Making Programming More Easily in
Code Bubbles

Project Report

Yu Li (vli3@cs.brown.edu)

Advisor: Andries van Dam

mailto:yli3@cs.brown.edu

1. Introduction

Because most of contemporary Integrated development environments(IDEs) are file-
based it is difficult to create and maintain a view in which multiple fragments are
visible simultaneously. However, Code Bubbles is a novel user interface that is based
on collections of lightweight editable fragments, called bubbles, which when grouped
together form concurrently visible working sets. The previous quantitative evaluation
showed that users were able to perform complex code understanding tasks
significantly more efficiently when using bubbles than when using Eclipse due to

reduced navigation.

In this report I will describe several visualization cues and advanced features
implemented in Code Bubbles, which makes programming easier for developers. In
general, those cues and features offer developers critical information of code context
and automatic bubble re-arrangement, which save significant amount of time for the
users and make them better focus on programming itself. Furthermore, a quantitative
evaluation method about comparing the efficiency and the capability of interruption
recovery between Eclipse(Paradigm of contemporary IDEs) and Code Bubbles will be
proposed.

2. The Bubbles Metaphor

The basis for Code Bubbles is the bubble metaphor described fully in[2]. In this
section [will briefly recap the bubble metaphor. The bubbles metaphor represents
working set code fragments as individual bubbles that can be freely positioned on the
2-D display surface. In addition, the display surface is treated as portal on a large
scrollable canvas which both lets more bubbles be open in the workspace than fit
onscreen and also encourages programmers to pan over to create room for new
working set fragments when needed. The bubbles metaphor fundamentally differs
from the multi-window UI based in contemporary IDEs, such as Visual Studio or
Eclipse. Furthermore, the bubbles have following critical characteristics:
* Bubbles never clip text horizontally, but instead automatically reflow long
lines, ensuring that code can be easily read and edited regardless of the
dimensions of its bubble.

* Bubbles are not allowed to overlap each other, making groups of bubbles

easier to read since no Z-order management is needed.
* Bubbles have no space-consuming UI decoration, facilitating the simultaneous

display of large numbers of bubbles.

3. Bubble Background

3.1 Scenario and Design

Because Code Bubbles is not a file-based Integrated development environment it is
easy for programmers to lose the context of entire class. For a instance, several
bubbles are opened in current viewport, some of them come from the same class, and
the others come from different classes. In order to find the bubbles that come from the
same class as the focused bubble, programmers need to read text literally on bread-
crumb bar of bubble. If the programmer get interrupted, he might lose the context and
need to read text again for resuming programming tasks. Thus, the motivation of
using bubble background decoration to highlight important inter-bubble relationships
and information is based on the common sense that visualized impression will stay

longer.

Specifically, there are two types of bubble background decorations: gradient color and
icon image. Each background decoration can indicate either class or package. Users
are allowed to enable/disable bubble background decorations and also to change the
detailed settings by their own preferences. For example, if gradient background color
for class is enabled, all the bubbles which come from the same class will share the
same background color; and the bubbles belong to different classes will have different
background colors. Figure 3.1 shows the all the possible settings for bubble
background. Bubble background only works for code bubble(code fragments bubble)
instead of other types of bubbles, for example, note bubble and flag bubble.

wgmlluﬂoW \;IsuallzaW

Enable visualization Icons Enable visualization gradient background
E |
You want icons indicate You want different gradient backgrounds indicate
Package hd Package D? hd
class or package class or package
The transparency of icons The direction of gradient
83 | Vertical -
1

[- 15 1

vertical, horizental or skew
0100

The size oficons

Small -

Switch between large and small icons

The location of icons

Top right -

Figure 3.1. Bubble background settings in Option Panel. Bubble
background decoration can be either gradient background color or icon, or
both. Users are able to assign gradient color or icon to either class or
package, which makes a unique color/icon indicates one class/package. For
gradient color, direction of gradient can be changed to vertical, horizontal or
skew. For icon, the transparency of icon can be changed to any number
between 0~100; the size of icons user can be changed to small, medium and
large; and also the location of icons can be set to top right, top left, bottom
right and bottom left.

For the implementation, I used the HashCode of class name or package name to get
the unique color/icon. As we know, many colors are too brighter or too darker to be a
background color, so I created a color pool of appropriate background colors for Code

Bubbles as well.

3.2 Screenshots

boalean histery)

£
if (Thistory) {
=w. baging "BASEDATAT);
BaaTentseacch. outputstaticise);
a0 wnd(“RassRATA")

BgstPanel{fran: frame, string title)
1
super{ frame)}
setLocat tonRelat 3veTol frame) |
SETLOCAT1ON(Trame .eTAL)
+ (Trame.getsize().midtn -
Tram.get)
+ (frame.getsize() . height -
setTatle(tatle);
form titls = titley
quastion_list » maw Arrayiistegstquastions()j
Tila_list = mes arca a1
Torm_panel = nme 2eansi(dy
Torm_pansl.setiapout [mes oridsagiaaut()))
Term_panel.set Background{se_coLon)
fore_panel.set ardarborderractor;
_emsataraptyssedan(o, , 18, 10));
Torm_eons = maw dr3deagcoastraista(d)
Torn_cons.gridy = 8}
Torn_cons.grids = o)
Torm_eons. 7511 = 2-idnagoenstraint s .HDRIZONTAL;
form serollpann = mme J5coollracs(fara_pansl);
sstcantent Pass(farm_scrallpana),

FORM_KIDTH) [2,

FORM_HELGRT) | 215

wddrararitlef);

Private vold FeglsTerQUesTION(fistoestios
[

w.setup();

Torm_cons

Torn_panel.ads(q, m--._u-u
quastson_list.add(q)}

mathods for chacking whether the required fislds are

* Raturn whathar s11 raguired questions ars Fillsd

private boolean checkFormi)
L

l-lu- filled_flag = true,
or (imt i = i ¢ question_last.rize(); ise) {
|((qmertom_list .get (3).getinmier() == mull) {
questdan_list.get (1) .markunfilled();
Falled_flag = falne;

[}
else |
quest zan_list .get (i) .markFalledi);

5
return filled_flag;

aat answar msthods

Bovsrride Sioing getAnswar])
{
String answer =

i {g_athers B8 q_buttons.get(q_buttons.sizel}
- 3).isselectad())
anmear = COthars: "+ q_fisld.getTest();
alsw |
for (imt § = 8; § ¢ g buttons.edizeid; ies) {
if (q_buttons.get(i).ieselectadi})
snwaar = q_buttons.get(3).getTest();

il (q_required B4
else return answer,

+

-equale(")) retern mill;

dd & question with check bares

* @parss question the test of question

* @paraw help the text of help mesage

* fiparaw raquired whether question is reguired or na

* @parsw opticns list of chodces

* fparaw gthers whether question has ‘sthers® chaiq

-y

public wmid addCheckBases - one question,

Strang help,5tring(] opticns,beolemn others,

boolean required)

BASTCNECKAONES § & mew fnstohechBoes(question,

nelp,optaons, required,others);
regIsterquest 100(Q);

4 setupi)
1
super.setupd);
Euttossroup b = mew Buttenarsus())
for (int 5 = @ 3 ¢ q_anmu.nm.n-,
JRadisnutton buttel
e 'x..luu.:'.mllq_apl:ml[!]:,
i (4_seens |z nully |
buttos. sstTconiq_icons[4]);
buttos. sutselect adieants_sicons[i])}
¥

button. astopageel fal s
i (4 == B) button.set
q_eens gridyery
by addi Bettan)
q_buttans. add{Buttan);
ade(button, q_cons);

]

it astra = 9
if (q_ethers) |
e

148) [

width, MULTICHOICE_SIZE height
* q_bwttons.zize() + 90 + extral);

Raset mathods

Boeercide weid raseti)
L]

markrslled();
q_buttomi.get () .xetSelacted(trus);

i1 (q_others) o_field.estTest("7);

Figure 3.2.1. Screenshot for current viewport. None of the background decorations
are enabled at this time. It is difficult to figure out which bubbles are from the same
class or package without reading the text on bread-crumb bar of bubble.

-
tQuestion @)

private woid registerquestion;
§

et
e
question_list.aéd(a);

Py

peblic woid mdchechBoxs(
string Malp,string[] apuu-.m.- athera,

@Override pubTEc void owtprARI(S dainluritan ne,
boalean history)

o (Inistary) |
o bagdng "BASS0ATA "))
SET AKLSHAN N OUTIUES B TEC ())
n..m--nmm 4

BastPanel (7-sme Frame,itoing title)
¢
super{frame};
setiocatisnRelativeTol frame); I
setLocationi frame. peta(}
+ (frame.gecsize().width - FOR_WIOTH) / 2,
frame. getvi}
+ (froms.getSize(} height -
setvitle(titie)
forn_title = title

FORM_HETGHT) [2)5

fora_panel. setLavout(new (r,m:),ru[])l

form_pane! . setSackground(Be_CoL

fw‘_uﬂml-snumn[!:rtulu.v‘
-creategmptyBorderie, 18, 18, 18));

form_cons = new driceagConstraints(ly

fora_cons. gridy

Torm_conz.,

Erioe
form_cons. T111 = cmmcm:mm;.m
w:r‘llpﬂ = new J5crollians(form_panel)

ateontentPana(1gane}s

acaroraTitie(}
£l

* A0 3 QUASEIDA WIER chack bowes.
* Bparam gussticn

* Bparan halp

* @paran required
* Bparam optians
* Bparan ot hars

the tast of quistion
ke tast of help missige

whithie guastion 53 reguiced ar e
Tist of ehaseas

whathar quastisn has ‘ethers” choid

Stcing quest

boolean rageired)

wethods for chacking whather the reguired fields are

LER
Eelp,apt dans, required,others);

* Raturn whather all required guestions ars filles

private boolain chackrora()
{

beolean TEllad flag = trusj
Foe (Gnt = 8] § ¢ quastion 1(st.sza(}j Ges) {
U 4f (quasticn Tist.pet(t)., ..m....-n i ,...u, I
Ll guestion 165t. et (S} . markunfEllod(
Filled_flag = Falsej
T
slse {
‘quéstion 1ive. got () markrillad();

1
2
return Filled_flag;

Gt Ansaer meThoss

exus brawns cas bub bles s st BrstMubichoices
pgsak

void setup()
T
super.setupd),
@ Buttondroup()
_nnms.nmn. 164 |
wttan =
e tonfe_optisas{i]},
Y [._un; 1= wull} |
button.sutscen(q_icona [1]);
litbom. st sulnct adl canfa_mseoms{4]1)

50);
butten. set salact sd(trus)
g gridyes,
by addgbettant,
4_buttans.add{buttan);
; wedbutton, 4_cenil;

imt antra = @
i Casthers) {

Bovarride $tring EetARSeer()
String answer = 77y
41 (qothers &8 g_buttons.get(q buttons.size()

- 3).3s5electadq))
anmear » “athers: s q_field.getrast();

1
for (Gt 4= 0) & ¢ g buttens.sizeidy L6 [

41 {a_buttons.gpet(1).dsselectad(}) [
answar = g_buttons get (1) getTant();

exus brawns casub bles s st BystMuBiChoicess

Besat met hods

overrade wid raset()
i

Figure 3.2.2. Screenshot for current viewport. Bubble gradient background color for
class is enabled; so the bubbles come from the same class share the same background

color.

Enlr)l athers

.—n R
private void registerquestion] (ot 0 “tring halp,otrine[] options,beolesn of hers,
H .

Mol esm requirad)

it

trrade public void ot
boalean history)

if (thastory) {
. begang "BASSBATA") 4
BassTentiearch.outputStatiol)
s end(“BASS04TA) §

i

private booleam cheskrore)

booleam Fi11ed_flag = true;

for Cimt i 2 8; 3 ¢ guestion last.size(); 3+ {
- {auestion_list.gut(i) gutanmer() == mll) {

!'llhoq_Hli l'INﬂ warkusfilled(); buttan. cons[]h)

butten. setselectesicon(a_sicans(i]ly
1
Button. setopaque(falsa))
1F (1 == @) button.setselectes(true))

Af (q_cthers &L q_Buttans.get(s_buttons.saze()
- D assstectac)

“eth + ATaeldgeTest(h

=8y 1< a_buttoms,s1ze(); 34 o

16 (a_buttons.gut3). dsselactasl)) |
- abuttons.gel]EETet(l
L]

@overrids void reset(}
i

Figure 3.2.3. Screenshot for current viewport. Both bubble gradient background color
for package and background icon for class are enabled; so the bubbles come from the
same class have the same small icon displayed on top right corner of bubble; and the
bubbles belong to the same package have the same background color.

4. Partial Call Graph

4.1 Scenario and Design

A call graph is a directed graph that represents calling relationships between
subroutines in a program. Specifically, each node represents a procedure and each
edge(F, G) indicates that procedure F calls procedure G. Call graph is a basic program
analysis result that can be used for human understanding of program, or as a basis for
further analyses, such as an analysis that tracks the values between procedures. The
call graph I discussed here is the static call graph, which intends to represent every
possible run of the program. The exact static call graph is undecidable, so static call
algorithms are generally overapproximatons. That is, every call relationship that
occurs is represented in the graph, and possibly also some call relationships that

would never occur in actual runs of the program.

Code Bubbles offers a decent feature called Package Viewer for programmers to view
full static call graph of program, and also provides programmers with several
displaying methods. However, in this report I will talk more about partial call graph,
which is significantly useful for the larger code base. Partial call graph only shows

calling relationships within certain procedures. For example, developer Queenie
wants to know calling relationships involving procedure A within procedures A, B and
C; so that the partial call graph won't display edge(A, D) and edge(C, B). Figure 4.1.1
shows a typical partial call graph for bass. BassNameLocation.createBubble within the
bubbles appeared in Figure 3.2.1. Most of contemporary IDEs are able to generate this
kind of call graph.

beam.BeamProblemBubble.showBubble()

bddt.BddtBreakPointBubble.showBubble() j
v

bass.BassNameLocation.createBubble()

bass.BassNameLocation. getFullName() 1—‘

bass.BassNameLocation.getNameHead()

Figure 4.1.1. A typical partial call graph for bass. BassNameLocation.createBubble
within the bubbles shown in Figure 3.2.1.

Fortunately, the basis for Code Bubbles is bubble metaphor instead of file; so it is
easy and straightforward to display calling relationships upon the bubbles by directly
drawing arrows between procedures. This approach has the following major

advantages:

» Users can browse call graph along with the code; saving time on switching

between separate window of call graph and actual code.

* Users can directly find out which line of code results in calling relationship;

making easier to understand the code of program.

Specifically, in Code Bubbles programmers can use the keyboard shortcut to toggle
the partial call graph; and corresponding inter-bubble edges(arrows) will be drawn on
a transparent pane which layers above original bubble area. The partial call graph can
be closed by single clicking on the transparent pane. This feature is only working

while a valid code bubble has been focused.

4.2 Screenshots

private void showBubble(r1lc foint Jine)
i1 (F =2 null) return

Baleractary alsractory getfecteryl);
Baleconstant raleiervies bfe =
b getr: vame(nal 1,1
il (bfo == mull) retwern;
amt 1off = bfo.fandLinedfFoet (bamed;
iwt eoff o bfo.sapoffzetTobclipsel 1oFF);

bef = 13
Fassname bn @ Bef.fandBubnlename(t, eotf);
Af (bn as null) return;

bile bb « bn.createsubbled)s
e

B Eonstructars
e

(3 rn $he sanglevon inetence of the Sars seerch

edu=DrownrcEr bubblearhassrBasaNamel ocations
edusbr ownecurbubbles sbodt Bt ConfigViews

-
@overrice public nussnubtle cresteoubble)
i

BusaBubnlesrea bba = :
Budasoat FisaSudosubbl edr eai this) j
Uamenzzon sz = bagetSize(dy §
I

a - ned
iy sT.eight - 503
b3 add(Bb, be)s

= bfa.TindLiseorTset(1ane))
» BT0.ABPOTTSITTOECIIPSA(IETT])

sractory BST = Easstactory.geteortory();
Bassuam bR s BST.TIRSEubbI4NAm(T, sl
AF (b 2= mall) Feturs;

Budssublle bb = bn.crestanubblaghy
A1 ghnox a1y ranlon s Ll

= mil; Tool tip methoss
DaleTuctory bF @ Balefsctory.getfoctery();

e
| wwiteh (name_type) {
o : | private String getTeOITLR(ELapLauncrEantaE bl
return "Launch Eanfiguratisn ° +
blc, 41}

e {0 varrids public o0cing getralinmee)

mitch (maee_type) {
cane STATICS ¢
cane PIELDS ¢
come cuass
cane Eu

eclus brawne cae hubblesshasasBasslamel ocations
boverrade public =i geinmetend)

meiteh (name_typed |

Figure 4.2.1. Screenshot of the partial call graph for method
bass.BassNameLocation.createBubble within the bubbles shown in current viewport.
The start point and end point of arrow indicate the actual line of code where procedure
calling happened. Indeed, such representation of call graph is much intuitive and
informative than the one shown in Figure 4.1.1.

private void shovBubble(rils fyint Jine]
A6 (F =2 null) returs;

Baleractory bf = BaleractorygetFoctery(;

BaleCanstant s.@alefaleoiarvies bfo =
bf et Faledver raosi nmd 1,715

il (bfa s= mall) retern;

dmt 1off = bfo.fandlinecFfaet (Dane);

iwt eaff = bfo.sapdffsetTobclipse(1atf);

bsf = 13
Bazziiams bn = Brf.fandBubblename(f, soff);
A6 [bn «a null) return;

udaBubn e bb o bn,cremtesubbleid
Rectangls r « Budshoot

edu-brownkcar bubble sk has s+ Basalamalocations

o
Bovercise public nudamubble crestenubblel)
1

AugaEUDRleArea Bba =
Bud1hcat FrdBudcBubbL asreat this) s
Uisens3om 5T = Bb.getsize(l)
¥c - med uts
Py o sT.hengne - 500
bha.add(es, bol)

edurbrowne csbubbless beame BeamProblemiubbles

f
"~ Wew bubble wethods
i

private void shosbubblel il T,int Iine)
1

Baletactary BT = balefactarj.getAactory()y
BI1ECONSLANES . BR1EF210VEE Fldn BTO
VT getFL1a0 var o2 am] 1, T)
16 (¥Ta =e ML) Fatuen;
Amt 1oPT + bfo.findlIsecTzat(line);
ANL BOTT » DO .MRpOTTSETOECIIPSA(1OTT))

Jvar e "
Eassunes b ¢ bf. FindtubEdasam (e, Ty
54 (00 e 1) raturm;

le Bk = nelly
PBalatectory bF = Baleractory.getroctoryi)s

e
| wwitch {name_type) {
el : private 1cing getToolTAp(ssas LaunchcanTip ble)

return “Launch Configuratden ©
| ble.gutcontignana(),

5+ Basshamelocations
» ouarrids peblic string getrullusss|)

switch (same_type) [
cane STATICS @

Boverride public ot getnmmetend(]

maitch (name_t ypud |
cave CLASE -

Figure 4.2.1. Screenshot of the partial call graph for method
bass.BassNameLocation.getFullName within the bubbles shown in current viewport.

5. Automatic Bubbles Re-arrangement

5.1 Motivation

In order to get detailed, qualitative feedback from professional developers, I
conducted more than forty phone interviews with about fifteen professional
programmers who kept using Code Bubbles as programming tool during last semester.
Besides of exploring project and understanding code base, developers also use Code
Bubbles quite often for demo purpose during meeting, code review and training; since
large number of code fragments can be displayed on the screen at one time in Code
Bubbles. As I just mentioned, bubbles in Code Bubbles do not overlap but instead
push each other out of the way, which will cause extra empty space between bubbles
and make those bubbles disorganized while opening a new bubble. Therefore, the
motivation for bubbles re-arrangement is to pack bubbles for programmers
automatically; making the bubbles' layout neat, and fitting as many bubbles as

possible within current viewport.

5.2 Rectangle Packing

The problem above can be simplified into packing several small rectangles of varying
dimensions into a bigger one without them overlapping. Unfortunately, this problem
is commonly known as the Bin Packing problem, which is a non resolved
combinatorial NP-hard problem. However, I will propose a pretty decent

approximation algorithm to the optimal result later.

What we will do is recursively divide the larger rectangle into empty and filled
regions. We start off with an empty large rectangle and after inserting one rectangle

we will get Figure 5.2.1; then we start to insert the next one, we will get Figure 5.2.2.

B

A
B/\
-

Figure 5.2.1. As image shown, here we've split the bigger rectangle in half by line A

then split the upper half by B and inserted the first rectangle to the left if B.

{ A
e \/C\
1/\ D *
D 2/ X

C

Figure 5.2.2. While inserting the next one, we will check if it can fit above A and if it
can we check to see if it can fit left of B, it is full in this case, then right of B. If it fits
we split B exactly how we split the original bigger rectangle; otherwise we insert and
split below A.

Here it is a part of Java code which implemented above algorithm:

ffhelp tree node class
class PackingNode {
int x;
int y;
int w;
int h;
PackingNode left = null:;
PackingNode right = null;
boolesan used = false;

ffazimple constructor

PackingNode (int x, int y, int w, int h) {
this.x = x:
this.y W
this.w = w;
this.h h

//this iz a recurzive method that searches appropriate location
for input rectangles
Point findLocation (PackingNode pn, int w, int h) {

if (pn.left != null) {
Point loc = findLoecation (pn.left, w, h):
if (loc == null)

findLocation(pn.right, w, h):
}
else |
if (pn.used || wrpn.w | |h>pn.R)
return null;

if (w==pn.w && h==pn.h) {
pn.used = trua;
raturn new Pointipn.x, pn.vy);

pn.left = new PackingNode (pn.x, pn.vy, pn.w, pn.h);
pn.right = new PackingNode(pn.x, pn.y, pn.w, pn.h);

if (pn.w-w > pn.h-h){
System.out.println("got here?l");
pn.left.w = w;

pn.right.x pn.X + W}

pPn.W = W

pn.right.w
H
else |
System.out.println ("got here?i");
pn.left.h = h;
pr.right.y = pn.y + h;
pn.right.h pn.h - h;

}
return findLocation(pn.left, w, h):

}

return null;

5.3 Screenshots

Crs
* Enables a line breakpoint
* @param Tile
* @param line
0 Constructors

Canstructars

public void emabl. point(rile Tile, int line)

= methods
Bunpereakpodnt bp = FindBreakpoint(Tile, line);
11) {

if (bp != nul Return the singleton instance of

Return the singleton instance of the breakpoint
0= gethiodeType() = "

Eypes b
© static sassracior) getfactory()

Baleastiinde getchildmode(imt spos,int epos)
Bubble creation methads

actory
if {spos < start_position || epos > end_position)

return mull;

Called to dnitialize once BudaRoot is sstup

if (child_nodes != mull) {
- :
g CEOEE I G Creste a2 seancn bumae o s gxuen tye Tor the
S0 (EED S0 Goeiii LREEC) (13 G <o given initisl search string

public static void initialize(Eudaroot
c.end_position) return c; cop

BoardLog.logn("Bass”, "Initialize");
b public ssccsubblc createsearch(searchiype type,
i1 (bass_properties.getpoolean String proisstring prK)
S5_PACK_ON_START_UAME) 48
160ards et up.getConf igurationFilet) . exists())
package_explorer =
getractory().createpackageexplorer();
SudaBubblesres bba = br.gatcurrentBubblearsa();
Rectangle r = br.getviewport()}
bimension d =
package_explorer.getbreferredsize();
d.height = r.hesght;
ckage_explorer.setsize(d);
udaconstraint be
new Budaconst raint (BuUdaBUbb]ePosItion. DOCKED,

return this;
BassRepository br = getdepository(typed;

if (br == null) return mul.

Breakpoint creation/deletion/editing methods

Add a breakpoint at the give line of the gaven f|

public void addLineBreakpoimt(trins proj,
File file,string cls,imt line,
sbptsreakiods made)

y

Called to initialize once Budaroot is setup
Bubble creatdon methods constructors

public static void initializefGudsroot br)
Create as search bubble of a given type for the given proj Return the singleton instance of the breakpoint

BoardLog. Logd("BASS”, "Initialize”);
given Initial search string

if (bass_propertiss.getBoolsan(BASS_PACK_ON_START_NAME) 8&
18oardset up.getconrigurationFil e() exists()) {
package_explorer =
getractory() .createpackagexplorer();
BudaBubblsares bba = br.getcurrentgubblzarea();
Rectangle r = br.getviewport();
Dinension d = package.explorer.getpreferredsiza);
d.height = r.height;
package_explorer.setsiza(d);
Budacanstraint
nen BudaConst raint (BudaBubbleros it jon.00CKED,
Pox o+ racidth -)

Public 5azsEUbhle createsearch(cearchTipe type,
string proj,string pfx)

BassRepository br = getAepositoryltypels

return null;
double getelidepriority()
{ return elide_priority; }

o
+ enables a line breakpoint
+ @param fils
+ @param line
!

Access methods

Const ructors EBalesstuoder pe getnodeTypel) public void enableBreakpoint(rile File, inmt line)
{ return node_type; |

BunpEreakpoint bp = findereakpoint(file, 1ine);
null) {

Beturn the singlston instance of the sass search)
Breakpoint creationfdeletion/editing methods

public static BazsFactor) getFactory()

Add 3 breakpoint at the give line of the given 1]

public void addLineBreakpoimt(s: iz proi,
File fils,string cls,imt Line

Baleastiiode getChildlode(imt spos,int epos)
Bbptereskiods made)

if (spos < start_position || epos » end_pasition)
return null;
calids.DEFALT) mde =
if (ehild_nedes '= mull) {
for (Ealeastfiode € i child_nodes) [
if (spos >= c.stant_position 42 spos <=
c.end_posataon) return cj

}

return this;

Figure 5.3.2. Screenshot of Code Bubbles after re-arrangement.

6. Evaluation Methodology

6.1 Previous work and Eclipse plugin

In the previous paper, a quantitative evaluation showed that the bubbles metaphor

could improve code understanding performance. In this report, my focus is on how is
the efficiency and the capability of interruption recovery in Code Bubbles. As we
know, professional developers must frequently resume unfinished programming tasks
from where they left off. The interruptions may be due to unexpected requests form
co-workers, scheduled meetings, or even extra manual interactions with IDE.
Regardless of the source the effects are often the same: When resuming work,
developers experience increased time to perform the task, increased errors, increased

loss of knowledge, and increased failure to remember perform critical tasks.

Code Bubbles is an attempt for programmers to get less interrupted by IDE itself and
reduce their task resuming time by offering various visualization hints. In order to
evaluate how well Code Bubbles it is; we want to conduct a quantitative comparison
between Code Bubbles and Eclipse with degree-of-interest(DOI) treeview feature.
DOI treeview is one of the best cues for resuming interrupted programming tasks
mentioned in [3]. Specifically, DOI treeview consists of a treeview of names of the
program's parts, namely, its projects, files within projects, which are filtered by a
degree-of-interest model over recently visited or edited source code. It also include
the ability to decay the DOI model as time passes. Thus, I implemented DOI treeview
feature in Eclipse as a plugin. Figure 6.1 shows an Eclipse screenshot with DOI

treeview.

1] JavaEditorviewpetMe 1] ActivityView.jeva [J] ActivityMeniterjava &1 s = O [@ Activity View 2 ii

= [_'sack.aqe ylis.plugin.cimeline; - = yii3.plugin.timeline
=t yiid.plugintimeline
T import java.lio.File; Activatorjava

ActivityMeniter java
public class ActivityMonicor { 1= yI2.plugin.timeline.monitors
AbstractModelBasedT extEditorfMonitor.java
= — AbstractWorkbenchPartMoniter, java
JavakditorViewportMonitor java
LineRangelifferences java
PartDispatcher java
1=t yli3.plugin.timeline.views

private JavaFEditorViewportMonicor editor menitor)
private MonitorUpdater monitor updater;

private ACtivityView acTtilvity view;

private boolean iz_start

public ACTivITtyMonitor (ACTivityView av) ActivityView java

activity_view = av:
ig_start = falese;

AL (!i=s_acart) {
monitor updater = mew MonitorUpdater()}

editor MORITOr = new JavaEditorViewportMoniter():

HMonitorlUi.addInteractionlistensr (monitor updater);
iz start = true;

public vold stopMonitoring|)

if (im starc) {
editor
Monitor Eut
monitor_updater.stopMonitoring () ;
1s_start = false;

rrdtrate Alass Mend Favliedarar svbends Sharrastond coel o

Figure 6.1.1. Screenshot of Eclips with DOI treeview on the right. DOI treeview keeps
tracks of recently visited and edited file and also highlights the files have been mostly
visited and edited. DOI treeview plugin is built based on Mylyn API.

6.2 Controlled Study
Next step is to run a controlled study to test the effects of two different programming
environments(Code Bubbles and Eclipse with DOI treeview) on developers' abilities

to recover from task interruption.

Participants: Professional developers. Professional developers are a very demanding
customer. They are expert users with significant experience using existing IDE. In
addition, they often pride themselves in working efficiently. Therefore, one might
reasonably expect them to be highly critical of any new and fundamentally different

application or user interface, and thus ideal population for a qualitative study.

Methods and Procedure: We split participants into two groups: one group for Code
Bubbles, and the other for Eclipse. In addition, we will use similar application
discussed in [3] for controlling interruptions and task switches in the study. When

participants work on the pre-prepared simple programming task in Code Bubbles or

Eclipse, the application will automatically interrupted developers by freezing the
screen for a few minutes. During the study, we record how many tasks each developer
has finished, and how long it will take for finishing each task. Last but not least, we
have to choose a time limit for each task that it possible to conduct our experiment

within a 2 hour time frame without exhausting participants.

7. Future Work

An advanced feature can be extended from the idea of packing bubble automatically:
bubbles can be automatically re-arranged by more intellectual way. This is a
complicated problem, since we have to predict programmers' coding behaviors. Here
are some possible constraints we can take into account, but how to combine the those
constraints appropriately is also tricky:

* Bubbles connected by arrow are more likely to be next to each other.

* Bubbles come from the same class/package are more likely to be together.

* Field bubble is more likely to be on the top of method bubble.

* Bubbles with longest focused time or most editing times are likely to be in a

obvious position.

8. Reference

[1] Bragdon, A. el. Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments. In Proceedings of the 32" International
Conference on Software Engineering(ICSE 2010).

[2] Bragdon, A. el. Code Bubbles: A working Set-based Interface for Code
Understanding and Maintenance. In Proceedings of the 28" International Conference
on Human Factors in Computing Systems(CHI 2010).

[3] Chris Parnin. el. Evaluating Cues for Resuming Interrupted Programming Tasks.
In Proceedings of the 28™ International Conference on Human Factors in Computing

Systems(CHI 2010).

