure 3.2.1.

Fortunately, the basis for Code Bubbles is bubble metaphor instead of file; so it is

easy and straightforward to display calling relationships upon the bubbles by directly

drawing arrows between procedures. This approach has the following major

advantages:

• Users can browse call graph along with the code; saving time on switching

between separate window of call graph and actual code.

• Users can directly find out which line of code results in calling relationship;

making easier to understand the code of program.

Specifically, in Code Bubbles programmers can use the keyboard shortcut to toggle

the partial call graph; and corresponding inter-bubble edges(arrows) will be drawn on

a transparent pane which layers above original bubble area. The partial call graph can

be closed by single clicking on the transparent pane. This feature is only working

while a valid code bubble has been focused.

4.2 Screenshots

 Figure 4.2.1. Screenshot of the partial call graph for method
bass.BassNameLocation.createBubble within the bubbles shown in current viewport.
The start point and end point of arrow indicate the actual line of code where procedure
calling happened. Indeed, such representation of call graph is much intuitive and
informative than the one shown in Figure 4.1.1.

Figure 4.2.1. Screenshot of the partial call graph for method
bass.BassNameLocation.getFullName within the bubbles shown in current viewport.

5. Automatic Bubbles Re-arrangement

5.1 Motivation

In order to get detailed, qualitative feedback from professional developers, I

conducted more than forty phone interviews with about fifteen professional

programmers who kept using Code Bubbles as programming tool during last semester.

Besides of exploring project and understanding code base, developers also use Code

Bubbles quite often for demo purpose during meeting, code review and training; since

large number of code fragments can be displayed on the screen at one time in Code

Bubbles. As I just mentioned, bubbles in Code Bubbles do not overlap but instead

push each other out of the way, which will cause extra empty space between bubbles

and make those bubbles disorganized while opening a new bubble. Therefore, the

motivation for bubbles re-arrangement is to pack bubbles for programmers

automatically; making the bubbles' layout neat, and fitting as many bubbles as

possible within current viewport.

5.2 Rectangle Packing

The problem above can be simplified into packing several small rectangles of varying

dimensions into a bigger one without them overlapping. Unfortunately, this problem

is commonly known as the Bin Packing problem, which is a non resolved

combinatorial NP-hard problem. However, I will propose a pretty decent

approximation algorithm to the optimal result later.

What we will do is recursively divide the larger rectangle into empty and filled

regions. We start off with an empty large rectangle and after inserting one rectangle

we will get Figure 5.2.1; then we start to insert the next one, we will get Figure 5.2.2.

Figure 5.2.1. As image shown, here we've split the bigger rectangle in half by line A

then split the upper half by B and inserted the first rectangle to the left if B.

Figure 5.2.2. While inserting the next one, we will check if it can fit above A and if it
can we check to see if it can fit left of B, it is full in this case, then right of B. If it fits
we split B exactly how we split the original bigger rectangle; otherwise we insert and
split below A.

Here it is a part of Java code which implemented above algorithm:

5.3 Screenshots

Figure 5.3.1. Screenshot of Code Bubbles before re-arrangement.

Figure 5.3.2. Screenshot of Code Bubbles after re-arrangement.

6. Evaluation Methodology

6.1 Previous work and Eclipse plugin

In the previous paper, a quantitative evaluation showed that the bubbles metaphor

could improve code understanding performance. In this report, my focus is on how is

the efficiency and the capability of interruption recovery in Code Bubbles. As we

know, professional developers must frequently resume unfinished programming tasks

from where they left off. The interruptions may be due to unexpected requests form

co-workers, scheduled meetings, or even extra manual interactions with IDE.

Regardless of the source the effects are often the same: When resuming work,

developers experience increased time to perform the task, increased errors, increased

loss of knowledge, and increased failure to remember perform critical tasks.

Code Bubbles is an attempt for programmers to get less interrupted by IDE itself and

reduce their task resuming time by offering various visualization hints. In order to

evaluate how well Code Bubbles it is; we want to conduct a quantitative comparison

between Code Bubbles and Eclipse with degree-of-interest(DOI) treeview feature.

DOI treeview is one of the best cues for resuming interrupted programming tasks

mentioned in [3]. Specifically, DOI treeview consists of a treeview of names of the

program's parts, namely, its projects, files within projects, which are filtered by a

degree-of-interest model over recently visited or edited source code. It also include

the ability to decay the DOI model as time passes. Thus, I implemented DOI treeview

feature in Eclipse as a plugin. Figure 6.1 shows an Eclipse screenshot with DOI

treeview.

Figure 6.1.1. Screenshot of Eclips with DOI treeview on the right. DOI treeview keeps
tracks of recently visited and edited file and also highlights the files have been mostly
visited and edited. DOI treeview plugin is built based on Mylyn API.

6.2 Controlled Study

Next step is to run a controlled study to test the effects of two different programming

environments(Code Bubbles and Eclipse with DOI treeview) on developers' abilities

to recover from task interruption.

Participants: Professional developers. Professional developers are a very demanding

customer. They are expert users with significant experience using existing IDE. In

addition, they often pride themselves in working efficiently. Therefore, one might

reasonably expect them to be highly critical of any new and fundamentally different

application or user interface, and thus ideal population for a qualitative study.

Methods and Procedure: We split participants into two groups: one group for Code

Bubbles, and the other for Eclipse. In addition, we will use similar application

discussed in [3] for controlling interruptions and task switches in the study. When

participants work on the pre-prepared simple programming task in Code Bubbles or

Eclipse, the application will automatically interrupted developers by freezing the

screen for a few minutes. During the study, we record how many tasks each developer

has finished, and how long it will take for finishing each task. Last but not least, we

have to choose a time limit for each task that it possible to conduct our experiment

within a 2 hour time frame without exhausting participants.

7. Future Work

An advanced feature can be extended from the idea of packing bubble automatically:

bubbles can be automatically re-arranged by more intellectual way. This is a

complicated problem, since we have to predict programmers' coding behaviors. Here

are some possible constraints we can take into account, but how to combine the those

constraints appropriately is also tricky:

• Bubbles connected by arrow are more likely to be next to each other.

• Bubbles come from the same class/package are more likely to be together.

• Field bubble is more likely to be on the top of method bubble.

• Bubbles with longest focused time or most editing times are likely to be in a

obvious position.

8. Reference

[1] Bragdon, A. el. Code Bubbles: Rethinking the User Interface Paradigm of

Integrated Development Environments. In Proceedings of the 32nd International

Conference on Software Engineering(ICSE 2010).

[2] Bragdon, A. el. Code Bubbles: A working Set-based Interface for Code

Understanding and Maintenance. In Proceedings of the 28th International Conference

on Human Factors in Computing Systems(CHI 2010).

[3] Chris Parnin. el. Evaluating Cues for Resuming Interrupted Programming Tasks.

In Proceedings of the 28th International Conference on Human Factors in Computing

Systems(CHI 2010).

